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PREFACE

In his presidential address to the London Mathematical Society in 1908
(published in the article [a12]), William Burnside remarked that ‘It is
undoubtedly the fact that the theory of groups of finite order has failed, so
far, to arouse the interest of any but a very small number of English
mathematicians …’ And he ended with the words ‘I wish, in conclusion, to
appeal to those who have the teaching of our younger pure mathematicians
to do something to stimulate the study of group-theory in this country. If,
when advice is given for the course of study to be pursued, the importance
of some knowledge of group-theory for a pure mathematician (which is
generally recognized elsewhere) were insisted on, there is little doubt but
that a demand for the serious teaching of the subject would soon arise.’

Seventy years on, such a plea would be scarcely necessary: the central
importance of group theory is now fully recognized and reflected in the
teaching of mathematics in universities and colleges. No doubt this is due in
no small measure to the profound influence of Burnside’s own masterly
book on the subject of groups ([b3]). Nowadays it is customary in British
universities to provide introductory courses of lectures on groups and other
algebraic systems for undergraduates in their first year of study. The present
work offers material for a further course of study on group theory. It is
based on courses of lectures given by the author at the University of
Newcastle upon Tyne to third year honours undergraduates and to
candidates for the Master’s degree.

The reader is supposed to be familiar with the contents of the kind of
introductory course mentioned above. Specifically, knowledge is
presupposed of the notions of isomorphism classes of groups, cyclic and
abelian groups, subgroups and cosets, Lagrange’s theorem, orders of
elements, symmetric groups and the decomposition of a permutation as a
product of disjoint cycles; and of the most elementary properties of vector



spaces, linear maps and matrices, fields and rings. A rather terse summary
of the facts about groups which are presupposed is contained in the
preliminary chapter 0, which also serves to establish notation used
throughout the book.

Chapter 0 is followed by another short chapter, chapter 1. This is
intended as a curtain-raiser to the whole book and attempts to trace various
important themes in terms comprehensible to the reader on the basis of the
presupposed knowledge. The aim is to provide a motivation for some of the
technical definitions and procedures to be treated in detail later on. The
emphasis in chapter 1 is entirely on finite groups, which are in fact the
primary objects of study of the whole book. Nevertheless, an attempt has
been made to avoid finiteness restrictions wherever their imposition does
not materially simplify the discussion; and certain important results on
infinite groups which arise naturally in context have been included,
especially in chapters 7 and 8.

The systematic treatment begins in chapter 2, where many basic
examples which recur throughout the book are introduced. Subsequent
chapters deal in a fairly leisurely way with a selection of the most important
lines of development in the subject, and an attempt has been made to give a
unified rather than a piecemeal treatment. An indication of the selection
made is given by the chapter titles. In brief, one may say that chapters 3, 7,
8 and 9 deal with the normal structure of groups and chapters 4, 5 and 6
with the arithmetical structure, while chapters 10 and 11 treat aspects of the
interplay between normal and arithmetical structures.

A particular emphasis is placed on the idea of group actions. This is
conceptually important as typifying the way in which groups occur in
mathematics, as well as providing a powerful method within group theory
itself. The basic facts about group actions are given in chapters 4 and 9,
with applications in chapters 5 and 10.

Chapter 10 calls for special comment. It is devoted to an exposition of
the beautiful treatment of the classical notions of transfer and splitting by
means of group action arguments which was given by Professor Helmut
Wielandt in a lecture at the Mathematisches Forschungsinstitut,
Oberwolfach, in May 1972. This provides a very impressive illustration of
the power of group action techniques within group theory. This material has
not previously appeared in print and I am very greatly indebted to Professor
Wielandt for allowing me to include it here.



Any book which attempts to give a general account of group theory must
inevitably be selective. To the practitioner of the subject who inspects the
book, the omissions are probably more striking than the topics chosen for
inclusion. In offering the present work for scrutiny, I am especially
conscious of two major omissions: the representation theory of finite groups
(and the associated theory of group characters) and the theory of defining
relations of groups. Of these two important topics, the first may seem a
surprising omission from a book which stresses group actions, since
representation theory may be viewed as the theory of group actions on
vector spaces (as is explained at the beginning of chapter 9). I feel,
however, that in both cases an adequate treatment would lengthen the book
unacceptably. Moreover, a proper discussion of defining relations would
involve the theory of free groups which, although fundamental, is rather
different in spirit from the topics treated here. Good accounts of both
representation theory and defining relations are to be found in several of the
general texts on group theory listed among the references at the end of this
book. A number of specific references to representation theory are given at
the beginning of chapter 9. On the subject of defining relations, I wish also
to mention explicitly the important established work of reference by H. S.
M. Coxeter and W. O. J. Moser [b6], and the recent book by D. L. Johnson
[b22].

The present work is arranged in short sections which are numbered
consecutively through each chapter. In many instances, a section is devoted
to the statement and proof of a single result, to which reference may be
made in other parts of the book by citing the appropriate section number.
The more important results are designated ‘Lemma’ or Theorem’.

The exercises form an essential constituent of the book. They are
numbered consecutively from 1 to 679, their numbers appearing in bold
type. Exercises 1 to 12 appear at the end of chapter 0 and are meant to be
accessible to the reader with the presupposed knowledge. There are no
exercises in chapter 1. From chapter 2 onward, the exercises are set at
roughly equal intervals throughout the text. The aim is to give exercises
which illustrate and extend the material of the formal course as soon as the
relevant facts have been established in the text. There are many cross-
references to exercises, particularly in the later chapters of the book: these
references are given merely by citing exercise numbers; it is hoped that the
regular distribution of the exercises and the bold type of their numbers will



make these easy to locate without the additional citation of page numbers.
The statements of many of the exercises omit the conventional imperatives
‘prove that’ or ‘show that’; they are nevertheless assertions to be proved. I
imagine that few readers of the book are likely to attempt all the exercises.
However, a number of definitions and results given in exercises are needed
in the main text, and these are indicated by asterisks against their numbers
(e.g. *1); these exercises are mostly straightforward. Many of the more
difficult exercises are accompanied by suggested hints for their solution.

Dates have been attached to some results in order to indicate a historical
perspective to the development of the subject. For the same reason, various
references to early articles and books have been included in the list at the
end of the book. However, no pretence of historical scholarship is made:
this is a book on group theory, not on the history of the subject. For a
scholarly account of the early development of group theory, the reader may
consult the book by H. Wussing [b40].

The references to works of other authors are divided into articles, with
numbers prefixed by the letter ‘a’, and books, with numbers prefixed by the
letter ‘b’. The works listed are mainly those to which reference is made in
the text and in no way constitute a comprehensive bibliography of the
subject. Many of the authors quoted have written other important works on
group theory, and there are of course also many important works by authors
who are not quoted. An impression of the scope and bulk of publication on
group theory in the years 1940 to 1970 may be obtained from the recently
published volumes of reviews taken from the periodical Mathematical
Reviews: Reviews on Finite Groups (ed. D. Gorenstein, Amer. Math. Soc.
1974) and Reviews on Infinite Groups (2 vols., ed. G. Baumslag, Amer.
Math. Soc. 1974).

I was fortunate in the mathematicians who provided my first
comprehensive impressions of group theory, which were formed by
listening to courses of lectures given by Professor W. L. Edge in Edinburgh,
Professor P. Hall and Dr D. R. Taunt in Cambridge, Professor B. Huppert in
Mainz and Professor H. Wielandt in Tübingen. Although they might not
care to recognise the views or the modes of treatment of the subject which I
have chosen to adopt here as deriving from their own accounts, I wish to
place on record my sense of indebtedness to them for providing the original
stimulus which led me to pursue the subject. Of my particular indebtedness



to Professor Wielandt regarding the content of chapter 10, I have already
spoken.

During the writing of the book, I have been helped by many friends and
colleagues. I wish especially to offer thanks to Dr R. H. Dye, whose
misfortune it has been to occupy an office adjacent to my own and who has
shown exemplary patience in listening to my trial expositions of many
arguments which have been incorporated (and others which have not) and
frequently brought clarity to my confusion; to Professor A. Mann for
several valuable suggestions which I have adopted; and to Dr S. E.
Stonehewer, who most generously undertook to read the whole manuscript,
performed this task with characteristic conscientiousness, and helped me
with many pertinent comments. I wish also to express warm thanks to Miss
Joyce Edger who cheerfully and skilfully transformed the manuscript to
typescript; and to Dr and Mrs R. H. Dye for their help with proof-reading.

 
 
 

Newcastle upon Tyne 
26 May 1976



0
SOME CONVENTIONS AND SOME BASIC

FACTS

In this book, the capital letters G, H, J, K, L (sometimes with subscripts and
superscripts) will always denote groups. The reader is supposed to be
familiar with the elementary basic facts about groups which are
summarized in this chapter. Further details are to be found for instance in
Green [b14], or chapters 1, 2 of Ledermann [b29], or chapters 1, 2, 3 of
Macdonald[b30].

A subgroup of G is a subset of G which itself forms a group with respect
to the operation defining G. Then, if X is a non-empty subset of G, X is a
subgroup of G if and only if x1x2

− 1∈X whenever x1 and x2 are elements of
X.

We shall usually denote the identity element of a group by 1. Then if G is
the group in question, the subset {1} consisting only of the identity element
of G forms a subgroup which we call the trivial subgroup of G. Strictly we
ought to preserve the notational distinction between the element 1 and the
subgroup {1} of G, but in practice the same symbol 1 without brackets is
used for both element and subgroup. A subgroup H of G is said to be non-
trivial if H ≠ 1. We say that G itself is trivial if G has just one element (in
which case G = 1); and similarly that G is non-trivial if G has more than
one element. Sometimes we refer to an element of G distinct from 1 as a
non-trivial element.

Let g∈G. If the elements g, g2, g3, … of G are all distinct, we say that g
is an element of infinite order in G and we write o(g) = ∞. If on the other
hand there are distinct positive integers r, s such that gr = gs, we say that g
is of finite order in G : then there is a positive integer n such that gn = 1 and



we call the least such n the order of g, denoted in this book by o(g). If g is
of finite order and m is an integer, then gm = 1 if and only if o(g) divides m.

Elements g1 and g2 of G are said to commute if g1g2 = g2g1. A non-empty
subset X of G is said to be a commuting set of elements if x1x2 = x2x1
whenever x1 and x2 are elements of X. If G is itself a commuting set of
elements then G is called an abelian group (in honour of Niels Henrik Abel,
1802–29).

If there is an element g of G such that every element of G is expressible
as a power gm of g (where m is an integer), we say that G is a cyclic group
and that g generates G: then we write G = 〈g〉. Any cyclic group is
abelian.

Let X be any set. If X is infinite we write | X | = ∞. If X is finite, we
denote by | X | the number of elements in X. Sometimes we write | X | < ∞ to
signify that X is finite. For any group G, we call | G | the order of G. In
particular, if G is a finite cyclic group with, say, G = 〈g〉, then | G | =
o(g): explicitly, if o(g) = n then G = {1,g,g2, …, gn − 1}. For an arbitrary
group, the trivial subgroup is the only subgroup of order 1.

In a few passing remarks throughout the book we refer to infinite
cardinal numbers. When X is an infinite set, | X | may be interpreted as the
cardinality of X. With this interpretation, various statements to be made can
be refined to give corresponding results which distinguish between different
types of infinite sets. However, the reader who is unfamiliar with infinite
cardinal numbers may ignore all such remarks without impairing his
understanding of the rest of the text.

For sets X, Y we use the notation

Y ⊆ X mean Y is a subset of X,

Y ⊂ X to mean Y is a subset of X and Y ≠ X.
In the latter case we say that Y is a proper subset of X. When Y ⊆ X we
denote by X\Y the set of elements of X which do not belong to Y. The empty
set is denoted by . In group theory we write

H  G to mean H is a subgroup of G,
H < G to mean H is a proper subgroup of G.

(Warning. Ledermann and Macdonald use ‘proper’ to mean ‘proper and
non-trivial’, but we do not follow this usage.)



According to Lagrange’s theorem, if G is a finite group and H  G then |
H | divides | G|. This fact is of crucial importance for finite group theory.
We recall that the theorem is proved by partitioning G as the union of a
number of disjoint subsets of G each containing | H | elements. For these
subsets we may select the right cosets of H in G, that is the subsets Hg =
{hg : h∈H} with g∈G (where each g determines a subset Hg).
Alternatively, we may select for the subsets the left cosets of H in G, that is
the subsets gH = {gh : h∈H} with g∈G. If g1 and g2 are elements of G, we
have Hg1 = Hg2 if and only if g1g2

− 1∈H, and g1H = g2H if and only if g1
−

1g2∈H.
For an arbitrary (not necessarily finite) group G and H  G, the same

argument still applies. We may partition G as the disjoint union of right
cosets of H in G or of left cosets of H in G. If there are only finitely many
distinct right cosets of H in G then there are only finitely many distinct left
cosets of H in G, and conversely, and the numbers of them are the same.
This number is called the index of H in G and denoted by | G : H |. Note that
| G : H | = 1 if and only if H = G. If G is a finite group then | G : H | = |
G|/|H|. But it can also happen that an infinite group has proper subgroups
with finite indices. If on the other hand there are infinitely many distinct
right (or, equivalently, left) cosets of H in G, we write | G : H | = ∞. Later
on (in chapter 4) we shall place this idea of partitioning a group as a union
of disjoint subsets in a much more general context, and derive other
important results by arguments of the same kind. It is assumed that the
reader is familiar with the idea of an equivalence relation on a set, and the
connexion between this and the partitioning of a set as a union of disjoint
subsets.

If g∈H  G, then the order of g in H is the same as the order of g in G.
The element g generates a cyclic subgroup 〈g〉 of G, and this subgroup is
finite if and only if o(g) < ∞, in which case | 〈g〉 | = o(g). Now if G is a
finite group with, say, | G | = n, and g∈G, then 〈g〉 is finite and so o(g) is
finite; and, by Lagrange’s theorem, o(g) divides n. Hence gn = 1 for all
g∈G.

We use the notation  : X → Y to mean that  is a map (the words
mapping and function are synonyms for map) of a set X into a set Y.



Frequently we write x  or x  for the image under  of an element x∈X.
This convention has the advantage that if  : X → Y and  : Y → Z then the
composite map of X into Z, defined by applying to each x∈X first  and
then , is denoted by  : thus, by definition, x( ) = (x ) . (This
corresponds to the European convention of reading from left to right.) With
the functional notation customary in analysis, by which the image of x
under  is denoted by (x) the composite map is denoted by  : ( )(x) = 

( (x)). However, it is inconvenient to maintain a consistent convention for
notation of maps, and either convention will be adopted according to
circumstances.

If  : X → Y and x∈X, we often use the notation  : x  x  to show the
effect of  on x. The barred arrow  is used only between elements of sets.

A map  : X → Y is said to be infective if x1  ≠ x2  whenever x1,x2∈X
and x1 ≠ x2; and to be surjective if every element y∈Y is expressible as y =
x  for some x∈X. If  is both injective and surjective, it is said to be
bijective. Let 1X denote the identity map on X, i.e. the map 1X : X → X
defined by 1X : x  x for all x∈X. Then  : X  Y is injective if and only
if there is a map  : Y  X such that  = 1X. Also, if 1Y denotes the
identity map on Y then  : X → Y is surjective if and only if there is a map 
: Y → X such that  = 1Y. Finally,  : X → Y is bijective if and only if
there is a map  : Y → X such that  = 1X and  = 1Y, that is, if and only
if  is invertible. A bijective map  : X → X is often called a permutation
of X. If X is a finite set then an injective map  : X → X is necessarily a
permutation of X, as is a surjective map  : X → X; here the condition of
finiteness of X is essential. The reader is supposed to be familiar with the
elementary properties of permutations. These will be summarized when the
symmetric groups are introduced in chapter 2.

Elements of a set are sometimes called points. A map  : X → X is said
to fix a point x∈X if x  = x.

Two groups are said to be isomorphic if there is a bijective, structure-
preserving map from one to the other (see 2.6). Then the relation of
isomorphism is an equivalence relation on any set of groups. This relation is
fundamental to group theory in the sense that group theory is concerned
with classifying groups ‘to within isomorphism’. We cannot expect to



distinguish group-theoretically between groups which are isomorphic but
have no elements in common. For the sake of brevity we shall call an
isomorphism class of groups a type. We write G1 ≅ G2 to denote that
groups G1 and G2 are isomorphic.

If  : X → Y and S is a subset of X, then the restriction of  to S is the
map 1 : S → Y defined by 1 : s  s  for all s∈S. This is sometimes
denoted by |S. It may happen that there is a subset T of Y such that s ∈T
for all s∈S. Then we may want to refer to the map  : S → T defined by  :
s  s  for all s∈S. Logically this is a different map from 1 if T ⊂ Y. We
shall say that  is obtained from  by restriction.

If  ⊂ S ⊆ X and 1X denotes the identity map on X then 1X|S : S → X is
the inclusion map of S in X.

Throughout this book,
p always denotes a prime number,

 a set of prime numbers,
C the field of complex numbers,
R the field of real numbers,
Q the field of rational numbers,
Z the ring of integers.

For any positive integer n,
Zn denotes the ring of integers modulo n.

In particular, Zp is a field, sometimes denoted by GF(p) (a so-called Galois
field).

If a and b are integers and n is a positive integer,
a ≡ b mod n means that n divides a − b.

We sometimes write (a, b) for the greatest common divisor of a and b: this
is defined provided that a and b are not both 0. We say that a and b are co-
prime if (a,b) = 1. If a and b are co-prime integers then there exist integers
a′ and b′ such that aa′ + bb′ = 1.

*1 Any group of prime order is cyclic.

*2 Any two cyclic groups of the same finite order are isomorphic.



*3 If g2 = 1 for every g∈G then G is an abelian group.

4 Let g1,g2∈G. Then o(g1g2) = o(g2g1).

*5 (i) Let g∈G with o(g) = n < ∞. Then, for every integer m, o(gm) =
n/(m,n).

(ii) If G is a cyclic group of finite order n then the number of distinct
elements which generate G is (n), where  is Euler’s function : that is, 
(n) is the number of positive integers not exceeding n which are co-prime to
n.

*6 Let g1,g2∈G with o(g1) = n1 < ∞, o(g2) = n2 < ∞. If n1 and n2 are co-
prime and g1 and g2 commute then o(g1g2) = n1n2.

7 Let g∈G with o(g) = n1n2, where n1 and n2 are co-prime positive
integers. Then there are elements g1,g2∈G such that g = g1g2 = g2g1 and
o(g1) = n1, o(g2) = n2. Moreover, g1 and g2 are uniquely determined by
these conditions.

8 By considering orders of elements in the multiplicative group of all
non-zero elements of the field Zp, prove Fermat’s theorem : for every
integer a not divisible by p, ap − 1 ≡ 1 mod p.

9 Let G be an abelian group of finite order n. Show that the product of
the n distinct elements of G is equal to the product of all the elements of
G of order 2 (where the latter product is interpreted as 1 if G has no
element of order 2). By applying this result to the multiplicative group of
all non-zero elements of the field Zp, prove Wilson’s theorem for prime
numbers : (p − 1)! ≡ − 1 mod p.

10 Let H  G and let g1,g2∈G. Then Hg1 = Hg2 if and only if g1
− 1H =

g2
− 1H.

*11 (i) Let J  H  G. Then | G : J | is finite if and only if | G : H | and |
H : J | are both finite, and if so, | G : J | = | G : H | | H : J|.

(ii) Let J  H  G with | G : J | = p, prime.
Then either H = J or H = G.



12 Let H  G and g∈G. If o(g) = n and gm∈H, where n and m are co-
prime integers, then g∈H.



1
INTRODUCTION TO FINITE GROUP THEORY

The ideal aim of finite group theory is to ‘find’ all finite groups: that is, to
show how to construct finite groups of every possible type, and to establish
effective procedures which will determine whether two given finite groups
are of the same type. The attainment of this ideal is of course quite beyond
the reach of present techniques (though the corresponding aim for finite
abelian groups was achieved a hundred years ago: see 8.24, 8.41). But what
kind of programme might be devised towards the fulfilment of such an aim?

To each finite group G there is associated the positive integer | G|. We
note two elementary facts.

1.1. For each positive integer n, there is at least one type of group of order
n.

For instance, the set of complex nth roots of unity forms a (cyclic) group
of order n under multiplication: see 2.14.

1.2. For each positive integer n, there are only finitely many different types
of groups of order n.

To see this we observe that for any group G of order n and any set X of n
elements, X can be given the structure of a group isomorphic to G. All that
is needed is to choose some bijective map  : G → X and then to define
multiplication in X by the rule (g1 )(g2 ) = (g1g2)  for all g1, g2∈G. It is
straightforward to check that this multiplication on X satisfies the group
axioms; then also, by definition,  becomes an isomorphism. This means
that groups of order n of all possible types appear among all possible
assignments of a binary operation to any particular set of n elements. But



the number of different such assignments is , and so this is also an upper
bound for the number of types of groups of order n.

(For another proof of 1.2, see 4.24.) For each positive integer n, let v(n)
denote the number of types of groups of order n. Very little is known about
v(n) in general (see 301 for a sharper upper bound on v(n)); but one simple
remark can be made immediately. It follows from Lagrange’s theorem that a
group of prime order must be cyclic (1). Since any two cyclic groups of the
same order are isomorphic (2), we have

1.3. For each prime number p, v(p) = 1.
There are numbers n other than primes for which v(n) = 1. We mention a

result which characterizes these numbers – though the result is not of
importance in group theory, but merely a curiosity (see 575).

1.4. Let , where s, m1,…, ms are positive integers and
p1,…, ps distinct primes. Then v(n) = 1 if and only if m1 = m2 = … = ms = 1
and for all i,j = 1,…, s, pi − 1 is not divisible by pj.

(Thus for example v(15) = 1; see 215.)
Now, for each positive integer n, let va(n) denote the number of types of

abelian groups of order n: then va(n)  v(n). From theorems on the structure
of finite abelian groups (see 8.43), we have

1.5. Let , where s,m1,…,ms are positive integers and
p1,…,ps distinct primes. Then

and, for each j = 1,…, s,
 is the number of partitions of mj; that is, the number of ways of

expressing mj as a sum of positive integers (the order of components being
disregarded). In particular, .

This shows that there is no upper bound for va(n) which is independent of
n; and hence also no upper bound for v(n) independent of n.

A natural approach to the problem of constructing finite groups is to seek
an inductive method in terms of group orders. Thus we should try to
describe each finite group in terms of groups of smaller orders: then in



principle we might hope to start with certain basic groups and to build up a
description of all types of finite groups step by step.

Therefore we naturally think about subgroups. What subgroups does a
group G of order n have? By Lagrange’s theorem, the order of any
subgroup of G is a divisor of n. However, it is not necessarily true that G
has a subgroup of order m for each divisor m of n (see 185). The best
general result about existence of subgroups of prescribed orders is the
following consequence of Sylow’s theorem (see 5.32).

1.6. Let G be a group of finite order n. For each prime p and power pm of p
which divides n, G possesses a subgroup of order pm.

This result directs attention to groups of prime power orders. Such
groups have helpful special properties and play an important part in the
analysis of general finite groups.

Among the subgroups of a group G there are some which are especially
useful in deriving information about G: the so-called normal subgroups. We
use the notation  to mean ‘K is a normal subgroup of G’. The
explicit definition of the term is given in 3.2, but for the present discussion
we merely state the following key facts (see 3.20–3.22).

1.7. Suppose that . Then we can define a corresponding group G/K
(not a subgroup of G) which is called the quotient group of G by K. In some
sense, G is built up from the two groups K and G/K. In particular, if G is
finite then so are K and G/K, and | G | = | K|.|G/K|.

One always finds among the normal subgroups of G the group G itself
and 1, the trivial subgroup; and G/G ≅ 1 and G/1 ≅ G. But the interesting
normal subgroups are the ones different from these, if they exist.

If, in 1.7, G is finite and K ≠ G and K ≠ 1 then we get a description of G
in terms of two groups K and G/K of smaller orders than G. This description
cannot be regarded as complete, because knowledge of the types of the
groups K and G/K is not in general enough to determine uniquely the type
of G (see 116). This then raises the extension problem: given groups K and
Q, determine the types of all groups G such that  and G/K ≅ Q.
Note that if K and Q are finite groups then the number of such types is
finite, because all such groups G have the same finite order | K|.|Q | and
therefore the number of types is at most v(|X|.|Q|). Although the extension



problem is hard, it is much more amenable to attack by currently known
methods than some of the problems mentioned earlier.

Assuming that we can deal with this extension problem, we are
encouraged to try the following programme. The notation  is used
to mean ‘K is a normal subgroup of G and K ≠ G’. For any finite group G
we consider chains of subgroups

which cannot be refined: that is, such that we cannot insert a subgroup H
with Kj − 1  H  Kj for any j = 1,…, s. Then we try to describe G in terms
of the quotient groups

which we have made as small as possible. Note that

Such a chain (i) which cannot be refined is called a composition series of
G.

1.8. Any finite group G possesses at least one composition series.
To prove this, we argue by induction on | G|. If | G | = 1 then 1 = K0 = G

is a composition series of G. Suppose that | G | > 1. Choose K  G with | K |
as large as possible (it may be that K = 1). Then | K | < | G|, so that by the
induction hypothesis K has a composition series

where s is a positive integer. Then

is a composition series of G. The induction argument goes through.
The most important fact about composition series is contained in the

Jordan-Hölder theorem (see 7.9):

1.9. Let G be a finite group and let



and

be composition series of G. Then r = s, and the two sequences of s quotient
groups K1/K0, K2/K1,…,Ks/Ks − 1 and H1/H0, H2/H1,…,Hs/Hs − 1 contain
groups of exactly the same types with the same multiplicities (possibly in
different orderings). We call s the composition length of G and the groups
K1/K0, K2/K1,…,Ks/Ks − 1 the composition factors of G.

Some groups will have composition length 1: such groups are called
simple. Explicitly, a group G (not necessarily finite) is simple if G ≠ 1 and if
the only normal subgroups of G are 1 and G. One can show (see 7.2)

1.10. Every composition factor of a non-trivial finite group is a simple
group.

Now we may think of the Jordan–Hölder theorem 1.9 as an analogue for
finite groups of the fundamental theorem of arithmetic for positive integers.
Finite simple groups play a corresponding rôle to prime numbers. The
Jordan-Hölder theorem says that every non-trivial finite group G is a kind
of ‘product’ of simple groups, and that these simple factors are uniquely
determined by G (apart from ordering). Of course formation of a ‘product’
in this context is not a uniquely determined process as it is for numbers.
Nevertheless, the results quoted effect a division of the original
classification problem into two parts: (i) find finite simple groups of all
possible types (the ‘building blocks’ of finite group theory), (ii) solve the
extension problem (that is, find how the building blocks fit together).

A great deal of effort has been devoted during the last ten years to
problem (i) and, although the obstacles ahead look formidable and the goal
is not yet in sight, significant advances have been made. At this stage we
merely mention (see 3.6, 3.60, 3.61, 5.24, 5.28)

1.11. The only abelian simple groups are the groups of prime orders. There
are also infinitely many types of non-abelian finite simple groups.

How might we attempt to investigate the structure of a non-abelian
simple group? We have no non-trivial proper normal subgroup, by means of
which we might hope to express the structure of the group in terms of the



structures of two smaller groups; but we should still like to work from
smaller groups up to larger groups. Therefore we think about subgroups
which are not normal. A starting point is provided by the following result,
which is one of the most striking achievements of the modern period.

1.12 (W. Feit and J. G. Thompson [a23]). Every non-abelian finite simple
group has even order.

The result was a conjecture of Burnside in 1911: see [b3] p. 503. In fact,
in the first edition of his book in 1897, Burnside had already recommended
an investigation of the existence or non-existence of a non-abelian simple
group of odd order, without predicting the outcome. The question was
finally settled in 1963 with the publication of article [a23]. A proof of this
theorem is unfortunately beyond the scope of any textbook at present,
though D. Gorenstein’s book [b13] gives an account of many of the
techniques involved. The importance of the Feit–Thompson theorem is that
it ensures the existence of elements of order 2 in non-abelian finite simple
groups.

1.13. Let G be any group of even order. Then G possesses at least one
element of order 2. (Any such element is called an involution.)

The result is an immediate consequence of 1.6. Alternatively, there is a
more elementary proof as follows. Let T = {x∈G : x2 = 1} and U = {x∈G :
x2 ≠ 1}. Then T and U are subsets of G such that G = T ∪ U and T ∩ U = 

. Now we count the elements of U. Possibly U = , in which case | U | =
0. If not, choose x1∈U. Then x1 ≠ x1

− 1∈U. Possibly U = {x1, x1
− 1}, in

which case | U | = 2. If not, choose another element x2∈U. Then x2 ≠ x2
−

1∈U, and also x2
− 1 ≠ x1 and x2

− 1 ≠ x1
− 1 (since x2 ≠ x1

− 1 and x2 ≠ x1).
Possibly U = {x1,x− 1,x2,x2

− 1}, in which case | U | = 4. If not,… We
continue until all elements of U are exhausted. We see that in any case | U |
is even. Since also | G | is even and | G | = | T | + | U|, it follows that) | T | is
even. But T ≠ , since 1∈T. Hence | T |  2. Therefore there is an element
t∈T with t ≠ 1. Such an element t is an involution.

Now let G be any group. For each x∈G we define



It is easy to check that CG(x) is a subgroup of G; it is called the centralizer
of x in G (see 4.25). Also

is a subgroup of G, called the centre of G and denoted by Z(G) (see 117).
Note that, immediately from these definitions, if x∈G and H = CG(x) then
x∈Z(H).

A good deal of the recent discussion of finite simple groups has been
concerned with centralizers of involutions. An important reason for this lies
in the following result (see 6.9).

1.14 (R. Brauer and K. A. Fowler [a8], 1955). Let G be a non-abelian finite
simple group (so that, by 1.12, | G | is even) and let t be an involution in G.
Then CG(t) ≠ G, and if | CG(t)| = m then !

This raises the possibility of characterizing a simple group G in terms of
the structure of the centralizer of an involution, a group of smaller order
than G. Specifically, from 1.14 we deduce

1.15. Let H be a group of even order with an involution u∈Z(H). Then
there are at most finitely many types of finite simple group G possessing an
involution t with CG(t) ≅ H.

To prove this, we note first that if such a simple group G is abelian then,
by 1.11, | G | = 2. On the other hand, any non-abelian such group G has, by
1.14, order at most !, a number dependent only on the
given group H. By 1.2, there are only finitely many different types of
groups of any given order; hence also there are only finitely many different
types of groups of orders not exceeding any given number.

The following scheme has been used repeatedly. Start with a known non-
abelian finite simple group E and an involution u∈E, and let H = CE(u).
Then consider finite simple groups G having an involution t with CG(t) ≅
H. By 1.15, there are only finitely many types of such groups G. Try to
prove that there is actually only one type, in other words, that G ≅ E



necessarily. If this succeeds, a characterization theorem for E has been
established : a characterization of E in terms of the structure of the
centralizer of one of its involutions (a group of smaller order than E). Many
such characterization theorems are known. But if the attempt fails because
there are groups not isomorphic to E among the groups G, there may be
previously unknown simple groups among the groups G. This procedure
has been a source of discovery of several new finite simple groups during
the past few years.



2
EXAMPLES OF GROUPS AND

HOMOMORPHISMS

It will be convenient to start with the notion of a semigroup since, as we
shall see, many important examples of groups arise in a natural way from
semigroups. However, we shall not in this book develop the extensive
algebraic theory of semigroups.

2.1 Definition. A semigroup is a non-empty set S, together with an
associative binary operation on S. The operation is often called
multiplication and, if x, y∈S, the product of x and y (in that ordering) is
written as xy.

The associativity in S is notationally very helpful. It permits us to write
unambiguously x1x2x3 for (x1x2)x3 = x1(x2x3), where x1, x2, x3 are any
elements of S. Furthermore it follows that we may refer unambiguously to
the product of any finite number of elements, taken in a definite ordering:
brackets may be arbitrarily inserted in or removed from a product x1x2…xn
without altering the result. (For a formal proof of this, see Ledermann [b29]
pp. 3–4 or Macdonald [b30] pp. 18–19.) There follow the standard power
laws: if x∈S and m, n are any positive integers then xmxn = xm+n and (xm)n =
xmn. Of course it is not in general permissible to alter the ordering of
elements in a product, for we may have x1x2 ≠ x2x1.

2.2 Definitions. Let S be a semigroup.
(i) An element e∈S is called an identity element of S if ex = x = xe for all

x∈S. If S has an identity element then it is unique: for if e and f are identity



elements of S then f = ef = e.
(ii) Suppose that S has an identity element e, and let x∈S. An element

y∈S is called an inverse of x if yx = e = xy. If x has an inverse then it is
unique: for if y and z are inverses of x then y = ye = yxz = ez = z.

Now a group is just a semigroup with an identity element such that every
element has an inverse.

(iii) A subgroup of S is a subset of S which forms a group with respect to
the operation defining S.

13 Give an example of a semigroup without an identity element.

14 Give an example of an infinite semigroup with an identity element e
such that no element except e has an inverse.

2.3. Let S be a semigroup with an identity element e. An element of S which
has an inverse is called a unit in S. Then the set of all units in S forms a
subgroup of S, called the group of units of S.
Proof. Let U be the set of all units in S. Then U ≠ , since e∈U. Since the
operation defining S is associative, so is the operation on U. Let x1, x2∈U.
Then there are elements y1, y2∈S such that

Then

similarly. Hence x1x2∈U. Clearly e is an identity element for U and y1∈U.
Thus y1 is an inverse of x1 in U. Hence U is a subgroup of S.

15 Let S be a semigroup and let x∈S. Show that {x} forms a subgroup of S
(of order 1) if and only if x2 = x. Such an element x is called an idempotent
in S. (Warning. A semigroup may have several different subgroups of order
1: see 16. Why does a group have only one subgroup of order 1?)



16 Let X be any non-empty set. Let S be the set of all subsets of X. Show
that S is a semigroup with respect to the operation ∩. Does S have an
identity element, and if so, what are the units in S? Show that every element
of S is an idempotent (15). Deduce that for all Y∈S, {Y} is a subgroup of S,
and that every subgroup of S has order 1.

What happens if ∩ is replaced by ∪?

2.4. If X is any non-empty set, the set MX of all maps of X into itself forms a
semigroup with respect to the operation of composition. There is in MX an
identity element 1, defined by 1 : x  x for all x∈X. The units in MX are
just the permutations of X. The group of units of MX is denoted by ΣX and
called the (unrestricted) symmetric group on X.
Proof. Certainly MX ≠ ; and MX is closed with respect to composition,
because the composite of two maps 1 : X → X and 2 : X → X is defined
to be a map 1 2 : X → X. Moreover, composition is associative: for if 1,

2, 3∈MX, the equation ( 1 2) 3 = 1( 2 3) merely expresses the fact
that for every x∈X,

The map 1 defined above belongs to MX and is obviously an identity
element for MX. Finally, if , ∈MX, then  is an inverse of  in MX if and
only if  = 1 = . For a given , there is such a  if and only if  is a
bijective map, that is, if and only if  is a permutation of X. Thus the group
of units of MX consists of all permutations of X.
Remark. The restricted symmetric group on a non-empty set X will be
defined in 110.
2.5. If X is a finite set with, say, | X | = n > 0, then | MX | = nn and | ΣX | = n!

The reader will know the standard notation for permutations of finite
sets: see for instance Ledermann [b29], pp. 20–6. Thus, if n is a positive
integer,



denotes the permutation  of the set {1, 2,…, n} = {a1, a2,…, an} for which

Any permutation of a finite set X can be expressed as a product of cycles on
disjoint subsets of X, and the expression is unique apart from the ordering
of the cycles. Moreover, any two disjoint cycles commute. Thus, for
example,

where, for instance (1263) denotes the permutation , and we

adopt the usual convention of suppressing on the right points which are
fixed by the permutation - in this case the point 5. The number of distinct
points which occur in a cycle is called the length of the cycle. So, for
example, the cycle (1263) has length 4.

The notation in terms of cycles is a very convenient one for making
explicit calculations in finite symmetric groups. For instance, if X = {1, 2,
3} then, in ΣX,

This shows that ΣX is a non-abelian group.
Here, and always in this book, when we are discussing permutations of a

set (rather than maps of other kinds), we shall place the symbols which
denote the permutations on the right of the points to which they apply. Thus
permutations are multiplied together from left to right.

17 Let X be a set with | X | = 2. Do two elements of MX necessarily
commute? Do two elements of ΣX necessarily commute?

18 Express the permutation  as a product of disjoint

cycles.
Find expressions for 2 and − 1 as products of disjoint cycles.



We shall often be concerned with particular instances of the following
situation: there are sets X, Y (possibly with X = Y) and a set T of maps of X
into Y. Some or all of the sets X, Y, T will usually be groups. We have noted
one such situation in 2.4, and now consider another.

Suppose that we have two groups G and H (possibly the same). We
should expect that among all the maps  : G → H, those which are
structure-preserving would be of particular significance.

2.6 Definitions. A map  : G → H is said to be a homomorphism if

If in addition  is bijective, it is said to be an isomorphism.
Suppose that  : G → H is an isomorphism and let  : H → G be the

inverse of the bijective map . Then  is also an isomorphism: for  is
bijective, and if h1,h2∈H then there are elements g1, g2∈G such that

If there is an isomorphism of G onto H we say that G and H are
isomorphic groups, or that G and H are of the same type, and write G ≅ H.
The relation ≅ is an equivalence relation on groups (20). If G and H are not
isomorphic we write G  H.

*19 If  : G → H and  : H → J are homomorphisms then the composite
map  : G → J is also a homomorphism.

*20 Verify that if  is any set of groups then ≅ is an equivalence relation
on .

It is often convenient to regard isomorphic groups whose elements form
disjoint sets as the same group. However, we must be careful in dealing
with subgroups of a group G. It may happen that G has subgroups H and K
which are distinct sets with H ≅ K. Then it is of course not permissible to



say that H = K. In this situation we are concerned with H and K not merely
as abstract groups but also with their relation to the containing group G.

