On the Relationship between Nash—-Cournot
and Wardrop Equilibria*

A. Haurie and P. Marcottet
Ecole des Hautes Etudes Commerciales, Montreal, Quebec, Canada H3T
1V6

A noncooperative game is formulated on a transportation network with congestion. The players
are associated with origin—destination pairs, and are facing demand functions at their respective
destination nodes. A Nash-Cournot equilibrium is defined and conditions for existence and
uniqueness of this solution are provided. The asymptotic behavior of the Nash—Cournot equi-
librium is then shown to yield (under appropriate assumptions) a total flow vector corresponding
to a Wardrop equilibrium.

1. INTRODUCTION

The aim of this article is to characterize noncooperative equilibria for a class of
games defined on a transportation network subject to congestion effects, and to obtain
convergence results showing that Nash equilibria can approximate Wardrop equilibria
[26].

The consideration of a game defined on a transportation network occurs naturally if
one imagines a finite number of players (economic agents or firms) sending flows from
various origins toward different destinations, on a common transportation network. We
will assume two sources of interactions between players: (a) through the demand laws
of their selling market, and (b) via the congestion effect which modifies the unit
transportation cost on each arc depending on the total flow circulating on the network.
The two extreme cases of a one-player game and of a game with infinitely many
“‘infinitesimal’’ players have already received considerable attention in the transpor-
tation literature. In the one player case, the problem reduces to the classical convex
min-cost transportation problem. The limiting case of an infinite number of infinitesimal
players corresponds, as will be shown later on in this paper, to the Wardrop equilibrium
concept and, more generally, to competitive equilibria on a network [1, 2, 3, 5].
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The case of a finite number of players competing for the utilization of a common
transportation network would correspond, for example, to a situation where different
gas utility companies supplying different markets are sharing a common pipeline and
main distribution network. In such a situation, one can imagine that, if they do not
cooperate, the companies will tend to react to the transportation program of their
competitors on the network. An equilibrium will be reached when each transportation
program is the optimal reaction from the company concerned to the competitors pro-
grams.

The game considered in this article is closely related to the Cournot oligopoly model
in the economic theory of imperfect competition. In the Cournot model, a finite number
of firms compete on a given market characterized by a known demand function. The
interaction between the firms comes from the price determination mechanism which
is dependent on the total supply on the market.

In the model studied in this article, the structure is very similar, with a little more
generality since the interaction between players stems from the unit transportation cost
as well as from the demand laws.

Also, as there are many arcs, with a flow conservation constraint at each node, the
network game model appears as a generalized Cournot model with many products and
production constraints.

The characterization of equilibria will include (i) sufficient conditions for existence
of an equilibrium; (ii) sufficient conditions for uniqueness of equilibrium; (iii) analysis
of the asymptotic behaviour of equilibria when the number of players becomes very
large, each player becoming infinitesimal.

2. EQUILIBRIUM ON A TRANSPORTATION NETWORK AND
RELATIONSHIP WITH COURNOT OLIGOPOLY THEORY

Let G £ (N, A) be a directed network where N is a finite set of nodes and A is a
set of arcs, i.e., one-way links between pairs of nodes.

LetM £ {1,2, ..., m} be the set of players competing on the network. Associated
with Player i of M is the flow vector

S

Vi (vfz)aEA

where v/ is the flow sent by Player i and circulating on arc a.
Define

i

Va (Vidiem

and
A )
V = (Ven-
acA

V will thus represent the multiflow generated on the various arcs by the players.
We assume that, on a given arc a of A, the unit transportation cost for Player i,
called also link traversal cost for i, is given as a function of the flow variables

Suv) 2 Jink traversal cost on a € A for player i € M.
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We finally assume that each player i is associated with a unique pair origin-destination
(', y) € N X N, where x' corresponds to the production situs, and y' corresponds to
the selling market for this player. The selling market of Player i is characterized by
the (inverse) demand function

pi — fi(ql’ q27 e, qm)
which determines the unit selling price p' of the product shipped by i from x' to y', as
a function of the total flows ¢, . . ., ¢" sent by the different players to their respective

markets.

It is possible to describe the system as a network with a multiflow circulation by
introducing a return arc a' from each market y' to each corresponding production situs
x', i € M, with an associated traversal cost

Suvais o V) = = fv )
Definition 2.1. The set of feasible flows for Player i is the set &' of vectors (',

v.;) satisfying the flow conservation equations at each node of N. By a slight abuse of
notation, these vectors will still be denoted v'. "

We notice that, according to the definition of the return arcs ¢’ one has

vio= 0 ifi#].

