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Abstract

Potential based no-regret dynamics are shown to be related to fictitious play. Roughly, these are ε-best
reply dynamics where ε is the maximal regret, which vanishes with time. This allows for alternative and
sometimes much shorter proofs of known results on convergence of no-regret dynamics to the set of Nash
equilibria.
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1. Introduction

No-regret strategies are simple adaptive learning rules that recently received a lot of attention
in the literature.1 In a repeated game, a player has a regret for an action if, loosely speaking, she
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26], for combining different forecasts [17,18] (for an overview of the forecast combination literature see [14,43]) and for
combining opinions, which is also of interest to management science [33]. In finance this method has been used to derive
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could have obtained a greater average payoff had she played that action more often in the past. In
the course of the game, the player reinforces actions that she regrets not having played enough,
for instance, by choosing next action with probability proportional to the regret for that action,
as in Hart and Mas-Colell’s [24] regret-matching rule. Existence of no-regret strategies (i.e.,
strategies that guarantee no regrets almost surely in the long run) is known since Hannan [23];
wide classes of no-regret strategies are identified by Hart and Mas-Colell [25] and Cesa-Bianchi
and Lugosi [11].2

A no-regret dynamics is a stochastic process that describes trajectories of the average corre-
lated play of players and that emerges when every player follows a no-regret strategy (different
players may play different strategies). By definition, it converges to the Hannan set (the set of
all correlated actions that satisfy the no-regret condition first stated by Hannan [23]).3 This set is
typically large. It contains the set of correlated equilibria of the game and we show that it may
even contain correlated actions that put positive weight only on strictly dominated actions. Thus
convergence of the average play to the Hannan set often provides very little information about
what the players will actually play, as it does not even imply exclusion of strictly dominated
actions.

In this paper we show that no-regret dynamics are intimately linked to the classical fictitious
play process [10]. Drawing on Monderer et al. [38], we first show that contrary to the standard,
discrete-time version, continuous fictitious play leads to no regret. We then show that, for a large
class of no-regret dynamics, if a player’s maximal regret is ε > 0, then she plays an ε-best reply
to the average correlated play of the others. Since in this class the maximal regret vanishes (see
Corollary 1 below), it follows that, for a good choice of behavior when all regrets are negative,
the dynamics is a vanishingly perturbed version of fictitious play.

For two-player finite games, this observation and the theory of perturbed differential inclu-
sions [4,5] allow us to relate formally the asymptotic behavior of no-regret dynamics and of
continuous fictitious play (or its time-rescaled version, the best-reply dynamics [22]). In classes
of games in which the behavior of continuous fictitious play is well known, this provides sub-
stantial information on the asymptotic behavior of no-regret dynamics. In particular, we recover
most known convergence properties of no-regret dynamics. Our results do not just allow us to
find new and sometimes much shorter proofs of convergence of no-regret dynamics towards the
set of Nash equilibria in some classes of games, such as dominance solvable games or potential
games. They also allow us to relate the asymptotic behavior of no-regret dynamics and continu-
ous fictitious play in case of divergence, as in the famous Shapley game [41].

These results extend only partially to n-player games (though they fully extend to n-player
games with linear incentives [40]). The issue is that in n-player games no-regret dynamics turn
out to be related to the correlated version of continuous fictitious play, in which the players play
a best reply to the correlated past play of the others. This version of fictitious play is defined
through a correspondence which is not convex valued. This creates technical difficulties, because
the theory of perturbed differential inclusions is not developed for nonconvex-valued correspon-
dences.

A different way to analyze no-regret dynamics is to show that some sets attract nearby so-
lution trajectories. We show that strict Nash equilibria and, more generally, the intersection of

2 This paper deals with the simplest notion of regret known as unconditional (or external) regret [20,25,26]. For more
sophisticated regret notions, see Hart and Mas-Colell [24], Lehrer [34], and Cesa-Bianchi and Lugosi [12].

3 The Hannan set of a game is also known as the set of weak correlated equilibria [39] or coarse correlated equilibria
[48, Chapter 3].



Y. Viossat, A. Zapechelnyuk / Journal of Economic Theory 148 (2013) 825–842 827
the Hannan set and the sets that are closed under rational behavior (curb)4 are attracting for
no-regret dynamics, in a sense to be defined in Section 4.

The remainder of the note is organized as follows. The next section introduces no-regret dy-
namics. Section 3 studies the links between no-regret dynamics and fictitious play. Section 4
shows that the intersection of the Hannan set and curb sets is attracting for no-regret dynamics.
Section 5 studies the continuous-time version and the expected version of no-regret dynamics.
Finally, Appendix A contains the proof of the main result.

2. Preliminaries

Consider a bimatrix game Γ = (Ai, ui)i=1,2, where Ai is the set of actions of player i and
ui :A → R is her payoff function, with A = A1 × A2. For any finite set B , denote by �(B) the
set of probability distributions over B . A mixed action of player i is an element of �(Ai). A cor-
related action z is a probability distribution over the set of pure action profiles, i.e., z ∈ �(A).
Given such a z, let zi ∈ �(Ai) and z−i ∈ �(A−i ) denote its marginals for player i and her op-
ponent, respectively. Thus, zi(ai) = ∑

a−i∈A−i
z(ai, a−i ). Throughout, −i refers to i’s opponent.

As usual, let ui(z) = ∑
a∈A z(a)ui(a) and ui(k, z−i ) = ∑

a−i∈A−i
z−i (a−i )ui(k, a−i ) for k ∈ Ai .

Depending on the context, ai may refer to a pure action – an element of Ai – or to a vertex of
�(Ai), i.e., a Dirac measure on a pure action.

The game is played repeatedly in discrete-time periods t ∈ N
∗ = {1,2, . . .}. In every pe-

riod t each player i chooses an action ai(t) ∈ Ai and receives payoff ui(a(t)) where a(t) =
(a1(t), a2(t)). Denote by h(t) = (a(1), a(2), . . . , a(t)) the history of play up to t , and let H
be the set of all finite histories (including the empty history). A strategy of player i is a
function qi :H → �(Ai) that stipulates to play in every period t = 1,2, . . . a mixed action
qi(t) ≡ qi(h(t − 1)) as a function of the history before t . The weight that this mixed action
puts on action k ∈ Ai is denoted by qi,k(t).