2.7. If X and Y are non-empty sets such that there is a bijective map  : X →
Y then ΣX ≅ ΣY. In particular, in studying the finite symmetric groups it is
enough to consider the permutations of a single set of n elements, for each
positive integer n. We often choose for this the set {1, 2, …,n}, and we write
Σn (in many books, Sn) for the symmetric group on n points. Then Σn is
called the symmetric group of degree n.
Proof. Since  : X → Y is bijective, there is an inverse map  : Y→ X; thus

and                                
For each ∈ΣX,  : Y → Y. In fact, ∈ΣY; the map − 1  : Y → Y is
such that

Now it is easy to check that the map  : Σ X → ΣY, defined by

is an isomorphism.

2.8 Definition. If there is an injective homomorphism (sometimes called a
monomorphism) of G into H, we say that G can be embedded in H.

For any groups G and H there is at least one homomorphism  : G → H,
namely the trivial homomorphism  : g  1 for all g∈G. But of course in
general G cannot be embedded in H.

*21 (i) Calculate the products (12)(13)(14) and (12)(13)(14)(15) in the
group Σn, where n is an integer with n  5.

(ii) A permutation such as (12), which interchanges two points and fixes
all others, is called a transposition. For any integer n > 1, show that the
permutation (123… n) can be expressed as a product of n − 1
transpositions.



(iii) For any integer n > 1, prove that every non-trivial element of Σn can
be expressed as a product of at most n − 1 transpositions.

22 Let n be a positive integer and let ∈Σn. Suppose that  can be
expressed as a product of s disjoint cycles of lengths n1,n2,…,ns
respectively, where s,n1,…,ns are positive integers such that n1 + … +ns = n.
Then o( ) is the least common multiple of n1, n2,…, ns.

23 Let n and m be positive integers such that m divides n. Let  be a cycle
of length n in Σn. Then m is the product of m disjoint cycles of length n/m.

24 Any group which can be embedded in an abelian group is abelian.

25 Prove that if X is a non-empty set and Y a non-empty subset of X then ΣY
can be embedded in ΣX. (In particular, whenever m and n are positive
integers such that m  n then Σm can be embedded in Σn.) Hence or
otherwise show that if | X | > 2 then Σx is non-abelian.

The next two results give certain basic properties of homomorphisms.

2.9. Let  : G → H be a homomorphism. Then 1  = 1, and for every g∈G,
g− 1  = (g )− 1. The set {g  : g∈G} is a subgroup of H which we call the
image of  and denote by Im  or G . Moreover, for every subgroup K of
G, the set K  = {k  : k∈K} is a subgroup of Im .
Proof. Since in G 1.1 = 1, it follows that in H

hence that                                       
(In the last equation, on the left 1 denotes the identity element of G while
on the right 1 denotes the identity element of H.) Also in G

and so in H                                        
hence                                             



Let J = {g  : g∈G}. Then J is a non-empty subset of H. Moreover, if
g1,g2∈G then

Hence J  H.
For any K  G, the map

is a homomorphism, and Im  |K = K . Hence K   H, by what we have
proved; and then, since K  ⊆ Im , K   Im .

We note the following immediate consequence of 2.9.

2.10. (i) If  : G → H is an injective homomorphism then G ≅ G , and for
every subgroup K of G, K ≅ K ,

(ii) G can be embedded in H if and only if G is isomorphic to a subgroup
of H.

26 If  : G → H is a homomorphism and G is abelian then Im  is abelian.

*27 Suppose that G1 and G2 are isomorphic groups, and let  : G1 → G2 be
an isomorphism. If K1  G1 and K2 = K1  then | G1 : K1| = | G2 : K2|.

28 If G and H are finite then a necessary condition that G can be embedded
in H is that | G | divide | H|. Show by an example that this is not a sufficient
condition.

It will be convenient at this stage to gather together some important
examples of groups and homomorphisms.

2.11. Any ring R forms an abelian group R+ under addition: the additive
group of R. The identity element of R+ is the zero element 0 of R, and the
inverse in R+ of a∈R is the demerit − a. Note in particular the groups



For any a∈R (an arbitrary ring) the maps

defined by                              
for all x∈R+, are homomorphisms: this follows from the distributive laws
for the ring R. If multiplication in R is commutative then a = a for every
a∈R; but if the multiplication is non-commutative then a≠ a for some
a∈R.

If R = F, a field, and 0 ≠ a∈F, then a : F+ → F+ is an isomorphism: for
the map a is invertible, with inverse a − 1.

If R = Z and 0 ≠ n∈Z, then the map n : Z+ → Z+ is an injective
homomorphism. However, Im n = {nx: x∈Z+}, which is a proper subgroup
of Z+ unless n = ± 1. (For instance, Im 2 is the proper subgroup of Z+

consisting of all even integers.) So when | n |  2, n : Z+→Z+ is an
injective homomorphism which is not an isomorphism; and, by 2.10, Im n
is a proper subgroup of Z+ which is isomorphic to Z+ itself (cf. 30). Note
that Z+ is a cyclic group with Z+ = 〈 1 〉. None of the groups Q+, R+, C +

is cyclic.

*29 (i) Any infinite cyclic group is isomorphic to Z+.
(ii) If G is a non-trivial group of which the only subgroups are 1 and G

then G is cyclic of prime order.

30 (i) If G is finite then no proper subgroup of G is isomorphic to G.
(ii) If G is a group such that, whenever J < H  G, J  H then every

element of G has finite order. (An example of an infinite group with this
property will be given in 144.)

31 Show that Z+ has infinitely many distinct subgroups. Deduce that every
infinite group has infinitely many distinct subgroups.

*32 No two of the groups Z+,Q+,R+ are isomorphic. (Remark. It is in fact
true that R+ ≅ C+. This can be proved by regarding R and C as vector



spaces over Q, and using vector space theory and facts about infinite
cardinals.)

33 Let Horn(G, A) denote the set of all homomorphisms of a group G into
an abelian group A. Define a binary operation + on Horn(G, A) as follows:
for , ∈Hom(G, A),

is defined by                                    
for all g∈G. Verify that  + ∈Hom(G, A) and that, with respect to +,
Hom(G, A) acquires the structure of an abelian group.

Show that for any abelian group A, Hom(Z+, A) ≅ A.

2.12. Any ring R forms a semigroup under multiplication. If R has a
multiplicative identity element 1 then, by 2.3, the elements of R which have
multiplicative inverses in R form a group under multiplication; this is called
the group of units of R. We denote this group by R×. Note in particular the
groups Z× < Q× < R× < C×.

For any field F, F× is the multiplicative group of all non-zero elements of
F, and is abelian. We mention without proof the fact that if F is any finite
field then | F | = pm for some prime p and positive integer m, and F× is
cyclic of order pm − 1 (see Herstein [b19] chapter 7, §1, or Lang [b28]
chapter VII, §5, or Zassenhaus [b41] pp. 104–5; see also 9.15(ii)). Note that
Z× = {1, − 1}, while Q×, R×, C× are infinite.

34 Show that if  : G → H is a homomorphism, g∈G, and n is a positive
integer such that gn = 1, then (g )n = 1. Hence, by considering the elements
z of C× satisfying z3 = 1, or otherwise, show that C× is not isomorphic to
either Q× or R×.

35 Prove that Q× is not isomorphic to R×. (Hint. Note that for any positive
real number a and any positive integer n, there is a unique positive real
number b such that a = bn.)



36 Prove that there is no field F such that F+ ≅ F×. (Hint. Assume that
there is a field F with an isomorphism  : F× → F+ and consider (− 1) .)

37 Let F be a field. Define a binary operation * on F by

Prove that the set of all elements of F distinct from 1 forms a group F* with
respect to the operation*, and that F* ≅ F×.

2.13. The set of all positive real numbers forms a subgroup  of  The
map

defined by                                          
(where log x denotes the natural logarithm of x) is an isomorphism.

(What is the inverse isomorphism?) Hence

The map

defined by

(where | z | denotes the modulus of z) is a surjective homomorphism
(sometimes called an epimorphism). It is not an isomorphism since, for
instance, | − 1| = |1|. The restriction of this homomorphism to R× is a
surjective homomorphism

which is also not an isomorphism.

2.14. For any positive integer n, the set of all complex nth roots of 1 forms a
subgroup Cn of C×. It is a finite group of order n, and it is cyclic, generated



by e2 i/n:

In particular, C2 = {1, − 1} = Z×. There is a surjective homomorphism

defined by                                                
We call Cn the cyclic group of order n, for any cyclic group of order n is
isomorphic to Cn (2).

For any , the cyclic subgroup 〈z〉 of C× is infinite. We

sometimes denote an infinite cyclic group by C∞, for any two such groups
are isomorphic (29).

38 The set of all positive rational numbers forms a subgroup  of , and
there is a surjective homomorphism

which is not an isomorphism.
Is                                          

39 For any positive integer n, the only homomorphism  : Cn → C+ is the
trivial homomorphism.

*40 Let n be a positive integer. Then
  (i) .
 (ii)  is an abelian group of order (n), where  is Euler’s function

(see 5).
(iii) By considering orders of elements in , prove the Euler–Fermat

theorem:

whenever m is an integer co-prime to n. (This generalizes 8).



41 (i) Let G be a group and n a positive integer such that gn = 1 for all
g∈G. Show that if  : G →C× is a homomorphism then Im   Cn. Hence
show that Hom (G, C×) ≅ Hom (G, Cn) (cf. 33).

(ii) Deduce that if G is a finite group then so is Hom(G, C×). (Remark. If
G is a finite abelian group then in fact Hom(G, C×) ≅ G, but we do not yet
have the means of proving this. See 454.)

2.15. Any vector space V over a field F forms an abelian group V+ under
addition: the additive group of V. For any a∈F, the map

defined by                              
for all υ∈V+, is a homomorphism. It is an isomorphism if a ≠ 0. If V has
dimension 1 over F then V+ ≅ F+.

2.16. Let V be any vector space ≠ 0 over a field F. Then the set of all linear
maps of V into itself forms a ring (V) with respect to the usual operations
of addition and multiplication of linear maps. This ring has a multiplicative
identity element, namely the linear map

The group of units of (V) (as defined in 2.12) consists of all invertible
(that is, non-singular) linear maps of V to itself. It is called the general
linear group of V and denoted by GL (V).

Suppose that F is a finite field with, say, | F | = pm = q, and that V has
finite dimension n over F. Then | V | = qn. Let vectors υ1,…,υn form a base
of V. Then a linear map  : V → V is determined by its effect on υ1,…, υn,
and  is invertible if and only if υ1 ,…, υn  form a base of V. Moreover, for
any base w1,…,wn of V there is a unique linear map  : V → V such that υi 
= wi for i = 1,…, n. Hence

 = the number of ordered bases of V.



In forming a base w1,…, wn of V we may first choose w1 to be any non-zero
vector of V, then w2 to be any vector other than a scalar multiple of w1, then
w3 to be any vector other than a linear combination of w1 and w2, and so on.
Hence

2.17. Let F be any field and n any positive integer. Then the set of all
invertible (that is, non-singular) n × n matrices with entries in F forms a
group with respect to matrix multiplication. This is called the general linear
group of degree n over F and denoted by GLn(F).

If V is a vector space of dimension n over F then GL(V) ≅ GLn(F). To
see this, it is enough to choose a base of V and then to map each invertible
linear map of V into itself to the matrix representing it with respect to the
chosen base.

There is a surjective homomorphism

defined by det : x  det x for all x∈GLn(F) (where det x denotes the
determinant of x). Note that this homomorphism is an isomorphism if and
only if n = 1; in particular, GL1(F) ≅ F×.

42 Let G be a finite group such that g2 = 1 for all g∈G. Show that G ≅ V+

for some finite dimensional vector space V over the field Z2. Deduce that |
G | = 2m for some integer m  0. (Hint. By 3, G is abelian. Let V consist of
the same elements as G, with the sum of 2 elements of V equal to their
product in G, and scalar multiplication defined in the obvious way.)

43 Let F be a field and let m, n be positive integers with m  n. Then
  (i) GLm(F) can be embedded in GLn(F),
 (ii) GLn(F) is non-abelian for all n  2.

44 GL2(Z2) ≅ Σ3.



45 Let G be the set of all matrices of the form , where a, b, c are real

numbers such that ac ≠ 0. Prove that G forms a subgroup of GL2(R), and
that the set H of all elements of G in which a = c = 1 forms a subgroup of G
isomorphic to R+.

Find all elements in G of order 2. Hence show that the product of two
elements of order 2 in G can be an element of infinite order.

Our next example associates to every group G another group Aut G
which has an important rôle to play in the following chapters.

2.18. The set of all homomorphisms of a group G into itself (sometimes
called the endomorphisms of G) forms a semigroup with respect to
composition of maps (by 19): it is a subsemigroup of MG (see 2.4). This
semigroup has an identity element, namely the homomorphism

Now the units of the semigroup are just the isomorphisms of G onto G.
These are called the automorphisms of G. By 2.3, the set of all
automorphisms of G forms a group with respect to composition of maps: it
will be denoted by Aut G. Note that Aut G  ΣG.

2.19. To each g∈G there is associated an automorphism g of G, defined as
follows. For all x∈G,

the element x g = g− 1xg is called the conjugate of x by g. Certainly g is a
well-defined map of G into itself; and if g, g1, g2, x, x1, x2∈G,

so that g is a homomorphism. Furthermore,

and so



In particular, since 1 = 1,

Therefore g is invertible: thus g∈Aut G. The automorphism g of G is
called the inner automorphism of G induced by g (or conjugation of G by
g). An automorphism of G which is not inner is called an outer
automorphism of G.

By 2.9 and 2.10, g maps each subgroup K of G to a subgroup K g of Im 
g = G with

We call K g the conjugate of K by g, and denote it by g− 1 Kg. Thus we have

2.20. For every K  G and every g∈G, g− 1Kg is a subgroup of G
isomorphic to K.

2.21. The map                         
defined by                              
for all g∈G, is a homomorphism. This is shown by equation (i) of 2.19.
Moreover, Im  = { g : g∈G}  Aut G. We denote Im  by Inn G: it is the
group of all inner automorphisms of G. Thus

When is  the trivial homomorphism; that is, when is Inn G = 1? We have
 if and only if g− 1 xg = x

for all x∈G, that is, if and only if xg = gx for all x∈G. Hence g = 1 for all
g∈G if and only if all pairs of elements x, g of G commute. Hence we have

2.22. Inn G = 1 if and only if G is abelian.



*46 (i) If R is a ring with a multiplicative identity 1 then R× can be
embedded in Aut R+. (Hint. See 2.11.)

(ii) Aut Z + ≅ Z × and Aut  for every positive integer n.

*47 Let V be a vector space ≠ 0 over a field F. Then
  (i) GL(V)  Aut V+. (See 2.15, 2.16.)
 (ii) If F = Zp and V has finite dimension n over Zp then Aut V+ ≅

GLn(Zp).

*48 If G1 ≅ G2 then Aut G1 ≅ Aut G2 and Inn G1 ≅ Inn G2.

*49 Define a relation ~ on G by

x ~ y if and only if g− 1 xg = y for some g∈G.
Show that this relation ~ of conjugacy is an equivalence relation on G. (This
fact will be placed in a general context in chapter 4.)

50 If ∈Aut G and x∈G then

In particular, conjugate elements of a group have the same order.

51 Find a group G with a subgroup K and an element g such that g− 1Kg ≠
K.

52 (i) The map defined by g  g− 1 for all g∈G is an automorphism of G if
and only if G is abelian.

(ii) If G is any group for which g2 ≠ 1 for some g∈G then Aut G ≠ 1.
(Remark. In fact Aut G ≠ 1 if and only if | G | > 2. The proof is completed
by observing that if g2 = 1 for all g∈G, so that by 3 G is abelian, then G
has the structure of a vector space V over Z2, and any invertible linear map
V → V is an automorphism of G. For the finite case, see 42.)

53 (i) Let ∈Aut G and let



Prove that H is a subgroup of G : it is called the fixed point subgroup of G
under .

(ii) Let n be a positive integer and F a field. For any n × n matrix y with
entries in F, let y′ denote the transpose of y. Show that the map

defined by                                    
for all x∈GLn(F), is an automorphism of GLn(F), and that the
corresponding fixed point subgroup consists of all orthogonal n × n
matrices with entries in F (that is, matrices y such that y′y = 1).

Prove (by assuming the contrary and considering determinants) that * is
an outer automorphism of GLn(F) if F ≠ Z2 and F ≠ Z3. (Remark. In fact, *
is an outer automorphism of GLn(F) unless either F = Z2 and n  2 or F =
Z3 and n = 1.)

54 Let ∈Aut G. Then  is said to be fixed-point-free if the fixed point
subgroup of G under  is trivial (see 53); that is, if g  ≠ g whenever 1 ≠
g∈G.

(Remark. The term ‘fixed-point-free’ is standard. It is perhaps a slight
abuse of language, since of course any automorphism of a group fixes the
identity element. To say that an automorphism is fixed-point-free means
that it fixes no element of the group other than the identity element.)

(i) Suppose that  is a fixed-point-free automorphism of the finite group
G. Show that

Deduce that if o ( ) = 2 then, for all x∈G,

and that G is abelian of odd order greater than 1.
(ii) Let G be a finite abelian group of odd order greater than 1. Then the

map



defined for all x∈G, is a fixed-point-free automorphism of G of order 2.
(Hints. For (i), show that the map of G into itself defined, for all g∈G,

by g  g  g− 1, is injective. Then use 52 (i) and 1.13.)

We mention next some examples of groups which arise in geometric
contexts.

2.23. Let X be a metric space, with distance function d: X × X → R. Then a
bijective map  : X → X is structure-preserving if

Such a map  is called an isometry of X. It is easy to verify that the set of
all isometries of X forms a subgroup Isom X of ΣX.

Now if  ⊂ Y ⊆ X then Y is a subspace of X: that is, Y is a metric space
with respect to the restriction of d to Y × Y. For each ∈Isom X let

Then let                                    
A straightforward verification shows that

We call SX(Y) the symmetry group of Y (with respect to the metric space X).
For instance, suppose that X = E2, the euclidean plane, with the usual

distance function. We describe without proof some facts about Isom E2: for
details see Coxeter [b5] chapter 3. (The corresponding facts about the group
of isometries of the euclidean line E1 can readily be worked out from the
definition, and are given in 56.) We begin by noting some special isometries
of E2.

(i) If  : E2 → E2 is a map which moves every point of E2 a fixed
distance in a fixed direction then  is called a translation of E2. Any
translation is an isometry. To describe translations in coordinate terms,
choose an arbitrary point of E2 as origin and denote it by O. To each point



s∈E2, we associate the directed line segment Os from O to s. The set of all
such directed line segments forms a vector space V of dimension 2 over R
in a familiar way: addition of vectors is defined by means of the
parallelogram law.

Now for every s, t∈E2, write s + t for the unique point of E2 corresponding
to the vector Os + Ot. Then a translation of E2 is just a map

where a is an element of E2. The set

of all translations is an abelian subgroup of Isom E2, and in fact, by means
of the map defined by

it is clear that

If we fix a cartesian coordinate system for E2 with origin O and identify
each point s of E2 with the ordered pair (x, y) of its coordinates in that
system (where x, y∈R) then a translation is just a map of the form

where b, c are real numbers, the same for all x, y.



(ii) A map  : E2→ E2 is called a reflexion of E2 if there is a line l in E2

such that  moves each point of E2 to its mirror image with respect to l. If l
is chosen as the x-axis for a cartesian coordinate system then reflexion
about l is the map

for all x, y∈R. Then  is an isometry of E2 and 2 = 1.
(iii) Let s be any point of E2 and view E2 as the Argand diagram with s as

zero: that is, represent the points of E2 by complex numbers in the usual
way, with s represented by 0. Then each point is represented in polar form
by an expression rei , where r, ∈R with r  0. A rotation of E2 about s is
a map

for some ∈R. Then  is an isometry of E2. Since ei  = 1 if and only if 
is an integral multiple of 2 , each rotation about s is uniquely expressible as

 with 0   < 2 ;  is the angle of the rotation. The set

of all rotations about s is an abelian subgroup of Isom E2. Note that there is
one such subgroup of Isom E2 for each point s∈E2.

Now the structure of Isom E2 can be described as follows. Let G = Isom
E2 and let H be the set of all translations and rotations of E2: that is,

Then H is a subgroup of index 2 in G, and if  is any reflexion of E2,

It is straightforward to calculate products of elements of G from these
definitions.

2.24. As particular symmetry groups, we note the following important
examples. Let n be any integer with n  3, and let Pn denote a regular



polygon in E2 with n edges. We consider the symmetry group

The elements of L are just the n rotations about the centre of the polygon
through angles 0, 2 /n, 4 /n,…, 2(n − 1) /n, together with the n reflexions
about the lines joining opposite vertices of Pn and the lines joining
midpoints of opposite edges of Pn (if n is even) or about the lines joining
vertices of Pn to midpoints of opposite edges (if n is odd). Thus

Let  denote the rotation about the centre of Pn through angle 2 /n, and 
any one of the n reflexions in L. Then one verifies that

and the 2n distinct elements of L are

The group L is called the dihedral group of order 2n and denoted by D2n.
(The definite article is used because the type of D2n is independent of the
size of the polygon and of its position in the plane: it depends only on the
number n of edges. Some authors use Dn or other notations where we
always use D2n.) Note that − 1 ≠ , and so D2n is a non-abelian group.

55 Let X be any non-empty set. Let c be any positive real number and
define, for all x, y∈X,

Show that d is a distance function for X, and that for this metric space



56 View R as the euclidean line E1 with the usual distance function (that is,
for x, y∈R, d(x, y) = | x − y|).

  (i) For each a∈R, the map

is an isometry of R, called a translation, and

 (ii) For each a∈R, the map

is an isometry of R, called a reflexion, and

(iii) Every isometry of R is either a translation or a reflexion.
(iv) Isom R is a non-abelian group and T is an abelian subgroup of index

2.

57 Let the notation be as in 56. Show that for every n∈Z,

and that the elements of the symmetry group SR (Z) are just the isometries

Note that  and . The group SR(Z) is called the infinite
dihedral group and denoted by D∞.

58 Let n be an integer, n  3. Then D2n can be embedded in Σn. Moreover,
D6 ≅ Σ3 but, whenever n > 3,D2n  Σn. (It may be assumed that an
isometry of E2 is uniquely determined by its effect on any 3 non-collinear
points.)



59 Let n be an integer, n  3, and let L = D2n. Let J = 〈 〉, where  is
defined as in 2.24. Show that every element of L\J has order 2. Deduce that
J is the only cyclic subgroup of L of order n.

60 Every group of order 6 is isomorphic to either C6 or D6. Hence, in the
notation of chapter 1, v(6) = 2.

(Hints. Let G be a non-cyclic group of order 6. By 42, G has an element x
of order 3. Let y be an element of G other than 1,x, x2. Then G = {1,x,x2,
y,xy,x2y},y2 = 1 and yx = x2y)

61 (i) For any 2 points s, t of E2 there is a unique translation a of E2 which
maps s to t.

(ii) For any 2 points s, t of E2, if a is the unique translation of E2 which
maps s to t then

Thus any 2 groups of rotations are conjugate subgroups of Isom E2.

62 For any non-empty set X, any map  : X → X and any Y ⊆ X, let Y  =
{y  : y∈Y} ⊆ X. Verify that the following analogues of the symmetry
groups introduced in 2.23 are subgroups of the appropriate groups, as
stated.

  (i) Let X be any non-empty set and Y any non-empty subset of X. Then

(ii) Let V be any vector space over a field F and Y any non-empty subset
of V. Then

(iii) Let G be any group and Y any non-empty subset of G. Then

2.25. E. Artin [b2] said ‘In modern mathematics the investigation of the
symmetries of a given mathematical structure has always yielded the most



powerful results. Symmetries are maps which preserve certain properties’.
And this is why groups play a fundamental rôle in mathematics today. The
symmetries of a structure are the permutations of the underlying set X
which are structure-preserving; and the set of all such symmetries forms a
subgroup of ΣX. We may view the group associated to the structure in this
way as a kind of measure of the ‘regularity’ of the structure.

We have had several instances of this idea in the preceding examples. For
a non-empty set X with no further distinguished structure, the symmetries of
X are just the permutations of X and the corresponding group is ΣX itself.
For a vector space V, the symmetries of V are the invertible linear maps V
→ V and the corresponding group is GL(V). For a group G, the symmetries
of G are the automorphisms of G and the corresponding group is Aut G. For
a metric space X, the symmetries of X are the isometries of X and the
corresponding group is Isom X.

Again, if X is a set with a particular structure and Y is a subset of X, there
is a corresponding relative symmetry group SX(Y) of Y with respect to X: as
for instance in 2.23 and 62.

This idea of a group as a measure of the symmetry of a mathematical
structure is of fundamental significance. To mention another instance, one
in which we may trace the origins of group theory and indeed of abstract
algebra, the same idea lies at the heart of the Galois theory of equations: for
information about this, we refer to Artin [b1], Herstein [b19] chapter 5, §6,
Kaplansky [b25] Part I, Lang [b28] chapter VII, or Rotman [b34] pp. 96–
103.

63 Let X = E2, the euclidean plane.
  (i) Let s∈X, J = SX(s) and K = Rot(X; s).
Then K  J, | J : | = 2 and J\K consists of all reflexions of X about lines

through s.
 (ii) Let s, t∈X with s ≠ t. Then | SX({s, t})| = 4.
(iii) Let l be any line in X,L = SX(l), and let M consist of all the

translations of X which belong to L. Then M  L, | L : M | = 4 and M ≅ R+.

64 Let n be a positive integer, F a field and V a vector space of dimension n
over F. If B is a base of V then SV(B) ≅ Σn. Hence Σn can be embedded in



GLn(F).

65 Let X be a set with | X |  2, and let x∈X and Y = X\{x}. Then SX(x) ≅
Σy.

Associated to a group G there are in general many other groups of
different types: for instance, G determines a set of groups as its subgroups
(though it is often impracticable to find these explicitly). The following
observation is immediate from the definition of a subgroup.

2.26. If H  G and K  G then H ∩ K  G. More generally, if {Hi : i∈I} is

any set of subgroups of G (indexed by a set I) then .

*66 If H  G and K  G, with | G : H | < ∞ and | G : K | < ∞, then | G : H ∩
K | < ∞. (This is often called Poincaré’s theorem. Hint. Apply 11.)

67 Let G be a finite group.
 (i) Any two distinct subgroups of G of order p intersect in 1.
(ii) The total number of elements of order p in G is a multiple of p − 1.

Note that intersections of subgroups are always non-empty, for 1 belongs
to every subgroup. Of course, an intersection of non-trivial subgroups may
turn out to be trivial.

Now if X is any subset of G, there is certainly at least one subgroup of G
which contains X, namely G itself. Therefore the intersection of all
subgroups of G containing X is a well-defined subgroup of G.

2.27 Definition. Let X ⊆ G. Then the intersection of all subgroups of G
which contain X is called the subgroup of G generated by X and denoted by
〈 X 〉 (in some books by Gp{X}). It is the unique smallest subgroup of G
containing X in the sense that, whenever X ⊆ H  G, then 〈 X 〉  H. Of
course, if H  G then 〈 H 〉 = H.

Note that 〈  〉 = 1. If X is a non-empty finite subset of G, say X =
{x1,…,xn}, then we write 〈x1,…,xn〉 rather than 〈 {x1,…,xn} 〉 for the
subgroup generated by X. In particular, if X consists of a single element x



then 〈 X 〉 = 〈 x 〉, the cyclic subgroup of G generated by x; the
notation is consistent with that introduced in chapter 0.

It is easy to give an explicit description of the elements of 〈 X 〉 in
terms of the elements of X.

2.28 Lemma. Let  ≠ X ⊆ G. Then
 is a positive integer, each xi∈X and each ni∈Z}.

(In general an element of 〈 X 〉 may have many different expressions
of the form on the right.)
Proof. Let H be the set on the right hand side above. Since 〈 X 〉 is closed
under multiplication and the forming of inverses, H ⊆ 〈X〉. But also, by
definition, X ⊆ H; and if h1, h2∈H then clearly , so that H  G.

Hence 〈 X 〉  H, and so 〈X〉 = H.

2.29 Definition. If X ⊆ G and 〈 X 〉 = G, X is said to be a set of
generators of G. This is to be compared with the notion of a set of vectors
spanning a vector space; though there is in general in group theory no
analogue for group elements of the notion of linear independence of
vectors, and no basis theorem. (For abelian groups and for groups of finite
prime power orders, something of the kind is possible; see 8.24, 11.12.)
Obviously G itself and G\{1} are sets of generators of G. We are usually
interested in ‘small’ sets of generators. If G has a set X of generators with |
X |  n, where n is a positive integer, we say that G is an n-generator group.
Thus the 1-generator groups are just the cyclic groups; and cyclic groups
are n-generator for every positive integer n.

2.30 Examples. (i) We know that the symmetric group Σn is non-abelian
whenever n  3; then Σn is certainly not cyclic. However, Σn is a 2-
generator group, for every n: for instance,

To see this, let  = (12),  = (123… n) and



Then H contains − 1  = (23), − 2 2 = − 1( − 1 )  = (34), …, − (n − 2)

n − 2 = (n − 1, n). Let m be an integer with 2 < m  n. Then H also contains

Now let k, l be integers with 1 < k < l  n. Then H contains (1k) (1l) (1k) =
(kl). Thus H contains all transpositions in Σn. Now it follows from 21 that H
= Σn.

(ii) Let n be a positive integer and let V be a vector space of dimension n
over Zp. Then V+ is an n-generator group, but is not an m-generator group
for any integer m < n. To see that V+ is an n-generator group, we need only
consider a base υ1,…,υn of V: then, since every element of V is expressible
as k1υ1 + … + knυn, with k1,…,kn integers, it is clear that 〈 υ1,…, υn 〉 =
V+. On the other hand, if m is a positive integer and w1,…, wm are elements
of V such that 〈w1,…,wm〉 = V+, then vectors w1,…, wm also span V as a
vector space and hence m  n.

(iii) For every integer n  3, the dihedral group D2n is a 2-generator
group: for, with the notation of 2.24, D2n = 〈 , 〉.

*68 Let  ≠ X ⊆ G. Then every element of 〈 X 〉 is expressible in the
form  with x1, x2,…, xr∈X and i = ± 1 for each i = 1,…, r.
Moreover, if every element of X has finite order we can take every i = + 1.

*69 Let r be a positive integer and let x1,…,xr∈G. If xi and xj commute for
all i, j with 1  i < j  r then 〈x1,…, xr〉 is an abelian subgroup of G, and
every element of 〈x1,…, xr 〉 is expressible in the form ,
where n1,…,nr∈Z.

70 (i) Let H, K  G. Then



(in which case H ∪ K is either H or K). In particular, G cannot be the union
of two proper subgroups.

(ii) The dihedral group D8 of order 8 is the union of three proper
subgroups.

*71 Let H, K  G. Then 〈H ∪ K〉 is usually denoted by 〈H, K〉 and
called the join of H and K : it is the unique smallest subgroup of G
containing both H and K.

(i) Every element of 〈H, K〉 is expressible (in general in many
different ways) in the form h1k1 h2 k2…hrkr, where r is a positive integer
and h1,…,hr∈H, k1,…, kr∈K.

(ii) If H and K are finite subgroups of G, is 〈H, K〉 necessarily finite?
(cf. Poincaré’s theorem: 66).

*72 Let X be a (non-empty) set of generators of G. Let  : G → H and  : G
→ H be homomorphisms. If, for every x∈X,

then

73 Suppose that G = 〈x, y〉 and that x− 1yx = yk for some k∈Z. Show that
every element of G is expressible in the form xmyn with m, n∈Z. Deduce
that if x and y have finite orders then G is a finite group and | G |  o(x)o(y).

74 Let H < G and let X = G\H. Then 〈X〉 = G.

Next, from any groups H and K we construct another group in which
both H and K can be embedded.

2.31 Definition. From any two sets X and Y (possibly equal) we can form
another set X × Y, called the cartesian product of X and Y: it is the set of all
ordered pairs (x, y) with x∈X and y∈Y. When X and Y are finite sets, X × Y
is a finite set and



Now if H and K are any groups then the set H × K acquires the structure of
a group when we define, for all h, h′∈H and k, k′∈K,

The group axioms are easy to verify: closure is immediate from the
definition of multiplication; associativity follows from the associativity of
multiplication in H and in K; the identity element of H × K is (1, 1); and

From now on, whenever H and K are groups, H × K will denote this group:
it is called the direct product of H and K.

2.32 Examples, (i)                              
for the map

defined for all a, b R, is an isomorphism of C+ onto R+ × R+.
(ii)                                    
for the map

defined for all x∈Q×, where

is an isomorphism of Q× onto . Similarly
(iii)                                    
(iv) Let U = {z∈C× : | z | = 1}. It is clear that U is a subgroup of C×; U is
called the circle group. Then

for the map



defined for all z∈C×, is an isomorphism of C× onto .
Alternatively, if z is expressed in polar form rei , where r, ∈R, this
isomorphism is the map

2.33. The group H × K has subgroups

and                              
Every element of H × K is expressible as the product of an element of H × 1
and an element of 1 × K. Furthermore, every element of H × 1 commutes
with every element of 1 × K, and

Proof. Let  : H → H × K be defined by

Then, for h1,h2∈H,

Thus  is a homomorphism, and clearly  is injective.
Hence, by 2.10, H ≅ H  = H × 1 and H × 1  H × K.
Similarly 
For every h∈H and k∈K,

75 H × K is abelian if and only if H and K are both abelian.

*76 If H ≅ J and K ≅ L then (H × K)∝(J × L).



*77(i) Let V = {1,(12)(34),(13)(24),(14)(23)} ⊆ Σ4. Show that V  Σ4 and
V ≅ C2 × C2. The group V is sometimes called Klein’s four-group.

  (ii) C2 × C2 can be embedded in GL2(Q), but not in F× for any field F.
 (iii) C2 × C2 and C4 are non-isomorphic groups of order 4.
  (iv) Any group of order 4 is isomorphic to either C2 × C2 or C4. Hence

v(4) = 2 (cf. 60).

*78 (i) If m and n are co-prime positive integers, then

(ii) Let H and K be finite cyclic groups. Then H × K is cyclic if and only
if the numbers | H | and | K | are co-prime.

Now we note a result converse to 2.33.

2.34 Lemma. Suppose that G has subgroups H and K such that every
element of G is expressible as a product hk with h∈H and k∈K, every
element of H commutes with every element of K, and H ∩ K = 1. Then G ≅
H × K.
Proof. First we note that each g∈G is expressible uniquely as a product of
an element of H and an element of K: for suppose that

with h, h′∈H and k, k′∈K; then

by hypothesis, so that h = h′ and k = k′. Therefore we may define a map

by                              
This map is well defined, by the remark above, and is clearly bijective. It is
an isomorphism, for if h1, h2∈H and k1,k2∈K then in G,



since by hypothesis k1h2 = h2k1; hence

This criterion applies directly to the examples in 2.32.

79 Let n be an integer, n  3, and let G = D2n, the dihedral group of order
2n. Show that G has a cyclic subgroup H of order n and a subgroup K of
order 2 such that every element of G is expressible as hk with h∈H and
k∈K, and H ∩ K = 1. Is G ≅ H × K?

2.35. For any groups H and K, H × K ≅ K × H.
Proof. The map (h, k)  (k, h) (defined for all h∈H, k∈K) is an
isomorphism of H × K onto K × H.

2.36. The definition of the direct product of two groups can evidently be
extended to the direct product of any finite number of groups. Let n be any
positive integer, and let G1, G2,…,Gn be any n groups (not necessarily
distinct). Then G1 × G2 × … × Gn is the set of all ordered n-tuples (g1,g2,…
gn) with gi∈Gi for i = 1,…,n. This set is given the structure of a group,
called the direct product of G1, G2,…, Gn, by defining multiplication of n-
tuples componentwise. (If n = 1, we naturally identify this ‘direct product’
with G1.)

For instance, if V is a vector space of finite dimension n > 0 over a field
F, then

the direct product of n copies of F+ (cf. 2.15).

2.37. For any groups G, H and K,



80 Let F be a field and n a positive integer. Show that the set H of all non-
singular diagonal n × n matrices with entries in F forms a subgroup of
GLn(F), and that

the direct product of n copies of F×.

*81 A group G is said to be decomposable if it has proper subgroups H and
K satisfying the hypotheses of 2.34; if not, G is said to be indecomposable.

(i) Let n be an integer, n > 1, and let the factorization of n as a product of
primes be

where s,m1,…,ms are positive integers and p1,…,ps distinct primes. Then Cn
is decomposable if s > 1, and

where  for each i = 1,…,s.
(ii) For each prime p and positive integer m,  is indecomposable.

82 Σ3 is indecomposable (cf. 143).



3
NORMAL SUBGROUPS, HOMOMORPHISMS

AND QUOTIENTS

3.1 Definitions. Let H  G and let A be a non-empty set of automorphisms
of G. We say that H is an A-invariant subgroup of G if

For instance, if A = 1 then, trivially, every subgroup of G is A-invariant.
In two important special cases we use special terms. If H is Aut G-

invariant, H is said to be characteristic in G. If H is Inn G-invariant, H is
said to be normal (or invariant or self-conjugate) in G. The concept of
normal subgroup dominates the whole of group theory, and a special
notation is used. We write H  G to mean ‘H is a normal subgroup of G’
and  to mean ‘H is not a normal subgroup of G’ Because of its
fundamental importance, we restate explicitly the defining condition of
normality:

3.2 Definition. Let . Then  if and only if g− 1hg∈H for all
h∈H and g∈G.

The alternative term ‘self-conjugate’ is easily explained. If  then,
for any g∈G,

Then also , from which it is easy to see
that



From (i) and (ii),                                     
If, conversely, g− 1Hg = H for every g∈G then certainly . Hence we
have

3.3. Let H  G. Then  if and only if g− 1Hg = H for every g∈G; that
is, if and only if H coincides with all its conjugates in G.

3.4. 1  G and G  G.

3.5. If G is an abelian group then every subgroup of G is normal in G.
Proof. Let H  G. If h∈H and g∈G then g− 1hg = hg− 1g = h∈H.

Recall from chapter 1 that G is called simple if G ≠ 1 and the only normal
subgroups of G are 1 and G.

3.6 (cf. 1.11). The only abelian simple groups are the groups of prime
orders.
Proof. If G is a group of prime order then, by Lagrange’s theorem, the only
subgroups of G are 1 and G, and so G is certainly simple.

Conversely, if G is an abelian simple group then, by 3.5, the only
subgroups of G are 1 and G. Hence, by 29, G is finite and of prime order.