Definition 2.2. A multiflow vector V* constitutes a Nash—Cournot equilibrium if,
for each player i the following holds:

(i) vi* € @
(i) X, vi¥ SL(V*) + viF S (V)
acA
= Min D vl SLV*D) + vi, SLVH0) (1
e acA

where we have denoted V* the flow vector defined by
VEO S (phe ity e e 2). =

According to this definition, at equilibrium, each player { minimizes a function equal
to his transportation cost from his production situs to his market, minus the total value
of sales on his market, and given the transportation and sales programs of his com-
petitors.

Remark 2.1.  Condition (1) expresses the usual property of noncooperative equilibria
for games in normal form. if one defines the strategy set of Player i as @' and the pay-
off* of Player i as a function J' : ' X -+ X ®"— R given by

J'(VI, Vza EEEE Vm) = viz' f’(Va‘, Vids o0 vy Vu’”) - z V(I, S;(V) (3)

€A

*We follow the usual conventions according to which players maximize their pay-offs in game
theory whereas users minimize their transportation costs in traffic equilibrium theory.
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the equilibrium condition (1) reduces to

J, o v v = Max JITE, L v V) (4)
ved!

i.e., the usual Nash equilibrium definition.
Remark 2.2. The Cournot oligopoly model [16, 22] describes m firms with cost
functions ¢,(g;) competing on a market described by an inverse demand function p =

£(Q), where Q is the total supply on the market. A Cournot equilibrium is a vector
q* = (g%, g%, . . ., q3) such that

()gr=0, iEM

(ii) g* f(E q,*) - ¢lg¥)

JEM
= Max g, f(% + 2 q_/*) — ¢dq)- (5)
=0 J#i

There is a clear relationship between condition (1) for the network equilibrium model
and condition (4) for the Cournot oligopoly model. In the Cournot model, the coupling
between the firms stems from the common market demand law. In the network equi-
librium model, the coupling is also due to the congestion effect on unit transportation
costs. In the latter model, however, one has for each player a vector-valued strategy,
subject to polyhedral constraints (v' € @) instead of a scalar-valued, nonnegative
strategy for the Cournot model. Furthermore, in this network model, the congestion
effects and the demand laws are given a very general form.

Although our model could be considered as a generalization of the oligopoly models
presented in [14, 16, 24], the efficient algorithms proposed for the computation of
Cournot equilibria in these references do not extend directly.

Classical results of game theory [9, 20] can be used for establishing conditions for
existence and uniqueness of an equilibrium as defined by (1)-(2). Gabay and Moulin
[10] considered Nash games in variational inequality form, extending existence, unique-
ness, and stability results previously obtained by Lions and Stampacchia [12].

Theorem 2.1. Assume the following

Al. (i) For each player i there is a value §' such that the demand function satisfies

fiig', ....qgm =0 ifg =¢g foranygq',....q " g™ ..., q"
(ii) There exists ¢/ < ¢/ forj = 1, . . ., m such that
flg', ....qgm >0 foralli EM.

(iii) The functions f' and S are positive-valued for all i € M.

A2. For each player i, the payoff function (3) is continuous on &' X -+ X @™ and
strictly quasi-concave with respect to v/ € @'
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Then there exists an equilibrium.

Proof. Under Al, one can restrict the strategy set of each player i to the compact
subset

s & ped v =g}

Then the game is defined with a finite set of players, compact strategy sets and
continuous and strictly quasi-concave (with respect to v'), payoff functions @'. Then
Theorem 7.1 of Ref. [9] applies to guarantee the existence of an equilibrium. ]

Remark 2.3.  Assumption A2 of Theorem 2.1 will be satisfied if the revenue functions
q'fq', ..., q,...,q") are concave w.r.t. ¢’ and the costs viSi (V) are convex
w.r.t. vi.

Sufficient conditions for uniqueness of equilibrium are much more restrictive. Rosen
[20] has given a general condition which has been explicited further by Goodman [11].
In our framework, this will yield the following results.

Theorem 2.2. Assume the following hypotheses.

A3. Each payoff function J' is C?, and there exists r > 0 in R™ such that the
symmetric matrix

[G(V, r) + GT(V, 1)] (6)
is negative definite, where G(V, r) is the Jacobian with respect to V of the mapping
g'V.r) ry Vi JU(V)
qvry = | FVD || TS -
g’"(i/,r) I, .V‘,m J’"&V)
Then the equilibrium satisfying (4) is unique.
Proof. See Rosen [20]. .

