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 The Impact of Oligopolistic Competition
 in Networks
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 In the traffic assignment problem, first proposed by Wardrop in 1952, commuters select the shortest available path to travel
 from their origins to their destinations. We study a generalization of this problem in which competitors, who may control
 a nonnegligible fraction of the total flow, ship goods across a network. This type of games, usually referred to as atomic
 games, readily applies to situations in which the competing freight companies have market power. Other applications
 include intelligent transportation systems, competition among telecommunication network service providers, and scheduling
 with flexible machines.

 Our goal is to determine to what extent these systems can benefit from some form of coordination or regulation. We
 measure the quality of the outcome of the game without centralized control by computing the worst-case inefficiency of
 Nash equilibria. The main conclusion is that although self-interested competitors will not achieve a fully efficient solution
 from the system's point of view, the loss is not too severe. We show how to compute several bounds for the worst-case
 inefficiency that depend on the characteristics of cost functions and on the market structure in the game. In addition, building
 upon the work of Catoni and Pallotino, we show examples in which market aggregation (or collusion) adversely impacts the
 aggregated competitors, even though their market power increases. For example, Nash equilibria of atomic network games
 may be less efficient than the corresponding Wardrop equilibria. When competitors are completely symmetric, we provide
 a characterization of the Nash equilibrium using a potential function, and prove that this counterintuitive phenomenon does
 not arise. Finally, we study a pricing mechanism that elicits more coordination from the players by reducing the worst-case
 inefficiency of Nash equilibria.

 Subject classifications: networks/graphs: multicommodity, theory; games/group decisions: noncooperative, atomic;
 transportation: models, network; programming: complementarity.

 Area of review: Optimization.
 History : Received July 2007; revision received January 2008; accepted June 2008. Published online in Articles in

 Advance June 3, 2009.

 1. Introduction
 Logistic and freight companies routinely transport goods
 between different points in the world to serve their clients.
 They make use of trucks, trains, ships, and planes to deliver
 goods from their points of origin to their destinations. Com
 panies that provide this service compete in at least two
 dimensions: the price they charge for shipping and the
 service level they provide. To improve their competitive
 advantage, these companies need to be strategic in how they
 deliver the goods and minimize costs and delivery times.
 The main operative decision is choosing the routes to be
 used in the actual shipments, where each route consists of
 a sequence of basic segments that may combine various
 modes.

 Although these companies may own and operate some of
 the resources needed to move and sort the goods, frequently
 they also subcontract other multimodal freight transporta

 tion companies, and pay to receive services and to use
 resources. Some examples consist of leasing additional
 planes at a peak time such as the holiday season, paying
 landing and take-off fees to airports, and sending a ship

 ment to an area not covered by the company's network.
 From the perspective of the company that provides service
 to the freight company, standard economic arguments imply

 that additional demand is associated with a price increase.
 For example, if an airport becomes very popular, it may
 decide to increase landing and take-off fees because the
 demand supports it. A potential increase may lead some
 freight companies to consider other routes that were too
 expensive with the previous fees. Besides the economic
 consideration, another aspect is congestion. For many facil
 ities, including airports, an increase in demand causes an
 increase in service time, which may impact the feasibility
 of a given route.
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 We focus on the freight companies, and model compa
 nies that provide service to them implicitly. As we described
 above, the cost and the delay generated by a given resource
 depend on which freight companies use it and the quantity
 of goods they ship through it. These negative externali
 ties generate an interdependence between freight compa
 nies, and leads to a competitive situation between them.

 We study this competition from the perspective of nonco
 operative game theory, and use the Nash equilibrium as the
 solution concept of the game. An equilibrium is a solution
 under which no competitor has any regret after seeing what
 all competitors have done.

 The main goal of this article is to provide a method
 ology to understand under what conditions equilibria are
 efficient or, at least, not extremely inefficient. We measure
 the efficiency of a solution, which represents the collec
 tive decisions made by the competitors, using a social cost

 function. A low or high social cost, in itself, does not imply
 that an equilibrium is good or bad, because there may be
 instances that are intrinsically more expensive than others;
 instead, we compare the social cost of an equilibrium to
 a reference point provided by the socially optimal solu
 tion. This solution encodes what would happen if a single
 decision maker controlled all the freight companies and
 minimized the social cost. To quantify the efficiency loss
 arising from the self-mindedness of freight companies, one
 can compute the worst-case ratio of the social cost of an
 equilibrium to that of the social optimum. If the ratio, gen
 erally referred to as the price of anarchy, happens to be
 close to one, equilibria are rather efficient, which suggests
 that companies are better off by making routing decisions
 on their own. Even if the competitors could get together
 and coordinate themselves, they would not be able to lower
 the social cost significantly. Moreover, the extra effort to
 coordinate has a cost (e.g., deploying systems to collect
 information, computing optimal coordinated solutions, dis
 seminating information back to the coalition members, and
 enforcing that companies do as told) that could offset the
 reduction arising from the additional coordination. This
 does not even consider that participants lose their free will,
 which raises the cost as well. Conversely, when the ratio is

 significantly higher than one, competitors may benefit from
 some kind of coordination. This coordination can take the

 form of regulations for the market structure (e.g., no com
 pany can hold more than a given market share), regulations
 for the network (e.g., trucks are not allowed to circulate in
 certain roads), incentives (e.g., subsidies or taxes for some
 resources), etc. In this article, we look at pricing mecha
 nisms that can approximate the resulting equilibria to the
 socially optimal solution.

 1.1. A Model of Competition in
 Freight Transportation

 We represent the different segments and resources, hence
 forth referred to as arcs, by a directed network G = (V,A).
 For example, an arc may represent a route from Hong Kong

 to New York by sea going through the Panama Canal, land
 ing in the Atlanta airport, or leasing a truck from San
 Francisco to Denver. Note that we do not mean a spe
 cific boat, plane, train, or truck; we mean that the shipment
 uses that particular arc along its route. We denote the set
 of all freight companies, henceforth referred to as play
 ers, by [K] ? {1,..., K}. We assume that player k e [K]
 has to send dk units of freight from node sk to node tk
 (?6 describes a generalization to multiple sources and des
 tinations). We refer to (sk, tk) as an origin-destination (OD)
 pair. Each player executes its contracts by selecting how
 much freight to send along each possible route connecting
 the corresponding OD pair. This decision is encoded by a
 flow that specifies shipments along each arc, and that satis
 fies flow conservation constraints at every node. Summariz

 ing, each player k e [K] chooses a flow xk e that routes
 dk units of flow from sk to tk. We refer collectively to the

 flows for all players by x := (jc1 ,..., jc*) e U+xK. In addi
 tion, to simplify notation we henceforth let jc := J2ke[K] *k
 be the aggregate flow induced by all K players. Hence, we
 denote the flow that player k ships through arc a by jc*,
 and the total flow by xa.

 As we described previously, arcs are subject to congestion
 and to competition. More demand for a carrier increases its
 delay and its price. Because both negatively affect the cost
 incurred by a given company, the standard way of modeling
 this is to merge delay and price in a single cost function.
 This modeling simplification can be achieved by express
 ing delays in currency units. For example, one can assign
 a penalty (usually called the value of time) to each unit of
 time a product is late. This penalty reflects the customer
 goodwill that is lost from the delay, or the cost of having
 capital tied in the form of inventory for one extra period of
 time. Formally, we associate a cost function ca(-): R+
 R+ to every arc. These functions map the total flow xa on
 arc a to its per-unit cost ca(xa), which is equal for all play
 ers. Notice that the cost function depends on the aggregated
 flow jca, but not on the decomposition xa. Cost functions
 are assumed to be increasing, differentiable, and convex,
 although for some of our results the convexity assumption
 can be slightly relaxed. In addition, in this article we only
 consider separable cost functions, meaning that the cost in
 one arc only depends on the flow in the same arc. Two com
 monly used cost functions are polynomials of small degree
 (e.g., the Bureau of Public Roads 1964 uses the well-known
 BPR cost functions to measure delay in road segments; these
 functions are polynomials of degree 4) and delay functions
 of queues (e.g., (ca ? xa)~\ where ca is the capacity of the
 queue). Of course, the choice of cost function in a given arc
 will ultimately depend on the role of that arc in the logistic
 network. We assume that cost functions are taken from a set
 of allowable cost functions

 The goal of player k is to send its total demand dk min
 imizing its own cost Ck(x) := YlaeA x^ca(xa)' Note that
 players can divide their flows among many paths if they
 think it is convenient for them. Indeed, in some situations
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 it is advantageous to send a fraction of the goods along
 a more expensive route to lower the cost in a bottleneck.
 Because of the convexity of cost functions, this translates
 into savings for most of the freight, which can ultimately
 reduce the total cost of the shipment.