3.7 Example. Find all the subgroups of Σ3 and determine which of these
are normal in Σ3.

First, 1  Σ3 and Σ3  Σ3. We have to find the non-trivial proper
subgroups of Σ3 : by Lagrange’s theorem, they can only have orders 2 and
3. By 1, any group of prime order is cyclic. Now

and (132) = (123)2. Hence Σ3 has 3 subgroups of order 2: {1, (12)} = T, {1,
(13)} = U, {1,(23)} = V, say, and 1 subgroup of order 3: {1,(123), (132)} =
K, say. Now (13)− 1 (12)(13) = (13)(12)(13) = (23)∉T, so .



Similarly, U  Σ3 and V  Σ3. But for all g∈Σ3, g− 1Kg is a subgroup of
Σ3 of order 3, by 2.20, and therefore g− 1Kg = K. Hence K  Σ3.

The following remark is immediate from 2.26 and the definition of a
normal subgroup.

3.8. If H  G and K  G then H ∩ K  G. More generally, if {Hi : i∈I} is

any set of normal subgroups of G (indexed by a set I) then .

83 If  Aut G and if {Hi : i∈I} is any set of, A-invariant subgroups

of G then  is an A-invariant subgroup of G.

84 Let  Aut G, and let H be an A-invariant subgroup of G, ∈A
and H  = {h  : h∈H}.

  (i) Show that H   H.
 (ii) Show by an example that we may have H  < H. (Hint. For an

example, consider G = Q+, H = Z+, A = { 2}, where 2 is the automorphism
x  2x of Q+.)

(iii) Prove that if either H is finite or A  Aut G then H  = H.

85 Let V be a vector space over a field F, and suppose that 0 ≠ w∈V. Let W
be the 1-dimensional subspace of V spanned by w and let ∈GL(V). Then
by 47(i), ∈Aut V+.

Show that w is an eigenvector of  if and only if W+ is an { }-invariant
subgroup of V+.

86 Let G be a finite group, of order n say, let m be a divisor of n, and
suppose that G has just one subgroup H of order m. Then H is characteristic
in G.

*87 Suppose that K  J  G. Let  : G → H be a homomorphism, and let 
= K  and  = J (see 2.9). Then     H.



88 Suppose that H  G. Show that if x and y are elements of G such that
xy∈H then yx∈H. Would this be true merely on the hypothesis that H 
G?

*89 Consider the direct square G × G of G. Let

Show that  is a subgroup of G × G which is isomorphic to G;  is called
the diagonal subgroup of G × G. Show also that   G × G if and only if G
is abelian.

*90 Let H  G and define .

Then HG  G and, whenever K  H  G with K  G, K  HG. Thus HG is
the unique largest normal subgroup of G contained in H: it is called the core
(or normal interior) of H in G.

What is the core of the subgroup {1,(12)} in Σ3?

91 Let n be an integer, n  2, and let F be a field.
(i) Consider the set of all n × n matrices with entries in F. Let eij denote

the (singular) matrix with entry 1 in the ith row and jth column and all other
entries 0(1  i  n, 1  j  n). Verify that

where jk is the Kronecker delta. Show that if i ≠ j then, for any a∈F, the
matrix 1 + aeij is non-singular, and find its inverse.

(ii) Let G = GLn(F), and let H be the subgroup of G consisting of all
diagonal matrices in G (see 80). Prove that the core HG of H in G consists
of all scalar matrices in G (that is, matrices a1 with 0 ≠ a∈F) and that 

. (See 90. Hint. Show that if x∈H, with the ith and jth diagonal
entries of x not equal, then the conjugate of x by 1 + eij is not a diagonal
matrix.)



*92 Let g∈G and ∈Aut G. As in 2.19, let g denote the inner
automorphism of G induced by g. Show that − 1

g  = g . Deduce that for
any group G, Inn G  Aut G.

There is a fundamental connexion between homomorphisms and normal
subgroups, which is the main theme of this chapter.

3.9 Theorem. Let  : G → H be a homomorphism, and let K = {g∈G : g
= 1}. Then K  G. We call K the kernel of  and denote it by Ker .
(Compare with the kernel of a linear map)
Proof. By 2.9, 1∈K, so that . If k1, k2∈K then, using 2.9, we have

Thus . Hence K  G. Finally, if k∈K and g∈G then

Thus g− 1kg∈K. Hence K  G.

3.10. Let  : G → H be a homomorphism. Then  is injective if and only if
Ker  = 1. (Compare with the fact that a linear map  between vector
spaces is injective if and only if Ker  = 0.)
Proof. If  is injective then, since, by 2.9, 1  = 1, it follows by definition
that Ker  = 1. Conversely, suppose that Ker  = 1, and let g1, g2∈G with
g1  = g2 . Then, by 2.9,

Hence  Ker  = 1, and so g1 = g2. Thus  is injective.

We have seen that the kernel of every homomorphism  : G → H is a
normal subgroup of G. In 3.23 we shall show conversely that, for every K 
G, there is a homomorphism from G to a suitable group with kernel K.
Before doing this, we note some other properties.

3.11. Suppose that G = H × K. Define maps 1 : G → H and 2 : G → K by



Then 1 and 2 are surjective homomorphisms, called the projections of G
onto H and onto K, respectively. In the notation of2.33, Ker 1 = 1 × K and
Ker 2 = H × 1.
Proof. Immediate, from the definition of H × K.

3.12. Suppose that G = H × K. Then H × 1  G and 1 × K  G. But H × 1
and 1 × K need not be characteristic in G.
Proof. The first assertion follows from 3.11 and 3.9. To see that H × 1 and 1
× K need not be characteristic in G, consider the situation when H = K ≠ 1.
Thus let H be any non-trivial group and let G = H × H. Then the map

defined by                                     

is easily seen to be an automorphism of G. For 1 ≠ h∈H, (h, 1)  = (1, h)∉
H × 1 and (1, h)  = (h, 1)∉1 × H. Thus H × 1 and 1 × H are normal but not
characteristic in G.

3.13. If K  G and K  H  G then K  H; but H need not be normal in G.
Proof. The first assertion is immediate from the definition of normality. To
demonstrate the second assertion, it is enough, by 3.7, to choose G = Σ3, H
= {1,(12)}, K = 1.

Next we show that normality is not a transitive relation.

3.14. It can happen that K  H  G but K  G.
To see this, let

By 3.7, J has a normal subgroup L of order 3: L = {1, (123), (132)}. Let H =
L × L  G. It is easy to verify that H  G (see 111). Now H is an abelian
group, so that every subgroup of H is normal in H. Let



a subgroup of H of order 3 (see 89). Then K  H. But K  G, since, for
example,

In view of that negative fact, the following positive result is useful.

3.15 Lemma. If H  G and K is a characteristic subgroup of H then K  G.
Proof. For each g∈G, g− 1Hg = H (3.3). Therefore the inner automorphism 

g of G induced by g maps H onto H. Hence, by restriction to H, g
determines an automorphism g of H:

Since K is characteristic in H, K is g-invariant; thus, for all k∈K,

that is,                                           
This is true for all g∈G, so that K  G.

93 Let K  H  G. Prove that if  ⊂ A ⊆ Aut G, H is an A-invariant
subgroup of G and K is a characteristic subgroup of H, then K is an A-
invariant subgroup of G. (This generalizes 3.15.) In particular, if K is
characteristic in H and H is characteristic in G then X is characteristic in G
(cf. 3.14).

*94 Suppose that G = H × K.
  (i) Then (Aut H) × (Aut K) can be embedded in Aut G.
 (ii) If H × 1 and 1 × K are characteristic in G then Aut G ≅ (Aut H) ×

(Aut K).

3.16 Definition. For any two non-empty subsets X, Y of G we define the
product set



If X consists of a single element x, we write xY instead of {x}Y; and
similarly if Y = {y}, we write Xy for X{y}. This accords with the usual
notation for cosets mentioned in chapter 0: when H  G and g∈G, gH is a
left coset of H in G and Hg is a right coset of H in G.

This multiplication of subsets of G is associative; for if X, Y, Z are non-
empty subsets of G,

Hence

3.17. The set of all non-empty subsets of G forms a semigroup (G), when
multiplication is defined as in 3.16.

Of course, these definitions remain valid when G is replaced by any
semigroup. Moreover, we can deal with the empty subset  by defining X

 =  = X for every : then (G) ∪ { } becomes a semigroup 
(G) in which  plays the multiplicative rôle of zero. However, we shall

discuss only. (G) with G a group.
Note that the previous notation for a conjugate of a subgroup is

consistent with the present definitions: if K  G and g∈G then the
conjugate subgroup g− 1Kg is the appropriate product of the sets {g− 1}, K,
{g}.

*95 Let H, K  G. Then
  (i) Every subgroup of G containing both H and K contains the product

sets HK and KH.
 (ii) HK  G if and only if HK = KH. (Note. The equation HK = KH does

not mean that every element of H commutes with every element of K. It
means that for each h∈H and k∈K, hk = k′h′ for some k′∈K and h′∈H,
and similarly kh can be expressed as an element of HK.)

(iii) Find an example for which HK is not a subgroup of G (cf. 71; see
also 3.38).

96 Let H, K  G and x, y∈G with Hx = Ky. Then H = K.



97 The semigroup (G) has an identity element, and the group of units of 
(G) is G.

*98 Let G be a finite group and let H, K  G. Then

(Note. HK and KH need not be subgroups of G: see 95.)

*99 Let G be a finite group and let H, K  G.
  (i) Then| 〈H, K〉 : K| |H : H ∩ K|(see 71).
 (ii) If .

*100 Let G be a finite group and let H, K  G with (|G : H|,|G : K|)= 1.
Then | G : H ∩ K | = | G : H||G : K | and G = HK.
(Hint. Use 11.98 and 99(i). Later we shall be able to remove the condition
of finiteness of G : see 197.)

Any subgroup of the semigroup (G) must contain an identity element,
hence a subset X of G such that X2 = X (that is, an idempotent subset: see
15).

3.18. (i) If H  G then H2 = H.
(ii) Let X∈ (G). If X2 = X and X is finite then X  G. This statement

fails, however, if we delete the condition that X is finite.
Proof. (i) Since H  G, H = 1H ⊆ H2. But also, because H  G, H2 ⊆ H.
Hence H2 = H.

(ii) Let x∈X. Then xX ⊆ x2 = X. Since X is a finite set and clearly | xX |
= | X|, it follows that xX = X. Therefore x∈xX and so x = xe for some e∈X.
But then, in G, 1 = x− 1x = e∈X. Now 1∈xX and so 1 = xy for some y∈X.
Then, in G, x− 1 = y∈X. Since also X2 ⊆ X, this shows that X  G.

For an example to show that we need X to be finite here, let G = Z+ and
let X be the set of all non-negative integers. The sum of any two non-
negative integers is a non-negative integer, and, conversely, any non-



negative integer n is the sum of two non-negative integers, for n = 0 + n.
Thus X2 = X. But X is not a subgroup of Z+.

By 3.18, for each H  G, {H} is a subgroup of the semigroup (G) of
order 1 (and when G is a finite group, every subgroup of (G) of order 1 is
{H} for some H  G). We are going to define some more subgroups of 
(G) associated to normal subgroups of G. Later we shall be able to give a
simple characterization of all the subgroups of (G) when G is a finite
group: see 3.57.

First we reformulate the statement of 3.3:

3.19. Let H  G. Then H  G if and only if Hg = gH for every g∈G.

101 (G. Horrocks) Let X be a non-empty finite subset of G; say X = {x1, …,
xn}, where n is a positive integer. Suppose that xixj∈X whenever 1  i  j 

 n.
  (i) Prove by induction on m that  for every positive integer m and

for every i = 1, …, n.
 (ii) Deduce that, for every i = 1, …, n, xi has finite order and .
(iii) Deduce that whenever xiX = X then also .
(iv) Hence prove by induction on j that, for every j = 1, …, n, xjX = X.
 (v) By means of 3.18, conclude that X  G.

*102 If H  G and | G : H | = 2 then H  G.

103 Let X = E2, the euclidean plane, G = Isom X, T = Tr X and H = 
Rot(X;s): then, according to 2.23, | G : H | = 2.

  (i) Let ∈H. Then  fixes no point of X if and only if 1 ≠ ∈T.
 (ii) Let , ∈G. If − 1  fixes some point of X then so also does  fix

some point of X.
(iii) T  G. (Hint. Use 102.)

3.20. Let K  G. Let G/K denote the set of all cosets of K in G. (By 3.19, it
is unnecessary to qualify ‘cosets’ by left or right.) Then G/K is a subgroup



of the semigroup (G), called the quotient group (or factor group) of G by
K. In G/K,

the identity element of G/K is K, and

If G is abelian then G/K is also abelian.
Note. G/K is not a subgroup of G: it is a group formed by the multiplication
of certain subsets of G.
Proof. Let x, y∈G. Then in (G),

by 3.3 and 3.18. Thus the set G/K is closed under the multiplication defined
in (G). In particular,

so that G/K has identity element K. Moreover,

so that xK has the element x− 1 K as inverse in G/K.
Immediately from the definition we have

3.21. G/1 ≅ G and G/G ≅ 1.
Let K  G. Then, by definition of G/K,

the index of K in G. Hence we have

3.22 (cf. 1.7). If K  G and G is a finite group then | G/K | = | G|/|K|.

104 Let K  G. If the set of all left cosets of K in G forms a subgroup of 
(G) then K  G. (This is a converse to 3.20.)

*105 Suppose that K  G with | G/K | = n < ∞.



  (i) Then gn∈K for every g∈G.
 (ii) If g∈G and gm∈K for some integer m such that (m, n) = 1 then

g∈K (cf. 12).

*106 Suppose that K  G with | K | = m < ∞. Let x∈G and let n be a
positive integer such that (m, n) = 1.

  (i) If o(x) = n then o(xK) = n (where xK is viewed as an element of the
group G/K).

 (ii) If o(xK) = n then there is an element y∈G such that o(y) = n and xK
= yK.

*107 Prove by induction on | G | that if G is a finite abelian group such that
p divides | G | then G has an element of order p. (Hint. If G has a proper
non-trivial subgroup K then, since p is prime, either p divides | K | or p does
not divide | K | and p divides | G/K|. In the latter case use 106(ii).)

*108 Let K  G and let  = G/K. For each subset X of G, let  = {xK:
x∈X} ⊆ . (i) If X is a set of generators of G then  is a set of generators
of . In particular, if G is an n-generator group, where n is a positive
integer, then  is an n-generator group.

(ii) If X is a subset of G such that  is a set of generators of , and if Y is
a set of generators of K, then X ∪ Y is a set of generators of G.

In particular, if K is an m-generator group and G/K is an n-generator
group, where m and n are positive integers, then G is an (n + m)-generator
group.

(Hint. Apply 2.28.)

*109 Let H  G and K  G. Then (3.8) H ∩ K  G. Show that we can
define a map  : G/(H ∩ K) → (G/H) × (G/K) by  : g(H ∩ K) → (gH, gK)
(for all g∈G), and that  is an injective homomorphism. Thus G/(H ∩ K)
can be embedded in (G/H) × (G/K). Deduce that if G/H and G/K are both
abelian then G/(H ∩ K) is abelian.

110 Let X be a non-empty set. For each ∈Σx, we define a subset s( ) of X
by



(a) Let , ∈Σx. Then
   (i) s( − 1) = s( ),
  (ii) S( ) ⊆ S( ) ∪ S( ),
(iii) S( − 1 ) = {x  : x∈s( )}.
 (iv) If s( )∩s( ) =  then  = .

(b) Let .
Then . The group Σ(X) is called the restricted symmetric group on
X. Furthermore, Σ(X) = ΣX if and only if | X | < ∞; and if X is infinite then
Σ(X) is an infinite group in which every element has finite order, and the
quotient group Σx/Σ(X) is infinite.

(Hint. It may be assumed that if X is infinite then there is an injective
map of Z into X.)

The following observation is fundamental.

3.23. Let K  G. Then the map υ : G → G/K defined by

is a surjective homomorphism, and Ker υ = K. The map υ is called the
natural (or canonical) homomorphism of G onto G/K.
Proof. That υ is a surjective homomorphism follows at once from 3.20. Let
g∈G. Then g∈Ker υ if and only if gK = K (the identity element of G/K),
that is, if and only if g∈K. Hence Ker υ = K.

This establishes the fact, mentioned earlier, that the normal subgroups of
G are precisely the kernels of homomorphisms of G to other groups. We
now complete the description of the links connecting normal subgroups,
quotient groups and homomorphisms by relating an arbitrary
homomorphism to a suitable natural homomorphism.

3.24 Fundamental theorem on homomorphisms. Let  : G → H be a
homomorphism and let K = Ker   G, by 3.9. Let υ be the natural
homomorphism of G onto G/K. Then there is an injective homomorphism 
: G/K → H such that  = υ . In particular, Im  ≅ G/Ker .



Proof. We define the map

by

We must check that  is well defined: that is, that if x, y∈G and xK = yK
then x  = y . Now xK = yK if and only if x− 1y∈K, that is, if and only if (x−

1y)  = 1. By 2.9, this is true if and only if (x )− 1(y ) = 1; that is, if and
only if x  = y . This shows that  is well defined and also that  is
injective. Moreover,  is a homomorphism, for if x, y∈G then

Now                              
This is true for all x∈G, and so

Finally, by 2.10, G/K ≅ Im  = Im .
We now illustrate the fundamental theorem with some examples.

3.25. Recall from 2.14 the surjective homomorphism

defined by  for all x∈Z+, where n is a positive integer.
Now Ker υn = {nx: x∈Z+}. We denote this subgroup of Z+ by nZ+: it
consists of all the integral multiples of n. By the fundamental theorem we
have

Thus Z+ has a quotient group of order n for every positive integer n.
Now we can classify all subgroups and all quotient groups of Z+.

Remember that, since Z+ is abelian, every subgroup is normal in Z+ and
therefore has a corresponding quotient group. Let



Then H contains positive integers, since if h∈H then also - h∈H. Let n be
the least positive integer belonging to H. (Here we use the well ordering
principle for the positive integers.) Then H contains with n every integral
multiple of n: that is, nZ+  H. Let h∈H. By the division algorithm for
integers, there are integers q and r such that h = nq + r and 0  r < n. Since
nq∈nZ+  H, r = h − nq∈H. By choice of n, it follows that r = 0. Hence
h∈nZ+. This proves that H = nZ+.

Thus the only non-trivial subgroups of Z+ are the subgroups nZ+, one for
each positive integer n. Moreover, in the notation of 2.11, nZ+ = Im n ≅
Z+. We have shown that Z+/nZ+ ≅ Cn; and of course Z+/0 ≅ Z+. Note that
every subgroup and every quotient group of Z+ is cyclic; and also that each
subgroup is either finite, in which case it is 0, or has finite quotient group.

We may contrast this with the (abelian) group Q+. Here Z+ is an infinite
subgroup of Q+, and also the quotient Q+/Z+ is an infinite group: for if a, b,
c, d are integers with b ≠ 0 ≠ d then in Q+/Z+,

(Cosets are written additively in this case, since the group operation in Q+ is
addition.) Thus, for instance,  are
distinct elements of Q+/Z+. The group Q+/Z+ is called the additive group of
rationals mod 1.

3.26. Let U denote the circle group (see 2.32), and let

be defined by                              
Clearly η is a surjective homomorphism, and Ker η = Z+. Hence, by the
fundamental theorem,



3.27. Suppose that G has subgroups H and K such that G = HK, every
element of H commutes with every element of K, and H ∩ K = 1. Then, by
2.34, there is an isomorphism  : G → H × K with  : hk → (h, k) for all
h∈H and all k∈K. Let 1, 2 denote the projections of H × K onto H, K
respectively: see 3.11. Then, by 3.11 and 19, 1 : G → H is a surjective
homomorphism, and Ker ( 1 = {hk∈G : h = 1, k∈K} = K. Hence, by the
fundamental theorem,

Similarly, from 2 : G → K,

Thus, for example, from 2.32 we get

and                              

3.28. For F a field and n a positive integer, consider again the surjective
homomorphism

Here                              
This normal subgroup of GLn(F) is called the special linear group of degree
n over F and denoted by SLn(F). By the fundamental theorem,

*111 Let J  H and L  K. Then (J × L)  (H × K) and

112 Let S∈E2, the euclidean plane. Then Rot(E2;s) ≅ U, the circle group.



113 Let F be a field and n a positive integer. Suppose that for each a∈F
there is a unique b∈F such that bn = a. Then . (In
particular, this is true when F = R and n is odd.)

*114 Let K  G. Then the following two statements are equivalent:
  (i) There is a homomorphism  of G onto H with Ker  = K.
 (ii) G/K ≅ if.

115 (i) Let K  G and ∈Aut G. Write K  = {k : k∈K}. Then K ≅ K  
G and G/K ≅ G/K .

(ii) A group G can have normal subgroups K and L such that K ≅ L but
G/K  G/L, and normal subgroups H and J such that G/H ≅ G/J but H  J.
(Hint. Consider G = C2 × C4.)

116 Find non-isomorphic groups G1 and G2 with Kt  G1 and K2  G2 such
that K1 ≅ K2 and G1/K1 ≅ G2/K2. (Hint. Consider groups of order 4.)

*117 The centre of G is defined to be

Show that Z(G) = Ker , where  : G → ΣG is the homomorphism defined in
2.21. Deduce that

*118 Z(G) is an abelian characteristic subgroup of G, and every subgroup H
of Z(G) is normal in G. Need such a subgroup H be characteristic in G?

*119 If K  G and | K | = 2 then K  Z(G).

*120 Let U be the set of all matrices of the form



where a, b, c are arbitrary elements of a field F, and 0 and 1 denote
respectively the zero and identity elements of F. Prove that

*121 Prove that if K  G then Z(K)  G. Show by an example that Z(K)
need not be contained in Z(G).

*122 For H  G, we define the centralizer of H in G to be

Then Z(G)  CG(H)  G.

123 Let n be an integer and F a field, with n  2 and F ≠ Z2. Let G =
GLn(F) and let H be the subgroup of G consisting of all diagonal matrices
in G (see 80).

  (i) Prove that CG(H) = H. Deduce, by means of 91, that Z(G) consists of
all scalar matrices in G.

 (ii) Suppose further that either n > 2 or F ≠ Z3. Let S = SLn(F). Prove
that CG(H ∩ S) = H and deduce that Z(S) = S ∩ Z(G).

124 Let n be an integer, n  3, and let G = D2n, the dihedral group of order
2n. Prove that if n is odd, Z(G) = 1, while if n is even, | Z(G)| = 2; and in the
latter case that G/Z(G) ≅ Dn for n  6, while for n = 4, G/Z(G) ≅ C2 × C2.

*125 If G/Z(G) is cyclic then G is abelian (and so Z(G) = G). (Hint. Let
G/Z(G) = 〈gZ(G)〉, where g∈G. Show that every element of G is
expressible in the form grz, where r is an integer and z∈Z(G).)

126 Let x, y∈G and let xy = z. If z∈Z(G) then x and y commute.

127 Let K  G and let υ : G → G/K be the natural homomorphism. Then the
surjective homomorphisms G → G/K with kernel K are precisely the maps
υ  with ∈Aut (G/K). Deduce that if ∈Aut G and K is mapped onto itself
by  then υ = υ  for some ∈Aut (G/K).



128 

129 

130 , where U is the circle group.

131 Let V = {z∈C× : there is a positive integer n such that zn = 1}, the
multiplicative group of all complex roots of 1. Then V < U, the circle group.
Show that

(Remark. By vector space theory it can be shown that R+/Q+  R+; and we
know from 3.26 that R+/Z+  U. Thus U and R+ are non-isomorphic
groups–why?– each of which has a quotient group isomorphic to the other.)

*132 Z+ is indecomposable (see 81).

*133 (i) If H is any proper subgroup of Q+ then Q+/H is infinite. (Use 105.
Compare this with the fact that if K is any non-trivial subgroup of Z+, Z+/K
is finite.)

(ii) Any two non-trivial subgroups of Q+ have non-trivial intersection.
Hence Q+ is indecomposable (see 81).

(iii) There is no proper subgroup H of Q+ such that Q+/H is cyclic. (Hint.
If H  Q+ with Q+/H cyclic then, by (ii), H ∩ Z+ ≠ 0. Then use (i).)

Next, we consider the relation which exists between the subgroups of a
homomorphic image of G and the subgroups of G.

3.29 Theorem. Let  : G →  be a surjective homomorphism. Let  be the
set of all subgroups of G which contain Ker  and let  be the set of all
subgroups of . Then there is a bijective map

defined by                              
Moreover, for H∈ ,  if and only if H  G; and, if so, 

 (cf. 87).



Proof. Certainly  is a well-defined map: for, by 2.9, if H  G then H   
. To show that  is bijective, it is enough to show that there is an inverse
map

We define  as follows. For each J  , let

(J* is often called the inverse image of J under .)
Then J*∈ . To see this, first note that if g∈Ker  then g  = 1∈J, and so
g∈J*. Thus Ker  ⊆ J*. Also, if g1, g2∈J* then, by 2.9, (g1g2

1)  = (g1 )
(g2 )− 1∈J, since  and J  G. Hence . Therefore
Ker   J*  G. This shows that  is well defined.

Let if H∈  and . Then

and                        

Thus  = identity on , and  = identity on . Hence  is inverse to ,
and so  is bijective.

Suppose that Ker   H  G. Then    and, for all g ∈  and h ∈
(where g∈G, h∈H), (g )− 1(h )(g ) = (g− 1hg) ∈ , by 2.9 and since g−

1hg∈H. Hence   .
Conversely, suppose that   , and let υ be the natural homomorphism 

 → / . By what we have proved above,  = H  for some H∈ . Now 
υ is a homomorphism of G onto / , and



Hence H  G, and, by the fundamental theorem,

134 With the notation and hypotheses of 3.29, let H, K∈ . Then
  (i) 
 (ii) if and only if K  H,
(iii) . (Hint. Use 71.)

An important special case of 3.29 occurs when K  G and we choose for 
 the natural homomorphism υ : G → G/K = . Then K = Ker  and if K 

H  G,  = {hK : h∈H} = H/K. So we have

3.30 An isomorphism theorem. Let K  G. Then every subgroup of G/K is
of the form H/K, where K  H  G. Moreover, H/K  G/K if and only if H 
G, and if so, .

The fundamental theorem, the result of 3.30 and a result to be proved
soon (3.40) are called by some authors the first, second, and third
isomorphism theorems. Since there is a lack of unanimity in the assignment
of these numbers, we prefer to refer simply to ‘an isomorphism theorem’
and ‘another isomorphism theorem’.

We illustrate 3.30 by classifying all subgroups and all quotient groups of
cyclic groups.

3.31. We know (29) that any infinite cyclic group is isomorphic to Z+, and
we have already classified all subgroups and quotients of Z+ in 3.25. So we
need only consider finite cyclic groups. Any cyclic group of finite order n is
isomorphic to Cn (2), and, by 3.25,



By 3.30, every subgroup of Z+/nZ+ is of the form H/nZ+, where nZ+  H 
Z+. Also, by 3.25, every non-trivial subgroup of Z+ is of the form mZ+,
where m is a positive integer. It is easy to see that nZ+  mZ+ if and only if
m divides n. Hence the subgroups of Z+/nZ+ are just the subgroups
mZ+/nZ+, one for each divisor m of n.

By 3.30, when m is a divisor of n, we have

Moreover, since |Z+/nZ+| = n and |Z+/mZ+| = m, by 3.22,|mZ+/nZ+| = n/m.
Also mZ+ ≅ Z+, by 3.25 and 2.11, and since every quotient of Z+ is cyclic,
mZ+/nZ+ is cyclic. Thus every subgroup of Z+/nZ+ is cyclic. In summary
we have

3.32. All subgroups and all quotient groups of any cyclic group are cyclic. If
G is a cyclic group of finite order n then G has just one subgroup H of order
s for each divisor s of n, H is cyclic and G/H is cyclic of order n/s.

135 Let G be an abelian group of finite order n. Prove by induction on n
that for every divisor m of n, G has a subgroup of order m. (cf. 185, 5.32,
674, 675, 676. Hint. If m > 1, let p be a prime divisor of m, use 107 to show
that G has a subgroup K of order p, and consider G/K.)

*136 Let K be a characteristic subgroup of G.
(i) Let ∈Aut G. Let  be the map of G/K into itself defined (for all

g∈G) by

Then  is well defined and is an automorphism of G/K.
Moreover, the map    is a homomorphism of Aut G into Aut (G/K).
(ii) Let K  H  G. If H/K is characteristic in G/K then H is characteristic

in G. (Remark. The converse of (ii) is false: see 137; cf. 3.30.)

137 Let G = D8, the dihedral group of order 8, and let K = Z(G). Then | K |
= 2 and G/K ≅ C2 × C2 : see 124. Let H be the unique cyclic subgroup of G
of order 4 (59).



Show that K < H and that H and K are characteristic subgroups of G, but
that H/K is not characteristic in G/K (cf. 136).

*138 (i) Every subgroup of a finite cyclic group G is characteristic in G.
(ii) Let n be an integer, n > 1, and let the factorization of n as a product of

primes be , where s, m1, …, ms are positive integers and
p1, …, ps distinct primes. For each i = 1, …, s, let . We know (81)
that

Prove that

(Hint. Use 46 and 94.)

*139 Let n be a positive integer.
(i) Let G be a cyclic group of order n. For each divisor s of n, let Gs be

the unique subgroup of G of order s (see 3.32). Then

(ii) , where the summation is over all divisors s of n and  is
Euler‘s function (see 5).

(iii) Let G be a group of order n such that, for each divisor s of n, G has
at most one subgroup of order s. Then G is cyclic. (See also 9.15(i). Hint.
Use (ii) and 5 to show that G must have an element of order n.)

*140 Let G be a non-trivial group. A proper subgroup M of G is said to be a
maximal subgroup of G if there is no subgroup L such that M < L < G.

(i) Let K  M < G, with K  G. Then M/K is a maximal subgroup of G/K
if and only if M is a maximal subgroup of G.

(ii) If G is finite then every proper subgroup of G is contained in a
maximal subgroup of G.

(iii) Every proper subgroup of Z+ is contained in a maximal subgroup of
Z+. (Hint. See 3.25 and use (i) and (ii).)

(iv) Q+ has no maximal subgroup. (Hint. Use (i), 29(i) and 133(i).)



(v) If M < G and | G : M | = p for some prime p, then M is a maximal
subgroup of G(see 11).

(vi) Suppose that G is finite. Then G has a unique maximal subgroup if
and only if G is cyclic and of order pm for some prime p and positive integer
m.

141 (i) If G is a non-abelian group, Aut G cannot be cyclic. (Hint. See 117
and 125.)

(ii) There is no finite group G for which Aut G is cyclic of odd order
greater than 1. (Hint. See 42 and 52. Remark. The condition of finiteness of
G is actually superfluous here.)

142 Let G = D∞, the infinite dihedral group (see 57).
(i) G has just one cyclic subgroup H of index 2 in G, and every element

of G\H has order 2 (cf. 59).
(ii) Let 1 < K  if. We know, by 3.25, that H/K is finite, say of order n.

Then K  G and G/K ≅ D2n if n  3, C2 × C2 if n = 2, C2 if n = 1.
(iii) Let J  G with J  H. Then | J : H ∩ J | = 2; and if H ∩ J ≠ 1 then J
≅ D∞.

(iv) Say H = 〈 h 〉. By 3.25, the non-trivial subgroups of H are just the
subgroups Hn = 〈 hn 〉, one for each positive integer n. Then there are just
n distinct subgroups J of G such that J  H and H ∩ J = Hn. Also J  G if
and only if n  2.

(v) The proper normal subgroups of G are just the subgroups of H and
two subgroups of index 2 in G, both isomorphic to D∞.

(vi) Every non-trivial subgroup of G is isomorphic to D∞ or C∞ or C2,
and every proper non-trivial quotient of G is isomorphic to D2n for some
integer n  3 or to C2 × C2 or to C2.

(vii) By means of 3.30, or otherwise, classify, for each integer n  3, all
subgroups, normal subgroups and quotient groups of D2n.

143 Let n be an integer, n  3.
  (i) If n = 2m for some odd integer m then .
 (ii) If n is not twice an odd integer then D2n is indecomposable (see 81).



*144 For each prime p, let

Then  the multiplicative group of all complex roots of 1, and

Prove that every proper subgroup of  is  for some non-negative
integer n, and that . Thus  is an infinite group every
proper subgroup of which is finite and every non-trivial quotient of which is
isomorphic to . (Compare with the properties of Z+ in 3.25.) Show that 

 has no maximal subgroup (see 140).
The groups , one for each p, are called quasi-cyclic (or Prüfer)

groups.

We have seen that any subgroup of a 1-generator group is a 1-generator
group (3.32) and also that for any positive integer n, any quotient group of
an n-generator group is an n-generator group (108). We shall show that in
general subgroups of n-generator groups need not be n-generator groups. A
group is said to be finitely generated if it has a finite set of generators. We
shall construct a 2-generator group with a subgroup which is not even
finitely generated.

Before doing this we note a curious property of Q+.

3.33. Every finitely generated subgroup of Q+ is cyclic. Hence Q+ is not
finitely generated.
Proof. Let X be a non-empty finite subset of Q+: say

where a1, …, ar, b1, …, br are integers, and we may suppose that b1, …, br
are positive. By 2.28 and the fact that Q+ is abelian (see 69),



Hence every element of 〈 X 〉 is a rational number of the form a/b1b2 …
br, where a∈Z. Thus 〈 X 〉  〈 1/b1 b2 … br 〉, a cyclic subgroup of
Q+. Hence, by 3.32, 〈X〉 is a cyclic subgroup of Q+. Since Q+  Z+ (32),
Q+ is not cyclic (29) and hence not finitely generated.

3.34. Let H1, H2, H3, … be a sequence of subgroups of G such that H1  H2
 H3  …. This is called an ascending sequence of subgroups. Let

Proof. Certainly H ≠ . Let h1, h2,∈H. Then there are positive integers i1,
i2 such that . Let j = max {i1, i2}. Then  and 

 and so h1, h2∈Hj. Since  so that 
. Hence H  G.

3.35. We may note that Q+ is the union of an ascending sequence of cyclic
subgroups (necessarily proper subgroups, since Q+ is not cyclic). To see
this, for each positive integer n let Hn = 〈1/n!〉  Q+. Then 

 since any rational

number is expressible as a/b with a, b integers and b > 0, and then

For another example, note that the group  defined in 144 is the union of
an ascending sequence of cyclic proper subgroups.

Clearly any group which is the union of an ascending sequence of proper
subgroups must be infinite. In fact, we can prove

3.36. A finitely generated group cannot be the union of an ascending
sequence of proper subgroups.



Proof. Suppose that G = 〈 X 〉, where X is a non-empty finite subset of G.
Assume that H1  H2  H3  … is an ascending sequence of subgroups of

G such that Hi < G for every positive integer i and . Then, for

each x∈X, there is a positive integer i(x) such that x∈Hi(x). Let j =
max{i(x) : x∈X}. Then x∈Hj for all x∈X, and so

a contradiction.
This provides another proof that Q+ is not finitely generated. Now we

show

3.37. A 2-generator group can have a subgroup which is not finitely
generated.
Proof. The 2-generator group G will be defined as a subgroup of the
symmetric group ΣR. Let maps x, y : R → R be defined by

Then x and y are clearly permutations of R. Let

For each positive integer n,

Let xn = ynxy− n∈G. Then one verifies that

hence that for n > 1,

Now let Hn = 〈xn〉  G. Then whenever n > l, Hn − 1  Hn, and in fact Hn

− 1 < Hn, because xn ∉ Hn − 1. Thus H1 < H2 < H 3 < …  G. Now let 



, by 3.34. Each Hn is a proper subgroup of H, because Hn

< Hn + 1  : H. Hence, by 3.36, H is not finitely generated, although G is a
2-generator group.
Remark. For the reader familiar with infinite cardinals, we mention that it is
easy to prove that every finitely generated group is countable although,
since Q+ is countable (or by 3.37), not every countable group is finitely
generated. G. Higman, B. H. Neumann and H. Neumann [a58] proved in
1949 that any countable group can be embedded in a 2-generator group. A
proof of this result is contained in Rotman [b34] p. 275.

145 G is said to be locally cyclic if every finitely generated subgroup of G
is cyclic. Thus, by 3.33, Q+ is locally cyclic.

  (i) A locally cyclic group is abelian.
 (ii) A group which is the union of an ascending sequence of locally

cyclic subgroups is locally cyclic.
(Note. In fact, a group is locally cyclic if and only if it is isomorphic to a
subgroup of a quotient group of Q+. A proof of this result appears in
Schenkman [b35] §II.2.)

146 Let G and H be defined as in 3.37. Then H  G, H is locally cyclic (see
145), and G/H is cyclic. (Hints. Note that in order to prove that H  G, it is
enough by 2.28 to show that for each h∈H, the elements 

 all belong to H. To prove that G/H is cyclic,
apply 108.)

147 Suppose that H1, H2, H3, … is an ascending sequence of subgroups of

G such that, for every positive integer . Then . (See

144. Hint.

By induction on n, show that for each positive integer n there is an element
xn∈Hn such that Hn = 〈 xn 〉 and 



148 Let N denote the set of all positive integers and let G = Σ(N), the
restricted symmetric group on N (see 110). For each n∈N, let

Then
  (i) For every n∈N, Gn < G and Gn ≅ Σn.
 (ii) G1, G2, G3, … is an ascending sequence of subgroups of G and 

(iii) G contains cyclic subgroups of order n for every n∈N; but G does
not contain a subgroup isomorphic to  for any prime p. (cf. 147. Hint.
Suppose to the contrary that G has a subgroup H isomorphic to . Use
22 and 23 to derive a contradiction by showing that for every positive
integer n, the unique subgroup of H of order p contains an element a such
that | s( )|  pn.)

149 Let G be a finitely generated group. Then every subgroup of finite
index in G is finitely generated, (cf. 3.37. Hints. Let {x1, …, xn} be a set of
generators of G and let H  G with | G : H | = m, where n and m are positive
integers. For each j = 1, …, n, let  and let g1, …, gm be elements

of G such that  with g1 = 1.

