The spectrum of a Toeplitz operator with continuous symbol

Παρατήρηση 1. *Στο αρχειο (Ind24) θα δειξουμε οτι ο δεικτης στροφης επεκτεινεται σε ολες τις συνεχεις κλειστες καμπυλες* ∶ [0, 1] → ℂ*. Αν* ∈ ()*, γραφουμε* (;) *για τον δεικτη στροφης της* $\gamma_{\phi}(t) := \phi(e^{2\pi i t}), t \in [0, 1].$

Θεώρημα 2. *Αν* ∈ ()*, τοτε*

$$
\sigma(T_{\phi}) = \operatorname{ran}(\phi) \cup \{\lambda \in \mathbb{C} \setminus \operatorname{ran}(\phi) : n(\phi; \lambda) \neq 0\}.
$$

Απόδειξη. Observe that since $\phi \in C(\mathbb{T})$ we have ran(ϕ) = essran(ϕ).

Hence by spectral inclusion,

$$
\operatorname{ran}(\phi) = \sigma(M_{\phi}) \subseteq \sigma(T_{\phi}).
$$

Thus we have to show that if $\lambda \in \mathbb{C} \setminus \text{ran}(\phi)$, then

$$
\lambda \notin \sigma(T_{\phi}) \iff n(\phi; \lambda) = 0
$$

Equivalently: $T_{\phi-\lambda}$ invertible $\iff n(\phi-\lambda; 0) = 0$.

Thus replacing ϕ with $\phi - \lambda$ we have to show that if $0 \notin \text{ran}(\phi)$ (i.e. if ϕ vanishes nowhere in \mathbb{T} , i.e. if min $|\phi(e^{it})| > 0$, then

$$
T_{\phi} \text{ invertible} \iff n(\phi; 0) = 0.
$$

• *Case (1)* Suppose $\phi = f_k$ for some $k \in \mathbb{Z}_+$:

Here $T_{\phi}=T_{1}^{k}$ is invertible iff $k=0$, while $n(\phi;0)=k$ (στροφες γυρω απ το 0) vanishes iff $k = 0$. \Box

• *Case (2)* Suppose ϕ is an (analytic) polynomial $\phi = \sum^{n}$ $\sum_{j=0} c_j f_j$:

Extending ϕ to \mathbb{C} , consider

$$
q(z)=\sum_{j=0}^n c_jz^j\,.
$$

The polynomial q factors:

$$
q(z)=cz^m\prod_{j=1}^k (z-z_j)\prod_{j=1}^\ell (z-w_j)\quad 0<|z_j|<1<|w_j|
$$

for some $c \in \mathbb{C}$, where $m \geq 0$ is the multiplicity of the root of q at 0, $\{z_i\}$ are the non-zero roots of q in $\mathbb D$ and $\{w_i\}$ are the roots of q outside $\overline{\mathbb D}$ (observe that q has no roots in $\mathbb T$ because ϕ never vanishes on $\mathbb T$!).

Then we have

$$
\phi(e^{it}) = q(e^{it}) = ce^{imt} \prod_{j=1}^{k} (e^{it} - z_j) \prod_{j=1}^{\ell} (e^{it} - w_j)
$$

so
$$
\phi = cf_{m+k} \prod_{j=1}^{k} (1 - z_j \bar{f}_1) \prod_{j=1}^{\ell} (f_1 - w_j)
$$

$$
= c\bar{u}vf_{m+k}
$$

where $u := \prod_{j=1}^{k} (1 - \bar{z}_j f_1)$ and $v := \prod_{j=1}^{\ell} (f_1 - w_j)$.

Since the functions v and f_{m+k} are in \widetilde{H}^{∞} we have

$$
T_{\phi} = T_{c\bar{u}vf_{m+k}} = cT_{\bar{u}vf_{m+k}} = cT_{\bar{u}}T_{vf_{m+k}} = cT_{\bar{u}}T_vT_{f_{m+k}}.
$$

But the function u (extended to $\mathbb C$) vanishes nowhere in $\overline{\mathbb D}$ (u has roots $1/\overline{z}_i$ which lie outside $\overline{\mathbb{D}}$). Hence the Toeplitz operator $T_{\bar{u}}=T_u^*$ is invertible because T_u is invertible. 1 Also the function v vanishes nowhere in \overline{D} and hence T_v is invertible.

