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 Econometrica, Vol. 70, No. 6 (November, 2002), 2265-2294

 ON THE GLOBAL CONVERGENCE OF

 STOCHASTIC FICTITIOUS PLAY

 BY JOSEF HOFBAUER AND WILLIAM H. SANDHOLM'

 We establish global convergence results for stochastic fictitious play for four classes of
 games: games with an interior ESS, zero sum games, potential games, and supermodular

 games. We do so by appealing to techniques from stochastic approximation theory, which
 relate the limit behavior of a stochastic process to the limit behavior of a differential

 equation defined by the expected motion of the process. The key result in our analysis of

 supermodular games is that the relevant differential equation defines a strongly monotone

 dynamical system. Our analyses of the other cases combine Lyapunov function arguments

 with a discrete choice theory result: that the choice probabilities generated by any additive

 random utility model can be derived from a deterministic model based on payoff pertur-

 bations that depend nonlinearly on the vector of choice probabilities.

 KEYWORDS: Learning in games, stochastic fictitious play, supermodular games, dis-

 crete choice theory, chain recurrence, stochastic approximation theory.

 1. INTRODUCTION

 OF THE MANY EXISTING MODELS of learning and evolution in games, the oldest

 and best known is fictitious play, introduced by Brown (1951). In fictitious play,
 each player chooses best responses to his beliefs about his opponents, which are
 given by the time average of past play. Convergence of beliefs to Nash equilib-

 rium has been established for two player zero sum games (Robinson (1951)), 2 x 2

 games (Miyasawa (1961)), potential games (Monderer and Shapley (1996a)),
 games with an interior ESS (Hofbauer (1995b)), and certain classes of super-
 modular games (Milgrom and Roberts (1991), Krishna (1992), Hahn (1999)).

 Since best responses are generically pure, a player's choices under fictitious
 play are quite sensitive to the exact value of his beliefs; small changes in beliefs

 can lead to discrete changes in behavior. Even when beliefs converge to Nash
 equilibrium, actual behavior may not; in particular, behavior can never converge
 to the mixed equilibrium of a game. For these reasons, the appropriateness of
 fictitious play as a model of learning has been called into question.

 To contend with these issues, Fudenberg and Kreps (1993) introduced stochas-

 tic fictitious play. In this model, each player's payoffs are perturbed in each

 1 This article is an abridged and substantially revised version of our working paper, Hofbauer
 and Sandholm (2001). We thank Carlos Al6s-Ferrer, Buz Brock, Moe Hirsch, Ed Hopkins, Michael
 Kosfeld, Larry Samuelson, an editor, and three anonymous referees, as well as seminar audiences

 from Bonn, Cornell, Tokyo, UCL, Vienna, the 2001 Italian Game Theory Meeting, the Spring 2001

 Midwest Economic Theory Meeting, and the 2001 Stony Brook Conference for helpful discussions

 and comments. The second author gratefully acknowledges financial support from the National Sci-
 ence Foundation (SES-0092145).
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 2266 J. HOFBAUER AND W. H. SANDHOLM

 period by random shocks a la Harsanyi (1973a). As a consequence, each player's

 anticipated behavior in each period is a genuine mixed strategy. Fudenberg and

 Kreps (1993), Kaniovski and Young (1995), and Benaim and Hirsch (1999a) are

 therefore able to extend Miyasawa's (1961) result for 2 x 2 games to stochastic

 fictitious play, proving not only convergence of beliefs to equilibrium, but also

 convergence of behavior. Benaim and Hirsch (1999a) also establish convergence

 in certain p player, two strategy games. However, because of the complications

 created by the random payoff perturbations, results for other classes of games

 have proved difficult to obtain. In particular, nothing is known about convergence

 in games with more than two strategies per player.

 In this paper, we establish convergence results for stochastic fictitious play
 for the remaining classes of games noted above in which standard fictitious play
 is known to converge: namely, games with an interior ESS, zero sum games,

 potential games, and supermodular games.

 Our results should not be interpreted as suggesting that stochastic fictitious
 play converges in all games. Indeed, Benaim and Hirsch (1999a) show that
 stochastic fictitious play fails to converge to equilibrium in Jordan's (1993) three
 player matching pennies game. Shapley (1964) and Gaunersdorfer and Hofbauer
 (1995) provide examples in which versions of standard fictitious play fail to con-
 verge, and it is clear that stochastic fictitious play can fail to converge in these

 examples as well. Nevertheless, the classes of games we consider are of economic

 interest, and for these games we can obtain global convergence results.

 To establish these results, we rely on techniques from stochastic approxima-

 tion theory (see, e.g., Benaim (1999)). These techniques show that one can char-
 acterize the limit behavior of stochastic fictitious play in terms of the perturbed
 best response dynamic, a differential equation defined by the expected motion of
 the stochastic process. More precisely, all limit points of stochastic fictitious play
 must be contained in the chain recurrent set (Conley (1978)) of the perturbed best
 response dynamic. The chain recurrent set contains those states that can arise in
 the long run if the deterministic dynamic is subjected to small shocks occurring
 at isolated moments in time.

 The perturbed best response dynamic is defined in terms of perturbed best
 response functions. These functions are perturbed versions of the underlying best

 response correspondences; the differences between the two are due to the ran-

 dom payoff disturbances. To understand behavior under the perturbed dynamic,
 we must characterize these functions.

 In the case of supermodular games, we are able to show that the perturbed
 best response functions are monotone, where monotonicity is defined in terms
 of a stochastic dominance order on mixed strategies. This property enables us
 to show that the perturbed best response dynamic defines a strongly monotone
 dynamical system (Hirsch (1988)), which in turn allows us to describe the chain
 recurrent set. In fact, strong monotonicity implies that almost all solution tra-
 jectories of the perturbed dynamic converge to rest points, which themselves
 can be viewed as approximate Nash equilibria of the underlying game. Unlike
 the analyses mentioned above for settings without perturbations, our analysis
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 provides general convergence results for supermodular games without appealing

 to assumptions beyond supermodularity.

 The perturbed best response function can be expressed as the composition

 of a map from mixed strategy profiles to payoffs, and a map from payoffs to

 choice probabilities. The latter map is actually the standard choice probability

 function from the additive random utility model of discrete choice theory (see,

 e.g., McFadden (1981) or Anderson, de Palma, and Thisse (1992)). To analyze

 the remaining three classes of games, we prove a characterization theorem for

 this discrete choice model.

 In the additive random utility model, an agent chooses from a set of n alter-

 natives. The payoff to each alternative is the sum of a base utility and a random

 utility term; the probability with which an alternative is chosen is the probability

 that its overall utility is highest. We show that these choice probabilities can be

 derived from an alternative model in which the agent optimally chooses a prob-

 ability distribution over the n alternatives; his overall payoff in this model is the

 sum of the expected base payoff and some nonlinear, deterministic function of

 the probability vector he selects.2 By combining known results with an analysis

 based on Legendre transforms, we construct a deterministic representation of the

 random utility model that is valid regardless of the distribution of the random

 utility terms.

 In the context of learning in games, this result is of interest because it allows

 us to express perturbed best response dynamics in terms of deterministic payoff

 perturbations. Hofbauer (2000) and Hofbauer and Hopkins (2000) have recently

 shown that these deterministically perturbed dynamics are susceptible to analysis

 via Lyapunov functions. By combining such an analysis with our discrete choice
 result, we are able to characterize the chain recurrent set of the stochastically

 perturbed best response dynamic in the remaining three classes of games.

 Since the discrete choice theorem described above may be of interest outside

 game theory, we begin our analysis by presenting this result without reference

 to game theoretic concepts. Such concepts are introduced in Section 3, which

 defines stochastic fictitious play and derives the perturbed best response dynamic.

 Section 4 shows how the discrete choice result can be used to find Lyapunov

 functions for the perturbed best response dynamic in games with an interior ESS,

 zero sum games, and potential games, and uses these functions to characterize
 the chain recurrent set. Section 5 characterizes this set for supermodular games

 by showing that the perturbed dynamics form a strongly monotone dynamical

 system. Finally, Section 6 combines the analyses from the previous two sections

 with techniques from stochastic approximation theory to prove global conver-

 gence results for stochastic fictitious play. Proofs omitted from the text are pro-

 vided in the Appendix.

 2 This dual description of choice probabilities is well known in the case of logit choice model-see
 Section 2.
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 2268 J. HOFBAUER AND W. H. SANDHOLM

 2. A DISCRETE CHOICE THEOREM

 We consider the standard additive random utility model as described, for

 example, by Anderson, de Palma, and Thisse (1992). In this model, an agent

 must choose from a set of alternatives A = {1, . . . , n} offering base payoffs of

 7T1 J... , i7, But when choosing alternative i, the agent also obtains a stochastic
 payoff of si. The random vector s = (1 ... , 7E) takes values in Rn according to
 some strictly positive density f: Rn -? R; the distribution of e does not depend
 on the base payoffs i. When the stochastic terms are realized, the agent chooses

 the alternative whose total payoff is highest. Hence, the probability that the agent

 chooses alternative i is given by the choice probability function

 (1) Ci(7) = P (argmax 7j + E =i

 The best known example of a choice probability function that can be generated

 from a random utility model is the logit choice function,

 Li(T)- E exp(-1i-1T)

 We call the parameter 'j E (0, oo) the noise level. When qj approaches zero,
 logit choice approaches unperturbed maximization; when qj approaches infinity,
 it approaches uniform randomization. It is well known that the logit choice func-

 tion is generated by a random utility model whose random utility terms Si are
 i.i.d. with the extreme value distribution F(x) = exp(- exp(-rp-lx - y)), where
 y is Euler's constant.