The average correlated play up to period t is z(t) = 1
t

∑t
τ=1 a(τ), where we identify a(τ)

with the corresponding vertex of �(A). Since z(t) = 1
t
[a(t)+ (t − 1)z(t − 1)], it follows that for

all t > 1,

z(t) − z(t − 1) = 1

t

(
a(t) − z(t − 1)

)
. (1)

For a correlated action z, the regret of player i for action k is defined as Ri,k(z) = ui(k, z−i )−
ui(z), and her maximal regret as Ri,max(z) = maxk∈Ai

Ri,k(z). Typically we deal with the regret
based on the average correlated play, z(t), up to some period t . In this case the regret of player i

for action k ∈ Ai is equal to the difference between the average payoff she would have obtained
by always playing k (assuming that her opponent’s play remains the same) and her average
realized payoff:

Ri,k

(
z(t)

) = ui

(
k, z−i (t)

) − ui

(
z(t)

) = 1

t

t∑
τ=1

[
ui

(
k, a−i (τ )

) − ui

(
a(τ)

)]
.

To simplify notations, we will often write Ri,k(t) for Ri,k(z(t)) and Ri,max(t) for Ri,max(z(t)).

4 A product set of action profiles is called closed under rational behavior (curb) [2] if it contains all best replies of
each player whenever she believes that no actions outside this set are being played by the other players.



828 Y. Viossat, A. Zapechelnyuk / Journal of Economic Theory 148 (2013) 825–842
Player i has no asymptotic regret if her average realized payoff is asymptotically no less than
her best-reply payoff against the empirical distribution of her opponent:

lim sup
t→∞

Ri,max(t) � 0. (2)

A strategy of player i is a no-regret strategy if for any strategy of the other player, inequality (2)
holds almost surely. This property is also called Hannan consistency [25] or universal consis-
tency [20].

It is well known in the literature since Hannan [23] that there exist simple no-regret strategies.
Hart and Mas-Colell [25] describe a wide class of potential based no-regret strategies. A twice
differentiable, convex function Pi :RAi → R is called a potential if it satisfies the following
conditions:

(R1) Pi(·) � 0, and Pi(x) = 0 for all x ∈R
Ai− ;

(R2) ∇Pi(·) � 0, and ∇Pi(x) · x > 0 for all x /∈ R
Ai− ;

(R3) if x /∈R
Ai− and xk � 0, then ∇kPi(x) = 0,

where ∇k denotes the partial derivative with respect to xi(k). The potential Pi can be viewed as
a generalized distance function between a vector x ∈ R

Ai and the nonpositive orthant RAi− . Let
Ri(t) = (Ri,k(t))k∈Ai

denote player i’s regret vector.

Proposition 1. Let Pi satisfy (R1)–(R3) and let strategy qi satisfy

qi,k(t + 1) = ∇kPi(Ri(t))∑
s∈Ai

∇sPi(Ri(t))
, ∀k ∈ Ai, (Q1)

whenever Ri,max(t) > 0. Then qi is a no-regret strategy.

Proof. This holds by Theorem 3.3 of Hart and Mas-Colell [25], whose conditions (R1) and (R2)
are satisfied by our conditions (R1)–(Q1) and (R2), respectively, and whose proof is based on the
Blackwell’s Approachability Theorem [8]. �

A standard example of no-regret strategy satisfying the above conditions is obtained by
letting Pi be the lp-norm on R

Ai+ , i.e. Pi(x) = (
∑

k∈Ai
[xk]p

+)1/p with 1 < p < ∞, where
[xk]+ = max(0, xk). The resulting strategy qi is called the lp-norm strategy [11,25]. It is defined
by

qi,k(t + 1) = [Ri,k(t)]p−1
+∑

s∈Ai
[Ri,s(t)]p−1

+
, ∀k ∈ Ai,

whenever Ri,max(t) > 0. The l2-norm strategy is the regret-matching strategy [24], that stipulates
to play an action in the next period with probability proportional to the regret for that action. For
large p, the lp-norm strategies approximate fictitious play.

We say that the average correlated play z(t) follows a no-regret dynamics if both players
use (possibly different) no-regret strategies. A trajectory (z(t))1�t�+∞ of a no-regret dynamics
is thus a solution of (1) where a(t) is a realization of (q1(t), q2(t)) and q1, q2 are no-regret
strategies. We focus on the class R of no-regret dynamics such that:
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(i) the no-regret strategies q1, q2 of the players are potential based: they satisfy (Q1) for some
potentials P1, P2 satisfying (R1)–(R3);

(ii) if a player has no regret then he takes some constant pure action: for each i = 1,2, there
exists c ∈ Ai such that

ai(t + 1) = c whenever Ri,max(t) � 0. (Q2)

Our results are valid for a somewhat wider class of no-regret dynamics. What we really need,
beside a no-regret dynamics, is that from some period t0 on:

(i′) if a player has positive regret for some actions, then she plays one of these actions;
(ii′) if a player never has any positive regret, then she plays an ε(t)-best reply to the empirical

distribution of her opponent, where ε(t) = ε(h(t)) → 0 almost surely.

Remark 1. Property (i′) follows from (R3) and (Q1). This is a better reply property that stipulates
to assign a positive probability only on better reply actions to the opponent’s empirical distribu-
tion of play (“better” with respect to the realized payoff). Also it implies that if Ri,max(t) > 0 in
some period t , then Ri,max(t

′) > 0 for all t ′ > t . Indeed, when an action k with positive regret
is played, the sign of Ri,k(t) does not change, hence the maximal regret remains positive [25,
Proposition 4.3].

Remark 2. Assumption (Q2) is a simple way of ensuring (ii′), and in addition, that if
Ri,max(t) � 0 for all t , then Ri,max(t) → 0 as t → +∞.5 Indeed, if Ri,max(t) � 0 for all t > t0
then by (Q2), for all t > t0, tRi,c(t) = t0Ri,c(t0), hence Ri,c(t) → 0. It follows that Ri,max(t) → 0
and that for all t > t0, player i plays an ε(t)-best reply with ε(t) := maxk∈Ai

ui(k, z−i (t)) −
ui(c, z−i (t)) = Ri,max(t)−Ri,c(t) → 0. For a discussion of other possible assumptions, see Hart
and Mas-Colell [26, Appendix A].