 Because the above cost function heavily depends of
 the decisions made by other players, the natural solution
 concept is that of an equilibrium. Thus, a solution for all
 players JcNE is called a Nash equilibrium if each flow xNE,k
 minimizes Ck(xk, xNE'~k) among all flows xk that are fea
 sible for player k, assuming that flows of other players
 jcne' ~k are fixed. Because the goal is quantifying the qual
 ity of equilibria, we introduce a social cost function, given

 by C(x) = C(x) := Zke[K] ^k(x) = ?, a Vfl(*J- Notice
 that the total cost does not depend on x directly, but on the
 aggregated flow x. A socially optimal flow is a solution xOFT
 that minimizes C(x) among all feasible solutions x. Such
 a solution may not be stable because players could have
 an incentive to deviate from it. Notice that our assumptions
 guarantee that the system optimum is unique because the
 objective function is strictly convex and it is minimized over
 a polytope. It is well known that a Nash equilibrium can
 be inefficient with respect to a social optimum (Pigou 1920,
 Dubey 1986); actually, it may even be worse for all play
 ers (Braess 1968). In addition, it need not even be Pareto
 optimal.

 An instance of the game introduced above is defined by
 the network topology, the set of players with their corre
 sponding OD pairs and demands, and the cost functions
 associated to arcs. We consider a set of allowed instances 3

 and denote an arbitrary Nash equilibrium and the social
 optimum of a given instance / 3 by JcNE(/) and 3cOPT(7),
 respectively.

 Koutsoupias and Papadimitriou (1999) proposed to use
 the worst-case ratio of the social cost of equilibria and
 that of a socially optimal solution as a way to quantify
 the impact of not being able to coordinate the players of a
 game. This quantity, which became known as the price of
 anarchy (Papadimitriou 2001), can be computed by solving

 sup C<? . (1)

 As any worst-case measure, the price of anarchy tends
 to be pessimistic when considered broadly. For exam
 ple, if 3 contains all possible instances, the supremum
 is unbounded (Roughgarden and Tardos 2002). To get a

 more realistic estimation of the efficiency loss, we con
 sider smaller sets 3. Past work and different parts of this
 paper restrict either the cost functions, the OD pairs, or the
 demands to have certain characteristics.

 1.2. Our Contributions and Related Literature

 The game presented in the previous section is generally
 called a network game, although it also belongs to the more
 general class of congestion games introduced by Rosenthal

 (1973). The distinctive characteristic of these games is that
 the per-unit cost of a resource (arc in this case) depends
 only on the number of players that selected the resource
 (total flow in this case), not on the identities of those play
 ers. Although we concentrate on network games to simplify
 the presentation, everything holds true for the more gen
 eral class as well. Section 6 provides further details and an
 application of congestion games in our context.

 Most of the previous work on network games considers
 that there are infinitely many players, and none of them
 substantially controls the market. For this reason, play
 ers cannot influence prices unilaterally, causing them to
 be price taking. In this situation, we say that the game is
 nonatomic. A common application is given by a transporta
 tion network in which players represent drivers that com

 mute in the network. Here, players are small compared to
 the scale of the whole system, and cannot modify the con
 gestion level on a given road by themselves. An equilibrium
 is an assignment of commuters to routes such that every
 body is simultaneously taking a shortest path under the pre
 vailing conditions. This solution is commonly referred to
 as a Wardrop equilibrium, due to the seminal paper about
 road traffic modeling by Wardrop (1952).

 Roughgarden and Tardos (2002) initiated the study of
 the price of anarchy in nonatomic network games. They
 showed that Wardrop equilibria can be arbitrarily ineffi
 cient compared to social optima if one considers all pos
 sible instances. For that reason, it is relevant to compute
 the worst-case inefficiency, parameterized with the class %
 of cost functions that are allowed to appear in the net
 work. For example, % can be the set of affine functions,
 the polynomials of degree smaller than a fixed constant,
 or the M/M/l delay functions. For affine cost functions,
 Roughgarden and Tardos (2002) showed that the price of
 anarchy is 4/3, which implies that the efficiency loss that
 arises from the self-mindedness of players is at most 33%.
 Following their work, a series of papers generalized the
 initial results by considering more general assumptions.

 Roughgarden (2003) considered a general class % of (non
 linear) functions and established that an instance achieving
 the supremum in (1) always has a simple structure, which
 facilitates the computation of the price of anarchy. Exploit
 ing that, he found that the price of anarchy is 1.626 for
 quadratic functions, 1.9 for cubic ones, and it grows as
 b/\nb if % contains nonnegative polynomials of degree
 at most b. Correa et al. (2004) introduced the use of vari
 ational inequalities in this setting, which allowed them to
 add side constraints to the problem without increasing the
 price of anarchy, and to drop assumptions made previously
 for technical reasons. Chau and Sim (2003) extended the
 analysis to allow for symmetric, nonseparable cost func
 tions and elastic demands, whereas Perakis (2007) consid
 ered asymmetric, nonseparable ones. Because nonseparable
 cost functions depend on the flow on all arcs in the net
 work, they can represent more general congestion and com
 petition effects. Finally, Roughgarden and Tardos (2004)
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 and Correa et al. (2008) generalized earlier results from
 network to congestion games. Furthermore, the latter refer
 ence provides a graphical interpretation of the inefficiency
 of equilibria.

 An atomic game represents situations in which some of
 the players have a significant market power. In this case,
 players control arbitrary demands, as opposed to an infini
 tesimal amount of flow, as was assumed in a nonatomic
 game. Depending on the specific application, flow can or
 cannot be divided along different routes. For example, for
 freight transportation the shipper can normally send differ
 ent packets along different routes if it deems it convenient.
 In some cases, companies may require shipments to follow
 a single route to minimize the likelihood of losing or mis
 placing items. For telecommunications networks, depending
 on the protocols in use, traffic is or is not required to follow
 the same route (e.g., IP traffic versus ATM traffic). Rough
 garden and Tardos (2002) also presented some results for
 the case of unsplittable demand. Later, Fotakis et al. (2005)
 studied special classes of networks, and Awerbuch et al.
 (2005) and Christodoulou and Koutsoupias (2005) indepen
 dently proved that if cost functions are linear, the price of
 anarchy is bounded by a small constant.
 - The splittable case, which is the model we focus on,
 was first considered by Orda et al. (1993), who noted that
 existence of equilibria follows directly from the classical
 result about concave games of Rosen (1965). That arti
 cle and one by Altman et al. (2002), among others, have
 obtained uniqueness results for some special cases; nev
 ertheless, uniqueness does not hold in general as shown
 recently by Bhaskar et al. (2009). Although Roughgarden
 and Tardos (2002), Roughgarden (2005), and Correa et al.
 (2005) studied the inefficiency of equilibria in a similar

 model, unfortunately there are some problems with those
 results, as we describe below. For this reason, this arti
 cle presents the first upper bounds on the price of anar
 chy of network games with atomic players and splittable
 flow. Our main conclusion is that although Nash equilib
 ria may be strictly worse than a socially optimal solution,
 the gap between the two is not too large. On the nega
 tive side, a Nash equilibrium of an atomic game may be
 worse than a Wardrop equilibrium of the corresponding
 nonatomic game, implying that market power can have a
 negative effect on the quality of solutions. Additionally, a
 counterintuitive phenomenon may arise: If some firms col
 lude and aggregate their demands, one would expect that
 their collective efficiency improves. We provide examples
 that show that this need not happen. Moreover, firms out
 side the cartel may find that the cost they incur is lower
 when they compete with the cartel than when they compete
 with the individual companies.

 After looking at general market structures, we con
 sider assumptions that allow us to provide stronger results.
 Specifically, when competitors ship from a common origin
 to a common destination, we find a bound that depends on
 the Herfindahl index (Tirole 1988)?a standard measure of

 the industry concentration that is used by the U.S. Federal
 Trade Commission to evaluate mergers and acquisitions.
 Our bound shows that the price of anarchy decreases when
 going from oligopolies with few companies that dominate
 the market to instances in which companies' market shares
 are similar. Finally, assuming that market shares are exactly
 equal allows us to characterize equilibria using a potential
 function. In this case, all players are completely symmetric
 because they also ship from a common origin to a common
 destination. Besides simplifying the calculation of equilib
 ria, the characterization also implies that when more com
 panies compete, equilibria become less efficient because
 companies are more difficult to coordinate. This rules out
 paradoxes like the one previously mentioned and implies
 that equilibria with atomic players are at least as efficient
 as the Wardrop equilibrium of the corresponding nonatomic
 instance. Independently of this work, Hayrapetyan et al.
 (2006) study the effect of collusion in network games and
 reach a similar conclusion for networks with parallel arcs
 and splittable demands. Our results consider more restric
 tive assumptions on the players, but are valid for arbitrary
 networks.

