Σχολια σε μεριχες ασχησεις

(Απο τη συζητηση στην ταξη για το φυλλαδιο ΙΙΙ)

Άσχηση 4. Εστω $\phi \in L^{\infty}$.

- (a) Deixte oti o telesthς $T_\phi:=PM_\phi|_{\widetilde{H}^2}$ einai isometria an-n h ϕ einai essterinh sunarthsh. (b) Deixte oti o T_ϕ einai unitary (= isometria kai epi) an-n h ϕ einai (s.pl) staberh.
- (γ) Αν $\phi \in \widetilde{H}^{\infty}$, δειξτε οτι η $\{1, \phi, \phi^2, ...\}$ ειναι ορθοκανονικη βαση του \widetilde{H}^2 αν-ν $\phi(z) = \lambda z$ οπου $\lambda \in \mathbb{T}$ σταθερα.

Απόδειξη. (α) If φ is inner, clearly $T_φ$ is isometric:

$$\int |\phi(e^{it})|^2 |f(e^{it})|^2 dt = \int |f(e^{it})|^2 dt \quad \forall f \in \widetilde{H}^2.$$

If conversely T_{ϕ} is isometric, then we must have $\|P(\phi f)\|_2 = \|f\|_2$ for every $f \in \widetilde{H}^2$ and in particular $\|P(\phi \mathbf{1})\|_2 = \|\mathbf{1}\|_2 = 1$. This forces $\phi \in \widetilde{H}^{\infty}$: for if there were k > 0 with $\hat{\phi}(-k) \neq 0$ then

$$\|P(\phi f_k)\|_2^2 = \sum_{n \geq 0} |\hat{\phi}(n-k)|^2 > \sum_{n \geq k} |\hat{\phi}(n-k)|^2 = \|P(\phi)\|_2^2 = 1$$

whereas $\|P(\phi f_k)\|_2^2 = \|f_k\|_2^2 = 1$. It follows that $\|\phi\|_2 = 1$ and $\|\phi^2\|_2 = \|T_\phi(\phi)\|_2 = \|\phi\|_2 = 1$ and inductively $\|\phi^n\|_2 = 1$ for every

We claim that $|\phi| \le 1$ a.e.: Indeed, for $\epsilon > 0$ put $A_{\epsilon} : \{t \in [0, 2\pi] : |\phi(e^{it})| \ge 1 + \epsilon\}$ and observe that

$$1 = \|\phi^n\|_2^2 = \frac{1}{2\pi} \int |\phi(e^{it})|^2 dt \geq \frac{1}{2\pi} \int_{A_{\epsilon}} |\phi(e^{it})|^2 dt \geq \frac{1}{2\pi} m(A_{\epsilon}) (1+\epsilon)^n$$

which forces $m(A_{\epsilon})=0$ since $\lim_n (1+\epsilon)^n=\infty$. Thus the set $\{t\in[0,2\pi]: |\phi(e^{it}||>1\}=\cup_{n\in\mathbb{N}}A_{1/n}$ must have measure zero.

Finally, since $|\phi| \le 1$ a.e and $\|\phi\|_2 = 1$, we must have $|\phi| = 1$ a.e, for if $|\phi| < 1$ on a set of positive measure it would follow that $\frac{1}{2\pi} \int |\phi(e^{it})|^2 dt < 1$. Thus ϕ is inner.

Alternatively: Having shown that $\phi \in \widetilde{H}^{\infty}$ we now see that if the map T_{ϕ} is isometric then ti must map the orthonormal sequence $\{f_n:n\geq 0\}$ to an orthonormal sequence. Thus $\{\phi f_n:n\geq 0\}$ is ortonormal and in particular

$$0 = \langle \phi f_n, \phi f_0 \rangle = \frac{1}{2\pi} \int \phi(e^{it}) e^{int} \bar{\phi}(e^{it}) dt = \frac{1}{2\pi} \int |\phi(e^{it})|^2 e^{int} dt \qquad \text{for all } n > 0 \,.$$

Taking complex conjugates, we also have

$$\frac{1}{2\pi} \int |\phi(e^{it})|^2 e^{-int} dt \qquad \text{for all } n > 0.$$

Thus the Foureir coefficients $\hat{g}(k)$ of the function $g:=|\phi|^2$ vanish for all $k\neq 0$, and hence g is a constant (= $\hat{g}(0)$) a.e., showing that ϕ is inner.