 Interestingly, the logit choice function can also be derived using a quite dif-

 ferent model of payoff perturbations. Consider an agent who directly chooses

 a probability distribution y E AA = {x E R+: j xj = 1} over the elements in
 A. If the agent chooses distribution y, he obtains an expected base payoff of

 y -, but must pay a cost of V(y), where V is a nonlinear, deterministic func-
 tion of the probability vector he chooses. Suppose that the agent always chooses

 the vector y that maximizes the combined payoff y - V(y). It is well known
 (Rockafellar (1970), Anderson, de Palma, and Thisse (1992), Fudenberg and

 Levine (1998)) and easily verified that if the function V is the entropy function

 V(y) = q >1j yj ln yj, then this maximization yields the choice probabilities from
 the logit choice function L.

 The main result of this section, Theorem 2.1, shows that a deterministic repre-
 sentation can be obtained for choice probabilities from the additive random util-
 ity model regardless of the distribution of the random utility vector s. To state our

 result, we introduce one additional definition: following Fudenberg and Levine

 (1998), we call the deterministic perturbation V: int(zA) -? R admissible if for
 all y, D2V(y) is positive definite on R!J = {z E R': >j zj = 0}, the tangent space
 of AA, and if II 17V(y) approaches infinity as y approaches the boundary of zA.
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 STOCHASTIC FICTITIOUS PLAY 2269

 THEOREM 2.1: Let C: Rn >- AA be the choice probability function defined in
 equation (1), where the random vector e admits a strictly positive density on Rn

 and is such that the function C is continuously differentiable. Then there exists an

 admissible deterministic perturbation V such that

 (2) C(T) = argmax(y. T- V(y)).
 yEintf(AA)

 The proof of this result proceeds as follows. First, we establish that the deriva-

 tive matrix DC is symmetric and has negative off-diagonal terms. These proper-

 ties of DC imply that the vector field C admits a convex potential function, which

 we call W.3 We show that the required disturbance function V can be obtained

 as the Legendre transform of W. This choice of V ensures that the functions

 (VV)-1 and VW -C are identical (in a sense to be made precise below), so that

 C satisfies the first order conditions for the maximization problem (2).

 PROOF: The probability that alternative i is chosen when the payoff vector is

 i7 is given by

 (3) C,(-) = P(I + Ei > max(IT + Ej

 = P(E < 17Ti + Ei-1Tj for all j)
 r?? rIT +X -s -71 7T+Xi--7T 1 Vi+Xi -Ti+l 1 IT+Xi -7

 00 ... 00 I .. I f(x)dx, *dxi+ldxi-l .. dxl dxi. -oo If - -o -oo

 If we consider another alternative j > i and perform the change of variable
 x = 1T + Xi - jT, we find that

 () a I )iJo J JJ +XiTi+i fTi+xi Ej-l (Ti+xi-Tj+l fITJ+XilTfl

 f(x(4 . . ...
 -0 00 -00IT1 0 0 0o -00 -0 00

 f(xl, . . ., Xj7T ) j +Xi-TTj Xj+**

 Xn) dXn ..dxj+ldxj-l ..dxi+ldxi-l ..dxldxi

 dCj

 dri

 3 These facts are well known. Indeed, the potential function W is known to describe the expected
 perturbed payoff resulting from an optimal choice among the n alternatives-see McFadden (1981) or
 Anderson, de Palma, and Thisse (1992). However, the remainder of our argument appears to be new.
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 2270 J. HOFBAUER AND W. H. SANDHOLM

 This equality shows that the derivative matrix DC(XT) E RXfn is symmetric. More-
 over, DC(7T) is positive definite on Rj. To see this, note that by equation (4), the

 off-diagonal terms of DC(7T) are strictly negative. Since Ej Cj(7T) = 1 by defini-
 tion, it follows that

 ac.

 for each i, and so that

 (5) ___(7 a cj7.
 d'7Tj j:Ai d7i i

 Hence, equations (4) and (5) imply that DC(iT)1 = 0, where 1 E RI denotes the
 vector of ones. Moreover, if z is not proportional to 1, then if we let

 dij =r (c 0), ac

 equations (5) and (4) imply that

 (6) z DC(Tr)z = E dd zi
 i J

 = EEd dziz - E (Ed ii2 = E E d(ZiZj_Z2)
 ii< i ii<i

 j i:Aj j iAj j i:Aj

 = dij (2zizj _Zi2 _Zj2) = E E-dij(zi _-Zj)2 > ?.
 J i<J j i<j

 These observations imply that C is one-to-one on RJ and satisfies C(IT + cl) =
 C(XT) for all c E R: shifting payoffs by a constant vector does not affect choice
 probabilities.

 Finally, we make an observation about the range of the function C: if com-

 ponents 7j, j E J c A stay bounded while the remaining components approach
 infinity, then Cj(IT) -> 0 for all j E J: that is, C(vT) converges to a subface of the
 simplex AA. It follows that there are points in the range of C arbitrarily close to
 each corner of the simplex.

 Since the derivative matrix DC(7T) is symmetric, the vector field C admits
 a potential function W: Rn -> R (that is, a function that satisfies VW -C).
 Equation (6) implies that W is strictly convex on Ron

 Now consider the restrictions of W and C --W to R8, and let V: int(zA)
 R denote the Legendre transform of W:

 (7) V(y) = y- C (y) - W(C (y)).

 Since W: R8 ->r R is strictly convex and C: RO int(AA) takes values at points
 arbitrarily close to each corner of the simplex, Theorem 26.5 of Rockafellar
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 STOCHASTIC FICTITIOUS PLAY 2271

 (1970) implies that the following statements are true. First, the domain of V
 is convex and equals the range of C, which therefore must be all of int(AA).
 Second, V and W solve the dual optimization problems

 (8) V(y) = max(y iT - W(iT)) and

 (9) W(7r) = max (y-T r- V(y)).
 yeint(AA)

 Third, VV: int(AA) -* Ro is invertible, with (VV)-l VW C on
 We conclude by establishing the required properties of V. First, since

 (VV)-l _ C, the observation three paragraphs above shows that I1VV(y)jj
 approaches infinity as y approaches the boundary of AA. Furthermore, since
 C(VV(y)) = y, differentiating yields DC(VV(y))D2V(y) = I, where all expres-
 sions are interpreted as linear operators on Ron. Since DC(VV(y)) is symmetric
 and positive definite on RO and inverts D2V(y) on RO, it follows that D2V(y) is
 also positive definite on Rn.

 Finally, solving for the maximizer

 y* = argmax (y IT - V(y)),
 yEint(AA)

 we find that iT = VV(y*), and hence that y* = C(iT). This completes the proof
 of the theorem. Q.E.D.

 The requirement that the function C be continuously differentiable is essen-

 tially a smoothness requirement on the distribution of the random vector ?. For
 example, if the components of ? are independent, standard results on convolu-
 tions imply that C is continuously differentiable as long as each component of ?
 admits a bounded density function.

 It is natural to ask whether the converse of Theorem 2.1 also holds: that is,
 whether the choice function derived from any admissible deterministic perturba-
 tion can be derived from an appropriate stochastic perturbation. Proposition 2.2,
 which considers a logarithmic perturbation studied by Harsanyi (1973b), shows
 that such a reconstruction is not always possible.

 PROPOSITION 2.2: When n > 4, there is no stochastic perturbation of payoffs
 that yields the same choice probabilities as the admissible deterministic perturbation

 V(y) = - Ej In yj.

 More generally, we have the following characterizations of the two types of
 choice functions. The Legendre transform argument in the proof of Theorem 2.1
 shows that a surjective choice function C: Rn -. int(AA) can be derived from

 4 Since the domain of V is int(AA), the partial derivatives of V are not well defined. Consequently,
 VV(y) is defined to be the unique vector in Rn such that V(y + hz) = V(y) + (VV(y) z)h + o(h)

 for all unit length vectors z in RW.
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 2272 J. HOFBAUER AND W. H. SANDHOLM

 an admissible deterministic payoff perturbation V if and only if DC(7r) is sym-

 metric, positive definite on Roj, and satisfies DC(iT)l = 0. On the other hand,
 the Williams-Daly-Zachary Theorem of McFadden (1981) implies that the choice
 functions C that can be derived from some stochastic payoff perturbation - with
 a strictly positive density on Rn are characterized by these requirements, plus the

 additional requirement that the partial derivatives of C satisfy

 (-1)k ?kc0 >0
 d .il ... d7ik

 for each k = 1, . . . , n - 1 and each set of k + 1 distinct indices {iO, i1,... , ij.
 In order to model boundedly rational choice in a simple fashion, Chen, Fried-

 man, and Thisse (1997) consider choice functions of the form

 (10) Ci ( X) = (id) '

 where the weighting function w: R -? (0, oo) is some increasing and differentiable
 function of payoffs. We conclude this section by noting that the only choice
 function of this form that can be derived from either stochastic or deterministic

 perturbations of payoffs is the logit choice function L.

 PROPOSITION 2.3: Suppose that the choice function C satisfies condition (10)

 and either condition (1) or condition (2). Then C _ L for some noise level 71 > 0.

 3. STOCHASTIC FICTITIOUS PLAY AND PERTURBED BEST

 RESPONSE DYNAMICS

 3.1. Preliminaries

 In this section, we define the process of stochastic fictitious play that is our
 central interest in this paper. Before doing so, we introduce notation to describe
 normal form games. A p player normal form game G is defined by a collection
 of finite strategy sets S1, ... , SP and a collection of utility functions u1, . . , uP.
 Player a's strategy set is Sa = {1, . . , na}, with typical elements Sa, i, and j.
 Player a's utility function ua is a map from the set of strategy profiles S = H'3 SP

 to the real line. Finally, S- = 'P03 l SO denotes the set of strategy profiles of
 player a's opponents.