Note that there are no-regret dynamics that do not satisfy (i′). For instance, stochastic fictitious
play with a noise parameter that declines with time at an appropriate rate (see, e.g., Benaïm and
Faure [3]). This process is not potential based in our sense due to the time inhomogeneity, but
this is not the crucial point, since (i′)–(ii′) would suffice.

Define the Hannan set H of the stage game Γ as the set of all correlated actions of the players
where each player has no regret:

H =
{
z ∈ �(A)

∣∣∣ max
k∈Ai

ui(k, z−i ) � ui(z) for each i = 1,2
}
.

The reduced Hannan set HR is the subset of H in which at least one regret is exactly zero for
each player:

HR =
{
z ∈ �(A)

∣∣∣ max
k∈Ai

ui(k, z−i ) = ui(z) for each i = 1,2
}
.

The next property of no-regret dynamics is straightforward by the definition of no-regret
strategies and Remark 2 (see, e.g., Hart and Mas-Colell [26, Corollary 3.2]).

5 This additional property is needed for Corollary 1 below, but for our main results (ii′) suffices.
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Corollary 1. For every no-regret dynamics in class R, the trajectories converge almost surely to
the reduced Hannan set.

Convergence of the average play z(t) to set HR does not imply its convergence to any par-
ticular point in HR . Moreover, even if z(t) converges to a point, this point need not be a Nash
equilibrium.

3. Fictitious play and no-regret dynamics

3.1. Fictitious play

In discrete fictitious play, in every period t after the initial one, player i plays a pure best
reply ai(t) to the average past play of her opponent x−i (t − 1) := 1

t−1

∑t−1
τ=1 a−i (τ ) (here a−i (τ )

is a vertex of �(A−i )). The latter is called the belief of player i on her opponent’s next move.
Formally, for any x = (x1, x2) in �(A1) × �(A2), denote by BRi (x−i ) player i’s set of best
replies to x−i :

BRi (x−i ) :=
{
xi ∈ �(Ai)

∣∣∣ ui(xi, x−i ) = max
k∈Ai

ui(k, x−i )
}
, i = 1,2.

Let BR(x) = BR1(x2) × BR2(x1). A discrete-time trajectory (x(t))∞t=1 on �(A1) × �(A2) is a
solution of discrete fictitious play (DFP) if for every t > 1

x(t) − x(t − 1) = 1

t

(
a(t) − x(t − 1)

)
(3)

where a(t) = (a1(t), a2(t)) and ai(t) ∈ BRi (x−i (t − 1)) is a vertex of �(Ai) associated with
some pure best-reply action, i = 1,2.

Analogously, an absolutely continuous function x : [1,∞) → �(A1)×�(A2) is a solution of
continuous fictitious play (CFP) if for almost all t � 1, x(t) is differentiable and

ẋ(t) = 1

t

(
q(t) − x(t)

)
,

where q(t) ∈ BR(x(t)) is now a profile of mixed actions. This may be written as the differential
inclusion:

ẋ(t) ∈ 1

t

(
BR

(
x(t)

) − x(t)
)
. (4)

The average correlated play satisfies z(t) := 1
t
(z(1)+ ∫ t

1 q(τ) dτ) for some initial condition z(1)

such that zi(1) = xi(1), i = 1,2. Thus, for almost all t , z(t) is differentiable and

ż(t) = 1

t

(
q̄(t) − z(t)

)
, (5)

where q̄ = q1 ⊗q2 ∈ �(A) is the product distribution corresponding to the mixed strategy profile
q = (q1, q2) ∈ �(A1) × �(A2), and qi is a best reply to z−i .6

6 This definition of CFP guarantees that solutions exist in all games and for all initial conditions, and that by the
change of time scale y(t) = x(et ), CFP corresponds to the best-reply dynamics [22,37] defined by ẏ ∈ BR(y) − y.
Another definition of CFP (e.g., Monderer et al. [38, p. 445] and Berger [7, pp. 252–253]) considers only trajectories that
are piecewise linear, such that qi (t) is always a pure action (technically, a vertex of �(Ai)), and that the times at which
q(t) changes have no finite accumulation point. This restricted definition is easier to handle, but in many games there do
not exist such trajectories from every initial condition.
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In discrete or continuous fictitious play, the marginals z1(t), z2(t) of the average past play
are equal to the beliefs x1(t), x2(t). By analogy, if z(t) is the average past play generated by a
no-regret dynamics, it is convenient to call z−i (t) the belief of player i about her opponent’s next
move. This illuminates a crucial difference between fictitious play and no-regret dynamics in
class R: under fictitious play, a player chooses a best reply to her belief, whereas under no-regret
dynamics, she chooses a better reply (“better” with respect to her average realized payoff).

3.2. Continuous fictitious play leads to no regret

It is well known that discrete fictitious play does not lead to no regret [47,25]. Since the
continuous fictitious play process is a continuous-time version of DFP, intuitively, it should not
lead to no regret either. The following result – a generalization of Theorem D of Monderer et al.
[38] – shows that this intuition is misleading.

Proposition 2. Under any solution of continuous fictitious play, the average correlated play
converges to the reduced Hannan set.

This discrepancy between DFP and CFP may be explained as follows. Playing an action with
positive regret decreases the regret for this action. In CFP, roughly, when an action is played
it remains a best reply, hence it is associated with maximal regret for a small time increment.
Precisely, the derivative of the regret for the action played is equal to the derivative of the maximal
regret. Since the regret for this action decreases, so does the maximal regret. In contrast, in DFP,
an action played at stage t has maximal regret at stage t , but not necessarily at stage t + 1. Thus
the fact that the regret for this action decreases does not entail that the maximal regret does.

Proof of Proposition 2. For comparison with Hart and Mas-Colell [26, Theorem 3.1], rescale
time (let t̃ = exp t ) so that (5) becomes ż = q̄ − z. For any mixed action σi ∈ �(Ai), let

Ri,σi
(t) :=

∑
k∈Ai

σi(k)Ri,k(t) = ui

(
σi, z−i (t)

) − ui

(
z(t)

)
.