Then, for each ordered pair (i, j) with i∈{l, …, m} and j∈{l,2, …, 2 n},
there is a unique element hij∈H and a unique integer k∈{l, …, m} such
that gixi = hijgk. Let h∈H, and note that h = g1h. Use 68 to show that h∈
〈hij : i = 1i …, m;j = 1, …, 2n〉. Remark. It follows from a deeper result
of O. Schreier [a87] that if H is a subgroup of index m in an n-generator
group G, where m and n are positive integers, then H is a (1 + m(n − 1))-
generator group; and this bound on the number of generators of if is the best
possible.)

We have observed (95) that if H and K are subgroups of G, HK need not
be a subgroup of G. Now we note



3.38. If H  G and K  G then HK  G.
Proof. By definition, HK = {hk : h∈H, k∈K} ≠ .
Let h1, h2∈H and k1, k2∈K. Then

since  and K  G. Hence HK  G.

3.39 Corollary. If H  G and K  G then HK  G.
Proof. By 3.38, HK  G. Let g∈G, h∈H, k∈K.
Then . Hence HK  G.

The following result is very useful.

3.40 Another Isomorphism Theorem. Let H  G and K  G. Then H ∩ K 
 H and H/H ∩ K ≅ HK/K.

Proof. Let υ be the natural homomorphism G → G/K, and let υ1 be the
restriction of υ to H. Then υ1 : H → G/K is a homomorphism, with Ker υ1 =
{h∈H : h∈Ker υ} = H ∩ K. Hence, by the fundamental theorem,

By 3.38, K  HK  G. For each h∈H, hυ1 = hK∈HK/K. Moreover, each
element of HK/K is of the form hkK = hK = hυ1, with h∈H, k∈K. Thus Im
υ1 = HK/K.

150 Suppose that K  G. Let  = G/K and .
Show that . Show by an example that we can have Z(G) < Z(

).

*151 Let H, J and K be normal subgroups of G such that J  H. Prove that
if H/J  Z(G/J) then HK/JK  Z(G/JK) (see 3.39).

*152 G is called metacyclic if it has a cyclic normal subgroup L such that
G/L is cyclic. For instance, every dihedral group is metacyclic: see 79, 102,



142. Prove that every subgroup and every quotient group of a metacyclic
group is also metacyclic.

153 (Hölder) Let K  G with G finite and K simple. If | K|2 does not divide |
G | then K is the only subgroup of G which is isomorphic to K.

154 There is no proper subgroup H of Q+ such that Q+ = H + Z+. (Hint. Use
3.40 with 3.25 and 133. Here, since the group operation in Q+ is addition,
we also use additive notation for the corresponding semigroup (Q+) of
non-empty subsets of Q+.)

155 Let H1, H2, H3, … be an ascending sequence of subgroups of G, and let

 (see 3.34). If Hi is simple for infinitely many distinct positive

integers i, then H is simple.
(Hint. Show that if K  H then either Hi ∩ K = 1 whenever Hi is simple or
Hi  K whenever Hi is simple.)

3.41 Definitions. Recall our convention that  always denotes a set of
prime numbers.

(i) A positive integer n is said to be a -number if every prime divisor of
n belongs to . Note that we do not require that every prime in  actually
divides n: so, for instance, 6 is a {2, 3, 5}-number. By convention, 1 is a -
number for every set  of primes (and if  = , 1 is the only -number).
If  = {p}, the -numbers are just the powers of p : 1, p, p2, p3, …

(ii) Let G be a finite group. We say that G is a -group if | G | is a -
number. Thus, for example, Σ3 and Σ4 are {2, 3}-groups but Σ5 is not a {2,
3}-group. However, Σ3,Σ4 and Σ5 are all {2, 3, 5}-groups. If  = {p}, a -
group is called a p-group (rather than a {p}-group).

3.42. If G is a finite -group then all subgroups and all quotient groups of
G are -groups.
Proof. The orders of all subgroups and all quotient groups of G divide |G|.

3.43. Let G be a finite group. Then G has a unique largest normal -
subgroup, which is denoted by O (G) and called the -radical of G. (Here



O (G) is ‘largest’ in the sense that it contains every normal -subgroup of
G.)
Proof. Among all the normal subgroups of G, choose a normal -sub-group
K of largest order. (Possibly K = 1.) Then let H be any normal -subgroup
of G. By 3.39, HK  G, and, by 3.40, | HK/K | = | H/H ∩ K|, which, by 3.42,
is a -number. Hence | HK | = | HK/K | | K|, the product of two -numbers
and therefore a -number. Thus HK is a normal m-subgroup of G, and so,
by choice of K and since K  HK, HK = K. Hence H  K. Thus K has the
required property of O (G).

For example, by 3.7,

3.44. Let G be a finite group. Then G has a unique smallest normal
subgroup K such that G/K is a -group. We write K = O (G) and call G/O

(G) the -residual of G. (Here O (G) is ‘smallest’ in the sense that
whenever H  G and G/H is a -group then O (G)  H.)
Proof. Among all the normal subgroups of G, choose K of smallest order
such that G/K is a -group. (Possibly K = G.) Then let H  G with G/H a 
-group. By 3.8, H ∩ K  G, and, by 3.40, | H/H ∩ K | = | HK/K|, which, by
3.42, is a -number, since H K/K  G/K. Hence, by 3.30, | G/H ∩ K | = |
G/H | | H/H ∩ K|, the product of two -numbers and therefore a -number.
Since H ∩ K  K and by choice of K, it follows that H ∩ K = K. Hence K 
H. Thus K has the required property of O (G).

For example, by 3.7,

3.45 Definitions. It is often convenient to refer to the class of all groups
possessing a particular property. For example, we have the class of abelian
groups, the class of finite groups, the class of finite -groups, etc. When we
speak of a class  of groups we always understand that if G ≅ H∈  then
also G∈  : in words, that if  contains a particular group,  also contains
all groups of the same type. We suppose also that  contains the trivial
group (of order 1).



For a particular group G and class  of groups, we may ask whether G
has an -radical and an -residual: that is, whether G has a unique largest
normal -subgroup H (in which case H is the -radical of G) and whether G
has a unique smallest normal subgroup K such that G/K is an -group (in
which case G/K is the -residual of G). Here, as usual in group theory,
‘largest’ and ‘smallest’ are meant in the sense of containment. Thus 3.43
and 3.44 assert the existence for every finite group of an -radical and an -
residual when  is the class of finite -groups.

*156 Let G be a finite group. Then O (G) and O (G) are characteristic
subgroups of G and G/O (G) has trivial -radical and O (G) has trivial 
-residual.

*157 Let H  G, a finite group.
  (i) Prove that H ∩ O (G)  O (H); and that if H  G then 

. Show by an example that if H is not normal in G, we
can have .

(ii) Prove that O (H)  H  O (G).
Show by an example that even if H is normal in G, we can have O (H) <

H ∩ O (G).

158 Let K  G, a finite group. If G/K is a -group then O (K) = O (G)
(cf. 157(ii)).

159 Let H and K be normal subgroups of a finite group G.
(i) Prove that .

Show by an example that equality need not hold. (Hint. Consider G = Σ3 ×
C2 and  = {2}: show that G has two distinct normal subgroups isomorphic
to Σ3 and choose these for H and K.)
(ii) Prove that 

*160 Let  be a class of groups.
(i) If G has an -radical H then H is a characteristic subgroup of G.
(ii) If G has an -residual G/K then K is a characteristic subgroup of G

(cf. 156).



161 Let  and  be classes of groups. We say that G is an -by-  group if
G has a normal subgroup L such that L∈  and G/L∈ . Prove that if every
subgroup and every quotient group of an -group is an -group and if every
subgroup and every quotient group of a -group is a -group then every
subgroup and every quotient group of an -by-  group is an -by-  group.
(This generalizes 152.)

We shall show next that every group has an abelian residual (though in
general not an abelian radical − see 171). With this aim in mind, we make
the following

3.46 Definition. The commutator of an ordered pair g1, g2 of elements of G
is the element

Immediately from the definition we note

3.47. Let g1, g2∈G. Then
(i) 
(ii) [g1, g2] = 1 if and only if g1 and g2 commute.

3.48 Definitions. Let H, K  G. Then the corresponding commutator
subgroup is

We emphasize that [H, K] is the subgroup generated by all the commutators
[h, k] with h∈H and k∈K: it may happen that the product of two
commutators cannot itself be expressed as a commutator. The particular
subgroup [G, G], generated by all commutators in G, is usually denoted by
G′ and called the derived group (or commutator subgroup) of G.

3.49. Let H, K  G. Then [H, K] = [K, H].
Proof. By 2.28, if X is a non-empty subset of G and Y = {x− 1: x∈X} then
〈X 〉 = 〈 Y 〉. The assertion now follows from 3.47 (i).



3.50. Let X be a non-empty subset of G and let A be a non-empty subset of
Aut G. Suppose that x ∈〈X〉 for all x∈A and ∈A. Then 〈X〉 is an
A-invariant subgroup of G.
Proof. Let y∈〈X〉. By 2.28, y can be expressed in the form

where r is a positive integer, and each xi∈X, ni∈Z. Let ∈A. Then

Since, by hypothesis, each , it follows that y ∈〈 X 〉.
Hence 〈 X 〉 is A-invariant.

From this we deduce

3.51. Let A be a non-empty subset of Aut G and let H and K be A-invariant
subgroups of G. Then [H, K] is an A-invariant subgroup of G. In particular,
the derived group G′ is a characteristic subgroup of G.
Proof. Let h∈H, k∈K,( ∈A. Then

Since, by hypothesis, h ∈H and . The result now
follows from 3.50.

3.52 Theorem. For any group G, the derived group G′ is the unique
smallest normal subgroup K of G such that G/K is abelian. (Thus G/G′ is
the abelian residual of G, sometimes called G made abelian.)
Proof. Let K  G. Then G/K is abelian if and only if (xK) (yK) = (yK) (xK)
for all x, y∈G; that is, if and only if xyK = yxK, or, equivalently, x− 1y− 1xyK
= K; that is, if and only if [x, y]∈K for all x, y∈G. Thus G/K is abelian if
and only if G′  K. Since, by 3.51, G′  G, this completes the proof.

3.53 Lemma. Let H  G and K  G. Then [H, K]  H ∩ K. In particular, if
H ∩ K = 1 then every element of H commutes with every element of K.
Proof. Let h∈H and k∈K. Then



and                              
Thus                             
Hence                              
The second assertion now follows from 3.47(ii).

We now note a useful reformulation of 2.34 (and its converse).

3.54 Theorem. G ≅ H × K if and only if G has normal subgroups H1, K2

such that H1 ≅ H, K2 ≅ K, G = H1K2 and H1 ∩ K2 = 1.
Proof. If  is an isomorphism of H × K onto G, let H1 = (H × 1) , K2 = (1 ×
K)  and apply 2.33, 3.12 and 3.29. For the converse, suppose that 

 and H1 ∩ K2 = 1. By 3.53,
every element of H1 commutes with every element of K2. Then, by 2.34 and
76, G ≅ H1 × K2 ≅ H × K.

*162 Let K  H  G with K  G. Then
  (i) H  G if and only if [H, G]  H,
 (ii) H/K  Z(G/K) if and only if [H, G]  K.

163 Every subgroup of G which contains G′ is normal in G.

*164 Let K  G.
(i) If x, y∈G then, in G/K,

(ii) If H, J  G then

In particular, (G/K)′ = G′K/K (cf. 150).

*165 Let G = H × K.
  (i) If h1, h2∈H and k1, k2,∈K then



(ii) If H1, H2 are subgroups of H and K1, K2 are subgroups of K then

In particular,

166 Let n be an integer, n  3, and let G = D2n, the dihedral group of order
2n. Then | G/G′ | is either 4 or 2, according as n is even or odd.

167 Let A be an abelian group.
  (i) For any homomorphism  : G → A, G′  Ker .
(ii) Hom(G, A) ≅ Hom(G/G′, A)(see 33).

*168 A group is said to be perfect if it coincides with its derived group, or,
equivalently, if it has no non-trivial abelian quotient group. Prove that every
perfect subgroup H of an arbitrary group G is contained in G′.

*169 (i) Let x, y, z∈G. Then

(ii) Let H, J, K be normal subgroups of G. Then

170 (i) Let Z1 = Z(G) and define Z2  G by Z2/Z1 = Z(G/Z1). Let z∈Z2, and
let z be the map of G into itself defined, for all x∈G, by

Prove that z is a homomorphism, that Im z  Z1, and that G′  Ker z.
(Hint. See 162 and 169.)

(ii) Suppose that G is a perfect group (168). Prove that G/Z(G) has trivial
centre. (Remarks. This result is known as Grün’s lemma. A perfect group
need not itself have trivial centre. For instance, it can be shown that for any



field F with more than 3 elements, the group SL2(F) defined in 3.28 is
perfect; and if 1 + 1 ≠ 0 in F then the centre of SL2(F) has order 2: see 123.)

*171 A group need not have an abelian radical. Demonstrate this by
considering G = D8, the dihedral group of order 8. Find abelian normal
subgroups H and K of G such that HK = G.

We now show that to each subgroup H of G there is associated a unique
largest subgroup L of G such that H  L  : G.

3.55. Let H  G and define NG(H) = {g∈G : g− 1Hg = H}. Then H  NG(H)
 G, and, whenever . We call NG(H) the

normalizer of H in G.
Proof. Let L = NG(H), as defined above. Certainly H ⊆ L, so that L ≠ .
Let x, y∈L. Since y − 1Hy = H, it follows that H = yHy − 1, and so

Hence xy− 1∈L. Therefore L  G. Now H  L, and, immediately from the
definition of L, H  L. Finally, if H  J  G and x∈J then x∈G and, by
3.3, x− 1Hx = H. Hence, by definition of L, x∈L. Thus J  L.

Note that by 3.3 we have

3.56. Let H  G. Then H  G if and only if NG(H) = G.
We can now solve a problem mentioned earlier in this chapter.

3.57. Let G be a finite group. Then the subgroups of the semigroup (G) are
precisely the groups H/K, where K  H  G.
Proof. Whenever K  H  G, the quotient H/K is a group whose elements
are non-empty subsets of G and with the same multiplication as in (G);
that is, H/K is a subgroup of (G).

Now let  be any subgroup of (G). Then the identity element of  is a
non-empty subset K of G such that K2 = K. Since G is finite, it follows, by
3.18, that K  G. Now if X∈  then there is a Y∈  such that XY = K. Also
XK = X = KX. Hence | X |  | X | and | X |  | X|. Therefore | X | = | K|. Let



x∈X. Then x K ⊆ XK = X. Since | xK | = | K | = | X | < ∞, it follows that xK
= X. Similarly, Kx = X.

Thus every element of  is a coset xK of K in G such that xK = Kx, hence
such that K = x− 1Kx; that is, such that x∈NG(K). Thus the elements of 
are elements of NG(K)/K, and the multiplication in  is the same as in
NG(K)/K; that is,  is a subgroup of NG(K)/K. Hence, by 3.30,  = H/K,
where K  H  NG(K); equivalently, by 3.55, where K  H  G.

172 Let G = Σ3 and H = {1,(12)}. What is NG(H)?

173 Let H  G and g∈G. Then NG(g− 1Hg) = g− 1NG(H)g.

*174 Let H  G. Prove that if H is finite then

Show by an example that this may fail if H is infinite. (Hints. See 84. For
an example, let G = x, y be defined as in 3.37, and let H0 = 〈x〉. Then y−

1hy∈H0 for all h∈H0 but y ∉ NG(H0).)

*175 Let H, J  G. If x− 1Hx  H for every x∈J, then J  NG(H). (cf. 174.
Hint. {x− 1 : x∈J} = J.)

176 Let  ⊂ A ⊆ Aut G. If H is a finite A-invariant subgroup of G then
CG(H) and NG(H) are A-invariant subgroups of G (see 84, 122, 174).

177 Let  = {(g, g) : g∈G}, the diagonal subgroup of G × G (see 89). Then

*178 Let H  G, and suppose that X and Y are non-empty subsets of G such
that 〈X〉 = G and 〈Y〉 = H.

  (i) If x− 1 Hx = H for all x∈X then H  G. (Hint. Use the fact that NG(H)
 G.)



 (ii) If g− 1 yg∈H for all g∈G and y∈Y, then H  G. (Apply 3.50.)
(iii) If x− 1 yx∈h for all x∈X and y∈Y then x− 1 Hx  H for all x∈X.

Deduce that if H is finite then H  G.
(iv) The second assertion of (iii) may fail without the condition of

finiteness of H. (To see this, consider the group G = 〈x, y〉 of 3.37. Let
H0 = 〈x〉. Then x− 1xx = x∈H0 and , but H0  G since
yxy− 1 ∉ H0.)

 (v) If x− 1 yx∈H and xyx− 1∈H for all x∈X and y∈Y, then H  G.

*179 (i) Let H, K  G. Then

(See 71. Hint. Apply 169(i), 3.47(i) and 178(v).)
(ii) Let G be a non-abelian simple group, and suppose that H and K are

proper subgroups of G such that G = 〈 H, K 〉. Then

(iii) Suppose that G is a non-abelian simple group in which there are
elements t and x such that o(t) = 2, o(x) = 3 and G = 〈 x, t 〉. Then also

(Remark. We shall see later that such a group G does exist: cf. 5.24, 315.
Hint. Use (ii) to show that G = 〈[x, t],[x− 1, t]〉 and consider [x− 1, t][x, t]−

1.)

*180 Let H  G. The normal closure of H in G is defined to be the
intersection of all normal subgroups of G which contain H, and is denoted
by HG. Then

  (i) HG is the unique smallest normal subgroup of G containing H.
 (ii) HG = 〈g− 1hg : g∈G, h∈H). (Hint. Use 178(ii).)
(iii) HG = H[H, G]. (Note that by 179(i), [H, G]  G.)

181 Let G = 〈j, k〉  GL2(C), where



Let J = 〈j〉 and K = 〈k〉. Show that | J | = | K | = 4 and that | J ∩ K | =
2. By means of 178(iii), show that J  G and K  G. Deduce that | G | = 8.
Show that the only element of order 2 in G is j2 = k2. Deduce that every
subgroup of G is normal in G, although G is non-abelian. G is another
example of a group which does not have an abelian. radical (cf. 171).

This group G is denoted by Q8 and called the quaternion group. If we
identify the complex number i with the matrix

then the group elements i, j, k satisfy the relations

discovered by Sir William Rowan Hamilton (1805–65); and

182 Prove that .

The first examples of non-abelian simple groups were discovered by
Evariste Galois (1811–32). We shall now introduce these groups: simplicity
will be established in chapter 5.

3.58. Let n be an integer greater than 1, and consider the group ∑n of all
permutations of the set {1, 2, …, n} = X, say. Consider the (n − 1)
unordered pairs {i, j} with i, j∈X and i ≠ j, and let

For each ∈∑n let



Thus N1 = N. Moreover, for any , N  = ±N : for, as {i, j} runs through all
the n(n − 1) 2-element subsets of X, so does {i , J } (since if {i , j } = {k
, l } then either i  = k  and j  = l  or i  = l  and j  = k , hence either i = k

and j = l or i = l and j = k, and so {i, j} = {k, l}). We write

thus                                    

then  is called the sign of .
Note that , where t  is the number of ordered pairs (i, j)

such that i, j∈X, i < j and i  > j . For instance, if  is a transposition (rs)
then  = − 1: for we may suppose that r < s and then, for each i∈X,

hence, for i, j∈X with i < j, i  > j  if and only if either i = r and r < j  s or
r < i < s and j = s; thus t  = 2(s − r) − 1, an odd integer.

Now let , ∈∑n and, for each i, j∈X with i < j, write i  = i′ j  = j′. Then

In the product on the right we replace any factor j′  − i′  for which i′ > j′ by
− (i′  − j − ). Then, by definition of , we have

However,

Since these are equations between non-zero numbers, it follows that



This shows that the map

is a homomorphism; it is called the alternating character on ∑n. Moreover,
it is surjective, for we have pointed out that if  is a transposition then  =
− 1. (Note that since n  2, there are transpositions in ∑n.) By the
fundamental theorem on homomorphisms,

This means that Ker  is a subgroup of index 2 in ∑n. We call Ker  the
alternating group of degree n and denote it by An. The elements of An are
called even permutations of X and the elements of ∑n\An are called odd
permutations of X. Note that

Note also that even and odd permutations multiply as even and odd integers
add:

How can we decide whether a given permutation is even or odd?

3.59. Let n be an integer greater than 1, and let ∈∑n. Let the expression
of  as a product of cycles on disjoint sets be  = v1v2 … vr, and suppose
that the cycle vj has length mj(j = 1, …, r). Then the permutation  is even

or odd according as the integer  is even or odd.

Proof. Consider first a cycle v, say of length m, where 2  m  n: say

Then                               



since the sign of any transposition is − 1.
Now if, as in the statement,  = v1v2 … vr,

by equation (i) of 3.58, 

This establishes the result.
For example, in ∑5,

which is odd since (2 − 1) + (3 − 1) = 3, an odd integer.
Galois proved

3.60. Whenever n  5, An is a non-abelian simple group.
We shall establish this in 5.28. The occurrence of the number 5 in this

result is intimately connected with the unsolvability of the general quintic
equation. For an explanation of this, the reader may consult the references
to Galois theory mentioned in 2.25. The group A5 has order 60, and, as we
shall show in chapter 5, there is no non-abelian simple group of smaller
order.

183 Which of the following permutations in ∑6 are even and which are odd:

*184 Let n be an integer, n > 1, and let H  ∑n. Prove that if H includes an
odd permutation then H has a subgroup of index 2. Deduce that if H is
simple and | H | > 2 then H  An.

*185 (i) Write down the 12 elements of A4 and note their orders.
(ii) Prove that Z(A4) = 1. (Hint. Use 6 to show that if Z(A4) ≠ 1 then A4

would have an element of order 6.)



(iii) Show that A4 has a unique subgroup V of order 4, and deduce that V 
 A4.
(iv) Prove that A4 has no subgroup of order 6. (Hint. Assume that A4 has

a subgroup H of order 6. Consider H ∩ V, and derive a contradiction by
means of 102, 3.40, 119 and (ii).)

3.61. We end this chapter with some remarks on simple groups. We have
mentioned one family of non-abelian finite simple groups containing
infinitely many different types, namely the alternating groups of degrees 5
and greater. We mention some other examples.

Let n be an integer greater than 1 and let F be any field. Let S = SLn(F),
the group of all n × n matrices with entries in F and determinant 1 (3.28).
Then it can be shown that Z(S) consists of all the scalar matrices in S; that
is, the matrices a1 with a∈F and an = 1. (See 123 for the case when F ≠ Z2
and either n > 2 or F ≠ Z3.) The group S/Z(S) is called the projective special
linear group of degree n over F and denoted by PSLn(F). It can be proved
that PSLn(F) is a non-abelian simple group, except when n = 2 and F is
either Z2 or Z3. (See Artin [b2] or Huppert [b21] for the proof.) In
particular, this provides examples of infinite simple groups, for when the
field F is infinite then the group PSLn(F) is infinite. When F is finite,
PSLn(F) is finite.

There are other families of simple groups defined in a similar way from
groups of matrices: the so-called orthogonal, symplectic and unitary groups.
For instance, let n be an even positive integer, say n = 2m, where m is a
positive integer, and let F be any field. Let y be a fixed non-singular skew-
symmetric n × n matrix with entries in F: there is such a matrix because n is
even. For each x∈GL2m(F) let x′ denote the transpose of x. Then the set

forms a subgroup of GL2m(F) which is called the symplectic group of
degree 2m over F and denoted by Sp2m(F). The type of the group does not
depend on the choice of the skew-symmetric matrix y. It can be shown that
every matrix in Sp2m(F) has determinant 1, so that Sp2m(F)  SL2m(F). Let 

. Then Z(Y) consists of the scalar matrices in Y, and in fact |



Z(Y)| = 2 if in F, 1 + 1 ≠ 0, while Z(Y) = 1 if in F, 1 + 1 = 0. The group
Y/Z(Y) is called the projective symplectic group of degree 2m over F,
denoted by , and  is a non-abelian simple group,
except when 2m = 2 and F is either Z2 or Z3, and when 2m = 4 and F = Z2.
(For details of these groups and the orthogonal and unitary groups, see
Artin [b2], Dieudonné [b9] and [b10], and Huppert [b21].)

These families of simple groups defined by means of groups of matrices
were discovered by C. Jordan (1838–1922), and discussed in his book
[b23]. They are usually called the classical simple groups. A further family
was discovered in 1905 by L. E. Dickson (1874–1954), who also made a
detailed study of the classical groups in his book [b8]. Earlier E. Mathieu
(1835–1890) had found five individual simple groups which have never
been identified as belonging to an infinite family; they are subgroups of the
alternating groups A11, A12, A22, A23, A24. Such simple groups which do not
appear as members of an infinite family are now referred to as sporadic
simple groups.

No further discoveries of finite simple groups were made until 1955. In
that year, C. Chevalley described a method which provided a construction
of the groups of Jordan and Dickson, together with new infinite families of
simple groups. Further families were then discovered by several other
authors by varying Chevalley’s method. For details, we refer to an article
and book of R. W. Carter, [al4] and [b4].

At this point, it was widely expected that the list of finite simple groups
would prove to be complete. However, in 1965 a new simple group was
discovered by Z. Janko: a group of 7 × 7 matrices with entries in the field
Z11 and of order 23.3.5.7.11.19. Since 1965, around two dozen more
sporadic finite simple groups have been found, and the state of our
understanding of finite simple groups remains unstable. We do not even
know as yet whether our present list of simple groups of orders less than 1
000 000 is complete. For further information we refer to the survey articles
of W. Feit [a21] and D. Gorenstein [a44], chapters 16 and 17 of
Gorenstein’s book [bl3], and the volume edited by M. B. Powell and G.
Higman [b33].



4
GROUP ACTIONS ON SETS

We have discussed in chapter 2 the significance of groups occurring as
symmetry groups of mathematical systems. Let X be some system, that is to
say a set with a certain distinguished structure, it may be algebraic or
geometric, and let G be a subgroup of the symmetry group of X (the group
of all structure-preserving permutations of X). Then each g∈G moves each
x∈X to some element of X (where in using the word ‘moves’ we allow the
possibility that g fixes x). Let us write xg for this element of X to which g
moves x. In this way we think of the group G as acting on the system X.
The action is determined when for each g∈G and x∈X the corresponding
element xg∈X is specified. This simple notion of a group action has proved
very fruitful. We shall find it profitable to build from a definition which
generalizes the initial idea. In this chapter we define and develop the notion
of a group action on a set (without further structure).

4.1 Definition. We say that G acts on the non-empty set X (or that G
permutes X) if to each g∈G and each x∈X there corresponds a unique
element xg∈X such that, for all x∈X and g1, g2∈G,

To be explicit, we say under these conditions that G acts on X on the
right. We can define in a similar way what is meant by the action of a group
on a set on the left. Later on (in chapter 10) we shall need to discuss right
and left actions together and so preserve the distinction between them. Till



then, if we speak of a group action without qualification, we shall mean an
action on the right.

4.2 Examples. (i) Let X be any non-empty set and let G  ΣX. Then G acts
on X. In this case each g∈G is a map X → X and, for x∈X, xg is the image
of x under the map g. The condition (xg1)g2 = x(g1g2) of 4.1 is satisfied by
definition of composition of maps, and the condition x1 = x by definition of
the identity element 1 of ΣX. This action is called the natural action of G on
X.

(ii) Let V be a vector space ≠ 0 over a field F. Then, with the usual vector
space notation, to each a∈F and υ∈V there corresponds an element aυ∈V.
By this correspondence, the multiplicative group F× acts on the left on V
(regarded as a set): for if a1, a2∈F and υ∈V then, by vector space axioms,
a1(a2υ) = (a1a2)υ and 1υ = υ. But the additive group F+ does not in this way
act on the left on V: for if it did, we should have a1(a2υ) = (a1 + a2)υ and 0υ
= υ, and these equations are both false unless either υ = 0 or a1 ≠ 1 and a2 =
a1(a1 − 1)− 1

186 Suppose that G acts (on the right) on the set X. Then we get a left
action of G on X by defining, for all g∈G and x∈X, gx = xg− 1. Why will it
not do in general to define gx = xg?

We note at once the relation between group actions on a set X and the
symmetry group of X, that is, ΣX.

4.3 Theorem. Let G act on the set X. Then to each g∈G there corresponds
a map g : X → X defined by g : x  xg, and this is a permutation of X.
Moreover, the map  : G → ΣX defined by p :g  g is a homomorphism; it
is called the permutation representation of G corresponding to the group
action.
Proof. Let g∈G. By definition, g is a map of X into itself. For g1, g2∈G
and x∈X, using the first axiom of 4.1 we have



so that

Moreover,using the second axiom of 4.1 we have

By (i) and (ii),

Thus g is an invertible map of X to itself, that is, a permutation of X. Then
(i) shows that  is a homomorphism of G into ΣX.

4.4 Theorem. Let  be a homomorphism of G into ΣX, where X is a
nonempty set. Then G acts on X when we define, for each g∈G and x∈X,

and the permutation representation of G corresponding to this action is .
Proof. For g1, g2∈G and x∈X, by definition of composition of maps,

since  is a homomorphism;
and x(1 ) = x, since, by 2.9,  must map 1∈G to 1∈ΣX. Hence, by setting

we do define an action of G on X. Let the corresponding permutation
representation of G be . Then

Thus, in considering group actions on a set X, we now look not merely at
subgroups of ΣX but at homomorphisms of groups into ΣX.



4.5 Definition. Let G act on the set X. We say that the action is faithful if
the corresponding permutation representation of G is injective.

In 4.2(i), the permutation representation is just the inclusion map G →
ΣX. This is certainly injective, so that the action is faithful. The left action of
F× on V in 4.2(ii) is also faithful.

4.6 Lemma. Let G act on the set X. We define a relation ~ on X by setting x1

~ x2 if and only if x1, x2∈X and there is an element g∈G such that x1g =
x2. Then ~ is an equivalence relation on X.
Proof. For any x∈X, x1 = x, so that x ~ x. If x1 ~ x2 then x1g = x2 for some
g∈G, hence x2g− 1 = (x1g)g− 1 = x11 = x1, and so x2 ~ x1. If x1 ~ x2 and x2 ~
x3 then x1g1 = x2 and x2g2 = x3 for some g1, g2∈G, hence x1(g1g2) =
(x1g1)g2 = x3, and so x1 ~ x3.

The following definition is of fundamental importance.

4.7 Definition. Let G act on the set X. Then X is partitioned into disjoint
equivalence classes with respect to the equivalence relation ~ of 4.6. These
equivalence classes are called the orbits or transitivity classes of the action.
For each x∈X, the orbit containing x is called the orbit of x: it is the subset
{xg: g∈G} of X.

4.8. Let G act on the set X, and let x∈X. Set StabG(x) = {g∈G : xg = x}.
Then StabG(x) is a subgroup of G, called the stabilizer of x in G. (In the
literature, this subgroup is often denoted by Gx and called the isotropy
group of x in G.)
Proof. By 4.1, 1∈StabG(x), so that StabG(x) ≠ . Let g1, g2∈StabG(x).
Then xg1 = x = xg2, hence

and so . Hence StabG(x)  G.
The following fact is an immediate consequence of the definitions

already given.



4.9. Let G act on the set X, and let the corresponding permutation
representation of G be . Then

*187 Suppose that G acts on the set X. For each g∈G and each non-empty
subset Y of X, define

Define also

  (i)  and .

In particular, for all x∈X, StabG(xg) = g− 1 StabG(x)g.
 (ii)  (cf.62(i)).
(iii) If Y is an orbit of the action of G on X then GY , G, G acts on Y, and

G/GY is isomorphic to the image of the corresponding permutation
representation of G on Y.

188 Suppose that the finite group G acts faithfully on the finite set X. Let
the orbits of the action be X1,…, Xs, where s is a positive integer, and let |
Xi| = ni for i = 1,…, s (where n1 + … + ns = | X|). Then G can be embedded
in the group . (Hint. Use 187(iii) and 109.)

4.10 Examples. (i) Let n be a positive integer, ∈Σn and G = 〈 〉.
Suppose that  is expressed as a product of disjoint cycles as

where s, n1,…,ns are positive integers such that n1 + … + ns = n. Then the
orbits of the natural action of G on the set {1, 2,…, n} are the s disjoint
subsets .



For instance, for n = 5 and  = (123) (45), there are just two orbits {1, 2,
3} and {4, 5}. Note that then StabG(1) = StabG(2) = StabG(3) = 〈 3 〉 and
StabG(4) = StabG(5) = 〈 2〉. Since o( ) = 6, we see that for each x∈{1,
2, 3, 4, 5}, the number of elements in the orbit of x is equal to | G :
StabG(x)|. We shall show in 4.11 that this is not coincidental but an instance
of a general result.

(ii) Let H  G. Then H acts on G (regarded as a set) by right
multiplication in G; that is, when to each h∈H and each g∈G there
corresponds the element gh∈G. That this does define an action of H on G
follows from the associative law for multiplication in G and the defining
property of the identity element. Now, for g∈G,

In particular, by 4.9, it follows that the action is faithful. Also, the orbit of g
is the set {gh : h∈H} = gH, the left coset of H in G containing g. Thus
from 4.6 we can deduce that distinct left cosets of H in G are disjoint, and
hence derive Lagrange’s theorem.

In a similar way, left multiplication of the elements of G by the elements
of H defines a left action of H on G, the orbits of which are the right cosets
of H in G.

The following result on lengths of orbits is a key fact needed for many
applications.

4.11 Lemma. Let G act on the set X, and let x∈X. Then

Proof. Let X1 denote the orbit of x, let H = StabG(x) and let Y denote the set
of right cosets of H in G. Thus

We define a map



We must check that this is well defined. Let g1, g2∈G. We need to be sure
that if xg1 = xg2 then also Hg1 = Hg2. Using the axioms of 4.1, we see that
if xg1 = xg2 then

from which it follows that Hg1 = Hg2, as required.
Furthermore, we see conversely that if Hg1 = Hg2 then , so

that

then

This shows that  is an injective map. It is clear from its definition that  is
surjective, so that  is in fact a bijective map. Hence

as asserted (where this means in particular that | X1| = ∞ if and only if | Y | =
∞).

189 Let G  Σ4, and consider the natural action of G on the set {1, 2, 3, 4}.
For each of the following choices of G, write down the orbits of the action
and find the stabilizer of each point. Verify the result of 4.11 in each case:

  (i) G = 〈(123)〉
 (ii) G = 〈(1234)〉,
(iii) G = {1, (12)(34), (13)(24), (14)(23)},
(iv) G = {1, (12), (12)(34), (34)},
(v) G = A4.

190 Let n be a positive integer, F a field, and V a vector space of dimension
n over F. Let F× act on the left on V, as in 4.2(ii). Find the orbits of this
action and the stabilizer in F× of each υ∈V, and verify that the result of
4.11 is true in this case. How many orbits are there if | F | = q < ∞?



We shall discuss two special group actions which are of great
importance: the action by right multiplication of a group on the set of right
cosets of a subgroup, and the action by conjugation of a group on its
subsets. We shall use information about these actions to obtain fundamental
results on abstract groups.

4.12 Definition. Let G act on the set X. The action is said to be transitive if
it has just one orbit. An action which is not transitive is called intransitive.

For instance, let n be a positive integer and let X = {1, 2,…, n}. Then the
natural action of Σn on X is transitive; so also is the natural action on X of
the cyclic subgroup 〈(12…n)〉 of Σn. The natural action of An on X is
transitive if n  3: for if n  3 and i, j are any two distinct points of X, there
is a point k∈X which is distinct from both i and j, and then (ijk)∈An (by
3.59) and (ijk) moves i to j.

4.13. Let H  G and let X be the set of right cosets of H in G. Then G acts
on X by right multiplication: to each g∈G and each Hx∈X (where x∈G)
there corresponds the coset Hxg∈X.

This does define an action of G on X, for if x, g1, g2∈G then (Hxg1)g2 =
Hxg1g2 and Hx1 = Hx. The action is transitive, for any two right cosets of H
in G are equivalent under the action: if x1, x2∈G then  and 

.
Next we note that

the conjugate of H by x (2.19). Note that, by 4.11, for every x∈G,

Of course, this is clear from Lagrange’s theorem if G is finite (see also 27),
Let H denote the permutation representation of G corresponding to the

action. Then, by 4.9,



the core of H in G (90).
When | G : H | < ∞ we may, by 2.7, identify ΣX with Σ|G : H|. Then H is a

homomorphism of G into Σ|G :H| and the fundamental theorem on
homomorphisms yields the following simple but important fact.

4.14 Theorem. If H is a subgroup of finite index in G then G/HG can be
embedded in Σ|G : H|.

The following is an immediate consequence.

4.15 Corollary. If H is a subgroup of finite index in an infinite group G then
there is a normal subgroup K of G such that K  H and G/K is finite.

We now derive two less obvious consequences, due to R. Baer [a5], for G
a finitely generated infinite group.

4.16 Corollary. Let G be a finitely generated infinite group. Then, for each
positive integer n, G has only finitely many subgroups of index n.
Proof. If H is any subgroup of index n in G then, by 4.14, there is a
homomorphism of G into Σn with kernel HG. Suppose that G = 〈x1,…,
xm〉, where m is a positive integer. Any homomorphism  : G → Σn is
determined (by 2.28) as soon as x1 ,…, xm  are specified. Hence, since Σn
is a finite group, there are only finitely many homomorphisms of G into Σn,
and therefore there are only finitely many normal subgroups of G eligible to
be cores in G of subgroups of index n. Moreover, any such normal
subgroup K of G can be the core in G of only finitely many subgroups of G
of index n, since G/K is a finite group. Hence there are in G only finitely
many subgroups of index n.

4.17 Corollary. Let H be a subgroup of finite index in a finitely generated
infinite group G. Then there is a characteristic subgroup K of G such that K

 H and G/K is finite.
Proof. Let | G : H | = n. By 4.16, G has only finitely many subgroups of
index n: let them be H = H1, H2,…, Hs. Then let



Any automorphism of G maps a subgroup of index n to a subgroup of index
n (27), and therefore permutes H1,…, Hs among themselves, hence maps K
to itself. Hence K is characteristic in G. Finally, by Poincaré’s theorem (66),
G/K is finite.

In 4.16 and 4.17, the condition that G is finitely generated cannot be
omitted, as can be seen by considering the additive group of an infinite-
dimensional vector space over Zp.

The statement in 102 is another immediate consequence of 4.14, since |
Σ2| = 2. This can be generalized when G is a finite group.