 It will prove useful to define vector-valued functions that describe the payoffs
 to each of a player's pure strategies given the mixed strategies chosen by his

 opponents. Let ASa = {Xa E R a: Ei xa = 1} denote the set of player a's mixed
 strategies. Also, let X = ASO3 AS', with typical element x = (x, ... ., xP), denote
 the set of mixed strategy profiles, and let F- = H'$ aASO. Then player a's payoff
 vector is denoted U: Y - Rn, and is defined by

 Usa(x )= E (u(5a, sa) x:
 s-a ES-a P:Aa

This content downloaded from 
�����������90.112.69.161 on Wed, 15 Nov 2023 02:21:22 +00:00������������ 

All use subject to https://about.jstor.org/terms



 STOCHASTIC FICTITIOUS PLAY 2273

 Using this definition, we can define player a's best response correspondence
 Ba: -a == ASa by

 B a(x-a) = arg max y Ua(x-a).
 yEASa

 If we let the random vector Ea represent a random perturbation of player a's

 payoffs, and let Ca denote the corresponding choice probability function, we can

 define player a's perturbed best response function Ba: X- -? z1Sa by

 B(x-a) = P(argmaxU(x-) +e, = i= C(Ua(x-a)).

 When the random utility terms are "small," the continuous function Ba is a
 perturbed version of the discontinuous correspondence B.

 3.2. Stochastic Fictitious Play

 In unperturbed fictitious play, each player chooses a best response to his beliefs
 about how his opponents will behave; these beliefs are determined by the time
 average of past play. In stochastic fictitious play, players make these choices after
 their payoffs are subjected to random shocks.

 In standard stochastic fictitious play, a group of p > 2 players repeatedly plays

 a p player normal form game. The state variable is Zt E X, whose components
 Za describe the time averages of each player's past behavior.5 Formally,

 t ~ ~ i

 a t
 (1 1) zt= t ga,

 u=1

 where vta E jSa represents the pure strategy played by player a at time t. The
 initial choices ;a are arbitrary pure strategies,6 while subsequent choices are best
 responses to beliefs Zt. Best responses are determined after payoffs have been
 subjected to disturbances Ea that are independent over time t and across players
 a. Player a's disturbance vectors are distributed according to a fixed density
 function f a: Rna -? R that satisfies the conditions of Theorem 2.1. Since the
 mixed strategy representation of player a's pure strategy i E Sa is the standard

 basis vector ei E cSa c Rfl, player a's choice probabilities are described by

 (12) P(ta+1 =eiZt =z) =P(argmax Uk (z)+(?t)k =i) =B (Za)-

 5 This specification is based on the idea that players assess the behavior of each of their opponents
 separately. When there are three or more players, one could instead start with the alternative premise

 that each player tracks the time average of his opponents' past joint behavior, in which case the

 relevant state space would be the set of correlated strategies. For further discussion of this modeling

 issue, see Fudenberg and Levine (1998, Section 2.5).

 6 In fact, choices can be specified arbitrarily during the first T < oo periods without altering our
 results.
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 2274 J. HOFBAUER AND W. H. SANDHOLM

 We also consider a formulation of stochastic fictitious play where, in each

 period, two players are chosen from a larger group to play a symmetric two

 player game. This formulation corresponds to the single population framework

 commonly studied in evolutionary game theory. A two player game is symmetric if
 the two players' strategy sets are the same and if a player's payoffs do not depend
 on whether he is called player 1 or player 2: S1 = S2 and u1(s1, s2) = u2(s2, s1). If
 each player's payoffs are subject to random disturbances E' and 2 drawn from
 the same distribution, the resulting perturbed best response functions B1 and B2
 are identical.

 In symmetric stochastic fictitious play, the state variable is the time average of

 all past plays of the game: if vta represents the strategy chosen by the player
 assigned to role a at time t, then the state variable Zt E AS1 is given by

 2t u=l

 Players choose best responses after their payoffs have been subjected to the ran-

 dom disturbances El and 42, which are independently and identically distributed
 over time and across players. Choice probabilities are therefore described by

 P(ta+1= eiJZt = z) = P(argmax Uk(z) + (?t)k = = B1(z).

 3.3. Perturbed Best Response Dynamics

 The first step in analyzing stochastic fictitious play is to determine its expected
 motion. In the case of standard stochastic fictitious play, we do so by first rear-
 ranging equation (11) in order to obtain a recursive definition of Za:

 1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 za ~(tZa? 1) Zt+l t + 1 (tt+ +l)

 We can then use equation (12) to compute the expected increments of Za:

 E(Z,l- = Z) = Zt = z) -z] = (B(z-)-Za) t+ t t~~ + t?+1

 Thus, we see that after a reparameterization of time, expected changes in the

 time average Zt are governed by the perturbed best response dynamic

 (P) xa = Ba (a)- x) .

 This dynamic is defined on the space of mixed strategy profiles L. Similarly, the
 expected motion of symmetric fictitious play is governed by a symmetric version
 of the perturbed best response dynamic, defined on the set of mixed strategies
 AS':

 (SP) i =B ()-X
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 STOCHASTIC FICTITIOUS PLAY 2275

 The dynamics (P) and (SP) can be viewed as perturbed versions of the mul-
 tipopulation and single population best response dynamics (Gilboa and Matsui
 (1991)):

 (BR) xi' E B (x-a) -x';

 (SBR) x E Bl (x) -x.

 The latter dynamics can be used to approximate the time average of behavior

 under unperturbed fictitious play. However, since the best response correspon-
 dences Ba are set valued, the dynamics (BR) and (SBR) can exhibit complicated
 solution trajectories, and in fact may admit multiple solution trajectories from

 a single initial condition-see Matsui (1992) and Hofbauer (1995b). In contrast,

 since the perturbed best response functions B' are single-valued and smooth,

 the perturbed dynamics (P) and (SP) are well behaved, and in particular possess
 unique solution trajectories.

 We begin our analysis of stochastic fictitious play by studying its expected
 motion in four classes of games (Sections 4 and 5). Once this is accomplished,
 we can use techniques from stochastic approximation theory to characterize the

 original stochastic processes (Section 6). Before beginning our analysis of equa-
 tions (P) and (SP), we take care of a few additional preliminaries.

 3.4. w-Limit Sets and Chain Recurrence

 Most analyses of evolutionary dynamics use the notion of an w-limit set to
 describe limit behavior. However, understanding stochastic fictitious play requires
 the more general notion of chain recurrence. We now introduce and contrast
 these two concepts. Consider a dynamic

 (D) x = F(x)

 that generates a semiflow 4p: R? x X -* X on the compact set X c Rn. The point
 4(t, x) E X is the position at time t of the solution to (D) that begins at x E X.
 The set of rest points of (D) can be defined as RP(D) = {x E X: 4(t, x) = x for
 all t>O}={xeX: F(x)=O}.

 The to-limit set of the state x, GO(X) = {z E X: limk,- (tk, x) = z for some
 tk ?? o}, is the set of limit points of the solution trajectory starting at x. We let
 f2(D) = UXEX o(x) denote the union of the wo-limit sets. Clearly, RP(D) c f2(D).

 Knowledge of 12(D) is generally not sufficient to characterize limit behavior
 under stochastic fictitious play. To accomplish this, we require the more general
 notion of chain recurrence (Conley (1978)), which allows for states that can arise
 in the long run if the flow is subject to small shocks occurring at isolated moments
 in time. Call a sequence {x = x0, x1, . . ., Xk = y} an E-chain from x to y if for

 each i E {1,. . . , k}, there is a ti > 1 such that kk(ti, xi-1) - xi < E. The E-chain
 specifies k + 1 segments of solution trajectories to (D). The first begins at x, and
 the last is simply the point y; the jumps between the ends and beginnings of

This content downloaded from 
�����������90.112.69.161 on Wed, 15 Nov 2023 02:21:22 +00:00������������ 

All use subject to https://about.jstor.org/terms



 2276 J. HOFBAUER AND W. H. SANDHOLM

 consecutive segments are never longer than E. We call the state x chain recurrent

 if there is an E-chain from x to itself for all E > 0, and we let CR(D) denote the

 set of chain recurrent points. The set CR(D) contains all rest points, periodic

 orbits, quasiperiodic motions, and chaotic orbits of the flow. It can be shown that

 Q2 (D) c CR(D), and that in general this inclusion is strict. For further discussion,

 see Conley (1978), Akin (1993), Robinson (1995), or BenaYm (1999).
 To see why chain recurrence is needed here, consider a flow on a circle

 that moves clockwise everywhere except at a single rest point. This rest point

 is the unique to-limit point of the flow. Now suppose that the flow represents

 the expected motion of some underlying stochastic process. If the stochastic

 process reaches the rest point, its expected motion is nil. Nevertheless, actual

 motions may occur with positive probability, and in particular the process can
 jump past the rest point and begin another circuit. Therefore, in the long run all

 regions of the circle are visited infinitely often. Since the only to-limit point of

 the flow is the rest point, this notion of recurrence does not capture the long run

 behavior of the underlying stochastic process. However, this long run behavior is

 captured by chain recurrence, as one can easily verify that all points on the circle

 are chain recurrent under the flow.

 3.5. Rest Points and Nash Equilibria

 The rest points of the perturbed best response dynamics will ultimately con-

 stitute our predictions of long run behavior under stochastic fictitious play. For

 these predictions to accord with standard game theoretic analyses, these rest

 points should approximate Nash equilibria of the underlying game. The follow-
 ing result ensures that this is true whenever the perturbations generating the

 dynamics are sufficiently small.

