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 EXISTENCE AND UNIQUENESS OF EQUILIBRIUM POINTS FOR

 CONCAVE N-PERSON GAMES'

 BY J. B. ROSEN

 A constrained n-person game is considered in which the constraints for each player,

 as well as his payoff function, may depend on the strategy of every player. The existence

 of an equilibrium point for such a game is shown. By requiring appropriate concavity

 in the payoff functions a concave game is defined. It is proved that there is a unique

 equilibrium point for every strictly concave game. A dynamic model for nonequilibrium

 situations is proposed. This model consists of a system of differential equations which

 specify the rate of change of each player's strategy. It is shown that for a strictly con-

 cave game the system is globally asymptotically stable with respect to the unique

 equilibrium point of the game. Finally, it is shown how a gradient method suitable for

 a concave mathematical programming problem can be used to find the equilibrium

 point for a concave game.

 1. INTRODUCTION

 THE CONCEPT of an equilibrium point for an n-person game was introduced b

 Nash [14, 15], who proved the existence of such points under certain assumption

 on each player's strategy space and corresponding payoff function. He showe,

 that if each player is restricted to a simplex in his own strategy space and if th

 payoff functions are bilinear functions of the strategies, then an equilibrium poir

 exists. This result has been generalized to an abstract economy by Arrow an,

 Debreu [1] and McKenzie [13], where each player's strategy space may depend on th

 strategy of the other players (a situation which may also occur in coalition games

 This more general problem is considered here. Specifically, it is only required tha

 every joint strategy, represented by a point in the product space of the individuC

 strategy spaces, lie in a convex, closed, and bounded region R in the product spac

 and that each player's payoff function i, i= 1, . . ., n, be concave in his own stra
 tegy. The existence of an equilibrium point for this concave n-person game is show

 in Section 2, Theorem 1, using a mapping of R into R and the Kakutani fixed poin

 theorem [8].

 One of the difficulties that has limited the usefulness of the concept of an equil'

 brium point for an n-person game is the lack of uniqueness of such points, as show

 by the fact that many games possess an infinite number of equilibrium points (fo

 example, see Shapley [18]). This difficulty is overcome by requiring that the payoi

 functions satisfy an additional concavity requirement, which is called diagone

 strict concavity. With this additional requirement it is shown in Section 3, i;

 Theorems 2, 3, and 4, that every concave n-person game has a unique equilibriur

 point. Theorem 2 shows uniqueness for a game with orthogonal constraint sets

 1 Prepared under NASA grant Ns G565 at Stanford University. Reproduction in whole or i
 part is permitted for any purpose of the United States Government.
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 CONCAVE N-PERSON GAMES 521

 that is, where R is the direct product of the individual player's strategy spaces. In

 Theorem 3 the more general case of coupled constraints is considered. A normalized

 equilibrium point is defined in terms of a specified positive constant ri for each
 player, which determines the value of the dual variables for the ith player. Theorems

 3 and 4 show that a unique normalized equilibrium point exists for each specified

 value of the parameters ri. The monotone behavior at the equilibrium point of the
 payoff function oi with respect to ri is shown in Theorem 5. Section 3 is completed
 by giving a sufficient condition for diagonal strict concavity in terms of certain

 Hessian matrices of the o. The interesting case where each vi is bilinear in the
 strategies is discussed to illustrate this condition. The bimatrix game [11, 12] is a

 special case of this bilinear payoff function.

 In Section 4 we consider a reasonable dynamic model of the n-person concave

 game. It is assumed that if the game is not at equilibrium, each player will attempt

 to change his own strategy so as to obtain the maximum rate of change of his own

 payoff function with respect to a change in his own strategy. It is shown that the

 system of differential equations obtained in this way has the property that every

 solution starting in R remains in R (Theorem 7). The stability of the system is

 considered in Theorems 8 and 9. It is shown that when concavity conditions suffi-

 cient for uniqueness are satisfied the system of differential equations is globally

 asymptotically stable. Furthermore, starting at any feasible point in the strategy

 space 1, the system of differential equations will always converge to the unique
 equilibrium point of the original n-person concave game. Thus the dynamic model

 and the concave game have the same unique equilibrium point. The stability proof

 uses the square of the norm of the right-hand side of the differential equations as a

 Liapunov function to show that the norm approaches zero. The stability of a

 different dynamic model of a competitive equilibrium represented by a system of

 differential equations has previously been investigated [2, 19].

