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ABSTRACT 

A "random" n-person non-cooperative game--the game that prohibits 
communication and therefore coalitions among the n players--is shown to have 
with high probability a pure strategy solution. Such a solution is by definition 
an equilibrium point or a set of strategies, one for each player, such that if 
n -- 1 players use their equilibrium strategies then the n-th player has no reason to 
deviate from his equilibrium strategy. It is shown that the probability of a solution 
in pure strategies for large random n-person games converges to (1 -- I/e) for 
all n ~ 2. 

1. INTRODUCTION 

The concept  o f  a so lu t ion  frequently used for  an n-person non- 
coopera t ive  game is the equ i l ib r ium poin t  [1]. In  order  to assure the 
existence o f  a solut ion it is necessary to in t roduce  mixed  strategies 
(probabi l i s t ic  mixtures  o f  o rd ina ry  or  " p u r e "  strategies). Except  for  the 
2-person game,  however,  it  is general ly  very difficult to compute  a mixed 
strategy solut ion.  Fur ther ,  many  decision maker s  may  be re luctant  to 
accept  the opera t iona l  no t ion  of  a mixed strategy.  

These l imi ta t ions  o f  mixed strategies lead na tura l ly  to the hope  that  
mixed s t ra tegy solut ions are  rare ly  required,  i.e., a game chosen at  
r a n d o m  will in fact  possess a pure  s t rategy solution.  F o r  a 2-person 
zero-sum game this hope  is no t  fulfilled; G o l d m a n  [2] showed tha t  for 
such a game with many  strategies it  is a lmos t  cer tain tha t  all solut ions 
will require  mixed strategies, the chance o f  a pure  s t rategy solut ion 
being a lmos t  negligible. 

I t  was conjec tured tha t  2-person non-ze ro-sum games would  have a 
similar  proper ty .  But Go ldbe rg ,  G o l d m a n ,  and  N e w m a n  [4] showed that  
for  the 2-person game the p robab i l i t y  of  a pure  strategy solut ion is quite 

* Presented at the Yale University Conference on Combinatorial Theory in honor of 
Professor Oystein Ore (May, 1968). 
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large when the players have many strategies to choose among, in fact 
converging to 1 - -  e-L 

The present paper extends the results to n-person games (n > 2). It  is 
shown that the probability that an n-person game (n ~> 2) has a pure 
strategy solution converges to 1 - -  e -1 as the number  of  strategies of  each 
of  the n players increases. Further, this result is also valid if only two of 
the n sets of  player strategies increase without bound. 

2. GAMES AND TRUNCATIONS 

In the normal form of an n-person noncooperative game the i-th player 
(i ~< n) has mi strategies which we label ui (1 ~< u~ ~< m,). A play of a 
game can be represented by an n-vector U = (ul ,  u2 ..... u~), giving us 

n 
I-L=~ m~ --  ~r possible plays. For each play U and each player i there 
exists a payof f  M~(U), representing the payoff to the i-th player for the 
play U. There are therefore nrr payoffs. 

We now define a truncation of a play with respect to the i-th player to 
be an n --  1 vector: 

U i .-~ ( u l ,  u2 . . . .  , u i - 1 ,  Ui+l  . . . .  , un) .  

A truncation of a play leaves out the i-th player 's  strategy, a fact our 
notation expresses as 

U = (Ui,  u~). 

A game is called zero-sum if ~,1 M~(U) = 0 for every play U. Despite 
a few allusions to properties of  such games for purposes of  contrast, the 
games treated in this paper are not constrained to be zero-sum. 

3. EQUILIBRIUM POINTS 

Nash [1] first introduced the notion of an equilibrium point, and he 
showed that every game possesses such a point in mixed strategies. 
An n-vector of  pure strategies U* = (ul*, u2*,..., u~*) is an equilibrium 
point in pure strategies if for each i ~< n and ui <~ mi , 

Mi(U*) ~ M~(U~*, u3. (1) 

Equivalently, we have, for each i ~ n, 

M i ( U * )  : max Mi(Ui*, ui). (2) 
u i ~ m i  
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I f  the above condition is satisfied, U* will be referred to as a pure 
equilibrium point or PE solution or just PE. For a 2-person zero-sum 
game a PE solution is the same as a saddle-point. We also call a PE point 
a solution of the n-person game. 

