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ABSTRACT

A “random” n-person non-cooperative game—the game that prohibits
communication and therefore coalitions among the # players—is shown to have
with high probability a pure strategy solution. Such a solution is by definition
an equilibrium point or a set of strategies, one for each player, such that if
n — 1 players use their equilibrium strategies then the n-th player has no reason to
deviate from his equilibrium strategy. Itis shown that the probability of a solution
in pure strategies for large random n-person games converges to (1 — 1/e) for
alln > 2,

1. INTRODUCTION

The concept of a solution frequently used for an n-person non-
cooperative game is the equilibrium point [1]. In order to assure the
existence of a solution it is necessary to introduce mixed strategies
(probabilistic mixtures of ordinary or “pure” strategies). Except for the
2-person game, however, it is generally very difficult to compute a mixed
strategy solution. Further, many decision makers may be reluctant to
accept the operational notion of a mixed strategy.

These limitations of mixed strategies lead naturally to the hope that
mixed strategy solutions are rarely required, ie., a game chosen at
random will in fact possess a pure strategy solution. For a 2-person
zero-sum game this hope is not fulfilled; Goldman {2] showed that for
such a game with many strategies it is almost certain that all solutions
will require mixed strategies, the chance of a pure strategy solution
being almost negligible.

It was conjectured that 2-person non-zero-sum games would have a
similar property. But Goldberg, Goldman, and Newman [4] showed that
for the 2-person game the probability of a pure strategy solution is quite

* Presented at the Yale University Conference on Combinatorial Theory in honor of
Professor Oystein Ore (May, 1968).
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large when the players have many strategies to choose among, in fact
converging to 1 — e~

The present paper extends the results to n-person games (n > 2). It is
shown that the probability that an n-person game (n 2> 2) has a pure
strategy solution converges to 1 — e~! as the number of strategies of each
of the n players increases. Further, this result is also valid if only two of
the n sets of player strategies increase without bound.

2. GAMES AND TRUNCATIONS

In the normal form of an n-person noncooperative game the i-th player
(i < n) has m; strategies which we label u; (1 < u; < m;). A play of a
game can be represented by an n-vector U = (uy , Uy ..., Up), giving us
I1;., m; = = possible plays. For each play U and each player i there
exists a payoff M(U), representing the payoff to the i-th player for the
play U. There are therefore nr payoffs.

We now define a fruncation of a play with respect to the i-th player to
be an n — 1 vector:

Uz' = (u]_ s u2 yaosy ui_l > ui+l PYRETY un).

A truncation of a play leaves out the i-th player’s strategy, a fact our
notation expresses as

U= (U;,u).

A game is called zero-sum if 3} M(U) = 0 for every play U. Despite
a few allusions to properties of such games for purposes of contrast, the
games treated in this paper are not constrained to be zero-sum.

3. EQUILIBRIUM POINTS

Nash [1] first introduced the notion of an equilibrium point, and he
showed that every game possesses such a point in mixed strategies.
An n-vector of pure strategies U* = (i, *, u,*,..., u,) is an equilibrium
point in pure strategies if for each i < n and w; < m;,

MU*) = M(U*, u,). 1)
Equivalently, we have, for each i < n,

M{U*) = nax MLU*, u;). @
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If the above condition is satisfied, U* will be referred to as a pure
equilibrium point or PE solution or just PE. For a 2-person zero-sum
game a PE solution is the same as a saddle-point. We also call a PE point
a solution of the n-person game.

4. RaNnDOM GAMES

It is wellknown that PE solutions are rare for 2-person zero-sum games.
For example, the probability that a “random” 2-person zero-sum game
has a PE solution is

my !l my!

(my +my — DI”

This result, proved in [2] and [3], exhibits the need for mixed strategies,
even if the number of strategies for each player is not very large in the
2-person zero-sum game.

It is natural to inquire about the need for mixed strategies in arbitrary
n-person games. Is it likely that we can get by with pure strategies ? To
answer to this inquiry we analyze “random games.”

We define a random n-person game by the following properties:

(i) The n#r payoffs M,(U), are independent random variables.

(ii) For each i, the payoffs M,(U) have the same (independent of U)
continuous probability distribution.