 When players of a game internalize the negative exter
 nalities they generate (by paying a tax or toll), the result
 ing outcome is socially optimal. Inspired by this insight,
 several researchers in different domains have designed pay

 ment mechanisms that provide the incentives to the partici
 pants to make decisions that are optimal from the system's
 perspective. This has important regulatory and operational
 consequences because solutions that the system designer
 has in mind can be enforced without introducing explicit
 coordination among the users. For example, in the area of
 transportation networks, this concept has been called con
 gestion pricing (Vickrey 1969, Johnson and Mattson 1992).
 This mechanism assigns tolls to certain arcs of the net
 work, which are charged to users that take routes through
 them. Congestion pricing has been used in cities such as
 Singapore and London as a measure to help relieve the
 ever-increasing congestion. The best possible set of tolls?
 called optimal tolls?is one for which an equilibrium of
 the system with tolls is socially optimal in the original net
 work. Beckmann et al. (1956) proved that charging users
 the difference between the marginal and the real cost makes
 them internalize the externality they generate, thus show
 ing that optimal tolls exist for nonatomic network games

 with homogeneous users. More recently, Cole et al. (2003)
 considered the more realistic situation in which players are
 heterogeneous in their valuation of time. Their main result
 says that when all users share the same origin and des
 tination there is an optimal set of tolls. Yang and Huang
 (2004), and later Fleischer et al. (2004) and Karakostas and
 Kolliopoulos (2004) proved that there are optimal tolls for
 heterogeneous users even in general networks. For the case
 of atomic players, we provide a mechanism that charges
 uniform prices under which the Nash equilibrium is closer
 to the social optimum, thus reducing the price of anarchy.
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 Although our mechanism improves the efficiency of equi
 libria, they do not lead to fully efficient solutions. In the
 case of symmetric games, tolls similar to those proposed
 by Beckmann et al. (1956) are optimal.

 Most research in the area of supply chain management
 focuses on the design of mechanisms to achieve full effi
 ciency instead of analyzing the status quo to decide if some
 thing actually needs to be done. For example, Taylor (2002),
 Cachon and Netessine (2004), Bernstein and Federgruen
 (2005), and Golany and Rothblum (2006) study contracts
 and pricing mechanisms that can induce efficient Nash equi
 libria. Nevertheless, Parlakturk and Kumar (2004) and Per
 akis and Roels (2007) compute the worst-case inefficiency
 of equilibria in service systems and in various types of
 supply chains, respectively. Switching to other application
 domains, a series of papers study competition and pricing in
 telecommunication networks. Johari and Tsitsiklis (2004),
 building on Kelly (1997), prove that auctioning capacity in
 networks leads to an efficiency loss of at most 33%. Sang
 havi and Hajek (2004) and Maheswaran and Ba?ar (2004)
 study extensions of the basic model. Finally, Acemoglu and
 Ozdaglar (2007) study competition when network providers
 compete for traffic by setting prices, and prove a tight worst
 case bound for the efficiency loss.

 Structure of This Paper. In ?2, we present a varia
 tional inequality characterization of Nash equilibria for the
 atomic case, and work out a simple example. Then, ?3
 shows an upper bound on the price of anarchy for arbitrary
 networks when cost functions belong to a set given a priori.
 In addition, we provide a lower bound that arises from a
 particularly bad instance. Section 4 concentrates in games
 with a single origin and destination. We provide a bound
 on the price of anarchy that depends on the variability of
 the market power across players and a bound for the case
 of symmetric players. Section 5 discusses pricing mech
 anisms that reduce the price of anarchy. We conclude in
 ?6 by presenting additional applications of our model, and
 some directions in which our results can be generalized.

 2. Characterization of Nash Equilibria in
 the Atomic Network Game

 Recall that a solution xNE for all players is a Nash equi
 librium if it is a best reply strategy for each player. For
 that to be the case, the flow jcne' k for player k e [K] needs
 to be a solution to the following optimization problem in
 which flows xNE'' are fixed for i^k. For ease of notation,
 we introduce a reverse arc with zero cost between tk and sk
 for each k:

 (NE*) min Ck(xNE> \ ..., x^k~\ x\ jcne'*+1, ..., x^K)

 s-t- E xl,v) - E xl,v)=0 for a11 ve v> (w, v)eA (v, w)eA

 X(tk,sk) =

 xk^ 0 for all aeA.

 Note that our assumptions guarantee that these optimization
 problems are convex. Then, an equilibrium always exists
 (Rosen 1965). Using the convexity of Ck(x) and the first
 order optimality conditions of problem (NE*), we can char
 acterize equilibria with a variational inequality. Indeed, xNE
 is at equilibrium if and only if, for all k e [K], xUE,k solves

 ?^(*r)(x*-*r^o
 aeA

 for any feasible flow xk for player k. (2)

 Here, the modified cost function ck(xa) := ca(xa) +
 xkac'a(xa) is the derivative with respect to xk of the term
 xkca(xa) in Ck(x). Intuitively, the second term accounts for
 player krs ability to affect prices.

 At times, we will consider the Wardrop equilibria xWE
 of an instance where each atomic player is replaced by
 nonatomic ones controlling the same total flow. Under
 a Wardrop equilibrium, all used paths serving the same
 OD pair need to have the same cost with respect to ca(x E).
 In addition, following Harker (1988), we consider situations
 in which some OD pairs are controlled by atomic players,
 whereas others are controlled by infinitely many nonatomic
 players. These games can be viewed as limits of games in
 which the number of players tends to infinity, but some
 of them retain market power to set prices, whereas others
 are relegated to be price takers. Harker (1988) referred to
 the equilibria of those games as mixed behavior equilib
 ria, and he showed how to characterize them using a set of
 variational inequalities similar to (2). Except where other
 wise stated, all results in this paper are valid for the three

 classes of equilibria that we introduced (Nash, Wardrop,
 and mixed) because we work with arbitrary market powers.
 We remind the reader that the quality of equilibria for a

 given set of allowable instances is determined by solving
 the problem shown in (1). In this article, we work with
 arbitrary network topologies, we assume that cost functions
 belong to an arbitrary but fixed set of functions ^, and
 we consider alternative assumptions for the structure of the
 players and their OD pairs. For example, market structures
 can be arbitrary (?3), have a single OD pair with arbitrary
 demands (?4.1), or have a single OD pair with symmetric
 demands (?4.2).

 2.1. A Simple Example with Linear Costs

 In this section, we provide a simple example with linear
 costs (i.e., the cost equals a constant times the flow) to illus
 trate that price-setting players can hurt the system. Although
 in this case Wardrop equilibria are known to be optimal,
 Nash equilibria may be inefficient when players are atomic.
 (Dafermos and Sparrow 1969 showed that when cost func

 tions are of the form ca(xa) = raxba for a fixed b, a flow is
 a Wardrop equilibrium if and only if it has minimal total
 cost.)

 The example we present in Figure 1 is inspired from
 a discussion on traffic paradoxes by Catoni and Pallotino
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 Figure 1. An instance of a network game with atomic
 players and splittable flow.

 8 ^^^^^^^^ |
 (1991) and will be the basis for other instances in which

 Nash equilibria exhibit a peculiar behavior. There are two
 atomic players with demands equal to dx := 2 and d2 := 3,
 and cost functions equal to cx(xx) := jc,, c2(jc2) := jc2, and
 c3(x3) := 2x3. In this example, the unique Wardrop equilib
 rium jcwe (and therefore also the social optimum) routes all
 dx units of flow along arc 1 making x%* = 2, whereas the
 d2 units are split between x2E = 2 and x3E = 1. Notice that
 cx(2) = c2(2) = c3(l) = 2 as expected, and the total cost
 equals 10.

 Nash equilibria of atomic games with linear cost func
 tions generally do not minimize the total cost. The main
 difference compared to a Wardrop equilibrium is that when
 competitors have market power they give relatively less
 importance to others. Using (2), it can be verified that the
 unique Nash equilibrium is the flow that routes xxE % 1.48,
 jc?e % 0.52 + 1.91, and x ? 1.09, where jcf is the sum
 of the flows coming from the two players. Indeed, all used
 paths have the same length with respect to the modified
 cost functions cka(xa) = ra(xa + jc*). Its total cost is approx
 imately equal to 10.47, and therefore the efficiency loss
 in this instance amounts to 4.7%. The degradation arises
 because both players give less importance to the competi
 tor's flow and they load arc 2 too much. A carefully con
 structed instance with linear cost functions implies that the
 price of anarchy is at least 1.17. For the case of a single
 OD pair, Altman et al. (2002) show that Wardrop equilib
 ria, Nash equilibria, and social optima all coincide when
 cost functions are monomials of a fixed degree.

 3. Atomic Games with General Players
 In this section, we study the price of anarchy for atomic
 games with arbitrary networks and demand configurations.
 For example, players with arbitrary market power may
 coexist with price-taking players. The most important con
 clusion that can be drawn from the results of this section

 is that if marginal costs do not increase too steeply, then
 the total cost at a Nash equilibrium is not too large when
 compared to the cost of a socially optimal solution. Even if
 players could collude and distribute the benefits fairly, the
 total savings will not be significant.

 As a warm-up exercise and before considering arbitrary
 cost functions, we derive a bound on the price of anarchy
 for the case in which <g is the set of affine cost functions.

 To this end, we define an optimization problem whose
 first-order optimality conditions correspond to the equilib
 rium conditions. In particular, this optimization problem
 implies that the game is potential (Monderer and Shapley
 1996) and that there is an essentially unique equilibrium.
 (Boulogne 2004 pointed out that this conclusion is implied
 by the results of Rosen 1965; "essentially unique" means
 that if there are multiple equilibria, they are indistinguish
 able from the players' perspective.)