(β) If T_{ϕ} is an isometry and onto, then ϕ is inner, as just shown; also T_{ϕ} is onto, so there must be $f \in \widetilde{H}^2$ so that $T_{\phi}(f) = 1$, i.e. $\phi f = 1$. Thus $\frac{1}{\phi}$ must be in \widetilde{H}^2 . But since $|\phi| = 1$ a.e., we have $\frac{1}{\phi}=\overline{\phi}.$ Thus the function ϕ and its complex conjugate must both be in \widetilde{H}^2 , hence ϕ must be constant.

Το αντιστροφο ειναι βεβαια προφανες.

(γ) If the sequence $\{\phi^n : n \ge 0\}$ is orthonormal, then $\|\phi^n\|_2 = 1$ for all $n \ge 0$, which, as we saw in the proof of (a) shows that ϕ must be inner and so T_{ϕ} must be an isometry.

Now since $\{1, \phi, \phi^2, ...\}$ is an orthonormal basis of \widetilde{H}^2 , the sequence $\{\phi, \phi^2, ...\}$ is an orthonormal basis of the space $\{1\}^{\perp}$ which is the closed linear span of $\{f_1, f_2, ...\}$, i.e. the space $f_1\widetilde{H}^2$. But $\{\phi, \phi^2, \dots\} = T_{\phi}(\{1, \phi, \phi^2, \dots\})$ and so

$$f_1\widetilde{H}^2 = \overline{\operatorname{span}}(\{\phi, \phi^2, \dots\}) = T_{\phi}(\overline{\operatorname{span}}(\{1, \phi, \phi^2, \dots\})) = T_{\phi}(\widetilde{H}^2) = \phi\widetilde{H}^2$$

which, by the uniqueness in Beurling's Theorem, shows that $\phi = \lambda f_1$, for some constant λ .

Το αντιστροφο ειναι παλι προφανες: η $\{1,(\lambda f_1),(\lambda f_1)^2,...\}=\{1,\lambda f_1,\lambda^2 f_2,...\}$ ειναι ορθοκανονικη bash tov \widetilde{H}^2 .

Σχολιο Σε εναν χωρο πιθανοτητας (οπως στο [0,1] με το μετρο Lebesgue) οι νορμες $\|\cdot\|_p$ για p=1, 2, ... αποτελουν αυξουσα ακολουθια, και μια μετρησιμη συναρτηση f ειναι ουσιωδως φραγμενη αν-ν $\sup_{p} \|f\|_{p} < \infty$, οποτε $\sup_{p} \|f\|_{p} = \|f\|_{\infty}$. Η αποδείξη γίνεται οπώς στο (a) της Ασκήσης. Δεν αρχει απλως να εχουμέ $\|f\|_p < \infty$ για χαθε p. Η τομη ολων των L^p ειναι ενας ενδιαφερων γραμμιχος χωρος, γνησιως μεγαλυτέρος από τον L^{∞} .

Άσκηση 7. Αν ενας φραγμενος τελεστης $X:\ell^2(\mathbb{Z}_+)\to\ell^2(\mathbb{Z}_+)$ ικανοποιει την ιδιοτητα, καθε Sαναλλοιωτος κλειστος υποχωρος του $\ell^2(\mathbb{Z}_+)$ να ειναι X-αναλλοιωτος, τοτε SX=XS.

[Υποδειξη: Εξεταστε τους συζυγεις τελεστες.]

Πρωτη Αποδειξη. Δουλευουμε στον $\ell^2(\mathbb{Z}_+)$.

Recall that a bounded operator leaves a closed subspace E invariant if-f its adjoint leaves E^{\perp} invariant.

Also recall that for every $z \in \mathbb{D}$, if $x_z := (1, z, z^2, \dots) \in \ell^2(\mathbb{Z}_+)$ we have $S^*x_z = zx_z$. Thus the closed subspace $E_z = \text{span}\{x_z\}$ is S^* invariant, and hence E_z^{\perp} is S-invariant.

