
Worst-case EquilibriaElias Koutsoupias1 and Christos Papadimitriou21 Univ of California, Los Angeleselias@cs.ucla.edu2 Univ of California, Berkeleychristos@cs.berkeley.eduAbstract. In a system in which noncooperative agents share a commonresource, we propose the ratio between the worst possible Nash equilib-rium and the social optimum as a measure of the e�ectiveness of thesystem. Deriving upper and lower bounds for this ratio in a model inwhich several agents share a very simple network leads to some interest-ing mathematics, results, and open problems.1 IntroductionInternet users and service providers act sel�shly and spontaneously, withoutan authority that monitors and regulates network operation in order to achievesome \social optimum" such as minimum total delay [1]. How much performanceis lost because of this? This question appears to exemplify a novel and timelygenre of algorithmic problems, in which we are investigating the cost of the lackof coordination |as opposed to the lack of information (on-line algorithms) orthe lack of unbounded computational resources (approximation algorithms). Aswe show in this paper, this point of view leads to some interesting algorithmicand combinatorial questions and results.It is nontrivial to arrive at a compelling mathematical formulation of thisquestion. Independent, non-cooperative agents obviously evoke game theory [8],and its main concept of rational behavior, the Nash equilibrium: In an environ-ment in which each agent is aware of the situation facing all other agents, a Nashequilibrium is a combination of choices (deterministic or randomized), one foreach agent, from which no agent has an incentive to unilaterally move away. Nashequilibria are known not to always optimize overall performance, with the Pris-oner's Dilemma [8, 10] being the best-known example. Conditions under whichNash equilibria can achieve or approximate the overall optimum have been stud-ied extensively ([10]; see also [5, 7, 11] for studies on networks). However, this lineof previous work compares the overall optimum with the best Nash equilibrium,not the worst, as be�ts our line of reasoning. To put it otherwise, this previousresearch aims at achieving or approximating the social optimum by implicit actsof coordination, whereas we are interested in evaluating the loss to the systemdue to its deliberate lack of coordination.Game-theoretic aspects of the Internet have also been considered by re-searchers associated with the Internet Society [1, 12], with an eye towards de-signing variants of the Internet Protocols which are more resilient to video-like



tra�c. Their point of view is also that of the mechanism design aspect of gametheory, in that they try to design games (strategy spaces and reward tables) thatencourage behaviors close to the social optimum. Understanding the worst-casedistance of a Nash equilibrium from the social optimum in simple situations,which is the focus of the present paper, is a prerequisite for making rigorousprogress in that project.The modelLet us make the general game-theoretic framework more precise. Consider anetwork in which each link has a law (curve) whereby tra�c determines delay.Each of several agents wants to send a particular amount of tra�c along a pathfrom a �xed source to a �xed destination. This immediately de�nes a game-theoretic framework, in which each agent has as many pure strategies as there arepaths from its origin to its destination, and the cost to an agent of a combinationof strategies (one for each agent) is the negative of the total delay for each agent,as determined by the tra�c on the links. There is also a well-de�ned optimizationproblem, in which we wish to minimize the social or overall optimum, the sumof all delays over all agents, say. The question we want to ask is, how far fromthe optimum total delay can be the total delay achieved by a Nash equilibrium?Numerical experiments reported in [6] imply that there are Nash equilibria whichcan be more than 20% o� the overall optimum.In this paper we address a very simple special case of this problem, in whichthe network is just a set of m parallel links from an origin to a destination,all with the same capacity (similar special cases are studied in other works inthis �eld, e.g. [7]; we also brie
y examine the case of two parallel links withunequal capacity). We model the delay of these links in a very simple way: Sincethe capacity is unit, we assume that the delay su�ered by each agent usinga link equals the total capacity of 
ow through this link. We assume that nagents have each an amount of tra�c wi, i = 1; : : : ; n to send from the origin tothe destination. Hence the resulting problem is essentially a scheduling problemwith m links and n independent tasks with lengths wi, i = 1; : : : ; n. The setof pure strategies for agent i is therefore f1; : : : ;mg, and a mixed strategy isa distribution on this set. Let (j1; : : : ; jn) 2 f1; : : : ;mgn be a combination ofpure strategies, one for each agent; its cost for agent i, denoted Ci(j1; : : : ; jn), issimply Lji + Xjk=ji wk ;the �nish time of the link chosen by i; here we assume that link j has in thebeginning an initial task of length Lj scheduled, so it will be available for schedul-ing the agents' tasks only after Lj time units. This calculation assumes that, ifagent i's task ends up in link j, it ends when all tasks on link j end; this isrealistic if the tasks are broken in packets, which are then sent in a round-robinway. We also examine the alternative model, in which the tasks scheduled inlink j are executed in a random batch order, and hence the cost to agent i is