Let vi(t) = Ri,max(t). Note that Ri,k is Lipschitz continuous for all k in Ai . Thus it follows from
Theorem A.4 of Hofbauer and Sandholm [27] that, for almost all t , vi and Ri,k are differentiable,
and for all k such that qi,k(t) > 0, we have v̇i (t) = Ṙi,k(t). It follows that v̇i = ∑

k qi,kṘi,k =
Ṙi,qi

. Furthermore:

Ṙi,qi
= ui(qi, ż−i ) − ui(ż) = ui(qi, q−i − z−i ) − ui(q̄ − z)

= −[
ui(qi, z−i ) − ui(z)

] = −Ri,qi
= −vi.

Thus, v̇i = −vi . Therefore, vi(t) converges to zero for all i = 1,2, hence z(t) → Hr . �
Remark 3. In the proof, we did not use that q−i is a best reply to zi . This shows that the fact that
CFP leads to no regret is a unilateral property. That is, if a player’s behavior evolves according
to CFP, then she has no asymptotic regret, independently of her opponent’s behavior (see also
Monderer et al. [38, p. 445]).

Remark 4. CFP and the best-reply dynamics converge to the set of Nash equilibria in finite zero-
sum games [29]. The usual proof is to show that the “duality gap” W(x) = maxk∈A u1(k, x2) −
1
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mins∈A2 u1(x1, s) converges to zero. This follows from the above proof, since in a two-player
zero-sum game W(x(t)) = R1,max(z(t)) + R2,max(z(t)), where x is a solution of CFP and z the
associated correlated play.

3.3. No-regret dynamics is perturbed CFP

In the previous subsection we showed that CFP leads to no regret. Conversely, we now show
that any no-regret dynamics in class R (as defined in Section 2) is closely related to CFP. We
first explain the intuition. Denote by BRε

i (x−i ) the set of ε-best replies of player i to the mixed
action x−i of her opponent:

BRε
i (x−i ) =

{
xi ∈ �(Ai)

∣∣∣ ui(xi, x−i )� max
k∈Ai

ui(k, x−i ) − ε
}
, i = 1,2.

The crucial observation is the following.

Lemma 1. Assume that the maximal regret is less than ε. Then any action with positive regret is
an ε-best reply to the average play of the opponent.

Proof. If player i has positive regret for action ai at some z ∈ �(A), then ui(z)−ui(ai, z−i ) < 0.
But by assumption maxk∈Ai

ui(k, z−i ) − ui(z) � ε. Therefore, maxk∈Ai
ui(k, z−i ) −

ui(ai, z−i ) < ε, and ai is an ε-best reply to z−i . �
Since no-regret dynamics in class R only pick actions with positive regret, they only pick ε-

best replies to the average play of the others, where ε is the maximal regret. Since this maximal
regret approaches zero almost surely, eventually only almost-exact best replies are picked. This
provides the intuition why no-regret dynamics and fictitious play may exhibit similar asymptotic
behavior. Finding a precise link, however, is not obvious. For instance, there could exist actions
that are εt -best replies in each period t , with εt → 0, but never exact best replies. Thus a limit
play of no-regret dynamics may include such actions, but this cannot happen under fictitious play.
Yet, as we show below, the asymptotic behavior of no-regret dynamics and CFP can be formally
related using the theory of perturbed differential inclusions [4,5].

Before stating a precise result, we need some definitions. A set L ⊂ �(A1) × �(A2) is in-
variant under CFP if for every initial point x ∈ L there exists a solution x(·) of CFP, defined for
all t > 0 (not only t � 1) and such that x(1) = x and x(t) ∈ L for all t > 0. A nonempty compact
invariant set is an attractor if it attracts uniformly all trajectories starting in its neighborhood. An
invariant set L is attractor-free if no proper subset of L is an attractor for the dynamics restricted
to L. A nonempty compact set L is internally chain transitive (ICT) for continuous fictitious play
if every pair of points in L can be connected by finitely many arbitrarily long pieces of orbits
of CFP lying completely within L with arbitrarily small jumps between them.7 Every ICT set
is invariant and attractor-free [5, Property 2]. The limit set of the beliefs of a trajectory z(t) on
�(A1 ×A2) is the set of all accumulation points of its marginals (z1(t), z2(t)) ∈ �(A1)×�(A2)

as t → ∞.

7 For the formal definitions of attractor and attractor-free set see Benaïm et al. [5, p. 675]; for the definition of ICT see
Benaïm et al. [4, p. 337]. Note that the definition of invariance in Benaïm et al. [4,5] applies to the best-reply dynamics,
so an appropriate time rescaling must be used to apply it to CFP (see footnote 6). This explains that their definition
considers solutions defined for all t ∈ R while ours considers solutions defined for all t > 0.
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Theorem 1. For every no-regret dynamics in class R, the limit set of the beliefs is almost surely
internally chain transitive for continuous fictitious play.8

We give here a sketch of the proof. The details are given in Appendix A. A discrete-time tra-
jectory (x1(t), x2(t))

∞
t=1 on �(A1) × �(A2) is a payoff-perturbed DFP trajectory if there exists

a positive sequence (εt ) converging to zero such that (3) holds and ai(t) is a vertex of �(Ai)

associated with a pure εt -best reply to x−i (t − 1), for all i = 1,2 and all t > 1. A no-regret dy-
namics in class R generates a trajectory (z(t))∞t=1 on �(A) and an associated sequence of beliefs
(z1(t), z2(t)) on �(A1) × �(A2). Building on Lemma 1, we show that this sequence of beliefs
is almost surely a payoff-perturbed DFP trajectory. By an auxiliary lemma, this implies that this
is almost surely a graph-perturbed DFP trajectory: a notion similar to payoff-perturbed trajec-
tory, but for another definition of perturbed best reply, the one used in the theory of perturbed
differential inclusions [4,5]. It follows that the continuous-time interpolation of this sequence of
beliefs is almost surely a perturbed solution of CFP, in the sense of Benaïm et al. [4]. Theorem 1
then follows from Theorem 3.6 of Benaïm et al. [4].

Since ICT sets are invariant, a consequence of Theorem 1 is the following:

Corollary 2. Let A be the global attractor of CFP (i.e., its maximal invariant set, see Benaïm
et al. [4]). For any no-regret dynamics in class R, the limit set of the beliefs is almost surely a
subset of A.