Theorem 2.3. Assume that each payoff function J' is C' and negative semidefinite
over @' Then V* is an equilibrium solution if and only if it satisfies the variational
inequality:

(V¥ ~ VY g(V¥, r) =0 VvVve P x - x ¢ (8)
Proof. For a fixed player i, the first order necessary and sufficient optimality

conditions (Luenberger [13]) state that no feasible ascent direction exist at the optimum,
le.,

(vE — v gi(v¥) = 0 Vvie . 9
Aggregating (9) for all players yields the desired result. L
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Remark 2.4. The assumption A3 of Theorem 2.2 could be replaced by the slightly
more general condition of strict monotonicity of g(V, r) for some r > 0 given in R”.

This monotonicity condition is also the basic condition for convergence of iterative
schemes (see [4, 5, 18, 191) used for computation of the solution V* to the variational
inequality (9).

Therefore the uniqueness condition given by Rosen is also the condition permitting
the computation of equilibrium by known iterative methods (e.g. projection and relax-
ation methods).

Corollary 2.1. Assume the following

Ad. Each payoff function J' is C?, strictly concave in v' and convex in oL,
i-1 i+ "
I S T B s
AS. There exists » > 0 in R” such that o(V,r) = 2, r, J(V) is concave in V.
Then the equilibrium is unique.

Proof. See Goodman [11]. ]

Example 2.1. We consider a network where the link traversal cost on any arc a of
A depends only on the total flow

m
w, = 2 vy,
i=1

and is the same for all players: i.e.,
Sa(V) = S, w,). (10)

On the arc o' the total flow circulating is vi; and the link traversal cost is a function
of the total flow circulating on the arcs ¢/, j € M.

SV) = —f<2 v@) (11)
j=1

which is also assumed to be the same for all players.
The payoff function (3) is now given by

JOEL V) = f(E ») — > VL S,0m,) (12)
i=1

uEA

Goodman's conditions will be verified with r, = r, = .-+ = r,, = 1 if the following
holds.

P1. For each arc ¢ € A the total cost function w, S,(w,) IS convex in w,

P2. The total revenue function ¢ f(g) is concave w.r.t. the variable ¢ = X7, vl
P3. For each arc ¢ € A the link traversal cost S,(w,) is a concave function of w,
P4. The (inverse) demand law f(q) is convex w.r.t. ¢.
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3. CONVERGENCE OF NASH-COURNOT EQUILIBRIA TO A
WARDROP EQUILIBRIUM

In the traffic equilibrium problem one considers the network G 2 (N, A) with the
total link-flow vector

A
w = (W,),eq

which is obtained as the summation of the flow vectors generated by all the users of
the network. Let us assume that for any user the link traversal cost depends only on
w and is independent of the particular player considered,

St (V) = §,(w) V a € A, for any user i.

Each user i is associated with a pair origin destination (x', y) € N X N, and uses a
unique path for sending his flow.

The Wardrop equilibrium principle is related to the situation where the flow w is
generated by a very large number of infinitesimal users. By infinitesimal it is meant
that, when a particular user 7 unilaterally switches his flow from a particular path from
x' to y' to another path from x' to y' then there is no sensible modification on the link
traversal costs. The traffic flow is a Wardrop equilibrium if no user can reduce his
cost by switching from his current path to another one connecting the same origin-
destination pair.

This definition can be made more precise.

Definition 3.1. A flow vector w* is a Wardrop equilibrium if, for any pair (x', ¥
the following holds
2 Sw¥) = 3 S, (w) (13)
ack’ aEk
for any k* € P¥ and k € P, where P, is the set of all paths from x' to y' and P* is
the subset of P; consisting of all paths which are actually used (i.c., such that a positive
flow is circulating on them).
It is shown in [1, 5, 23] that a Wardrop equilibrium flow vector w* is characterized
as being a solution of the variational inequality

(w* — w)IS(w*) = 0 VwEeg (14)

where ¢ is the set of all feasible flows w.

We are interested in the following question: is it possible to approximate a Wardrop
equilibrium flow w* by the total flow w*(n) resulting from a Nash equilibrium for the
game played on the network G by a set of nm players partitioned into m classes /,, i
€ M, each class corresponding to a particular origin—destination pair (x', y? Such
result would allow a new interpretation of a flow satisfying condition (14), and also
it would establish a similarity with classical results in economic theory dealing with
the convergence of Cournot equilibria to competitive equilibria.