By the assumption, E_z^\perp is X-invariant, and hence $E_z=E_z^{\perp\perp}$ is X^* -invariant. Hence $X^*x_z\in \operatorname{span}\{x_z\}$, i.e. there exists $w_X\in\mathbb{C}$ s.t. $X^*x_z=w_Xx_z$.

Thus we have

$$X^*S^*(x_z)=X^*(zx_z)=w_Xzx_z$$
 and
$$S^*X^*(x_z)=S^*(w_Xx_z)=zw_Xx_z\,.$$

It follows that

$$(X^*S^* - S^*X^*)(x_{\sim}) = 0$$

for all $z \in \mathbb{D}$. But we know that the closed linear span of $\{x_z : z \in \mathbb{D}\}$ is dense in $\ell^2(\mathbb{Z}_+)$. Therefore we have $X^*S^* - S^*X^* = 0$ and so SX - XS = 0 οπως θελαμε.

Δευτερη Αποδείξη. Δουλευουμε στον H^2 .

For every $z\in\mathbb{D}$ the subspace $F_z:=\{f\in H^2: f(z)=0\}$ is S-invariant (i.e. T_1 -invariant). By the assumption, F_z is X-invariant, and hence F_z^\perp is X*-invariant. But recall that $F_z=\{k_z\}^\perp$

where k_z is the Szegő kernel, $k_z(w) = \sum_{k=0}^{\infty} \bar{z}^k w^k$ (indeed for every $g \in H^2$ we have $g(z) = \langle g, k_z \rangle$),

so $F_z^{\perp} = \operatorname{span}\{k_z\}.$

Hence $X^*k_z\in \operatorname{span}\{k_z\}$, i.e. there exists $u_X\in\mathbb{C}$ s.t. $X^*k_z=u_Xk_z$.

Also note that $S^*k_z = \bar{z}k_z$.

Eva parabeigha einai h sunarthen $f(x)=\log x,\,x\in(0,1]$, ena allo h sunarthen $g:(0,1] o\mathbb{R}$ opou gia kade $n\in\mathbb{N}$ otan $x \in (2^{-(n+1)}, 2^{-n}]$ orizoume g(x) = n: aai oi duo anheoun se olous tous $L^p, \ p \in [1, \infty)$ alla den einai fraguenes.

Thus we have

$$X^*S^*(k_z)=X^*(\bar{z}k_z)=u_X\bar{z}k_z$$
 and
$$S^*X^*(k_z)=S^*(u_Xk_z)=\bar{z}u_Xk_z\,.$$

It follows that

$$(X^*S^* - S^*X^*)(k_z) = 0$$

for all $z \in \mathbb{D}$. Hence for all $f \in H^2$ we have

$$\langle (SX-XS)f,k_z\rangle = \langle f,(X^*S^*-S^*X^*)(k_z)\rangle = 0$$

for all $z \in D$.

Thus the function $g=(SX-XS)f\in H^2$ satisfies $g(z)=\langle g,k_z\rangle=0$ for all $z\in\mathbb{D}$, i.e. g=0. We have shown that (SX-XS)f=0 for all $f\in H^2$, i.e. that SX-XS=0, οπως θελαμε.

Για το αντιστροφο: εχουμε δειξει οτι αν SX=XS, δηλαδη $T_1X=XT_1$, τοτε $X=T_\phi$ για καποια $\phi\in H^\infty$. Ομως καθε μη μηδενικος T_1 -αναλλοιωτος υποχωρος του H^2 ειναι της μορφης ψH^2 οπου ψ εσωτερικη. Και προφανως καθε ψH^2 ειναι T_ϕ -αναλλοιωτος, αφου για καθε $\psi f\in \psi H^2$ εχουμε $T_\phi(\psi f)=\phi(\psi f)=\psi(\phi f)\in \psi H^2$.

Αρα, αν SX = XS τοτε καθε S-αναλλοιωτος υποχωρος ειναι X-αναλλοιωτος.