The spectrum of a Toeplitz operator with continuous symbol

Parthematical 1. Sto argeno (Ind24) dia deixoume oti o deixtas stroomas eperteinetai se oles tis sunexeis xleistes xampules $\gamma : [0,1] \to \mathbb{C}$. An $\phi \in C(\mathbb{T})$, grapoume $n(\phi; \lambda)$ gia ton deixta stroomas tas operatives tas $\gamma_{\phi}(t) := \phi(e^{2\pi i t}), t \in [0,1]$.

Θεώρημα 2. Αν $\phi \in C(\mathbb{T})$, τοτε

$$\sigma(T_{\phi}) = \operatorname{ran}(\phi) \cup \{\lambda \in \mathbb{C} \setminus \operatorname{ran}(\phi) : n(\phi; \lambda) \neq 0\}$$

Απόδειξη. Observe that since $\phi \in C(\mathbb{T})$ we have $\operatorname{ran}(\phi) = \operatorname{essran}(\phi)$.

Hence by spectral inclusion,

$$\operatorname{ran}(\phi) = \sigma(M_{\phi}) \subseteq \sigma(T_{\phi}).$$

Thus we have to show that if $\lambda \in \mathbb{C} \setminus \operatorname{ran}(\phi)$, then

$$\begin{split} \lambda \notin \sigma(T_\phi) & \Longleftrightarrow \quad n(\phi;\lambda) = 0 \\ \text{Equivalently:} \ T_{\phi-\lambda} \ \text{invertible} & \Longleftrightarrow \quad n(\phi-\lambda;0) = 0. \end{split}$$

Thus replacing ϕ with $\phi - \lambda$ we have to show that if $0 \notin \operatorname{ran}(\phi)$ (i.e. if ϕ vanishes nowhere in \mathbb{T} , i.e. if $\min |\phi(e^{it})| > 0$), then

$$T_{\phi}$$
 invertible $\iff n(\phi; 0) = 0.$

• Case (1) Suppose $\phi = f_k$ for some $k \in \mathbb{Z}_+$:

Here $T_{\phi} = T_1^k$ is invertible iff k = 0, while $n(\phi; 0) = k$ (storation groups groups at to 0) vanishes iff k = 0.

• *Case (2)* Suppose ϕ is an (analytic) polynomial $\phi = \sum_{j=0}^{n} c_j f_j$:

Extending ϕ to \mathbb{C} , consider

$$q(z) = \sum_{j=0}^n c_j z^j \,.$$

The polynomial q factors:

$$q(z) = c z^m \prod_{j=1}^k (z-z_j) \prod_{j=1}^\ell (z-w_j) \quad 0 < |z_j| < 1 < |w_j|$$

for some $c \in \mathbb{C}$, where $m \ge 0$ is the multiplicity of the root of q at 0, $\{z_j\}$ are the non-zero roots of q in \mathbb{D} and $\{w_j\}$ are the roots of q outside $\overline{\mathbb{D}}$ (observe that q has no roots in \mathbb{T} because ϕ never vanishes on \mathbb{T} !).

Then we have

$$\begin{split} \phi(e^{it}) &= q(e^{it}) = ce^{imt} \prod_{j=1}^k (e^{it} - z_j) \prod_{j=1}^\ell (e^{it} - w_j) \\ &\text{so} \quad \phi = cf_{m+k} \prod_{j=1}^k (1 - z_j \bar{f}_1) \prod_{j=1}^\ell (f_1 - w_j) \\ &= c \bar{u} v f_{m+k} \end{split}$$

where $u := \prod_{j=1}^{k} (1 - \bar{z}_j f_1)$ and $v := \prod_{j=1}^{\ell} (f_1 - w_j)$.

Since the functions v and f_{m+k} are in \widetilde{H}^{∞} we have

$$T_{\phi} = T_{c\bar{u}vf_{m+k}} = cT_{\bar{u}vf_{m+k}} = cT_{\bar{u}}T_{vf_{m+k}} = cT_{\bar{u}}T_{v}T_{f_{m+k}}.$$

But the function u (extended to \mathbb{C}) vanishes nowhere in $\overline{\mathbb{D}}$ (u has roots $1/\bar{z}_j$ which lie outside $\overline{\mathbb{D}}$). Hence the Toeplitz operator $T_{\overline{u}} = T_u^*$ is invertible because T_u is invertible. Also the function v vanishes nowhere in $\overline{\mathbb{D}}$ and hence T_v is invertible. Thus T_{ϕ} is invertible iff $T_{f_{m+k}} = T_1^{m+k}$ is invertible which happens iff m + k = 0.