 In Section 5 it is shown that the unique equilibrium point to the concave game
 can be found computationally by using a gradient method suitable for a concave

 mathematical programming problem [17, 6]. This may be considered as a generali-
 zation of the well-known relationship between the two-person zero-sum game and

 linear programming [7]. It should also be noted that the general concave con-

 strained maximization problem is obtained for the case n = 1, so that such a problem

 can be considered as a special case of the n-person concave game. For this special

 case of n = 1, the results of Sections 2 and 3 reduce to known results. However, the

 results of Section 4, in particular Theorem 7, appear to be new even for n= 1.

 2. FORMULATION AND EXISTENCE OF EQUILIBRIUM POINT

 The concave n-person game to be considered is described in terms of the in-

 dividual strategy vector for each of the n players. The strategy of the ith player is

 represented by the vector xi in the Euclidian space E"ni, i= 1, . . ., n. The vector
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 522 J. B. ROSEN

 xeEm then denotes the simultaneous strategies of all players, where Em is the pro-

 duct space Eml x Em2 x ... x Emn and m= =1mg. The allowed strategies will be
 limited by the requirement that x be selected from a convex, closed, and bounded

 set R c Em. If we denote by Pi the projection of R on Emi, we will also consider the
 convex, closed, and bounded product set S-R, given by S=P1 XP2 X ... XP".
 This is illustrated in Figure 1 for n = 2.

 X2 S

 '2

 Pi Xi

 FIGURE 1

 In most articles on game theory consideration is limited to the case where each

 player's strategy xi is restricted to a convex set Ric -Emi in his own strategy space.
 For example, in Nash [14, 15] the set Ri is the simplex in Emi. In this special case
 where the constraint sets are orthogonal we have Pi = Ri, so that R = S = R1 x R2 x
 ... x Rn. In the general case where R c S we will say that R is a coupled constraint
 set.

 The payoff function for the ith player depends on the strategies of all the other

 players as well as on his own strategy, and is given by the function pi (x) = pi (xl,
 . . ., xi, . . ., xn). It will be assumed that for xeS, vpi(x) is continuous in x and is
 concave in xi for each fixed value of (xl, . . ., xi-1, Xi+ . . ., xn). With this for-
 mulation an equilibrium point of the n-person concave game is given by a point
 xe R such that

 (2.1) (pi(x0)=max {p(xo, . .. yi,.., x?) I (xl, .. ., yi, . . ., xo)eR}
 Yi (i=1, **.n).

 At such a point no player can increase his payoff by a unilateral change in his

 strategy.

 The results to follow make use of the function p(x, y) defined for (x, y)eR x R by
 n

 (2.2) p(x, y) _ EP(xl,.. ., Yi,..., xn)
 i=l1

 We observe that for (x, y)eR x R we have (xl, ., yI,.. ., xn)eS, i= 1, ..., so, 5
 that p(x, y) is continuous in x and y and is concave in y for every fixed x, for (x, y) e
 R x R. We now prove the existence theorem for the concave n-person game.

 THEOREM 1: An equilibrium point exists for every concave n-person game.
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 CONCAVE N-PERSON GAMES 523

 PROOF: Consider the point-to-set mapping xeR -FxczR, given by

 (2.3) Fx = {yIp(x, y) = max p(x, z)}.
 zeR

 It follows from the continuity of p(x, z) and the concavity in z of p(x, z) for fixed x

 that F is an upper semicontinuous mapping that maps each point of the convex,

 compact set R into a closed convex subset of R. Then by the Kakutani fixed point

 theorem [8, 9], there exists a point xo e R such that xo E Fxo, or

 (2.4) p(x?, xo) =max p(x0, z) .
 zeR

 The fixed point xo is an equilibrium point satisfying (2.1). For suppose that it

 were not. Then, say for i= 1, there would be a point xl = xl such that x = (x,..., x1,
 xn?)eR and (p(x) > (p(x0). But then we havep(x?, x) >p(x?, x?), which contra-

 dicts (2.4).