4.18 Corollary. Suppose that G is finite and that p is the smallest prime
divisor of | G|. If H is a subgroup of index p in G then H  G.
Proof. Suppose that H  G with | G : H | = p. Then | G/HG| = p|H : HG|.
Suppose that | H : HG | > 1 and let q be a prime divisor of | H : HG |. Then q
divides | G|, and so, by hypothesis, q  p. On the other hand, by 4.14, |
G/HG| divides p!, hence pq divides (p − 1)!p, and so q divides (p − 1)! Since
q is prime, it follows that q < p, a contradiction. Therefore we conclude that
| H : HG| = 1. Hence H = HG  G.

191 Let H  G with | G : H | = n < ∞. Let  be the set of all primes not
exceeding n. Then G/HG is a finite -group.

192 Let G be a finite simple group with a subgroup H of prime index p.
Then p is the largest prime divisor of | G | and p2 does not divide | G|.

193 Let G = GL2(Z3) and K = Z(G). By 2.16 and 2.17,|G | = 48, and, by
123, | K | = 2.

  (i) Let .

Show that K  H  G, and that | H | = 12.
 (ii) Prove that HG = K.

(iii) By means of 4.14, deduce that G/K ≅ Σ4.



194 An infinite simple group cannot have a proper subgroup of finite index.

*195 A group is said to be periodic if every element has finite order. Thus
every finite group is periodic. There are also infinite periodic groups, for
example Q+/Z+: see 3.25.

   (i) All subgroups and all quotient groups of a periodic group are
periodic.

  (ii) If K  G and the groups K and G/K are both periodic, then G is
periodic.

(iii) A group is periodic if it has a periodic subgroup of finite index.

196 G is said to be locally finite if every finitely generated subgroup of G is
finite.

  (i) Every locally finite group is periodic (195). (Remark. The converse
is false: see 8.29.)

  (ii) Every periodic abelian group is locally finite. (Hint. Apply 69.)
(iii) (O. J. Schmidt [a86]). K  G and the groups K and G/K are both

locally finite, then G is locally finite. (Hint. Apply 3.40, 108 and 149.)
(iv) A group is locally finite if it has a locally finite subgroup of finite

index.

197 Let H, K  G with | G : H|, | G : K | finite and co-prime. Then | G : H ∩
K | = | G : H||G : K | and G = HK. (This generalizes 100. Apply 4.15, 66 and
100.)

Next we shall show that every transitive group action is equivalent, in the
sense of the following definition, to an action of the kind described in 4.13.

4.19 Definition. Let groups G1,G2 act on sets X1, X2, respectively. We say
that the actions are equivalent if there is an isomorphism  : G1 → G2 and a
bijective map  : X1 → X2 such that, for all g1∈G1 and x1∈X1,

This defines an equivalence relation on group actions.

4.20 Theorem. Let G act transitively on the set X. Let x∈X and let H =
StabG(x). Then the action of G on X is equivalent to the action by right



multiplication of G on the set of right cosets of H in G.
Proof. Since the action of G on X is transitive,

We define a map  from X to the set of right cosets of H in G by

This is well defined, for if xg1 = xg2, with g1,g2∈G, then 
 H and so Hg1 = Hg2. This argument works also in

reverse to show that if Hg1 = Hg2 then xg1 = xg2. Then clearly  is a
bijective map. So far, the argument is just the same as in 4.11. For all g,
g1∈G,

This establishes the stated equivalence of group actions, when we choose as
the appropriate isomorphism the identity automorphism of G.

4.21. From 4.13 and 4.20, it follows that H  G and x∈G then the action
by right multiplication of G on the set of right cosets of H in G is equivalent
to the action by right multiplication of G on the set of right cosets of x− 1 Hx
in G.

*198 Let X and Y be sets with a bijective map  : X → Y, and suppose that
G acts faithfully on the set X. Then the action is equivalent to the natural
action of a suitable subgroup of ΣY on Y. (Hint. See 2.7.)

*199 Let groups G1, G2 act transitively on sets X1, X2, respectively. If these
actions are equivalent and x1∈X1, x2∈X2 then .

200 Let groups G, H act on the same set X, with corresponding permutation
representations , , respectively. Prove that the actions are equivalent if
and only if there is an isomorphism  : G → H and an element ∈ΣX such
that  = , where  is the inner automorphism of ΣX induced by .



Deduce that if G  ΣX, H  ΣX and the actions of G, H on X are the
natural ones, then the actions are equivalent if and only if G, H are
conjugate subgroups of ΣX.

201 Let G be a finite group and let H, J  G. Consider the actions of G by
right multiplication on the set of right cosets of H in G and on the set of
right cosets of J in G. These actions are equivalent if and only if there is an
automorphism  of G such that H  = J.

202 Consider the actions of a group G on sets. A set X together with an
action of G on X will be called a G-set. If X is a G-set and Y ⊆ X, Y is a G-
subset of X if the action of G on X restricts to an action of G on Y; that is, if
yg∈Y for all y∈Y and g∈G. The empty set  is regarded as a G-subset of
every G-set. A non-empty G-set X is called irreducible if the only G-subsets
of X are  and X. A G-map of a G-set X to a G-set Y is a map  : X → Y
such that, for all x∈X and g∈G, (xg)  = (x )g.

  (i) Let X be a non-empty G-set. Then the orbits of the action of G on X
are irreducible G-subsets of X, and they are the only irreducible G-subsets
of X. In particular, X is irreducible if and only if the action of G on X is
transitive.

 (ii) Let X be a non-empty G-set and let {Xr : r∈R} be the set of all
irreducible G-subsets of X. For every non-empty G-subset Y of X there is a
non-empty subset S of R such that .

(iii) Let  be a G-map of a G-set X to a G-set Y. Then Im  = {x  :
x∈X} is a G-subset of Y; and for each G-subset W of Y, {x∈X : x ∈W} is
a. G-subset of X.

(iv) A G-map of a non-empty G-set to an irreducible G-set is necessarily
surjective.

 (v) Let  be a G-map of an irreducible G-set X to a G-set Y. Then, for
each G-subset W of Y, either Im  ⊆ W or W ∩ Im  = .

(vi) If X is a non-empty G-set then the set of all bijective G-maps X → X
is a subgroup  of ΣX.

(vii) If X is an irreducible G-set then .



(viii) If H  G and X is the set of right cosets of H in G, with action of G
on X by right multiplication as in 4.13, then X is an irreducible G-set and 

.

4.22 Definition. An action of G on a set X is said to be regular if it is
transitive and StabG(x) = 1 for each x∈X.

It follows from the definition and 4.9 that a regular action is faithful.

4.23. We obtain a regular action of G by choosing H = 1 in 4.13. Then X =
G, and G acts on itself by right multiplication. The corresponding
permutation representation 1 of G is called the right regular permutation
representation of G : 1 maps each g∈G to the permutation of G obtained
by multiplying all elements of G on the right by g. The use of the qualifying
of G is equivalent, in the sense of 4.19, to the action of G on itself by right
multiplication: this follows from 4.20.

When 2.10 is applied to 1 we get the following well known result, the
proof of which derives from ideas in paper [a16] of Cayley in 1854.

4.24 Theorem (A. Cayley). G can be embedded in ΣG.
This provides another proof of the fact, established in 1.2, that for each

positive integer n, there are only finitely many distinct types of groups of
order n: for, by Cayley’s theorem, every group of order n can be embedded
in Σn and Σn has, as a finite group, only finitely many subgroups.

203 Let G act on the set X.
  (i) The action is regular if it is transitive and StabG(x) = 1 for some

x∈X. (Hint. See 187(i).)
 (ii) If G is abelian and the action is faithful and transitive then it is

regular.

204 Let G be a finite group which acts transitively on a finite set X, with | X
| = n. Then | G | is a multiple of n; and | G | = n if and only if the action is
regular.

*205 Suppose that | G | = 2r, where r is an odd integer with r > 1. By 1.13,
there is in G an element t with o(t) = 2. Show that in the right regular



permutation representation of G, t corresponds to an odd permutation. By
means of 184, deduce that G is not a simple group.

206 Let N denote the set of all positive integers. Every finite group can be
embedded in Σ(N), the restricted symmetric group on N (see 110, 148).

We now consider another important group action.

4.25. G acts on itself by conjugation. In this case, for each g∈G and each
x∈G we write Xg for the element of G to which g moves x, so that by
definition

This does define an action of G on itself, for if x, g1, g2∈G then

Now the orbit of x is the set

the conjugacy class of x in G (see 49); and

the centralizer of x in G (see chapter 1). The corresponding permutation
representation of G is the map  : G → ΣG defined in 2.21. By 4.9,

as in 117.
When we apply 4.11 and the definition of orbit for this action, we get the

following important results.

4.26 Corollary. For each x∈G,



4.27 Corollary (The class equation). If G is a finite group with k distinct
conjugacy classes of elements, and if x1,…, xk are elements of G, one from
each of these k classes, then

The positive integer k is called the class number of G, which we denote by
k(G).

We note two applications of the class equation.

4.28 Theorem. If | G | = pn, where n is a positive integer, then Z(G) ≠ 1.
We shall generalize this result in 5.8, but the statement given here is

sufficiently important to be recorded separately.
Proof. Let x∈G. By 4.26, the conjugacy class of x contains just one
element if and only if CG(x) = G, that is, if and only if x∈Z(G). Hence if
Z(G) = 1, the class equation gives

where each of the positive integers m2, …, mk is a divisor of pn and is
greater than 1. (In the notation of 4.27, mi = | G : CG(xi)|.) But then, since p
is prime, each of m2, …, mk is a power of p to a positive exponent, and so
m2 + m3 + … + mk is divisible by p. The equation above then implies that 1
is divisible by p, a contradiction. We conclude that Z(G) ≠ 1.

This property is fundamental for the investigation of groups of prime
power orders. The property is not in general shared by finite groups whose
orders involve two or more prime numbers: for instance, the group Σ3, of
order 6, has trivial centre.

From 4.28 we make two deductions.

4.29 Corollary. If G is a finite non-abelian simple group then | G | is
divisible by at least two distinct primes.

As a matter of fact, the order of a finite non-abelian simple group is
divisible by at least three distinct primes. This is an important result of
William Burnside (1852–1927), to which we shall refer again, but which
will not be proved in this book.



4.30 Corollary. Every group of order p2 is abelian.
Proof. Suppose to the contrary that | G | = p2 and G is non-abelian. Then
Z(G) < G and so, by 4.28 and Lagrange’s theorem, | Z(G)| = p. Hence |
G/Z(G)| = p, and so G/Z(G) is cyclic. But then it follows (125) that G is
abelian, a contradiction.

For every prime p there is a non-abelian group of order p3: see 221.

207 Let G be a finite non-abelian simple group and p the largest prime
divisor of | G|.

  (i) If H < G then | G : H |  p.
 (ii) If X is a conjugacy class of non-trivial elements of G then | X |  p.

208 Let X be a conjugacy class of elements of G. Then 〈X〉  G. (Hint.
Use 3.50.)

209 Let X be a conjugacy class of non-trivial elements of G.
  (i) Let ∈Aut G and X  = {xa : x∈X}. Then X  is a conjugacy class of

elements of G.
 (ii) Suppose that G is a finite non-abelian simple group and that, for

every conjugacy class Y of elements of G distinct from X, either | X | ≠ | Y |
or the elements of X and the elements of Y have different orders. Let | X | =
n. Then Aut G can be embedded in Σn. (Hint. For (ii), show that Aut G acts
on X and that 〈X〉 = G. Use 208 and 2.28.)

210 Let G be a finite group and let x, y be conjugate elements of G. Then
the number of distinct elements g∈G such that xg = y is equal to | CG(x)|.

211 Let x∈G, a finite group. Then | CG(x)|  | G/G′| (where G′ denotes the
derived group of G : see 3.48).

212 Let n be a positive integer and F a field such that | F | > n. Let G =
GLn(F), and let x be a diagonal matrix in G whose n diagonal entries are
distinct elements of F. Prove that CG(x) is the subgroup of G consisting of
all diagonal matrices in G (cf. 123).



213 Let n be a positive integer and F a field in which 1 + 1 ≠ 0. Let G =
GLn(F) and, for each i = 0, 1,…, n − 1, let ti be the diagonal matrix in G
whose first i diagonal entries are equal to 1 and whose other diagonal
entries are equal to − 1.

Prove that every element of order 2 in G is conjugate in G to one of the n
elements t0, t1,…, tn − 1. Prove also that no two of the elements t0, t1,…, tn −

1 are conjugate in G.
Hence G has just n conjugacy classes of elements of order 2. (Hints. Let

V be a vector space of dimension n over F and choose a base of V. With
respect to this base, any element of G of order 2 represents an element  of
GL(V) of order 2. Note that for every υ∈V, .
Hence show that there is a base of V with respect to which  is represented
by one of the matrices t0, t1, …, tn − 1. Note that two elements of G are
conjugate in G if and only if they represent the same element of GL(V) with
respect to suitable bases of V.)

214 Let H be a subgroup of index 2 in the finite group G. Assume that for
every h∈H with h ≠ 1, CG(h)  H (that is, by 4.26, the G-conjugacy class
of h splits into two H-conjugacy classes). Then G\H forms a single
conjugacy class of elements in G. (Hint. Let g∈G\H. Show that the map h 

 gh, defined for all h∈H, is an injective map of H into G.)

215 Prove that every group of order 15 is abelian. Deduce by means of 107
and 6 that every group of order 15 is cyclic (and therefore that v(15) = 1).
(Hint. If G were a non-abelian group of order 15 then, by 125, Z(G) = 1.
Then use the class equation to show that G would have just 1 conjugacy
class with 5 elements in it and that this would consist of all the elements of
G of order 3, in contradiction to 67. Remark. This result will be proved in
another way in 5.18.)

216 Let G be a non-trivial finite group and let p be the least prime divisor of
| G|. If k(G) > | G|/p then Z(G) ≠ 1.

217 If G is a finite non-abelian group then k(G) > | Z(G) | + 1.

218 Let G be a non-abelian group.



  (i) For every x∈G, Z(G) < CG(x).
 (ii) If | G | = p3 then | Z(G)| = p and k(G) = p2 + p − 1.

219 (i) Let H  G. Then H  G if and only if H is a union of G-conjugacy
classes of elements.

(ii) Let H  G, a finite group. Then

where j is the number of G-conjugacy classes of elements in H.
(iii) If G is a finite non-abelian group such that G/Z(G) is abelian then

k(G)  | G/Z(G)| + | Z(G)| − 1.

*220 Use the class equation to prove the following theorem of Cauchy: if G
is a finite group and p divides | G | then G has an element of order p. (Hint.
Use induction on | G | and the fact that by 107 the result is true if G is
abelian: cf. 1.13. Later we shall prove Cauchy’s theorem in another way:
see 5.11.)

*221 Let U be the subgroup of GL3(F) defined in 120, and let F = Zp.
  (i) Then U is a non-abelian group of order p3.
 (ii) If p > 2 then xp = 1 for every x∈U (cf. 3).

222 Every group of order p2 is isomorphic to either  or Cp × Cp. Hence
v(p2) = 2 (cf. 77).

It is obvious that if G is a finite group then k(G)  | G | (with equality if
and only if G is abelian). As a second application of the class equation we
shall prove the less obvious fact that | G | is bounded above by a function of
k(G). We follow the formulation of the proof in Scott [b36].

4.31 Theorem (E. Landau [a69], 1903). For each positive integer k, there is
a positive integer N(k) such that, for every finite group G with class number
k, | G |  N(k).
Proof. If G is a finite group with class number k then the class equation for
G gives, with the notation of 4.27,



Let ni = | CG(xi) |, for each i = 1,…, k. Without loss of generality, we may
suppose x1,…, xk labelled so that

Note that then n1 = | G|, since CG(1) = G. Division of equation (i) by | G |
gives

In order to complete the proof it will therefore suffice to show that there are
only finitely many sequences (n1, n2,…, nk) of positive integers satisfying
(ii) and (iii): for then we may take for N(k) the largest value of n1 among all
such sequences.

To achieve this we shall prove, by induction on k, that for each positive
integer k and real number A, if (k, A) denotes the set of all sequences (n1,
n2,…, nk) of positive integers satisfying (ii) and

then (k, A) is a finite set. (It may of course happen that (k, A) = , as
for instance if A  0, but this does not matter.) This assertion is obvious if k
= 1. Assume that k > 1 and, inductively, that (k − 1, B) is a finite set, for
every real number B. We may also assume that A > 0. If (n1, n2,…, nk) is a
sequence in (k, A) then

Thus there are only finitely many possible choices for nk.
Now (k, A) is a subset of the set (k, A) of all sequences (n1, n2,…, nk)



of positive integers such that  and

Since, for each choice of nk, (k − 1, A − (1/nk)) is a finite set, by the
inductive assumption, and since there are only finitely many choices for nk,
it follows that (k, A) is a finite set. Hence also (k, A) is a finite set, and
the induction argument goes through.

There also exist infinite groups with only finitely many distinct
conjugacy classes. Indeed, G. Higman, B. H. Neumann and H. Neumann
[a58] proved that any infinite group in which no non-trivial element has
finite order can be embedded in a group in which all non-trivial elements
form a single conjugacy class.

223 Let G be a finite group. Then
(i) k(G) = 2 if and only if G ≅ C2,

(ii) k(G) = 3 if and only if either G ≅ C3 or G ≅ Σ3.
(Hint. Use the class equation as in the proof of 4.31. In case (ii), show that
the possible orders for G are 3, 4, 6 and examine the groups of these
orders.)

224 (i) Let X be a conjugacy class of elements in G, and let X* = {x− 1:
x∈X}. Show that X* is a conjugacy class of elements in G.

(ii) Suppose that G is finite. Prove that if | G | is odd then {1} is the only
conjugacy class X such that X = X*, but that if | G | is even then there is at
least one conjugacy class X other than {1} such that X = X*.

(iii) Prove that if G is a finite group with k(G) even then | G | is even.
Show by an example that the converse is false.
(Hint. For the first assertion in (ii), 12 may be helpful.)

We consider next an extension of the action of G on itself described in
4.25 to an action on the set (G) of all non-empty subsets of G.

4.32. G acts on (G) by conjugation: for each g∈G and each non-empty
subset U of G, g moves U to the set



which is called the conjugate of U by g. (When U consists of a single
element or is a subgroup of G, this conforms with our previous
terminology.) It is easy to check that this does define an action of G on 
(G); and the action in 4.25 is obtained by restricting this action to the
subsets of G consisting of single elements.

For each U∈ (G), the orbit of U is the set of all conjugates of U, that is,
the set {g− 1Ug : g∈G} of subsets of G: it is called the conjugacy class of U
in G; and StabG(U) = {g∈G:g− 1Ug = U}, called the normalizer of U in G
and denoted by NG(U) (in accordance with the terminology and notation
introduced in 3.55 when U is a subgroup of G).

We sometimes say that H normalizes U to mean that H  NG(U).
The ‘exponential’ notation Ug for the conjugate g− 1Ug is a very

convenient one, which will be used as standard in the rest of the book.
From 4.11, applied to 4.32, we get the following generalization of 4.26:

4.33 Corollary. For each non-empty subset U of G,

(that is, | G : NG(U) | is the number of distinct conjugates of U in G).

4.34. For any H  G, we have seen in 3.55 that NG(H) is the unique largest
subgroup of G in which H is contained as a normal subgroup. But for a
subset U of G which is not a subgroup, NG(U) need not even contain U: see
225. Note that when U = {x} for some x∈G, NG(U) = NG(x) = CG(x). But
we can also define in a natural way a subgroup CG(U) of G for any U∈
(G), and frequently CG(U) ≠ NG(U). In the notation of 187, with G acting
on itself by conjugation and U any non-empty subset of G, CG(U) = GU and

.

4.35 Definition. For any non-empty subset U of G, we define the
centralizer of U in G to be



(This conforms with the definition in 122 when U = H  G.) Note that
CG(U) = G if and only if U ⊆ Z(G).

We sometimes say that H centralizes U to mean that H  CG(U).
It is easy to see that CG(U)  NG(U) always, and in fact CG(U)  NG(U)

(233). When U is a subgroup of G, a useful extra assertion can be made.

4.36 Lemma. For every H  G, CG(H)  NG(H) and NG(H)/CG(H) can be
embedded in Aut H.
Proof. Since (by 3.55) H  NG(H), hg∈H for every h∈H and g∈NG(H).
Then it is clear that NG(H) acts on H by conjugation. Let the corresponding
permutation representation of NG(H) be , so that for each g∈NG(H),

Hence, by the fundamental theorem on homomorphisms,

For each g∈NG(H), g  is a permutation of H. In fact it is an
automorphism of H, for if h1, h2∈H then

Hence Im  is a subgroup of Aut H, and so NG(H)/CG(H) can be embedded
in Aut H.

This lemma will be placed in a more general context in chapter 9. We end
this chapter by noting some applications.

If H is a finite group then Aut H is also finite. Hence from 4.36 we
deduce that in an infinite group every finite normal subgroup has a ‘large’
centralizer.



4.37 Corollary. Let G be an infinite group. Then, for any finite normal
subgroup H of G, G/CG(H) is finite. In particular, if G has no non-trivial
finite quotient then every finite normal subgroup of G is abelian and
contained in Z(G).

Note for example that Q+/Z+ and  are infinite abelian groups with no
non-trivial finite quotient but many finite subgroups: see 133 and 144.

4.38 Lemma. (i) For any cyclic group G, Aut G is abelian.
(ii) If | G | = p then |Aut G | = p − 1.

Proof. The statements follow from 46, but we give direct proofs here.
Let G = 〈g〉. Each automorphism  of G is determined by its effect on

g. Let  ∈Aut G with, say, g  = gr, g  = gs, where r, s∈Z. Then

Since the automorphisms ,  of G have the same effect on g, it follows
that (  = . Thus Aut G is abelian.

Now let G be finite. Then for any particular integer r, there is an
automorphism  of G such that g  = gr provided only that o(gr) = o(g). If
o(g) = p then there are p − 1 choices for gr so that | Aut G | = p − 1.

From 4.36 and 4.38 we deduce

4.39 Corollary. (i) If G is a perfect group (see 168) and K is a cyclic
normal subgroup of G then K  Z(G).

(ii) If G is a finite group, p the smallest prime divisor of | G | and K a
normal subgroup of G of order p then K  Z(G) (cf. 119 and 4.18).

*225 Let G = Σ3. Find a subset U of G such that NG(U) = 1.

226 Let U be a non-empty subset of G. Then G acts transitively by
conjugation on the conjugacy class of U in G, and this action is equivalent
to the action by right multiplication of G on the set of right cosets of NG(U)
in G.

227 Let if be a finite subgroup of G, and let K = HG, the normal closure of
H in G (see 180). Then K is a finite normal subgroup of G if and only if | G



: NG(H) | < ∞. (cf. 4.14, 4.15. Hints. To prove that if | G : NG(H)| < ∞ then |
K | < ∞, let the distinct conjugates of H in G be H1, H2,…, Hn : see 4.33. Let
k∈K. Use 180(ii) and 2.28 to show that k is expressible in the form 

, where r is a positive integer and, for each j = 1,…, r, ij∈{1,
2,…, n} and . Choose such an expression for k with r as small as
possible. Then observe that if r > n, there are integers j, l such that 1  j < l 

 r and ij = il, and then

Deduce that r  n. This is a special case of a result known as Ditsman’s
lemma.)

228 Let F be a field and let G = GL2(F).
  (i) Prove that Σ3 can be embedded in G. (Hint. Show that the elements 

 and of G generate a non-abelian subgroup of order 6,

and see 58, 60.)
 (ii) Suppose that in F, 1 + 1 ≠ 0. Prove that C2 × C2 × C2 cannot be

embedded in G. Deduce that the alternating group A4 cannot be embedded
in G. (Hints. Assume that C2×C2 × C2 can be embedded in G and derive a
contradiction by applying 212 and 213. Note that if L were a subgroup of G
isomorphic to A4 then L ∩ Z(G) = 1. See 123, 185 and 3.54.

Remarks. Since GL2(Z2) ≅ Σ3 (44), A4 cannot be embedded in GL2(Z2).
However, there is a field F with | F | = 4, and it is known that for this F,
SL2(F) ≅ A5, so that then A4 can be embedded in GL2(F).)

*229 (i) Let U be a non-empty subset of G and let g∈G. Then

(ii) Let H, K  G and let g∈G. Then



*230 Let K  G.
  (i) If H  G and g∈G, then (HK/K)Kg = HgK/K.
 (ii) If H1 and H2 are conjugate subgroups of G, then H1K/K and H2K/K

are conjugate subgroups of G/K.
(iii) If J1/K and J2/K are conjugate subgroups of G/K, then J1 and J2 are

conjugate subgroups of G.

231 Suppose that G is an infinite simple group.
  (i) If U is a non-empty subset of G such that there are only finitely many

distinct conjugates of U in G, then either U = {1} or 〈 U 〉 = G.
 (ii) If x is a non-trivial element of G then there are infinitely many

distinct conjugates of x in G.

232 Let x∈G. Prove that if CG(x)  G then x lies in an abelian normal
subgroup of G. Show by an example that the converse is false. (Hint. If
CG(x)  G, show that 〈 x 〉G is abelian: see 180.)

*233 Show that for any non-empty subset U of G, CG(U)  NG(U) and
NG(U)/CG(U) can be embedded in ΣU. For G = Σ3, find a U with CG(U) ≠
NG(U).

*234 Let x∈G. The extended centralizer of x in G is defined to be the
subgroup . Show that . For G = Σ3,
find elements x, y∈G such that 

235 (i) Suppose that G is non-abelian and let Z = Z(G). Then, for every
x∈G\Z, 〈 x 〉Z is an abelian subgroup of G containing Z properly.

(ii) Let A be an abelian subgroup of G. We say that A is a maximal
abelian subgroup of G if there is no abelian subgroup of G which contains
A properly. Then A is a maximal abelian subgroup of G if and only if CG(A)
= A.

236 Let J  H  G, and let K = CG(J). Then H  NG(K). In particular, if
NG(K) = K then J  Z(H).



237 Let G be a finite group.
(i) If H  G then

Hence the union of all the conjugates in G of a proper subgroup of G is a
proper subset of G.

(ii) If K  G and K contains at least one element from each conjugacy
class of elements of G then in fact K = G.

238 Let G be a non-trivial group.
  (i) If M is a maximal subgroup of G (see 140) then, for every g∈G, Mg

is a maximal subgroup of G.
 (ii) If G is finite and G has just one conjugacy class of maximal

subgroups then G is cyclic of order pm for some prime p and positive
integer m. (cf. 140(vi). Hint. Use 237(i).)

239 Let V be a vector space of dimension n over a field F, where n is an
integer greater than 1, and let G = GL(V) (2.16). Let 0 ≠ υ∈V, and let H be
the set of all elements of G for which υ is an eigenvector. Then

  (i) H < G.
 (ii) If F = C then .

(cf. 237. Hint. When F = C, any x∈G has an eigenvector, w say, and then
there is an element g∈G such that υg = w.)

240 Let G be an infinite group with Z(G) = 1. By 4.37, if G has no non-
trivial finite quotient then G has no non-trivial finite normal subgroup.
Show by an example that the converse is false. (Hint. Consider the infinite
dihedral group D∞.)

241 G ≅ D∞ if and only if G has an infinite cyclic normal subgroup H = 〈
h 〉, say, such that H < G and, for every positive integer n, CG(hn) = H.
(Hint. Use 29, 46 and 4.36.)



*242 Let p be an odd prime.
  (i) Then  has just one element of order 2.
 (ii) Let G be a group of order 2p. Then G has a cyclic subgroup 〈x 〉

of order p and a cyclic subgroup 〈t〉 of order 2, and xt is either x or x− 1.
Hence G is isomorphic to either C2p or D2p. (cf. 60. Hint. Apply Cauchy’s
theorem 220 with 40 and 46.)

*243 If G is a cyclic group of order pn, where n is a positive integer, then |
Aut G | = pn − pn − 1 (cf. 4.38(h), 40, 46).

244 Let J  G. Then CG(J)= 1 if and only if Z(H)= 1 for every H such that J
 H  G.

245 The elements of CAut G(Inn G) are called central automorphisms of G.
Let ∈Aut G. Prove that  is a central automorphism of G if and only if g
g− 1∈Z(G) for every g∈G. Deduce that if Z(G) = 1 then Z(Aut G) = 1.
(Hint. See 92 and 117.)

For further information about natural actions of groups on sets, see the
books of Passman [b32] and Wielandt [b38].



5
FINITE p-GROUPS AND SYLOW’S THEOREM

In this chapter we make some further fundamental applications of the ideas
developed in chapter 4 of group actions on sets. These applications will be
concerned especially with finite p-groups and p-subgroups of finite groups.
We shall obtain further information about finite simple groups and prove
the simplicity of the alternating groups An for n  5.

5.1 Definition. Let G act on the set X. Then the fixed point subset of X is
defined to be

Thus Fixx(G) consists of those elements of X each of which forms an orbit
by itself. Of course, it may happen that Fixx(G) = . In particular, if G acts
transitively on X then Fixx(G) =  unless | X | = 1.

For instance, if G  Σ4 and G acts naturally on the set X = {1, 2, 3, 4}
then, for G = 〈(123)〉, Fixx(G) = {4}, while for G = 〈(12)(34)〉,
Fixx(G) = 

The following simple application of 4.11 is very helpful. The proof is
essentially the same as the proof of 4.28.

5.2 Lemma. Let G be a finite p-group which acts on the finite set X. Then

|Fixx(G)| ≡ | X|mod p.



Proof. Let the orbits of the action be X1,…, Xk, where k is a positive integer.
Now we count the elements of X:

By 4.11, each | Xi| is a divisor of | G | and hence, since p is prime, must be a
power of p. If there are just j orbits consisting of single elements, where 0 
j  k, then |Fixx(G)| = j and the equation above gives

|x | = j + a sum of powers of p to positive exponents
(where the latter sum is empty if j = k). Hence

|Fixx(G)| = j ≡ | X|mod p.

We shall make two important deductions from 5.2, using the group action
of 4.13 and the following observation.

5.3. Let G act on the set X. Then each subgroup J of G acts on X by
restriction of the action of G: that is, to each j∈J and each x∈X there
corresponds the element xj∈X determined by the action of G on X. This
correspondence obviously satisfies the conditions for an action of J on X.

For each x∈X, StabJ(x) = StabG(x)∩ J. Hence x∈Fixx(J) if and only if J 
 StabG(x). If the permutation representation of G corresponding to the

given action is , then the permutation representation of J corresponding to
the action of J is |J. If the action of G is faithful, then the action of J is also
faithful. But the action of G may be transitive and the action of J
intransitive.

For instance, let H, J  G and let G act by right multiplication on the set
X of right cosets of H in G, as in 4.13. Consider the action by restriction of
J on X. Then, for each g∈G, StabJ(Hg) = Hg ∩ J, and Hg∈Fixx(J) if and
only if J  Hg. The action of J on X is transitive if and only if HJ = G, in
which case, by 4.20, this action is equivalent to the action of J by right
multiplication on the set of right cosets of H ∩ J in J.



5.4 Theorem. Let H, J  G. Suppose that | G : H | = r < ∞, that J is a finite
p-group and that p does not divide r. Then J  Hg for some g∈G.
Proof. Let X be the set of right cosets of H in G. Then | X | = | G : H | = r.
Let J act on X by restriction of the action of G on X by right multiplication.
By 5.2, |Fixx(J)| ≡ r mod p. Since, by hypothesis, p does not divide r, it
follows that |Fixx(J)| ≠ 0, that is, that Fixx(J) ≠ . Hence, by 5.3, J  Hg for
some g∈G.

5.5 Theorem. Suppose that H is a p-subgroup of the finite group G and that
p divides | G : H|. Then p divides | NG(H)|H|.
Proof. Let X be the set of right cosets of H in G, and let H act on X by
restriction of the action of G on X by right multiplication (as in 5.3, with J =
H). By 5.2, |Fixx(H)| ≡ | G : H | mod p. Let g∈G. By 5.3, Hg∈Fixx(H) if
and only if H  Hg, that is (since | H | = | Hg|), if and only if H = H9, or,
equivalently, if and only if g∈NG(H). Hence |Fixx(H)| = | NG(H)/H|. Now
the result follows.

We state the most important special case of 5.5 as a separate result. (We
shall see that this is actually equivalent to 5.5, once we have proved
Sylow’s theorem.)

5.6 Corollary. In a finite p-group G, every proper subgroup is a proper
subgroup of its normalizer in G.

This property of groups of prime power orders is not in general shared by
finite groups whose orders involve two or more prime numbers: for
instance, the group Σ3, of order 6, has ‘self-normalizing’ subgroups of order
2.

246 Suppose that G acts on the set X and Fixx(G) = . If | G | = 35 and | X |
= 19, find the number of orbits of the action and the length of each orbit.

247 Let H, J  G (where possibly H = J). A subset of G of the form HgJ =
{hgj : h∈H, J∈J}, where g∈G, is called a double coset with respect to H
and J. Let X be the set of right cosets of H in G and let J act on X as in 5.3.
For each g∈G, show that HgJ is the union of the elements of X which form



the orbit of Hg under this action, and hence (using 4.11) show that if H and
J are finite then

Show also that if g1, g2∈G and Hg1J ≠ Hg2J then Hg1J ∩ Hg2J = . What
is the equivalence relation on G for which the double cosets with respect to
H and J are the equivalence classes?

248 Let G be a finite group. We make the following definitions:
(a) Suppose that G acts on the set X. The action is said to be a Frobenius

action if it is transitive but not regular, | X | > 1, and whenever x1, x2 are
distinct elements of X, StabG(x1) ∩ StabG(x2) = 1.

(b) G is said to be a Frobenius group if it has a non-trivial proper
subgroup H such that NG(H) = H and whenever Hg1,Hg2 are distinct
conjugates of H in G (with g1, g2∈G), Hg1 ∩ Hg2 = 1. Any such subgroup
H is called a Frobenius complement in G.

Prove the following statements:
   (i) G has a Frobenius action on some set if and only if G is a Frobenius

group.
  (ii) If G is a Frobenius group and H is a Frobenius complement in G

then | G : H | ≡ 1 mod | H|.
 (iii) If G is a Frobenius group then Z(G) = 1.
 (iv) Let n be a positive integer, and consider the natural action of Σn on

the set {1, 2,…, n}. This is a Frobenius action if and only if n = 3.
  (v) Let n be an integer, n  3. Then the dihedral group D2n is a

Frobenius group if and only if n is odd.
(Hints. See 124, 187, 203. For (ii), consider the restriction to H of a suitable
Frobenius action of G, and count orbits. Remarks. Let H be a Frobenius
complement in the Frobenius group G. F. G. Frobenius (1849–1917) proved
in [a 31] the important theorem that then  is a normal
subgroup of G. Moreover, G = HK, H ∩ K = l and any Frobenius
complement in G is conjugate to H. Hence any two Frobenius actions of G
are equivalent.)



249 Suppose that | G | = pmr, where m and r are positive integers and p does
not divide r. Then G has a subgroup of order pm. (Hint. Consider a p-
subgroup H of G of greatest possible order and use 5.5 and Cauchy’s
theorem 220 to prove that | H | = pm. This is part of Sylow’s theorem, which
will be proved in a different way in 5.9.)

Next we apply 5.2 to prove

5.7 Theorem. Let H  G, a finite group, and let J be a p-subgroup of G. If |
H |  1 mod p then H ∩ CG(J) ≠ 1.
Proof. Since H  G, G acts on H by conjugation. Then, by restriction of this
action, J also acts on H. By definition,

Since J is a finite p-group and H is finite, 5.2 shows that

Therefore, since, by hypothesis, | H |  1 mod p, it follows that H ∩ CG(J) ≠
l.

As the most important special case we note

5.8 Corollary. Let G be a finite p-group and let 1 < H  G. Then H ∩ Z(G)
≠ 1. (This includes 4.28 as a special case.)
Proof. In 5.7, choose J = G.

Recall that by Lagrange’s theorem, the order of every subgroup of a finite
group G is a divisor of | G|. The converse is false in the sense that there may
be missing divisors: G need not have a subgroup of order n for every
divisor n of | G | (see 185). Sylow’s theorem, which we prove next,
establishes the existence of subgroups of particular orders and provides
valuable information about such subgroups. This theorem established in
1872, is of fundamental importance in finite group theory; its discovery has
had a decisive effect in determining the character of the subsequent
development of the theory. Several different proofs are known: one method
for part of the result has been indicated in 249. The proof which we give



here is a very successful application of group action methods, due to H.
Wielandt in 1959.

5.9 Theorem (L. Sylow [a95]). Let G be a finite group with | G | = pmr,
where m is a non-negative integer and r is a positive integer such that p
does not divide r. Then

(a) G has a subgroup of order pm. Such a subgroup is called a Sylow p-
subgroup of G.

(b) If H is a Sylow p-subgroup of G and J is any p-subgroup of G then J 
 Hg for some g∈G. In particular, the Sylow p-subgroups of G form a

single conjugacy class of subgroups of G.
(c) Let n be the number of distinct Sylow p-subgroups of G. Then n = | G

: NG(H)|, where H is any particular Sylow p-subgroup of G; n divides r; and
n ≡ 1 mod p.
Proof. (a) (H. Wielandt [a 102]). We consider the set  of all subsets U of
G with | U | = pm. The number of such subsets is

If in each term (pmr − j)/(pm − j) of this product we make all possible
cancellations of common divisors of numerator and denominator, p does not
remain as a divisor of the numerator. This is clear for j = 0; and for j > 0,
with, say, j = plq, where l is a non-negative integer and q a positive integer
not divisible by p, then l < m,

and p does not divide pm-lr − q. Since p is prime, it follows that p does not
divide the product of cancelled numerators, and therefore

For U∈  and g∈G, Ug = {ug : u∈U} is a subset of G with | Ug | = pm:
thus U g∈ . Now it is clear that G acts on the set  by right



multiplication. By this action,  is partitioned into orbits, and it follows
from (i) that

Let V∈ 1, so that 1 is the orbit of V, and let H = StabG(V)  G. By
4.11,

Since | G : H||H | = | G | = pmr, it follows from (ii) and (iii) and the fact that
p is prime that

Now let 

Then for any h∈H, Vh = V,
that is, {x1h, x2h,…, xpmh} = {x1, x2,…, xpm}.
Hence x1h = xi for some i, where 1  i  pm, and then

By (iv) and (v), | H | = pm: thus if is a Sylow p-subgroup of G.
(b) Now let H be any Sylow p-subgroup of G and let J be any p-subgroup

of G. Since | G : H | = | G|/|H | = r and p does not divide r, 5.4 applies to
show that J  Hg for some g∈G, as asserted. In particular, if J is a Sylow
p-subgroup of G then, since | J | = | H | = | Hg|, by 2.20, it follows that J =
Hg, a subgroup of G in the same conjugacy class as H. Since every
subgroup of G conjugate to H certainly has the same order as H and is
therefore a Sylow p-subgroup of G, it follows that the Sylow p-subgroups
of G form a single conjugacy class.