From the above definition of a random game it follows that, with
probability one, the nw payoffs are distinct in such a game. From now on,
the zero-probability set of games not having distinct payoffs will be ruled
out of the analysis. Further, the probability that a random n-person game
has a PE solution is now welldefined.

Let E(U) be the event that play U is a PE solution of the game. More
generally, for any family F of plays, let E(F) be the event that every U in
F is a PE solution. Now let F, denote the set of all F with cardinality ¢,
and set

S, = Y {Pr(E(F)) | Fin F}}.

Let P,(m, , m, ,..., m,) be the probability that a random n-person game,
where the n players have my, m, ,..., m, strategies, respectively, has at
least one PE solution. Then

Po(my , My .y my) = Pr 32 E(U)g.
U
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Then, by the so-called method of inclusion and exclusion,

Pn(ml s m2 seeey mn) P Z (_1)t+lst .
=1

For any play U, the n events
M(U) = max M{U; , u)

are independent since they involve disjoint sets of independent random
variables. Since the i-th of these events has probability 1/m, , we have

Pr{E(U)} — ;17—

5. PosSIBLE SETS OF t EQUILIBRIUM POINTS

In order to determine S; we shall derive a condition that ¢ given plays
of a random game have non-zero probability of being simultaneously
among its equilibrium points. Qur definition of equilibrium point and
random game yields the following:

THEOREM 1. A necessary and sufficient condition that UY, U%,..., U are,
with non-zero probability, t equilibrium points of an n-person random game
is that

UL U2,..., Ul are distinct for each i < n.
Proof. Suppose
Uil = Uiz.

Then, since U! and U? are equilibrium points,

MZ(UI) = uIn<a’§ Mz‘(Uila u'l,')
= max M (U2 u) = M,(U?,

u;Kmy;

contradicting the stipulation that, with probability one, all n= payoffs
are distinct.

The sufficiency follows from the continuity assumption on the payoff
distribution and from the fact that the nt events

M(U?) = lgg{fi MU/, u)
involve disjoint sets of independent random variables.

582/8/1-10
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Since the U’s are n-vectors and the U,’s are (n — 1)-vectors, the theorem
states that each pair of U’s must differ in at least two of their n components
in order for all to be PE solutions.

Using Theorem 1, we can give an explicit formula for S, . Let F,* consist
of those F in F, for which Pr{E(F)} > 0, so that

S;.= Y {Pr(E(F)) | F in F;*}.

Now the members F = {U, U%..,, U} of F,* are characterized in
Theorem 1, and for any such F in F;* the ¢ events E(U’) refer to disjoint
sets of -independent random variables and so are independent. Since
Pr{E(UY)} = 1/m, it follows that

PHE(F)} = —

7Tt
for each Fin F, . Let N, represent the cardinality of F,*; then
Sy = Ny/=*,

and
Py(my , My ey M) = 3 (—1)HINg—, (3)
t=1

6.. EQUILIBRIUM POINTS IN TwO-PERSON GAMES

If n = 2, a play of the game can be represented by a 2-vector U = (o, ).
It follows from Theorem 1 that, in order for (a?, BY),..., (¢, B?) to be a
possible set of ¢ equilibrium points,

al, o?,..., ot are distinct
and
B, B2,..., Bt are distinct.

To compute N;, we observe that ¢ distinct o’s can be chosen in (")
ways and ¢ distinct B’s can be chosen in ("2) ways, and then the two sets
can be paired off in ¢! ways. Thus

%= ()

Py m) = 3. (= 1) (")) etemamey. @)

and

This result was first obtained by Goldberg, Goldman, and Newman [4].
They also obtained the asymptotic value of Py(m, , m,).
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7. EQUILIBRIUM POINTS IN THREE-PERSON-GAMES

If n = 3, it is convenient to decompose the set of w = m;mym; plays
into mym, sets of the form S;;. Each member U = (u; , u,, uy) of
S;; is such that u, = i, u, = j, us << my. Thus each set S;; contains m;
plays. Now each S;; can contain at most one equilibrium point. Therefore
N, is the number of ways of carrying out the following process:

(i) Choose a family S,® of ¢ sets S;
sets S, .

