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 Vol. 12, No. 2, June, 1964
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 EQUILIBRIUM POINTS OF BIMATRIX GAMES*

 C. E. LEMKE AND J. T. HOWSON, JR.t

 Abstract. An algebraic proof is given of the existence of equilibrium points

 for bimatrix (or two-person, non-zero-sum) games. The proof is construc-
 tive, leading to an efficient scheme for computing an equilibrium point.
 In a nondegenerate case, the number of equilibrium points is finite and

 odd. The proof is valid for any ordered field.

 A. Introduction. The two-person matrix game is defined as follows: The
 two players are designated M and N. Player M has m pure strategies at his

 disposal, and N has n. On any one play of the game, if M plays his ith

 pure strategy, and N plays his jth pure strategy, the payoff to M is a, j,
 and the payoff to N is b, j . Denote by A and B the m by n matrices whose
 (i, j)-elements are asj and bi,j respectively. The game is completely
 specified when the payoff matrices A and B are given.

 A mixed strategy for M is a column x of nonnegative elements xi, which
 represent the relative frequency with which M will play his ith pure strat-

 egy. Thus xi + x2 + * * * + xm = 1. Likewise, a mixed strategy for N is a
 column y whose nonnegative components yj sum to 1.

 If on each play of the game, M and N select a pure strategy randomly,
 according to the probability distributions given by x and y, the expected
 payoffs to M and N respectively are

 m n m n

 (1) Z E xEajjyj and E E xibi jyj
 i=l j=l i=:l j-1

 Let e denote the column of l's (whose order will be understood from the
 context), and T denote matric transposition. If C is a matrix with com-

 ponents cij, C -0 means that ci,j = 0, and C > 0 means that cij > 0,
 for all values of i and j. In matric terms, a pair (x, y) of mixed strategies
 is defined by

 (2) eTx = eTy = 1, and x > 0,y >0,

 and the corresponding payoffs may be expressed as

 (3) xTAy and xTBy.

 * Received by the editors July 3, 1963, and in revised form November 13, 1963.
 t Department of Mathematics, Rensselaer Polytechnic Institute, Troy, New York.

 This work includes portions of a dissertation submitted by Dr. Howson to Rensselaer
 Polytechnic Institute -in partial fulfillment of the requirements for the degree of
 Doctor of Philosophy.
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 414 C. E. LEMKE AND J. T. HOWSON, JR.

 An equilibrium point for the game is a pair (x0 , yo) satisfying (2) such
 that, for all pairs (x, y) satisfying (2),

 (4) XoTAyo > xTAyo, and xoTByo > xoTBy.

 Nash has shown [6], by a fixed point argument, valid for the real field,
 that an equilibrium point exists for each pair (A, B). Recently [2] A.
 Robinson has shown, by a metamathematical argument, that the proof
 of Nash is valid in an arbitrary ordered field. In a recent paper [3], Kuhn

 (assuming the existence) extended results of Vorobjev and characterized
 the set of all equilibrium points in a way which suggests a computational
 scheme for computing this set. Mills [5] poses the problem as a mixed
 integer programming problem. [4] contains a similar formulation. It may be
 noted that it has long been known that an equilibrium point for the zero-
 sum matrix game, namely the case B = -A, may be recognized as a pair
 of optimal solutions to an associated dual pair of linear programming
 problems (see for example Tucker's recent treatment [7]). From the pre-
 sentation given below it would appear that a linear formulation in the
 general case is not possible.

 In this paper it is shown, by an algebraic argument, that an equilibrium
 point lies on a path joining a sequence of adjacent extreme points of a
 certain convex polyhedron. Such a path, and hence an equilibrium point,
 is readily computed within the usual format of linear programming com-
 putations. It is worth remarking on the adaptation used here of the two
 concepts so useful in linear programming; namely the device of perturbing
 a convex polyhedron, and the generation of adjacent-extreme-point paths.
 These are fully described in [1], for example.

 In the sequel, the sequence of steps will be (1) to prove, for an equivalent
 problem, that an equilibrium point exists for the problem in so-called non-
 degenerate form, and that (2) in this case the number of equilibrium points
 is odd, and all are extreme points of a certain convex polyhedron. An ex-

 plicit extreme-point path which contains an equilibrium point is defined
 in the nondegenerate case, which in turn gives an equilibrium point for the

 general (not necessarily nondegenerate) case.