4. RANDOM GAMES 

It  is wellknown that PE solutions are rare for 2-person zero-sum games. 
For example, the probability that a " r andom"  2-person zero-sum game 
has a PE solution is 

ml! m2! 
(ml fi- m2 --  1)! " 

This result, proved in [2] and [3], exhibits the need for mixed strategies, 
even if the number of  strategies for each player is not very large in the 
2-person zero-sum game. 

It  is natural to inquire about  the need for mixed strategies in arbitrary 
n-person games. Is it likely that we can get by with pure strategies ? To  
answer to this inquiry we analyze " random games." 

We define a random n-person game by the following properties: 

(i) The nzr payoffs M~(U), are independent random variables. 

(ii) For  each i, the payoffs MI(U) have the same (independent of U) 
continuous probability distribution. 

From the above definition of a random game it follows that, with 
probability one, the mr payoffs are distinct in such a game. F rom now on, 
the zero-probability set of  games not having distinct payoffs will be ruled 
out of  the analysis. Further, the probability that a random n-person game 
has a PE solution is now welldefined. 

Let E(U) be the event that play U is a PE solution of the game. More  
generally, for any family F of plays, let E(F) be the event that every U in 
F is a PE solution. Now let F~ denote the set of  all F with cardinality t, 
and set 

St = ~ (Pr(E(F)) [ r in F~}. 

Let Pn(mx, m2 ,..., m,) be the probability that a random n-person game, 
where the n players have m l ,  m2 ..... mn strategies, respectively, has at 
least one PE solution. Then 

P,~(mt , m~ ,..., mn) = Pr l~vE(U) I. 
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Then, by the so-called method of  inclusion and exclusion, 

P. (ml ,  m2 .... , m.)  = ~ (--1)*+1S,. 
t=l 

For  any play U, the n events 

Mi(U) = max Mi(Ui ,  ui) 
ui <~m~ 

are independent since they involve disjoint sets of  independent random 
variables. Since the i-th of  these events has probability 1/m,, we have 

1 
Pr{E(U)} = - - .  

7"1" 

5. POSSIBLE SETS OF t EQUILIBRIUM POINTS 

In order to determine St we shall derive a condition that t given plays 
of  a random game have non-zero probability of  being simultaneously 
among its equilibrium points. Our definition of  equilibrium point and 
random game yields the following: 

THEOREM l. A necessary and sufficient condition that U t, U 2 ..... U s are, 
with non-zero probability, t equilibrium points o f  an n-person random game 
is that 

Ui 1, Ui~,..., U~ ~ are distinct for each i <~ n. 

Proof. Suppose 

U~l= U?. 

Then, since U 1 and U s are equilibrium points, 

Mi(U 1) = max Mi(Ui 1, ui) 
ui<~m i 

= max Mi(Ui 2, ui) = Mi(UZ), 
u i ~ m  i 

contradicting the stipulation that, with probability one, all nrr payoffs 
are distinct. 

The sufficiency follows from the continuity assumption on the payoff 
distribution and from the fact that the nt events 

Mi(UO = max Mi(Uj,  ui) 
u i ~ m t  

involve disjoint sets of  independent random variables. 

58z/8/x-lo 
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Since the U's are n-vectors and the U~'s are (n -- 1)-vectors, the theorem 
states that each pair of U's must differ in at least two of their n components 
in order for all to bePE solutions. 

Using Theorem 1, we can give an explicit formula for St �9 Let Ft* consist 
of  those F in Ft for which Pr{E(F)} > 0, so t h a t  

St = ~ {Pr(E(F)) I F in Ft*}. 

Now the members F-----{U 1, U2,..., U t} of Ft* are characterized in 
Theorem 1, and for any such F in Ft* the t events E ( U  0 refer to disjoint 
sets of:indepeI~dent random variables and so are independent. Since 
Pr{E(U0} = l[zr, it follows that 

Pr{E(F)} 1 q-t t 

for each F in F t ,  Let N, represent the cardinality of Ft*; then 

St = Ndrd,  

and 
Pn(ml ,  m 2 ..... m~) = ~ (--1)t+lNtrr-t. (3) 

t=l 

6. EQUILIBRIUM POINTS IN Two-PERSON GAMES 

i f n  = 2, a play ot  the game can be represented by a 2-vector U = (a, fl). 
I t  follows from Theorem 1 that, in order for (o~ 1, ill),..., (o~,, fit) to be a 
possible set of t equilibrium points, 

~1, ~2,..., at are distinct 

and 

/31,/32 ..... /3t are distinct. 