Note the similarity with Propositions 5.1 and 5.2 of Hofbauer et al. [30], who study the links
between the time average of the replicator dynamics and CFP.

3.4. Applications of Theorem 1 and comments

Theorem 1 allows for alternative and sometimes much shorter proofs of most known conver-
gence properties of no-regret dynamics. Below, we write that no-regret dynamics converge to
some set E if the limit set of the beliefs is almost surely a subset of E.9

(a) For any game which is best-reply equivalent to a two-person zero-sum game, the global
attractor of CFP is the set of Nash equilibria [29]. Hence all no-regret dynamics in class R
converge to the set of Nash equilibria. Actually, in zero-sum games, if the correlated action z

is in the Hannan set (recall that this is the set of correlated actions that satisfy no regret for all
players), then (z1, z2) is a Nash equilibrium. Consequently, in zero-sum games all dynamics that
lead to no regret (not only those in class R) converge to the set of Nash equilibria. This holds
more generally for stable bimatrix games [27], because these are rescaled zero-sum games in
the sense of Hofbauer and Sigmund [28], as is easily shown and was known to Josef Hofbauer
(private communication).

(b) For games with strictly dominated strategies, the global attractor of CFP is contained in the
face of the simplex with no weight on these strategies. Hence all no-regret dynamics in class

8 In the statement of Theorem 1, CFP can be replaced by the best-reply dynamics since they clearly have the same ICT
sets (see footnote 6).

9 Note that some applications of Theorem 1 (points (a), (b) and (c) below) lead to the same conclusions about no-regret
dynamics as those about the time average of the replicator dynamics described in Hofbauer et al. [30, p. 267, points (2),
(3) and (4)].



834 Y. Viossat, A. Zapechelnyuk / Journal of Economic Theory 148 (2013) 825–842
A B C

A 2 1 −4
B 1 0 −1
C −4 −1 −2

A A− B B−
A 1 1 0 0
A− 1 − ε 1 − ε −ε −ε

B 0 0 1 1
B− −ε −ε 1 − ε 1 − ε

(i) (ii)

Fig. 1. Example 1.

A B C

A 0,0 1,0 0,1
B 0,1 0,0 1,0
C 1,0 0,1 0,0

Fig. 2. Example 2.

R converge to this face. Similarly, these dynamics converge to the unique Nash equilibrium in
strictly dominance solvable games.

Contrary to (a), this need not be true for all dynamics that lead to no regret. Indeed, conver-
gence to the Hannan set or even to the reduced Hannan set does not guarantee elimination of
strictly dominated strategies. Consider, for instance, the games shown on Fig. 1. Both games are
symmetric, so we indicate only the payoffs of the row player. Game (i) is an identical interest
game which is strictly dominance solvable; yet the correlated action putting probabilities 1/3
on each diagonal square is in the reduced Hannan set. For ε = 0, game (ii) is a coordination
game with duplicate strategies. For ε > 0, the duplicates A−, B− are penalized and become
strictly dominated. Thus, the correlated action putting probability 1/2 on (A−,A−) and 1/2 on
(B−,B−) puts only weight on strictly dominated actions. Yet, for ε � 1/2, it belongs to the
Hannan set.10

(c) In weighted potential games, all internally chain transitive sets of CFP are (subsets of) con-
nected components of Nash equilibria on which the payoffs are constant, see [4, Theorem 5.5
and Remark 5.6]. Hence by Theorem 1, all no-regret dynamics in class R converge to such
components. Note that the original proof is much longer [26, Appendix A].

(d) If the beliefs (z1(t), z2(t)) of a no-regret dynamics converge to the set of Nash equilibria,
then the average realized payoff converges to the set of Nash equilibrium payoffs. To see why
this is true, let ẑ ∈ �(A) be a limit point of {z(t)} and let the marginals (ẑ1, ẑ2) ∈ �(A1)×�(A2)

constitute a Nash equilibrium. By Corollary 1 the maximal regret converges to zero, so for every
i = 1,2

ui(ẑ) = max
k∈Ai

ui(k, ẑ−i ) = ui(ẑi , ẑ−i ).

This result illuminates an important difference between no-regret dynamics and discrete fictitious
play. It is well known that under DFP, if the beliefs of the players converge to a Nash equilibrium,
their average realized payoffs need not approach the set of Nash equilibrium payoffs, whereas
under no-regret dynamics it is always the case.

(e) The game of Fig. 2 has a unique equilibrium, but almost all solutions of CFP converge to a
hexagon [21,41,42]. It may be shown that the only ICT sets are the Nash equilibrium and this

10 See also the game of Moulin and Vial [39, p. 205], where the third strategy of player 1 is strictly dominated but has a
positive marginal probability under some correlated actions in the Hannan set.
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hexagon. Consequently, the limit set of any no-regret dynamics in class R is almost surely one
of these two sets.

(f) In a number of classes of games, convergence of discrete fictitious play to the set of Nash
equilibria has been established, but analogous results for continuous fictitious play are lacking.
Thus we cannot use Theorem 1. These classes of games include generic 2 ×n games [6], generic
ordinal potential games, quasi-supermodular games11 with diminishing returns [7], and some
other special classes (see, e.g., Sparrow et al. [42, p. 260]). For ordinal potential games and
quasi-supermodular games with diminishing returns, Berger [7] proves convergence to the set
of Nash equilibria of some solutions of continuous fictitious play as defined by (4) (see our
footnote 6). This is not enough to apply the results of Benaïm et al. [4]. The same problem arises
in Krishna and Sjöström [32]. Actually, as explained below, convergence of CFP to the set of
Nash equilibria would not suffice to use Theorem 1: we would need some additional structure,
such as a Lyapunov function, to get more information on the ICT sets.

(g) Consider a bimatrix game in which all solutions of CFP converge to the set of Nash equilibria.
Because the definition of attractor requires uniform attraction, this does not imply that the set of
Nash equilibria is an attractor. Neither does it imply that all ICT sets are contained in the set
of Nash equilibria, as shown in Appendix A.2 of the working paper version of this note [45].
Therefore, we cannot deduce from Theorem 1 that no-regret dynamics in class R converge to the
set of Nash equilibria; whether this is always the case remains an open question.