 B. An equivalent formulation. A well-known equivalent formulation is
 derived here, which will be more suitable to the discussion. Let ei be a
 column vector having 1 as its ith component and zeroes elsewhere. Observe

 first that, since the ei satisfy (2), an equilibrium point (x0, yo) for the game
 must satisfy

 (5) BTx0 ? (xOTByo)e and Ayo < (xoTAyo)e.

 Conversely, if (5) holds for the pair (x0, yo) satisfying (2), then for (x, y)
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 EQUILIBRIUM POINTS OF BIMATRIX GAMES 415

 satisfying (2), taking the matric product of xT with both sides of the second

 expression, and the matric product of YT with both sides of the first ex-
 pression preserves the two inequalities. Heince, (2) and (5) arc equivalent
 to (2) and (4).

 Now let E = ee" be the matrix with all l's, so that for (x, y) satisfying
 (2), Ey := e, and xTEy = 1. Let k be fixed and large enough so that kE
 -BT > 0, and kE - A > 0, and consider solutions (x, y) to

 (kE-BT)X > e, x > 0. yTr(kE-BT)x-e]= 0,
 (6) and

 (kE -A)y > e, y > 0, xT[(kE-A)y-el = 0.

 There is then a one-to-one correspondence between the points (xo , yo)
 satisfying (2) and (5), and points (x, y) satisfying (6). Indeed, it is imn-
 mediately verified that the correspondence is given by

 o= (x-) x and Yo (Je) y

 with

 k-(+) = XOTByo, k- r = xoTAyo.

 C. The nondegenerate problem. In this section the following problem,
 namely that given in (6), will be considered: given matrices A and B of
 order in by n whose elements are all positive, find pairs (x, y) satisfying

 B Tx- e O x yT(BTx - e) =0,
 (7) and

 Ay-e _ 0. y _ O xT(Ay-e) =0.

 A pair (x, y) satisfying (7) will also be called an equilibrium point.
 Geometric considerations. Let

 (8) X = {x: x > 0, BTX - e > 0}.

 Denote the identity matrix by I, and write

 (9) B= (b, b2 ...b.) I= (el,e2, ,em),

 so that bj is the jth column of B, and es is the ith column of I. X is thus
 the set of points x satisfying the in + n inequalities

 eix >0 ==1,2, , in,
 (10) )2 ..

 bjX-1 > 0 j= 1,2,* ...

 with each of which one may therefore associate the corresponding column
 of the m by (m + n) matrix (B, I).

 Points on the boundary of X are points of X satisfying at least one of the
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 416 C. E. LEMKE AND J. T. HOWSON, JR.

 m + n linear relations

 eiTx =0, i= 1,2, ,,
 (11) bjx

 bjX-1 = I 0 j= 1 2,**,n.

 With any x is associated a unique matrix M(x) consisting of columns of

 (B, I) such that bj (resp., e,) is a column of M(x) if and only if bjx - 1
 = 0 (resp., e Tx = 0). The ordering of the columns of M(x) will not be
 important.

 If B is a matrix of mn rows, whose columns are columns of (B, I), there
 is at most one x for which B = M(x) if rank B = in. If further such an x
 is in X, it will be called an extreme point of X. It is of great convenience, if

 not of computational necessity, to ensure in what follows that for an ex-

 treme point x, M (x) has precisely m columns. To this end, for the remainder
 of this section it will be assumed that X satisfies the

 NONDEGENERACY ASSUMPTION. Let B be a matrix of order m by r whose

 columns are columns of (B, I). If there is an x such that B = M(x), then
 B has rank r.

 We may remark that ways of perturbing the data defining a given con-
 vex polyhedron, such as X, in such a way that the perturbed data define
 a nondegenerate polyhedron, are well-known. In the next section, an ex-
 plicit example of such a perturbation is given, and it is shown that such

 perturbation does not disturb the existence proof, and indeed facilitates
 the computation of an equilibrium point. Some relevant effects of the as-
 sumption are noted here.