To compute Nt ,  we observe that t distinct a's can be chosen in (~0 
ways and t distinct/3's can be chosen in (~2) ways, and then the two sets 
can be paired off in t t ways. Thus 

(rnl]{m2] 
Nt = \ t / \  t ] t!, 

and 

P2(ml m2) = E ( - - 1 )  t+1 (ml~(m2~ ' \ t / ~  t ! tl(mlm~)-*. (4) 

This result was first obtained by Goldberg, Goldman, and Newman [4]. 
They also obtained the asymptotic value of  Pz(ml ,  ms). 
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7. EQUILIBRIUM POINTS IN THREE-PERSON-GAMES 

If n ---- 3, it is convenient to decompose the set of  ~r = mlm2m3 plays 
into mlm2 sets of the form Sty. Each member U----(ul ,  uz, u3) of 
St; is such that Ux = i, u2 = j,  u3 ~< m3 �9 Thus each set Si; contains m3 
plays. Now each St; can contain at most one equilibrium point. Therefore 
N~ is the number of ways of carrying out the following process: 

(i) Choose a family $1 ~ of  t sets Sqjl ,  St~.~ ..... Sit; t from the mlm2 
sets Stj.  

(ii) Choose one member from each of these t sets so that the resulting t 
plays obey the condition of Theorem 1. 

Let /z( t  I S~ t) be the number of  ways of making the t choices in (ii) 
above. Thus/z( t  I S~ ~) is the number of  ways of  choosing t equilibrium 
points from the t given sets Sta~, S~j~ ,..., S~,~, and we have 

Nt = ~/~(t  [ $1'), 

where the sum is over all choices of S1 ~. I f  we consider the choice of 
Si c as made at random, then/z(t  I Sa t) is a random variable whose mean 
value will be denoted by/~(t). Since each Sa t has probability 1/(ml~ ~) of 
being chosen it follows that 

Nt  = (ml.m21 t~(t). (5) 
\ l /  

From the above definition of/z(t J $1 t) we have the following inequalities: 

mz(m3 - -  1).-. (m3 -- t q- 1) ~ / z ( t  [ S~ t) ~< m3 t. (6) 

Therefore, its mean value,/~(t), also satisfies the inequality 

( t 3 ) t !  ~ / z ( t )  ~ ms t. (7) 

For example, if t ----- l, ~(1) = ms and 

N 1 : (mxm2)m3 : 7r. 

If  t = 2, we have 

~(21 s # )  = m3 ~, 

/z(2 !$12) = (m3 --  1)m3, 

if 6 v 6 i 2 ,  A = f i A ,  

if i 1 = / 2  or J l - - - . s  
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We can now compute  

/,(2) = mz2(ml - -  1)(m2 - -  1) + (m3 - -  1) m3(mx + m2 - -  2) 
(mx - -  1)(m2 - -  1) + m I -l- m2 --  2 

= m 3 ( z r - - S + 2  ), 
m ~ - - f  

where S = mx + m2 + m3. 
Substituting in (5) we have 

[mam2] 7r(zr - -  S --~ 2) 
N2 /,(2) 

~ 2 ]  2 

To compute/*(3)  we need to examine four  cases: 

/*(3 I Sx z) = 

"m~(m3 - -  1)(ma - -  2), 

rn3(m 3 - -  1) 2, 

m33~ 
m3(m 3 - -  1) 3, 

if / 1 = i 2 = i 3  a n d j l 5  & j 2 ~ j 3  
or if j l  = J 3 = J 3  and /15 ~ = i 2 @ i 3 ;  

i f  il = i2 :/= i3 , j l  :/= j2 ~ j z  
or i f  j l  = j2 =/= j3 , ix :T& i2 :/- i3 ; 

i f  il :#  i2 ~ i3 , jx  :;& j~ ~ j3 ; 
if  /1 = i2 :~  is and Jx ----- J3:7~ J2 

or  i f jx  = J 2 r  and i x = i s 3  &i2 .  