 3. UNIQUENESS OF EQUILIBRIUM POINT

 In order to discuss the uniqueness of an equilibrium point we must describe the

 convex set R more explicitly. For the general coupled constraint set where R c S, we

 shall describe R by means of the mapping h(x) of Em'+Ek, where each component

 hj(x), j= 1,. .., k of h(x) is a concave function of x. It is assumed that
 (3.1) R= {x I h(x) >0}
 is nonvoid and bounded. It follows from the concavity of the hj(x) that the closed
 set R is convex. For the special case of the orthogonal constraint set R = S= R1 x

 R2 x ... x Rn, we consider the nonvoid and bounded sets

 (3.2) Ri = {xi I hi (xi) '> 0} (i= 1, ... ., n)
 where each component hij(xi), j= 1, . . ., ki, of hi(xi), i= 1, . .. n, is a concave
 function of xi. Thus, Ri is a convex, closed, and bounded set in Em'. We shall also
 assume that the set R contains a point that is strictly interior to every nonlinear

 constraint, that is, 3xeR, such that hj(5) > 0 for every nonlinear constraint hi (x) >
 0. This is a sufficient condition for the satisfaction of the Kuhn-Tucker constraint

 qualification [3].

 We wish to use the differential form of the necessary and sufficient Kuhn-Tucker

 conditions for a constrained maximum [10]. We therefore make the additional

 assumption that the hj(x) possess continuous first derivatives for xe R. We also
 assume that for xeR the payoff function T (x) for the ith player possesses continu-
 ous first derivatives with respect to the components of xi. For any scalar function

 p(x) we denote by ViT(x) the gradient with respect to xi of p(x) .Thus Vi (x)e Em'.
 The Kuhn-Tucker conditions equivalent to (2.1) with R given by (3.1) can now

 be stated as follows:

 (3.3) h(x?< > 0
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 524 J. B. ROSEN

 and for i= 1, . . ., n, 3u? >0, u?eEk, such that

 (3.4) u%ofh(xO) = O
 and

 (3.5) (x)>(?,...Y . . ., xn?)+u?? h(xl?, . . ., Yi, . . ., xO?).

 Since pi(x) and hj(x) are concave and differentiable, the inequality (3.5) is equiv-
 alent to

 Vi ( ~~k (3.6) VPi(x0) + E u?jVihj(x0)=O (i= 1,..., n).

 We shall also use the following relation, which holds as a result of the concavity of

 hj (x). For every xo, xi e R we have
 n

 (3.7) hj(x')-hj(x0) < (x'-xo)'Vhj(x0) = , (xl-x?)'Vi hj(x0) .

 A weighted nonnegative sum of the functions (i(x) is given by
 n

 (3.8) a(x, r) = r ripi(x), ri >O
 i= 1

 for each nonnegative vector reEn. For each fixed r, a related mapping g(x, r) of

 Em into itself is defined in terms of the gradients ViTi(x) by

 ~r, VI (P (X)
 (3.9) g(x, r) = r2 V2 (P2 (X)

 Lrn Vn (Pn (X)j

 We shall call g(x, r) the pseudogradient of o(x, r). An important property of o(x, r)
 is given by the following

 DEFINITION: The function o(x, r) will be called diagonally strictly concave for
 xeR and fixed r>0 if for every x?, xIeR we have

 (3.10) (x _- x?)'g(x?, r) + (x?-x')'g(x', r) > O.

 As shown later, a sufficient condition that a(x, r) be diagonally strictly concave
 is that the symmetric matrix [G(x, r) + G'(x, r)] be negative definite for xeR,

 where G(x, r) is the Jacobian with respect to x of g(x, r).

 We first give the uniqueness theorem for orthogonal constraint sets where R = S.

 THEOREM 2: If o(x, r) is diagonally strictly concave for some r= r >0, then the

 equilibrium point xo satisfying (2.1) is unique.