Before proving (c), we note a consequence of (b):

5.10 Lemma. Suppose that H is a Sylow p-subgroup of a finite group G.
Then H is the unique Sylow p-subgroup of NG(H).
Proof. It is easy to see that H is a Sylow p-subgroup of every subgroup of G
which contains H (252); in particular, H is a Sylow p-subgroup of NG(H).



Let K be any Sylow p-subgroup of NG(H). By 5.9(b), there is an element
g∈NG(H) such that K = Hg. But then, since g∈NG(H), Hg = H. Hence H is
the unique Sylow p-subgroup of NG(H).
Remark. 5.10 can also be proved easily by means of 3.38 and 3.40, without
invoking 5.9(b).
Proof of 5.9(c). Let  denote the set of all Sylow p-subgroups of G and let
H∈ . By (b),  is the conjugacy class of H in G, and so, by 4.33,

Since                                     ,

it follows that n divides r.
Now G acts transitively on  by conjugation. Then, by restriction of this

action, H acts on  − though not necessarily transitively. By 5.2,

Let K∈ . Then K∈Fix (H) if and only if Kh = K for every h∈H, that is,
if and only if H  NG(K). But, by 5.10, H  NG(K) if and only if H = K.
Hence Fix (H) = {H}, so that |Fix (H)| = 1 and

*250 (i) Let G be a finite group with a p-subgroup J such that CG(J) is also
a p-group. Show that for every normal subgroup H of G of order not
divisible by p, | H | ≡ 1 mod p.

(ii) Use (i) to show that the only possible order for a non-trivial normal
subgroup of Σ4 of order not divisible by 3 is 4. (Hint. See 185.)

251 Let A be an abelian normal subgroup of G. We say that A is a maximal
abelian normal subgroup of G if there is no abelian normal subgroup of G
which contains A properly (cf. 235(ii)).

Prove that if G is a finite p-group and A is a maximal abelian normal
subgroup of G, then A is a maximal abelian subgroup of G. (Hints. Suppose
that A < CG(A) and consider  = G/A. Derive a contradiction by means of
3.30, 4.36, 5.8 and 125. Remark. If H is a finite non-abelian simple group



then 1 is a maximal abelian normal subgroup of H, but 1 is certainly not a
maximal abelian subgroup of H. See also 392, 400, 644, 645.)

*252 Let G be a finite group and H a. Sylow p-subgroup of G.
(i) If H  L  G, then H is a Sylow p-subgroup of L and every Sylow p-

subgroup of L is a Sylow p-subgroup of G.
(ii) If K  G, then H ∩ K is a Sylow p-subgroup of K and HK/K is a

Sylow p-subgroup of G/K. Moreover, every Sylow p-subgroup of K is of
the form H * ∩ K, where H* is a Sylow p-subgroup of G; and every Sylow
p-subgroup of G/K is of the form H*K/K, where again H* is a Sylow p-
subgroup of G.

(iii) Show by an example that if K  G, H ∩ K need not be a Sylow p-
subgroup of K.

(iv) Op(G)  H  O (G), where  is any set of primes which does not
contain p. Moreover, G = HOp(G).

253 Let G be a finite group. If G has a normal Sylow p-subgroup then so
has every subgroup and every quotient group of G.

254 Let P be a Sylow p-subgroup of the finite group G, and let P  J  H 
G. Then p does not divide | H : J|.

255 Let K be a finite normal subgroup of G. If K has a normal Sylow p-
subgroup P then P  G.

256 Let H  G, a finite group. Let P0 be a Sylow p-subgroup of H and let P
be a Sylow p-subgroup of G with P0  P. (Such a subgroup P exists, by
5.9(b).) Then P0 = P ∩ H.

257 Let G be a finite group, and let H and K be normal subgroups of G, and
P a Sylow p-subgroup of G. Then (PH) ∩ (PK) = P(H ∩ K).

258 Let G be a finite group and suppose that H and K are subgroups of G
such that G = HK.

  (i) If H and K are normal in G then, for every Sylow p-subgroup P of G,
P = (P ∩ H)(P ∩ K).



 (ii) Show by an example that if H and K are not both normal in G, the
conclusion of (i) need not hold.

(iii) However, there is always some Sylow p-subgroup P of G for which
P = (P ∩ H)(P ∩ K).
(Hints. For (iii), use 5.9(b) and 256 to show that there is a Sylow p-
subgroup P of G such that P ∩ H is a Sylow p-subgroup of H and P ∩ K is
a Sylow p-subgroup of K. Then use 98.)

*259 Let n be an odd integer, n  3. Then every Sylow subgroup of the
dihedral group D2n of order 2n is cyclic.

260 Let U be the subgroup of GL3(F) defined in 120. Show that when F =
Zp, U is a Sylow p-subgroup of GL3(Zp).

*261 Find a Sylow 2-subgroup T of Σ4, and show that T ≅ D8. How many
Sylow 2-subgroups does Σ4 have? (Hint. Σ4 has a cyclic subgroup U of
order 4, and, by Sylow’s theorem, U lies in a Sylow 2-subgroup T of Σ4.)

*262 Suppose that | G | = 2mr, where m and r are positive integers with r
odd. Suppose further that the Sylow 2-subgroups of G are cyclic. By
generalizing the argument of 205, show that G has a subgroup of index 2.
Hence, by induction on m, prove that G has a normal subgroup of order r.
(Hint. Note that if H  G with | H | = r then in fact H is characteristic in G.)

263 Let G be a finite group of even order and let x∈G with o(x) = 2. If
CG(x) has a cyclic Sylow 2-subgroup then G has a subgroup of index 2 (and
so, if | G |> 2, G is not simple). (Hint. Use 3.32, 4.28 and 262.)

264 (i) Suppose that G = HK, with H < G and K < G. If H ∩ K contains a
nontrivial normal subgroup L of H then LG  K (where LG denotes the
normal closure of L in G: see 180); hence G is not simple.

(ii) A simple group G cannot be expressed in the form G = HK with H <
G, K < G, H abelian and H ∩ K ≠ 1. (Remark. This would fail if we were to
allow H ∩ K = l. For instance, with G = A5, a simple group of order 60 −



see 5.24 − there is a cyclic subgroup H of order 5 and a subgroup K ≅ A4,
of order 12, and G = HK; but of course H ∩ K = 1.)

(iii) Let G be a finite non-abelian simple group with an abelian Sylow p-
subgroup H and a proper subgroup K of index a power of p. Then | G : K | =
| H|, p does not divide | K|, and H is a maximal abelian subgroup of G. (See
235. Hint. Use 98 and 100.)

We have mentioned Cauchy’s theorem on orders of elements in 220. This
can be used in the proof of existence of Sylow subgroups: see 249.
However, Cauchy’s theorem was not needed in the proof of Sylow’s
theorem given in 5.9 and so we now deduce Cauchy’s theorem from
Sylow’s theorem.

5.11 Theorem (A. Cauchy, 1844). If G is a finite group such that p divides |
G | then G has an element of order p.
Proof. Let H be a Sylow p-subgroup of G. Since p divides | G|, H ≠ 1.
Choose x∈H with x ≠ 1. Then o(x) > 1 and o(x) divides | H|. Hence o(x) =
ps for some positive integer s. Then  is an element of G of order p.

5.12 Corollary. Let G be a finite group. Then G is a -group if and only if
the order of every element of G is a -number (see 3.41).

Proof. If | G | is a -number then, by Lagrange’s theorem, the order of
every element of G is a -number. On the other hand, if | G | is not a -
number then there is a prime p ∉  such that p divides | G|. Then, by
Cauchy’s theorem, it follows that G has an element whose order is not a -
number.

The following simple result is very useful: it is often referred to as ‘the
Frattini argument’.

5.13 Lemma (G. Frattini [a29], 1885). If K is a finite normal subgroup of G
and P is a Sylow p-subgroup of K then G = NG(P)K.
Proof. Let g∈G. Then

since K  G. Therefore, since | Pg| = | P|, Pg is also a Sylow p-subgroup of
K. Hence, by Sylow’s theorem, P and Pg are conjugate subgroups of K;thus



Then                               

so that
Hence
This is true for every g∈G, and so the result is proved.

5.14 Corollary. Let G be a finite group and P a Sylow p-subgroup of G.
Then, for every subgroup H of G which contains NG(P), NG(H) = H.
Proof. Let NG(P)  H  G. Then, since P  H  G, P is certainly a Sylow
p-subgroup of H (252). Let L = NG(H). Now apply 5.13 with H in place of
K and L in place of G: this gives L = NL(P)H. Since NL(P)  NG(P)  H, it
follows that L = H, as asserted.

265 A group G, finite or infinite, is said to be a -group if the order of
every element of G is finite and a -number. (If G is finite, 5.12 shows that
this definition is consistent with the definition given in 3.41.)

  (i) The set of all complex numbers z which satisfy an equation zn = 1,
where n ranges over all -numbers, forms an infinite -subgroup of Cx,
provided that  ≠ 

 (ii) All subgroups and all quotient groups of a -group are -groups.
(iii) If H is a subgroup of finite index in a -group G then | G : H | in a 

-number.

*266 Let G be a finite group, p a prime divisor of | G|, and n the number of
distinct Sylow p-subgroups of G. Then the normalizers in G of the Sylow p-
subgroups of G form a single conjugacy class of n subgroups of G.

267 Let H  G. Then H is said to be intravariant in G if, for every ∈Aut
G,  maps H to a conjugate of H in G.

  (i) If G is finite, every Sylow subgroup is intra variant in G.
 (ii) If H  K  G and H is intravariant in K then G = NG(H)K. (This

generalizes 5.13.)



268 Let J  G. Then J is said to be pronormal in G if, for every g∈G, Jg =
Jx for some x∈〈J, Jg〉; and to be abnormal in G if, for every g∈G,g∈
〈J,Jg〉.

  (i) If K is a finite normal subgroup of G then every Sylow subgroup of
K is pronormal in G.

 (ii) If J is pronormal in G then NG(J) is abnormal in G.
(iii) If J  H  G and J is abnormal in G then NG(H) = H.

(This generalizes 5.14. See also 270.)

269 Let J be a pronormal subgroup of G (268). Let n be the number of
distinct subgroups in the conjugacy class of J in G and suppose that n < ∞.
Then n ≠ 2. (Remark. In the particular case when G is finite and J is a
Sylow subgroup of G, the assertion follows immediately from 5.9(c).)

270 Let J  G. The following statements are equivalent:
(a) J is abnormal in G (268).
(b) Whenever H  G, g∈G and J  H ∩ Hg then g∈H.

We now show how Sylow’s theorem can be applied to prove that certain
numbers are ineligible as orders of finite simple groups. First we note

5.15. Let G be a finite non-abelian simple group and let p be a prime
divisor of | G|. Then the number n of Sylow p-subgroups of G is greater than
1.
Proof. Let P be a Sylow p-subgroup of G. By 4.29, | G | is divisible by at
least two distinct primes, and so 1 < P < G. If P were the only subgroup of
G of order | P | then P would be normal in G, in contradiction to the
simplicity of G. Hence n > 1.

5.16 Theorem. If | G | = pq, where p,q are distinct primes such that q  1
mod p, then G has a normal Sylow p-subgroup.
Proof. By Sylow’s theorem, the number n of distinct Sylow p-subgroups of
G is a divisor of q, and n ≡ 1 mod p. Since q is prime, n is either 1 or q, and
since, by hypothesis, q  1 mod p, it follows that n = 1. Thus G has a
unique Sylow p-subgroup, P say, and so P  G.



5.17 Corollary. If | G | = pq, where p, q are distinct primes, then G is not
simple.
Proof. We may assume without loss of generality that p > q. Then q − 1
cannot be divisible by p, and so, by 5.16, G has a normal Sylow p-subgroup
P. Since 1 < P < G, G is not simple.

We know that v(p) = 1 for every p (1.3). From 5.16 we can show also (cf.
1.4, 215, 575)

5.18 Corollary. If p and q are distinct primes such that p  1 mod q and q 
 1 mod p then v(pq) = 1; that is, every group of order pq is cyclic.

Proof. Suppose that | G | = pq. By 5.16, G has a normal Sylow p-subgroup
P and a normal Sylow q-subgroup Q. Since P and Q have prime orders,
they are cyclic: say

By Lagrange’s theorem, P ∩ Q = 1. Hence, by 3.53,

Now it follows that the element xy of G has order pq (6), and so

Thus G is cyclic.

5.19 Theorem. If | G|= p2g, where p,q are distinct primes, then G has either
a normal Sylow p-subgroup or a normal Sylow q-subgroup; and so G is not
simple.
Proof. Let np and nq be, respectively, the number of Sylow p-subgroups and
the number of Sylow q-subgroups of G. Suppose, contrary to what we wish
to show, that np > 1 and nq > 1. By Sylow’s theorem, np divides q, which is
prime: hence np = q. Also np ≡ 1 mod p, so it follows that q > p. Again by
Sylow’s theorem, nq divides p2, so that nq is either p or p2.
Now any element of order q in G generates a subgroup of order q, which is
a Sylow q-subgroup of G. Any two distinct subgroups of G of order q
intersect in 1, and so there are in G nq(q − 1) distinct elements of order q.
Hence, if nq = p2, there are in G just p2q − p2(q − 1) = p2 elements which



are not of order q. But then, since no element of a Sylow p-subgroup P of G
has order q and since | P | = p2, P must be the unique Sylow p-subgroup of
G, in contradiction to the supposition that np > 1. Therefore nq = p. But
since also nq ≡ 1 mod q, this implies that p > q, a final contradiction.

5.20 Theorem. if | G | = pqr, where p, q, r are distinct primes, then G is not
simple.
Proof. We may assume that p > q > r. Suppose, contrary to what we want to
show, that there is a simple group G of order pqr. Let np,nq,nr be,
respectively, the numbers of Sylow p-, Sylow q-, Sylow r-subgroups of G.
By 5.15, these numbers are all greater than 1. Since they have order p, any
two distinct Sylow p-subgroups of G intersect in 1. Hence the np Sylow p-
subgroups of G contain np(p − 1) distinct elements of order p. Similarly, the
nq Sylow g-subgroups of G contain nq(q − 1) distinct elements of order q
and the nr Sylow r-subgroups of G contain nr(r − 1) distinct elements of
order r. Therefore

By Sylow’s theorem, np divides qr and np ≡ 1 mod p. Since np > 1 and p >
q, p > r, it follows that np = qr. Also, nq divides pr and nq ≡ 1 mod q. Since
nq > 1 and q >r, nq  p. Finally, nr > 1 and nr divides pq, so that nr  q.
Now we have

and hence

which is plainly false.

271 There is no simple group of order 1000.

272 There is no simple group of order 300. (Hint. Use 4.14 to show that if
there were such a group, it could be embedded in Σ6; but this is impossible.)

273 There is no simple group of order 132.



274 Suppose that G has normal subgroups H,J,L such that L < J < H and |
H/J | = p, | J/L | = q, where p,q are distinct primes. Show that if p > q then
there is a normal subgroup K of G such that L < K < H and | H|K | = q,|K|L |
= p.

275 Suppose that G is a simple group of order 60.
(i) Find the number of subgroups of G of order 5 and show that G has

exactly 24 elements of order 5.
(ii) Show that G has no subgroup of order 15.
(iii) Show that G has exactly 20 elements of order 3.

276 If | G | = p2q, where p and q are distinct primes such that p2  1 mod q
and q  1 mod p, then G is abelian. (Hint. Use 3.54.)

277 Suppose that | G | = pmq, where p and q are distinct primes and m is a
positive integer. Let Q be a Sylow q-subgroup of G, and suppose also that
NG(Q) = Q. Then G has a normal Sylow p-subgroup.

278 Every group of order 255 is cyclic. (Hints. Let | G | = 255. Show that G
has a normal subgroup of order 17 and a subgroup K of order 85. Groups of
order 85 are cyclic. Use 4.18 to show that K  G. Then, by 4.36, 46, 78 and
94, K  Z(G).)

*279 (i) Let n = pmr, where m is a positive integer and r is an integer greater
than 1 such that p does not divide r. If there is a simple group of order n
then pm divides (r − 1)! (Hint. Use 4.14.)

(ii) There is no simple group of order 2m × 5 for any integer m  4.

We are going to show that the only non-abelian simple group of order at
most 100 is A5. We begin by noting

5.21 Lemma. When n  4, Σn has no non-abelian simple subgroup.
Proof. This is clear for n  3, so we consider Σ4. We know that Σ4 is not
itself simple, for the alternating group A4 is a non-trivial proper normal
subgroup of Σ4 (3.58). If H were a non-abelian simple subgroup of Σ4, then,
since |Σ4| = 23 × 3 and by 4.29, | H | would be divisible by both 2 and 3.



Hence | H | would be either 2 × 3 or 22 × 3. But these possibilities are ruled
out by 5.17 and 5.19 (or by 279).

5.22 Corollary. If G is a finite non-abelian simple group and H < G then |
G : H |  5(cf.207).
Proof. Let | G : H | = n. Then, by 4.14, G/HG can be embedded in Σn. Since
HG  H < G and G is simple, HG = 1. Thus G can be embedded in Σn.
Hence, by 5.21, n  5.

5.23 Lemma. Let n be a positive integer such that n  100 and n ≠ 60.
Then there is no non-abelian simple group of order n.
Proof. Suppose that there is a non-abelian simple group G of order n. Then
n > 1 and we can express n in the form

where s, m1,…,ms are positive integers and p1,…,ps distinct primes. We
may assume that p1 < p2 < … < ps. By 4.29,s  2. If s  4 then n  2 × 3 ×
5 × 7 > 100, a contradiction. Hence s is either 2 or 3. By 5.17, 5.19 and

5.20,  then n > 27 > 100, a contradiction. Hence

Suppose first that s = 2. If p1 and p2 were both odd then n  33 × 5 >
100, a contradiction. Hence p1 = 2 and p2 is some odd prime, say p. Write
m1 = l and m2 = m. Then

where l and m are positive integers such that 4  l + m  6. If l  2 then a
Sylow p-subgroup of G would be a proper subgroup of index at most 4 in
G, and this is ruled out by 5.22. Hence



Let the number of Sylow p-subgroups of G be np. By 5.15, np > 1; and, by
Sylow’s theorem, np is the index in G of a subgroup of G (namely, of the
normalizer in G of a Sylow p-subgroup of G), np divides 2l and np ≡ 1 mod
p. Hence np divides 25 and, by 5.22, np > 4. We cannot have np = 32, for this
would imply that p = 31 and therefore that n  32 × 31 > 100. Hence we
must have

If np = S and p = 7 then, since | G |  100,|G | = 56. Then, since the
Sylow 7-subgroups of G have order 7 and n7 = 8, there are in G 8 × 6 = 48
elements of order 7. But then there are in G just 56 − 48 = 8 elements which
are not of order 7, and these 8 elements must form the unique Sylow 2-
subgroup of G: this is in contradiction to the simplicity of G. If np = 16,
then l  4: hence m = 1, since otherwise n  24 × 32 > 100, a contradiction.
Thus, if np = 16 and p = 3, a Sylow 2-subgroup of G has index 3 in G, in
contradiction to 5.22. Finally, if np = 16 and p = 5 then, since | G |  100, |
G | = 80. But this possibility is ruled out by 279.

Now suppose that s = 3. Since n  100 and n ≠ 60, this implies that either
n = 22 × 3 × 7 = 84 or n = 2 × 32 × 5 = 90. If | G | = 84, then the number, n7
say, of Sylow 7-subgroups of G is, by Sylow’s theorem, a divisor of 12 and
n7 = 1 mod 7. Moreover, n7 > 1, by 5.15. These conditions on n7 are
incompatible. Finally, since 90 = 2 × 45 and 45 is an odd number, we know
by 205 that there is no simple group of order 90. This establishes the
lemma.

280 There is no simple group of order 6 × pm for any prime p and positive
integer m. (Hint. Use 279, 5.20 and 5.22.)

281 Suppose that there is a simple group G of order 144. Then
  (i) G has 16 Sylow 3-subgroups.
 (ii) Let H1and H2 be distinct Sylow 3-subgroups of G. Then 〈H1,H2〉

= G.
Hence if H1 ∩ H2 ≠ 1 then Z(G) ≠ 1: a contradiction.



(iii) By (ii), any two distinct Sylow 3-subgroups of G intersect trivially.
Deduce that G has only one Sylow 2-subgroup: a contradiction. Conclude
that there is no simple group of order 144. (Hints. Use 99, 4.30 and 5.22.)

282 Suppose that there is a simple group G of order 112. Let T1 and T2 be
distinct Sylow 2-subgroups of G, chosen so that | T1 ∩ T2| is as large as
possible. Then

  (i) | T1 ∩ T2 |  4.
 (ii) NG(T1 ∩T2) is a 2-subgroup of G.
(iii) By Sylow’s theorem, there is a Sylow 2-subgroup 5 of G containing

NG(T1 ∩ T2). Then T1 = S = T2 : a contradiction.
Conclude that there is no simple group of order 112. (Hints. Use 99, 5.6 and
5.22.) (Remark. A variant of this argument proves that there is no simple
group of order pmp, where p and q are distinct primes and m is a positive
integer. See Huppert [b21] p. 41 or Zassenhaus [b41] p. 138.)

5.24 Lemma. A5 is simple.
Proof. Suppose to the contrary that A5 is not simple. Let G = A5 and choose
a proper normal subgroup K of G of largest possible order. Then K ≠ 1. The
quotient group G/K is simple: for otherwise G/K would have a non-trivial
proper normal subgroup H/K and then, by 3.30, H would be a proper
normal subgroup of G with | H | > | K|, contrary to the choice of K. Since
G/K is simple and | G/K | < | G | = 60, it follows from 5.23 that G/K is
abelian. Hence, by 3.52,

Let                         .

We see (using 3.59) that the non-trivial elements of A5 are of three kinds:



We may choose for x and y above any elements of these kinds. Now

and                         

Hence (by choosing a, b, c, d, e appropriately) we see that every non-trivial
element of A5 belongs to K. Thus K = G, a contradiction. Therefore we must
conclude that A5 is simple.

It is fair to comment that there are more direct and elementary proofs of
the simplicity of A5. One such proof is given in outline in 287. The proof
given above has been placed in the present context in this book because the
applications of Sylow’s theorem used in the proof of 5.23 are central to the
point of view adopted here, and are indeed an essential part of finite group
theory. The simplicity of A5 is then an easy deduction, as we have seen in
5.24.

We shall now illustrate by an example how Sylow’s theorem may be used
to obtain information about subgroups of a finite group other than p-
subgroups.

5.25 Example. Find the types of all the proper subgroups of A5 whose
orders are divisible by at least two distinct primes, and find the numbers of
subgroups in each of the conjugacy classes of subgroups in A5 into which
they fall

(i) Let G = A5. Then, since G is simple, 5.22 shows that for every H < G,
| G : H |  5 and therefore | H |  12. Hence, since | G | = 60, the possible
orders of subgroups to be considered are 6, 10, 12.

(ii) Now G has subgroups of order 12: for if we consider the natural
action of G on the set {1, 2, 3, 4, 5} then clearly StabG(5) ≅ A4. Let H < G
with H ≅ A4. Then H has a normal subgroup T of order 4 (185), and since
60 = 22 × 3 × 5, T is a Sylow 2-subgroup of G. Now H  NG(T) < G, since
G is simple, and so, by (i), 12 = | H |  | NG(T)|  12. Hence NG(T) = H, and



the number of Sylow 2-subgroups of G is equal to | G : H | = 5. Thus the
normalizer in G of a Sylow 2-subgroup of G is isomorphic to A4, and every
subgroup of G isomorphic to A4 is the normalizer in G of some Sylow 2-
subgroup of G. It follows by 266 that the subgroups of G isomorphic to A4
form a single conjugacy class of 5 subgroups.

(iii) Let the numbers of Sylow 3-subgroups and Sylow 5-subgroups of G
be, respectively, n3 and n5. Then n3 divides 22 × 5 and n3 ≡ 1 mod 3, n5
divides 22 × 3 and n5 ≡ 1 mod 5. Since also n3 and n5 are both at least 5, we
have n3 = 10 and n5 = 6. Let U be any subgroup of G of order 3, V any
subgroup of G of order 5, and J = NG(U), K = NG(V). Then | G : J | = n3 =
10 and | G : K | = n5 = 6. Hence | J | = 6 and | K | = 10, so that G has
subgroups of orders 6 and 10. Moreover, 266 shows that the normalizers in
G of the Sylow 3-subgroups of G form a single conjugacy class of 10
subgroups of G of order 6, and the normalizers in G of the Sylow 5-
subgroups of G form a single conjugacy class of 6 subgroups of G of order
10.

(iv) Now let J be any subgroup of G of order 6 and let K be any subgroup
of G of order 10. Then, by 5.16, J has a normal subgroup U of order 3 and
K has a normal subgroup V of order 5. Then, by (iii), | NG(U)| = 6 and |
NG(V)| = 10, so that J = NG(U) and K = NG(V). Hence the only subgroups of
G of order 6 are the normalizers in G of the Sylow 3-sub-groups of G, and
the only subgroups of G of order 10 are the normalizers in G of the Sylow
5-subgroups of G.

(v) By considering the expressions of elements of A5 as products of
disjoint cycles, we see that G has no element of order greater than 5. Hence
the subgroups of G of orders 6 and 10 are not cyclic. Therefore, 242 shows
that if J, K  G with | J | = 6, | K | = 10 then J ≅ D6 and K ≅ D10.

(vi) Finally, let H be any subgroup of G of order 12. Let T be a Sylow 2-
subgroup of H and let 17 be a Sylow 3-subgroup of H. By 5.19, either T 
H or U  H. If U  H then | NG(U) |  | H | = 12; but, since | U | = 3, we
know by (iii) that | NG(U)| = 6, a contradiction. Hence T  H. Since | T | = 4,
T is a Sylow 2-subgroup of G. Thus, by (ii), H  NG(T) ≅ A4. Since | H | =
12, it follows that H = NG(T).



The required list is therefore as follows:
   (a) a conjugacy class of 10 subgroups isomorphic to D6,
   (b) a conjugacy class of 6 subgroups isomorphic to D10,
   (c) a conjugacy class of 5 subgroups isomorphic to A4.
We now use 5.24 as the basis for an inductive proof that An is simple

whenever n  5. For this purpose we need to describe how Zn is partitioned
into conjugacy classes.

5.26 Lemma. Let n be a positive integer and let , ∈Σn. Let the
expression of  as a product of disjoint cycles be

where s,n1,…, ns are positive integers such that n1 + … + ns = n, and let

Then

is the expression of  as a product of disjoint cycles.
Proof. For each i = 1,…, s and each; = 1,…, ni,

(where, if j = ni, we replace the subscript i, j + 1 by i1).

5.27 Corollary. Let n be a positive integer and let , ′∈Σn. Then  and ′
are conjugate in Σn if and only if  and ′ have the same cycle type; that is,
if and only if the expressions of  and ′ as products of disjoint cycles
contain the same number of cycles of length m, for each integer m such that
1  m  n.
Proof. Let the expression of  as a product of disjoint cycles be



where s,n1, …, ns are positive integers such that n1 + … + ns = n. If ′ = 
for some ∈Σn then 5.26 shows that ′ has the same cycle type as . If,
conversely, ′ has the same cycle type as  then the expression of ′ as a
product of disjoint cycles is of the form

Then, if we set

5.26 shows that ′ = , so that  and ′ are conjugate in Σn.
Remark. It follows that the class number of Σn is equal to the number of
partitions of n (cf. 1.5).

For instance, in Σ4 the possible cycle types are

so that the class number of Σ4 is 5. The numbers of elements of these types
are, respectively,

Note that these numbers are all divisors of |Σ4| = 24, as they ought to be, by
4.26, and

283 Find the class number of Σ5. Find the numbers of elements in the
conjugacy classes of elements in Σ5, and verify that these numbers are
divisors of 120 whose sum is 120.

284 Find two elements of A4 which are conjugate in Σ4 but are not
conjugate in A4.

*285 Show that for every integer n  3, Z(Σn) = 1.



286 Let n be a positive integer. The number of distinct conjugacy classes of
elements of order 2 in Σn is equal to n/2 if n is even, and to (n − 1)/2 if n is
odd. (cf. 213. Hint. See 22.)

287 Let G = A5. Let {1, 2, 3, 4, 5} = {a, b, c, d, e}.
(i) Verify that

Hence show that G = 〈X〉, where X = {x∈G : x3 = 1}.
(ii) Let x∈G with o(x) = 3. Prove that CG(x) = 〈x〉. Deduce that the

elements of order 3 form a single conjugacy class of elements of G. (Hint.
Use 4.26 and 5.26.)

(iii) Let u = (ab)(cd), υ = (abcde) and g − (ab)(de). Verify that

Hence show that any non-trivial normal subgroup of G must contain an
element of order 3.

(iv) Conclude that G is simple.

*288 Verify that the following is a complete list of the conjugacy classes of
non-trivial proper subgroups of A4 : (i) a normal subgroup of order 4,
isomorphic to C2 × C2, (ii) a class of 4 subgroups of order 3, and (iii) a class
of 3 subgroups of order 2. (Hint. To eliminate the possibility that A4 has a
subgroup of order 6, see 185. Alternatively, apply Sylow’s theorem.)

*289 Verify that the following is a complete list of the conjugacy classes of
non-trivial proper subgroups of Σ4 : (i) A4, a normal subgroup of order 12,
(ii) a class of 3 subgroups of order 8, isomorphic to D8, (iii) a class of 4
subgroups of order 3, (iv) a class of 4 subgroups of order 6, isomorphic to
Σ3, (v) a normal subgroup of order 4, isomorphic to C2 × C2, (vi) a class of
3 cyclic subgroups of order 4, (vii) a class of 6 subgroups of order 2, (viii) a
class of 3 subgroups of order 2, and (ix) a class of 3 non-cyclic subgroups
of order 4, isomorphic to C2 × C2. (Hints. To show that A4 is the only
subgroup of Σ4 of order 12, use 185. See also 229, 250, 261, 266.)



5.28 Theorem (3.60). An is simple for every integer n  5.
Proof. We argue by induction on n. The assertion is true when n = 5, by
5.24. Assume that n > 5 and, inductively, that An − 1 is simple. Let G = An,
and consider the natural action of G on the set X = {1, 2,…, n). For each i =
1,…, n, let Hi = StabG(i). Note that G acts transitively on X: see the remarks
following 4.12. Hence, by 187 (i), H1,…, Hn all belong to the same
conjugacy class of subgroups of G. Hence (2.20) for every i = 1,…, n, Hi ≅
Hn ≅ An − 1, and so Hi is simple.

Suppose, contrary to what we wish to show, that G has a non-trivial
proper normal subgroup K. Then, for every i = 1, …n, Hi ∩ K  Hi so that,
since Hi is simple, Hi ∩ K is either 1 or Hi. In fact, Hi ∩ K = 1 for every i.
For suppose that there were a j such that Hj ∩ K = Hj; that is, such that Hj 
K. Then, by the remarks above, for any i there is an element ∈G such that 

 and so, since K  G, Hi  K  = K. Thus K would contain every
Hi. But this would imply that K = G, a contradiction. For if ∈G then
either l  = 1, in which case ∈H1  K, or 1  = j for some j ≠ 1. In the latter
case, we can choose i∈X with i ≠ 1, i ≠ j. Then (j1i)∈G and  = (j1i)(j1i)−

1. But then (j1i) is an element of G which fixes the point 1, so that 
(j1i)∈H1  K; and, since | X |> 3, there is a point l∈X such that (jli)− 1 =
(ilj)∈H1  K. Hence also ∈K.

Thus Hi ∩ K = 1 for every i = 1,…,n. Now let 1 ≠ ∈K. Thus, for every
i, ∉Hi : that is,  fixes no point of X. Let a∈X, and let a  = b ≠ a. Since |
X | > 3, there is a point c∈X such that c ≠ a, c ≠ b and c ≠ a − 1 Let c  = d:
then, since  is a permutation of X which does not fix c, d is distinct from a,
b and c. Since in fact | X |  6, we can choose two more distinct points
e,f∈X, both distinct from a, b, c, d. Now let

Then, since  moves a to b and c to d, 5.26 shows that  moves b to a and
d to e. Moreover, ∈K, since K  G. Hence ∈K and  fixes a and



moves c to e(≠ c). Thus 1 ≠ ∈Ha∩K: a contradiction. We conclude that
G is simple, and so the induction argument goes through.

It is clear that for each integer n > 2, An has subgroups isomorphic to An −

1; and these subgroups have index n in An, since | An| = n|An − 1|. Now we
note

5.29 Lemma. Let n be any integer with n > 2. Every subgroup of index n in
An is isomorphic to An − 1.
Proof. This is clear if n < 5, so assume that n  5. Let H < G = An with | G :
H | = n. Consider the action of G by right multiplication on the set of right
cosets of H in G. Since G is simple, by 5.28, this action is faithful. Hence,
by 198, the action is equivalent to the natural action of a suitable subgroup,
J say, of Σn on the set {1, 2,…, n}. Since | J | = | An| and (see 290 (ii)) the
only subgroup of index 2 in Σn is An, we see that J = An. The actions in
question are transitive and so, by 199,

Now we can complete the proof of

5.30 Theorem. Let G be a finite non-abelian simple group of order at most
100. Then G ≅ A5.
Proof. By 5.23, | G | = 60. Let n be the number of Sylow 5-subgroups of G.
By 5.15, n > 1, and by Sylow’s theorem, G has a subgroup of index n, n
divides 12 and n ≡ 1 mod 5. Hence n = 6. Then, since G has a subgroup of
index 6 and G is simple, it follows from 4.14 that G can be embedded in Σ6.
Let G* be a subgroup of Σ6 isomorphic to G. Then, by 184, since G* is
simple, G* does not contain an odd permutation: thus G*  A6. Now | G*| =
60 and | A6| = 360, so that | A6 : G*| = 6. Hence 5.29 shows that G* ≅ 45.

*290 (i) For every integer n  5, An is the only non-trivial proper normal
subgroup of Σn. (Hint. Use 119 and 285.)

(ii) For every integer n  2, An is the only subgroup of index 2 in Σn.
(Hint. For the case n = 4, see 289.)



291 Let N denote the set of all positive integers. As in 148, let G = Σ(N), the
restricted symmetric group on N, and, for each n∈ N, let

Thus, by 148,  and Gn ≅ Σn for every n∈N.

Now let H1 = 1 and, for each integer n > 1, let Hn be the unique subgroup
of index 2 in Gn : see 290(ii). Then, for each integer n > 1, Hn ≅ An; and
H1, H2,H3,… is an ascending sequence of subgroups of G.

Let . Show that | G : H | = 2 and that H is simple.

Show also that H has an infinite abelian subgroup.
(The infinite simple group H is denoted by AN. Hints. See 155. To
demonstrate the existence of an infinite abelian subgroup of H, note that, by
2.28, it is enough to show that there is an infinite commuting set of
elements in H. Remark. The group AN is not finitely generated (by 3.36).
The existence of finitely generated infinite simple groups was first
established by G. Higman [a57].)

292 Let n be an integer, n  2. Every subgroup of index n in Σn is
isomorphic to Σn − 1. (Hint. For n  5 use an argument similar to the one in
5.29. The appropriate action is faithful by 290.)

293 There is no simple group of order 120. (Hint. Show that if there were
such a group, it could be embedded in Σ6, and then apply 292.)

294 If G is a simple group of order 12 × pm, for some prime p and positive
integer m, then G ≅ A5. (Hint. Use 272, 273, 279, 5.22 and 5.30.)

295 Suppose that there is a simple group G of order 180 and let n3 and n5
be, respectively, the numbers of Sylow 3-subgroups and Sylow 5-subgroups
of G. Then

   (i) n3 = 10 and n5 is either 6 or 36.



  (ii) If n5 = 6 then G can be embedded in A6; but this would contradict
the simplicity of A6.

(iii) Hence n5 = 36 and each Sylow 5-subgroup of G coincides with its
normalizer in G.

 (iv) Let H1 and H2 be distinct Sylow 3-subgroups of G, J = 〈H1,H2〉

and D = H1 ∩ H2. Then D  Z(J) and | J : H1 |  4.
  (v) If D ≠ 1 then 5 does not divide | J | and | J : H1| = 4; but this would

imply that G could be embedded in Σ5, which is impossible.
(vi) Hence any two distinct Sylow 3-subgroups of G intersect trivially.

Then there are in G 144 distinct elements of order 5 and 81 distinct
elements of orders dividing 32. This is too many elements! Conclude that
there is no simple group of order 180. (Hints. Use 99, 184, 4.14, 4.30 and
5.22.)

296 Let n be an integer such that 100 < n  200 and n ≠ 168. Then there is
no non-abelian simple group of order n. (Hint. Argue as in 5.23 and use
205, 279, 281, 282, 293, 294 and 295. Remark. There is a simple group of
order 168, namely the group PSL2(Z7): see 3.61. This group is in fact
isomorphic to GL3(Z2). See also 385.)

Sylow’s theorem provides no information about the internal structure of a
finite p-group G, for then G itself is the unique Sylow p-subgroup of G.
However, the theorem points to the desirability of an investigation of finite
p-groups, since we may expect that their properties will have an important
bearing on the structure of finite groups in general. By means of group
action arguments, we have already established some special properties of
finite p-groups. If G is a non-trivial finite p-group, we know that

  (i) whenever H < G, H < NG(H) (5.6),
(ii) whenever 1 < H  G, H ∩ Z(G) ≠ 1 (5.8), and in particular Z(G) ≠ 1.
We shall have some more to say about finite p-groups in chapter 11. (For

further information, see Gorenstein [b13] chapter 5, and Huppert [b21]
chapter 3.) We end this chapter by proving the following result, which
shows that a finite p-group has normal subgroups of all possible orders.