 Let xo be a point of X, and M(xo) have order m by r. Then rank M(xo)

 - r < m, so that the columns of M(xo) form a linearly independent set.
 Write M(xo) = (di , d2 , * *, dr) (we include the possibility that M(xo)
 has no columns!) One may adjoin columns to M(xo) extending it to a non-
 singular matrix which we shall label C: C = (d1, d2, *., d.). De-
 note the inverse of CT by C-T and write: C-T (d1, d2, * * , di). The d
 thus satisfy uniquely

 diTdj= =ij)

 where 5ij = 1 if i = j, and 5ij = 0 if i 5- j.
 Consider points of the form

 (12) X = x0 + E tidt,

 where the ti are scalars.
 LEMMA. There is a k > 0 such that for (i) <=i tz2 < k, and (ii) ti > 0

 for 1 < i ? r, points x of the form (12) are in X.
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 EQUILIBRIUM POINTS OF BIMATRIX GAMES 417

 Proof. Let d denote any column of (B, I), and consider

 (13) dTx = d TXo + Z ti(dTdt).

 If d = d, X where 1 < s < r, the right side reduces to 0 + t8 , where 0 is
 1 if d is some bj and is 0 if d is some et . Hence 0 + t8 > 0 if and only if
 t > 0_ for 1 < s ? r. If d is any other column of (B, I), then one has
 dTxo > 0, and hence dTX > 0, for ti sufficiently small.

 The Lemma may be considered the main effect of the assumption of
 nondegeneracy. From it may readily be deduced the following, which are
 used in the sequel.

 (i) If xo is an extreme point of X, so that M(x) is nonsingular, points

 of the form x = xo + tidt are in X, for t, nonnegative and small enough;
 for those points with ti positive, 311(x) = M , where Mi is obtained from
 M(xo) by deleting the ith column di . The set of such points is an open
 edge of X with endpoint xo.

 (ii) If xo is a point of X for which rank M(xo) = m - 1, then, referring

 to (12), for points of the form x = xo + tmdm and I tm I < k, for some
 positive k, one has M(x) = M (xo). An open edge of X is defined as the
 (nonempty) set of all such points. Since for any x, points near x can only
 satisfy those linear relations (11) satisfied by x, we conclude that, with
 reference to (i) above, there are precisely m open edges of X having a
 given extreme point as an endpoint.

 (iii) There are precisely in unbounded edges of X, and each has one
 endpoint; namely points of the form x = ke , for k positive and large
 enough. This follows from the fact that B has only positive elements. Any
 other open edge of X has two endpoints, which, by definition, form a pair
 of adjacent extreme points. Thus, two extreme points of X are adjacent if
 and only if their associated matrices differ in but one column.

 Next, let

 (14) Y ={y: y ! 0, Ay - e ? 0}.

 Points on the boundary of Y are points of Y satisfying at least one of the
 mn + n linear relations

 aT _ 1 =0 i=l ,*,ft
 (15) i=1,2 l

 T~~~~~~~
 ej~y =0O, 1 ,* ,n

 where AT = (al, a2, am, U).
 As for X, it is assumed that Y satisfies the nondegeneracy assumption.

 Remarks made for X apply throughout for Y, with mn and n interchanged,
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 418 C. E. LEMKE AND J. T. HOWSON, JR.

 and (B, I) replaced by (I, AT). Finally, N(y) designates the matrix for
 y, as M(x) for x.

 Let Z = (X, Y), the cartesian product of X and Y. A point z = (x, y)

 will be called an extreme point of Z if and only if x is an extreme point of

 X, and y is an extreme point of Y; and z will be said to lie on an open edge

 of Z if and only if just one of x and y is an extreme point, and the other

 lies on an open edge.

 Proof and construction. Now with reference to (7), the equilibrium con-

 ditions for an equilibrium point z = (x, y) are that z is in Z, and

 (eiT x)(aiTy - 1) = 0, i = 1, 2, ... , n,

 (16) (ej y) (bj x - 1) = 0 j = 1, 2, *, n.

 LEMMA. An equilibrium point of the nondegenerate problem is an extreme

 point of Z.

 Proof. If z = (x, y) is a point of Z satisfying the m + n equilibrium con-
 ditions (16), then at least m + n of the linear conditions (15) and (11)

 must hold. But, by nondegeneracy, x can satisfy at most m, and y can

 satisfy at most n. Hence x satisfies exactly m, and is thus an extreme point,

 and y satisfies exactly n, and is thus an extreme point.