 PROOF: Assume there are two distinct equilibrium points xo and x' eR, each of
 which satisfies (2.1). Then by the necessity of the Kuhn-Tucker conditions we have

 for 1=0, land i=1, ..., n:
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 CONCAVE N-PERSON GAMES 525

 (3.11) hi (x! > o

 Bu! > 0, u! e Eki, such that

 (3.12) u!'hi(xl)=O,

 ki

 (3.13) Vi(pi(xl) + E u!jVhjj(xl)=0.
 j=l

 We multiply (3.13) by Pi(xt-x4)' for 1=0 and by ri(xi-xt)' for l=1, andsumoni.
 This gives

 (3.14) f+y=0,

 where

 (3.15) =(xi - xo)' g(x?, )+ (x?-x1)'g(xY , i)

 and

 n ki

 (3.16) y = E {Up(Xi-X?)"Vh(x?)+U!(Xo-X?)'Vih
 i=1j = 1

 n kj

 > Z Z ri {U,[hij(x')-hij(x?)] +ul[hij(x?)-hij(xt)]}
 i=lj=l

 n

 = S ri{u (x+ u (x?)}.
 i=l

 The inequality follows from the concavity of the hij(x) and (3.7), and the last rela-
 tion follows from (3.12). Then from (3.1 1) we have y > 0. Since o(x, r) is diagonally
 strictly concave, it follows from (3.10) that ,B >0. But this contradicts (3.14), so

 that we cannot have two distinct equilibrium points and therefore xo is unique.
 We now consider the general case where R is a coupled constraint set and is given

 by (3.1). The values of the nonnegative multipliers uo, i= 1, . . ., n, given by the
 Kuhn-Tucker conditions at an equilibrium point will, in general, not be related to

 each other. We shall consider a special kind of equilibrium point such that each uo
 is given by

 (3.17) u?=u0/ri (i=1,. . ., n)

 for some r >0 and uo > 0. We will call this a normalized equilibrium point.

 THEOREM 3: There exists a normalized equilibrium point to a concave n-person

 game for every specified r > 0.

 PROOF: For a fixed value r= f > 0, let

 n

 (3.18) p(x, y, F) = E Fii(x1, . ., Yi,. *., xn)
 i=l1
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 526 J. B. ROSEN

 Using the fixed point theorem as in Theorem 1, there exists a point xo such that

 (3.19) p(x?, xo, r) = max {p(x?, y, r) I h(y) >O} .
 y

 Then by the necessity of the Kuhn-Tucker conditions, h(xO) > 0, and 3u? > 0, such
 that uo' h(x?) = 0 and

 k

 (3.20) iVip(x0) + E u? Vi hj(x0)=O (i=, .. .,n).
 j=1

 But these are just the conditions (3.3), (3.4), and (3.6), with u?. = u9?/r , or uP = u?/ ,
 which are sufficient to insure that xo satisfies (2.1); xo is therefore a normalized
 equilibrium point for the specified value of r =.

 THEOREM 4: Let o(x, r) be diagonally strictly concave for every re Q, where Q is a

 convex subset of the positive orthant of En. Then for each re Q there is a unique
 normalized equilibrium point.

 PROOF: Assume that for some r = eQ we have two normalized equilibrium

 points xo and x'. Then we have for 1=0, 1 and i= 1, . . ., n,

 (3.21) h(x1)>O;

 3u1 >0, uleEk, such that

 (3.22) u" h(x1)=0,
 k

 (3.23) iV pi(x1) + , UJ Vi hj(x1) = 0 .
 j=1

 We multiply (3.23) by (4l-xx)' for 1=0 and by (x@?-xt) for I=- 1, and sum on i.
 As in the proof of Theorem 2 this gives fi + y = 0, where fi is given by (3.15) and

 k n

 (3.24) y = Z E {U5(x -x?)'Vjhj(x0)+u!(x?-xt)' V,h (x1)}
 j=1 i=1

 > uo' [h(xl)-h(x0)] +u1'[h(x?)-h(xl)]

 = u0'h(x1)+u"1h(x0) >0.

