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Abstract: An alternative definition of regular equilibria is introduced and shown to have the 
same properties as those definitions already known from the literature. The system of equa- 
tions used to define regular equilibria induces a globally differentiable structure on the space 
of mixed strategies. Interpreting this structure as a vector field, called the Nash field, allows 
for a reproduction of a number of classical results from a differentiable viewpoint. Moreover, 
approximations of the Nash field can be used to suitably define indices of connected compo- 
nents of equilibria and to identify equilibrium components which arc robust against small 
payoff perturbations. 

1 Introduction 

From one point  of view the material  to be presented is simply a somewhat deviant  
approach to the theory of finite normal  form games. From another  it is a discus- 
sion of Nash ref inements  and robustness properties of Nash equilibria. Nash refi- 
nements  were often motivated by initiating examples in which common sense 
could identify what went wrong with particular equilibria. This is not  the approach 
taken here (that is: examples come at the end rather than at the beginning).  Rather  
this paper is concerned with formal properties of a particular structure on the 
space of mixed strategies which may be viewed as a representat ion of the interac- 
t ion in a normal  form game. The discussion of various implied ref inement  notions 
is a byproduct.  Still it is a very informative byproduct  and may help to gain a more 
unified unders tanding of Nash refinements.  

The "intuitive" approach to refinements which attempts to rule out undesira- 
ble properties discovered in examples, of course, has its merits. It is particularily 
transparent ,  because it often derives from extensive form considerations. As a con- 
sequence the most popular  - at least within the economics profession - ref inement  
concepts are in fact extensive form concepts, e.g. subgame perfection (Selten, 
1965) or sequential  equil ibrium (Kreps and Wilson, 1982). This is despite the view 
expressed by von N e u m a n n  and Morgenstern (1972, e .g .p .  85) that the normal  
form and the extensive form are essentially equivalent  and despite the fact that the 
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normal form is mathematically somewhat more handy. It is even despite the 
strongly supported view, expressed by Kohlberg and Mertens (1986, p. 1010), that 
the set of "strategically stable" equilibria should depend only on the reduced nor- 
mal form of the game. 

A preference for extensive form analysis may derive from the feeling that 
normal form analysis seemed to be unable to capture the essence of backward 
induction. With respect to this problem it is known, however, that a proper equil- 
ibrium (Myerson, 1978) of the normal form is sequential in any tree with that nor- 
mal form (van Damme, 1984; Kohlberg and Mertens, 1986, p. 1009). Last, but not 
least, recent results obtained by Mailath, Samuelson, and Swinkels (1993) show 
that the normal form can even reproduce extensive-form-type reasoning and a no- 
tion like "subgame perfect in any extensive form with this particular normal form" 
can be given precise meaning (somewhat related attempts are the notions of cells 
and semicells, cf. Harsanyi and Selten, 1988, pp. 90). This is one of the reasons, 
why it seems worthwile to attempt a mathematical description of the structure of 
interaction within a normal form game as additional information to the predictions 
of the Nash equilibrium. 

The reader may wonder what is meant by the vague phrase "structure of in- 
teraction in the game" and whether there is not already such a thing, induced by 
the best-reply correspondences, such that there remains nothing to be studied. In 
fact, the correspondence, manufactured from individual best-reply correspond- 
ences by taking the product, induces a structure on the space of mixed strategies 
which may well be viewed as a representation of interactions in the game (a pro- 
gramme carried through by Kalai and Samet, 1984, and Balkenborg, 1991, and 
extended to perturbations of the best-reply structure by Hillas, 1990). But best- 
reply correspondences drop some information: Since they assign the maximizers, 
they drop the information on the ordering of the remaining pure strategies. More- 
over, the structure induced by best-reply correspondences is not a very smooth 
one. Would it not be nicer to have a structure which contains even more informa- 
tion than the one induced by best-reply correspondences but is, moreover, differ- 
entiable? The latter is what the present paper is devoted to. 

The present paper will start with a somewhat "naive" consideration of neces- 
sary conditions for a Nash equilibrium which will result in a system of equations 
that can be used to give an alternative definition of regular equilibria. This modi- 
fied definition has the same properties as those already known for the standard 
definitions. But beyond these the system of equations induces a globally differen- 
tiable structure on the space of mixed strategy combinations. One way to think 
about this structure is to interpret it as a vector field and call it the "Nash field". 
Each equilibrium of a given game then corresponds to a zero of this vector field. 
Machinery from Differential Topology can now be used to study the Nash field. 
Well known results can be reproved in a different way. But, moreover, by approx- 
imations of the Nash field one can identify connected components of equilibria 
which are robust against slight payoff disturbances. Since the latter exercise only 
requires knowledge of the Nash field, but does not require the computation of 
payoff perturbations, it is an instance of what a differential approach is designed to 
do: To extract global information from local properties. In effect the tool to iden- 
tify such robust equilibrium components ("essential components") is even of a 
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somewhat independent interest. It consists of an assignment of indices to compo- 
nents such that the indices add up to the Euler characteristic of the space of mixed 
strategies across components. So the assignment of indices provides a set-valued 
generalization of regularity. An equilibrium component with non-zero index can 
be shown to satisfy a number of desirable properties. On the other hand there are 
Stable Sets (Kohlberg and Mertens, 1986) which do not get assigned a non-zero 
index (see Section 4). 

The appeal of the Nash field also derives from its potential interpretation. The 
system of equations defining the Nash field is precisely the replicator dynamics for 
asymmetric games (as introduced for symmetric games by Taylor and Jonker, 
1978). Thus it does reflect some interaction in the game, though possibly the inter- 
action of large populations of "programmed" players whose distribution on pure 
strategies is subject to evolution. The formal equivalence of the Nash field and the 
replicator dynamics provides an interesting link between traditional non-coopera- 
tive theory and evolutionary game theory. The relation between evolutionary dy- 
namics of the replicator type and non-cooperative solution concepts is explored in 
a related paper (Ritzberger and Weibull, 1993; see also Samuelson and Zhang, 
1992). Such considerations are, however, beyond the scope of the present inqui- 
ry. 

For the present purpose the Nash field can be thought of as a purely formal 
object - one way to represent a game. The paper is organized as follows: Section 2 
introduces notation and the modified definition of regular equilibria plus their 
properties. Section 3 studies the Nash field, reproves the well known result on 
existence of equilibria and oddness in the case of regularity and shows how to 
define indices of equilibrium components and how to exploit these indices. Section 
4 is an illustrative chapter in that it shows how the Nash field can quickly inform 
the analyst on which equilibrium is risk dominant in the sense of Harsanyi and 
Selten (1988). This section also contains examples illustrating applications of index 
theory. Section 5 summarizes. 

2 Regular Equilibria 

2.1 Notation. A finite n-person normal form game is a 2n-tuple F = ($1 . . . . .  Sn, ul, 
. . . .  un), where Si is a finite non-empty set, referred to as the set of pure strategies of 
player i ~./U = {1 . . . . .  n}. Denoting S = x i~ ~ Si, the set of all pure strategy combi- 
nations, each ui is a mapping u i : S ~ ,  for each i~M/', and is called player i 'spayoff 
function. A typical element of the space of pure strategies will be written s = (sl, 
. . . .  sn) ~ S. The cardinality of player i's pure strategy set S~ is denoted by K~ = I S~I 
and the cardinality of S is denoted by K =  Hi~ ~ Ki. For most of what follows it 
will be convenient to index player i's pure strategies by k~{1 . . . . .  Ki}, such that 
s ~ S i  denotes the k ' th pure strategy of playe r i~4/' .  The set of mixed strategies of 
player i~J4/" is the set of probability distributions on S~. The probability which 
player i assigns to his k-th pure strategy s~ will be denoted by cr~ = cr(s~) and the 
space of all mixed strategies of player i~M/" will be denoted by Ei. Since by decid- 
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ing upon (K,--1) probabilities assigned to his pure strategies, player i already has 
decided on the probability of the remaining pure strategy (because the probabili- 
ties have to add up to unity), the space Ei can taken to be (K~-1)-dimensional, 
i.e. 

K~ - 1 } 
~i=  O'i:Si\{SiKi}"'~+ I ~ ~ <-1 , 

k=l  

where 9t+ denotes the non-negative reals. The set of mixed strategy combinations, 
1i;, is the product 1i;= x~ .  1 1i;~. A completely mixed strategy for player leA/" is a 
probability vector 

Ki -- 1 } 
O-ieint E~=  o'i:Si\{sKi}---->~++ [ ~ d < l  , 

k=l  

where ~1+ + denotes the positive reals, and a completely mixed strategy combina- 
tion is a mixed strategy combination O-=(o-1 . . . . .  O-,,)eint Y~= xi~. t.int 2s The 
strategy combination resulting from o-e]~, when o-i is replaced by b-i, is denoted by 
(O'--i, O-t')=(o-1 . . . . .  O-i--l, O'i, O-i+1 . . . . .  O-n) e ~ .  A pure strategy of player i e J U  is 
identified with the degenerate probability distribution which assigns 1 to the pure 
strategy selected and zero to all other pure strategies. When in o - ~  player i's 
strategy o-~eli;i is replaced by such a degenerate distribution assigning all the 
weight to pure strategy sieSi, a shorthand notation frequently used will be (o-_~, 
s~) e E\int  N = 0Z. For a given o-~ e2~ the subset of pure strategies to which ~ assigns 
positive probability is called the support of O-,., denoted 

supp (o-/) = {s/k e Si I o~/= O-; (s~) > 0}. 