Thus T_{ϕ} is invertible iff $T_{f_{m+k}} = T_1^{m+k}$ is invertible which happens iff $m+k=0$. $(\iff q$ has no roots in \mathbb{D} .)

On the other hand, since the roots of \bar{u} and v lie outside \bar{D} , we have $n(\bar{u}; 0) = 0$ and $n(v; 0) = 0$. By (Ind24)²

$$
n(\phi; 0) = n(\bar{u}; 0) + n(v; 0) + n(f_{m+k}; 0) = m + k.
$$

so $n(\phi; 0) = 0$ iff $m + k = 0$ iff T_{ϕ} is invertible.

• *Case (3)* Suppose ϕ is a trigonometric polynomial $\phi = \sum^{n}$ $\sum_{j=-n} c_j f_j$:

In this case we shift n places to the right to obtain an analytic polynomial: define

$$
q(z) = \sum_{j=-n}^{n} c_j z^{n+j}.
$$

Thus $q(e^{it}) = \sum_{n=1}^{\infty}$ $\sum_{j=-n} c_j e^{it(n+j)} = e^{int} \phi(e^{it})$ for $e^{it} \in \mathbb{T}$, i.e. $\phi = \tilde{q} f_{-n}$ (note $\tilde{q} = q|_{\mathbb{T}}$). Using the

argument and notation of Case (2), we may write

$$
\phi = c\bar{u}vf_{m+k-n} .
$$

Suppose that $m + k - n \geq 0$. Then f_{m+k-n} is in \widetilde{H}^{∞} and the same argument as in Case (2) yields that T_{ϕ} is invertible iff $m + k - n = 0$ and that $n(\phi; 0) = m + k - n$ which vanishes iff $m + k - n = 0$, completing the proof.

Suppose that $m + \hat{k} - n \leq 0$. Then \bar{f}_{m+k-n} is in \widetilde{H}^{∞} and if we write $\phi = cf_{m+k-n} \bar{u}v$ we see that the function $\bar{f}_{m+k-n}u$ is in \widetilde{H}^{∞} hence we have the factorization

$$
T_{\phi} = c T_{f_{m+k-n}} \bar{u}v = c T_{f_{m+k-n}} \bar{u} T_v = c T_{f_{m+k-n}} T_{\bar{u}} T_v.
$$

Thus, as before we see that T_{ϕ} is invertible iff $T_{f_{m+k-n}}$ is invertible which happens iff $m + k - n = 0$, iff $n(\phi; 0)$ vanishes. \Box

 \Box

 ${}^{\perp}T_u T_{u^{-1}} = T_{uu^{-1}} = I = T_{u^{-1}} T_u$ since both u and u^{-1} are analytic.

²αποδειξη στο αρχειο (Ind24)

• *Case (4)* (general) Choose a trigonometric polynomial $p \in C(\mathbb{T})$ such that

$$
\|\phi-p\|<\frac{1}{3}\min|\phi|
$$

and note that p never vanishes $(|p| > ||\phi|| - \frac{1}{3} \min |\phi| \geq \frac{2}{3} \min |\phi|)$ and

$$
\psi := \frac{\phi - p}{p} \quad \text{satisfies} \quad \|\psi\| < \frac{\frac{1}{3}\min|\phi|}{\frac{2}{3}\min|\phi|} = \frac{1}{2} \,.
$$

It follows that $u = \log(1 + \psi)$ is a well defined continuous function and

$$
1+\psi=e^u.
$$

(indeed, the series $\log(1 + \psi) = -\sum_{n=1}^{\infty}$ 1 $\frac{1}{n}(-\psi)^n$, converges because $||1-(1+\psi)|| < 1$.)³ Therefore (from (\overline{Ind}))

$$
n(1+\psi;0)=0
$$

and hence, since $\phi = p(1 + \psi)$,

$$
n(\phi; 0) = n(p; 0) + n(1 + \psi; 0) = n(p; 0).
$$

Since 1+ ψ is analytic and invertible the relation $T_\phi = T_p T_{(1+\psi)}$ shows that T_ϕ is invertible if and only if T_p is invertible. By Case (3), this happens iff $n(p; 0) = 0$, equivalently iff $n(\phi; 0) = 0$ and we are done. \Box

³Λεπτομερειες στο αρχειο (Ind24)