5.31 Theorem. Let G be a finite p-group with, say, | G | = pm. Then G has
normal subgroups G0,G1,…,Gm such that



and | Gi| = pi for every i = 0, 1,…, m.
Proof. We argue by induction on m. The assertion is trivial if m  1.
Suppose that m > 1, and assume inductively that the result is true for any
group of order pm − 1. By 5.8, Z(G) ≠ 1. Let 1 ≠ z∈Z(G). Then o(z) = pn for
some integer n > 0. Let . Then | Gi| = p and (by
118) G1  G. Let  = G/G1. Then | | = pm − 1 and, by the inductive
assumption,  has normal subgroups i(i = 0, 1, …,m − 1) with

By 3.30, each i is of the form

where . Moreover, by 3.29,

and for every . Now (with G0 = 1) the
subgroups G0, G1,…, Gm of G satisfy the conditions stated, and so the
induction argument goes through.

5.32 Corollary (1.6). Let G be a finite group and let pm be any prime power
divisor of | G|. Then G has a subgroup of order pm.
Proof. Let if be a Sylow p-subgroup of G and say | H | = pl. Then m  l and
therefore, by 5.31, H has a subgroup J of order pm. Then J is a subgroup of
G of order pm.
Remark. If pm is a divisor of | G|, but not the highest power of p dividing |
G|, then the subgroups of G of order pm need not form a single conjugacy
class of subgroups of G: see 289 or consider the group C2 × C2. Thus if we
think of 5.32 as a generalization of 5.9(a), the analogous generalization of
5.9(b) fails. However, part of the analogous generalization of 5.9(c) holds
true: the number of distinct subgroups of G of order pm is congruent to 1
mod p. For a proof of this (due to Wielandt) see Ledermann [b29], theorem
27.



*297 Let G be a finite group.
  (i) If G is a non-trivial p-group then G has a normal subgroup of index

p.
 (ii) If G is abelian and p divides | G|, then G has a subgroup of index p.

(Hint. Apply 135.)
(iii) In general, G has a normal subgroup of index p if and only if p

divides | G/G′|. (Hint. See 3.52.)

298 Let l,m,n be positive integers such that l  m  n, and suppose that P is
a group of order pl. If R is a subgroup of P of order pn then there is a
subgroup Q of P such that R  Q  P and | Q | = pm.

299 (i) Let G be a finite group and p a prime divisor of | G|. If there is in G
a conjugacy class of elements containing just | G|/p elements then p2 does
not divide | G|.

  (ii) The class number of A4 is 4.

 (iii) If G is a finite group of order 12 and class number 4 then G ≅ A4.
(Hints. For (i), use 298 and 4.30. For (iii), use (i) to show that G has a non-
normal subgroup of order 3, and then use 4.14 and 290.)

300 Let G be a finite group and let pm be a divisor of | G |. Let P be a Sylow
p-subgroup of G and assume that the number of normal subgroups of P of
order pm is congruent to 1 mod p. (This is in fact always true.) Deduce that
the number of subgroups of G of order pm is congruent to 1 mod p. (Hint.
Let P act by conjugation on the set of all subgroups of G of order pm.)

301 Let G be a finite group and let d(G) denote the least positive integer n
such that G has a set of n generators.

   (i) If H  G then d(G)  d(H) + d(G/H).
 (ii) If | G | = pm for some positive integer m then d(G)  m.

(Note that this bound cannot be improved, as is shown by the additive
group of a vector space of dimension m over the field Zp.)



(iii) If  where s,m1,…,ms are positive integers and p1,…,ps

are distinct primes, then .

  (iv) For every integer n > 1,

(Hints. For (ii), use 5.31; for (iii), note that if Pi is a Sylow pi-subgroup of G
for each i = 1,…,s then G = 〈 P1, P2,…, Pm 〉; and for (iv), use Cayley’s
theorem 4.24.)



6
GROUPS OF EVEN ORDERS

Throughout this chapter, let G be a finite group of even order. Then we
know by 1.13 (or by 5.11) that G contains at least one involution. Suppose
that there are in total n involutions in G, and let them be denoted by

Let the class number of G be k and choose one element from each of the k
conjugacy classes: let these elements be denoted by

For i = 0, 1, …, k − 1, let
ci be the number of ordered pairs (u, v) of involutions in G such that

then ci is a non-negative integer.
We shall prove the result of R. Brauer and K. A. Fowler stated in 1.14. In

order to do this we need several preliminary results.

Proof. Consider the n2 products tjtk(j, k = 1, …, n). By definition, precisely
ci of these are equal to xi. For any g∈G,  and  are involutions, and tjtk =
xi if and only if . Hence precisely ci of the n2 products are equal to 

. Since the number of elements in the conjugacy class of xi is | G : CG(xi)|
(4.26), the formula stated is correct.



6.2. (i) If  then ci is the number of involutions tj such that 
.
   (ii) If xi is an involution then ci + 1 is the number of involutions in CG(xi).
  (iii) c0 = n.
Proof. Suppose that (u, v) is an ordered pair of involutions in G such that uv
= xi. Then

Thus we can define a map

from the set of ordered pairs of involutions (u, v) with uv = xi to the set of
involutions u with . This map  is injective, for if (u, v) and (u′,
v′) are pairs of involutions with uv = xi = u′v′ and u = u′ then also v = v′.

Now suppose that u is an involution in G such that . Let v =
uxi. Then

Thus, providing v ≠ 1,(u, v) is an ordered pair of involutions such that uv =
xi and (u, v)  = u. If v = 1 then xi = u, an involution. Hence, when xi is not
an involution, the map  is bijective. This proves (i) and (iii). (In any case,
(iii) is obvious.)

Now assume that xi is an involution. Then , so that any
involution u such that  must belong to CG(xi). Every involution in
CG(xi), except xi itself, appears as the image under  of some pair: for if u is
such an involution and we set v = uxi, then, because u and xi commute, v2 =
1 and, since u ≠ xi, v ≠ 1; then also uv = xi and (u, v)  = u. (Note that if u =
xi and v∈G with uv = xi then v = 1, not an involution: this shows that xi
does not appear in the image of .) This proves (ii).

6.3 Definition. Let x∈G. Then x is said to be real in G if x and x− 1 are
conjugate in G. (The reason for the use of the word ‘real’ here lies in



character theory: see for instance Huppert [b21] p. 537.) Note that if x2 = 1
then, trivially, x is real. In general G may have real elements x with x2 ≠ 1.

6.4. Let x∈G and let

the extended centralizer of x in G (234). Then  and
(i) if either x2 = 1 or x is non-real in G then ,
(ii) if x2 ≠ 1 and x is real in G then .

Proof. It is straightforward to verify directly that .
(Alternatively, apply 234.) The statement (i) is obvious. Suppose that x2 ≠ 1
and x is real in G. Then x− 1 ≠ x and there is an element g∈G such that xg =
x− 1. Thus . Now let g′ be any element of .
Then  and so g′g− 1∈CG(x), hence g′∈CG(x)g. Therefore 

, and so . This proves (ii).

6.5. Let x∈G. If x is real in G then the number of elements g∈G such that
xg = x− 1 is equal to | CG(x)|.
Proof The result is clear if x2 = 1. Suppose that x2 ≠ 1. Then, as in the proof
of 6.4, the set of elements g∈G such that xg = x− 1 is a coset of CG(x) in 

, and therefore contains | CG(x)| elements. (This is just a particular
case of 210.)

6.6. For each i = 0, 1,…,k − 1, ci  | CG(xi)|. Moreover, if xi is non-real in G
then ci = 0, while if xi is an involution then ci  | CG(xi)| − 2.
Proof. The fact that if xi is non-real in G then ci = 0 is immediate from 6.2(i)
and 6.3. Now suppose that xi is real in G. By 6.5, the number of elements
g∈G such that  is equal to | CG(xi)|. Hence the number of
involutions tj such that  is at most | CG(xi)|. Then if , ci  |
CG(xi)|, by 6.2(i). If xi is an involution then ci  | CG(xi)| − 2, by 6.2(ii) and
since 1∈CG(xi) and 1 is not an involution. Finally, if xi = 1, that is if i = 0,
then, by 6.2(iii), c0 = n < | G | = | CG(x0)|. This covers all cases.



302 Let J be a finite group. If there is a non-trivial element x∈J such that x
and x− 1 are conjugate in J then | J | is even.

303 Suppose that H is a cyclic normal subgroup of G of order 4 such that 
. Then every element of H is real in G.

304 Let n be a positive integer.
  (i) In ∑n every element is real.
 (ii) Let n  3. In the dihedral group D2n every element is real.
(iii) In the quaternion group Q8 (181) every element is real. (Hint. Apply

303.)

305 In the alternating group A4 of degree 4, the only elements x which are
real are those satisfying x2 = 1. (Hint. See 185.)

306 Verify the formula of 6.1 for each of the groups ∑3, Q8, A4.

307 Let x∈G. Then x is said to be strongly real in G if there is an
involution t∈G such that xt = x− 1.

  (i) If x2 = 1 then x is strongly real in G.
 (ii) If x ≠ 1, x is real in G and | CG(x)| is odd, then x is strongly real in G.
(iii) Also, in the notation of this chapter, if xi is strongly real in G then

either ci > 0 or xi is an involution and the only involution in CG(xi).
(iv) If xi is not strongly real in G then ci = 0.

308 Let n be an integer, n  2.
  (i) In ∑n every element is strongly real.
 (ii) Let n  3. In D2n every element is strongly real.
(iii) In Q8 the only elements x which are strongly real are those satisfying

x2 = 1 (cf. 304).

309 Suppose that G has n involutions. For any subgroup H such that | H | > |
G|/(n + 1), there is an element h∈H such that h ≠ 1 and h is strongly real in



G. (Hint. If | H | is odd, let I be the set of involutions of G and show that
there are distinct elements x, y∈H such that (xI) ∩ (yI) ≠ .)

310 Let T = {x∈G : x2 = 1} and suppose that T is a commuting set of
elements. Prove that T  G and that no element of G\T is strongly real in G.
Show by an example that it can happen under these conditions that T < G
and all elements of G are real in G.

Prove also that if y is an element of G which is real in G then T ∩ CG(y)
≠ 1. (See 316 for a converse result. Hint. If y has odd order greater than 1,
apply 307 (ii).)

6.7 Theorem. (R. Brauer and K. A. Fowler [a8], 1955). Let G be a group of
even order with precisely n involutions, and suppose that | Z(G)| is odd. Let
a = | G|/n (not an integer in general). Then G has a proper subgroup H such
that either | G : H | = 2 or | G : H | < a(a + 1).
Proof. We may suppose the elements x0, x1,…,xk − 1 labelled so that x1,…,xs
are involutions, xs + 1,…,xr − 1 are real but not involutions, and xr,…,xk − 1
are non-real in G, where s and r are integers such that 0 < s  r − 1 k − 1.
Since each of the n involutions in G is conjugate in G to just one of x1,…,xs,
and by 4.26,

Also, by 6.1,

Hence, by 6.2(iii) and 6.6,



Thus

Let 
If j = 2, there is nothing more to prove; so suppose j > 2. Since | Z(G)| is
odd, no involution lies in Z(G) and therefore

Hence 
Therefore, by (i),

For i = s + 1,…,r − 1, xi is real in G and . Hence, by 6.4,

Since j > 2, G has no subgroup of index 2 and therefore

Hence 
that is,

The total number of real elements in G is

Hence, by (iv),

From (ii),



by (iii) and (v); thus

Multiply this last inequality by | G|/n2. Then, with | G|/n = a,

Hence

and so 

6.8 Corollary. Let G and a be as in 6.7. Then G has a proper normal
subgroup K such that either | G/K | = 2 or | G/K | <  [  a(a + 1)]! (where,
for any real number b, [b] denotes the largest integer not greater than b).
Proof. Let H be as in the statement of 6.7 and let K = HG, the core of H in
G. Then K is a proper normal subgroup of G and, by 4.14, G/K can be
embedded in ∑|G : H|. The result follows.

6.9 Corollary (1.14). Let G be a simple group of even order greater than 2,
let t be any involution in G, and let m = | CG(t)|. Then CG(t) < G and | G | 
( m(m + 1))!
Proof. Since G is simple and has even order greater than 2, G is non-
abelian. Therefore Z(G) is a proper normal subgroup of G and so Z(G) = 1.
Hence CG(t) < G. Now we use the notation of the proof of 6.7. The
involution t is conjugate in G to some xl with 1  l  s. Then



Since

(equation (i) of the proof of 6.7),

Hence

We now apply 6.8. The conditions are satisfied and, since K is a proper
normal subgroup of G and G is simple, K = 1. Then, since | G | > 2,

Recall the deduction of 1.15 from 1.14.

311 We have tacitly assumed that the proof of 6.7 remains valid when G has
no real element of order greater than 2, that is, when s + 1 = r. Check
through the proof of 6.7 and show that the argument yields the following
sharper result in this case:

Let G be a group of even order with precisely n involutions and let a = |
G|/n. Suppose that | Z(G)| is odd and that there is in G no real element of
order greater than 2. Then G has a proper subgroup H such that either | G :
H | = 2 or | G : H | < a.

312 (i) In the alternating group A5 of degree 5, there are just 15 involutions.
(ii) Let G be a simple group of even order greater than 2 and suppose that

G has n involutions. Then n < | G|/3.

313 Let G be a simple group of even order greater than 2, and let t be an
involution in G. Use 6.9 to show that | CG(t)| > 2. (Remark. A stronger
result than this has been obtained by other methods in 263; cf. 287(ii).)



One of the most striking special properties of groups of even orders is
that the structure of subgroups generated by 2 involutions can be
characterized precisely. Nothing comparable is available for subgroups
generated by elements of orders greater than 2.

6.10 Definition. We shall say that a group D is of dihedral type if it is non-
abelian and has a set of 2 generators {x, t} such that t is an involution and xt

= x− 1.
Note that for each integer n  3, the dihedral group D2n of order 2n

(defined in 2.24) is of dihedral type. We shall now show conversely that any
finite group of dihedral type is isomorphic to D2n for some integer n  3.
(Note also that the infinite dihedral group D∞ (57) is of dihedral type.
Conversely, any infinite group of dihedral type is isomorphic to D∞ : see
314.)

6.11. Let D be a finite group of dihedral type. Then D ≅ D2n for some
integer n  3.
Proof. By definition, D is non-abelian and there are elements x, t∈D such
that D = 〈x, t〉, o(t) = 2 and xt = x− 1. Let o(x) = n and let X = 〈x〉.
Since D is non-abelian, X < D. Since D = 〈 x, t 〉 and xt = x− 1, it is clear
that X  D. Now (by 108) D/X = 〈xX, tX〉 = 〈tX〉, since x∈X. Since t
∉ X but t2∈X, it follows that | D/X | = 2. Hence | D | = 2|X | = 2n and

Since D is non-abelian, n  3, by 4.30 (or 77).
Now let G = D2n, the dihedral group of order 2n. In the notation of 2.24,

where n = 1 = 2 and  = − 1. It is now easy to check that the map

is an isomorphism of D onto G.



6.12. Every group D of dihedral type can be generated by 2 involutions.
Proof. Suppose that D = 〈x, t〉, where t is an involution and xt = x− 1.
Then also D = 〈xt, t〉, since x = (xt)t. Certainly xt ≠ 1, since D is non-
abelian, and

Thus xt is an involution.
The remarkable fact is that the converse is true. The proof is extremely

easy.

6.13 Theorem. Suppose that D is a non-abelian group which can be
generated by 2 involutions. Then D is of dihedral type.
Proof. Suppose that D = 〈s, t〉, where o(s) = 2 = o(t). Then also D = 〈st,
t〉, since s = (st)t. Moreover,

Hence D is of dihedral type.
Remark. If A is an abelian group which can be generated by 2 involutions,
say A = 〈s, t〉, where o(s) = 2 = o(t), then either s = t and A = 〈s〉 ≅ C2

or s ≠ t and A = {1, s, t, st} ≅ C2 × C2.

6.14 Corollary. Let s and t be involutions in G. Then either s and t are
conjugate in G or there is an involution u∈〈s, t〉 such that u commutes
with both s and t.
Proof. Let D = 〈s, t〉. If D is abelian, there is nothing to prove. Assume
then that D is non-abelian, hence, by 6.13, that D is of dihedral type. Let x =
st. Since G is finite, x has finite order, say n. As in the proof of 6.13, D =
〈x, t〉 and xt = x− 1, and, as in the proof of 6.11, | D | = 2n. If n is odd,
then 〈s〉 and 〈 t 〉 are Sylow 2-subgroups of D and are therefore
conjugate in D. Because s, t are the only non-trivial elements of 〈 s 〉, 〈
t 〉 respectively, the conjugacy of the subgroups 〈 s 〉, 〈 t 〉 implies
the conjugacy of the elements s, t.



Now suppose that n is even and let u = xn/2. Then u∈D and o(u) = 2.
Since

that is, 
Thus u commutes with both s and t.

We use this to prove

6.15 Theorem (R. Brauer). Suppose that G has at least 2 conjugacy classes
of involutions. Let t be an involution in G such that | GG(t)| is as large as
possible. Then

Remark. This result is of course trivial if | Z(G)| is even, for then CG(t) = G;
but if | Z(G)| is odd then CG(t) < G.
Proof. Let | CG(t)| = m and | G : CG(t)| = j. Then mj = | G | and we want to
prove that j < m2. By hypothesis, there is an involution s in G which is not
conjugate to t. Let the distinct involutions in CG(s) be

By choice of t, for each k = 1,…,l,

In particular,

Hence the number of distinct non-trivial elements in the set  is at

most equal to



By 4.26, t has exactly j distinct conjugates in G, say

Each of these elements is non-trivial, and so the required inequality j < m2

will follow if we show that every ti lies in . Since each ti is

conjugate to t but t is not conjugate to s in G, ti is not conjugate to s. Hence,
by 6.14, there is in G an involution ui which commutes with both s and ti.
Then ui∈CG(s) and therefore

Hence ti∈CG(ui) = CG(sk).
Remarks. The conclusion of 6.15 does not hold in general for a group G
with only 1 conjugacy class of involutions: see 318. However, it is true that
for any group G of even order greater than 2, there is a proper subgroup H
of G such that | G | < | H|3: see 319. A corresponding result holds for groups
of odd orders. If K is a non-trivial group of odd order, with | K | not a prime,
then there is a proper subgroup L of K such that | K | < | L |3. In fact, in this
case the assertion can be improved to | K |  | L |2, and further to | K | < | L|2
unless | K | = p2 for some prime p: see 503, 664. But the only known proofs
of these facts for groups of odd orders are made by invoking the very deep
Feit–Thompson theorem (1.12). It would be interesting to find proofs
independent of this. For further information about groups of even orders,
we refer to R. Brauer and K. A. Fowler [a8] and Gorenstein [b13] chapter 9.

314 Let D be an infinite group of dihedral type. Then D ≅ D∞. (See 57.
Hint. Argue as in 6.11.)

315 Let G = A5, the alternating group of degree 5. There are in G elements
t, x, y such that o(t) = 2, o(x) = 3 = o(y) and G = 〈x, t〉 = 〈x, y〉. (cf.
6.13, 179. Hint. Use 5.25.)

316 Suppose that G has no strongly real element of order greater than 2.
Then the set of all involutions in G is a commuting set of elements. (Hint.



See 6.13. Remark. This is a converse to 310.)

317 Let T be a Sylow 2-subgroup of G. Suppose that  and that T ∩ Tg

= 1 whenever g∈G and Tg ≠ T. Then G has just 1 conjugacy class of
involutions. (Hint. Apply 6.14.)

318 Let G = D2n, the dihedral group of order 2n, where n is an odd integer,
n  3. Then

  (i) G has just 1 conjugacy class of involutions (cf. 214).
 (ii) Let t be an involution in G. Then CG(t) = 〈 t 〉 Hence | G | < |

CG(t)|3 if and only if n = 3.
(Note also that Z(G) = 1 : see 124; cf. 6.15.)

319 (a) Suppose that G has just 1 conjugacy class of involutions and that |
Z(G)| is odd. Then there is a real element x∈G such that CG(x) < G and | G
| < | CG(x)|3. (Hints. Let the notation be as in the proof of 6.7, where now s
= 1. Define m1 = | CG(x1)| and > if r = 2, m = 0, while if r > 2, m =
max{|CG(xi)|: i = 2,…,r − 1}. Use 6.1, 6.2 and 6.6 to show that n2  (m1 −
1)n + (r − 2) | G|. By counting the total number of real elements in G, show
that (r − 2) | G |  m(|G | − 1 − n). From these two inequalities and the fact
that m1n = | G|, deduce that . Finally use 6.4.)

(b) For any group G of even order greater than 2, there is a proper
subgroup H such that | G | < | H|3. (Hints. Argue by induction on | G|. If |
Z(G)| is odd, apply (a) and 6.15. If | Z(G)| is even, there is an involution
z∈Z(G). Then consider  = G/〈 z 〉. If | | is even, apply the induction
hypothesis to , while if | | is odd, use 205 and 184).



7
SERIES

In this chapter we shall develop further the theory introduced in chapter 3 of
the normal structure of a group (as distinct from the arithmetical structure
discussed in chapters 4, 5, 6). We shall prove the Jordan-Hölder theorem
(1.9) and introduce two important classes of groups, the classes of nilpotent
groups and soluble groups.

It is sometimes convenient to write G  H to have the same meaning as
H  G; and similarly G > H for H < G and G  H for H  G. Recall also
from chapter 1 that we use the notation K  G to mean ‘K is a proper
normal subgroup of G’.

7.1 Definitions. Let H  G. Suppose that there is a finite sequence (Hi)0  i 

 n of subgroups of G, such that

Then we call (a) a series of length n from H to G (or from G to H if we wish
to think of the series as ‘descending’ rather than ‘ascending’). The
subgroups H0, H1,…, Hn) are called the terms of the series and the quotient
groups Hi/Hi − 1 (i = 1,…, n) the factors of the series. When we refer to a
series of G (without qualification), we mean a series from 1 to G (or from G
to 1). (Warning. What is here called a series is called by some authors, e.g.
Macdonald [b30], a ‘normal series’. We shall reserve the latter name for a
series in which each term is normal in the whole group: see 7.33.)

The series (a) is called proper if



Another series

from H to G is said to be a refinement of (a) if n  m and there are non-
negative integers j0 < j1 < … jn  m such that

that is, if (a) can be obtained from (b) by deleting terms of (b). Then (b) is
said to be a proper refinement of (a) if there is a j∈{0, 1,…, m} such that

A proper series of G which has no proper refinement is called a
composition series of G. The factors of a composition series of G are called
composition factors of G.

Note that every finite group has a composition series: see 1.8. An infinite
group need not have a composition series. For instance, the infinite cyclic
group Z+ is not simple and every non-trivial subgroup of Z+ is isomorphic
to Z+ (3.25); therefore, any series of Z+ has a proper refinement. On the
other hand, we know that there are infinite groups which have composition
series, for we know that there are infinite simple groups: see 3.61 and 291.

7.2 (cf. 1.10). A series

of G is a composition series of G if and only if the factors Gi/Gi − 1 of the
series are all simple (i = 1, 2,…, n).
Proof. If the series is a composition series of G then it is by definition
proper, and so the factors Gi/Gi − 1 are all non-trivial (i = 1,…, n). If some
factor Gi/Gi − 1 were not simple, it would have a proper non-trivial normal
subgroup, say H/Gi − 1. But then we should have Gi − 1  H Gi (by 3.30)
and hence obtain a proper refinement of the original series by inserting H as
an extra term between Gi − 1 and Gi. This is contrary to the definition of
composition series. Hence the factors of a composition series are all simple.



On the other hand, if the given series is not a composition series then
either the series is not proper, in which case one of its factors is trivial and
therefore not simple; or the series is proper and has a proper refinement, say

In this latter case, let l be the largest positive integer for which Hl is not
equal to any term of the original series. Then 0 < l < m and Hl + 1 = Gk for
some integer k with 0 < k  m. Since the series (Hj)0  j  m is a refinement
of (Gi)0  i  n and by the choice of l,

Then, by 3.30, Hl/Gk − 1 is a proper non-trivial normal subgroup of Gk/Gk −

1, and thus the factor Gk/Gk − 1 is not simple.

320 (i) An abelian group A has a composition series if and only if A is
finite. (Hint. Use 7.2.)

(ii) A subgroup of a group with a composition series need not have a
composition series (see 291).

321 Let n be a positive integer.
(i) A cyclic group of order pn has just 1 composition series.
(ii) The direct product of n groups of order p has (pn) distinct

composition series, where

322 How many composition series has each of the following groups: Σ3, A4,
Σ4?

The following elementary result is often useful.

7.3 (Dedekind’s rule). Let A, B, C be subgroups of G such that B  A. Then



(Here we do not assume that BC and B(A ∩ C) are subgroups of G.) Proof.
Certainly B(A ∩ C) ⊆ A ∩ (BC), since B  A. Let a∈A ∩ (BC). Then

Then b− 1a = c∈A ∩ C (since B  A).
Hence a∈B(A ∩ C).
Thus A ∩ (BC) = B(A ∩ C).

In proving some of the main results of this chapter, we shall need certain
deductions from 3.40.

7.4 Lemma. Suppose that B  A  G and C  G. Then
(i) (B ∩ C)  (A ∩ C) and (A ∩ C)/(B ∩ C) ≅ B(A ∩ C)/B.
(ii) If also C  G then BC  AC and AC/BC ≅ A/B(A ∩ C).

Proof. (i) Since A ∩ C  A and B  A, we may apply 3.40 with G replaced
by A, H by A ∩ C and K by B. This gives B ∩ C = ((A ∩ C) ∩ B)  (A ∩ C)
and

(ii) Now suppose that C  G. By 3.38, AC and BC are subgroups of G
and then clearly BC  AC. Since A normalizes B and C and since C
normalizes every subgroup of G containing C, it follows that BC  AC.
Certainly A  AC. Now we apply 3.40 with G replaced by AC, H by A and
K by BC. This gives

With 7.3 and since A(BC) = AC, this gives the result.

7.5 Lemma (H. J. Zassenhaus [a 107], 1934). Let C1  A1  G and C2  A2
 G. Then

and



Proof. We have

by 3.40, and similarly

Let                         

by 3.39. Now, by 7.4(ii), applied to A1 in place of G,

and

Similarly,

and

Now the stated isomorphism follows from (i) and (ii).

323 Suppose that G = HK, where H  G and K  G. Then
  (i) {V : K  V  G} = {JK : J  H}.
 (ii) Every subgroup of G/K is isomorphic to a quotient group of a

subgroup of H.

*324 A section of G is a group A/B such that B  A  G. A subgroup C of
G is said to cover a section A/B of G if A ⊆ BC, and C is said to avoid A/B
if A ∩ C  B.

Let A/B be a section of G and let C  G. Then
   (i) C both covers and avoids A/B if and only if A = B.
  (ii) If C covers A/B then (A ∩ C)/(B ∩ C) ≅ A/B, while if C avoids A/B

then (A ∩ C)/(B ∩ C) is trivial.



 (iii) Suppose that C  G If C covers A/B then AC/BC is trivial, while if C
avoids A/B then AC/BC ≅ A/B.

 (iv) If C  G and A/B is simple, then C either covers or avoids A/B.

325 Let K  G. Suppose that G has a composition series. Then (see 324)
(i) K has a composition series in which every factor is isomorphic to a

composition factor of G covered by K (cf. 320 (ii)). Moreover, every
composition factor of G covered by K is isomorphic to a composition factor
of K.

(ii) G/K has a composition series in which every factor is isomorphic to a
composition factor of G avoided by K. Moreover, every composition factor
of G avoided by K is isomorphic to a composition factor of G/K.

7.6 Definition. Two series of G, say

and

are said to be equivalent if m = n and there is a permutation  of the set {1,
2,…, n} such that

This obviously defines an equivalence relation on the set of series of G.
In the form stated in 1.9, the Jordan-Hölder theorem asserts that any two

composition series of a finite group are equivalent. Before proving this in a
slightly more general form, we first establish a fundamental general result
about series, proved by Schreier in 1928.

7.7 Theorem (O. Schreier [a88]). Any two series of G have equivalent
refinements.
Proof. Consider two series of G, say

and



We shall construct a refinement of (a) by inserting m − 1 subgroups Gij(j =
1,…, m − 1) between Gi − 1 and Gi, for each i = 1,…, n; and a refinement of
(b) by inserting n − 1 subgroups Hij (i = 1,…, n − 1) between Hj − 1 and Hj,
for each j = 1,…, m. Then these refinements will both have mn factors:

and

We shall arrange that (c) and (d) are equivalent.
For this purpose we define, for every i = 1,…, n and every j = 1,…, m,

and

Note that, by 3.38, Gij and Hij are subgroups of G, since, for example, Gi ∩
Hj  Gi and Gi − 1  Gi. Note also that

For i = 1,…, n and j = 1,…, m,

and

It is convenient also to set

We now apply 7.5, choosing



Then 7.5 gives

and

Thus our definitions of Gij, Hij do yield series (c) and (d) of G, and these are
obviously refinements of (a) and (b), respectively. Moreover, the
isomorphism (†)(valid for every i = 1,…, n and every j = 1,…, m) shows
that (c) and (d) are equivalent series.

Next we note

7.8. Any series of G which is equivalent to a composition series of G is also
a composition series of G.
Proof. This follows immediately from the definitions of ‘equivalent’ and
‘composition series’, together with 7.2.

The following theorem includes the fundamental result on composition
series, established in part by Jordan in 1869 and completely for finite
groups by Hölder in 1889.

7.9 Theorem. Suppose that G has a composition series.
(i) Every proper series of G has a refinement which is a composition

series of G.
(ii) (C. Jordan [a66], O. Hölder [a59]; cf. 1.9.) Any two composition

series of G are equivalent.
Proof. Consider a proper series (a) and a composition series (c) of G. By
Schreier’s theorem 7.7, these two series have equivalent refinements, say
(a*) and (c*) respectively. If now from (a*) and (c*) we discard trivial
factors, that is, delete repetitions of terms, we obtain two equivalent proper
series, say (a′) and (c′) respectively. Since (a) and (c) are, by hypothesis,
proper series, (a′) and (c′) are refinements of (a) and (c) respectively; and
since (c′) is a proper series while, by hypothesis, (c) has no proper
refinement, (c′) must coincide with (c). Thus (a′) is equivalent to a
composition series of G, hence (7.8) is itself a composition series of G. This
proves (i).



If also (a) is a composition series of G then, by the same argument, (a′)
must coincide with (a). Then (a) and (c) are equivalent. This proves (ii).

7.10 Definition. Suppose that G has a composition series. It follows in
particular from 7.9 (ii) that any two composition series of G have the same
number, n say, of factors. We call n the composition length of G.

326 Let p and q be distinct primes. Find equivalent refinements of the
following two series of Z+:

(Note that Schreier’s theorem 7.7 does not require the hypothesis that G has
a composition series.)

327 (i) Every composition factor of a finite abelian group has prime order.
(ii) Every composition factor of a finite p-group has order p.

328 (i) Every abelian group of order  has composition length 

(where s, m1,…, ms are positive integers and p1,…, ps distinct primes).
(ii) Every group of order pn has composition length n (where n is a

positive integer).
(iii) Give an example of a finite group G whose composition length is not

equal to the sum of the exponents of the distinct primes in the factorization
of | G | as a product of powers of prime numbers.

329 Suppose that G has a composition series and that the composition
length of G is 2. Prove that either G has just 1 composition series or G is
isomorphic to a direct product of simple groups.

Show that there is no upper bound on the number of distinct composition
series which G can have.

The following generalization of the concept of normal subgroup has
proved to be of considerable importance.

7.11 Definition. Let H  G. We say that H is a subnormal subgroup of G if
there is a series from H to G.



Certainly any normal subgroup of G is a subnormal subgroup; that the
converse is not true in general is shown by 3.14. In fact, the definition of
subnormality is made precisely in order to repair the deficiency of
normality in failing to be a transitive relation. It is immediate from the
definition that subnormality is transitive.

7.12. Let K  H  G. If K is subnormal in H and H is subnormal in G then
K is subnormal in G.

Clearly any term of a series of G must be a term of some proper series of
G. Then, in view of 7.9 (i), we have

7.13. Let H  G and suppose that G has a composition series. Then H is
subnormal in G if and only if H is a term of some composition series of G.

We note the following consequence of 5.6.

7.14. Let G be a finite p-group. Then every subgroup of G is subnormal in
G.
Proof. Let H  G. We prove by induction on | G : H | that H is subnormal in
G. If | G : H | = 1 then H = G and the assertion is trivial. Therefore we
assume that | G : H | > 1 and, inductively, that K is subnormal in G
whenever K  G and | G : K | > | G : H|. Then H < G and so, by 5.6, H <
NG(H)  G. Hence | G : NG(H)| < | G : H | and so, by the inductive
assumption, NG(H) is subnormal in G. Since H  NG(H), it follows that H
is subnormal in G. This completes the induction argument.

The first systematic development of a theory of subnormal subgroups
was made by H. Wielandt [a100]. We include several of his results here.

7.15 (cf. 3.40). Let H, K  G. If K is subnormal in G then H ∩ K is
subnormal in H.
Proof. By hypothesis, there are subgroups Ki of G (i = 0, 1,…, n) such that

Then certainly

Moreover, for i = 1,…, n,



since Ki − 1  Ki. Thus H ∩ K is subnormal in H.

7.16. Let K  H  G. If K is subnormal in G then K is subnormal in H.
Proof. This follows immediately from 7.15.

7.17. Let H, K  G. If H and K are both subnormal in G then H∩K is
subnormal in G.
Proof. This follows immediately from 7.15 and 7.12.

Recall that if H  G and K  G then HK  G (3.38); and then of course
HK = 〈H, K〉 (see 71, 95). We now show by an example that HK need
not be a subgroup of G when H and K are subnormal subgroups of G.

7.18. Let n be an integer, n  3, and let , the dihedral group of
order 2n. By 6.12, there are involutions, say h and k, in G such that G = 〈h,
k〉. Let H = 〈h〉  G and K = 〈k〉 G. Then | H | = | K | = 2 and HK =
{1, h, k, hk}: HK is not a subgroup of G, since the smallest subgroup of G
containing both H and K is G itself and | G | = 2n  8. On the other hand, by
7.14, H and K are both subnormal in G.

We shall, however, prove an analogue of 3.39 by showing that if H and K
are subnormal subgroups of a group G with a composition series then 〈H,
K 〉 is subnormal in G. We begin by proving a special case, for which we
do not need the assumption that G has a composition series.

7.19 Lemma. If H is a subnormal subgroup of G and K  G then HK is
subnormal in G.
Proof. By hypothesis, there is a series

from H to G. Then, by 7.4 (ii),

This is a series from HK to G. Hence HK is subnormal in G.



*330 Let H < G. Suppose that G has a composition series and that H is
subnormal in G. Then H has a composition series. Moreover, if G has
composition length n and H has composition length m then m < n (cf.
320(ii).)

331 Let H  G.
(i) Consider the following sequence of subgroups of G :

where, for each integer i > 0,

the normal closure of H in Ji − 1 (see 180). Then H is subnormal in G if and
only if there is a non-negative integer n such that Jn = H.

If H is subnormal in G and n is the least integer such that Jn = H then

is called the standard series from G to H.
(ii) Suppose that H is subnormal in G. The defect (or index of

subnormality) of H in G is defined to be the least non-negative integer n for
which there is a series of length n from H to G. Then the defect of H in G is
equal to the length of the standard series from G to H.

(iii) Suppose that H is subnormal in G and that H  L  G. Then the
defect of H in L is not greater than the defect of H in G.

332 Let n be an integer, n  2, and let , the dihedral group of
order 2n+1. Then there are elements x, t∈G such that G = 〈x, t〉, x2n = 1 =
t2 and xt = x− 1: see 2.24, 6.10, 6.11. Let H = 〈t〉. By 7.14, H is subnormal
in G.

Let J = HG, the normal closure of H in G. Prove that J = 〈 x2, t〉.
Hence prove that the defect of H in G is n (see 331).

333 Let G = Σ4. Find a subnormal subgroup H of G such that NG(H) is a
Sylow 2-subgroup of G.



(Remark. Note that NG(NG(H)) = NG(H). This example shows that for H 
 G, the ascending sequence of subgroups of G formed from H by taking

successive normalizers in G need not reach G, even though H is subnormal
in G : cf. 331. Hint. See 289.)

334 Let H  G. Then H is both pronormal and subnormal in G if and only if
H  G. In particular, if G is finite and H is a subnormal Sylow subgroup of
G then H  G. (See 268. Hint. Argue by induction on the length of a series
from H to G.)

*335 Let H be a subnormal subgroup of G. Then, for any homomorphism 
of G onto a group , H  is a subnormal subgroup of . In particular, for
every g∈G, Hg is subnormal in G.

336 Let  and  be classes of groups with the following two properties.
  (i) Every normal subgroup of every -group is an -group.
 (ii) Every -group has a -radical. (See 3.45.)
Then if G is an -group, every subnormal -subgroup H of G is

contained in the -radical of G.
In particular, if G is any finite group then every subnormal -subgroup

of G is contained in O  (G).
(Hint. Argue by induction on the length of a series from H to G and use
160.)

337 Let  and  be classes of groups with the following three properties.
   (i) Every normal subgroup of every -group is an -group.
 (ii) Every -group has a -residual. (See 3.45.)
(iii) Whenever J  G and both J and G/J are -groups, G is a -group.
Let G be an -group and let G/K be the -residual of G. Suppose that H

is a subnormal subgroup of G such that there is a series from H to G, the
factors of which are all -groups. Then K  H.

In particular, if H is a subnormal subgroup of a finite group G such that
there is a series from H to G, all the factors of which are -groups, then O

(G)  H (see 160).

For the purpose of proving the general result, it will be convenient to
associate to a subnormal subgroup H in a group G with a composition series



a certain non-negative integer j(G : H), which we now define.

7.20 Definition. Let H  G. Suppose that G has a composition series and
that H is subnormal in G. Then H is a term of a composition series of G
(7.13). Let

be a composition series of G with H as a term: say

where 0  k  n.
Now consider any other composition series of G of which H is a term.

Let the part of the series from H to G be

Then, by 7.2, the series

is also a composition series of G. Therefore, by the Jordan-Hölder theorem
(7.9), the series (a) and (b) are equivalent. In particular,

We define j(G : H) = n − k. In words, j(G : H) is the number of
composition factors above H in any composition series of G of which H is a
term. The argument above shows that this is well defined. Note that j(G : 1)
is the composition length of G.