Analogously, supp (o-) = x i~ / supp (o-,-). 
The space of all mixed strategy combinations 1i; is a compact and convex po- 

lyhedron in 91 M, with dimension M='s i. K~-n.  Since players in a non-coopera- 
tive game decide independently on their mixed strategies, the joint probability that 
the pure strategy combination s=(s~ s, .... s~")eS, k,e{1, ..., Kz}, vieA/ ' ,  will be 
played, given that player i~A/" chooses ~ l i ; s ,  is given by 

O-(s )=o- ( s l  ~', . . . .  sf~ = I I  ~'. 
ie.l '  

The expected payoff  to player i~4/ ' ,  given that O-eE is played, is 

~(o-) = 2 ui(s)o-(s), 
s~S 

i.e. is a multilinear function Ut:E--'~I. 
Since Si is a finite set for each i6M/', the payoff functions ui:S- '~l  can only 

take finitely many values. Collecting these values ui (s), s~S, in a K-dimensional 
vector for each i ~M/" and collecting these vectors ug = (ui (s))s ~s in a nK-dimension- 
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al vector u = (u~)i~ ~ makes it possible to identify F, for fixed player set and fixed 
pure strategy sets, with a point u e g l  n/~. Writing G(S1 . . . . .  S,)  for the set of all 
normal form games with pure strategy sets (Sa . . . . .  Sn), there is, consequently, a 
one-to-one correspondence between ~1 "z~ and G(S1, .. . ,  S~). The notation for a 
game F e  G(S1 . . . . .  Sn) with payo f f  vector u = (ui)i~ l = ( (u i (s ) ) ,~s) i~ . /egl  nK will 
frequently read F = F (u). Within G ($1, ... ,  Sn) there is, therefore, a natural way to 
measure distances between games by measuring the euclidean distance between 
their payoff vectors in 91 "K. Accordingly, the measure of a subset of games in 
G (S~ . . . . .  Sn) is determined by the Lebesgue-measure of the corresponding subset 
of payoff vectors in ~1 mr. If it is necessary to stress the dependence of some map- 
ping b on the payoff vector u~91 ~K, subscripts u will be used, i.e. b will be written 
as b,. 

For a fixed game F 6 G ($1 . . . . .  S~) define the set of best replies of player i cA/" 
against a strategy combination o-eE as the correspondence BRg:s163 defined 
by 

BRi(o-)=arg max Ui(o-_i, ~r/). 
! 

~ ~ 2s 

Where this is necessary, the set of pure best replies of player ieJt/" against o,es  
will be written as BR~(o-). Let the correspondence B R  = x ~. ~BR~. 

A Nash equilibrium (or, an equilibrium) of a game F e  G(Sa . . . . .  Sn) is a strat- 
egy combination o-~E such that ~eBR(~r) .  Such an equilibrium always exists for 
any game F ~ G ($1 . . . .  , Sn) (Nash, 1951). The set of equilibria of a game F will be 
denoted by E(F). The set E(F)  can also be viewed as a correspondence mapping 
G ($1 . . . .  , Sn) into E. 

A strict equilibrium is a o-e E (F) which satisfies B R  (~r)= {~r} (Harsanyi, 1973). 
A quasi-strict equilibrium is a ~reE(F) which satisfies B R  Or) = supp (o-) (Harsanyi, 
1973; the terminology is from van Damme, 1987). 

2.2 Regular Equilibria. In this subsection a modified definition of regular equili- 
brium is introduced and it is shown that a regular equilibrium possesses all robust- 
ness properties one can reasonably hope for. In particular, the present definition 
of regularity has the same implication as the definition introduced in van Damme 
(1987, chp. 2.5). Moreover, in the example by which van Damme motivates his 
own deviation from Harsanyi 's original definition (van Damme, 1987, Fig. 2.5.1, p. 
39), the present definition selects the same equilibrium as van Damme's  and does 
not rule out both equilibria, as Harasanyi's (1973) definition would do. 2 

At an equilibrium o-~E(F) each ~rieEi must maximize the expected payoff 
U~(o) for each i~JYsubject  to the constraint that ~ s  Since U~(~r) is linear in 
o-iffEi this boils down to a problem of constrained, non-negative linear program- 
ming: 

2 In fact I believe that the present definition of regular equilibria is equivalent to van 
Damme's, but I have not yet succeeded in proving this claim. 
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max o~/U~(o-_i, s~) + 1 - ~ o~/ Ui(o-_i, s f  ~) 
(o-1 . . . . .  o~, ' - ' )  L k = l  k = l  

K,--1 
s.t. ~ o~ s - l~0 ,  o-~>0, u  . . . . .  K ~ - I .  

k = l  

By linearity the Kuhn-Tucker complementary-slackness conditions are necessary 
and sufficient, such that the optimum ~ s  can - after eliminating the Lagrange 
multiplier - be characterized by 

e~(~_,, sf)___ e,(o-_. ~.,), vsfeS,, 
0-~ [U~(o-_~, sk)--U~(o'_,, gr~)l =0,  V k = l ,  ..., K s - 1 .  

(1) 

At an equilibrium, however, 6-i=o-i must hold, such that the second part of (1) 
reads 

d [ u , ( ~ _ , ,  sf) - u~(~)] =0,  v k = l ,  ..., ~ - 1 ,  (2) 

for all i e Jr'. This already is the modification to be introduced: While van 
Damme's definition uses pure strategy combinations jointly with the mix of the 
other players U~ (o-_i, &), si e supp (o-i), and Harsanyi's definition uses an equal mix 
across all pure strategies (the so-called centroid-strategy) Ui (o-_i, (1/Kz . . . .  ,1/Ki)), 
as the reference point, instead of Ui (o-) in (2), the present definition of regularity 
uses for each player 

(a) a mixed strategy space reduced by one dimension, and 
(b) the equilibrium itself as the reference point. 

Formally, let the function b : ~ ' - * ~  M be defined by 

b f ( o ' )  = o ~ / [ U / ( o - _ i ,  s~)-Ui(o')], V k = l  . . . . .  g i - 1 ,  Vie.A/'. (3) 

The way it is defined, b is a polynomial function and, therefore, infinitely often 
continuously differentiable on a neighbourhodd of ~ C 91M. (The definition by van 
Damme, by comparison, has to switch to another pure strategy combination as the 
reference point, when two equilibria with disjoint supports are studied. This in- 
duces "kinks" of the corresponding mapping at indifference surfaces off the equil- 
ibrium.) Let D~b(O-) denote the Jacobian matrix of the mapping b at a point 
gr~E(F) and denote by I D~b(gr)l its determinant (the definition to follow was 
first introduced by Ritzberger and Vogelsberger, 1990). 

Definition: An equilibrium b-eE(F) is said to be regular, if and only if 
ID~b (&)I r 

The steps to follow are intended to evaluate the properties of regular equilibria. 
Since these turn out to be the same as those of standard definitions, most proofs 
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are gathered in the Appendix and the text only contains the statements (for the 
parallel results see: van Damme, 1987, chp. 2.5.). 

Lemma 1. I f  gi4supp (o-i), then [ Ui (o-_i, ~i) - U/(o-)] e~ll is an eigenvalue of  the Jaco- 
bian matrix D~b (or). 

(Proof." see Appendix) 

Corollary 1. Every regular equilibrium is quasi-strict. 

Proof: If O-eE(F) is not quasi-strict, then for some ieJV" there exists skiq~supp (~) 
such that Ui (O---i, Ski)- Ui(o)= 0 which implies that [D~b (o-)[ = 0. �9 

Corollary 2. Every strict equilibrium is regular. 

Proof." Since every strict equilibrium is in pure strategies, for each i e Jr/" there are 
(K i -1 )  pure strategies not used at O-eE(F) which give the (K i -1 )  corresponding 
eigenvalues [Ui(o'-i, sk)--Ui(o')]<O, Ski~supp(o'i). This determines ~i~ . i  K i -  
n = M  real and negative eigenvalues which are all eigenvalues of D~b (o-), such that 
[O~b (o-)I s0 .  �9 

The latter result can be sharpened to a rather obvious conclusion: 

Corollary 3. A pure strategy equilibrium is regular, if and only if it is strict. 

Proof." Corollary 2 covers the if part. Since at a pure strategy equilibrium all eigen- 
values are known and regularity of the equilibrium implies that there is no zero 
eigenvalue, one must have [/-ft'(O'--/, Ski)--U/(o-)] <0, Vski~supp(o-i), Vie.# ' .  �9 

The next step is to show that regular equilibria are strongly stable in the sense 
of Kojima, Okada, and Shindoh (1985). 

Theorem 1. Let I" e G ($1 . . . . .  Sn) and assume that 6"e E (F ) is a regular equilibrium. 
Let aegi  nK denote the payoff  vector off ' .  Then there exists a neighbourhood ~4 of  
a in 91 nI~ and a neighbourhood ~ of  6- in 91~ such that 

(i) I E ( r ( u ) ) n ~ / I  =1, v u e ~  , and 
(ii) the mapping O-: ~ ~ / ,  defined by {o-(u)}=E(F(u))n~/ ,  is continuous. 

(Proof." see Appendix) 

An equilibrium O-eE (F) is said to be isolated, if and only if there exists a 
neighbourhood Y/o f  o-in 91 M, such that E ( F ) n  7/'={o-}. An equilibrium o-eE(F) 
is said to be essential, if and only if every game F '  in a neighbourhood of F ( i n  
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~1 nx) has an equilibrium o-' ~ E ( F ' )  in a neighbourhood of o-eE(F) (Wu Wen- 
TsOn and Jiang Jia-He, 1962). 

Corollary 4. Every regular equilibrium is essential and isolated. 

Corollary 5. Every regular equilibrium is strictly perfect (Okada, 1981) and, hence, 
perfect (Selten, 1975), and proper (Myerson, 1978). 

Proof." The first part follows from Theorem 2.4.3 in van Damme (1987, p. 34), 
where it is proved that every essential equilibrium is strictly perfect. Theorems 
2.4.7 and 2.3.8 in van Damme (1987, p. 36 and p. 32) ensure that every strongly 
stable equilibrium is strictly proper and every strictly proper equilibrium is pro- 
per. �9 

Except for the rather obvious Corollary 3 all these results are known from van 
Damme (1987, chp. 2.5). The only reason, these results are listed here, is to show 
that the present definition does not change the properties of regular equilibria. 
The methods of proofs use eigenvalues of the Jacobian matrix, rather than the 
methods used by van Damme, because this is a natural approach in the present 
setting. 

An equilibrium of a game F is called near strict (Fudenberg, Kreps, and Le- 
vine, 1988, p. 357) in the normal form, if there exists a sequence of games converg- 
ing to F for which this equilibrium is a strict equilibrium. 

Corollary 6. Every pure strategy equilibrium is near strict in the normal form. 

Proof: At a pure strategy equilibrium gre E(F) 

[U~ (gr_i, s i ) -  Ui(gr)] <__0, Vs~4supp (N), vie  J~'. 