A relationship between traffic equilibrium and Nash equilibrium has already been
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established by Rosenthal [21], Devarajan [8], and Dafermos and Sparrow [3]. Rosenthal
has considered a discrete version of the traffic equilibrium problem with a particular
link traversal cost function. Devarajan found an equivalence between the Wardrop
equilibrium flow and the one resulting from a Nash equilibrium for an N-player game,
each player corresponding to a particular origin—destination pair.

Both these results are very different from the one we proceed to prove. First we
consider ‘‘players’ instead of ‘‘users,”” which means that we allow each player to
allocate his flow to several paths. Secondly, the payoff functions of our game do not
depend on integrability conditions of the cost functions involved. Such a condition is
required in Devarajan [8].

To prove the next results, we will use a replication strategy which is similar, in
spirit, to that of Debreu and Scarf [6] and Debreu [7].

Let us call ['(n) the game defined on the network G in the following way. There
are m origin—destination pairs (x', y)), i = 1, ..., m. For each i there is also a set
M, of n identical players who share the same link traversal cost functions S,(w) and
the same demand law fi(¢', . . . , g¢"), where ¢’ is the total flow arriving on market,
j.ie.,

g=>vh j=1,...,m (15)

eM;

All the results of Section 2 concern a game I'(1). These results extend directly to any
game I'(n). Adapting the variational inequality formulation derived in theorem 2.3 to
this situation, we obtain:

Lemma 3.1. Consider the game I' (n) with payoffs.

T, vy vy = v g g = D v Saw) (16)

aEA

foranyl € M, i = 1, ..., m, and where w and ¢’ have been defined previously.
Assume that each function J' is C'. Then a Nash equilibrium solution V*(n) to the
game I'(n) necessarily satisfied the variational inequality

W*n) — VY VJ'(V*@n) =0 vVved vieM,i=1,...,m ((AD*

Remark 3.1. By using the extended set of arcs A2 AU{d : i €M} with traversal
cost on each arc a' defined as

Saw) = —f1g's ... a7 (18)
the payoff (16) can be rewritten under the more symmetric form
TV vE L v = VS (w) (19)

aEA

*For the explanation of the = sign, see footnote in Section 2.
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and therefore the inequalities (17) can be rewritten
() — V)T (SwXn)) + (IS(wHm)T v*(n)) = 0
vvied viemM,i=1,...,m. (20)

We are now ready to prove the main result of this section.

Theorem 3.1. Under the assumptions of Theorem 2.1 there exists a Wardrop equi-
librium on the network G, with flow vector w* and a sequence {I'(nyhey of games
on G admitting Nash equilibria multiflow V*(n,) such that the resulting total flow
vectors w¥(n,) verify

lim w¥(n,) = w*

k—w

Proof.  Consider any game I'(n). By a direct adaptation of Theorem 2.1, we can
prove that there exists a Nash cquilibrium multiflow V*(n). Furthermore, the players
in M; being all identical, there exists a Nash equilibrium for which all players of M,
have the same strategy. This common Nash-equilibrium strategy can be written

1
vi*(n) = ~ w(n), Vieum,
n
where w™*(n) is a flow which is uniformly bounded for all n.
The associated total link-flow vector

W) = 3 vEm) = S win)
i=1 IEM; i=1

is also uniformly bounded. Hence there exists a subsequence (n;);ey such that w*(n,)
converges to a limit w*.
Replacing v'*(n) by w'/n, in (20) and summing over all players, there comes

(w*(n) — w)Sw¥(n)) + 0, =0 Vwegp (21)
with
0. =8 3 (2 ) wseor 0 (2)
i=1 1EM; k ny

It is readily seen that, ¢ being compact, one has lim,_,.. 0, = 0, therefore, w* satisfies
(w* — w)S(w*) < 0 VweEe

and is, by (14), a Wardrop equilibrium. ]

Remark 3.2.  The quasi-concavity of the payoff function is not essential in the proof

of Theorem 3.1. It suffices to guarantee that a Nash equilibrium solution exists for
any n.