(ii) Choose one member from each of these ¢ sets so that the resulting ¢
plays obey the condition of Theorem 1.

iy s Siggy 50y Si g, from the mym,

Let u(z].S,?) be the number of ways of making the ¢ choices in (ii)
above. Thus u(z | S;?) is the number of ways of choosing ¢ equilibrium
points from the ¢ given sets Siyiy > Sigiy o--» Si g, » and we have

N, = Z:“'(t [ 819,

where the sum is over all choices of S,’. If we consider the choice of
S;t as made at random, then u(z | S;?) is a random variable whose mean
value will be denoted by u(?). Since each S, has probability 1/("™}*2) of
being chosen it follows that

mymsy

Nt:( ¢

) u(t). e
From the above definition of u(¢ | S,) we have the following inequalities:
my(mg — 1) == (mg — ¢t + 1) < pt ] S1Y) < myt. (6)
Therefore, its mean value, u(f), also satisfies the inequality
("Z*)t! < p(t) < my'. (7
For example, if t = 1, w(1) = m3 and
N; = (mymg)my = .

If t = 2, we have

2| 5% = mg?, if 4 #6L, jiF
w2182 = (mg — Dimy, if hb=1i or j=/j.
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We can now compute

) _ om*(my — D(my — 1) + (my — 1) my(my + my — 2)
e (my — Dy — 1) + my + my — 2

=m3(7T_S+2),

mumy — 1

where S = my; + my, + m5.
Substituting in (5) we have

myms

N (o) - T EED

To compute u(3) we need to examine four cases:

my(my — 1)(mz — 2), if iy = iy = i3 and j; £ jo £ Js
orif jy = js =js and i 7= iy 7 ig;

mg(ms — 1)?, if i =iy i3, hFjaFJs
p31S8®% = orif y =jsFjs, W77 Is;

mg?, if iy Al Fiy, hFJaFss

my(my — 1)%, if iy =iy~ iy and j, = js F Jo

orif jy =j, #js and i, = ig 7+ iy.

The frequencies associated with each of the four above values of
#(3 | S;®) are proportional to, respectively,

(my — D)(my — 2) + (my — 1)(my — 2),
2(my — 1)my — 1 + 2(my — 1)*(m, — 1),
(my — D(my — 1)(mymy — my — my),

2(my — 1)(my — 1).

The sum of the above frequencies is (mm, — 1)(mym, — 2).

Using the above frequencies and values of u(3 | S5,%) we obtain the value
of u(3) as a function of m, , m, , my . In particular, if m;, = my, = mg = m,
we have

_ m(m — )(m* + 2m® — 8m® +6)
w3 = (m + Dot —2)

and

N3 _ (n;z) () = m*(m — 1)%(m* —1—62m3 — 8m? + 6) .
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In a similar manner we can compute the values of N;, where
¢ < min(mym, , ms),

and then compute the required probability
Py(my , my, mg) = z (=) Nt
=1
= ¥ (=0 (") ey ®)
=1
It is of interest to determine the asymptotic value of Py(m, , m, , mg)

as the number of strategies increases for each player. We note that the
absolute value of the #-th term of the series for P, is

Ngr—t = (mlmz) u(t)m?

(t) H (mlmz k + 1)

B t' ® MMty

From (7) it follows that the absolute value of the 7-th term satisfies the
inequality

(™) I=] (ﬁlm_:kii) <Nat<LT] (ﬂlm_z:ﬁ_L)

MMy

or

A0 A ) v < I

mg
Hence we obtain

. 1
lim Ngt= ik

my ,my ,ig>0©

which by (8) suggests

1)+
lim  Py(my , my, my) = ZL‘L

=1—el
1y Mg, Hig—>0 = t!

Detailed proof of this will be given in the proof of Theorem 2.

8. PUurRe EQUILIBRIUM POINTS IN #-PERSON (GAMES

We now evaluate the probability of a PE solution in a random r-person
game, where the i-th player has m; strategies. In such a game the set of
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™ = mm, ‘- m, plays can be decomposed into mym, - m,_; = M sets
of the form §; ;... | where each set contains m, plays. Each member
U= (u,uy,..., u,) Of Sy s...; _ has the property thatu; = iy ,up = iy ,...,
U,y = Iny ,and u, << m, = m. Thus each of the M sets contains m plays.