Ci(j1; : : : ; jn) = Lji + 12Pjk=ji wk. We call this the batch model. Finally, thecost to agent i of a combination of mixed strategies is the expected cost of thecorresponding experiment in which a pure strategy is chosen independently foreach agent, with the probability assigned to it by the mixed strategy. The overalloptimum in this situation, against which we propose to compare the Nash equi-libria of the game just described, would be the optimum solution of the m-wayload balancing (partition into m sets) problem for the n lengths w1; : : : ; wn.The costs in our model are a simpli�cation of the delays incurred in a networklink when agents inject tra�c into it. The actual delays are in fact not thesums of the individual delays, but nonlinear functions, as increased tra�c causesincreased loss rates and delays. We discuss brie
y in the last section the openproblems suggested by our work that are associated with more accurate modelingof network delays.The results of this paperIn this paper we show upper and lower bounds on the ratio between the worstNash equilibrium and the overall optimum solution.{ In a network with two parallel links, we show that the worst-case ratio is32 (both upper and lower bound), independent of the number n of agents(Theorems 1 and 2).{ The above result assumes that the two link speeds are the same. If the twolinks have di�erent speeds, then the worst-case ratio increases to the goldenratio � = 1:618 : : : (lower bound, Theorem 3).{ Also, in the batch model of two links, the worst-case ratio is lower boundedby 2918 = 1:6111 : : : which is also an upper bound if we have two agents(Theorem 4).{ We have not been able to determine the answers for three or more links.However, the worst-case ratio (in all of the above models) is bounded frombelow by the ratio suggested by the load-balancing aspect of the problem,that is to say, 
( logmlog logm ) (Theorem 6). Using the Azuma-Hoe�ding inequal-ity, we establish an O(pm logm) upper bound (Theorem 8). A similar boundholds for links of di�erent speeds (Theorem 9).2 All Nash equilibriaWe consider the case of n agents sharing m identical links. Before describing allNash equilibria, we need a few de�nitions. We usually use subscripts for agentsand superscripts for links. For example, for a Nash equilibrium, we denote theprobability that agents i selects link j with pji . LetM j denote the expected tra�con link j. If Lj is the initial load on link j, it is easy to see thatM j = Lj +Xi pjiwi: (1)



From the point of view of agent i, its �nish time when its own tra�c wi isassigned to link j iscji = wi + Lj +Xi 6=t pjtwt =M j + (1� pji )wi: (2)Probabilities pji de�ne a Nash equilibrium if there is no incentive for agent i tochange its strategy. Thus, agent i will assign nonzero probabilities only to linksj that minimize cji . We will denote this minimum value by ci, i.e.,ci = minj cji ;and we will call the set of links Si = fj : pji > 0g the support of agent i. Moregenerally, let Sji be an indicator variable that takes value 1 when pji > 0.Conversely, a Nash equilibrium is completely de�ned by the supports S1; : : : ; Snof all agents. More precisely, if we �x the Sji 's, the strategies in a Nash equilib-rium are given by pji = (M j + wi � ci)=wi (3)subject to for all j: M j = Lj +Pi Sji (M j + wi � ci)for all i: Pj Sji (M j + wi � ci) = wiTo see that these constraints indeed de�ne an equilibrium, notice that the�rst set of equations is equivalent to (2). The constraints are equivalent to (1),and to the fact that the probabilities of agent i should sum up to exactly 1. Noticealso that the set of constraints specify in general, a unique solution for ci andM j(there are n+m constraints and n+m unknowns). If the resulting probabilitiespji are in the interval (0; 1], then the above equations de�ne an equilibrium withsupport Sji . Thus, an equilibrium is completely de�ned by the supports of theagents (although not all supports give rise to a feasible equilibrium). As a result,the number of equilibria is, in general, exponential in n and m.A natural quantity associated with an equilibrium is the expected maximumtra�c over all links:cost = mXj1=1 � � � mXjn=1 nYi=1 pjii maxj=1;:::;mfLj + Xt:jt=j wtg: (4)We call it the social cost and we wish to compare it with the social optimum opt.More precisely, we want to estimate the coordination ratio which is the worst-case ratio R = max cost=opt (the maximum is over all equilibria). Computing thesocial optimum opt is an NP-complete problem (partition problem), but for thepurpose of upper bounding R here, it su�ces to use two simple approximationsof it: opt � maxfw1;Pj M j=mg = maxfw1; (Pj Lj +Pi wi)=mg (we shall beassuming that w1 � w2 � � � � � wn).