Since these eigenvalues of D~b(6") (by Lemma 1) are linear in ue~l  nK, the re- 
quired sequence {Fro}re=I, Fm~F,  can be constructed in such a way that all payoffs 
to a player i e J U  to his pure strategy siq~supp (6-i), for which equality holds (instead 
of a strict inequality), are disturbed downwards. �9 

Corollary 6 is merely a restatement of Proposition 1 in Fudenberg, Kreps, and 
Levine (1988). In the present context, however, this result emerges from the parti- 
cularily transparent behaviour of the vector field b around pure strategy combina- 
tions (which are always zeros of b). 

Finally another well known result (van Damme, 1987, chp. 2.6; Harsanyi, 
1973; Wilson, 1971) is stated. 

Theorem 2. For almost all games F ~ G ($1, . .., S,,) all equilibria are regular. 

(Proof." see Appendix) 
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The phrase "almost all" in Theorem 2 refers to G(S1 . . . . .  S,,), i.e. to 91 nK (that 
is: to a dense open subset of 9INK). On the other hand, nearly any non-trivial ex- 
tensive form will impose certain indifference relations upon the corresponding 
normal form and will, thereby, give rise to a degenerate normal form game in 
G ($1 . . . . .  Sn). In fact a given extensive form specifies a linear subspace of G ($1, 
�9 .., Sn), as can be seen from writing the ties emerging from strategy combinations 
that lead to the same terminal nodes as a system of linear equations in u egi  nK. 
There is no guarantee whatsoever that in such a subspace (corresponding to a 
given tree) games without regular equilibria will not cover a (relatively) open sub- 
set. On the other hand most of the refinement literature is motivated by extensive 
form arguments. From this point of view, therefore, the statement of Theorem 2 
should be interpreted with due care. 

3 The Nash Field 

An advantage of the system of equations defined by (3) is that is induces a globally 
differentiable structure on a neighbourhood of the polyhedron 51. This structure 
contains, in my view, valuable information about the underlying game F. One par- 
ticularily attractive way to view the structure induced by b on 51 is to think of it as a 
vector field on 51. If it is appropriate to stress the interpretation of the mapping b 
defined in (3) as a vector field on E, the notation ~ will be used. The vector field 

(or ~, ,  if the dependence on the payoff vector ue~ll nK is to be stressed) will be 
called the Nash field. 

From (3) it is clear that the Nash field is precisely the replicator equation for 
asymmetric games. It can be shown that a rest point of the replicator dynamics is 
(locally) asymptotically stable (Hirsch and Smale, 1974, p. 186), i f  and only i f  it is a 
strict equilibrium (Ritzberger and Vogelsberger, 1990, Proposition 1; see also: 
Ritzberger and Weibull, 1993, Theorem 1). Moreover, every robust equilibrium 
(Okada, 1983) is (weakly) stable (Hirsch and Smale, 1974, p. 185) in the replicator 
dynamics (Ritzberger and Weibull, 1993, Proposition 2). Thus stability in the repli- 
cator dynamics reflects that an equilibrium may be a best reply to a neighbourhood 
of itself, rather than only to itself. 

For the present purposes, however, only very basic properties of the Nash 
field are relevant. To be able to interpret b as a vector field b on 51, it is neces- 
sary to show that b indeed maps into the tangent space of E which, because of the 
simple structure of 51, is just ~1M. But beyond this trivial step a much stronger 
result is available: Let o-(t, o~~ t~fll+, o-~ be a solution to the system of differ- 
ential equations do-=~(o-)dt, with o-(0, ~r ~ = o  -~ In the following Lemma it is 
shown that no solution o-(t, o -~ ever leaves the boundary face of E in which it 
starts. In other words, 51 and each of its boundary faces (the boundary of 51 will be 
denoted 0E) are invariant under the operation of b. 
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Lemma2. I f  o-~ then o'(t, o-~ Vtegl+ and, moreover, if  o-~ then o-(t, 
cr~ vte91+. Finally, no trajectory ever leaves the boundary face in which it 
starts. 

Proof." It suffices to demonstrate the second part of the statement, because, if the 
latter is true, by continuity no solution path can ever leave E, once it starts in E. 
With the understanding that o-(0, ~r~ abbreviate o-(t, ~r)=o'(t), Vtegl+. 
Writing out the differential equation as 

d(ln o~/) _ b-~/Ui(o-_i, s/k)-- U/(o -) 
dt o~/ 

one sees by integrating from 0 to t that every solution must satisfy 

in o-~ ( t ) - In  & = i [U~(o-_~(z), s/k) -U~(o-(r))]dr, 
0 

v k = l  . . . . .  K~- I ,  v i s~ / ' ,  vt~91+. Thus one has 

o-~ (t)= 6~ exp { i [Ui(o-_iO- ), sf)-U~(o'(T))]d'c}, 

v k = l ,  ..., K~-I ,  vie  J//', vtegl+,  for any solution ~r(t) to do-=b(o-)dt. 
If now 6"e0E, then there exists some i~M/" and s~eS~, such that either (i) 

0-~ =0, or (ii) 0~ =1. In case (i) & = 0  implies by the above &( t )=0 ,  vtegl+,  
and in case (ii) gr~ =l=gr~ =0, V hr  implies o-~ (t) =0, vte~l+, vh~ek, such that 
o'f/(t) =1 for all teaR+. �9 

Lemma 2 implies that the restriction of the Nash field to some boundary face 
of E is precisely the Nash field of the reduced game obtained by deleting all stra- 
tegies which are not used in this boundary face. On the one hand this is a nice 
"slicing" property of the Nash field. On the other hand this property is responsible 
for the emergence of "artificial" zeros of the Nash field on the boundary of E 
which are not Nash equilibria. In particular every pure strategy combination will 
be a zero of the Nash field. As a consequence not all zeros of the Nash field are 
Nash equilibria. The next result shows, how easy it is to distinguish between zeros 
of the Nash field which are equilibria and those which are not. 

Lemma 3. 6"eE(F),~b-'(6-) =0 and Ui(6"_i, si) < Ui(6"), vsi~supp(6"i), v/e.///'. 

Proof: If 6-eE(F), then clearly from (1) and (2) one must have ~(gr)=0 and 
U~(gr_i, si)---Ui(O'), Vsi4supp(~ ), VieA/'.  If the latter is true, then b (gr) =0 im- 
plies Ui(6-_~, si)= U~(6-), vs~esupp (6-~), such that U~(6-_i, g~)~ U~(gr), v ~ s u p p ( ~ ) ,  
VieM/', is sufficient for greE(F). �9 
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To check whether a zero of b' is an equilibrium it, therefore, suffices to check 
the eigenvalues of the Jacobian matrix corresponding to unused pure strategies. 
Indeed, therefore, the property of a zero of the Nash field to form an equilibrium 
boils down to a simple eigenvalue condition on the Jacobian matrix D~(g r ) .  In 
this sense the problem of determining Nash equilibria reduces to a problem of 
solving a system of equations and checking the solutions. 

Lemmas 2 and 3 suggest that the analysis can be made more transparent by 
slightly perturbing the Nash field such that the perturbed vector field points in- 
wards at the boundary. To do so some extra definitions are required. Let .~,~ o de- 
note the set of all smooth vector fields that point inward at the boundary of ~, 

~o ={/3::~_~Ml~e ~ oo, ~=0=t~f(o-)>0, 

cr~ = 1=/3k (O') < 0, u  . . . . .  K i - 1 ,  

K,--1 K,--1 

Z & = l =  Z /3~(o-)<0, vieJU}.  
h = l  h = l  

A mapping F:E x~l+--*~1M is called an interior approximation of the Nash field 
~, if and only if 

(i) F(~, 0)=b~(~), 
(ii) fA:E~91M defined by fA(~r)=F(o-, A) satisfies fA~.f2 ~ for any fixed h>0,  

and 
(iii) F is continuously differentiable on (a neighbourhood of) E • ~1+. 

An interior approximation F is called regular, if there exists some ~ > 0 such that 
fa(o-)-F(o-, A) has only finitely many zeros on E all of which are isolated points 
for any fixed A e (0, h). 

Since clearly such interior approximations always exist, a new method of 
proof for another well known result is obtained. (Hofbauer and Sigmund, 1988, pp. 
166, use a similar but more special method of proof for similar replicator equa- 
tions.) Only the last part, (iii), of Theorem 3 may be not so widely known. It has 
recently been arrived at, via an alternative method, by Gul, Pearce, and Stacchetti 
(1990). 

Theorem 3. (i) Every game F ~ G ( S  1 . . . . .  an) has at least one Nash equilibrium. I f  
all Nash equilibria of F are regular (as they are for almost all games), then (ii) their 
number is finite and odd and (iii), if  F has m > 1 pure Nash equilibria, then it has at 
least m -  1 mixed Nash equilibria. 

Proof." (i) Consider some interior approximation F :E  • ~1+ --,91 i of the Nash field 
~. By definition fa:'Z~91 M, defined by fa (o-) = F(o-, A), points inward at the bound- 
ary OE of E, for all h > O, since fA ~ .2  o. Hence there exists a positive constant a~ > 0 
such that the mapping o-~ o-+ axfA(o-) is a continuous mapping from E into itself, 
for all h > O. By Brouwer's Fixed Point Theorem the vector field fA must thus have 
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a zero in int 2~. Let such a zero of fz be denoted by o-(h)eint ~. Any sequence 
{cr(A)}h,0 must have a cluster point in ~, because ~ is compact. 

The crucial step is to show that any such cluster point 6-eE must be a Nash 
equilibrium: Consider any s ~ s u p p ( ~ ) .  From f a e ~  ~ VA>0, it follows that 
6-~=0 implies OF~(6-, 0)/0A_>0. By Taylor expansion at h = 0  one obtains 

0 = f  ~, (~(a)) = b f (~(A)) + OFk(o-(A), O) A, Oe(O, A), 
OA 

for every h > 0 sufficiently small, implying that 

OFf(o-(A), O) A 
OA o-f~ (A) = U~(o-(A))- U~(o-_~(A), sf). (4) 

If U~(6-)< U~(6-_~, sf) would hold, then by continuity there is a neighbourhood 
of 6-such that U~ (o 9 < U~ (~r_i, s~), wreOt~  52 Since 6-is a cluster point, for every 
neighbourhood ~ '  C ~ of 6-there exists A > 0 such that ~r (h)e~ ' .  Consider a sub- 
sequence of {o'(A)}A,0 which converges to gr and has o-(h)e(~, vA. Then h/o~ (A) 
>0, u  and the above equation (4) imply OF~(6-, 0)/0A<0, a contradiction. 
Hence U/(6-)_> U i (6---i, sk) must hold for alls~4supp (6"/). 