 Consider an affine cost function of the form ca(xa) = qaxa
 + ra. Let us define a modified cost function ca: R* -> U+
 by Ca(xa) := qaT,KMK)2<xJa + raHke[K]Xa' Note that
 2E/^W2^^= (?a [*]*J)2 + E* [jr](*5)2. which
 implies that ca(xa) is convex, or strictly convex when costs
 are strictly increasing. We define problem (NLP-NE) as the
 minimization of the potential function C(x) := YlaeA ca(xa)
 among all feasible flows x. Strict convexity implies that
 there is a single solution to the previous problem. Because
 its first-order optimality conditions coincide with the
 conditions that characterize a Nash equilibrium, the latter
 has to be unique. In addition, problem (NLP-NE) can be
 used to approximate a Nash equilibrium up to a fixed
 additive term in polynomial time (Potra and Ye 1993). One
 cannot expect to do better than an additive approximation
 because an equilibrium may require irrational numbers.
 This potential function can be used to derive bounds on the
 price of anarchy (e.g., see Roughgarden and Tardos 2002,
 Johari and Tsitsiklis 2004). However, this bound is looser
 than that of Proposition 3.2.

 Proposition 3.1. Consider an atomic congestion game
 with K players and affine cost functions. Let x"E be a Nash
 equilibrium and xOVT be a social optimum. Then, C(jcne) ^
 (2K/(K+\))C{x ).
 Proof. To compare C( ) and C(), notice that xaca(xa) ^
 (2K/(K + l))ca(xa) for an arbitrary decomposition of xa
 into xa. Summing over the arcs,

 IK IK IK

 c(x"E)* TTi (^E)* FTTe(^OPr)^ k + Tc(*orr)'
 where the middle inequality holds because jcNE minimizes
 problem (NLP-NE).

 This approach can be easily extended to games with a
 mix of atomic and nonatomic players (Harker 1988). We
 need only to correct the cost function introduced above to
 take into account that some users are price setters, whereas
 the rest are price takers. Denoting the former by [K]9 the

 resulting cost function is ca(xa) := (qa/2)(T,ke[K]xa)2 +
 (<7a/2) Hke[k]{Xa)2 + ra Ylke[K] Xa'

 3.1. The Price of Anarchy for General Cost
 Functions

 Using the variational inequality displayed in (2), we can
 prove a stronger upper bound on the price of anarchy for
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 atomic congestion games. The upper bound we provide
 below originates in Roughgarden (2005), using ideas from
 Correa et al. (2004). We define

 Ekem{(ck(x) - c(y))y* + (c(x) - ck(x))xk} pK(c):= sup -^-?-,
 x^eU^ XCyX)

 and PK(^) := supceSg/3*(c). Notice that in the previous
 definition (and later on when working with j3) we over
 loaded notation slightly because jc, jc, y, and y represent
 flows on a single arc instead of representing flows for the
 entire instance, as usual. Also, in this supremum we implic

 itly assume that jc = J2ke[K] aiK* y = Ylke[K] yk- F?r trus
 definition and the ones below to work, we shall assume that

 0/0 = 0. It is straightforward to see that j3*0?) ^ 0. The
 magnitude of j3 is related to the steepness of cost functions.
 For a geometric interpretation of this calculation in the set
 ting of nonatomic games, we refer the reader to Correa
 et al. (2008).
 We now give a bound on the price of anarchy for games

 with k players that depends on j8^(^). To simplify nota
 tion, we will not explicitly distinguish the case of jS*^) ^
 1 and assume that (1 ? /3^(c^))~1 = +oo in such a case.

 Proposition 3.2 (Roughgarden 2005). Consider an
 atomic congestion game with K players and separable
 cost functions drawn from %. Let x"E be a Nash equi
 librium and xOFT be a social optimum. Then, C(jcne) ^
 (l-jS^^))"1^0^).
 Proof. Using (2) and the definition of j3*C?) in order, we
 get that

 c(*m)=? ? {(cfl?E)-^(^NE)KNM+^(^EKM}
 aeAke[K]

 < ? ? {(cfl(0-^(0)*r*+c*(5T)^}
 aeAke[K]

 <i8^(^)C(jcNE) + C(y)

 for any solution y. We finish by setting y = xOVT.

 Note that this bound on the price of anarchy is also valid
 for the mixed atomic and nonatomic games. This is because
 those games can be seen as the limit of atomic games when
 the number of players goes to infinity. Roughgarden (2005)
 proved that the price of anarchy under the same situation
 equals aK(?>) :=supc % a*(c), where

 aK(c):= sup XC{*\-?? (3)
 for c e The two bounds match because aK^ ) =
 (1-/W))-1 when 1.
 Although Roughgarden (2005) and Correa et al. (2005)

 independently claimed that the price of anarchy for atomic
 network games cannot exceed that in nonatomic ones, Fig
 ure 2 presents a counterexample. The OD pair on the left

 Figure 2. Example of an instance with affine costs and
 price of anarchy larger than 4/3.

 is nonatomic, whereas that on the right is controlled by a
 single player. At Nash equilibrium, the common arc has 1
 and 0.9 units of demand coining from the left and right
 OD pairs, respectively, and the total cost is 3.89. Under
 the social optimum, the common arc has 0 and 1 units of
 demand and the total cost is 2.9. Dividing, we get a price
 of anarchy of approximately 1.341, which is larger than 4/3
 (the price of anarchy when players are nonatomic and cost
 functions are affine).

 As a side remark, a Wardrop equilibrium for the same
 instance incurs a smaller total cost than the Nash equilib
 rium. Furthermore, the same happens considering only the
 cost paid by the atomic OD pair. One could argue that the
 corresponding player may anticipate the response of the
 nonatomic players and simulate a Wardrop equilibrium to
 her advantage. This reasoning fails because this behavior
 for the atomic player is not allowed in a Nash equilibrium
 because the atomic player has to select a best response to
 the flow that the nonatomic players choose. In other words,
 a Wardrop equilibrium is actually better for the atomic
 player, but it is not a Nash equilibrium of the atomic game.

 The following remark implies that atomic games are
 provably harder to coordinate than nonatomic ones. Indeed,
 the affine case discussed previously is not an anomaly. The
 price of anarchy for atomic games grows by at least a factor
 of ln b faster than that of nonatomic ones, where b denotes

 the maximum degree of the polynomials that appear as cost
 functions.

 Remark 3.1. Using a structure similar to the previous
 example, let us consider an instance that consists of two
 arcs with constant cost, a common arc with cost function

 equal to xb, and nonatomic and atomic OD pairs, both with
 unit demands. Optimizing over the two constant costs, we
 get lower bounds on the price of anarchy of 1.343, 1.67,
 1.981, and 2.287 for polynomials of degree one to four,
 respectively. Asymptotically, the price of anarchy grows as
 fl(fc), in contrast to the price of anarchy for nonatomic
 games, which grows as ?(b/\nb).

 To conclude the example, let us add that it is not nec
 essary to use a nonatomic OD pair. We could have con
 structed a similar example with a finite number of players.
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 That would require replacing the nonatomic OD pair by
 K ? 1 atomic players, each controlling 1/(^?1) units of
 demand. If K is large, both equilibria are similar by conti
 nuity (e.g., Haurie and Marcotte 1985 proved that equilib
 ria in atomic games converge to those in nonatomic games
 when players lose market power). For example, for the
 affine instance with price of anarchy equal to 1.343, if the
 nonatomic demand is controlled by 94 or more identical
 players, the price of anarchy is already larger than 4/3.
 We now compute a concrete expression for the price of

 anarchy under specific sets of cost functions. The key is to
 first obtain a simpler expression for (3K(c).

 Theorem 3.1. The constant f3K(c) is at most

 ycjx) - yc(y) + c'(*)(y2/4 - (x - y/2)2/K) sup -?-.
 x,yeU2+ XCyX)

 Proof. Starting from the definition of fiK(c), we get

 PK(c)
 xc{x) - yc(y) + ?*e[*] ck(x)(yk - xk) = SUp -?!

 i,yeKj XCyX)
 yc{x) -yc(y) + c'(x)(Ek [K]ykxk - Eke[K)C**)2) = sup -?-*-.

 x,yeRK XCyX)
 (4)

 As c is nondecreasing, c'(jc) > 0. Thus, assuming w.l.o.g.
 that xl ^xk for all k [K], to make (4) as big as possible

 we have to set (y1,..., yK) to (y, 0,..., 0). It follows that

 oK, N yc(x)-yc(y)+c'(x)(xly-T,ke[K](xk)2) P (C)= SUP -VrT^
 x=T.ke[K]xk>
 xl=max(x)

 To find the best choice of x, we fix the total flow x and
 compute the optimal decomposition. It is enough to solve

 max{xly ? ?*e[jr](**)2: x e M+,x{ = max(x)}. By sym
 metry, an optimal solution to this problem satisfies x2 =

 = xK. Therefore, we replace xl by u and jc2,..., xK by
 (jc ? u)/(K ? 1), and solve

 2 0 ~uf ,~ max uy ? u-. (6) x^u^x/K K ?I
 This is a concave program so we can conclude that the opti
 mal solution is u* = min{jc, x/K + y(K ?\)/2K}. Plugging
 in jc1 = w* and xk = max{jc/? - y/2K, 0} for k = 2,..., K
 in (5), we have that

 PK(c)
 \ yc(x)-yc(y) + c'(x)(y2/4-(x-y/2)2/K) = max sup -??-, 10^2* XC(X)

 yc(x) - yc(y) + c'{x){xy - x2) \ sup -?-| 0^2x^y XCyX) J

 yc(x) -yc(y) + c'(x)(y2/4- (jc -y/2f/K)
 SUP -xTM x,y^0 XC{X)

 The last inequality follows by removing the constraint
 x ^ u from (6).