The frequencies associated with each o f  the four  above values o f  
/*(3 I Sx 3) are propor t ional  to, respectively, 

(ml - -  1)(mx - -  2) + (m2 - -  1)(m2 - -  2), 

2 ( m x -  1 ) ( m 2 -  1 ) 2 +  2 ( m l -  1 )2 (m2-  1), 

(mx - -  1)(m2 - -  1)(mlm2 - -  mx - -  m2), 

2(ml- 1)(m2- 1). 

The sum of  the above frequencies is (mlm2 - -  1)(mxm2 --  2). 
Using the above frequencies and values of/*(3 t Sx z) we obtain the value 

of/*(3) as a funct ion o f m x ,  m2, m3. In  particular, if ml = m2 = ma ---- m, 
we have 

/*(3) = m ( m  --  1)(m 4 + 2m 8 --  8m 2 + 6 )  
( m +  1)(m 2 - 2 )  

and 

( 3  2) m 3 ( m -  1)2(m ~ + 2rn 8 8m 2 + 6) 
N3 = /*(3) = 6 
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In a similar manner we can compute the values of  Nt ,  where 

t <~ min(mlm2, m3), 

and then compute the required probability 

P z ( m l ,  m2, ma) = ~ (--1)*+xU, n - '  
t = l  

= ~ (--1)'+1 (mtm2)/~(,)~r -*. (8) 
*=1 

It  is of  interest to determine the asymptotic value of P a ( m i ,  m s ,  ms) 
as the number  of  strategies increases for each player. We note that the 
absolute value of the t-th term of the series for Ps is 

l l ~ ( ,  ) l~[ ( m i r a 2 - - k  + 1) 
t~  I I  

k=l mlm2m3 

From (7) it follows that the absolute value of the t-th term satisfies the 
inequality 

k = l  mim2ma " k = l  \ mlmg 

o r  

�9 = ms mlm2 . = mxm~ 

Hence we obtain 

which by (8) suggests 

1 
l im N,~-* = T.I '  

m 1,m~ ,ms~  oo 

( - -  1)~+ 1 
lim P3(mx, ms ,  ms) = ~ t! - -  1 --  e -1. 

m 1,m 2 , m ~ c o  t=l 

Detailed proof  of  this will be given in the proof  of  Theorem 2. 

8. PURE EQUILIBRIUM POINTS IN n-PERSON GAMES 

We now evaluate the probability of a PE solution in a random n-person 
game, where the i-th player has mi strategies. In such a game the set of 
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rr = m l m  2 . . .  mn  plays can be decomposed  into m l m  s .. .  m~-x  = M sets 
o f  the fo rm Sqi,. .%_l where each set contains m,~ plays. Each member  
U = (Ux, Us ..... un) o fSqq . .%_ 1 has the proper ty  that  ux = ix, us = is ..... 

u,_i  = i ,_1, and u,  ~< m,~ = m. Thus each of  the M sets contains m plays. 
F r o m  Theo rem 1 it follows that  each set Sq~ ..%_ 1 can contain at  most  

one PE point.  Therefore  choosing t plays which can simultaneously be 
equi l ibr ium points  f rom the rr plays i s  equivalent  to choosing t o f  the 
M sets and then  choosing one play f rom each o f  these t chosen sets. 
Again,  l e t / , ( t  I $1 t) be the n u m b e r  of  ways of  choosing t plays which can 
s imultaneously be equil ibrium points  f rom the t given sets (we emphasize 
that  only one point  may  be chosen f rom each set) and let/*(t) represent  its 
mean  value. Then,  we have 

N, = (M)/z( t ) .  

F r o m  our  definition of  the r a n d o m  variable/*( t  [ Sit), 

m ( m  - -  1 ) " -  (m --  t -q- 1) <~/z(t [ $1 t) ~ rn t. 

