The spectrum of a Toeplitz operator with continuous symbol

HMapatheonon 1. X270 agyeo (Ind24) do da&ovue 0Tt 0 OetxTng GTEOPNG ETEXTELVETOL GE OAEG
TG ovvELEs xAewoTeg xaumvieg v ¢ [0,1] — C. Av ¢ € C(T), yoapovue n($; A) yia Tov Seixtn
0TEOPNS TS Y,(t) 1= p(e>™), t € [0, 1].

Oczwonuo 2. Av ¢ € C(T), ToTe
o(T,) = ran(¢) U{A € C\ran(¢) : n(¢;\) # 0}.

AmdbeEn. Observe that since ¢ € C(T) we have ran(¢) = essran(¢).
Hence by spectral inclusion,

ran(¢) = o(M,) C o(T,).
Thus we have to show that if A € C\ran(¢), then

Ago(Ty) <= n($;A) =0
Equivalently: T, invertible <= n(¢ —X;0) = 0.

Thus replacing ¢ with ¢ — A we have to show that if 0 ¢ ran(¢) (i.e. if ¢ vanishes
nowhere in T, i.e. if min|¢(e’)| > 0), then

T, invertible < n(¢;0) = 0.

e Case (1) Suppose ¢ = f, for some ke Z,:

Here T, = T is invertible iff k£ = 0, while n(¢;0) = k (6T00¢eg YVe® aw To 0) vanishes
iff k=0. O

e Case (2) Suppose ¢ is an (analytic) polynomial ¢ =} ¢;f;:
=0

Extending ¢ to C, consider
q(z) = Z ;7.
3=0

The polynomial ¢ factors:

4

(z—z) [[(z—w)) 0<lz] <1<l
J=1 j=1

q(z) =cz™

—.

for some ¢ € C, where m > 0 is the multiplicity of the root of ¢ at 0, {z;} are the

non-zero roots of ¢ in D and {wj} are the roots of ¢ outside D (observe that ¢ has no
roots in T because ¢ never vanishes on T!).



Then we have
k 0
¢<eit) — q(eit> — ceimt H(eit . Zj) H(eit i wj)
A 1

Jj=1 Jj=

k ¢
SO ¢ =cf .k H(l - ijl) H(fl - wj)
=1 =1
= cuv m+k

where u=[]_ (1—2,) and v:=[,_ (f, — w)).

Since the functions v and f,, , are in H* we have

T¢ = T = CTﬁTUfnwrk = CTﬁTUTferk :

Caluf'rrH»k: = CT

avf77b+k

But the function u (extended to C) vanishes nowhere in D (u has roots 1/z; which lie
outside D). Hence the Toeplitz operator T, = T is invertible because T, is invertible. '
Also the function v vanishes nowhere in D and hence T, is invertible.

Thus T, is invertible iff Ty = TlmJ“"C is invertible which happens iff m 4+ k = 0.
(<= ¢ has no roots in D.)

On the other hand, since the roots of 4 and v lie outside D, we have n(u;0) = 0 and
n(v;0) = 0. By (Ind24) *

n(¢;0) = n(u;0) + n(v;0) + n(f,1;0) =m+ k.
s0 n(¢;0) =0 iff m + k=0 iff T, is invertible. O

e Case (3) Suppose ¢ is a trigonometric polynomial ¢ = > ¢;f;:

Jj=-n

In this case we shift n places to the right to obtain an analytic polynomial: define

n
q(z) = Z c;z"

j=n

. n . . . . .
Thus g(e’) = Y ¢;e' ™) = e™mg(e') for e € T, ie. ¢ = 4f_, (note ¢ = g|y). Using the
j=—n

argument and notation of Case (2), we may write
¢ = cuv m+k—n *
Suppose that m+k—n > 0. Then f,, ,, , isin H®® and the same argument as in Case (2)
yields that T, is invertible iff m +k —n =0 and that n(¢;0) = m + k —n which vanishes
iff m +k —n =0, completing the proof.
Suppose that m +k—n <0. Then f,,,,_, is in H* and if we write ¢ = cf,, . ;_,uv we
see that the function f,,_, ,u is in H®® hence we have the factorization

Td) = CTf u T = CTan+k77LT7T

m+k—n UV =¢ f’rnJrkfn’a’ v uTv
Thus, as before we see that T, is invertible iff 7, ~ is invertible which happens iff
m+k—n =0, iff n(¢;0) vanishes. O

'T,T,1=T,,1=1=T,.T, since both uw and v~ ! are analytic.
*awodelEn 6To ayelo (Ind24)




e Case (4) (general) Choose a trigonometric polynomial p € C(T) such that
I
|6l < 5 min o

and note that p never vanishes (|p| > |¢| — 1 min |¢| > 2 min |¢[) and

_ Lmin 1
_ 7P gaiisfies Iyl < g’iw =_.
smin|¢| 2

P

It follows that v =log(1l + ) is a well defined continuous function and
1+ =e".

(indeed, the series log(1 +v) = — Zzo:l L(—y)™, converges because |1 — (1+¢)| <1.)°
Therefore (from (Ind))
n(l+1;0)=0

and hence, since ¢ = p(1+ ),
n(¢;0) =n(p;0) +n(l +1;0) = n(p; 0).

Since 1+ is analytic and invertible the relation T, = T, T}, , ,,, shows that T is invertible
if and only if T, is invertible. By Case (3), this happens iff n(p;0) = 0, equivalently iff
n(¢;0) =0 and we are done. O
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