Since a cluster point 6- must also satisfy b (6-) = 0, it follows from Lemma 3 that 
6-~E(F). (If s~=siK'q~supp(6-i), then the same argument with ~'_--~1 f~,i (~r(A)) 
instead of f~,i(~r(h)) yields Ui(6-)-Ui(6-_i, s/~')->0.) This completes the first 
part. 

(ii) Define the smooth functions ~r~:int E-~ ~1, w~ e ;~ = (int ~,), for any Be (0, 
1-I i~. l K i- I~'), by 

i " k = l  k = l  

The gradients of these functions are given by 

0 ~ ( o )  1--h=1 o-~/--o-f (~rs(o')-{-{~) 

for all k = 1, ..., K i -1 ,  vi ~./K'. If vi ~ / ' ,  vk = 1 . . . . .  K~-1, one would have o-~ = 
1 -  ~ ~'__-al o-)~, then o-~ = 1 -  ~h o'hi=l/Ki, q k = l  . . . . .  K~-I ,  Vi~/U, such that 

"rr~(o-)= 1-I K c K ' - 8 > O = o ' r  
i~,/" 

Thus vo-eqvEl(0) there exists i ~ S "  and some ke{1, ..., Ki-1} such that o-[<:~ 
1-Z~'_--~ 1 o'~. Consequently 0E~I is a regular value of ~r~ for all 6e(0, 
lIi~. ~ KTK').It follows that IIs={o-eint 1s )_>0} is an M-dimensional mani- 
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fold with boundary,  and the boundary  is "rr;-~(0) (Milnor, 1965, p. 12; Guillemin 
and Pollack, 1974, p. 62). 3 Finally, it is easy to see that  as 850 the compact  manifold 
IIa converges to E and 0II8 converges to 02. 

Define on II~, for any Be(0, II~ K~-K'), the vector field ~: l la-- ,~l  M by p f (o - )=  
K ~ -  1, v k  = 1 . . . . .  K z -  1, vi  e J U .  The  vector  field ~ has only a single zero on 

Ha, namely the combinat ion in the interior o'~= 1/K~, k= 1, . . . ,  K i -1 ,  u  At  
the boundary,  ~r~ (o-) = 0, the vector  field fi' points outward,  because 

= 8  Z ,  E " ( ~ K i - 1 ) =  
�9 ~=, ~ 1 - -EhO~/  

I K~I 1 1 ] = 8  E K 2 -  �9 < 0  
i~ . t  k=l ~ 1 - ~ h o ~ /  ' 

using the differential equat ion do-=~(o-)dt. According to the Poincar6-Hopf  The- 
o rem for manifolds with boundary  (Milnor, 1965, p. 35) the sum of indices at the 
zeros of ~ is equal to the Euler  characteristic, X(IIa), of II~. The index of ((1/Ki, 
. . . .  1/Ki)~2--11)i~. ~ is + 1 (see Milnor, 1965, p. 37), such that  (IIa is effectively con- 
tractible to a point  and) the Euler  characteristic X(II~) is +1 ,  for all Be(0, 
I I i ~  K S ' ) .  

If  all equilibria are regular, then there are only finitely many,  because E is 
compact.  Let  the equilibria be denoted by o -1, . . . ,  cr Q. By the implicit function 
theorem each equilibrium o 4 e E (F), q = 1 . . . . .  Q, is continuously approximated  by 
a unique family {O4 (A)}a>o of zeros of the vector  fields fa derived f rom the interior 
approximat ion F. Since the determinant  (of the Jacobian matrices) is a continuous 
function, there exists some A>O such that  ID~fa(o'q(A))l 4=0, v q = l  . . . . .  Q, 
vA e [0, A). It is easy to see that  there must  be some Ao e (0, A) such that {o -1 (ho) . . . . .  
o "Q (ho)} =f~l (0): Otherwise there would be a sequence {&(h)}~0, & ( A ) e f s  1 (0), 
but  &(A) 4{o-l (h) . . . . .  o-Q(h)}, with a cluster point  o-~163 which must be  a Nash 
equilibrium (by the argument  in (i)), but  must satisfy [ D ~ ( o - ~  But 
o - ~  and [ D ~ ( o - ~  = 0  would contradict  the hypothesis that  all equilibria 
are regular. 

Now choose 8 >  0 sufficiently small such thaf  f~l (0)C int Ha and the vector  
field fAo points inward at 0IIa. This is always possible, because Ha converges to E as 
850 and f;~o points inward at 0s The  set f ~ z  (0) must  coincide with the set of ze- 
ros of the vector  field -fao which points outward at the boundary  of IIa by con- 
struction. Applying the Poincar6-Hopf  Theo rem for manifolds with boundary  
(Milnor, 1965, p. 35) to the restriction of -f;~o to II~, the indices of zeros of - f a o  
must  sum to + I = % ( H a ) .  Since the indices are the signs of [-D~fAo(o4(ho))[, 
q = 1 . . . . .  Q, and therefore  only take values in { -  1, + 1}, the number  of zeros, Q, 
must  be odd. 

3 Note that s is not a manifold with (simple) boundary, and so II~ is introduced to substitute 
for E in the arguments to come. An alternative to the introduction of IIa would be to view 

as a manifold with boundaries, edges, and corners (a subset of a euclidean space which is 
diffeomorphic to an orthant). There is, however, little gain in doing so, because to transfer 
the Poincar6-Hopf Theorem to manifolds with boundaries, edges, and corners it takes pre- 
cisely a construction like Ha. 
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Since the index of a zero of -fA does not change as AS0 by regularity, the 
regular equilibria inherit the indices of their continuous approximations and their 
number, Q, must also be odd. Briefly, the above argument shows that, if all equil- 
ibria are regular, then their indices sign [ - D o - ~ ( o  -q) ] must sum to + 1, the Euler 
characteristic of ~. (The above argument in fact can be viewed as a variation of 
Theorem 1 of Dierker, 1972.) 

(iii) Finally observe that, if greE(F) is a pure equilibrium, then by Lemma 1 
and the fact that the determinant is the product of the eigenvalues its index must 
be +1, because [ -D~b(gr)[  >0. Since the indices sum to +1 over E(F),  if F has 
m ___ 1 pure equilibria, then there must be at least m -  1 equilibria with index - 1 .  
And equilibria with index - 1  must be mixed. �9 

Incidentally the method of proof for Theorem 3, which uses interior approxi- 
mations of the Nash field, turns out to be of more general use. Note that one step 
in the proof shows that all cluster points (for AS0) of zeros of any interior approxi- 
mation of the Nash field form Nash equilibria. Thus interior approximations elimi- 
nate the artificial zeros of b which are not Nash equilibria. In particular the con- 
sideration of regular interior approximations can make the behavior of the Nash 
field very transparent. 

Recall from Kohlberg and Mertens (1986, Proposition 1) that the set of Nash 
equilibria for all games consists of finitely many connected components, at least 
one of which is such that all close games have an equilibrium close to the compo- 
nent. Using regular interior approximations index theory like in Theorem 3 can be 
extended to define indices for connected components C C E (F). 

For some regular interior approximation F of the Nash field define the family 
of mappings fA :E ~ l i  by fA (~r) =F(o-, A). Thus fo (o-) = b(o-), fA~.2 ~ VA>0, and 
3A> 0 such that f2 -1 (0) consists of finitely many isolated points, Vhe(0, A). For 
any given regular interior approximation F of the Nash field and fixed h e (0, A) let, 
for O-sf2-1(0), the index of 6-be denoted by ind(gr). Note that, if gref2-1(0) is a 
regular zero, then ind(?r) =sign[ -D~f~(6") [. 

For a connected component C, CC E(F),  denote by YAc a neighbourhood of C 
which is sufficiently small such that all the ~c ' s  are pairwise disjoint across com- 
ponents. For each component CCE(F)  define the index of C with respect to the 
regular interior approximation F, denoted I(C, F), by 

I(C, F) = lim~:0 Z ind(gr). 
5 - ~ f  ; ~ (0)  n / / c  

The definition of I(C, F) has two consequences. First, if all equilibria of F are regu- 
lar, then the index of each equilibrium ~-eE(F) is simply given by sign I-DS(~)I 
and, therefore, coincides with the straightforward definition of an index, by the 
implicit function theorem. Second, because for each fA, with A > 0 sufficiently small, 
there exists some 6>0 such that fs  is contained in the interior of 
H~ = {o-e int E I w~ (or) _> 0} (because I]~ converges to 1~ as 650 and fA ~-~ o, vA > 0, as 
in the proof of Theorem 3, (ii)), and fa points inward at 0II~, the sum of indices 
I(C, F) across components of equilibria equals + 1, the Euler characteristic of E, 
by the P0incar6-Hopf Theorem. Note that by convention f~-i ( 0 ) C ~ c = 0 ,  
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qA e (0, A) implies that I(C, F) = 0. The strength of the above definition of an index 
derives from the fact that the index only depends on F resp. b ~, but not on the 
particular interior approximation chosen to calculate it. 

Lemma 4. (i) I f  G bs a regular interior approximations of  the Nash field and 
CC E (F) is a connected Component o f  Nash equilibria, then I ( C, G) is well defined. 
(ii) I f  F is some alternative regular interior approximation, then I(C, F )=I (C ,  
G). 

Proof." (i) Any vector field g~, A e (0, A), with isolated zeros can be replaced by a 
nondegenerate vector field gA with ID~g~(~r) l ~:0, v~reg;l(0), without altering 
the index sums within arbitrary small neighbourhoods of greg~ -1 (0) and leaving 
the vector field ga outside slightly larger neighbourhoods unchanged (Milnor, 
1965, p. 40). Choosing these neighbourhoods sufficiently small (such that they are 
all contained in the union of the neighbourhoods ~,5c across components) the reg- 
ular interior approximation G can be replaced by the regular interior approxima- 
tion G defined by ~(o-, A)=g~(o-). From the implicit function theorem it follows 
that the limit in the definition of I(C, G) is well defined. By construction 
I (C, G ) = I (C, G) for every connected component C C E (F). 