 $(\iff q \text{ has no roots in } \mathbb{D}.)$

On the other hand, since the roots of \bar{u} and v lie outside $\overline{\mathbb{D}}$, we have $n(\bar{u}; 0) = 0$ and n(v; 0) = 0. By (Ind24)²

$$n(\phi; 0) = n(\bar{u}; 0) + n(v; 0) + n(f_{m+k}; 0) = m + k$$

so $n(\phi; 0) = 0$ iff m + k = 0 iff T_{ϕ} is invertible.

• *Case (3)* Suppose ϕ is a trigonometric polynomial $\phi = \sum_{j=-n}^{n} c_j f_j$:

In this case we shift n places to the right to obtain an analytic polynomial: define

$$q(z) = \sum_{j=-n}^n c_j z^{n+j} \, .$$

Thus $q(e^{it}) = \sum_{j=-n}^{n} c_j e^{it(n+j)} = e^{int} \phi(e^{it})$ for $e^{it} \in \mathbb{T}$, i.e. $\phi = \tilde{q}f_{-n}$ (note $\tilde{q} = q|_{\mathbb{T}}$). Using the argument and notation of Case (2), we may write

$$\phi = c \bar{u} v f_{m+k-n} \,.$$

Suppose that $m+k-n \ge 0$. Then f_{m+k-n} is in \widetilde{H}^{∞} and the same argument as in Case (2) yields that T_{ϕ} is invertible iff m + k - n = 0 and that $n(\phi; 0) = m + k - n$ which vanishes iff m + k - n = 0, completing the proof.

Suppose that $m + k - n \leq 0$. Then \overline{f}_{m+k-n} is in \widetilde{H}^{∞} and if we write $\phi = cf_{m+k-n}\overline{u}v$ we see that the function $\bar{f}_{m+k-n}u$ is in \widetilde{H}^{∞} hence we have the factorization

$$T_{\phi} = cT_{f_{m+k-n}\bar{u}v} = cT_{f_{m+k-n}\bar{u}}T_v = cT_{f_{m+k-n}}T_{\bar{u}}T_v \,.$$

Thus, as before we see that T_{ϕ} is invertible iff $T_{f_{m+k-n}}$ is invertible which happens iff m + k - n = 0, iff $n(\phi; 0)$ vanishes.

 $^{{}^{\}scriptscriptstyle \rm I} T_u T_{u^{-1}} = T_{u u^{-1}} = I = T_{u^{-1}} T_u$ since both u and u^{-1} are analytic.

• Case (4) (general) Choose a trigonometric polynomial $p \in C(\mathbb{T})$ such that

$$\|\phi-p\|<\frac{1}{3}\min|\phi|$$

and note that p never vanishes $(|p| > ||\phi|| - \frac{1}{3}\min |\phi| \ge \frac{2}{3}\min |\phi|)$ and

$$\psi := \frac{\phi - p}{p} \quad \text{satisfies} \quad \|\psi\| < \frac{\frac{1}{3}\min|\phi|}{\frac{2}{3}\min|\phi|} = \frac{1}{2}$$

It follows that $u = \log(1 + \psi)$ is a well defined continuous function and

 $1 + \psi = e^u \,.$

(indeed, the series $\log(1+\psi) = -\sum_{n=1}^{\infty} \frac{1}{n} (-\psi)^n$, converges because $||1 - (1+\psi)|| < 1$.) ³ Therefore (from (Ind))

$$n(1+\psi;0) = 0$$

and hence, since $\phi = p(1 + \psi)$,

$$n(\phi; 0) = n(p; 0) + n(1 + \psi; 0) = n(p; 0).$$

Since $1+\psi$ is analytic and invertible the relation $T_{\phi} = T_p T_{(1+\psi)}$ shows that T_{ϕ} is invertible if and only if T_p is invertible. By Case (3), this happens iff n(p;0) = 0, equivalently iff $n(\phi;0) = 0$ and we are done.

³Λεπτομερειες στο αρχειο (Ind24)