 Then since o(x, T) is diagonally strictly concave we have fi >0, which contradicts

 fi + y = 0 and proves the theorem.

 We will now investigate the dependence of the normalized equilibrium point
 on the value of r for the general case where R is a coupled constraint set. For an
 orthogonal constraint set it follows from Theorem 2 that if o(x, r) is diagonally
 strictly concave for some r = T >0, the equilibrium point xo is independent of r.
 On the other hand it is not difficult to construct a simple example with a coupled
 constraint set (see Figure 2) where the equilibrium point xo does depend on r.
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 CONCAVE N-PERSON GAMES 527

 X2~~~~~~~~~~~~~( i (X) = _ IX2 + X1JX2
 X2~~~~~~~~~~~~~~~~~~

 2(X) =-X2-xlx2

 hl(x)=x1 >0

 R S h2(x) = X2 >0
 h3(x)=xl +X2-1 10

 \s fl~~~~~(p,x?)=max. {(pl(xl, X?) I h(xl, x0)>O}=x0 1-ixo)
 x? (r) XI

 \ 2(x0)=max {p2(X?, X2) h(x?, X2) >0} =x?-1

 x1Aif4r1 , rl S r2 1

 1 121 2r, > r2| 2 FIGURE 2 2r1+r2

 In such a case we will now show that in a certain sense the equilibrium value of

 vp is a monotone increasing function of ri.

 THEOREM 5: Let o(x, r) be diagonally strictly concave for re Q. Let r0, rI e Q be
 such that r4 =r?, i#q, and 4 >r?. Let x? and xl, with xl Ox0, be the corresponding

 unique normalized equilibrium points. Then the directional derivative of (pq(x) along
 the ray (x' -xjyo is positive.

 PROOF: Let uo and u1 be the multipliers corresponding to the normalized equi-
 librium points x? and x1. Then for l= I and i= 1, ..., n, and for l=0 and i#q, the

 relations (3.21), (3.22), and (3.23) are satisfied with ri = r%. For 1= 0 and i= q, we have

 k

 (3.25) (r?-rq)Vq(Pq(x0)+rl Vq(pq(x0) + E uNVqhj(x0)=0.

 Multiplying by (xl-x?)' for l= O and by (x? -xi)' for l=1, and summing, we now
 get

 (3.26) (ro -r4) (xq- Xqo)' Vq (Pq (X0) - + Y) < O,
 1 0

 or, since q > rq,

 (3.27) (xl X?)'V q (x0) >O.

 But this is just the directional derivative of 9q (x?) along the ray (Xq - x?).

 A useful interpretation of Theorem 5 is obtained by observing that if qq(x) has

 bounded second partial derivatives and if 11xl - xq is sufficiently small, then it
 follows from (3.27) that Pq(5) > Tpq(x0), where -= (x, .. .., xl,.. ., x). Since x?
 is an equilibrium point, x cannot be a feasible point, and the value of 9q(X) may

 decrease as x goes from the infeasible point x to the new (feasible) equilibrium

 point xl, as illustrated in Figure 3. Because of the diagonal concavity property of

 vi(x), the dependence of T.q(x) on Xq will usually dominate its dependence on xi,
 i#sq. Therefore, it will usually be true that pq (x') > 9q (x0). This is illustrated by the
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 528 J. B. ROSEN

 example of Figure 2, where it is easy to show that both (p,1/r, and @p2/@r2 are
 nonnegative.

 We complete this section by giving a sufficient condition on the functions vi(x)
 that insures that c(x, r) is diagonally strictly concave. The condition is given in

 terms of the m x m matrix G(x, r), which is the Jacobian of g(x, r) for fixed r > 0.

 That is, the jth column of G(x, r) is Og(x, r)/axj, j= 1, . . ., m, where g(x, r) is
 defined by (3.9).

 xS
 X2

 1/ R /

 Ax? /

 FIGuRE 3

 THEOREM 6: A sufficient condition that u(x, r) be diagonally strictly concave for
 xeR andfixed r = f >0 is that the symmetric matrix [G(x, F) + G'(x, r)] be negative

 definite for xeR.