 Corollary 3.1. If xc(x) is a convex function, then

 pk,c)= sup yc(x)-yc{y) + c'{x){y'/A-{x-y/2f/K) O^jc XC(X)
 Moreover, defining

 r(c):= sup (c(x)-c(y)+C-^)-^? o^x\ 4 / xc(x)

 we have that fiK(c) ^ /3??(c).

 Proof. Consider the function h(y) defined as the numer
 ator inside the supremum of (5). To prove that the solu
 tion satisfies y ^ x, we will show that h'(y) ^ 0 if y ^ x.
 Because h'(y) = c(x) ? c(y) ? yc'(y)-\-xlc'(x), the deriva
 tive is negative if and only if c(x) + xlc'(x) ^ c(y) +
 yc'(y). Because xc(x) is convex, its derivative is increas
 ing, implying that c(x) + xc'(x) ^ c(y) + yc'(y) for x ^ y.
 The first claim follows because xl < x. The second claim
 is straightforward because a square is nonnegative.

 The definition of the constant j8??(c^) is very similar to
 that of

 sup -?-,
 o^y^x xcyx)

 which provides a bound on the price of anarchy for
 nonatomic games (Correa et al. 2004). The only difference
 between the two expressions is the last term in the numer
 ator of j3??(c^), which penalizes equilibria in the case of
 atomic players.

 3.2. Computing the Price of Anarchy

 In this section, we show how to evaluate j80C(c^). We start
 with a rough estimate of j8??(^), and we continue by com
 puting it exactly. In particular, that allows us to conclude
 that the price of anarchy is at most 3/2, 2.464, and 7.826,
 for affine, quadratic, and cubic cost functions, respectively.
 Roughgarden (2002) and Correa et al. (2007) used the

 constant

 y(^):=sup{l-\-c(x)x/c(x): ce<%, xeU+}

 to bound the unfairness of a socially optimal solution.
 Notice that y(?>) can be easily computed for given sets
 of cost functions. For example, y(degree-? polynomials) =
 b + 1.

 Corollary 3.2. The constant satisfies that
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 Proof. The lower bound arises from evaluating fi??(%) in
 x = y. The upper bound holds because the supremum of a
 sum is bounded by the sum of the suprema.

 The following bound provides a tighter expression for
 common sets of allowable cost functions such as polyno
 mials of a fixed degree.

 Proposition 3.3. Let % be a family of continuous and
 nondecreasing cost functions c that satisfy that xc(x) is
 convex. Furthermore, assume that c(rx) ^ s(r)c(x) for all
 r E [0, 1], where s: [0, 1] ? [0, 1] is a differentiable func
 tion satisfying s(l) = 1. Then,

 B??(c) ^ max u( 1 - s(u) + s'(l)-V o^i \ 4/
 Proof. Let us first bound c'(x) using that for any two val
 ues z ^ z\ c(z') = c((z'/z)z) ^ s(z'/z)c(z). We have that

 c(x + e) - c(x) l-s(x/(x + e)) c ix) ? lim-< c(x) lim

 = c(x)-, X

 where the last equality follows by applying THopital's rule.
 Therefore,

 fl?, , . yc(x)(l-c(y)/c(x) + s'(l)y/(4x)) /3 (c)< sup -? O^yix XC(X)
 y(l-s(y/x) + s'(l)y/(4x)) ^ sup -

 O^y^x X

 (, , x s'(X)u\ m = max w 1 -s(m) + . o<?^i y 4 /
 Corollary 3.3. lf% only contains polynomials of degree
 at most b, the price of anarchy is at most

 (l - max u(l -ub + bu/4)] . \ 0^u^\ J
 Proof. The assumption of Proposition 3.3 is now satis
 fied with s(x) - xb. Therefore, s'{\) = b and f3??(c) ^
 max0<M<1 u(l ? ub + bu/4).

 Using Corollary 3.3, we can determine that our bound on
 the price of anarchy when cost functions are affine equals
 3/2. For the case of quadratic or cubic polynomials, it is
 approximately 2.564 or 7.826, respectively. For polynomi
 als of degree 4, our bound evaluates to infinity. This stands
 in contrast with the situation of nonatomic games in which
 the price of anarchy grows as b/\nb, where b is the degree
 of the polynomials. Using Corollary 3.2, it is straightfor
 ward to see that b/4 ^ f5?? (degree-^ polynomials) ^ 1 +
 b/4. This follows from the definition of y(^) and 0 <
 P(^?) ^ 1. Notice that although there is a gap between the
 lower and upper bound for the price of anarchy, the value
 of j80C(c^) that we computed is exact. The following propo
 sition provides a bound that depends on the range that the
 derivative of the cost functions is allowed to take.

 Proposition 3.4. Suppose that

 max c'(x) ^ y min c'(x) xelR+ xeU+

 for a given y ^ 1. 77iera, f3??(c) < y/3.

 Proof. Denote minJCG[R+ c'(x) by c and max^^ c'(x) by c.
 Using the Mean Value Theorem, and the convexity and non
 negativity of c, it is easy to see that c(x) ? c(y) < (x ? y)c
 and that c(x) ^ xc. Replacing the values in the bound from
 Corollary 3.1, we get that

 tr(c)< sup ^-^ + ^/4) O^y^x X2C
 yx-3y2/4 ^ y sup-= y/3.

 O^y^x X

 As an example, the last proposition can be used to show
 that if, for all c g ^, the largest derivative is not bigger
 than twice the smallest derivative, then the price of anar
 chy is bounded by three. It also provides another proof of
 Corollary 3.3 in the case of affine cost functions because
 the ratio of the derivatives is equal to one.
 Now we analyze the dependence of the price of anar

 chy on the number of players K. For K = 1, the sin
 gle player computes a social optimum, and therefore one
 should expect that if the bound provided by Proposition 3.2
 is tight, then ax(^ ) should be one. This is the case, in fact,
 when cost functions are convex. The following proposition
 establishes the price of anarchy for K players and affine
 cost functions. We do not include a proof because it simply
 consists of technical calculations.

 Proposition 3.5. If there are K players and the allowable
 cost functions are affine, the price of anarchy is bounded
 from above by aK(affine) = (3K + l)/(2K + 2).

 The previous proposition implies that when K -> oo,
 a*(affine) a??(affine) = 3/2. In particular, for K > 5,
 the upper bound is larger than a(affine) = 4/3, the price
 of anarchy for nonatomic games. Recall that for the exam
 ple that we presented before, we needed approximately 100
 players to achieve a price of anarchy larger than 4/3.

 3.3. Pseudoapproximations
 We now concentrate on pseudoapproximation results (also
 known as bicreteria results) that compare the Nash equi
 librium to a social optimum in an instance with expanded
 demands (Roughgarden and Tardos 2002). The main moti
 vation of this comparison is that a large coordinating power
 is required to achieve a social optimum, but an equilib
 rium arises naturally and without any coordination. To bal
 ance this difference, we impose more costs to the socially
 optimal solution by increasing its demand. We measure
 the quality of equilibria by determining how much more
 demand is needed to make the social costs of the two solu

 tions equal. If a large expansion factor for the demand is
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 Figure 3. Example with pseudoapproximation guaran
 tee larger than 2.

 needed, it means that equilibria are inefficient. These results
 can also be interpreted as a way to compute the expansion
 of capacity that is needed to offset the lack of coordination
 in the network. Roughgarden and Tardos (2002) proved that
 the social cost of a Wardrop equilibrium is bounded by that
 of a social optimum of a game with demands doubled. This
 means that instead of trying to coordinate the network, one
 can double the capacity of all arcs and achieve a similar
 social cost.

 Roughgarden and Tardos (2002) extended the pseudoap
 proximation bound to atomic games. This extension was
 based on a characterization of equilibria of atomic conges
 tion games that they proposed. Unfortunately, this character
 ization is not correct, and hence the results in Correa et al.

 (2005) that used it are not valid. Figure 3 presents an exam
 ple for which the Nash equilibrium is more costly than the
 social optimum with demands doubled. The OD pair on the
 left is nonatomic, whereas the one on the right is atomic.
 Consider M := (1 - e)b + b(l/4 - e)(l - e)*"1, where e is
 such that (1 ? e)b < l/b. The parameters M and s are cho
 sen so that the Nash equilibrium is the flow in which the
 nonatomic demand routes all its 3/4 units of flow in the mid
 dle arc and the atomic player splits its flow in 1/4 ? e along
 the middle arc and the rest in the other. The social cost of the

 equilibrium equals (1 ? e)b+l + (1/4 + e)M. Consider the
 flow that routes twice the demand in which 3/2 units of flow
 take the left arc, 1 ? e units take the middle arc, and e units

 take the right arc. Therefore, the social cost of the social
 optimum is at most sM + (1 ? s)b+l + 3/(2b). Comparing
 the two costs, we conclude that to find a counterexample, we
 need to find b and e such that b(l ? e)b<\ and Mb/6 > 1.
 This is achieved by taking s = 0.1 and b = 34. Modifying
 the example slightly, we can obtain a counterexample with
 polynomials of degree 26. On the other hand, if we allow
 polynomials of arbitrary degree, it can be seen that the cost
 of the Nash equilibrium can be made arbitrarily higher than
 that of the social optimum with demands doubled.