 Thus, an equilibrium point z is recognized as follows: for each r, 1 <
 r < mn + n, either the rth column of (B, I) is a column of M(x), or the
 rth column of (I, AT) is a column of N(y), and (hence) not both.

 Now, for fixed r, let Sr be the set of points of Z such that all mn + n of

 the equilibrium conditions (16), except possibly (erTy) (bix - 1) = 0,
 are satisfied.

 LEMMA. Each point of Sr is either an extreme point of Z, or a point on an
 open edge of Z.

 Proof. If z is a point of Sr , then z satisfies at least m + n - 1 equilibrium
 conditions; hence at least in + n - 1 of the linear conditions (15) and
 (11). Any point of Z satisfies at most in + n of the linear conditions. If
 z satisfies m + n, it is an extreme point of Z; if it satisfies rt + n- 1,
 it is on an open edge of Z.

 LEMMA. There is precisely one unbounded open edge of Z composed of

 points of Sr.
 Proof. Consider y = ker . For k large enough, y is in Y. If ko denotes the

 least such value of k, then (a) yo = koer is an extreme point of Y, and (b)
 for just one value of j, say j = s, does one have ajTyo = 1.

 Then consider points x of the form x = ke, . It is then clear that, for k
 large enough, points (x, yo), forming an unbounded edge of Z, are points
 of Sr . If kli denotes the least value for which kle, is in X, and we set xo
 = kie8, then (xo, yo) is the endpoint of that edge. For future reference,
 we refer to this edge as Eo .
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 EQUILIBRIUM POINTS OF BIMATRIX GAMES 419

 Now one readily checks that a point on an edge of Z may not belong to
 both Sr and Sr,, for r # r'. In particular, one may therefore associate one
 and only one unbounded edge of Z with a given value of r.

 LEMMA. Let z be an extreme point of Z and a point of Sr. There are then
 one or two open edges of Z, consisting wholly of points of Sr , which have z
 as endpoint. z is an equilibrium point if and only if there is one such edge.

 Proof. The proof is based on merely counting linear conditions satisfied
 and equilibrium conditions satisfied.

 Let z be an extreme point of Z and a point of Sr. There are then two
 cases, depending on whether (erTy) (brTX - 1) equals 0 or is positive, where

 z = (x, y).
 Case I. (erTy) (brTX - 1) = 0. Then z is an equilibrium point. Con-

 versely, any equilibrium point is a point of Sr . Hence for each of the equilib-
 rium conditions, being in + n in number, just one of the factors vanish.

 T T ~~~~~~~~~~~~~T
 In particular, either erTy = 0 or brTX - 1 = 0, and not both. Suppose er y
 = 0 (the case brTX = 1 is similarly treatied). There are m + n edges of Z
 which have z as common endpoint. Along any one of these precisely one
 of the m + n linear conditions satisfied by z is violated. Only that edge
 along which erTy = 0 is violated will consist of points of Sr

 Case II. (erTy) (brTX- 1) > 0. In this case, since z is an extreme point,
 and must thus satisfy m + n of the linear conditions, there is precisely one
 equilibrium condition for which both factors vanish. If this condition is
 etTx = 0, and atTy - 1 = 0, for some t, then the two edges, one of which
 violates only the condition etTx = 0, and the other of which violates only
 the condition atTy - 1 = 0, consist wholly of points of Sr . Along any other
 edge with endpoint z some one equilibrium condition defining Sr must be
 violated.

 Call two distinct open edges of Z adjacent if they have a common end-
 point. We will consider sequences of adjacent open edges of Sr which,
 together with their endpoints, we shall call r-paths.

 By the preceding lemmas, there exists an extreme point of Z which is a
 point of Sr, and starting from such an extreme point one may move either
 along one or along two edges of Z consisting of points of Sr . In any case,
 starting from such a point, call it z, one may move along an edge of Z con-
 sisting of points of Sr. Then either that edge ends in an extreme point,
 say z1, of Z, or that edge is the single unbounded edge Eo of points of Sr .
 In the former case, either z1 is an equilibrium point, in which case one can-
 not proceed, or else z1 is not an equilibrium point, in which case there is
 another edge, with endpoint z1, along which one may continue. Con-
 tinuing this process, therefore, starting from z we shall terminate the process
 if one either (i) enters the unbounded edge Eo of Sr, (ii) reaches an equi-
 librium point (other than z itself), or (iii) returns to some point previously
 traversed.
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 420 C. E. LEMKE AND J. T. HOWSON, JR.