(ii) Choose now A* > 0 such that both f~-i (0) and g~-i (0) consist of finitely 
many isolated points for all A ~ (0, A*). Let ~B denote the union of all neighbour- 
hoods of equilibrium components other than C such that closure(g4~)nclo- 
sure(~c)  =0. By Urysohn's Lemma there exists a smooth real-valued function q~ 
on (a neighbourhood of) E such that ~(o-)=0, vo-~closure (~fB n X), and ~p(o-)= 1,. 
vcr~closure ( ~ c n  ~), and 0_< 9(dr) _< 1, Wr~E. Define H:E x ~ +  ___r by 

H(o-, A) = ~0(o-)fA (o-) + [1 - ~0 (o-)] g~ (o-), 

and let ha(o-) =H(o-, A). 

Clearly H is an interior approximation of the Nash field, because H(o-, 0)= 
-~(~r), h A e 2  ~ VA>0, and H is continuously differentiable on E xgl+.  It remains 
to show that H is a regular interior approximation: If for all A e (0, A*) there exists 
some A e (0, A) such that 

h ~- 1 (0) n in t  X \ [closure (~B n X) u closure (gdcn Z)] :# 0, 

then there exists a sequence {(A l, oJ)}?L1, with 

(At, ~l) ~ (0, A*) x [int E\(closure (~B nE)  u closure (~r 

such that A~l.oo0 and hA/(O'/)=0, v l = l ,  2, . . . .  By compactness there exists a 
cluster point ~r ~ e~\[(~48 n E ) u  ( ~ c n  E)] which must be a zero of the Nash field, 
b~(o -~ = 0. By the same argument as in the proof of Theorem 3, (i), it can be shown 
that such a cluster point o -~ must satisfy o -~ e E (F). But E (F) C (~dB u ~g'c) n E, such 
that a contradiction is obtained. Consequently, there exists some A ~ (0, A*) such 
that 
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hz-  1 (0 )  C (~.d/JB t.J ~,fc) ~ ~ , VA ~ (0,  ,~). 

Since on (~B w ~Zc)n E the vector field h,  equals either fA (on ggc) or gz (on ~B), 
it has only finitely many isolated zeros and is, therefore, regular. 

Let z be the index sum over ~ B n E ,  i.e. 

z = lima,0 ~ ind (6-) = limAs0 E ind (6-). 
O-~h~' (0) r 0-~g~ 1 (0)r //;~ 

Since hA 6 2  o, VA > 0, there exists some 8> 0 such that h2-1 (0)C int lI~. Applying 
the Poincar6-Hopf Theorem for manifolds with boundary to the restriction 
-h~:IIs--*~l M yields for all Ae(0, A) that 

E ind(6-)=z + E ind(6-)=l=I(C, H)=I-z=I(C,  F). 
& ~ h a  1 (0) O-~h2 ~ (0) n / / c  

On the other hand 

s ind(6-)=z + ~ ind(6-)=l 
&~g t (0) &Eg~-' (0) r~//c 

yields I(C, G)= l - z = I ( C ,  F). 

The Lemma implies that the index assigned to a connected component 
C C E (F) is independent of the particular regular interior approximation chosen to 
calculate it. One can, therefore, drop the argument referring to the approximation 
and call it the index of the component C, denoted Ind(C). The index Ind(C) de- 
pends only on the particular game F E G (Sa . . . .  , Sn) under consideration and does 
not require the computation of payoff perturbations. 

The whole point of the exercise is to show that Ind(C) is an appropriate gen- 
eralization of the notion of regularity in the sense that it allows to extract global 
properties (in the space of normal form games) of equilibrium components from 
purely local information. The power of regularity rests with Theorem 1. The The- 
orem of follow provides a set-valued analogue to the essentiality of regular equili- 
brium points. In analogy to the notion of an essential equilibrium point, call a 
connected component C C E ( F )  an essential component, if for all e > 0  there is 
some 6>0  such that every game F '  which satisfies IIF, F'II < 6 has a Nash equili- 
brium within (Hausdorff-) distance e from C. The "local" information summarized 
in Ind (C) turns out to provide the "global" information on C C E(F) required to 
identify essential components. 

Theorem4. Let C C E ( F )  be a connected component of Nash equilibria. I f  
Ind(C) ~0, then C is an essential component. 

Proof." The claim is trivially true for M =  1, because then the game is a 1-person 
game with two pure strategies. Thus from now on assume M >  1. The payoff vector 
of the game F under consideration will be denoted t2 ~ 91 nK, F = F (ti). For any com- 
pact set X in some euclidean space and any 7 > 0  let B, (X)  denote the set of 
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points within Hausdorff-distance (strictly) less than ~ from the set X. If X is a 
point, X={x}, write B,({x})=B,(x) ,  and if XCE,  write B~ 

By Lemma 3.2. of Blume and Zame (1989) there exists a closed, lower-dimen- 
sional semi-algebraic set ~o  C ~1 ~K such that on each of the finite number of con- 
nected and open components g.;;,, t = l  . . . . .  T, of 91~K\~o the restriction of the 
equilibrium correspondence E t : ~ - - ' E ,  u~E(F(u)),  is continuous. Consider a 
connected component CCE(F) ,  F=F(~) .  If for all components ~Z~, te{1 . . . . .  T}, 
which satisfy u e c l o s u r e ( ~  ) there exists a continuous extension Et of Et: ~t---'E 
such that E~(ti)n C4=0, then C must be essential, because the continuous exten- 
sions Et will also cover ~o by upper hemi-continuity of the equilibrium corre- 
spondence E:91~K-,E. Thus, if C C E ( F )  is not essential, then there exists a con- 
nected and open component ~4t, t _  1, with t~ eclosure ( ~ , )  such that for all contin- 
uous extensions E~: closure ( ~ )  ~ E of E~ one has E~ (a) ~ C = 0. Consequently, 
there exists ~>0, 8>0,  and some connected and open set g~,, t_>l, with aeclo-  
sure ('~4t) such that E(F(u))c~B~(C)=O, r e e l0 ,  ~], vue~4tc~B~(~). 

In particular this implies that, if C C E (F (a)) is not essential, then there exists 
~e~l~x\{a} such that for all ae(0 ,  1] 

E ( r  (~a + (1 - ~)a)) ~ B~(C) = 0, 

for all e>0  sufficiently small. Denote by R={ue~lnKlu=a~+(1--oOa, ae[0,  1)} 
the relevant space of games (more generally R can be any one-dimensional set 
diffeomorphic to a half-open interval). As a one-dimensional manifold with 
boundary R is oriented along increasing a e [0, 1). 

Now choose a smooth map G:RxExgI+-- ,~i  M such that F,(o-, ,~)-G(u, o-, 
,~) for fixed ueR is an interior approximation of the Nash field ~u for the game 
F(u), i.e. F,(~,  0)= b~,(~r), f,.A=--F,(., h ) e . 2  ~ Yh>0, and Fu is continuously dif- 
ferentiable on E x g l+. Define the family of mappings GA:R x int E ~ I  M, for all 
h>0,  by GA(u, o')=G(u, o-, h). For M > I  the mapping G can be chosen such that 
there exists some h > 0  such that for all he(0,  h) the origin 0~fll M is a regular value 
both for G~ and for fa,, = G (~,., 20 = GA[O (R x int ~) by the Transversality The- 
orem (Hirsch, 1976, p. 74). 

Since for each ,~e(0, A) the mapping GA is one from an (M+ 1)-dimensional 
manifold with boundary to the M-dimensional euclidean space 91 M, and since 
0egl  M is a regular value for both G~ and fa,~ = GA[O (R x int E) = G~[{a} x int E, 
the generalized preimage theorem (Guillemin and Pollack, 1974, p. 60) implies 
that G;  ~ (0) is a smooth one-dimensional manifold with boundary O{G; 1 (0)}= 
G~- 1 ( 0 )  ('3 {/~} X int E. 

Define the set Go  ~ (0) as the set of all pairs (u, o-)eR x E such that ~ ,  (o-)= 
0 and for all neighbourhoods ~ of (u, o-) in R x E  there exists A ' > 0  such that 
~nG2-~(0) :~0,  vhe(0 ,  M]. This "limit" set is the graph of the correspondence 
gt:R--,E defined by 

~(u) ={~e:~ I (u, o-) COo' (0)}. 

Claim 1: The next step is to show that gt(u)C E (F (u)), vu E R: Consider some 
6-~E(F(u)), b',,(0")--0, with ~ ,  the Nash field for F(u). By Lemma 3 there exists 
some i~JYand some s ~ s u p p ( ~ )  such that U~(gr_i, s~ ) -  Ui(6-)>0. By continuity 
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there exists a neighbourhood ~ of 6-in ~1M and a neighbourhood Y/" of u in R such 
that b~,z(o-)>0, v ( u ' ,  o - ) e ~ ' x ( ~ n i n t E ) .  Since G is smooth, there exists a 
neighbourhood & ' C Y / X ( ~ n i n t 1 ~ )  of (u, 6-) in R x 2  such that G f  (u ' ,  o-, 
A)>0, v ( u ' ,  ~r)~O, and for all A>0 sufficiently small. Thus G ;  ~ ( 0 ) n ~ = 0 ,  for 
all h > 0  sufficiently small, such that 0-q~ gt(u). This establishes Claim 1 that 
~(u) c E(r  (u)), v u t R .  

As a consequence the set G o  ~ (0) is contained in the graph of the Nash equil- 
ibrium correspondence over R, i.e. 

6 o  I (0) C ~ (E) = {(u, (7) t R x X [ o-t E (F (u))}. 

If CC E(F(a ) )  is not essential, then for all u eint R =R\{t7} one must, there- 
fore, have that G o  I (0)n  {u} x B ~ ( C ) =  0, for all e> 0 sufficiently small, viz. 

3~>0: Go~(O)n( in tRxB~ Vet(O, ~). 

There are two possibilities: Either Go1 (0)n  {t~} x B ~ ( C ) =  0, in which case the in- 
terior approximation to ~a has no zero close to C such that Ind(C)=0, or Go1(0) 
n { a } x B ~  r  Since in the first case there remains nothing to be shown, as- 
sume the second case. 