 In addition, one cannot expect to prove a theorem of this
 type with a constant expansion factor if arbitrary cost func
 tions are allowed. To see this, consider the same example
 as in Figure 3 and a parameter 0 < 8 < 1. The nonatomic

 demand is 1 ? 8, the demand of the atomic player is 28, and
 the cost functions, from left to right, are 0, a step function
 that is 0 for x ^ 1 and 1 otherwise, and 2. It can be seen
 that there is one equilibrium with total cost equal to 25,
 whereas the social optimum when the demand is amplified
 by 1/(28) has zero cost. The example can be worked out
 for polynomial cost functions (of arbitrary high degree).
 The previous discussion leads us to the following result.

 Proposition 3.6. Let jcNE be a Nash equilibrium and, for
 an arbitrary a > 1, let xOFT be a social optimum of the
 game when demands are multiplied by a. Then, there exists
 an instance of the atomic network game with convex and
 increasing cost functions such that C(xNE) > C(xOFT).

 In view of the previous negative results, we now prove
 a pseudoapproximation result for atomic games that hinges
 on ideas of Correa et al. (2008). The following proposition
 provides a bound that depends on the allowable cost func
 tions %. For example, in the case of affine cost functions,
 an expansion factor equal to 4/3 makes the social cost of
 an equilibrium be bounded by that of the expanded social
 optimum.

 Proposition 3.7. Let jtNE be a Nash equilibrium of an
 atomic congestion game with K players and with separable
 cost functions drawn from IfxOFT denotes a social opti
 mum of the game with demands multiplied by 1 -hjS*^),
 then C(jcne) ^ C(jcopt).

 Proof. Let y be a flow that routes (1 +fiK^ ))dk units of
 demand from sk to tk for k [K]. Then,

 c(0 = (i+]8A:(^))E ? {(ca(x7)-ckaWE))xTk
 aeAke[K]

 + cka(x:*)x?k}-pK(<e)c(x )

 ^ (i+pK(<$))? ? \(ca(x?)-c*(*aNE)KE-* aeAke[K]l

 ck(x"E)vk 1

 +fH^r^)c(xt't)'
 where the inequality follows using (2) with y*/(l +
 0*(<?)). Asca(x )-cka(x )^0,

 C(*NE) ^ ? E {(Ca(*7) - c*(*7)KM + cka{x?)yka)
 aeAke[K]

 -j3*C&)C(jcNE)

 ^ pK(<$)C(x"E) + C(y) - pK(<%)C(x"E) = C(y).

 The proof follows by evaluating in y = 5?OPT.

 Remark 3.2. Note that the example above shows that
 j80C((^) is unbounded for general cost functions (continuous
 and convex).
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 4. Atomic Games with a Single OD Pair
 In this section, we concentrate on atomic games played on
 networks with arbitrary topology in which all K players
 share the same source s and sink t. This context is partic
 ularly relevant in settings in which goods are produced in
 one place (e.g., Asia) and consumers are located in another
 one (e.g., the United States). In another example that we
 present in ?6, we consider a flexible manufacturing envi
 ronment. Here, production involves a series of operations
 starting from raw materials that are assembled into finished
 goods by different producers. This process can be modeled
 using a congestion game with units that start from a state
 corresponding to raw material and that evolve into a state
 corresponding to finished goods.

 Single-source single-sink instances are easier to analyze
 because the same set of paths is available to all play
 ers. This fact will allow us to provide improved results
 compared to the general case. We consider two alterna
 tives: either players control arbitrary fractions of the mar
 ket, or players are symmetric. This type of games and the
 two alternatives have also been considered by Orda et al.
 (1993), although they restricted the network topology to be
 of parallel arcs.

 The presentation is divided into two sections: In the first,
 we consider the case in which different players control dif
 ferent amounts of demand, resulting in different market
 shares. We prove an upper bound on the price of anar
 chy that depends on the variability of the market power of
 the different players. To the best of our knowledge, this
 is the first known bound of this type. In the second part,
 we consider the case of symmetric players in which all
 players have the same demand to route through the net
 work. This symmetry allows us to provide improved results
 and to rule out counterintuitive phenomena such as a para
 dox described by Catoni and Pallotino (1991). We provide
 improved results for the particular case of affine cost func
 tions in the appendix.

 4.1. Variable Market Power

 We consider the case in which different players control dif
 ferent amounts of demand, leading to different levels of
 market power. Our main result is a bound on the price of
 anarchy that depends on the variability of market power
 across players. To that extent, we use the Herfindahl index
 which is a standard measure of industry concentration. We

 denote it by H := T,ke[K](dk/D)2, where D := Eke[K]dk
 is the total demand. This index is a number between 1 /K
 and 1. A higher index means that the market is less com
 petitive, and the case of H = 1 corresponds to a monopoly.
 The case in which H = 1 /K corresponds to instances with
 symmetric players (see the next section).

 The following proposition combines Theorem 3.1 and
 Corollary 3.1 and achieves a better bound by reinterpreting
 the definition of fiK(c).

 Proposition 4.1. Consider an instance with a single OD
 pair and Herfindahl index equal to H. Letting

 5r m y(c(x)-c(y) + c'(x)yH/4) p(c,H):= sup-?-, O^y^x XC\X)

 and jSC^/Y) := supceSg j3(c, H)y we have that C(xNE) <
 (l-P(^,H))-lC(xOVT).

 Proof. Looking at the proof of Proposition 3.2, the con
 stant fiK(c) can be interpreted as the minimum number
 for which the last inequality of the proof holds. Because
 that inequality does not depend at all on the decomposi
 tion of y into yk, we can set yk in the way that is most
 convenient instead of using its worst realization, as we
 have done in (5). The only restriction in setting yk is that
 when we sum the inequalities derived from each arc, yk
 has to be a feasible flow for player k. This can be eas
 ily done in the case of a single OD pair by decompos
 ing y proportionally to the demand of each player, i.e., as

 (dky/D)ke[Ky The claim follows after solving the supre
 mum in (4) with the new decomposition of y, and redoing
 the proof of Corollary 3.1.

 Providing bounds of this type for multiple OD pairs is an
 interesting question that our work leaves open. Our tech
 niques do not easily extend to multiple OD pairs because
 it is not clear how to create a feasible flow arc by arc.
 Nevertheless, ?6 outlines a generalization in that direction.

 The difference compared to the expression provided by
 Corollary 3.1 is the factor H in the last term of the numer
 ator. Observe that as H ^ 1, this result can only reduce the
 price of anarchy. Moreover, if each player controls at most
 a fraction (f){K) of the demand such that <f>{K) ? 0 when
 K ?> oo, the price of anarchy is asymptotically equal to
 that in the nonatomic game. Indeed, the worst case for the
 market power variability is that there are 1 /q)(K) players,
 each controlling a fraction (f)(K) of the demand, whereas
 the rest of the players control an infinitesimal. In that case,

 if ^ (l/qb(K))(f)(K)2 = (j){K) -> 0. For example, in an
 oligopoly with K players that control a total demand equal
 to K, but in which K/lnK players control In AT units of
 demand each and the rest of the players do not have mar
 ket power, the analysis above shows that this oligopoly
 approaches the nonatomic game when K grows.
 Proposition Al in the appendix shows that the price of

 anarchy in the case of affine cost functions is at most
 (4 ? if)/(3 ? if). This generalizes that the price of anarchy
 is equal to 4/3 for nonatomic games (H = 0) and at most
 3/2 in general (arbitrary if). Nevertheless, we know that
 when if = 1 the price of anarchy equals 1. By perturbing
 the monopolistic case, we can show that the price of anar
 chy for the case of a single OD pair is strictly less than 3/2.
 However, this analysis is quite technical, and it is unlikely
 to provide a bound that is tight.
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 4.2. Symmetric Players
 When all players have the same demand d to route through
 the network, Orda et al. (1993) showed that there is a
 unique Nash equilibrium. Our first contribution in this sec
 tion is to provide a convex optimization problem whose
 optimum is the unique equilibrium. This implies that the
 game with symmetric players is a potential game. To facil
 itate notation, we add a reverse arc between t and s with
 zero cost:

 (SNE) min 2>flcfl(*J + (tf-1)? f? ca(r)dr aeA aeAJ?

 ^ E x(u,v)~ E x(v,w)=Q forallueV,
 (u,v)eA (v,w)eA

 x{t,s) = dK,

 xa^0 for all aeA.