 But note that (i) no edge of Sr may be traversed twice in this process
 (since this would ultimately imply an extreme point of the path which is
 the endpoint of three edges of the path), and (ii) the number of extreme

 points of Z is finite. In particular, with reference to (iii) of the preceding

 paragraph, starting from z one may only return to the path at z, and then
 only if z is not an equilibrium point. In summary, starting from z either
 one returns to z or not. If one does the resulting path is an r-path which

 we call a closed r-path. If one does not return to z, the process ends either

 in an equilibrium point or in the edge Eo . There are then two cases: either
 z is an equilibrium point, in which case the process defines a complete

 r-path, or z is not an equilibrium point, in which case one may repeat the

 process along the other edge of points of Sr which has z as endpoint. We
 thus have:

 LEMMA. Sr is nonempty. Sr is the union of a finite number of disjoint r-
 paths. Each r-path is either a closed r-path (and contains no equilibrium
 points), or contains one or two equilibrium points.

 Now let Po be that r-path which contains the unbounded edge Eo.
 THEOREM 1. Po contains precisely one equilibrium point. This point may

 be computed by traversing Po starting with the unbounded edge Eo . The num-
 ber of equilibrium points is finite and odd.

 Proof. Starting with Eo, the unique path through the r-path Po must
 terminate, and in an extreme point, which is then an equilibrium point.

 Any path, other than Po, which is not a closed r-path will have two end-
 points, each of which is an equilibrium point. These endpoints must be
 distinct.

 This completes the discussion of the nondegenerate case. In the next
 section the resolution of degeneracy is considered.

 D. The general case. Resolving degeneracy. In this section it is shown
 that (i) the original data may be perturbed, using a procedure familiar
 from linear programming theory, to yield a nondegenerate problem for
 which the results of the preceding section are valid; (ii) the perturbation

 scheme ensures that any extreme point of the perturbed polyhedron de-
 fines a definite extreme point of the original polyhedron. In particular,

 an equilibrium point for the perturbed problem defines an equilibrium
 point for the original problem. The particular perturbation scheme is not
 unique. A computational scheme for computing an extreme point path
 using the perturbed data is well-known, and is not discussed here.

 Consider e > 0 in the underlying ordered field. Let e( E) denote a column,
 appropriate order assumed, whose ith component is the ith power of e.
 Consider sets
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 EQUILIBRIUM POINTS OF BIMATRIX GAMES 421

 X(E) = {x: x > 0O BTx-e + e(E) > 0},

 (17) Y(E) = My y >O, Ay-e + e(E) > O},

 Z(E) = (X( e), Y(E)).

 Clearly, Z(E) contains Z - Z(0).

 LEMMA 1. There exists Eo such that for 0 < E < Eo, the set X( E) satisfies the
 nondegeneracy assumption.

 Proof. Observe that if d denotes any column of (B, I), the linear condi-
 tion corresponding to (11) may be written

 ( 18) dd x -1+E= 0,

 with the understanding that k = 0 if d = ej for any i, and that k = j if
 d bj.
 Let B = (di, d2, r, dr) be an mn by r matrix of rank r whose columns

 are columns of (B, I). Let d be any column of (B, I) which is not a column

 of BA and suppose that d is a (unique) linear combination of B:
 r

 (19) d = E td

 Suppose further that there is an x satisfying

 (20) d x =1 -Ek; and d T x =1 _k i = 1, 2,*

 for the appropriate values of k, ki. Note that any two positive integers
 from k, ki are distinct. From (19) and (20),

 r r

 (21) 0 = d Tx - Ztdx = (1 - e ) - ti(1 - e i),

 a polynomial equation of degree no greater than in. We assert that the right-
 hand-side is not identically 0, for if it were then necessarily (i) k = 0,

 so that d = ej, some j, and (ii) ki - 0 for those i for which ti is not 0.
 But then, referring to (19), ej would be expressed as a linear combination
 of other et, which is not possible. It follows that the right-hand-side is
 equal to 0 for at most m values of e.

 Since (i) for the given B, a d from (B, I) satisfying (19) and (20) is
 possible for at most a finite number of values of E, and (ii) the number of
 such B's is finite, it follows that X(E) satisfies the nondegeneracy assump-
 tion for all but a finite number of values of E. There is thus some open range
 (0, EO), such that for any E in the range, X(E) is nondegenerate.