3 Worst-case equilibria for 2 linksWe shall assume that there are no initial loads |that is, all Lj 's are zero.This is no restriction at all for the standard model, because initial loads can beconsidered as jobs of m additional agents, each with a pure strategy. However,this may not be true for other models. In particular, in the batch model (the onewith the 12 factor in front of Pwi) it follows from our results that initial loadsresult in strictly worse ratio.Our �rst theorem is trivial:Theorem 1. The coordination ratio for 2 links is at least 3=2.Proof. Consider two agents with tra�c w1 = w2 = 1. It is easy to check thatprobabilities pji = 1=2 for i; j = 1; 2 give rise to a Nash equilibrium. The expectedmaximum load is cost = 3=2 and the social optimum is opt = 1 achieved byallocating each job to its own link.Our main technical result of this section is a matching upper bound. Toprove it, we �nd a way to upper bound the complicated expression (4) for thesocial cost. In fact, it is relatively easy to compute the strategies of a Nashequilibrium. There are 2 types of agents: pure strategy agents with support ofsize one and stochastic agents with support of size 2. Let dj be the sum of alljobs of pure strategy agents assigned to link j. Also let k > 1 denote the numberof stochastic agents. It is not di�cult to verify that the system of equations (3)gives the following probabilities of a stochastic agent i:pji = 12 � d1 + d2 � 2dj2(k � 1)wi : (5)However, we don't see how to use this expression to upper bound (4).Central to our proof of the upper bound is the notion contribution probability:The contribution probability qi of agent i is equal to the probability that itsjob goes to the link of maximum load (if there are more than one maximumload links, we consider the lexicographically �rst such link, say). Clearly, thesocial cost is given by cost = Pi qiwi: The key idea in our proof is to considerthe pairwise contribution to social cost. In particular, let tik be the collisionprobability of agents i and k, that is, the probability that the tra�c of both agentsgoes to the same link. Observe then that both agents i and k can contribute tothe social cost only if they collide, that is,qi + ql � 1 + tik : (6)The following lemma provides a crucial property of collision probabilities. Itholds for any number of links.Lemma 1. The collision probabilities of a Nash equilibrium of n agents and mlinks satisfy Xk 6=i tikwk = ci � wi:



Proof. Observe �rst that tik =Pj pjipjk. Therefore, we haveXk 6=i tikwk =Xj pjiXk 6=i pjkwk =Xj pji (M j � pjiwi):It follows from (3) that we can use pjiwi = M j + wi � ci. There is a minortechnical point to be made here: the equality pjiwi =M j +wi � ci holds only iflink j is in the support of agent i (pji > 0). However, observe that when pji = 0there is no harm in replacing pjiwi with any expression. We getXk 6=i tikwk =Xj pji (ci � wi) = ci � wi:A �nal ingredient for the proof is the bound (which also holds for any numberof agents and links): ci � Pi wim + m� 1m wi: (7)This follows from ci = minj cji � 1mPj(M j + (1� pji )wi) = Pj Mjm + m�1m wi =Pk wkm + m�1m wi.Theorem 2. The coordination ratio for any number of agents and m = 2 linksis at most 3=2.Proof. We have seen that pairwise the contribution probabilities satisfy qi+qk �1 + tik . Therefore, Pk 6=i(qi + qk)wk � Pk 6=i(1 + tik)wk . Using Lemma 1 andbound (7), we get Pk 6=i(qi + qk)wk � 32Pk 6=i wk. From this we can computecost =Xk qkwk = (32 � qi)Xk wk + (2qi � 32)wi:Recall that opt � maxf 12Pk wk; wig. If for some agent i, qi � 34 , then (2qi �32 )wi � (2qi � 32 )opt and cost � ( 32 � qi)2opt + (2qi � 32 )opt = 32opt. Otherwise,when all contribution probabilities are at most 34 , cost =Pk qkwk � 34Pk wk �32opt.Links with di�erent speedsSo far, we assumed that all links have the same speed or capacity. We nowconsider the general problem where links may have di�erent speeds. Let sj bethe speed of link j. Without loss of generality, we shall assume s1 � � � � � sm.We can estimate all Nash equilibria again. Equation (2) now becomescji = (M j + (1� pji )wi)=sj : (8)