 Interestingly, problem (SNE) consists of finding a feasi
 ble flow that minimizes a convex combination between

 the objective functions of the problems used to compute
 a social optimum and a Nash equilibrium of a nonatomic
 game. When there is a single player, the second part van
 ishes, leaving only the social cost. Instead, when there are

 many players the second part is dominant and the social
 cost becomes negligible. The next result shows that a solu
 tion is optimal for problem (SNE) if and only if it is a Nash
 equilibrium. Therefore, if the cost functions are strictly
 increasing, there is exactly one Nash equilibrium. Addition
 ally, we make use of the potential function to derive results
 on the efficiency of equilibria.

 Theorem 4.1. If x solves problem (SNE), then xNE =
 (x/K,..., x/K) is a Nash equilibrium of the symmetric
 game with atomic players.

 Proof. Because problem (SNE) is a convex program, the
 Karush-Kuhn-Tucker conditions say that x is an optimal
 solution if and only if it is a feasible flow satisfying

 Kca(xa) + xac'a(xa) = AM - Xv + pa for all a = (u, v) e A,

 0 = A, - \s + A(/tS),

 paxa = 0 for all a e A,

 p^O.

 By letting x^k = x/K, \k = X/K and pk = p/K, and by
 dividing all previous equations by K, we obtain that x"E,k
 is feasible for problem (NE*), and it satisfies

 for all a = (u, v) e A,

 0 = Af-A* + A*,,s))

 /i*^-*=0 for all aeA,

 which are exactly the Karush-Kuhn-Tucker conditions cor
 responding to problem (NE*).

 We now use Theorem 4.1 to derive results on the effi

 ciency of equilibria for symmetric network games with
 atomic players.

 Proposition 4.2. Let x eM* be a Nash equilibrium in an
 atomic game with K players who control d units of flow
 each, and let y eU* be a Nash equilibrium in an atomic
 game with K < K players who control dK/K units of flow
 each. Then, C(y) ^ C{x).

 Proof. Using the optimality of jc and y in their respective
 problems as before,

 Ev?W + (^i)Ef'c0(T)rfr aeA a?AJ?

 ^T,yaca(ya) + (K-i)j:/\(t)Jt aeA aeA 0

 aeA aeA 0

 + {K-K)Y,fa ca(r)dT.

 Thus, T,aeAfo"ca(T)dT sj EaeA fo" Ca^) dr, which im
 plies that

 Eyaca(ya) + (K-i)j:fyaca(T)dT aeA aeA 0

 < ? W*J + (K - 1) ?/'" ca(r) dr aeA aeA 0

 <?WO + (*-i)E/\o-)</t. aeA aeAJ?

 The previous proposition implies that the price of anar
 chy in symmetric games with K players increases as the
 number of players increases. Going to the limit when
 K -> oo, we get the following corollary.

 Corollary 4.1. The social cost of a Nash equilibrium in
 an atomic game is bounded by that of the Wardrop equilib
 rium in the corresponding nonatomic game.

 Hence, when the number of players goes to infinity, the
 price of anarchy approaches that in the nonatomic case. The
 conclusion is that when players are completely symmetric,
 the ability to set prices does not degrade the quality of
 equilibria with respect to price-taking players. This stands
 in clear contrast to the case of atomic asymmetric games
 whose price of anarchy is larger than that of nonatomic
 games. Proposition A2 in the appendix evaluates the price
 of anarchy of symmetric games as a function of the number
 of players K when cost functions are affine. As expected,
 it tends to 4/3 as the number of players grows.

 The results for symmetric players can be generalized to
 the asymmetric case with a single OD pair if we assume
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 that for each arc either all players have a positive flow on
 it, or no player uses it. Orda et al. (1993, p. 518) referred
 to this assumption by "all-positive flows," and proved that
 in this case there is a unique Nash equilibrium. Specifi
 cally, if we consider the KKT conditions of each of the
 player problems under an equilibrium and sum them up,
 we get the KKT conditions of problem (SNE). This implies
 that, on every arc, the total flow induced by an equilibrium

 matches the optimal solution of (SNE), and thus the results
 we have presented in this section carry over to this setting.
 Note, however, that the equilibrium flows do not necessar
 ily consist of the proportional decomposition of the total
 flow, as was the case for symmetric players.

 5. Pricing Mechanisms
 In this section, we consider that players are charged a per
 unit price when sending flow through taxed arcs. These
 charges are levied by the system administrator, designer
 or regulator with the sole purpose of encouraging coordi
 nation among the participants of the game. This approach
 extends previous work in the setting of nonatomic conges
 tion games. Because prices are payments inside the system,
 they do not change the functional form of the social cost.

 If it is possible to charge different prices to different
 users (price discrimination), it is always feasible to achieve
 a fully efficient solution. It is enough to compute a social
 optimum and charge player k e [K] the difference between
 its marginal cost and the real cost. Indeed, consider a social
 optimum xOVT with an arbitrary flow decomposition by
 player. Because jcopt satisfies the first-order optimality con
 ditions of its optimization problem, the following inequality
 holds for all players:

 EM*r)+*r<(*r)]o? - *r *) > ?
 aeA

 for any feasible flow yk for player k. (7)

 Notice the resemblance between this inequality and (2).
 Actually, if player k in arc a is charged a nonnegative unit
 price of pka := (;c?PT ? x?PT'*)c^(;t?PT), player fc's total unit
 cost in arc a will be ca(xa) + pka. Plugging that cost func
 tion into (2), we see that the inequality coincides with (7),
 implying that xOPT is at equilibrium.
 We now present some other cases in which we can

 guarantee full efficiency without price discrimination. The
 case of a nonatomic game, which was first analyzed by
 Beckmann et al. (1956), is included in the analysis above.
 Indeed, the flow controlled by any player is infinitesimally
 small, implying that pa := x 1 c'a(x J). This case results in
 uniform prices because the term that discriminates players
 vanishes. The case of a symmetric game can be handled in a
 similar way: Using the flow decomposition jcopt,k = xOPT/K

 for all k e [K], we get that pa := (1 - l/K)x?PTcfa(x?PT).
 If one is not allowed to price discriminate, it is not clear

 that achieving an optimal solution is possible. For a gen
 eral network topology and market structure, we find a set

 of prices for each arc that reduces the price of anarchy.
 Denoting the tax that we add to the cost function on each
 arc a by pa, we want to find the taxes p* that minimize the
 price of anarchy. To this end, we need to redefine f3K(c) as
 follows:

 := sup -?-,
 x,y R* XC\X)

 and fiK(^, p) := supce^ f3K(c, p). With this, we have a new
 version of Proposition 3.2.

 Proposition 5.1. Consider an atomic congestion game
 with K players, separable cost functions ca, and prices pa.
 Let xNE be a Nash equilibrium with tolls and xOPJ be a
 social optimum without tolls. Then,

 C(xNE) < (1 -mzfpK{ca,pa))-'c{x ) v aeA

 Proof. Using (2) and the definition of PK(^g) in order, we
 get that

 c(xNE) = E ? {(ca(x?)-(ca(xr)+Pa))x7k
 aeAke[K]

 + (ck(xT)+Pa)xTk}
 < ? ? U^?E) - ^(*D -pa)xTk

 aeAke[K]

 + (cka(xD + Pa)yk}

 ^max^(ca,pa)C(xNE) + C(y), aeA

 for any solution y. We finish by setting y = xOPT.

 Proceeding as in Proposition 3.7, we can also get the
 following:

 Proposition 5.2. Let xNE be a Nash equilibrium of an
 atomic congestion game with K players, separable cost
 functions ca, and prices pa. If xOPT denotes a social
 optimum of the game with demands multiplied by 1 +
 maxa?ApK(ca,Pa), then C(xNE) < C(x0PT).

 Motivated by the symmetric case, we propose that the
 price charged in every link is pa(r]) := rix?PTc'a(x?FT),
 where 77 e [0,1] is a constant that is going to be chosen to
 minimize the price of anarchy.

 Proposition 5.3. If ^ is the set of nonnegative polynomi
 als of degree at most b, the optimal price for this mech
 anism is 77* = min {1/2, l/b}. The corresponding price of
 anarchy is bounded by fiK{lo, p{yf)) ^ max0^M^1 w(l ?
 ub~l+bu/4).
 Proof. Starting with a general 77 and proceeding as in ?3.1,
 we have that for cg^:

 PK(c,p(v))
 ^ricp(v))

 y(c(x)-c(y) + c'(x)y/4+r1c/(y)(y-x)) ? SUP- \?)
 x,y?M+ XC(X)
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 We can assume without loss of generality that cost func
 tions are monomials of degree at most b (otherwise, sub
 divide each arc into multiple arcs with a monomial each).
 Hence, we only need to compute P??(axb, p(r/)) because
 lower-degree monomials have a smaller price of anar
 chy. Using (8) and the change of variables u := y/x,
 PK(^, p(r?)) ^ supM R+ u(l + (1 - Vb)ub - r)bub-x+bu/4).
 For convenience, let us call the argument of the supremum

 h^u). A requirement for the supremum to be bounded is
 that the highest-degree monomial of h^-) has a nonpos
 itive coefficient. Therefore, optimal prices are achieved at
 77* ^min{3/4, \/b}.
 We will concentrate first on the case b > 1, which

 implies that rj* < 1/2. Evaluating, the derivative h'v(l)
 is b(y] ? 1/2) ^ 0, and the second derivative hr^(u) is
 (b+l)b(r]b- l)ub~l -7]b2{b- \)ub~2 + b/2. This implies
 that h! {u) decreases for u ^ 1, and thus the optimal
 value for u verifies 0 ^ u ^ 1. Finally, as dh^^/drj =
 bub(u ? 1) ^ 0 in 0 < m ^ 1, we conclude that for larger
 values of 77, hv(u) decreases. Hence, we should set rj* to its
 largest possible value l/b. Plugging this value into h^),
 we get the claim.