 PROPOSITION 3.1: Fix a game G. For each k E Z+, let ?k = (Elk, ... ., P'k)
 be a collection of disturbance vectors, and let Xk e X be a rest point of (P) under
 ?k. If the sequence {?k} converges weakly to a mass point at the origin, and if the
 sequence {xk} converges to x*, then x* is a Nash equilibrium of G. If instead each
 xk E AS' is a rest point of (SP), then x* is a symmetric Nash equilibrium of G.

 4. DISCRETE CHOICE THEORY AND LYAPUNOV FUNCTIONS

 The perturbed best response dynamics (P) and (SP) are defined in terms of
 stochastic payoff perturbations. In this section, we use Theorem 2.1 to express
 these dynamics in terms of deterministic payoff perturbations. This transfor-
 mation is useful because in certain cases, one can characterize behavior under
 the deterministically perturbed dynamics by introducing suitable Lyapunov func-
 tions. Doing so enables us to characterize the chain recurrent sets of the original
 dynamics (P) and (SP) in cases where the underlying game admits an interior
 ESS, is a zero sum game, or is a potential game.
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 STOCHASTIC FICTITIOUS PLAY 2277

 If we write out the perturbed best response dynamic (P) explicitly in terms of
 the stochastic perturbations Ea, we obtain

 Xi= P(argmax Uk(x ) + (t)k = i- .

 Theorem 2.1 tells us that the choice probabilities induced by the random vectors
 Ea can always be represented in terms of some deterministic perturbations Va.
 Consequently, the dynamic (P) is equivalent to the dynamic

 (PV) ia = arg max (y_ Ua (x-a) - Va (y)) - x
 yEint(ASa)

 for the appropriate choices of Va. We can also use this transformation in the
 symmetric case, obtaining the dynamic

 (SPV) x = arg max (y U1 (x) - V1 (y)) - x.
 yEint(AS1)

 We call (PV) and (SPV) deterministically perturbed best response dynamics.
 We call a real valued function A a strict Lyapunov function for a dynamic if its

 value increases strictly along every nonconstant solution trajectory. The existence
 of a Lyapunov function for a dynamic ensures that limit behavior is very simple.
 In particular, if its state space is compact, all solution trajectories of the dynamic
 must converge to connected sets of rest points. While the original perturbed
 dynamics (P) and (SP) do not seem especially conducive to admitting Lyapunov
 functions, Hofbauer (2000) and Hofbauer and Hopkins (2000) have constructed
 Lyapunov functions for the deterministically perturbed dynamics (PV) and (SPV)
 for certain classes of games. In the two subsections that follow we review and
 extend their results.

 In addition to the games we explicitly consider in the coming sections, we can
 also establish results for related games obtained through certain transformations

 of payoffs. As usual, any result that holds for the game G also holds for the

 game G, where ui(s) = Ua(S) + 4a(Sa) for some functions ka: S -- R. This
 invariance holds because shifting player 's payoffs by a term that he cannot
 influence does not alter his incentives. More notably, our convergence results that
 hold for G also hold for G, where u-a(S) = KaUa(S) + q,a(Sa). The constant Ka > 0

 rescales the payoffs of the original game, while the function 4/a: Sa -t R captures
 a shift in player a's payoffs that depends only on his own behavior. To see why our
 convergence results are not affected by these changes, note that the perturbed
 best response function generated by the game G and the disturbance vector Ea
 is identical to the perturbed best response function generated by the game G
 and the disturbance vector (1/Ka)(?a + i/a). In other words, the effect of the
 affine transformation KaUa + q,a on the payoffs of the underlying game can always
 be mimicked by a corresponding transformation of the payoff disturbances. Of
 course, such transformations can alter Nash equilibria and rest points of the

 perturbed dynamics, while shifts by Oa cannot.
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 4.1. Games with an Interior ESS and Zero Sum Games

 The notion of an evolutionarily stable strategy (Maynard Smith and Price (1973))
 is the original solution concept of evolutionary game theory. Consider a sym-
 metric two player game G. A mixed strategy x* E AS' is an ESS if x* Ul(x) >
 x. U1 (x) for all mixed strategies x in a neighborhood of x*. In other words, an
 ESS is a mixed strategy with the property that after any invasion by a mutant
 mixed strategy, the ESS performs better than the mutant in the post-entry
 population.

 We focus on games with an ESS in the interior of the state space AS1.7 Hof-
 bauer (2000) shows that if G admits an interior ESS, then the dynamic (SPV)
 admits a strict Lyapunov function that is strictly concave. In our notation, this
 function can be expressed as

 A(x) = x. U' (x) - V'(x) - W' (U' (x)).

 Because A is strictly concave, the maximizer of A is globally asymptotically stable
 under (SPV), and indeed is the unique chain recurrent point of (SPV). Conse-
 quently, Theorem 2.1 implies that this maximizer is also the unique chain recur-
 rent point of the original dynamic (SP).

 One can also find Lyapunov functions for two player zero sum games. A two
 player game is zero sum if ul(s) = -u2(s) for every strategy profile s E S. In the
 symmetric case, Hofbauer (2000) shows that the Lyapunov function A defined
 above is again a strict Lyapunov function for the dynamic (SPV).8 For cases
 where the game is not necessarily symmetric, Hofbauer and Hopkins (2000) show
 that the strictly concave function

 A(x', X2) = -Vl(xl) - Wl(Ul(X2)) _ V2(X2) _ W2(U2(Xl))

 is a strict Lyapunov function for the dynamic (PV). Theorem 2.1 again implies
 that the maximizer of A is the unique chain recurrent point of (P).

 4.2. Potential Games

 Potential games include pure coordination games and congestion games, and
 also arise in applications of evolutionary techniques to implementation prob-
 lems (see Sandholm (2002a, 2002b)). We call the game G a potential game if
 ua(S) = u'3(s) for all players a and 1B and all strategy profiles s E S. That is, G is
 a potential game if all players always receive the same payoff.9 Hofbauer (1995a)

 7 An interior ESS cannot exist outside of the current symmetric framework-see Selten (1980).

 8 Note that in the zero-sum case, the first term of A is identically zero.
 9 Typically, the definition of potential games also includes games in which payoffs are common up

 to shifts that do not affect the players' incentives-see Monderer and Shapley (1996b). However, since
 these shifts have no bearing on perturbed best responses (see the discussion preceding Section 4.1),

 it is enough to consider games in which payoffs are identical. More generally, the discussion preced-

 ing Section 4.1 implies that our results for games with identical payoffs extend immediately to the
 weighted potential games of Monderer and Shapley (1996b) and to the rescaled partnership games
 of Hofbauer and Sigmund (1988).
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 STOCHASTIC FICTITIOUS PLAY 2279

 and Sandholm (2001) show that in games of this form, the aggregate payoff func-

 tion serves as a Lyapunov function for a broad class of evolutionary dynamics. By

 adding an appropriate perturbation, one can also obtain Lyapunov functions for
 the deterministically perturbed best response dynamics. In the case where G is a

 two player symmetric potential game, Hofbauer (2000) shows that the function

 nx=1 E U(Sl, S2)XS1X2VlX H(x) = u'(' s2XS12 - V'(X)
 (S1, S2)ES

 is a strict Lyapunov function for the dynamic (SPV). The first term in H(x)

 equals one half of the payoff to mixed strategy x when played against itself, while
 the second term is the perturbation.

 By building on the previous result and on a result of Hofbauer and Hop-

 kins (2000) for two player games, we can construct Lyapunov functions for the
 dynamic (PV) for any p player potential game.

 PROPOSITION 4.1: If G is a potential game, then the function

 II(x1, . ., xP) =Y (ul(S)Flxsa)- (x
 SES a a

 is a strict Lyapunov function for the dynamic (PV).

 The Lyapunov functions above guarantee that the sets of w-limit points for

 (PV) and (SPV) are equal to the sets of rest points. But remarkably, the exis-
 tence of a strict Lyapunov function is not enough to ensure that all chain recur-
 rent points are rest points.10 However, this equivalence can be established under
 slightly stronger assumptions. We now present results that establish this equiva-
 lence for the case of the dynamic (PV). Given the proofs of these results, ana-
 logues for the dynamic (SPV) are easily obtained.

 One way to obtain the conclusion that all chain recurrent points are rest points
 is to require that the potential function H be sufficiently smooth. This will be
 true so long as the perturbations Va are sufficiently smooth.

 PROPOSITION 4.2: Suppose that G is a potential game and that each function

 Va is CN, where N = Ea(na - 1) is the dimension of the state space .. Then
 CR(PV) = RP(PV).

 If we begin with the dynamic (P) based on the stochastic perturbations 8a, the
 deterministic perturbations Va that correspond to the random vectors 8a will be
 CN if the distributions of the 8a are sufficiently smooth.

 Alternatively, we can reach stronger conclusions by imposing a generic regu-
 larity condition."

 10 For counterexamples, see Akin (1993, pp. 25-26 and 55-56) and BenaYm (1999, p. 27).
 11 A rest point x* of the dynamic (D) is hyperbolic if all eigenvalues of the derivative matrix DF(x*)

 corresponding to eigenvectors in the relevant tangent space have nonzero real part.
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 2280 J. HOFBAUER AND W. H. SANDHOLM

 PROPOSITION 4.3: If G is a potential game and all rest points of (PV) are hyper-

 bolic, then RP(PV) is finite and CR(PV) = RP(PV).

 Again, Theorem 2.1 shows that these results also apply to the stochastically

 perturbed dynamics (P) and (SP).