 PROOF: Let xo, x' be any two distinct points in R, and let x(O) = Ox' + (1-0)x0,
 so that x(O)eR for 04 0 1. Now, since G(x, r) is the Jacobian of g(x, F), we have

 (3.28) g(x( ) G(x(0), d( ) = G(x(0), f)(x'-xx)
 dO -dOxO~

 or

 (3.29) g(x', F) -g(x0, F) = G(x(O), F)(xl - x0)dO

 Multiplying both sides by (x?-xl)' gives

 (3.30) (x0-x')'g(x', )+(x'-x0)'g(Ax0,) - }" (xl -xo)' G(x(O), f)(x' - xo)dO

 = -2J' (xl - xo)' [G(x(O), F) + G'(x(0), )] (x - xo)dO > ,

 which shows that (3.10) is satisfied.

 The interesting case where vi(x) is bilinear in the strategies x; emphasizes an
 important relation between this condition and a stability matrix. We let

 n

 (3.31) Ti(X)= E [eI'j+xCicj]xj (i=l1,..., n),
 j=l

 where eij is a constant vector in E'J and Cij is an mi x mj constant matrix. The
 bimatrix game [11, 12] is a special case of (3.31) with n =2, ei =0, Cl = C22 =0,
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 CONCAVE N-PERSON GAMES 529

 and C12#0, C21 #0. The two-person zero-sum game is a further specialization

 with C21 = -C2.
 From the definition (3.9) of g(x, r) and G(x, r) as its Jacobian matrix, we obtain

 (3.32) G(x, r)=DC,

 where C is the m x m constant matrix

 2C1l C12 ... Cln
 C21 2C22

 (3.33) C=

 _Lcnl 2CnnJ

 and D is the diagonal positive definite matrix D = diag{ri}. For this bilinear case it
 follows from Theorems 2 and 6 that we have uniqueness if there exists some r >0

 such that

 (3.34) DC+ C'D=-I

 where = diag{fi}. But this is just the condition which ensures that every eigen-
 value of C has a negative real part (see, for example, Bellman [4]). Thus the same
 condition which guarantees uniqueness also implies that C is a stability matrix.

 A case which might be considered as a generalization of the two-person zero-

 sum game is the n-person "skew-symmetric" game where Cji =-C 'j, i, j= 1, .. .,n.
 For such a game we will have [C+ C'] negative definite if [Cii + C'i] is negative
 definite for i= 1, . . ., n.

 4. GLOBAL STABILITY OF EQUILIBRIUM POINT

 We shall now consider a reasonable dynamic model of a concave n-person game

 in which each player changes his own strategy in such a way that the joint strategy

 remains in R and his own payoff function would increase if all other players held
 to their current strategy. That is, each player changes his strategy at a rate pro-

 portional to the gradient with respect to his strategy of his payoff function, subject

 to the constraints. If we let the proportionality constant for the ith player be ri, we
 obtain the following system of differential equations for the strategies xi,

 dxi _ k
 (4.1) dt = xi=riVi(pi(x) + ujVihj(x) (i=l . . ., n),

 where the vector u lies in a bounded subset U(x) of the positive orthant of Ek. The
 effect of the summation term, with the appropriate choice of u, is to ensure that

 starting with any xeR, the solution to (4.1) remains in R. In fact, the right hand

 side of (4.1) is just the projection of the pseudogradient on the manifold formed by
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 530 J. B. ROSEN

 the active constraints at x. If we define an m x k matrix H(x), whose jth column is

 Vhj(x),

 (4.2) H(x) = [Vhl (x) Vh2 (x) ... Vhk(x)I,

 and use the definition (3.9) of the pseudogradient g(x, r), we can define the mapping
 f(x, u, r) of Em+k"-Em for each fixed f >0, as follows:

 (4.3) f(x, u, F) =g(x, F) + H(x)u .

 Then the system (4.1) can be written

 (4.4) * =f(x, u, F), ue U(x) .