and the equilibria are given by: pji = (M j + wi � sjci)=wi (9)subject to for all j: M j = Lj +Pi Sji (M j + wi � sjci)for all i: Pj Sji (M j + wi � sjci) = wiWe can extend the lower bound Theorem 1 to this case:Theorem 3. The coordination ratio for two links with speeds s1 � s2 is at leastR = 1 + s2=(s1 + s2) when s2 � �s1, where � = (1 +p5)=2. The coordinationratio R achieves its maximum value � when s2=s1 = �.Proof. We �rst describe the equilibria for any number of agents. Again let dj bethe sum of all tra�c assigned to link j by pure agents. We give the probabilitiesp1i of the stochastic agents (p2i = 1� p1i ).p1i = s2s1 + s2 � (s2 � s1)Pi wi + (s2d1 � s1d2)(k � 1)(s1 + s2)wiIt is not hard to verify that these probabilities indeed satisfy (9). To prove thetheorem, we consider the case of no initial loads and two agents with jobs w1 = s2and w2 = s1. The probabilities are p11 = s21s2(s1+s2) and p12 = 1� s22s1(s1+s2) . We canthen compute cost = (p11p12=s1 + p21p22=s2)(w1 + w2) + (p11p22=s1 + p21p12=s2)w1 =(s1 + 2s2)=(s1 + s2) and opt = 1. The lower bound follows.It is worth mentioning that when s2=s1 > � the probabilities given above areoutside the interval [0; 1]. Therefore, both agents have pure strategies and thecoordination ratio is 1.We believe that the proof of Theorem 2 can be appropriately generalized tothe case of links of di�erent speeds.The batch modelFor the batch model with two links we can prove the following bounds (proofomitted):Theorem 4. In the batch model with two identical links, the coordination ratiois between 2918 = 1:61 : : : and 2. The lower bound 2918 is also an upper bound inthe case of n = 2 agents.When the links have no initial load, the batch model and the standard modelhave the same equilibria and the same coordination ratio. However, in the generalcase, as the above theorem demonstrates, the batch model has higher coordina-tion ratio. But it cannot be much higher:Theorem 5. For m links and any number of agents, the coordination ratios ofthe batch model and the standard model di�er by at most a factor of 2.



We omit the details of the proof, but we point out the main idea: We can considerthe initial loads Lj of the batch model as pure strategy agents of weight 2Lj .This preserves the equilibria and changes the social optimum by at most a factorof 2.4 Worst-case equilibria for m linksWe now consider lower bounds for the coordination ratio for m links.Theorem 6. The coordination ratio for m identical links is 
(logm= log logm).Proof. Consider the case where there are m agents, each with a unit job, i.e.,wi = 1. If the links have no initial load, it is easy to see that the uniform strategieswith pji = 1=m for i; j = 1; : : : ;m is an equilibrium. This is identical to theproblem of throwing m balls into m bins and asking for the expected maximumnumber of balls in a bin. The answer is well-known to be �(logm= log logm).We believe that this lower bound is tight: That is, if Tm denotes the expectedmaximum number of balls in a bin, we conjecture that the coordination ratiofor any number of agents and m identical links is Tm (in the standard model).Theorem 2 shows that the conjecture holds for m = 2.We believe that a proof of the conjecture can be obtained by appropriatelygeneralizing the proof technique of Theorem 2; it seems however that a substan-tially deeper structural theorem about the Nash equilibria, similar to Lemma 1,is needed. Here, we give a weaker upper bound. But �rst we need the followingtheorem, which is interesting on its own.Theorem 7. For m identical links, the expected load M j of any link j is at most(2� 1=m)opt. For links with di�erent speeds, Mj is at most sj(1+pm� 1)opt.Proof. For identical links the theorem follows directly from (7) by observing thatM j � ci � (Pi wi)=m+ (m� 1)wi=m � sj(2� 1=m)opt.The proof for links with di�erent speeds has the same 
avor with (7). Thistime we take a weighted average over the links (the weight for machine j issj=Pr sr). Thus, cji � PrMr + (m� 1)wiPr sr :Also, cmi � (Mm + wi)=sm � (PrMr + wi)=sm. In summary,cji � minfPrMr + (m� 1)wiPr sr ;PrMr + wism g:However, we can lower bound the social optimum by maxfwi=sm;PrMr=Pr srg:Thus, we get cji � opt + minf (m�1)wiPr sr ;Pr Mrsm g. Using the obvious inequalityminfxa=b; c=dg � pxmaxfa=d; c=bg, we get cji � (1+pm� 1)opt. We can thenconclude that M j � sjcji � sj(1 +pm� 1)opt.