 5. SUPERMODULAR GAMES AND STRONGLY MONOTONE DYNAMICS

 Supermodular games describe situations in which different players' actions are

 strategic complements. In these games, an order relation is placed on the strategy

 sets; strategic complementarity means that the advantage of switching to a higher

 strategy increases when opponents choose higher strategies. Supermodular games
 arise in many economic applications; for examples, see Topkis (1979), Milgrom

 and Roberts (1990), Vives (1990), and Fudenberg and Tirole (1992).
 In this section, we show that when the underlying game is supermodular, the

 perturbed dynamics (P) and (SP) form a strongly monotone dynamical system

 (Hirsch (1988)). This fact allows us to establish a number of important properties
 of the dynamics, and in particular to describe the sets of chain recurrent states.

 We say that the game G is (strictly) supermodular if for all distinct players
 a and 1B and all strategy profiles s and s such that Sa > ^a and S-a = ^-a, the

 difference Ua(S) - Ua(s) is strictly increasing in sA = sO. In other words, a game is
 supermodular if the advantage a player obtains from choosing a higher strategy
 is increasing in the strategy choices of each of his opponents.12

 A fundamental property of supermodular games is that they possess increasing
 best response correspondences. This property can be used to show that every
 supermodular game admits a minimal and a maximal Nash equilibrium, and
 it is also important for studying learning processes.13 A related monotonicity
 property is fundamental for studying the perturbed best response dynamics. For

 each player a, define the invertible linear operator Ta: ASa -> Rn1a by

 no'

 (TaXa)i= L xa.
 j=i+l

 If Xa E ASa is a mixed strategy for player a, then the ith component of
 Taxa equals the mass in Xa placed on pure strategies larger than i. If we
 view points in the simplex ASa as probability distributions on the strategy
 set Sa = {1, 2, . . . ,na}, then Taya > Taxa if and only if ya stochastically

 12 Of course, it is enough for this property to hold after the names of the strategies have been
 permuted in an appropriate way.

 13 For the properties of pure strategy equilibria, see the aforementioned references. Milgrom and
 Roberts (1991) show that fictitious play converges in supermodular games with a unique Nash equi-

 librium. Krishna (1992) proves convergence in supermodular games satisfying a diminishing returns

 condition; Hahn (1999) proves convergence in 3 x 3 and 3 x 2 supermodular games. Finally, Kandori

 and Rob (1995) use the monotonicity of best responses to characterize the stochastically stable states

 of the Kandori, Mailath, and Rob (1993) model in certain supermodular games.
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 STOCHASTIC FICTITIOUS PLAY 2281

 dominates Xa. To compare full mixed strategy profiles, we define T: I

 HaRnal by T(xl,... ,xP) = (Tlxl,.. ., TPxP); T- $-t -+ Hp Rfl0 is
 defined analogously.

 Theorem 5.1 shows that in supermodular games, each player's perturbed best

 response function is monotone with respect to this stochastic dominance order.14

 THEOREM 5.1: Suppose that G is supermodular. If T-ay-a > T-ax-a, then

 TaBa(y-a) > TaBa(X-a).

 The monotonicity of the perturbed best response functions allows us to charac-

 terize the behavior of the perturbed dynamics (P) and (SP). To avoid repetition,
 we state our next four results for the asymmetric dynamic (P); nearly identical
 results can be established for the symmetric dynamic (SP).

 With the monotonicity of Ba in hand, one can establish that the dynamic (P)
 possesses a minimal and a maximal rest point.

 THEOREM 5.2: If G is a supermodular game, there exist rest points x, x E RP(P)

 such that RP(P) C [x, x], where [x, x] = {x E L: Tx < Tx < TxI}.

 To relate this result to our earlier remarks, recall (from Proposition 3.1) that

 the rest points of (P) represent approximate Nash equilibria of G.
 To obtain more precise information about behavior under (P), it is helpful to

 study this dynamic after applying the change of coordinates T. The next result
 shows that this yields the dynamic

 (T) j) TaB ((T )lv- )-V

 on the set T() = {(vl, ..., vP) E Rn - 1 >v vnc or all a}.

 PROPOSITION 5.3: The dynamic (P) and the dynamic (T) are linearly conjugate:
 {xtJt>0 solves (P) if and only if {Txt}t>o solves (T).

 A differential equation v = g(v) on T(,) is called cooperative if dga (v)/dvo > 0
 for all v E T(X) and all distinct pairs (a, i) and (,1, j). That is, an increase in any
 component of the state increases the rates of change of all other components.
 The equation is irreducible if for each v E T(l) and each nonempty proper sub-

 set I of the components of v, there is an (a, i) E I and a (,B, j) E I' such that
 ag (v)/ai< 4 0. The transformed dynamics (T) are of interest because they pos-
 sess both of these properties.

 THEOREM 5.4: If G is supermodular, the dynamic (T) is cooperative and irre-
 ducible.

 14 It is worth noting that while monotonicity holds for any perturbed best response function defined
 in terms of stochastic perturbations, it does not extend to all perturbed best response functions

 defined in terms of deterministic perturbations. For an explanation of this point, see the Appendix.
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 2282 J. HOFBAUER AND W. H. SANDHOLM

 Observe that if ti is a standard basis vector in Rn a-1, then t = Ta(e1? -e
 where the latter vectors are standard basis vectors in Rna. In light of this obser-

 vation and Proposition 5.3, the fact that (T) is cooperative has the following
 interpretation for the perturbed best response dynamics (P): if we shift mass in

 the strategy distribution xp E ASO from strategy j to strategy j + 1, then for each
 player a 7& /3, the growth rate of every strategy i + 1 E Sa increases relative to
 that of strategy i.

 Theorem 5.4 is important because dynamics that are cooperative and irre-

 ducible are strongly monotone, and so have desirable monotonicity and conver-
 gence properties. In the next result, we list a number of useful implications of
 Theorem 5.4 for the perturbed best response dynamic (P).

 COROLLARY 5.5: If G is supermodular, then:
 (i) The dynamic (P) is strongly monotone with respect to the stochastic dom-

 inance order: if {xt}t>0 and {Yt}t,o are two solutions to (P) with Ty0 > Txo and
 Yo 0 x0, then Tyt > Txt for all t > 0.

 (ii) The chain recurrent set lies between the minimal and maximal rest points of
 (P): CR(P) c [x,x ]. In particular, if RP(P) = {x*}, then CR(P) = {x*} as well.

 (iii) There is an open dense set of initial conditions from which solutions to (P)
 converge to unique limit points in RP(P).

 (iv) The remaining initial conditions are contained in a finite or countable union

 Ui M, of invariant manifolds of codimension 1, and hence have measure zero.
 (v) Chain recurrent points are either rest points or are contained in these invari-

 ant manifolds: CR(P) C RP(P)U Ui Mi.

 PROOF: In light of Proposition 5.3 and Theorem 5.4, part (i) follows from
 Theorem 4.1.1 of Smith (1995), part (iii) from Theorem 2.4.7 of Smith (1995),
 part (iv) (after a reversal of time) from Theorem 1.1 of Hirsch (1998), and part
 (v) from Theorems 1.6 and 1.7 of Hirsch (1999) (also see Theorem 3.3 and
 Corollary 3.4 of Benaim and Hirsch (1999b)). The proof of part (ii) is provided
 in the Appendix. Q.E.D.

 Suppose we restrict attention to supermodular games with exactly two strate-
 gies per player. In this case, supermodularity requires only that the payoff advan-
 tage of every player's second strategy is increasing in the mass that each of his

 opponents places on her second strategy. Benaim and Hirsch (1999a) observe
 that games with this property yield strongly monotone perturbed best response
 dynamics. Because there are only two strategies per player, there is no need to
 introduce the stochastic dominance order to obtain this conclusion. Our analysis
 shows that by introducing this order, one can establish strong monotonicity of
 the dynamics for all supermodular games."5

 15 Furthermore, while in the two strategy case every reasonable evolutionary dynamic generates a
 strongly monotone flow, with more strategies this property is particular to the perturbed best response

 dynamics (P) and (SP). Indeed, this property fails for the replicator dynamics, and it does not even
 hold for all specifications of the deterministically perturbed best response dynamics (PV) and (SPV).
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 Corollary 5.5 shows that solution trajectories from almost all initial conditions
 converge to rest points of (P), but allows the possibility that convergence does

 not occur from the remaining initial conditions. We conclude this section with an

 example in which convergence fails on a measure zero set.

 EXAMPLE 5.6: Consider a p player game, p > 5, with two strategies per player.
 Each player a wishes to coordinate his behavior with player a + 1 (with the con-
 vention that p + 1 = 1). More specifically, Ua(s) equals 1 if Sa = 5a+1 and equals
 0 otherwise. This game is (weakly) supermodular.16 It has three Nash equilibria:
 two strict equilibria in which all players coordinate on the same strategy, and the

 mixed equilibrium x* = ((i, 2),. . . * (4' 2)).
 Suppose that player a's payoffs are augmented by the random perturbation

 a= (,a, a). Let g denote the common density function for the differences

 E- a , and suppose that g is symmetric about zero, is decreasing on R+, and
 satisfies g(O) > 2. We show in the Appendix that the resulting perturbed dynamic
 (P) possesses exactly three rest points: the mixed equilibrium x*, and two stable
 symmetric rest points that approximate the two pure Nash equilibria. We estab-
 lish below that the rest point x* is unstable. Since Corollary 5.5 tells us that an
 open dense set of initial conditions must converge to a rest point, it follows that

 the two stable rest points attract almost all initial conditions in X, and that the
 basins of attraction for these rest points are separated by a p - 1 dimensional
 invariant manifold M c X that contains x*.