 The set U(x) cEk is determined as follows:

 (4.5) U(x) = {ul jlf(x, u, F) =1 min jlf(x, v, F)j I}
 VJ'0, jeJ
 VJ=0, joJ

 where

 (4.6) J= J(x) ={jIhj (x)< O}
 Note that for every interior point x of R the set J(x) is empty and U(x) 0, so that

 f(x, u, F) =g(x, F), for every interior point of R.
 We shall assume that g(x, r) and H(x) are continuous in x for all xeR, where

 R - R is a compact set such that every point of the compact set R is interior to R.

 THEOREM 7: Starting at any point xeR a continuous solution x(t) to (4.4) exists,
 such that x(t) remains in R for all t > 0.

 PROOF: Because of the continuity in x, and assuming only that u is measurable

 in t, we have from the Caratheodory existence theory [5, 16] that a continuous
 solution x(t) exists, for x(t) inR, that satisfies (4.4) almost everywhere. Now suppose

 that for some point x'eR on the trajectory x(t) we have h1(x')< 0. Then by the
 continuity of x(t) there must be an earlier point x on the trajectory such that

 h, (x)=0 and hi (x) < 0. But from the latter and (4.4) we have

 (4.7) hi (x) = Vh'(x)x = Vh;(x)f< 0 .
 We let the corresponding value of u be ius U(x). From the definition (4.3) we have

 (4.8) JIfIj2 =g'g+2ii'H'g+ ii'H'Hui,
 or

 (4.9) = 2Vh (5X) [g + Hii] = 2Vh (x)f < .
 a~u,

 According to (4.9) we could decrease the norm lff11 by increasing ii1 >0. But since

 hI (x) = 0, we have leJ(5) by (4.6), and therefore u cannot satisfy (4.5) so that u 0 U(5x).
 This contradiction shows that there is no point x' on the trajectory such that

 hi(x') < 0 for any i, which proves the theorem.

 By a direct application of the necessity of the Kuhn-Tucker conditions for the
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 constrained minimization problem in (4.5) it is not difficult to demonstrate the

 following:

 LEMMA: The nonzero elements of every vector uc eU(x) are given by a vector

 ijeEk, kS k, where

 (4.10) i= (HI' H) - H'g(x f) >, 0

 The m x k matrix H =11(x) consists of k linearly independent columns of H(x)

 selected from Vhj (x) for jeJ.

 We now consider an equilibrium point x of the system of differential equations

 (4.4). That is, for a fixed r = r, we will call x an equilibrium point of (4.4) if

 (4.1 1) f(5x, u, r) = 0, u c U(5x) .

 The system (4.4) will be called asymptotically stable in R if for every initial point

 xeR, the solution x(t) to (4.4) converges to an equilibrium point 5eR as t-?oo.

 THEOREM 8: If R is given by (3.1) and [G + G'] is negative definite for xeR, where

 G is the Jacobian of g(x, r), then the system (4.4) is asymptotically stable in R.

 PROOF: The proof consists of showing that for x and u satisfying (4.4), the rate

 of change of lIf(x, u, r)IJ2 is always negative for f(x, u, F)=0. We first consider the
 situation when the selection of columns in H(x) remains unchanged. Then since all

 elements of u are zero except those given by ii >0, we have from (4.3)

 (4.12) f= g +Hu5= g+ F, iujVhj ,

 and

 (4.13) f=G*+ uiijQj+Hu,

 where Qj is the Jacobian of Vhj(x) (or its equivalent, the Hessian of hj(x)) and is
 therefore negative semidefinite from the concavity of hj(x). Now using (4.13) and
 (4.4) we have

 (4.14) i d if I2=1 d (f 'f)= f 'f=f ' Gf+ iijf 'Qjf+f Hu .

 We consider the last term and make use of (4.12) and (4.10) to show that

 (4.15) f'Hu= [g'H+ +H'H] = [g'H-g'H]i=O .
 Then since [G + G'] is negative definite and the Qj are negative semidefinite, we
 have

 (4.16) - dt IfI2=f'[G + G']f+ E 5- If 112
 for some &>0.