(h) We show in Section 5 that Theorem 1 also applies, and under weaker assumptions, to the
continuous-time version and to the expected version of no-regret dynamics in class R. As ap-
parent from the proof, the existence of a potential is not essential: for a good choice of behavior
when there are no regrets, Theorem 1 holds for any no-regret dynamics such that a player always
chooses an action with positive regret whenever he has one. It also applies to certain no-regret
dynamics that do not have this property, such as the exponential weight algorithm (see Remark 6
at the end of Appendix A).

(i) Theorem 1 extends to n-player games with linear incentives [40], also known as polymatrix
games [46], but not to general n-player games. The main issue is technical: for n-player games,
no-regret dynamics are related to a correlated version of fictitious play. This correlated version
is defined through a best-reply correspondence which is not convex valued. For this reason,
we cannot use the current theory of perturbed differential inclusions [4], which applies only to
convex valued correspondences. More details are given in Viossat and Zapechelnyuk [45].

4. Curb sets

Theorem 1 does not answer whether attracting sets of CFP have an analogous property under
no-regret dynamics.

A set C ⊂ �(A) is eventually attracting under a no-regret dynamic process if with any given
probability it captures all no-regret trajectories originating from a small enough neighborhood of
C at all distant enough periods. Formally, C is eventually attracting if for every π > 0 there exists
ε > 0 and a period T such that: for every t0 � T , if z(t0) is in an ε-neighborhood of C, then z(t)

converges to set C with probability at least 1 − π .12

11 Also known as games of strategic complementarities (e.g., Tirole [44]).
12 We say that z(t) converges to C if infc∈C ‖z(t) − c‖ → 0 as t → ∞.
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For this section it is convenient to replace assumption (Q2) by the following one:

If a player’s maximal regret is nonpositive, then she plays a best reply
to the empirical distribution of her opponent.

(Q2′)

This is not essential, since the interesting histories are those where both players have positive
regrets, in which case (Q2) plays no role.13

A strict Nash equilibrium is eventually attracting. Indeed, if z(t0) is close enough to a vertex
of �(A) corresponding to a strict Nash equilibrium a = (a1, a2), then for each player i, action
ai is the unique best reply and there is a negative regret for any action other than ai . Since by
(R3) only actions with positive regret can be chosen, and by (Q2′) only best-reply actions can be
chosen if all regrets are nonpositive, action ai will be played by each player i in the following
period, and so on.

Let us now consider a standard generalization of strict Nash equilibria. For each i = 1,2, let
Bi ⊂ Ai . With a slight abuse of notation, denote by �(Bi) the set of probability measures on Ai

with support on Bi only. The product set B = B1 × B2 is closed under rational behavior (curb)
(Basu and Weibull [2]) if

BRi (x−i ) ⊂ �(Bi) whenever x−i ∈ �(B−i ), i = 1,2.

That is, the set B is curb if the players’ pure best-reply profiles are contained in B whenever they
believe that no actions outside of B should be played.

Curb sets are known to be attracting under CFP (e.g., Balkenborg et al. [1, Lemma 7]). How-
ever, they need not be attracting under no-regret dynamics in class R. Indeed, even if the support
of z(t0) is contained in some curb set B , there may be positive regrets for actions outside of B ,
since B need not be closed under better replies. However, we show that the intersection of the
Hannan set and the set of correlated actions with support on a curb set is eventually attracting.

Formally, let B = B1 × B2 be a curb set. Let �B(A) denote the set of correlated actions with
support on B only. Let HB = H ∩ �B(A).

Proposition 3. For every curb set B , the set HB is eventually attracting under every no-regret
dynamics in R.

The proof is based on the following observations. For every curb set B , if the average play
is close enough to HB , then regrets for all actions outside of B are negative (since B is curb).
Hence, by condition (R3), only actions in B will be played in the immediate future. On the
other hand, almost sure convergence of maximum regret to zero suggests that, so long as the
players choose only actions in B , the average play will approach HB , thus reinforcing the former
observation. To prove the result, however, we need to establish bounds on the maximal future
regret conditional on certain histories (namely, conditional on being close to HB ) that Hart and
Mas-Colell [25] do not provide. For the complete proof we refer the interested reader to Viossat
and Zapechelnyuk [45, Appendix A.3].

13 Recall that by Remark 1, if a player has positive maximal regret, then it remains positive forever. So we can consider
histories from a distant enough period t0 where both players have positive regrets and (Q2) plays no role. If t0 does
not exist, i.e., some player always has nonpositive maximal regret, then Proposition 1 and (Q2) imply that her play is
constant, whereas her opponent’s play must approach a best reply to it, leading to Nash equilibrium. By replacing (Q2)
by (Q2′) we avoid dealing with this issue.
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5. Continuous-time and expected no-regret dynamics

We now prove an analog of Theorem 1 for continuous-time dynamics [26] and the expected
version of discrete-time dynamics. Both describe trajectories of average intended (mixed) play,
rather than average realized (pure) play. For this reason, condition (R3) is not needed. Indeed, the
interest of (R3) is that, together with (Q1), it requires every realized action to be a better reply
to the opponents empirical distribution of play (whenever such actions exist). But now we only
need every mixed (expected) action to be a better reply, and this follows already from conditions
(R1)–(R2) and (Q1). Besides, these dynamics are deterministic, hence the results we obtain hold
surely (not just almost surely). The proofs are based on Appendix A and are best understood after
reading it.

Consider a continuous-time dynamics

ż(t) = 1

t

(
q̄(t) − z(t)

)
, (6)

where q̄(t) = q1(t) ⊗ q2(t) ∈ �(A) is the (independent) joint play at time t and z(t) the average
correlated play. There are two differences with (1): time is now continuous, and, more impor-
tantly, realized play a(t) has been replaced by intended mixed play q̄(t). As in CFP, start at
time 1 with some initial condition z(1) ∈ �(A). Assume that whenever Ri,max(t) > 0

qi,k(t) = ∇kPi(Ri(t))∑
s∈Ai

∇sPi(Ri(t))
, k ∈ Ai, (7)

where Pi is a C1 potential function satisfying (R1), (R2) and the technical condition:

(P4′) There exists 0 < ρ2 < ∞ such that ∇Pi(x) · x � ρ2Pi(x) for all x ∈R
Ai− .