Recall that for any A t (0, A) the set G2-1 (0) consists of finitely many closed 
or half-open intervals, and circles (by the classification of 1-manifolds: Milnor, 
1965, p. 55; Guillemin and Pollack, 1974, p. 64). Since by construction 0 t ! l l  M is a 
regular value for GA, it is also a regular value for G, such that the preimage of 
0 e gl M under the restriction of G to R x int ~ x ~1+ + is a 2-dimensional manifold. 
This fact is used in establishing the following: 

Claim2: For any At(0,  A) sufficiently small the set G ; I ( O ) n R x B  ~ (C), 
e> 0 sufficiently small, consists of finitely many closed intervals ("arcs") and circles 
(the latter disjoint from {ti} x B o (C)) such that all boundary points of the arcs are 
contained in {ti} x B o (C). In particular, G ;1  (0) n R x B o (C) does not contain 
any half-open intervals. 

Suppose this is not true. Then it is possible to find an arc or a half-open inter- 
val in G2-1(0) which starts in {a}xB~ but leaves R x B ~  at some point. 
Since G - l ( 0 )  is a 2-manifold, this must also hold for any smaller A. But Go1(0) 
n int R x B o ( C ) =  0 implies that with decreasing A this particular piece of G2 -1 (0) 
must leave R x B ~  above successively "smaller" values of u eR (i.e. closer 
and closer to ~). Hence G o  1 ( 0 ) n { a } x B  ~ will not be contained in {a}x C. 
Rather there will be a connected piece of Go  1 (0), contained in {a} xE ,  which be- 
gins in {a} x C and ends outside of {a} x C. But this contradicts the hypothesis that 
C is a full connected component of Nash equilibria (by Claim 1). The conclusion is 
that any arc starting in { a } x B ~  must also end in this set. This establishes 
Claim 2. 

Determining an orientation for each arc in G2 -1 (0) from the standard orien- 
tations of R x E  and 91M (see: Milnor, 1965, p. 28) shows that a positively oriented 
unit vector tangent to an arc will point inward at one boundary point and outward 
at the other. Since by construction fa.A has only regular zeros, the orientations of 
the boundary points of arcs coincide with the indices of the corresponding zeros of 
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fa.A. Thus all the zeros of fa.,~ relevant for computing Ind(C)  come in pairs of in- 
dices +1 and - 1 .  Summing over all these zeros, consequently, yields 
lnd(C)  =0. �9 

Theorem 4 shows that Ind(C)  is indeed an appropriate generalization of what 
the determinant of the Jacobian at a regular equilibrium provides as local informa- 
tion. A component C C E ( F )  with Ind (C)~O is robust against payoff perturba- 
tions, despite the fact that payoff perturbations need not be considered to calculate 
Ind(C).  Though this makes requiring a non-zero index similar to a refinement 
concept, the fact that indices add up to the Euler characteristic of E is reminiscent 
of equilibrium selection criteria (like Risk Dominance): While the former require 
a (local) property to hold for a given set of equilibria, the latter compare (sets of) 
equilibria across the whole space of strategy combinations. Viewed in this way the 
assignment of indices to connected components has a hybrid status. The refine- 
ment aspect is highlighted by some simple consequences of Theorem 4: 

Proposition 1. For all games F eG(S1 . . . . .  Sn), ira connected component C C E ( F )  
satisfies Ind(C)  g:O, then (i) C contains a Stable Set in the sense of  Kohlberg and 
Mertens (1986), and (ii) it contains an equilibrium which induces a sequential equili- 
brium (Kreps and Wilson, 1982) in any extensive form game with the normal form 
F. Moreover, for almost all games in the space of  extensive form games (iii) the 
(sequential) outcome induced by equilibria in C is constant across C. 

Proof." (i) If I n d ( C ) ~ 0 ,  then C is essential. By translating strategy perturbations 
into payoff perturbations (as in the proof of Theorem 2.4.3. in van Damme, 1987, 
p. 34) it can be shown that C satisfies the defining property (S) of a Stable Set 
(Kohlberg and Mertens, 1986, p. 1027). 

Now consider the collection of closed subsets of C which satisfy property (S), 
ordered by set inclusion. By compactness the intersection of any ordered chain in 
this collection is non-empty and belongs to the collection. Thus the existence of a 
minimal element follows from Zorn's Lemma. Such a minimal element must be a 
Stable Set. 

(ii) An essential component C always contains a hyperstable set (Kohlberg 
and Mertens, 1986, p. 1022) by the same argument as in (i) and, therefore, a proper 
equilibrium (Kohlberg and Mertens, 1986, Proposition 3). A proper equilibrium 
induces a sequential equilibrium in any tree with normal form F (van Damme, 
1984; Kohlberg and Mertens, 1986, p. 1009). 

(iii) Generic extensive form games have only a finite number of equilibrium 
outcomes (Kreps and Wilson, 1982, Theorem 2). The set of Nash equilibria for all 
normal form games consists of finitely many connected components (Kohlberg 
and Mertens, 1986, Proposition 1). The space of extensive form games is a linear 
subspace of the space or normal form games G(S1, ..., Sn), as can be seen from 
writing the ties, induced between strategy combinations that lead to the same ter- 
minal node, as a system of linear equations in ue~l  n/~ (compare also: Mailath, 
Samuelson, and Swinkels, 1993). As a consequence of these three facts for generic 
extensive form games the component C uniquely identifies a sequential outcome 
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of any extensive form game with normal form F (because it contains a proper 
equilibrium). �9 

As a consequence of Proposition 1, (i), a component C that satisfies 
Ind(C)g=O also satisfies "Iterated Dominance" and "Independence of Non-Best 
Responses" (Kohlberg and Mertens, 1986, Proposition 6; the terminology is from 
van Damme, 1990). Thus to identify a component CCE(F )  with Ind(C)~0 may 
be as far as one has to go. In fact it will generically, in the space of extensive form 
games, suffice for a normative recommendation, if such a recommendation is on 
behavior along the equilibrium path. Off the equilibrium path still some seemingly 
desirable properties may be violated. In particular an essential component may 
contain inadmissible equilibria. This certainly is a drawback, although one may 
have doubts on the viability of an axiom requiring players to use only undomi- 
nated strategies: After all, a given player's dominated strategy may only be inferior 
against a strategy combination of the opponents, where some other player uses a 
dominated strategy (cf. Samuelson, 1991, 1992). In an evolutionary context an 
equilibrium which prescribes the use of an inadmissible strategy would simply be a 
composition of populations in which certain behavorial options are not tested 
against. That is: a behavorial pattern (pure strategy) may be used, despite being 
dominated, because it prescribes inferior actions only in circumstances that never 
occur, such that it will not be selected against. Still it is undebatable that there are 
further desirable properties, beyond those already mentioned, which would re- 
quire further selection (beyond essential components), yielding smaller solution 
sets (probably at the expense of generating more solutions) (cf. Hillas, 1990; Mer- 
tens, 1987, 1989). Since the present approach does not directly aim at a refinement 
concept, but accepts equilibria within a single connected component essentially as 
a single equivalence class, this approach has to live with inadmissible points within 
a component. 

But the "local" characterization of components is only one aspect of Theorem 
4. The proof of Theorem 4 in fact allows for another insight which concerns the 
structure of the Nash equilibrium correspondence (similar results are: Theorem 1 
of Kohlberg and Mertens, 1986; Theorem 3.1. of Blume and Zame, 1989; and The- 
orem 1 of Schanuel, Simon, and Zame, 1990). 

Proposition 2. The graph of the Nash equilibrium correspondence, .~'(E)={(u, o-) 
eglnKxs can be arbitrarily closely approximated by a differentiable 
manifold of dimension nK. 

Proof." To produce a particular interior approximation for all Nash fields b', con- 
sider the mapping G:91nK x int s x 91 § + --,91 i defined by 

Gf(u,  o-, A)=b~(o-)+A(1-o-~ K,), 

for k = l ,  ., K i - 1 ,  visJ// ' .  Let F, (o-, A) =G(u, o-, A) and fu.A (o-)~F,(o-, A), vA>0. 
Clearly F2" extended to 2 x g I+ is an interior approximation of b,. 

Since ~1 nK, int 2, and ~1+ + are smooth manifolds, so is their product, such 
that G is a smooth mapping of manifolds. By definition no zero of GA (u, o-) - G (u, 
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o-, A) can emerge at the boundary of E as long as A > 0. Then by Lemma A.2. (in 
the Appendix) the Jacobian matrix D(u. ~,a)G (a, ~r, A) is surjective, i.e. has maximal 
rank ( = M ) ,  at any point where G(a, 0-, ~)=0.  As a consequence 0 e ~  u is a reg- 
ular value of G. The Preimage Theorem (Guillemin and Pollack, 1974, p. 21) im- 
plies that G-1 (0) is a smooth manifold of dimension (nK+ 1). The very same ar- 
gument establishes that for each fixed A>0 the preimage of 0 ~  i under GA is a 
differentiable manifold of dimension nK. 

Like in the proof of Theorem 4 let Go  1 (0) be the set of all (u, o - ) e ~ n n x E  
such that ~u (o-)= 0 and for all neighbourhoods ~ of (u, or) there exists A > 0 such 
that G~-1 (0)c~ ~ g: 0, VA e (0, A]. Duplicating the argument in the demonstration of 
Claim 1 in the proof of Theorem 4 yields Go 1 (0)C ~ (E). 

Now observe that G21(0) and ~ (E) agree on a dense open subset of 91 nK 
by Theorem 2 and the implicit function theorem. Since the differentiable and nK- 
dimensional manifolds G~ -1 (0) converge pointwise to at least some part of ~ (E) 
(namely to Go  1 (0)), but by Theorem 1 of Kohlberg and Mertens (1986) the graph 

(E) is itself homeomorphic to ~nK, each G~-I(0) must approximate all of 
(E). �9 

In the sense of Proposition 2 the consideration of cluster points of zeros of 
interior approximations does not really drop any important information on the- 
structure of the equilibrium correspondence. Although .~ (E) is not a smooth ma- 
nifold, it is the "limit" of smooth nK-dimensional manifolds. Theorem 4 is merely 
the payoff to understanding this structure. 