 Since there are two strategies per player, the transformed dynamic (T) tracks
 the mass each player places on his second strategy. It is easily verified that the
 derivative matrix for (T) evaluated at Tx* is the p x p circulant matrix whose
 rows are permutations of the vector (-1, 2g(0), o, ... , 0). This matrix has an
 eigenvalue of 2g(O) -1 > 0 corresponding to the unstable direction 1, and eigen-
 values of 2g(O) exp(2irik/p) - 1, k = 1, . . . , p - 1, corresponding to directions
 tangent to M (see Hofbauer and Sigmund (1988, p. 66)). Since p > 5, at least
 two of the latter eigenvalues will have positive real parts if g(O) is sufficiently
 large. In this case, the rest point x* is also unstable with respect to the restric-
 tion of (P) to the manifold M. It follows that solutions to (P) from almost all
 initial conditions in M do not converge to a rest point. In fact, the theory of pos-
 itive feedback loops (Mallet-Paret and Smith (1990)) can be used to show that
 all solutions from these initial conditions converge to a periodic orbit in M.

 6. CONVERGENCE OF STOCHASTIC FICTITIOUS PLAY

 Using techniques from stochastic approximation theory, Fundenberg and
 Kreps (1993), Kaniovski and Young (1995), and Benaim and Hirsch (1999a) show
 how the limit behavior of stochastic fictitious play can be characterized in terms

 of a perturbed best response dynamic. However, as the perturbations make this
 dynamic difficult to analyze, Fundenberg and Kreps (1993) and Kaniovski and

 16 In our analysis above, strict supermodularity is only used to establish irreducibility; the full
 strength of the strictness assumption is not needed for this conclusion. In the present example, one

 can easily verify that the dynamics (T) are irreducible, and hence strongly monotone.
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 Young (1995) only establish convergence in 2 x 2 games, while Benaim and Hirsch

 (1999a) also prove convergence in certain p player, two strategy games.
 By combining our analysis of perturbed best response dynamics with results of

 Pemantle (1990), Benaim and Hirsch (1999a), and Benaim (2000), we can estab-
 lish convergence of beliefs and choice probabilities in four important classes of

 games. Our results are stated for beliefs Zt and Zt; however, since the perturbed

 best response functions Ba are continuous, corresponding results hold for choice
 probabilities as well. In particular, if beliefs Zt converge to some rest point x of

 (P), then player a's choice probabilities converge to Ca(Ua(x-a)) = Ba(xa) = Xa
 as well.

 To state our results, we let LS(D) c RP(D) denote the set of linearly stable
 rest points of the dynamic (D), and let LU(D) c RP(D) denote the set of linearly
 unstable rest points of (D).

 THEOREM 6.1: Consider standard stochastic fictitious play Zt and symmetric
 stochastic fictitious play Zt starting from arbitrary initial conditions.

 (i) Supose that G is a two player symmetric game with an interior ESS. Then

 P(limtoo Zt = x*) = 1, where x* is the unique rest point of (SP).
 (ii) Suppose that G is a two player zero sum game. Then P(limt,O Zt = X*) = 1,

 where x* is the unique rest point of (P).
 (iii) Suppose that G is a p player potential game. If the distributions of the vectors

 ? are sufficiently smooth, then P(co(Zt) is a connected subset of RP(P)) = 1. If all
 rest points of (P) are hyperbolic and (P) is C2, then P(limt,,,. Zt E LS(P)) = 1.

 (iv) Suppose that G is a p player supermodular game. Then P(w{Zt} c RP(P)
 or w){Zt} C Mi n [x, i] for some i) = 1. In particular, if RP(P) = {x*}, then
 P(limtoo Zt = x*) = 1. If the state space of (P) is one- or two-dimensional and (P)

 is C2, then P(limt,O Zt E RP(P)-LU(P)) = 1.
 Finally, if G is a two player symmetric game, then results (ii), (iii), and (iv) also

 hold for symmetric stochastic fictitious play if Zt is replaced by Zt and (P) by (SP).

 PROOF: Theorem 3.3 of Benaim and Hirsch (1999a) and Proposition 5.3 of
 Benaim (1999) imply that with probability one, stochastic fictitious play must
 converge to a connected component of the chain recurrent set of the appropriate
 perturbed best response dynamic, (P) or (SP). Theorem 2.1 shows that these
 dynamics are equivalent to the dynamics (PV) and (SPV) for appropriate choices
 of the deterministic perturbations Va. In the games considered in parts (i) and
 (ii), Theorem 4.2 of Hofbauer (2000), Theorem 3.2 of Hofbauer and Hopkins
 (2000) and Proposition 6.4 of Benaim (1999) imply that the latter dynamics admit
 unique rest points that are also the unique chain recurrent points. This proves
 parts (i) and (ii). The proofs of the parts (iii) and (iv), which rely on the analyses
 from Sections 2, 4.2, and 5 and on results of Pemantle (1990), Benaim and Hirsch
 (1999a), and Benaim (2000), can be found in the Appendix. Q.E.D.

 Parts (i) and (ii) of the theorem guarantee convergence of stochastic fictitious
 play to the unique rest point of the perturbed best response dynamics in games
 that are zero sum or that admit an interior ESS. Part (iii) shows that in potential
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 games, convergence to the set of rest points is ensured if the disturbance distribu-

 tion is sufficiently smooth; if all rest points are hyperbolic, convergence is always

 to a unique limit point that is Lyapunov stable, and hence a local maximizer of

 the relevant Lyapunov function, 1I or I1.
 Part (iv) of the theorem offers a global convergence result for supermodu-

 lar games, but it only guarantees convergence to rest points of the perturbed

 dynamics if the rest point is unique or if the dimension of the state variable is 1
 or 2. Even in the symmetric case, the latter condition requires that there are at
 most three strategies in the underlying game. When there are more strategies,

 we cannot rule out convergence to one of the unstable invariant manifolds Mi.
 However, Benaim (2000) conjectures (and proves under additional assumptions)
 that such manifolds cannot be limits of stochastic approximation processes. If

 this conjecture is correct, convergence of stochastic fictitious play to rest points
 of (P) and (SP) can be established in all supermodular games.

 In this paper, we combined an analysis of the perturbed best response dynam-
 ics with results from stochastic approximation theory to prove global conver-
 gence results for stochastic fictitious play. Interestingly, these perturbed dynamics
 also arise in other disturbance-based models of evolution and learning in games.

 In the stochastic evolutionary model of Blume (1993, 1997) and Young (1998),
 these dynamics describe expected changes in the behavior of large populations
 of myopic agents. Similarly, in Ellison and Fundenberg's (2000) model of pop-
 ulation fictitious play, and in Ely and Sandholm's (2000) model of evolution in
 a diverse population, the perturbed best response dynamics arise as descriptions
 of changes in aggregate behavior. By combining the analysis of the dynamics (P)
 and (SP) presented here with other mathematical techniques, one can establish
 global convergence results for these three models of evolution and learning in
 games. For a presentation of these results, we refer the reader to Hofbauer and
 Sandholm (2001).
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 APPENDIX

 PROOF OF PROPOSITION 2.2: Substituting V(y) = - j In yj into equation (2), we find that this
 selection of V yields the choice probability function Ci(7r) = (c(7)-ri) - 1, where c(7T) is the unique
 number satisfying c( 7T) > maxj irj and E(c(r) -rJ-1 =1. Now suppose that n > 4, and let i, j, and
 k be distinct strategies. A computation reveals that

 2 Ci 2C,2 C2 Ck21 \C1
 Thisx reo is nEge w e r(Ci + Cj + Ck) E all cl e

 This expression is negative whenever Ci, Cj, and Ck are all close enough to zero.
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 2286 J. HOFBAUER AND W. H. SANDHOLM

 Now suppose that the choice function C is derived from a stochastic perturbation of payoffs. Then

 differentiating expression (4) with respect to ik reveals that d2Ci/d drjd1rk must always be strictly
 positive. Hence, the choice function Ci(ir) = (c(7T) - ri)- cannot be derived from a stochastic per-
 turbation of payoffs. Q.E.D.

 PROOF OF PROPOSITION 2.3: Suppose that the choice function C satisfies equation (10) and

 equation (2) for some admissible V. (Theorem 2.1 implies that if C satisfies (1), it satisfies (2) as

 well.) Then if we define W: Rg R via equation (9), Theorem 26.5 of Rockafellar (1970) implies
 that VW -C on RW. Moreover, it is clear from equation (2) that C(rr + cl) = C(7r) for all c E R.
 Thus, if we define W on the remainder of Rn by W(i7T + cl) = W( 7T) + c for any IT E RW and c E R,
 it can be verified that VW _ C on all of R . It follows that DC(7 r) is symmetric for all 7i E Rn.

 Now, applying equation (10), we find that if i : j, then

 d7 ( -k W k))2

 Thus, the symmetry of DC implies that w(7r1)w'(QTj) = w(Trj)w'(rTj) for all vi. Since w is strictly
 positive, it follows that w'(ri) = rqw(7Ti) for some constant 7, and hence that w(Ti) = Kexp(7qri)
 for some constants 77 and K. Since w is strictly positive and increasing, it must be that q and K are
 strictly positive, and hence that C _ L. Q.E.D.

 PROOF OF PROPOSITION 3.1: We only consider the case of the dynamic (P); the proof of the
 result for the dynamic (SP) is similar. Recall that the perturbed best response Ba(x-a) can be writ-
 ten as Ca(Ua(x-a)), where Ca is a perturbed version of the maximizer correspondence Ma(7T) =

 arg maxYEAsa y - v. For each disturbance vector Sa k, let Ca, k denote the corresponding choice proba-

 bility function: Cia k(7) = P(argmax 7Tj+sak = i).
 We first prove a lemma.

 LEMMA A.1: Suppose that ?a,k X {ol and that rk v*. If i g argmax, ij*, then Ciak(rrk) 0.