 LEMMA 2. There is a range (0, El) for which the following holds. Let M
 be any nonsingular matrix (with columns from (B, I)), and let XO(E) denote

This content downloaded from 
�����������90.112.69.161 on Wed, 15 Nov 2023 02:27:53 +00:00������������ 

All use subject to https://about.jstor.org/terms



 422 C. E. LEMKE AND J. T. HOWSON, JR.

 the unique point for which M = M(xo( E)). If for some e in the range, xo( )
 is an extreme point of X( e) then
 (i) XO(E) is an extreme point of X(E) for all E in the range, and
 (ii) xo = xo(O) is an extreme point of X.

 Proof. As a preliminary, let f(E) = E' + a,,-E?-l + + alE + ao be
 any polynomial. The triangle inequality yields

 n

 (22) f(E)l E Z ai I for I E I < 1.
 i==o

 Next, for a given polynomial, let r be the least value for which ar 0.
 We may then write

 (23) f(E) = E (ar + Eg( E)).

 Applying (22) to g, it is clear that there is a range (0, e) within which f
 is either 0 or takes the sign of ar.

 Next, for a given e let xo(z) be an extreme point of X(e), and let M
 - M(xo(z)). Then M, as a nonsingular matrix, defines, for positive E,
 and with reference to X(E), a point x,(e). Then xO(E) is an extreme point
 of X(E) if and only if it is a point of X(E). Next, let d be a column of (B,
 I) which is not a column of M, and consider

 (24) dTxo(E) - I + E f( ).

 With reference to Lemma 1, for e in the range (0, EO), f( E) is a polynomial
 in e which does not vanish identically. With reference to (23), the "domi-
 nant coefficient" ar of f is independent of E. Hence, given M and d, f is
 uniquely defined and there is an e < E0 such that for E in the range (0, Z),
 j is not 0 and the sign of f is the sign of ar.

 The number of such pairs 3l, d is finite. There is therefore some E, <
 E0 such that for e in the range (0, El), for any pair 3l, d, the corresponding
 f retains its sign.

 In particular for this range, if x is a point of X(E), we have f(CE) > 0,
 for all such f's, and part (i) of the lemma follows.

 For part (ii), (22) gives f(0) = 0 (r # 0, a definite assertion of degen-
 eracy), or f(O) = ar (r = 0). In any case, f(0) may not take the sign op-
 posite to ar, and hence xo is in X, and hence is an extreme point.

 THEOREM 2. There exists an equilibrium point for the problem defined by

 (7).
 Proof. The proof follows from the Lemmas. With El as in Lemma 2,

 by the results of ?B (assuming El holds equally well for Y( E)), Z( e) has
 a (computable) equilibrium point. Any equilibrium point zO(E) defines a
 pair M and N and -hence xo and yo such that zo = (xo, yo) is an extreme
 point and an equilibrium point of Z.
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 EQUILIBRIUM POINTS OF BIMATRIX GAMES 423

 Let Q denote the set of equilibrium points for Z. We close this section

 with a few statements relating to Q. Q is bounded and may be charac-

 terized by Q, the set of extreme point equilibrium points: Q is the union
 of the convex hulls of certain subsets of Q (as discussed in [3]).

 E. Remarks. The results presented above give a prescription for com-

 puting efficiently one equilibrium point. It is not clear at this time how

 or in what manner these results may be extended to an efficient scheme

 for computing Q. For example, Q(E) = Q(E), and one may locate all equi-

 librium points of Q(E) by, for example, traversing all paths of Sr. But a

 scheme for finding all r-paths (excluding closed r-paths) is not in evidence.

 Further, it is seen by simple examples that Q(E) may not yield all of Q;

 specifically in the event that Z is degenerate.

 Care has been taken to keep all arguments algebraic, so that the results

 hold in an arbitrary ordered field.

 It may be observed that a "dual" development is possible, initiated by
 the introduction of "slack variables", and reposing (7) in the, perhaps
 more popular, form:

 (A (x) u (e) (x)

 ( >) _0, and (0) (w) =0.

 Finally, grateful acknowledgment is due to L. S. Shapley for detecting
 and reporting a serious error in a previous version.
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