Remark. The particular interior approximations used in the proof of Proposition 2 
are reminiscent from Harsanyi (1973). Their zeros, for A > O, are equivalent to the 
necessary and sufficient conditions for an equilibrium of a game, where payoffs are 
given by the payoffs in F plus A times the payoffs from the "logarithmic game". In 
fact the logarithmic tracing procedure as introduced by Harsanyi and Selten (1988, 
pp. 165) is a particular way to produce interior approximations of the Nash field. 

To summarize on how the Nash field can help with equilibrium selection: If a 
game has strict equilibria, these seem preferable to any nonstrict ones (the Nash 
field may even help to compare strict equilibria: see Section 4.1.). For game~ with- 
out strict, but with regular equilibria, the latter seem an arguable choice (note that 
regular equilibria always have a non-zero index). For games without regular equil- 
ibria the Nash field can help identifying components which will be robust  in the 
sense that close games will have equilibria close to the component. The latter can 
be achieved by checking the indices of connected components of equilibria, with- 
out having to compute payoff perturbations. And such a robustness property ("es- 
sentiality") seems to be the leastone could ask from a selection outcome, because 
the analyst can never be sure to have picked precisely the correct payoffs. On the 
other hand, if one is willing to go as far as requiring that a solution set is contained 
in a component with non-zero index, even Stable Sets (in the sense of Kohlberg 
and Mertens, 1986) may fail to satisfy this (as an example in Section 4.2. below will 
illustrate). 
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4.1. Risk  Dominance  in 2 x 2  games. In developing a complete theory of equili- 
brium selection Harsanyi and Selten (1988) introduce the concept of Risk Domi- 
nance. The intuitive argument for this criterion works as follows: Suppose all 
players in a given game are certain that one of two possible equilibria will be 
played, but they are uncertain as to which of the two. In this state of confusion the 
players enter a process of expectation formation. Starting from a prior distribution 
over the actions of other players each player tries to improve her forecast of the 
behavior of her rivals by taking into account what a given vector of prior distribu- 
tions over the actions will lead her opponents to do. Once a player has figured out 
what the responses of the other players to the priors will be, she adjusts her esti- 
mate and again calculates the consequences of this new distribution over the other 
players' actions. Where this process ends, the risk dominant equilibrium is lo- 
cated. 

For the class of 2 x 2 games with two strict equilibria Harsanyi and Selten 
(1988, chp. 3.9) have formalized the notion of Risk Dominance in three axioms 
and they have shown that the risk dominant equilibrium is fully characterized by 
possessing the larger Nash-product. (For other games Harsanyi and Selten formal- 
ize Risk Dominance by the tracing-procedure.) 

Translating the Nash-product property into terms of the Nash field gives a 
nice illustration of the information contained in the Nash field. First, it is quite 
commonplace that all 2 x 2 games with two strict equilibria are more or less of the 
type illustrated in Figure 1 below. In Figure 1 the unit square is ~, the bold lines 
are the graphs of the best-reply correspondences of the two players and the points 
A, B, and C are the three equilibria, two of which (A and B) are strict. The arrows 

B 

A Fig. 1. 
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portray the behavior of the Nash field: A and B are, as strict equilibria, locally 
asymptotically stable, while C is a saddle point. This already is sufficient to restrict 
attention to A and B. It is now tempting to argue that in Figure 1 knowledge of the 
Nash field already is sufficient to select A as the "better" equilibrium, because "A 
absorbs a larger part of 2~ than B does". But can this be made more precise? The 
answer is in the affirmative, if one takes into account the Nash-products of the two 
equilibria A and B. 

Letting A being associated with the pure strategy combination (s l, s~) and B 
being associated with the pure strategy combination (s~, s~), the Nash-products, 
N P (.), are given by 

N P (A) = [ul (sl, s21) - ul (s 2, s~)] [u2 (sl, s12) - u2 (sl, s2Z)], 

N P (B) = [ul (Sl 2, s 2) - ul (sl, s2)] [u2 (s~, s 2) - u2 (s 2, s~)]. 

Because the determinant is the product of the eigenvalues, Lemma 1 applied to the 
above shows that the Nash-products equal the determinants of the Jacobian matrix 
of the Nash field at the corresponding equilibria. But the determinant is just the 
volume of the image of the unit cube under the linear mapping D,~b (6-). In other 
words: The determinant of D,~b (6-) is the coefficient of contraction of (oriented) 
volume, in the sense that the volume of any figure is contracted by a factor of 
-[D~b(6-)[. This makes it precise, what was meant by the somewhat vague 
phrase "A absorbs more of ~ than B does". For the class of 2 x 2 games with two 
strict Nash equilibria it thus turns out that Risk Dominance is equivalent to the 
condition that the preferred equilibrium has the larger absolute value of the deter- 
minant of D~b (6-) at the equilibrium. 

It is worth mentioning that the above logic holds true for all games with a 
strict Nash equilibrium: The determinant of D~b(6-) at the strict equilibrium 
o-e E (F) always equals a somewhat generalized Nash-product, 

IDo-b (6-) 1 = II  I-[ [Ui(6-_i, si)-Ui(6-)]= 
,rE. / " S i ~ s u p p ( o - i )  

=(--1)  M II  I-I [Ui(~T)--gi(6---i, Si)] 
i ~ .  / " s i 4 s u p p ( & ~ )  

and always measures the coefficient by which the strict equilibrium locally "ab- 
sorbs its neighbourhood" (in a very similar sense as in Kalai and Samet, 1984). 

4.2. Indices of  components. In simple games it is often very easy to determine 
which component has a non-zero index. An example of this is provided by the 
well-known "beer-quiche" signalling game, due to Kreps. The set of Nash equili- 
bria for this game consists of two connected components: In the first a strong sig- 
nal is sent by (both types of) the incumbent and the entrant retreats upon seeing a 
strong signal, while the entrant would fight (with probability -> 1/2) upon seeing a 
weak signal. In the second component (both types of) the incumbent send a weak 
signal in response to which the entrant retreats, while the entrant fights (with 
probability >_ 1/2) if the signal is strong. Kohlberg and Mertens (1986, pp. 1031) 
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show that  the second, "unintui t ive"  componen t  does not  contain a Stable Set. By 
Proposi t ion  1 the index of the second componen t  must,  therefore,  be zero. Since 
indices sum to + 1 across components ,  the first, " intui t ive" componen t  must  have a 
non-zero  index, namely index + 1. 

Somewhat  more  interest ing is the game of Figure 4 in van D a m m e  (1989), 
r ep roduced  as Figure 2 below. This game has two components  of equilibria.  The 
first consists of the strict equi l ibr ium in which p layer  1 chooses to play the 2 x 3 
subgame in which she chooses T, and p layer  2 responds  with L. 

Since this componen t  is a strict equil ibrium, it must  have index + 1. As  a con- 
sequence,  the o ther  componen t  in which p layer  1 chooses her  outside opt ion has 
index zero. Still van D a m m e  (1989, p. 487) shows that  this second componen t  also 
forms a Stable Set. To require  a non-zero  index would thus lead to the select ion of 
the strict equi l ibr ium which, as van D a m m e  (1989) argues, is the only one in this 
example  consistent  with (van D a m m e ' s  version of) Fo rward  Induction.  The  exam- 
ple also i l lustrates that  there  may  be equi l ibr ium components  which contain a Sta- 
ble  Set, but  still have index zero. I t  is, however,  easy to see that  every game has at 
least  one componen t  with non-zero  index (because otherwise indices would not  
sum to + 1) and, therefore ,  a Stable Set contained in such a component .  Whe the r  
those Stable Sets (which are conta ined  in components  with non-zero  index) a r e  

those that  are consistent  with Fo rward  Induct ion will depend  on a general  and 
accepted definit ion of Forward  Induct ion.  Note,  however,  that  the reformula t ion  
of Stable  Sets (Mertens,  1989) el iminates  the componen t  with index zero. 4 

T 3, 3 0, 

B 0, 0 3, 
(2, 2) 

1 

2 3, 0 

2 0, 3 

Fig. 2. 

4 The reason is as follows: The limits of perturbed equilibria close to the component, where 
player 1 choosens her outside option, are contained in two disjoint sets, both with 
o-1 (out) = 1 and 1/3-- 0"2 (M)_< 2/3, but one with o2 (L) + o'2 (M) = 1, the other with 
o2 (M)+ ~r2(R)= 1. Neither of those two sets is such that every perturbed game has an 
equilibrium close to it. Since Stable Sets according to Mertens' reformulation have to be 
connected, (2, 2) is not a stable outcome. Indeed, as a referee suggested, it seems likely 
that sets which are stable in the sense of Mertens will all be contained in components 
whose indices are non-zero. 
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The present paper has demonstrated that the structure of interaction in a given 
normal form game at any point in the space of mixed strategies can be represented 
by a smooth vector field, called the Nash field. This vector field can be exploited in 
a number of ways. Regular equilibria can be defined from this smooth structure in 
a straightforward way. Second, index theory can be generalized to connected com- 
ponents of equilibria, providing global information on robustness against payoff 
perturbations from purely local properties. Thus the concept of the index of a 
component provides a generalization of regularity for (connected) sets of equili- 
bria. 

Beyond these insights the Nash field provides a convenient way of repre- 
senting the type of strategic interaction presumably modelled by the game. When 
the Nash field is used to define a system of differential equations it results in the 
replicator dynamics for asymmetric games. It thus provides a natural link between 
the non-cooperative theory of games played by rational players and evolutionary 
game theory. 

Finally one may at least hope that various refinement concepts have counter- 
parts in the behavior of the Nash field. This is certainly true for strict and robust 
equilibrium points. Section 4.1. has also illustrated this for Risk Dominance in 
2 x 2 games. But the applications of index theory to the examples in Section 4.2. 
also illustrate that the Nash field is capable of shedding doubts even on very strong 
refinement concepts. 

Appendix 

Lemma 1. I f  giq~supp (~),  then [U/(o-_i, gi) - Ui (o-)] e~R is an eigenvalue of  the Jaco- 
bian matrix D,~b (o'). 