 The only case we have not yet considered is the affine
 one. If 0 ^ 7] ^ 1/2, reasoning as before, we conclude that
 77* = 1 /2 and the optimal value of u satisfies 0 ^ u < 1.

 When 1/2 < 7] ^ 3/4, as /^(l) = b/4 and h'^l) > 0, the
 supremum is strictly higher than that with 17 = 1 /2, so this
 case does not provide an optimal value for 77.

 In Table 1, we compute values of /3 and bounds for the
 price of anarchy with optimal prices and without pricing.
 Notice that the pricing mechanism reduces both values.
 Moreover, in the affine case the pricing mechanism is able
 to reduce the price of anarchy to the level of nonatomic
 games.

 6. Concluding Remarks
 We now discuss some possible extensions of the model
 we have presented. Although we have assumed that each
 player routes flow only from a single origin to a single
 destination, this can be relaxed. Equation (2) still holds
 when each player has to route flow from multiple origins
 to multiple destinations, implying that our bounds on the
 price of anarchy hold too. In ?4, this means that instead
 of a single OD pair, there may be many OD pairs. Sec
 tion 4.1 requires that market share of player k in OD pair

 s-t (i.e., dkst/J2je[K] d{t, where dkst is the demand controlled
 by player k in OD pair s-t) is the same throughout all
 OD pairs. Instead, ?4.2 requires that dkt = d{t for all play
 ers k and j and all OD pairs.

 After the publication of a preliminary version of this
 article (Cominetti et al. 2006), there has been some work
 related to atomic network games with splittable flow. Harks
 (2008) strengthened our upper bounds on the price of anar
 chy for general networks and for nonlinear polynomials of
 bounded degree. His improvement arises from introducing
 and optimizing upon another free variable in the definition
 of j3(So). In addition, using the framework developed by
 Fleischer et al. (2004), Swamy (2007) and Yang and Zhang
 (2008) proved that tolls that induce a socially optimal flow
 always exist and can be computed efficiently.

 6.1. Further Applications
 We conclude by presenting other examples that fit the
 abstract model we have presented, beyond competition in
 the setting of freight transportation. Intelligent transporta
 tion systems (ITS) provide users with information about
 travel options and allow them to make informed travel deci
 sions. Eventually, ITS could be used to provide route guid
 ance services to users. These services will not only provide
 information about traffic network conditions, but may also
 provide a user with detailed guidance from her current posi
 tion to her final destination. This situation naturally fits our

 model. Route guidance service providers are atomic play
 ers (they have market power as they control a nonnegligi
 ble fraction of the cars) who strive to minimize the overall
 travel time of their clients. The rest of the users in the trans

 portation network are nonatomic players because they make
 their decisions independently. Although route assignments
 that achieve minimal travel time may route some users on
 excessively long paths, the overall adverse effect from the
 user perspective is small because users are assigned to paths
 randomly (see also Jahn et al. 2005 for a route guidance
 model that specifically addresses this issue). Hence, users
 will improve the travel time in expectation because the like
 lihood of being assigned to a long path is insignificant.
 Interestingly, it has been frequently mentioned that ITS
 promises to improve the usage of the existing road network
 infrastructure and to help manage congestion. Our results
 seem to indicate that route guidance systems that minimize
 total delay may not always improve users' performance. It

 Table 1. Bounds on the price of anarchy for polynomials of degree up to b with and without pricing.

 Optimal pricing No pricing Nonatomic
 b rf ^(%p(rj*)) (1-/^(^(77*)))-' j3??(%0) (l-ZTC^O))-1 ft% (l-jSC^))-1

 1 1/2 1/4 4/3 1/3 3/2 1/4 4/3
 2 1/2 1/2 2 0.61... 2.56... 0.38... 1.63...
 3 1/3 0.78... 4.53... 0.87... 7.83... 0.47... 1.90...
 4 1/4 1.05... oo 1.13... oo 0.53... 2.15...
 5 1/5 1.32... oo 1.38... oo 0.58... 2.39...
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 may happen that by joining a route guidance service, a user
 may end up being worse than when she selected the path
 with shortest delay. Nevertheless, this probably happens
 very rarely. Although the instances we provide were care
 fully constructed to show that degradation may occur, in
 real-world instances delays would typically be lower when
 guidance is available.

 Another application domain that fits this model is that
 of telecommunication networks. Internet service providers
 '(ISPs) route packets using an underlying physical network
 whose arcs are owned by network providers. To deliver
 their packets, ISPs must subcontract capacity from link
 owners and determine routing patterns to deliver packets
 across the network. Competition arises from the fact that
 network providers can sell their capacity to different ISPs.
 As before, the two performance measures of interest are
 cost paid to link owners and an indicator of service level,
 such as routing delay. Mapping both measures into cost,
 we can model this game with the help of price curves that
 map demand to unit prices.

 Even though the network structure arises naturally in
 applications that involve networks such as those presented
 above, this model can also represent other situations. For
 example, in a flexible manufacturing environment, produc
 ing goods involves a series of operations that are performed
 by different flexible machines. There may be more than
 one sequence of machines that can process parts to man
 ufacture the finished product. In this setting, the flexible
 machines are owned by different agents who sell capac
 ity to contractors. Contractors, in turn, compete in the two
 dimensions previously mentioned: If more contractors buy
 capacity of a particular machine, its price goes up on the
 one hand, but on the other hand its waiting time, and
 thus the completion time, increases. Naturally, a contrac
 tor would like to produce at minimum cost?the reason
 for which competition arises?and hence has to determine
 which machine sequences to use for production. However,
 such an environment cannot be modeled directly by net
 work games; instead, one needs to use an atomic congestion
 game. In this class of games there are resources (machines
 in this case), and players (contractors) have to pay to use
 them. Here, payments depend only on how many players
 select the resources, and not on their identities. Because,
 our results did not make use of the network structure, but

 relied on variational inequalities to characterize Nash equi
 libria, all results we have presented extend to congestion
 games without modification.

 Appendix. Games with One OD Pair and
 Affine Costs
 We prove additional results for networks with a single
 OD pair and affine costs. Namely, we compute the price
 of anarchy as a function on the Herfindahl index, and as a
 function on the number of players for symmetric games.

 Proposition Al. Consider an atomic game with a single
 OD pair and affine cost functions. The price of anarchy is
 bounded from above by (4 - H)/(3 - H), where H is the
 Herfindahl index.

 Proof. Using the extension of Proposition 3.3 to this set
 ting, we have that

 fl??(c)< maxu(l-u + Hu/4) = ?^?, o^?<i 4 ? H

 from which the claim follows.

 Proposition A2. Consider a symmetric atomic game
 with K players and affine cost functions. The social
 cost of an equilibrium is bounded from above by
 4K2/(K + 1)(3^T ? 1) times that of a social optimum.

 Proof. Let ca(xa) = qaxa + ra. By Theorem 4.1, we know
 that equilibria are of the form (x/K,..., x/K), where
 x solves problem (SNE). The optimality condition of
 Problem (SNE) can be expressed as

 ?((* + l)qaxl + Kraxa) < + ^0ya + Kraya)
 aeA aeA

 for any feasible flow y.

 By reorganizing the terms in the above inequality, we
 obtain

 (* + l)E + 0
 aeA

 < (K +!) E aaxaya+K E raya + E Va
 aeA aeA aeA

 (K + l)2
 < K E ya{Qaya + O + 4K E qaxl + E raxa aeA aeA aeA

 (K + l)2
 < K E ya(qaya + O + E *a(4a*a + O

 The second inequality follows from ((x/2)y/(K + 1)/X ?
 yy^/^+l))2 ^ 0, whereas the third holds as (K + l)2 ^
 4K, for all # ^ 1. We conclude that

 4K2
 E Xa{qaXa + O ^ (v , -tt E ^(fcJa + O

 for any feasible flow y; in particular, it holds for the social
 optimum.

 Let us prove that the bound provided by Proposition A2
 is tight. To this end, consider a two-node two-arc network

 with K unit-demand players. The cost of arc 1 is cx(x) = 1,
 whereas the cost of arc 2 is given by c2(x) = x/(K + 1). It
 is easy to see that the optimal flow pattern routes (K ? l)/2
 and (K + l)/2 on arcs 1 and 2, respectively, leading to a
 total cost of (3K ? l)/4. On the other hand, at equilibrium
 each player routes all its flow along arc 2, and therefore the
 social cost of the equilibrium is K2/(K + 1). The resulting
 ratio is exactly as previously stated.
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