 PROOF: Let 1 E argmax, 7,*, and let 8 = v,*- ri* > 0. Then for all large enough k,

 Cia,k(,7Tk) = P(arg max17T~ +<~k ,

 < P(7Tik + ?ak > ,Jk + a,k)

 _ P(i 1z - 2)

 Since the random variables (a, k - a k) converge in distribution to the constant 0 as k approaches

 infinity, we conclude that Cia k (7rk) 0. Q.E.D.

 Now suppose that Xa, k = Ba(X-a,k) = Ca,k(Ua(x-a,k)) for all a and that xk x. To prove
 the result, it is enough to show that ka E Ma(Ua(k-a)). Clearly, Ua(x-a k) -+ Ua(i-a). Hence,
 Lemma A.1 tells us that if i g argmax1 Uja(k-), then ka = limk_ ak - lim Ck(Ua(X-a, k)) = 0.
 Consequently, ka E Ma(Ua(j-a)). This completes the proof of the proposition. Q.E.D.

 PROOF OF PROPOSITION 4.1: The lemma preceding Theorem 4.2 of Hofbauer (2000) shows
 that (Ua(x-a) - VVa(xa)) . (Ba(X-a) - Xa) > 0, with equality only when Ba(X-a) - Xa = 0. Fur-
 thermore, a calculation reveals that VH(x) = (Ul(x-) - VV(x). UP(x-P) - VVP(xP)). Since
 xa = Ba (X-a) - Xa, we can conclude that

 d -(x ) - (Ua (X-a) _ VVa (Xa)) *.ia 0,

 with equality only if x = 0. Q.E.D.
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 STOCHASTIC FICTITIOUS PLAY 2287

 PROOF OF PROPOSITION 4.2: Let Ca(i7) = argmaxYEASa (y. - Va(y)). Then Ca(i) =
 (VVa)-l(7) for all 7i E RW, and Ca(, +ca1) = Ca(7). Since 17 is defined on ,x E Z is a critical
 point of HI if and only if Ua(xa)-VVa(xa) = Cal for all players a, which is true if and only if
 Ca(Ua(x-a)) = Ca(Ua(x-a) -cal) = Ca(VVa(xa)) = Xa for all a. Thus, the critical points of HI are
 precisely the rest points of (PV).

 Our assumption about the functions Va implies that the Lyapunov function H: Z A is CN.
 Since N > max{O, N - 1}, Sard's Theorem tells us that the set of critical values of 1H has measure
 zero. The previous paragraph shows that this set is equal to {Hl(x): x E RP}. We therefore conclude
 from Propositions 5.3 and 6.4 of Benaim (1999) (also see Exercises 3.16 and 6.11 of Akin (1993))
 that CR(PV) = RP(PV). QE.D.

 PROOF OF THEOREM 4.3: The rest points of (PV) are hyperbolic by assumption, and therefore

 are isolated. If RP(PV) c Z were an infinite set, then as Z is compact, RP(PV) would have an
 accumulation point x. But since (PV) is continuous, this would imply that x E RP(PV), contradict-
 ing that all rest points are isolated. We therefore conclude that RP(PV), and hence {ll(x): x E
 RP(PV)}, are finite. Thus, Propositions 5.3 and 6.4 of Benaim (1999) again imply that CR(PV) =
 RP(PV). Q.E.D.

 PROOF OF THEOREM 5.1: It is enough to show that if T1y1 T> x and y- = x-, then
 TaBa(y-a) > TaBa(x-a). Since the behavior of all players besides a and f8 is fixed, it is enough to
 consider a two player game and to suppose that a = 1 and f8 = 2. It will be convenient to represent

 player l's payoffs as a matrix, and so we define A E Rna xfnlI by A i = uI (i, j). Thus, if player 2 chooses
 mixed strategy x2, player l's vector of payoffs is Ax2 E Rna.

 We begin with a lemma.

 LEMMA A.2: Suppose that {bk }k=1 is strictly increasing and that {Ck }k=1 satisfies

 (13) E>Ck < ?
 k=1

 for all j < n, with a strict inequality for some j and equality at j = n. Then E bkCk > 0.

 PROOF: For all j < n, let dj = bj+l-bj > 0. Then

 n n n-1I j\ n-1/i \

 sbkck = bn Ck _ Edj ECk =-Edj Eck) >O. Q.E.D.
 k=1 k=1 j=1 k=1 j=1 k=1

 The next lemma shows that the increasing differences property of supermodular games still holds
 when we consider ordered pairs of opponents' mixed strategies. Its proof makes use of the following
 observation:

 m

 (14) Taya > Taxa if and only if (ya _xa) < 0 for all m < na.
 i=1

 LEMMA A.3: If T2y2 > T2x2 and y2 0 x2, then (Ay2)i - (Ax2)i is strictly increasing in i.

 PROOF: Fix i < j. We want to show that (Ay2)j - (Ax2)j > (Ay2)i - (Ax2)i, or equivalently, that

 n2 n2

 (Ay2)j - (Ay2)i = Z(Ajk- Ak)y > Z(Aik- Ak)X = (Ax2)j - (AX2)i.
 k=1 k=1

 Since G is strictly supermodular, bk = Aik - Aik = U1 (j, k) - u1 (i, k) is strictly increasing in k, while
 since T y2 > T2x2 and y2 # x2 observation (14) implies that Ck = Yk-Xk satisfies condition (13).
 Thus, Lemma A.2 yields the result. Q.E.D.
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 2288 J. HOFBAUER AND W. H. SANDHOLM

 Now suppose that T2y2 > T2X2; we want to show that T1B1(y2) > T1B1(x2). If y2 = x2 this is
 obviously true, so we suppose instead that y2 7/ x2. By observation (14), it is enough to show that for
 all m < n',

 m m1

 0 'E 1(B (y2)-B (x2)) = I VB(Ay2 + (1-A)x2). (y2 x2)dA i= >i=1 ,1(A AA

 If we let z2 = Ay2 + (1 - A)x2, then it is enough to show that

 m

 (15) EVB1 (Z2). (y2 _ x2) < 0 for all m < n'.
 i=1

 Since B1(z2) = C1 (Az2), we see that

 mI m n2 ni a 1
 EVBI (z2) (y2 - x2) E E C (A22)A (yj2 x2).

 This expression is negative if

 (16) E: (A(y2 x2 ))k ( (Az2) > 0.

 Now bk = (A(y2 - X2))k is strictly increasing by Lemma A.3, while equations (4) and (5) imply that

 m C

 i=1 d'7k

 satisfies condition (13). Therefore, Lemma A.2 implies that inequality (16) holds for all m < n1, and
 hence that T1B1 (y2) > T1B1 (x2). This completes the proof of the proposition. Q.E.D.

 It is worth noting that only two properties of the choice probability function Ca were used to
 prove Theorem 5.1. To establish condition (13), we used these two facts:

 k I aCa
 (17) a 7 > 0 for all k, l < na;

 i=1 j=1 'T

 ,a aca

 (18) E =0 forall i<na
 j=l drj

 Notably, the symmetry of DCa, which was essential for establishing our results for other classes of
 games, was not needed here. In fact, all of our results for supermodular games extend immediately
 to dynamics based on any choice probability function satisfying (17) and (18). On the other hand, our
 results for supermodular games cannot be extended to all perturbed best response dynamics based
 on deterministic perturbations of payoffs: the characterization of the corresponding choice functions
 given after the proof of Theorem 2.1 shows that the inequalities in expression (17) are not even
 weakly satisfied by all such functions.

 PROOF OF THEOREM 5.2: Define B: Z Z by B(x) = (B . (x-P)). Theorem 5.1
 implies that TB(x) < TB(y) whenever Tx < Ty.

 Let y and - be the minimal and maximal elements of X. That is, y is the mixed strategy profile at
 which each player chooses his lowest pure strategy with probability 1, and y is the profile at which
 each player chooses his highest pure strategy with probability 1. Let K[k] denote the k-fold iteration
 of the function B. Since TB(y) > Ty, iteration of B starting from y yields an increasing sequence
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 STOCHASTIC FICTITIOUS PLAY 2289

 {,6kI(y)}k=-. Because this sequence is contained in the compact set s, its limit x exists. Moreover,
 _ k=

 the continuity of B implies that

 x = lrn Bk](y) = B( lim B[k -I(y)) = B(x)
 k-ooo - k-oco -

 and so x is a rest point of (P). Similarly, if we iterate B starting from y, then in the limit we obtain
 a rest point x.

 Now let x* be any rest point of (P), so that B(x*) = x*. Since x* E Z, Ty < Tx* < Tj. Therefore,

 if we iteratively apply B to y, x*, and y, then in the limit we obtain Tx < Tx* < Ti, proving the
 theorem. Q.E.D.

 PROOF OF PROPOSITION 5.3: If {xj} solves (P), then

 d a a a d a Ta (B a (X-a) a) = Ta -a)l (TXa aXt dt t d t '

 so {Txt} solves (T). Conversely, if {Txj} solves (T), then

 d = (Ta)-( d TaXa) = (Ta)-l (TaBa((T-a)-l (T-ax-a)) Taxa) Ba(X-a) a

 so {x,} solves (P). Q.E.D.

 PROOF OF THEOREM 5.4: Given any subset I of the components of v, we can find a pair of

 components (a, i)E I and (B, j) 0 I such that a : =,. Define the function Ba: T-a(X-a) Tc(ASc)
 by Ba(v-,) = TaBa((T-a)-1v-a). To prove the theorem, it is enough to show that

 dB.a
 aB (V-a) > 0.

 dvj

 As in the proof of Theorem 5.1, it is enough to consider a two player game, and to let a = 1 and

 ,1=2.