This is a part of condition (P4) in Hart and Mas-Colell [26].

Proposition 4. Let z(t) be a solution of (6) and (7) with Pi satisfying conditions (R1), (R2) and
(P4′) for all i = 1,2. Assume that the initial condition z(1) is such that both players have some
positive regrets: Ri,max(1) > 0 for all i = 1,2. Then the limit set of the beliefs is internally chain
transitive for continuous fictitious play.

Proof. Let εi(t) := Ri,max(t). Hart and Mas-Colell [26, Theorem 3.1 and Lemma 3.314] show
that if εi(1) > 0, then εi(t) > 0 for all t , and εi(t) → 0 as t → +∞. Moreover, by (R2) applied
to x = Ri(t) and definition of qi , we have: ui(qi, z−i ) − ui(z) = qi · Ri > 0 (this is Eq. (3.3) in
[25]). Thus by Lemma 1, qi ∈ BRεi (t)

i (z−i ). Together with Lemma 3 in Appendix A, this implies
that (z1(·), z2(·)) is a perturbed solution of CFP in the sense of Benaïm et al. [4]. The result then
follows from Theorem 3.6 of Benaïm et al. [4]. �
Remark 5. Assume that if all initial regrets of a player are nonpositive then the dynamics is
defined as in Hart and Mas-Colell [26, Eq. (4.9)]. Then it is easily seen that the result of Propo-
sition 4 holds for any initial condition z(1).

14 Note a typo in the proof of Lemma 3.3 in Hart and Mas-Colell [26]: (P3) should be replaced by (P4). Moreover, only
our condition (P4′) is used in the proof of Lemma 3.3 in [26].
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L R

T 1 0
C 0 1
B 1

2 − η 1
2 − η

Fig. 3. Example 3.

Expected discrete-time dynamics. The expected motion in (1) is described by

z(t) − z(t − 1) = 1

t

(
q̄(t) − z(t − 1)

)
,

where q̄(t) = q1(t) ⊗ q2(t) is the expectation of a(t). Assume that qi is derived by (Q1) from
a potential function satisfying (R1)–(R2). Let εi(t) := Ri,max(t). It is easily seen that, as for
continuous-time dynamics, εi(t) → 0 as t → +∞, and if εi(1) > 0, then for all t , εi(t) > 0 and
qi ∈ BRεi (t)

i (z−i ). Due to Lemmata 3 to 5 of Appendix A and to Theorem 3.6 of Benaïm et al. [4],
it follows that for a good choice of behavior when all regrets are initially nonpositive, the limit
set of the beliefs is internally chain transitive for CFP.

Appendix A. Proof of Theorem 1

Denote by B̂Rε
i (x) the correspondence whose graph is the ε-neighborhood of the graph of

BRi :

B̂Rε
i (x−i ) =

{
xi ∈ �(Ai)

∣∣∣∣ ∃(x∗
i , x∗−i ) ∈ �(A1) × �(A2) s.t.

x∗
i ∈ BRi (x

∗−i ), and ‖(x∗
i , x∗−i ) − (xi, x−i )‖∞ � ε

}
.

Let B̂Rε
(x) = B̂Rε

1(x2)× B̂Rε
2(x1). In words, action xi is an ε-graph perturbed best reply to x−i if

there is an action ε-close to xi which is an exact best reply to an action ε-close to x−i . This is the
notion of perturbation used in the theory of perturbed differential inclusions (Benaïm et al. [4,5]).
As illustrated by the example below, it is different from the notion of perturbation of payoffs in
the ε-best reply correspondence, i.e. BRε(x) = BRε

1(x2) × BRε
2(x1) with

BRε
i (x−i ) =

{
xi ∈ �(Ai)

∣∣∣ ui(xi, x−i )� max
k∈Ai

ui(k, x−i ) − ε
}
, i = 1,2.

Consider a game where the payoffs of player 1 are given by Fig. 3. Let ε ∈ (0,1/2) and let
xε

2 = ( 1
2 + ε)L + ( 1

2 − ε)R. The pure action C is a 2ε-best reply to xε
2 . Using the sup norm, it is

at distance 1 from pure action T , the unique exact best reply to xε
2 . Nevertheless, C is an ε-graph

perturbed best reply, because it is an exact best reply to x0
2 , which is ε-close (in sup norm) to xε

2 .
By contrast, for all η > 0, action B is an (ε + η)-best reply, but only a 1-graph perturbed best
reply to xε

2 .
A discrete-time trajectory (x1(t), x2(t))

∞
t=1 on �(A1)×�(A2) is a payoff-perturbed fictitious

play trajectory if there exists a positive sequence (εt ) converging to zero such that

x(t) − x(t − 1) = 1

t

(
q(t) − x(t − 1)

)
with q(t) = (q1(t), q2(t)) and qi(t) ∈ BRεt

i (x−i (t −1)) for all i = 1,2 and all t > 1. It is a graph-
perturbed fictitious play trajectory if the same holds but replacing BRεt

i with B̂Rεt

i . A trajectory
(z(t))∞ on �(A) generates a sequence of beliefs (z1(t), z2(t)) in �(A1) × �(A2).
t=1
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The proof goes as follows. Lemma 2 shows that the sequence of beliefs generated by a no-
regret dynamics is a payoff-perturbed FP trajectory. Together with Lemma 3, this implies that it
is a graph-perturbed FP trajectory (Lemma 4). It follows that the interpolated process of a no-
regret dynamics trajectory is a perturbed solution of CFP (Lemma 5). The result then follows
from Benaïm et al. [4].

Lemma 2. The sequence of beliefs of a solution of a no-regret dynamics in class R is almost
surely a payoff-perturbed DFP trajectory.

Proof. If Ri,max(t) � 0 for all t , then by Remark 2, player i plays an ε(t)-best reply for some
ε(t) converging to zero. Otherwise, Ri,max(t0) > 0 for some t0 ∈ N

∗. Then for all times t > t0,
Ri,max(t) > 0 (by Remark 1) and player i plays an Ri,max(t)-best reply by Lemma 1 and condi-
tions (R3) and (Q1). Since Ri,max(t) → 0 almost surely, the result follows. �
Lemma 3. Let X be a compact subset of Rm and F a correspondence from X to itself. For
any δ � 0, let F̂δ :X ⇒ X denote the correspondence whose graph is the δ-neighborhood of the
graph of F :

F̂δ(x) = {
y ∈ X

∣∣ ∃(
x∗, y∗) ∈ X2 s.t. y∗ ∈ F

(
x∗) and

∥∥(
x∗, y∗) − (x, y)

∥∥∞ � δ
}
.