Therefore  the mean  value/*(t)  satisfies the same inequality, or  

( 7 )  t! ~ / z ( t )  ~ m s. (lO) 

The required probabi l i ty  o f  a PE point  in a r a n d o m  game is given by 

P n ( m l , m 2  ..... m, )  ----- ~ ( - -1)  t+l (M)(Mm)_t tx( t ) .  (11) 
t = l  

For  each M and m one can compute  the probabi l i ty  P,~ by first com-  
puting/*(t)  when t ~< min(m, M).  N o w  f rom the definition of/*(t) we have 
/*(1) = m. In  order  to compute  /,(2) we pick two sets, Sqq..%_ 1 and 
S6j ..%_ 1 , f r om the M sets. We have then 

tm 2, if  i, ~ J l ,  is 3&js ..... in-X =)&A-1 , 

tz(2lS*2) = { m ( m - - 1 ) ,  if  il = j ,  or is = J s  ..... or t'n-1 = J ~ - l .  

N o w  the frequency associated with/ , (2  [ 5:1 s) = m 2 is p ropor t iona l  to D, 
where 

D = (mx - -  1)(m2 --  1) ... (m,_l  - -  1). 

The frequency associated with ~(2 IS12) = m ( m  - -  1) is p ropor t iona l  to 
D E ,  where 

n--X l 

E = ~ m i _  1 �9 
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Hence we have 
m2D + m(m -- 1) DE 

/2(2) = D q7 DE 

E 
= m ( m  I + E ) "  

In a similar manne~ we can compute /z(3), /,(4) ..... /z(~), where 

= min(m, M), 

and then obtain Pn. Of course, the computation of /,(t) becomes more 
cumbersome with each value of  r However, Pn has an asymptotic value 
given by 

THEOREM 2. For all n-person games (n >~ 2) 

lim P n ( m l  , m s  , . . ,  m ~ )  = 1 - -  e - l .  
mlmg.,, mn_l -~oa 

mn~ 

Proof. Equation (11) may be written as 

(__l)t+l t--1 ( s  
Pn(M, m) = ,=1 ~" t! I~(t) m ' t  "i=1I-[ 1 -- M " 

Hence we have 

P,(M,  m) -- (1 e -1) ----- ~. ~ 1 --/~(t) m :t I-[ 1 " . (12) 
t=l i=1 

Now let 
,_1( ,) 

a~(M, m) = ~( t )  m- '  1"-[ 1 - -  ~ , 

From (10) it follows that for all t 

H -2)( '-1( 
I ] ( ' - -  1 -  M)~< ,~,(g, m ) ~  l- [ l - - M )  ~ 1 .  (13) 
'/=1 i=l 

Now for all i ~< T < M we have 

i T 
1 > ~ 1 - - ~ > 1  M" 

Hence 

t--ll_i (1 __ M) > ( 1 - -  -~-,T~ '-1 > (1 --  -~-)  r f o r t ~ T ~ M .  
i=l 
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Similarly we have that 

t - - 1  ~ ( ~ _ / ) > ( 1 _ 5 /  for t <~ T <~ m. 

Substituting the above inequalities in (13) we have 

~", ~) ~ (~ - ~ )~  0 - 2 ;  
~)(1-~)  (1 -- Tz 

>/ (1 T2 
M -~). 

for t ~< T <~ rain(m, M) 

Now T is arbitrary but T < M and T < m. Suppose we restrict T so 
that T 3 < M, and T 3 < m, then TZ/M < 1/T and T2/m < 1/T, and we 
obtain the inequality 

2 
At(M, m) >I 1 -- --~ 

Therefore 

2 
0 ~< 1 -- At(M,m) < - T  

for t ~< T < T 3 < min(m, M). 

for t ~< T < T 3 < min(m, M). 

Returning to (12) we have for t ~< T < T 8 < min(m, M) 

r 1 ~ (--1) t I "~(M, m ) -  (1 e-1)J ~ t~El= ~-" (~-) + t>r " [1 ~ , r  ~11 

2 2 (--1)'  
< ~ T e q - l t > r  t, [ ' -- 2v(M' m)l l" 

The second term represents the "tail" of a converging alternating series. 
Thus, given any 8 > 0, we can choose T sufficiently large that 

I ( -  1) t I 

J ,>r2 tt [1 -- 2,t(M, m)lJ < 5, (14) 

and 

2 
[ Pn(M,m) -- (1 - -  e-1)] < T e + &  
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Now by choosing T > 2e/8, we have 

I Pn(M,  m)  - -  (1 -- e-a)l < 23, 

which proves the theorem. 
It is of interest to note that Theorem 2 requires only that two of  the 

n sets of  player strategies grow without bound. 
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