We can now prove an upper bound for the case of m identical links.Theorem 8. The coordination ratio of any number of agents and m identicallinks is at most T = 3 +p4m lnm.Proof. Using a martingale concentration bound known as the Azuma-Hoe�dinginequality [4], we will show that the load of a given link j exceeds (T�1)opt withprobability at most 1=m2. Then, the probability that the maximum load on alllinks does not exceed (T � 1)opt is at least 1� 1=m. It follows that the expectedmaximum load is bounded by (1� 1=m)(T � 1)opt + 1=m(mopt) � Topt.It remains to show that indeed the probability that the load of a given linkj exceeds (T � 1)opt is small (at most 1=m2). Let Xi be a random variabledenoting the contribution of agent i to the load of link j. In particular, Pr[Xi =w1] = pji and Pr[Xi = 0] = 1 � pji . Clearly, the random variables X1; : : : ; Xnare independent. We are interested in estimating the probability Pr[PiXi >(T � 1)opt]. Since the weights wi and the probabilities pji may vary a lot, wedon't expect the sum PiXi to exhibit the good concentration bounds of sumsof binomial variables. However, we can get a weaker bound using the Azuma-Hoe�ding inequality. The inequality gives very good results for probabilitiesaround 1=2. Unfortunately, in our case the probabilities may be very close to 0or 1.Let �i = E[Xi] and consider the martingale Yt = X1+� � �+Xt+�t+1+� � �+�n(it is straightforward to verify E[Yt+1jYt] = Yt). Observe that jYt+1 � Ytj =jXt+1 � �t+1j � wt+1. We can then apply the Azuma-Hoe�ding's inequality:Pr[Yn � Y0 � x] � e� 12x2=Pi w2i :Let x = (T � 3)opt. Since Y0 = Pi �i = M j � 2opt (Theorem 7), we get thatthe load of link j exceeds (T � 1)opt with probability at most e� 12x2=Pi w2i .However, it is not hard to establish thatXi w2i � maxfmw21;m(Xi wi=m)2g � mopt2:Thus the probability that the load of link j exceeds (T � 1)opt is at moste� 12 (T�3)2=m. For T = 3 + p4m lnm, this probability becomes 1=m2 and theproof is complete.It is worth noticing that the only structural property of Nash equilibria weneeded in the proof of the above theorem is that the expected load of a link j isat most 2opt (and, of course, the independence of the agent strategies). We canuse a similar proof to extend the theorem to the case of m links with di�erentspeeds:Theorem 9. The coordination ratio of any number of agents and m di�erentlinks is O(q sms1 Pj sjs1plogm):



5 Discussion and open problemsWe believe that the approach introduced in this paper, namely evaluating theworst-case ratio of Nash equilibria to the social optimum, may prove a usefulcalculation in many contexts. Although the Nash equilibrium is not trivial toreach without coordination, it does serve as an important indicator of the kindsof behaviors exhibited by noncooperative agents.Besides bridging the gaps left open in our theorems, there are several ex-tensions of this work that seem interesting, namely, investigating with the samepoint of view more complex and realistic cost models, for example, when thecost is given by 1C�minfC;Pwig; where C is the capacity of a link and Pwi itsload [7]. More important is the study of realistic Internet metrics, that resultfrom the employed protocols such as the one related to TCP and the square rootof the drop frequency [3]. Finally, it would be extremely interesting, once therelative quality of the Nash equilibria in such situations is better understood, toemploy such understanding in the design of improved protocols [1].References1. B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V.Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J.Wroclawski, and L. Zhang. Recommendations on Queue Management and Conges-tion Avoidance in the Internet, April 1998.http://info.internet.isi.edu:80/in-notes/rfc/files/rfc2309.txt2. Y. Cho and S. Sahni. Bounds for list schedules on uniform processors. SIAM Journalon Computing, 9(1):91{103, 1980.3. S. Floyd and K. Fall. Router Mechanisms to Support End-to-End Congestion Con-trol. Technical report, Lawrence Berkeley National Laboratory, February 1997.4. G. R. Grimmet and D. R. Stirzaker. Probability and Random Processes, 2nd ed..Oxford University Press, 1992.5. Y. Korilis and A. Lazar. On the existence of equilibria in noncooperative optimal
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