For any α > 0, let Gα be a u.s.c. correspondence from X to itself. Assume that for each x in X:

(i) α < α′ ⇒ Gα(x) ⊂ Gα′(x) (that is, (Gα)α>0 is increasing w.r.t. inclusion);
(ii)

⋂
α>0 Gα(x) ⊂ F(x).

Then for every δ > 0 there exists α > 0 such that for each x in X, Gα(x) ⊂ F̂δ(x).

Proof. By contradiction, assume that there exists δ > 0, a decreasing sequence (αn) converging
to zero, and sequences (xn) and (yn) of points in X such that yn ∈ Gαn(xn)\F̂δ(xn) for all n.
By compactness of X, we can assume that (xn) and (yn) converge respectively to x∗ and y∗.
Fix k ∈ N. For all n � k, yn ∈ Gαn(xn) ⊂ Gαk

(xn) by (i). Since Gαk
is u.s.c., it follows that

y∗ ∈ Gαk
(x∗). Therefore, by (i) and (ii)

y∗ ∈
⋂
k∈N

Gαk

(
x∗) =

⋂
α>0

Gα

(
x∗) ⊂ F

(
x∗).

But for n large enough, ‖(x∗, y∗) − (xn, yn)‖∞ < δ, hence yn ∈ F̂δ(xn), a contradiction. �
Applied to the best-reply correspondence, Lemma 3 implies that for any δ > 0, an ε-perturbed

best reply is a δ-graph perturbed best reply, provided ε is small enough. Thus we have the next
result.

Lemma 4. Any payoff-perturbed DFP trajectory is a graph-perturbed DFP trajectory.

Proof. Let εt → 0. Let

δt = min
{
δ � 0

∣∣ ∀i = 1,2, ∀x ∈ �(A1) × �(A2), BRεt

i (x−i ) ⊂ B̂Rδ
i (x−i )

}
.

Applying Lemma 3 with X = �(A1) × �(A2), Gε = BRε and F = BR, we obtain that δt → 0.
The result follows. �



840 Y. Viossat, A. Zapechelnyuk / Journal of Economic Theory 148 (2013) 825–842
Given a discrete-time trajectory x(n) = (x1(n), x2(n)) on �(A1) × �(A2), with n ∈ N
∗, de-

fine its interpolated process x : [1,+∞) → �(A1) × �(A2) as follows. For all t ∈ [n,n + 1)

let tx(t) = nx(n) + (t − n)q(n), where qi(n) = (n + 1)xi(n + 1) − nxi(n), i = 1,2. This is
equivalent to

xi(t) − xi(n) = t − n

t

(
qi(n) − xi(t)

)
, i = 1,2.

Hence for all t ∈ (n,n + 1) we have ‖x(t) − x(n)‖∞ � 1
n+1 and

ẋ(t) = 1

t

(
q(n) − x(t)

)
. (8)

An absolutely continuous function x : [1,+∞) → �(A1)×�(A2) is a perturbed solution of CFP
if there exists a vanishing function ε :R+ → R+ such that for almost all t ,

ẋ ∈ 1

t

(
B̂Rε(t)

(x) − x
)

where x = x(t). (9)

Lemma 5. The interpolated process of a graph-perturbed DFP trajectory is a perturbed solution
of CFP.

Proof. Consider a discrete-time trajectory (x1(n), x2(n))n∈N such that

xi(n) − xi(n − 1) = 1

n

(
qi(n) − xi(n)

)
, i = 1,2,

with qi(n) ∈ B̂Rεn

i (x−i (n − 1)) and εn → 0. For all n and all t ∈ [n,n + 1), let ε(t) = εn + 2/n.
Obviously, ε(t) → 0 as t → ∞. Moreover, for all t ∈ (n,n+1), the interpolated process satisfies
‖x−i (t) − x−i (n − 1)‖∞ � 1

n+1 + 1
n

< 2/n, so qi(n) ∈ B̂Rε(t)
i (x−i (t)). Therefore (8) implies (9)

(see also Faure and Roth [16, Proposition 2.2]). �
We can now prove Theorem 1. By Lemmata 2 and 4, the sequence of beliefs of a solution of

a no-regret dynamics in class R is almost surely a graph-perturbed DFP trajectory. Hence, by
Lemma 5, its interpolated process x(t) is a perturbed solution of CFP. This implies that x(et ) is
almost surely a perturbed solution of the best-reply dynamics, in the sense of Benaïm et al. [4,
Definition II]. Theorem 1 now follows from Theorem 3.6 of Benaïm et al. [4].15

Remark 6. Assume that at stage t , for each i = 1,2, player i chooses a pure action according
to a mixed action qi(t) that depends on the previous history h(t − 1). Do not assume conditions
(R1)–(R3) and (Q1), but assume that there exists a vanishing sequence (εt ) such that for all
t > 1 and any previous history h(t − 1), qi(t) ∈ BRεt

i (z−i (t − 1)), i = 1,2. Then it follows from
Lemma 3, the above proof and Benaïm et al. [4, Proposition 1.4 and a variant of Proposition 1.3]
that Theorem 1 applies. As is well known, this is the case for the exponential weights algorithm
[19,35] that corresponds to

qi,k(t) := expβtui(k, z−i )∑
s∈Ai

exp(βtui(s, z−i ))

15 The definition of perturbed solution in Benaïm et al. [4] is different from ours but equivalent.
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with z−i = z−i (t − 1), βt → +∞ as t → ∞, and βt < tα for some α ∈ (0,1) to ensure that this
is a no-regret dynamics (see, e.g., Benaïm and Faure [3]). The above assumptions are not (or not
trivially) satisfied by no-regret dynamics in class R. Indeed, the rate at which the maximal regret
vanishes, hence the value εt such that qi(t) ∈ BRεt

i (z−i (t)), may depend on the trajectory.
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