From Theorem 1 it follows that each set Siyi,ee, , an contain at most
one PE point. Therefore choosing ¢ plays which can simultaneously be
equilibrium points from the 7 plays is equivalent to choosing ¢ of the
M sets and then choosing one play from each of these ¢ chosen sets.
Again, let u(z | S;*) be the number of ways of choosing ¢ plays which can
simultaneously be equilibrium points from the ¢ given sets (we emphasize
that only one point may be chosen from each set) and let u(¢) represent its
mean value. Then, we have

Ne = (%) wte.

From our definition of the random variable u(z | S;?),
mm— 1) (m—1t+ 1) <pi|Sh)<mt.

Therefore the mean value p(z) satisfies the same inequality, or
() ot <wt) <m (10)
The required probability of a PE point in a random game is given by

Patmy 1y i) = 3 (=12 (%) (Mm) 1) (11

For each M and m one can compute the probability P, by first com-
puting u(¢) when ¢ < min(m, M). Now from the definition of u(¢) we have
p(1) = m. In order to compute u(2) we pick two sets, S;;,...;  and
Si gy, , » itom the M sets. We have then

m2, lf il 7+“.]1 b i2 ¢J2 g0y in—l #j’n—l s

2 —_
w215 m(m — 1), ifh=j5 Or iy =jose, OF lpyg = jny.

Now the frequency associated with (2 | S;2) = m? is proportional to D,
where

D = (my — 1)(my — 1) -+ (mpy — 1).
The frequency associated with (2 | S} = m(m — 1) is proportional to
DE, where

n—1 1

mi_l.



PURE EQUILIBRIUM POINT IN #-PERSON GAMES 143

Hence we have
m2D + m(m — 1) DE
©#(2) Dt DE

—m (m— 545

In a similar manne: we can compute u(3), u(4),..., u(i), where

m = min(m, M),

and then obtain P, . Of course, the computation of u(f) becomes more

cumbersome with each value of 7. However, P, has an asymptotic value
given by

THEOREM 2. For all n-person games (n = 2)

lim P(my,my peeymy) = 1 — e,
mymg., . my,_ ;>0

my—>®

Proof. Equation (11) may be written as

-1

P, m) = T = w1 (1 - )
Hence we have

P, m) ~ (L = e = T (“ﬂl)t [1 — u(eym-t ﬁ (1- A—’l)] 12)

Now let

-1

MM, m) = p(t)ym~* [] (1 — _)

i=1
From (10) it follows that for all ¢

t—~1 i

T (1 =)t = 5g) <Motm < <f(-H<t @

=1

Now for all i << T < M we have

121—L>1—1
Hence
E(l_ﬁ.>>(l—%)t—l>(1~{zy for 1 < T< M.
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Similarly we have that

E(l—%)>(1—%)T fort < T <m.

Substituting the above inequalities in (13) we have

MM, m) = (1 — %)T (1 — %)T for ¢t < T < min(m, M)
> (- -5

Now T is arbitrary but T << M and T < m. Suppose we restrict T so
that 73 < M, and T3 < m, then T*/M < 1/T and T?/m < 1/T, and we
obtain the inequality

)\t(M.m)>1——§,— for ¢t < T < T? < min(m, M).
Therefore

0<1 —A(M, m) <—]2; for t < T < T® < min{m, M).

Returning to (12) we have for ¢t < T < T® << min(m, M)

5 01— Ao my|

t>T

Py — (= e < X L () 4

=Xl

o

2
T

<

> 00— aonmy|

i>T

e+

The second term represents the “tail” of a converging alternating series.
Thus, given any 6 > 0, we can choose T sufficiently large that

> E0 - aonmi| <, (14)

t>T

and

| P(M,m) — (1 —e™?)| < iTe + 8.
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Now by choosing T > 2e/3, we have
| Po(M, m) — (1 — e™)| <28,

which proves the theorem.
It is of interest to note that Theorem 2 requires only that two of the
n sets of player strategies grow without bound.
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