Proof." First suppose ski ~supp (~) is such that k < K~. Since s ki~supp (o-i) ~ o~/= 0, 
all off-diagonal elements in the row of D~b(~r) corresponding to skiESi are zero 
and the diagonal element is given by 

0 bk(cr) = V i ( o . i ,  ski) __ Ui(o.) 
o~ 

and, therefore, is an eigenvalue of D~b(o-). Next suppose ski~supp(o-i) is such 
that k=K~. Then subtract [U/(o-_i, sf ')-U~(o-)] from all diagonal elements of 
D~b (o-) and sum the rows corresponding to s h, h = 1 . . . . .  K~-1. This yields for 
the columns corresponding to s~, l=  1 . . . . .  K i - 1 ,  
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K i -- 1 

h = l  
~, [ u , ( ~ _ .  sf,) - ~(~_~,  sl)] + G (o-_. sl) - ~ (o-_. s~,) = 

(1-7) = 2__ 1 ~ [ u i ( ~ _ .  s 3 -  v , (~_ , ,  s~,)] = 0 ,  

~1 li;K,-10~/) =0.  For  the columns corresponding to si, because ssZ('4supp(o-~ ) ~ ~ - h=l l 
j e~/ ' \{ i} ,  l =  1 . . . .  , K~-1 ,  this operation yields 

K i -- 1 

2 d [ ~ ( ~ - , j ,  sf, s~) -u , (~_ , j ,  sf, s~,)-~:,(~_~, 4)+ 
h = l  

1 ) 
h = l  ~ [Vi (ov-J '  s~) - V i ( o ' _ j ,  s K,) - 

- v~(~_~,, s~', s~) + v~(~_,~, s~', sf')l = 0 ,  

(O'--i], 6-i, ~ ] ) =  (O'1,  . . . ,  O ' i - - I ,  6-/, O ' i+1  . . . . .  O ' ]_1 ,  &j, %+~ . . . . .  c~). It f o l l o w s  t h a t  these 
Kg-  1 rows are linearily dependent  and, therefore,  [U~ (o-_~, s f ' ) -  G(o-)] e gl is an 
eigenvalue. �9 

Theorem 1. Let  P e G ( S 1  . . . . .  Sn) and assume that 6 - e E ( r )  is a regular equilibrium. 
Let  a eg l  ~K denote the payo f f  vector o f  F. Then there exists a neighbourhood ~ o f  
~t in ~1 € and a neighbourhood 7 f  o f  6- in ~1M such that 

(i) [ E ( F ( u ) ) n Y / ' [  =1,  VuE~4, and 
(ii) the mapping o-: ~4 ~ ~/', u ~ o-(u), where or(u) is the unique equilibrium o f  

F = F (u) in ~/, is continuous. 

Proof." Define the mapping/~: ~ n K x ~ M - - - ~ M  by 

/~f (u, er) = o~i [Ui(o-_i, ski) - Ui(cr)] =buk i(cr), 

V k = l  . . . .  , K i - 1 ,  v i e S / ' .  Since 6 - e E ( r ) = E ( F ( a ) ) ,  one has/~(a,  6-)=0, and since 
6- is regular, [ Dfl~ (a, 6-) [ r 0. Then  by the implicit function theorem there exists a 
neighbourhood ~ o of a in 91 n*: and a unique function o-: ~ 0 ~ 1 M  such that o-is 
differentiable on ~do, ~r(a)=6,  and/~(u,  o-(u))=0,  vuE~4o.  

Choose an open neighbourhood Y / o f  6- such that o--1 ( Y / ) c  ~ o, 

0 ~ > 0  = o~ >0,  V(r~Y~/", V k = l  . . . . .  K~-I ,  

Ki -- 1 K~ -- 1 

E N ' < I ~  E ~ < l , v ~ / ' ,  
h ~ l  h = l  

for all ieA/ ' .  By continuity of o-, o - - 1 ( ~ / " )  is an open set in ~r with a~o- - l (Y / ) .  
Define the continuous mapping 

/~i ,k:  O---1 ( ~ / ' ) - " ~ ,  Ul--~ ( U ,  O ' ( U ) )  ~'* U i ( o - _ i ( u ) ,  ski) -- U i ( o r ( u ) ) .  
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It follows from continuity of A~,k that the set 

Wi, k = / ~ i _ l (  - GO, O) N 0"-1 (~J ") 

is open. Consider now the following intersection 

= N N 
i~./'s~supp(~) 

As a finite intersection of open sets, ~ is open and, because aeW~,k for all (i, k) 
such that ~ = 0 (6-is a regular and, therefore, quasi-strict equilibrium of 1? = F (fi)), 
it follows that ~ is an open neighbourhood of a. 

Next is will be shown that for all u e ~(~, cr(u) is an equilibrium of F(u): 

vuee : d ( u ) = 0  = e/ =0 = 

Moreover,/~ (u, o-(u)) =0  implies that o~/(u) >0  = Ui(o'_i(u), s'~) - Ui(cr(u)) =0, 
such that o-(u) is an equilibrium of F (u). �9 

Theorem 2. Almost all games F ~ G ($1 . . . . .  Sn) have all equilibria regular. 

Proof." First "slice" the polyhedron E in the following way: Set EM=int E. Then 
for each 0 < m < M let Em be the set of all interiors of all boundary faces of E with 
dimension m and denote by E m a typical element of Em, E m GEm. Finally, let E0 be 
the set of all "corners" of E (pure strategy combinations) and again denote by 
E~163 a typical point representing a pure strategy combination. For each 
0 _  m_< M every E m ~E m is a differentiable manifold without boundary of dimen- 
sion m. Each of the sets Em is finite. 

Next identify G(S1 . . . . .  Sn) with the space of payoff vectors u~91 "K and let the 
dependence of the mapping b, defined in (3), on the payoff vector be expressed by 
writing bu for it. Let ~ =  (E, ~ll M) be the set of all mappings taking E to 91M which 
are infinitely often continuously differentiable. Define the mapping 

b: ~ l n g ~ ( E ,  91 u )  by b ( u ) = b , .  

(The same symbol b is used here as in (3) to avoid extra notation, because no 
confusion can arise.) Analogously denote by b, I Em: E m ~  m the mapping bu re- 
stricted to the boundary face Zm and define b [~m: ~1 n / ~  g~o~ (E,n, ~m) by setting 
b L ~m (u) = bu I~ m. Also let the evaluation map bev l'Zm: ~nK X Em'-'-r~ m be defined 
by (u, o-)~b,  [Em(o'). TO ensure that these definitions yield something well de- 
fined, the following two Lemmas are needed: 

LemmaA.1.  For each O<_m<_M and any u ~  nK 

Image (bevl'Zm) C__~ m, VX m ~Xm. 
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Proof." L e m m a  A.1 is a weak version of L e m m a  2 and follows f rom the implica- 
tions o-~ = 0  = b~ (o ' )=0  and o'~ =1  = b~(o-)=0.  �9 

Lemma A.2. For any 0 <- m < M and each "Z m ~ Ji, m the derivative D (u, ,~)b ev [ X m ( a, & ) 
is surjective, i.e. has rank m, at each point  (gt, 6 - ) e g l " K x E  m such that beolEm(a, 
~-)=0. 

Proof: Since D(, ,~)b~vlNm=[D,b~l '~m , D~be~lEm ] it suffices now to show that  
D. b e~lE m (a, rr) has rank m. Calculating partial  derivatives yields 

Ou~(s_, sl) j .  , \~i} 

where 8k~=O, if k-~l, and 8kl=l ,  if k = l .  The partial  derivatives of bkilE m with 
respect  to the payoffs of any other  player j g:i are zero. Therefore ,  it suffices to 
consider Dub~[ ' s  6"), where ui= [(ui(s_i, s i ) )~,~S,]s ,~s,  is player  i's payoff  
vector. Consider linear combinations of rows of D , , b ~ [ E  m (a, gr): Along any co- 
lumn corresponding to (s_~, s~[)eS the linear combinat ion with weights a~, l = 1 ,  
�9 .., K i - 1 ,  over  an arbi trary subset of rows yields 

H ~(s_,)[ak(1-~)-Y. o 0 ~ ] =  
j ~  / "\{i} l~ek 

= ~  H ~ ( s _ 3 [ ~ - X ~ ] .  
j ~ .  / "\{i} l 

If  s/~4supp (6-~), then this trivially equals zero. If (s_i, sf)  ~supp  (gr), an assump- 
tion that the rows are linear dependent  would imply ak = a = E l  a ~  with a:/: 0, 
such that a ~ -  E~ a t ~  = a ( 1 -  E~ ~ ) .  But  the RHS of this equat ion can only equal 
zero, if the summat ion  is over  the entire support  of ~ .  This implies that  

rank(DubTVl'Z m (a, O-)) = [supp (0-i) [ - 1. 

But  by construction Ei~. t [ supp (~-) ] - n = dim E m ---- m, such that  the L e m m a  fol- 
lows. �9 

(Proof  o f  Theorem 2 continued): Pick a ~ m ~ m ,  O<_m<_M. The map  bev l~m is 
infinitely often differentiable and by L e m m a  A.2 the 0~lll  m is a regular value of 
bev l~m. Then  the parametr ic  transversality theorem (Hirsch, 1976, p. 79) states 
that the set 

V ~ m = { u e g l n K l O e ~  m is a regular value of b [E m} 

is dense in ~1 nK. 
Next  let W be defined as the set of all u e g l  n/~, such that  the corresponding 

game F = F (u) has only quasi-strict equilibria. F rom Theo rem 2 in Harsanyi  (1973) 
it follows that the complement  of W in ~1 nK is a closed set with Lebesgue measure  
zero. Obviously W is dense in ~i nK. Now consider the set of u e ~ l  nK which have 
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only quasi-strict equilibria and all regular equilibria in every ]~m, V0__< m _  M. Each 
u in this set satisfies 

ue N N V:~mNW=NV~mnW, 
O ~ r n ~ M  . ~ . ,  

The Baire-Theorem (Hirsch, 1976, p. 213) implies that n V~mnW is dense in 
~n/~. 

Finally, let u e n vzm n W and 6- a zero of b,  ] E m. By elementary operations on 
determinants the following decomposit ion is obtained 

[Do-bu(O)l = II II (U,(6--,,s~)-U~(6-))ID,,bulE'~(6-)I, 
i ~ . t  " s~ ~supp (&i) 

if ~reE m. Since all equilibria of F (u) are quasi-strict and the determinant in the 
above decomposit ion is non-zero,  all equilibria are regular. This holds for all u in 
the dense set n V~m n W. �9 
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