The next result strengthens the convergence result.
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Theorem 3.2. If for each game I'(n) there exists a Nash equilibrium solution and if
S(w) is strictly monotone, then there exists a unique Wardrop equilibrium w*, and for
any sequence (w*(n)),en of Nash equilibria one has

lim w* (n) = w*.

n—x

Proof. 1t is well known that, when S is strictly monotone, there exists a unique

solution w* to (14) (Ref. {4]).
Also it is easily proved that, for any Nash equilibrium for the game ['(n), all the

players in a set M, have the same strategy.
Now assume that some sequence {w*(n)},en does mot converge, and let

{w*(n)}ex be a subsequence such that

lim w(n) = W # w*,

k— o

Taking the limit in (21) there comes:

lim (W*(n) — w*ISw*(ny)) + Q,,

k—o

= (W — w¥)ISW)
=0

This last inequality implies, by strict monotomicity of S, that we must have w =
w*, a contradiction.
Consequently:

lim w¥(n) = w*. n

n—w

Remark 3.3. Most of the algorithms [4, 18, 19] recently proposed for computing
Wardrop equilibria assume that S(w) is uniformly monotone, which means that there
exists a positive constant B such that

w = w)Y(Sw) = Sw)=Blw - w[ Vww Ee (23)

Under this hypothesis it is possible to derive a sharper estimate of the convergence
rate of the oligopoly model towards competitive equilibrium. More precisely we have:

Theorem 3.3 If for each game I'(n) there exists a Nash equilibrium solution and if
S(w) is uniformly monotone on ¢, then there exists a positive constant a such that

o
) = wHP =

for any n € N and any Nash-equilibrium of I'(n).
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Proof. By (14), (21), (22), and (23) one has
Blw*(n) — wHfF = (w*(n) — w*(S(w¥(n)) — S(w*))
= (WH(n) — w¥S(w*(n))
- Qn

where lim,_.. Q, = 0. Furthermore, from (22) it appears that there exists a constant
v such that

IA

0. =

= =

Thus

a
Iw*(n) — wH|f = -
n

with a = y/B. n

Remark 3.4. When the demand for a product at the destination nodes is constant,
return arcs are useless, and the definition of the games I'(n) differs slightly. If g; denotes
the flow requirement between origin x’ and destination y’, we set the flow requirement
of each of the n identical players as equal to g,/n. We denote this new game ['(n) its
solution in total link flows w(n).

Corollary 3.1. For a network G with fixed demand, there exists a Wardrop equilib-
rium w* and a subsequence of games I'(n,} such that

w* = limy_,,, w¥(n,).

If w* is unique, then: w* = lim,_.. w*(n). If the function S is uniformly monotone,
then:

o*n) — wHp = =
n

for some positive number a. =

Remark 3.5.  When the number of players tends to infinity, each infinitesimal player
may still use several distinct paths. This is illustrated by the following example, using
the two-link network of Fig. 1, where the flow requirement between origin A and
destination B is 2 units.

Straightforward computations for the n-player game I'(n) defined on the network of
Fig. 1 yield:

and
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Sl(wl,wz) = 3 + ZWl
A B w,: total flow
i
on arc i
Sz(wl,wz) = 3w1 + 2w2
FIG. 1. A 2-link example.
Convergence of the above flows towards the Wardrop equilibrium w; = w, = 1

according to the statement of theorem 3.3 can readily be observed.

Also, a Nash strategy for an infinitesimal player must include both paths. Otherwise,
at least one player sends all of his flow on the upper path; this cannot result in a Nash
equilibrium, since this player can reduce his cost (increase his payoff) by sending a
fraction of flow on the bottom path. Actually, for each I',, a Nash equilibrium is
achieved when all players send an equal amount of flow on both paths. Although the
asymptotic Nash equilibrium is equivalent to a Wardrop equilibrium as far as total link
flows are concerned, it is conceptually quite different.

Remark 3.6. The theorems of this section provide also new convergence results for
oligopoly models. If we incorporate supply curves into the transportation costs, the
Wardrop equilibrium of Section 2 corresponds to the spatial price equilibrium model
studied by Takayama and Judge [25] (see Fig. 2). The Wardrop equilibrium (competitive
equilibrium) is then reached when the following equation is satisfied:

Supply price (production situs i) + transportation cost (production situs i to con-
sumption market j) = price of market j.

Another particular case is the standard oligopoly model consisting of a single con-
sumption market. Although convergence of the Nash solution of the oligopoly model
to a competitive equilibrium when the number of agents increases is not always guar-

T / Transportation costs
1 1 1 &

supply 2 !: demand
3 &

2

curves curves
! Z 3 /
1_4,4

FIG. 2. Takayama-Judge model.
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anteed (see [22], for instance), this is true under our assumptions about the cost and
demand functions.
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