 Let x2 = (TP)-1 v2. Observe that if e,+1 and ei are standard basis vectors in Rn , then T2 (ej+l-ej) =
 n2- tj, a standard basis vector in Rn -. It follows that

 L (v2) = [lim (B1 2 + j) (v 2

 = lim - PTB ((T)- (V2 + jL1)) - TlI((T)v)))]

 = [T (lim (- (x+ s(ej+l - e))Bl (X2)))]

 = [T1(DB (X2)(ej+l -ej))]

 nl

 = E VBk(x2). (e1+,-ej).
 k=i+l

 Since .'- B(Y2)-1 for all y2 E as2, Ek- VBk(y2) *Zor a0 for all y2 E A2 and all Z2 E 2. We can
 therefore conclude from equation (15) that

 av2 (V2) = - E VB(x2) * (ej+l - ej) > 0. QE.D. jV kkX=.ED
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 2290 J. HOFBAUER AND W. H. SANDHOLM

 PROOF OF COROLLARY 5.5 (ii): Let 4: R+ x 2- 2 denote the semiflow of (P), and let y and
 y5 denote the minimal and maximal points in S. By part (i) of the corollary, we have that Td(t,y) <
 To(t, x) < To(t, y) for all t > 0 and x E S. The forward invariance of X and Theorem 1.2.1 of
 Smith (1995) imply that 4(t,y) and 4(t, 5) both converge to rest points of (P) as t grows large.

 Consequently, the previous inequalities and Theorem 5.2 imply that

 Tx < Tx < TxT for all x E GA(P)=-n (P(t, S:).
 t>O

 (Moreover, these facts also imply that 4(t,y) -* x and that 4(t, y) -.) The set GA(P) is called the
 global attractor of the dynamic (P). It is well known that GA(P) is the maximal invariant subset of .

 and that it is compact and asymptotically stable. Most importantly, Theorem 9.1.3 of Robinson (1995)

 shows that CR(P) c GA(P), establishing the result. Q.E.D.

 CHARACTERIZATION OF REST POINTS IN EXAMPLE 5.6: Let G denote the common distribu-

 tion function for ?l - ?2. Our assumptions about this difference imply that G(O) = 2, that G'(0) > 2
 that G is concave on (0, oo), and that G is convex on (-oo, 0). It follows that the equality

 G(2p- 1) = p holds for exactly three values of p: one above, one below, and one equal to 2
 Since player a's payoffs only depend on the behavior of player a + 1 and since each player has

 exactly two strategies, we can write

 B2(X21) = P(x +' + ?2 > (1 X +x ) + ?j ) = P(l -?2 < 2x2' - 1) = G(2x"+' -1).

 It follows that there is a rest point with x2 = p for all players p if and only if p = G(2p - 1), and so

 there are exactly three symmetric rest points of (P). Moreover, if p+ '> and p- < are the weights
 placed on strategy 2 in the rest points corresponding to the pure equilibria of the underlying game,

 then our assumptions about the distribution of -- - imply that g(p+) = g(p-) < 4; a variation on
 the stability analysis provided in the text then reveals that these two rest points are stable.

 We now show that (P) does not admit any asymmetric rest points. By symmetry, we can write B(.)
 for Bc (.). Now suppose that x is an asymmetric rest point of (P). Then x2 : x"' for some a. Suppose
 that x2 < xv. Then since each player is playing a best response and since B is strictly increasing,

 we see that x2- = B(xc) < B(x"+1) = x2. Iterating (and using the fact that player p's payoffs depend
 on player l's behavior), we conclude that x"' < x2, which is a contradiction. If x2 > x2+, we can
 establish that x"' > xv', which is again a contradiction. QE.D.

 To prove parts (iii) and (iv) of Theorem 6.1, we need to establish that standard stochastic ficti-

 tious play Z, satisfies a global version of Pemantle's (1990) nondegeneracy condition. To state this
 condition, we let U = {0 E Ha l a: >a Ei(ot)2 = 1} denote the set of unit vectors in Ha 4a% the
 tangent space of X.

 LEMMA A.4: min ZE minOEU E(max{Ea( i - Ba (Z-a)) .a O 0} |Z, = z) > 0.

 To interpret this condition, recall that if Z, = z, then the increment in beliefs at time t + 1 is
 described by

 zc _a = 1 (;a f), + - zt ~~(t+

 while the expected increment is described by

 1
 E(Z1 -Z" )Z, = z) = (Ba(z-a) -za)

 t+ t ~ t + 1

 Thus, the condition in the lemma requires that there be significant random deviations of the process

 Zt from its expected motion; these deviations must be possible from any current state z and in any
 direction 0. The proof of Lemma A.4 requires this preliminary result.
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 STOCHASTIC FICTITIOUS PLAY 2291

 LEMMA A.5: If 0 e U, then there exists a player ,B such that

 max 0o > 1/nW1 and min O <-1/n'UJai.
 iES'3 iES'3 i

 PROOF OF LEMMA A.5: Since 0 is of unit length, there must be a player ,B such that rp=

 ZESP (0t)2 > l/p. Since 09 E R we know that k, the number of strictly positive components
 of 09, is between 1 and ng - 1; we may suppose the first k components are strictly positive.
 Now suppose that maxiES,~ 0 < VrP /(ng (ng - 1)). In this case, yk 0 < kVr/(ng (ng - 1)) and

 yik=1(02 < (kr1)/(n9(n0 -1)). Since 09 e Ro 9, ynk+1o -- Ek 0o1; moreover, yn1kl(o13)2 <
 (k2r)/(n03(n9 - 1)), as this sum is maximized if exactly one term is nonzero. But then EFi1(=R)2 <
 ((k+ 1)kTP)/(n9(n0 -1)) < T, which is a contradiction. Therefore, maxiESp oi > r1/(n93(nP1-1)) >
 1/ng. Jp5. The proof of the other claim is similar. QE.D.

 PROOF OF LEMMA A.4: Since the density of each disturbance vector 8a has full support on Rn,

 we can place a uniform lower bound on the probability of an arbitrary strategy being the best response

 after the payoff disturbances are realized:

 m = min min minB6(x-a) > 0.
 a X-aEX-a iESa

 Now fix z e 2 and 0 E U, and let S+ = {s e S: Ea(eSaa -Ba(z-a)) 'Oa > 0}, where ec, is a standard
 basis vector in Rn . Then

 E(max I 0Z('Ta --Ba(Z-a)) , o} l|Z =Z

 =E (;l+1 =e>. ..t+1 =eS'P zt=z) max lZ(ea -Bk(z-a)) . 0ao
 SES at

 E (il Bs (z-)) (>(esa - Ba(Za)) . a)
 seS+ Y at

 > MP max >(ea -Ba (z-a)) * 0a
 SES c

 = mP (max 0 E oSa-EBY (z-Y). Y

 > mP ( max Y- ((1- m) max O + m min 07
 iESC' i~~~~ESY iES'y /

 at y/

 = mP+' E (max 0- - min 0a)
 a iESC' iESC'

 2mP+l

 where ,B is the player specified in Lemma A.5. Q.E.D.

 PROOF OF THEOREM 6.1 (iii): We only consider the case of standard stochastic fictitious play;
 the proof for the symmetric case is similar. Suppose that G is a potential game and that the distribu-
 tions of the vectors ea are smooth enough that the corresponding deterministic perturbations Va are
 CN. Then Proposition 4.2 and Theorem 2.1 imply that CR(P) = RP(P). Therefore, Theorem 3.3 of

 Benaim and Hirsch (1999a) and Proposition 5.3 of Benaim (1999) imply that P(w(Zt) is a connected
 subset of RP(P)) = 1. (In addition, Proposition 6.4 of Benaim (1999) implies that the Lyapunov func-

 tion II is almost surely constant on w(Zt).)
 Next, suppose that G is a potential game, that all rest points of (P) are hyperbolic, and that (P)

 is C2. Then Proposition 4.3 and Theorem 2.1 show that CR(P) = RP(P) and that this set is finite.
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 2292 J. HOFBAUER AND W. H. SANDHOLM

 Thus, Theorem 3.3 of Benaim and Hirsch (1999a) and Proposition 5.3 of Benaim (1999) imply that

 P(lim,, Z, e RP(P)) = 1. Furthermore, since the rest points of (P) are hyperbolic, each is either
 linearly stable or linearly unstable. Given this observation, the fact that (P) is C2, and Lemma A.4,

 Theorem 1 of Pemantle (1990) implies that P(lim,x Z, e LS(P)) = 1. Q.E.D.

 PROOF OF THEOREM 6.1 (iv): Again, we only consider the case of standard stochastic fictitious

 play; the proof for the symmetric case is similar. Suppose that G is a supermodular game. By

 Theorem 5.2 and Corollary 5.5, CR(P) c RP(P) U (Ui Mi [x, x]), where each set Mi is an unstable
 invariant manifold of (P). Hence, Theorem 3.3 of Benaim and Hirsch (1999a) and Proposition 5.3 of

 Benaim (1999) establish the first statement in the result. If 2S is two dimensional, we can appeal to

 Proposition 5.3, Theorem 5.4, and Theorem 4.3 of Benaim (2000), which establishes that when (P)

 is a C2, two dimensional, cooperative, and irreducible dynamic, Z, converges with probability one
 to a rest point of (P) that is not linearly unstable. Once again, Lemma A.4 provides the nondegen-

 eracy condition that is needed to apply this result. (Under symmetric stochastic fictitious play, the

 state space AS' is one dimensional if nl = 2. In this case, each unstable invariant manifold is simply
 a rest point, and so our result for this case follows from the C2 smoothness of (P), Lemma A.4, and
 Theorem 1 of Pemantle (1990).) Q.E.D.
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