 A change in the columns selected for H(x) can never increase the value of if ii
 since the selection as determined by (4.5) will always minimize if ii. It therefore
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 follows from (4.16) that liit Joif ii = 0, so that x(t) -?, where x is an equilibrium
 point that satisfies (4.11). By Theorem 7, we have that 5x5eR, so that (4.4) is asymp-

 totically stable in R.

 An equilibrium point x0eR will be called globally asymptotically stable in R

 if for every starting point xeR the solution x(t) to (4.4) converges to xo. We shall
 now show that with the appropriate concavity conditions the unique equilibrium

 point xo of (2.1) is also globally asymptotically stable in R.

 THEOREM 9: Let R be given by (3.1) and G be the Jacobian of g(x, r) for some

 fixed r = r > 0. Then if [G + G'] is negative definite for xe?R, the normalized equilibrium

 point xo (r) is globally asymptotically stable in R.

 PROOF: Since [G + G'] is negative definite, o(x, r) is diagonally strictly concave

 by Theorem 6. Then by Theorem 4 there is a unique normalized equilibrium point

 xO=x?(r) that satisfies (3.21), (3.22), and (3.23). But an equilibrium point x of
 (4.4) also satisfies these three relations. The first relation is satisfied since xeR,

 while (4.11) is equivalent to (3.22) and (3.23). Therefore we must have x = xo. By
 Theorem 8, the system (4.4) is asymptotically stable in R. Since 5x=x? is unique,

 the solution to (4.4) will converge to xo from every starting point in R, and the system

 is globally asymptotically stable.

 5. DETERMINATION OF EQUILIBRIUM POINT

 The global stability of the equilibrium point permits us to determine the unique

 equilibrium point for any concave game by appropriate mathematical programming

 computational methods. In particular, gradient methods for a concave nonlinear

 programming problem [6, 17] can be modified to find the equilibrium point for a

 concave game. Such methods take finite steps in the direction of the gradient of the

 function to be maximized, taking account of the constraints by projection, or

 appropriate penalties, in order to remain in the feasible region R. The essential

 idea in applying one of these gradient methods to the concave game problem is to

 use the vector g(x, r), given by (3.9), as if it were the gradient of a function of x,

 where the function is to be maximized for xeR. The solution to this "maximiza-

 tion"problemwillgive a pointx? eRwherethe Kuhn-Tuckerconditions (3.21), (3.22),

 and (3.23) are satisfied. But as has been shown, such a point is the unique equilib-

 rium point for the concave game. Note that the optimality conditions involve only

 the gradient g(x, r) and do not require that the function itself be known. The gradient

 projection method can be considered as a finite difference approximation to the

 system (4.4), where the solution is obtained by a sequence of finite steps in the

 direction of the projected gradientf(x, u, r). The only practical difference between

 this and a true maximization problem is that in the latter case we choose the step
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 length so as to give a maximum of the true function value along the chosen ray,

 whereas for the equilibrium point problem we choose the step length so as to

 minimize the norm off.

 To show how this is done we consider the finite difference approximation to (4.4)

 given by

 (5.1) x jw=Xi+ if(xiui,i ), u3eU(xj),

 where ri is the step length to be selected.

 THEOREM 10: If the assumptions of Theorem 8 are satisfied, then afinite step length

 Tican be chosen so that jjfi+1 1 < IIJfII for fi0, where f =f(xi, ui, r).

 PROOF: For u = u held fixed we have

 (5.2) fi + 1=f(xJ + u5i, r) =f + F(x 3+l_xJ)

 where F is a mean value of the Jacobian off, so thatf'Ff< 0, forfO0. Then from

 (5.1) we have

 (5.3) fJ I = (I+zjF)fj

 The norm of fJ+J is minimized by the choice

 (5.4) j= _fJiFf/ 1Ffij12 >0,

 which gives

 (5.5) llfii+ 1 jj2 = llfjjf2 +jfi'Ffi < jjfjj12

 Finally, sincef+ 1 =f(xi +, u +1, r), where uw+ e U(xi+1) it follows from (4.5) and

 (5.2) that llfi+l 11 < jj fJ+l 11 < llfijj
 The convergence of this finite difference procedure to the unique equilibrium

 point xo can be shown as in Theorem 8.

 University of Wisconsin
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