The following properties are immediate from the definition, together with
7.16 and 7.9(i). (See also 330.)

7.21. Let K  H  G. Suppose that G has a composition series and that H
and K are subnormal in G. Then



7.22 Theorem (H. Wielandt [a 100]). Suppose that G has a composition
series. If H and K are subnormal subgroups of G then 〈H, K〉 is
subnormal in G.
Proof. We argue by induction on j(G : K) = n, say.

If K  G then 〈H, K 〉 = HK and the result has been proved in 7.19. In
particular, this gives the result if n  1.

Now suppose that K  G. Then n > 1. There is a series

from K to G which is part of a composition series of G. Let G1 = 〈H,
K1〉. By 7.21, j(G : K1) = n − 1 and so, by the induction hypothesis, G1 is
subnormal in G. Hence G1 has a composition series (330). By 7.16, H and
K are subnormal subgroups of G1.

If G1 < G then, by 7.21, j(G1 : K) < n. Then, by the induction hypothesis,
〈 H, K 〉 is subnormal in G1, hence also subnormal in G, by 7.12.

Now suppose that G1 = G. If

then in fact

see 175 or 7.24 (ii).
Then

This contradicts the supposition that K  G.
Therefore

Let



Now Kh is subnormal in G (335). Moreover,

since Kn − 1  G, and so, by 7.16, Kh is subnormal in Kn − 1. Certainly Kn − 1
has a composition series (330). Since j(Kn − 1 : K) = n − 1, it follows by the
induction hypothesis that K* is subnormal in Kn − 1. Hence also K* is
subnormal in G. Since K* > K, it follows from 7.21 that j(G : K*) < n.
Hence, by the induction hypothesis, 〈H, K*〉 is subnormal in G.
However, Kh  〈H, K 〉, and so

This completes the induction argument.
Remark. This result fails in the absence of the condition that G has a
composition series. Zassenhaus ([b41] p. 235, ex. 23) has given an example
of a group G with subnormal subgroups H and K such that 〈H, K〉 is not
subnormal in G. See also 345.

338 Suppose that H and K are subnormal subgroups of the finite group G. If
(|H|, | K|) = 1 then 〈H, K〉 = HK ≅ H × K. (cf. 7.18. Hint. Use 336, 3.53,
3.54.)

339 (i) Let H, K  G, a finite group, with 〈H, K 〉 = G. Suppose that K is
subnormal in G and that every composition factor of G above K has prime
order. Then j(H: H ∩ K)  j(G : K). (cf. 7.15. Remark. This inequality no
longer holds in general in the absence of the condition that every
composition factor of G above K has prime order. For an example see 532.)

(ii) Show by an example that for any integer n > 1, it is possible to satisfy
all the conditions of (i) and have j(H: H∩K) = 1 and j(G : K) = n.

We end this selection of results by proving an analogue of the
isomorphism part of the statement of 3.40. What we shall show is that if H
and K are subnormal subgroups of G and if G has a composition series then
the set of types of composition factors of G between H ∩ K and H coincides
with the set of types of composition factors of G between K and 〈H, K〉.



7.23 Definition. Suppose that G has a composition series and let H be a
subnormal subgroup of G. Then H is a term of a composition series of G
(7.13). We denote by (G, H) the set of composition factors of G above H,
where factors of the same type are identified. Thus (G, H) is a set of
pairwise non-isomorphic simple groups; it takes no account of the
multiplicity of occurrences of any particular simple group in a composition
series of G.

A similar argument to the one used in 7.20 to justify the definition of j(G
: H) shows that (G, H) is determined by the factors in any particular
composition series of G through H.

If also K is a subnormal subgroup of G with K  H then, by 7.16 and 7.9
(i), there is a composition series of G through both H and K, and then
clearly (G, K) = (G, H) ∪ (H, K).

We have  (G, H) =  if and only if H = G.
We shall use the following lemma.

7.24 Lemma. Suppose that G has a composition series and let H be a
subnormal subgroup of G and g∈G. Then

  (i) Hg is subnormal in G and j(G : H) = j(G : Hg).
 (ii) If H ≠ Hg then Hg  H. (cf. 174, 175.)
(iii) (H, H ∩ Hg) = (Hg, H ∩ Hg).

Proof. We may assume that H ≠ Hg. Let j(G: H) = n. There is a series

from H to G which is part of a composition series of G. It follows from 3.29
that
with                         

for each i = 1,…, n. Now (i) follows, by 7.2.
If Hg  H then it follows from (i) and 7.21 that

hence that                    j(H : Hg) = 0.



Thus                                H = Hg.
This is contrary to hypothesis, and so we conclude that Hg  H. This
proves (ii).

Let L = H ∩ Hg. By (i) and 7.15, L is subnormal in both H and Hg. By 7.9
(i), there is a composition series of G of the form

where 0  l < m, Gl = L and Gm = H. Then there is also a composition series
of G of the form

where l < m* and . By the Jordan-Hölder theorem, the series (a)
and (b) are equivalent. Hence m = m*, and, in view of (†), we must have

340 Let  be an isomorphism of G1 onto G2. Suppose that G1 has a
composition series, let H1 be a subnormal subgroup of G1 and let H2 = H1  

 G2. Then G2 has a composition series, H2 is subnormal in G2, (G1, H1)
= (G2, H2) and (H1, 1) = (H2, 1).

341 (i) Let H, K  G, a finite group. Suppose that K is subnormal in G and
that every composition factor of G above K has prime order. Then (H, H
∩ K) ⊆ (G, K).

(ii) Let G = A4, the alternating group of degree 4. Every composition
factor of G has prime order and there are subgroups H, K of G such that
〈H, K 〉 = G, K is subnormal in G, and (H, H∩K) ≠ (G, K) (cf. 339.)

342 Suppose that G has a composition series, no two distinct factors of
which are isomorphic. Then

(i) No two distinct normal subgroups of G are isomorphic.
(Hints. Note that if H and K are isomorphic normal subgroups of G then 
(H, H∩K) = (K, H∩K). If H ≠ K, consider a composition series of G
through H ∩ K, K and HK, and derive a contradiction to the hypothesis on
G.)



(ii) Every normal subgroup of G is characteristic in G.
(iii) Every subnormal subgroup of G is normal in G (and hence

characteristic in G). (Hint. Argue by induction on the length of a series from
H to G.)

7.25 Theorem (H. Wielandt [a100]). Suppose that G has a composition
series and let H and K be subnormal subgroups of G. Then (H, H ∩ K) = 

(〈H, K 〉, K).
Proof. By 7.15 and 7.16, H∩K is subnormal in H and K is subnormal in
〈H, K 〉. Since H and 〈H, K〉 are both subnormal in G (by 7.22), H and
〈H, K〉 both have composition series (330). Therefore the assertion of the
theorem makes sense. Furthermore, we may assume without loss of
generality that 〈H, K〉 = G.

We show first that

Let

be a composition series of G with K as a term: say

where 0  m  n. By 7.4(i),

and for each i = 1,…, n,

By 7.15, Gi ∩ H is subnormal in Gi. Hence, since G ∩ H is mapped to Gi −

1(Gi ∩ H)/Gi − 1 by the natural homomorphism of Gi onto Gi/Gi − 1, Gi − 1(Gi
∩ H)/Gi − 1 is subnormal in Gi/Gi − 1 (335). But Gi/Gi − 1 is simple (7.2) and
therefore, for each i = 1,…, n,

either                   (Gi ∩ H)/(Gi − 1 ∩ H) is trivial



or                        (Gi ∩ H)/(Gi − 1 ∩ H) ≅ Gi/Gi − 1.

Therefore, by 7.2, if from the series (b) we delete repetitions of terms, we
obtain a composition series (c) of H. Moreover, H ∩ K is a term of (c) and
each factor of (c) above H ∩ K is isomorphic to a factor of (a) above K.
This establishes (i).

Now we show that

Suppose first that H  G. Then consider any composition factor A/B of G
above K: thus

A and B are subnormal in G, and A/B is simple. By 7.4 (i), (B ∩ H)  (A ∩
H) and

Since H  G, BH  G. Then, since BH  〈H, K 〉 = G,

Therefore, by 7.3,

Hence

Thus (A ∩ H)/(B ∩ H) is simple and is therefore a composition factor of G,
since, by 7.17, A ∩ H is subnormal in G. Hence every composition factor of
G above K is isomorphic to a composition factor of G between H∩K and H.
This establishes (ii) in this special case.

For the general case, we argue by induction on j(G : H) = m, say. If m  1
then H  G and there is nothing more to prove. Therefore we assume that m
> 1 and also that H  G. There is a series



from H to G which is part of a composition series of G. Let L = Hm − 1 ∩ K.
Then

Suppose that L  H. Then let

By 7.17 and 7.22, J is subnormal in G and, by 7.21,

Certainly 〈J, K〉 = 〈H, K〉 = G. Therefore, by the induction
hypothesis,

Since

and all these subgroups are subnormal in G,

Now J  Hm − 1  G and therefore, by 7.21,

Certainly H ∩ L = H∩K, and of course H and L are subnormal in J = 〈H,
L〉. Therefore, by the induction hypothesis,

Now (ii) follows from (iii), (iv) and (v).
Suppose on the other hand that L  H. Then

and so



Since H  G = 〈H, K〉, K  NG(H). Therefore

Hence, by 7.24(ii),

Then let                         H* = 〈H, Hk〉 > H.
Since Hk is subnormal in G (by 335 or 7.24 (i)), H* is subnormal in G, by
7.22; and by 7.21,

Certainly 〈H*, K〉 = 〈H, K〉 = G. Therefore, by the induction
hypothesis,

Now

and all these subgroups are subnormal in G. Therefore

Now Hk and H are subnormal in H*. Moreover, since H  Hm − 1  G, H* 
 Hm − 1 and therefore, by 7.21 and 7.24(i),

Hence, by the induction hypothesis (applied to H* and Hk in place of G and
H) and 7.24(ii),

Since in the present case H ∩ K  K,



These subgroups are subnormal in G, and so

Now (ii) follows from (vi), (vii), (viii), (ix) and (x).
This completes the proof of (ii) in all cases. Together with (i), this gives

the result.

7.26 Corollary. Suppose that G has a composition series and let H and K
be subnormal subgroups of G. Then

Proof. By 7.17 and 7.22, H∩K and 〈H, K〉 are subnormal in G. Since
H∩K  H  G,

and since K  〈H, K〉  G,

Moreover, since H  〈 H, K 〉,

By (i) and 7.25,

343 Suppose that G has a composition series and let H and K be subnormal
subgroups of G.

  (i) Then (〈H, K〉, 1) =  (H, 1) ∪ (K, 1) (cf. 7.26).
 (ii) If H and K are finite then 〈H, K〉 is finite (cf. 71 (ii). Remark. The

statement in (ii) is in fact true without the condition that G has a
composition series. See 344, 345.)



344 Suppose that H, K  G with G = 〈H, K〉.
  (i) Let J = HG, the normal closure of H in G (180). Show that

(Hint. Show that K  NG(J).)
(ii) Prove that if H and K are both finite and H is subnormal in G then G

is finite, (cf. 71, 343. See also 345. Hints. Argue by induction on the defect
of H in G : see 331. Use (i) and induction to show that HG is finite.)

345 Let H, K  G.
(i) Prove that if H is subnormal in G and K  NG(H), then K normalizes

every term of the standard series from G to H. (See 331. Hint. Use an
induction argument.) (ii) Prove that if H and K are both finite subnormal
subgroups of G then 〈H, K〉 is a finite subnormal subgroup of G. (cf.
7.22, 343, 344. Hints. Let L = 〈H, K 〉. Argue by induction on the defect,
n say, of H in L. If n  1, use (i). For n > 1, use 344 and induction to show
that HL is a finite subnormal subgroup of G. Then note that L = HLK.)

346 Suppose that G has a composition series and let H, H*, K, K* be
subnormal subgroups of G with H*  H and K*  K. Then

(Hint. Note that 〈H*, K*〉  〈H, K*〉  〈H, K〉 and apply 7.25
twice.)

347 Let H and K be subnormal subgroups of the finite group G. Then

(This generalizes 159 (ii). Hint. Apply 157, 337, and 346.)

348 Let K be a subnormal subgroup of the finite group G, and let J = KG,
the normal closure of K in G (180), and L = KG, the core of K in G (90).

(i) Prove that  (J, 1) =  (K, 1) and (G, K) = (G, L).

(Hint. Apply 340, 343, and 7.26.)



(ii) Show by an example that it can happen that

349 Let H and K be subnormal subgroups of the finite group G and suppose
that

Then 〈H, K〉 = HK ≅ H × K.
(This generalizes 338. Hint. Use 348, 3.53, 3.54.)

Our next step in the development of the theory of normal structure is to
observe that many of the results obtained are valid more generally for
groups with operators.

7.27 Definitions. A group with operators consists of a group G and a set Ω
(the operator domain) such that, to each g∈G and each ∈Ω, there
corresponds a unique element g ∈G, and such that

We say then that G is an Ω-group.
Let H  G. We say H is a stable (or admissible) subgroup, or explicitly

that H is an Ω-subgroup, if

Note that if H is a stable subgroup of the Ω-group G then Ω is also an
operator domain for H.

7.28 Remarks and examples. (1) If G is an Ω-group then, for each ∈Ω,
the map

defined for all g∈G, is an endomorphism of G (2.18).
If follows that the trivial subgroup 1 is stable; and of course G itself is

certainly stable.



Clearly, any set of endomorphisms of G is a suitable operator domain for
G. However, in 7.27 we do not restrict Ω to be a set of endomorphisms of G
since we wish to allow the possibility that there are distinct elements 1, 
2 of Ω which operate in the same way on G; that is, for which  
for every g∈G. (This is analogous to the situation in chapter 4, where, in
considering the action of a group G on a set X, we do not restrict G to be a
subgroup of ΣX.)

If G is an Ω-group and  ⊂ Ω ⊆ Aut G then the stable subgroups of G
are just the Ω-invariant subgroups in the sense of 3.1.

(2) Trivially, we can consider any group G as an Ω-group with Ω = .
Then every subgroup of G is stable and the theory of the Ω-group G is
simply the familiar theory of G as a group without operators.

(3) G is an operator domain for itself when G acts on itself by
conjugation, as in 4.25. For each x∈G and each g∈G the element of G
which corresponds by the operation of g on x is xg, the conjugate of x by g.
In this case, the stable subgroups of G are just the normal subgroups of G.

(4) Let R be any ring. Then R is an operator domain for R+, the additive
group of R (2.11), by right multiplication: for, by ring axioms,

for all x1, x2∈R+ and a∈R. Then the stable subgroups of R+ are precisely
the right ideals of the ring R.

Similarly, R is an operator domain for R+ by left multiplication, and in
this case the stable subgroups are the left ideals of R.

(5) Let V be a vector space over a field F. Then F is an operator domain
for V+, the additive group of V (2.15), by scalar multiplication: for, by
vector space axioms,

for all υ1,υ2∈V+ and a∈F. Then the stable subgroups are just the sub-
spaces of V.

7.29 Definition. Let G and H be groups with the same operator domain Ω.
Then a homomorphism  : G → H is said to be an Ω-homomorphism if



for all g∈G and ∈Ω. It is immediate from the definition that then Ker 
is a stable normal subgroup of G and Im  is a stable subgroup of H.

7.30. Let G be an Ω-group and suppose that K is a stable normal subgroup
of G. Then Ω is in a natural way an operator domain for the quotient group
G/K: we define

(for all g∈G and ∈Ω).
This is well defined, for if g1, g2∈G and g1K = g2K then

for some k∈K, hence

since k ∈K.
Note that this definition of G/K as an Ω-group makes the natural

homomorphism v : G → G/K an Ω-homomorphism.
We shall now verify that the fundamental theorem on homomorphisms

remains valid for groups with operators.

7.31 (cf. 3.24). Let the set Ω be an operator domain for the groups G and
H, and let  : G → H bean Ω-homomorphism, K = Ker  and v : G → G/K
the natural homomorphism. Then K is stable, G/K is in a natural way an Ω-
group, v is an Ω-homomorphism, and there is an injective Ω-
homomorphism  : G/K → H such that  = v . In particular, Im  and
G/Ker  are Ω-isomorphic Ω-groups.
Proof. In view of the remarks above, it is enough to verify that the injective
homomorphism  : G/K → H defined in 3.24 is an Ω-homomorphism. Let
g∈G and ∈Ω. By definition,

and so ,



since  is an Ω-homomorphism; that is,

Thus  is an Ω-homomorphism.

350 Let G be an Ω-group. If H and K are stable subgroups of G then so are
H∩K, 〈H, K〉 and [H, K].

351 If H is a stable subgroup of an Ω-group G, NG(H) need not be stable
(cf. 176). Show this by means of the following example.

Let G = Σ4 and consider G as an Ω-group, where Ω = { } and  is an
endomorphism of G such that Ker  = A4. Let H be a suitable Sylow 3-
subgroup of G.

352 Let G be an Ω-group. If H is a stable subgroup and K a stable normal
subgroup of G then HK is a stable subgroup of G. Moreover, H ∩ K is a
stable normal subgroup of H and the Ω-groups H/H ∩ K and HK/K are Ω-
isomorphic (see 3.40).

*353 (i) Let G be an Ω-group. Then the set of all Ω-endomorphisms of G
forms a subsemigroup S of the semigroup of all endomorphisms of G (see
2.18). S has an identity element and the group of units of S consists of all Ω-
automorphisms of G. Denote this group by AutΩ (G).

(ii) Consider G as a G-group, as in 7.28 (3). Then

7.32 Remarks and definitions. (1) It is equally straightforward to verify
that all the main results on normal structure of groups remain valid for
groups with operators: thus 3.29, 3.30, 3.38, 3.39, 3.40, 7.7 and 7.9 are true
when, in their statements and proofs, we replace groups by Ω-groups,
subgroups by stable subgroups, homomorphisms by Ω-homomorphisms and
isomorphisms by Ω-isomorphisms (see for instance 352). We shall not write
down explicit proofs but from now on use these results in their operator
versions whenever we need them.



(2) We ought perhaps to say something more about the correct
interpretation of 7.7 and 7.9 for groups with operators. Let G be an Ω-
group. Then an Ω-series of G is a series of G the terms of which are stable
subgroups of G. The definitions of ‘proper’, ‘refinement’ and ‘proper
refinement’ given in 7.1 apply without change. An Ω-composition series of
G is a proper Ω-series of G which has no proper refinement (as an Ω-
series). The definition of ‘equivalence’ of two Ω-series of G is exactly as in
7.6, with the additional requirement that corresponding factors are not
merely isomorphic but Ω-isomorphic. Now the versions of 7.7 and 7.9 for
Ω-groups are clear.

(3) We say that a non-trivial Ω-group G is Ω-simple if the only stable
normal subgroups of G are 1 and G.

Let G be any Ω-group. By previous remarks, we know that the factors of
an Ω-series of G are in a natural way Ω-groups. Then a repetition of the
proof of 7.2 shows that an Ω-series of G is an Ω-composition series of G if
and only if the factors of the series are all Ω-simple.

(4) A simple Ω-group is certainly Ω-simple. However, an Ω-simple Ω-
group need not be a simple group. For instance, let V be a vector space ≠ 0
over a field F and view V+ as an F-group, as in 7.28 (5). Since V+ is abelian,
all its subgroups are normal. The stable subgroups are the subspaces of V.
Thus the F-group V+ is F-simple if and only if the only subspaces of V are 0
and V; that is, if and only if V has dimension 1. Since V+ is abelian, V+ is a
simple group if and only if V+ is finite and of prime order (3.6). Hence, if V
has dimension 1 then V+ is an F-simple F-group which is not a simple
group unless F = Zp for some prime p.

Note in passing that for any finite-dimensional vector space V over F, the
F-group V+ has an F-composition series and the length of any F-
composition series of V+ is equal to the dimension of V. Indeed, the Jordan-
Hölder theorem for groups with operators provides one method of proving
that any two bases of a finite-dimensional vector space contain the same
number of elements.

(5) As another example, consider again a vector space V ≠ 0 over a field
F. Linear maps of V into itself are certainly endomorphisms of V+.
Therefore the ring (V) of all linear maps of V into itself is an operator
domain for V+. As an (V)-group, V+ is (V)-simple; or, equivalently,
since V+ is abelian, the only stable subgroups of the (V)-group V+ are 0



and V+. To see this, consider any non-trivial stable subgroup W of V+. Let 0
≠ w∈W. Then for any υ∈V, there is a linear map  V → V such that υ = w

. Since W is an (V)-subgroup of V+, it follows that v∈W. Hence W = V+.
Note that V+ is (V)-simple without any condition on the dimension of

V, while V+ is a simple group only if V has dimension 1 and F = Zp for
some prime p.

7.33 Definitions. The most important special case for group theory of the
idea of a group with operators occurs when we view G as a G-group, as in
7.28 (3). There is a special terminology for this case.

A G-series of G is called a normal series of G. Thus a normal series of G
is simply a series of G in which each term is normal in G.

A G-composition series of G is called a chief series (or principal series)
of G. The factors of a chief series of G are called chief factors of G.

By Schreier’s theorem for groups with operators, any two normal series
of G have equivalent refinements: these are normal series of G the factors
of which are G-isomorphic in pairs. Also, if G has a chief series then every
proper normal series of G has a refinement which is a chief series of G; and,
by the Jordan-Hölder theorem for groups with operators, any two chief
series of G are equivalent.

Note that every finite group G has a chief series. This is clear, for if G is
finite, the process of refining a proper normal series of G must lead in a
finite number of steps to a chief series of G.

7.34. Unlike composition factors, chief factors of a group need not be
simple groups. For example, let G = A4, the alternating group of degree 4.
The only non-trivial proper normal subgroup of G is the unique subgroup V
of order 4: see 185, 288. Thus

is a chief series of G. In this example, the chief factor G/V of G is simple
but the chief factor V/1 is not.

354 Suppose that G has a chief series



where n is a positive integer. Then Gn/Gn − 1 is simple (although the factors
Gi/Gi − 1 with 0 < i < n need not be simple: see 7.34).

355 If G has a composition series then G has a chief series.
(Hint. Any proper normal series of G has length at most equal to the
composition length of G. Remark. It is not true that if G has a chief series
then G has a composition series: see 534.)

356 Let H/J and K/L be G-isomorphic factors of normal series of G. If H/J 
 Z(G/J) then K/L  Z(G/L).

We shall need information about the structure of chief factors of finite
groups. We note some preliminary results.

7.35 Definition. Let 1 < K  G. Then K is said to be a minimal normal
subgroup of G if there is no normal subgroup L of G such that 1 < L < K.
(Compare this with the definition of ‘maximal subgroup’ in 140. Just as a
maximal subgroup is a subgroup maximal among proper subgroups, so a
minimal normal subgroup is a normal subgroup minimal among all non-
trivial normal subgroups.)

7.36. Suppose that G has a chief series and let H, K be normal subgroups of
G with K < H. Then H/K is a chief factor of G if and only if H/K is a
minimal normal subgroup of G/K.
Proof. If H/K is a chief factor of G, it follows immediately from 3.30 that
H/K is a minimal normal subgroup of G/K.

Suppose conversely that H/K is a minimal normal subgroup of G/K. By
the analogue of 7.9 (i) for groups with operators, there is a chief series of G
of which both K and H are terms. By 3.30, no term of this chief series lies
strictly between K and H. Therefore H/K is a chief factor of G.

7.37 Definition. A non-trivial group G is said to be characteristically
simple if the only characteristic subgroups of G are 1 and G.

Simple groups are certainly characteristically simple, but a
characteristically simple group is not necessarily simple, as we shall see
presently.



7.38. Suppose that K is a minimal normal subgroup of G. Then K is a
characteristically simple group. In particular (by 7.36), if G has a chief
series then every chief factor of G is characteristically simple.

Proof. Let L be a characteristic subgroup of K. Then, by 3.15, L  G.
Therefore, since L  K and K is minimal normal in G, either L = 1 or L = K.
Thus K is characteristically simple.

We defer the main result on the structure of characteristically simple
groups to the next chapter (see 8.10). Here we shall describe the
characteristically simple finite abelian groups.

7.39 Definition. An abelian group A is said to be elementary if there is a
prime p such that ap = 1 for every a∈A.

7.40. Let A be an abelian group. Then the following two statements are
equivalent:

  (i) A is elementary.
 (ii) There is a prime p and a vector space V over Zp such that A ≅ V+.

Proof. Suppose that A is elementary: thus there is a prime p such that

for every a∈A. We define a vector space V over Zp as follows (cf. 42). The
elements of V are the elements of A. The vector sum of two elements of V is
defined to be the product of the elements in A. The elements of Zp are
residue classes of integers mod p. Let ∈Zp and let n be an integer in the
residue class . Then, for each a∈V, the scalar product a is defined to be
the element an∈A. This does not depend on the choice of n in the residue
class n because ap = 1. Now it is easy to check that V is a vector space over
Zp; and clearly, as groups,

Conversely, let V be a vector space over Zp. Then V+ is an abelian group.
Moreover, since pυ = 0 for every υ∈V, V+ is elementary. Hence if A ≅ V+

then A is elementary.



7.41. Let A be a finite abelian group, A ≠ 1. Then A is characteristically
simple if and only if A is elementary.
Proof. Suppose that A is elementary. By 7.40, we may suppose that A = V+,
where V is a vector space over Zp for some p; and, since A is finite, V is
finite-dimensional. Suppose that W is a non-trivial characteristic subgroup
of V+ and let 0 ≠ w∈W. Let 0 ≠ υ∈V+. Then υ and w are elements of bases
of V. Hence there is an invertible linear map  : V → V such that υ = w .
Then since ∈Aut V+ and W is characteristic in V+, υ∈W. Hence W = V+.
Thus V+ is characteristically simple.

Suppose conversely that A is characteristically simple. Let p be a prime
divisor of | A | and let

Since A is abelian, it is clear that B  A. Let b∈B and ∈Aut A. Then

so that            
Hence B is characteristic in A. By 107 or 5.11, there is in A an element a of
order p. Then

Therefore B ≠ 1. Since A is characteristically simple, it follows that

Thus A is elementary.

357 Suppose that K is a minimal normal subgroup of G. Then either K is
abelian or Z(K) = 1.

358 Suppose that K and L are distinct minimal normal subgroups of G.
Then KL ≅ K × L. (Hint. See 3.54.)

359 Suppose that G = HK, where H < G and K is an abelian minimal
normal subgroup of G. Then H is a maximal subgroup of G (see 140) and H
∩ K = 1. Moreover, if K  Z(G) then H  G and G ≅ H × K.



(Hint. If H  J  G, apply Dedekind’s rule and show that J ∩ K  G.)

360 Z+ has no minimal normal subgroup.

*361 (i) Let F be any field. Then the abelian group F+ is characteristically
simple. (Hint. See 2.11.)

(ii) Z+ is not characteristically simple.

362 Suppose that G is characteristically simple. Then G × G is also
characteristically simple. (Hints. Let K be a characteristic subgroup of G ×
G and let G1 = G × 1, G2 = 1 × G. Show that K ∩ G1 is characteristic in G1;
see 94. If G1  K then K = G × G; see 3.12. Then it may be assumed that K
∩ G1 = 1 = K ∩ G2. Let 1 be the projection G × G → G with Ker 1 = G2 :
see 3.11. Let K1 = K 1. Show that K1 is characteristic in G. If K1 = 1 then K
= 1. Show that if K1 = G then Aut G = 1. Then use the result stated in 52.)

363 Let L  G. Then L is said to be a maximal normal subgroup of G if
there is no normal subgroup K of G such that L < K < G (cf. 140, 7.35).

(a) Prove that a normal subgroup L of G is a maximal normal subgroup
of G if and only if G/L is simple.

(b) Suppose that L is a maximal normal subgroup of G. Suppose also that
there is a subnormal subgroup H of G such that

(i) H ∩ L, and
(ii) whenever J is a subnormal subgroup of G such that J < H, J  L.
(Remark. If G is finite, there is such a subgroup H.) Prove that H ∩ L is

the unique maximal normal subgroup of H.
We now introduce the classes of nilpotent and soluble groups.

7.42 Definitions. (i) A factor H/K of a series of G is said to be a central
factor of G if K is normal in G and H/K  Z(G/K).

(ii) G is said to be nilpotent if it has a series all of whose factors are
central factors of G. Such a series is called a central series.

(iii) G is said to be soluble (or, by American authors, solvable) if it has a
series all of whose factors are abelian. We shall call such a series an abelian
series. Groups which are not soluble are said to be insoluble.



Note that a central series is necessarily a normal series. An abelian series
need not be a normal series.

The notion of solubility of groups was formulated by Galois in the
earliest stages of the development of group theory. Indeed, the name
‘soluble’ reflects the intimate connexion discovered by Galois between the
possibility of solving polynomial equations by radicals and the solubility (in
the sense defined above) of the groups associated by Galois with these
equations. (See the references to Galois theory mentioned in 2.25.)

7.43. Not all groups are soluble, for it is clear that non-abelian simple
groups are insoluble.

A central series is certainly an abelian series and therefore all nilpotent
groups are soluble. However, soluble groups are not necessarily nilpotent.
For example, let G = Σ3 and let K be the unique subgroup of G of order 3
(see 3.7). Then

is an abelian series of G, and therefore Σ3 is soluble. On the other hand, Σ3
is not nilpotent, for Z(Σ3) = 1 and therefore Σ3 cannot have a central series.

Clearly all abelian groups are nilpotent. However, there are also non-
abelian nilpotent groups, for we show now that all finite p-groups are
nilpotent.

7.44 Theorem. Let G be a finite p-group. Then G is nilpotent.
Proof. We argue by induction on | G|. The assertion is trivial if | G | = 1.
Therefore we assume that G ≠ 1 and, inductively, that all finite p-groups
which have smaller orders than G are nilpotent. By 4.28, Z(G) ≠ 1. Thus |
G/Z(G)| < | G |. Since G/Z(G) is a finite p-group, it follows by the inductive
assumption that G/Z(G) is nilpotent. Now it is clear by 3.30 that G is
nilpotent. This completes the induction argument.

7.45 Lemma. A series of G, say

is a central series if and only if for each i = 1,…, n,



(cf. 162).
Proof. If the given series is a central series then, for each i = 1,…, n,

Then, for any x∈Gi, and any y∈G,

that is                  
Hence                        
It follows that             .

Suppose conversely that for each i = 1,…, n,

Let x∈Gi and y∈G. Then

In particular, since Gi − 1  Gi, if x∈Gi − 1 then xy∈Gi − 1. Thus Gi − 1  G.
Moreover,

for every x∈Gi and y∈G, and so

Thus the series is a central series.

7.46 Theorem, (i) If G is nilpotent then all subgroups and all quotient
groups of G are nilpotent.

(ii) If G is soluble then all subgroups and all quotient groups of G are
soluble.
Proof Consider a series of G, say



Let H  G and K  G. Then, by 7.4(i),

and by 7.4(ii) and 3.30,

Suppose first that G is nilpotent and that (a) is a central series. Then, by
7.45, for each i = 1,…, n,

Hence

and by 164,

Therefore, by 7.45, (b) and (c) are central series, so that H and G/K are
nilpotent.

Now suppose that G is soluble and that (a) is an abelian series. Then, by
7.4(i), for each i = 1,…, n,

so that (Gi ∩ H)/(Gi − 1 ∩ H) is abelian. Also, by 3.30 and 7.4(ii), GiK/K/Gi

− 1K/K ≅ GiK/Gi − 1 K ≅ Gi/Gi − 1(Gi ∩ K) ≅ a quotient group of Gi/Gi − 1,
so that GiK/K/Gi − 1K/K is abelian. Thus (b) and (c) are abelian series, so
that H and G/K are soluble.

The class of soluble groups has the important property that every
‘extension’ of a soluble group by a soluble group is also soluble. This
property is not shared by the class of nilpotent groups.

7.47 Theorem. Let K  G. If K and G/K are soluble then G is soluble.
Proof. Suppose that K and G/K are soluble. Then K has an abelian series



and G/K has an abelian series

Then, by 3.30,

and since, for each i = 1,…, n, Gi/Gi − 1 ≅ Gi/K/Gi − 1/K, this series of G is
abelian. Hence G is soluble.
Remark. A non-nilpotent group G can have a normal subgroup K such that
K and G/K are both nilpotent. For example, let G = Σ3 and let K be the
unique subgroup of G of order 3. Then K and G/K are both abelian, hence
nilpotent; but, as we have noted in 7.43, G is not nilpotent.

7.48 Corollary. (i) Suppose that H and K are soluble normal subgroups of
G. Then HK is a soluble normal subgroup of G.

(ii) Every finite group has a soluble radical (see 3.45).
Proof. (i) By 3.39, HK  G, and, by 3.40,

Since H is soluble, H/H∩K is soluble, by 7.46. Therefore, since K and
HK/K are soluble, 7.47 shows that HK is soluble.

(ii) Let G be a finite group and let K be a soluble normal subgroup of G
of largest possible order. Then, if H is any soluble normal subgroup of G,

and, by (i), HK is a soluble normal subgroup of G. Hence, by choice of K, K
= HK and therefore H  K. Thus K has the right property to be the soluble
radical of G.

The argument above fails if we try to replace ‘soluble’ by ‘nilpotent’.
Nevertheless, finite groups do have nilpotent radicals. This result lies rather
deeper than 7.48 and we defer the proof to 7.63.



*364 Let n be a positive integer. Then Σn is soluble if n  4, and insoluble if
n  5.

365 The groups GL2(Z2) and GL2(Z3) are soluble.
(Hint. See 44 and 193. Remark. Let n be an integer, n > 1, and F a field.

Since the group GLn(F) has a section isomorphic to PSLn(F), it follows
from 3.61 and 7.46 that GLn(F) is insoluble whenever n > 2 and also when
n = 2 and | F | > 3.)

366 (a) Every non-trivial nilpotent group has non-trivial centre (cf. 4.28).
(b) Let G be a finite group. Then the following two statements are

equivalent:
(i) G is nilpotent.
(ii) Every non-trivial quotient group of G has non-trivial centre.

367 Let n be an even positive integer. Then every group of order n is
nilpotent if and only if n is a power of 2. (Hint. See 124.)

368 (i) Every quotient group of a finitely generated soluble group is finitely
generated and soluble.

(ii) Let K  G. If K and G/K are both finitely generated and soluble then
G is finitely generated and soluble.

(iii) A normal subgroup of a finitely generated soluble group need not be
finitely generated. (Hint. See 3.37, 145, 146.)

369 Let  be a class of groups with the following two properties.
(i) Every quotient group of an -group is an -group.
(ii) Whenever J  H and both J and H/J are -groups, H is an -group.
Then the product of two normal -subgroups of G is a normal -

subgroup of G; and every finite group has an -radical.
370 Let  denote the class of all groups with trivial centre.

(i) Prove that if J  H and both J and H/J are -groups then H is an -
group.



(ii) Let G = Σ3 × C2. Show that | O2(G)| = 3 and that G has just three
subgroups of index 2, of which one is isomorphic to C6 while the other two
are isomorphic to Σ3. Hence show that G has normal -subgroups H and K
such that G = HK, but G is not an -group.
(Remark. This shows that in 369, property (i) is needed. Hint. See 60.)

371 Let H  G. Suppose that H is a maximal soluble subgroup of G; that is,
H is soluble and there is no soluble subgroup of G which contains H
properly (cf. 235 (ii)). Then NG (H) = H.

7.49 Theorem. Suppose that G = H × K.
(i) If H and K are both nilpotent then G is nilpotent.
(ii) If H and K are both soluble then G is soluble.

Proof (i) If H and K are both nilpotent then there are central series

and 

By inserting repetitions of terms if necessary, we may assume without loss
of generality that m = n. Then, by 111,

and, by 165 and 7.45, for each i = 1,…, n,

Hence, by 7.45, G is nilpotent.
(ii) Suppose that H and K are both soluble. We can follow a similar

argument to (i). Alternatively, we can apply 7.48: for, by 2.33 and 3.12,

and clearly

7.50 Theorem. Suppose that H and K are normal subgroups of G.
  (i) If G/H and G/K are both nilpotent then G/(H∩K) is nilpotent.
 (ii) If G/H and G/K are both soluble then G/(H∩K) is soluble.



(iii) Every finite group has a nilpotent residual and a soluble residual
(see 3.45).
Proof (i) By 109, G/(H∩K) can be embedded in (G/H) × (G/K). Hence if
G/H and G/K are both nilpotent, then it follows from 7.49 and 7.46 that
G/(H∩K) is nilpotent.

(ii) A similar argument to (i) is applicable. Alternatively, we may argue
as follows. By 3.40,

Therefore, if G/K is soluble, it follows from 7.46 that H/(H ∩ K) is soluble.
If G/H is also soluble, 3.30 and 7.47 show that G/(H ∩ K) is soluble.

(iii) Let G be a finite group and let K be a normal subgroup of G of
smallest possible order such that G/K is nilpotent. Then, if H  G and G/H
is nilpotent,

and, by (i), G/(H∩K) is nilpotent. Hence, by choice of K, H∩K = K and so
K  H. Thus G/K is the nilpotent residual of G. An exactly similar
argument, using (ii), shows that G has a soluble residual.

We shall show that among all the abelian series of a soluble group there
is one which descends most rapidly; and that among all the central series of
a nilpotent group there is one which descends most rapidly and one which
ascends most rapidly.

7.51 Definition. We define subgroups G(n) of G, one for each non-negative
integer n, recursively as follows:

and for each integer n > 0,

Thus G(1) = G′. It is customary to write G(2) = G″ and G(3) = G′″.
Every G(n) is characteristic in G : this follows from 3.51, by induction on

n. By definition,



This descending sequence of characteristic subgroups of G is called the
derived series of G.

If, for some n, G(n) = G(n + 1) then clearly G(n) = G(r) for every integer r 
n. In this case we say that the derived series terminates. The derived series
of a finite group must terminate; but if G is infinite, the derived series of G
need not terminate and then is not strictly a series in the sense of 7.1.
However, we show that if G is soluble then the derived series of G
terminates in 1.

7.52 Theorem, (i) G is soluble if and only if G(n) = 1 for some integer n.
(ii) Suppose that G is soluble and let n be the least integer such that G(n)

= 1 Then n is called the derived length of G. For any abelian series of G,
say

for each i = 0, 1, …, r. In particular, r  n.
Proof. If G(n) = 1 for some n, then

is a series of G, indeed a normal series of G; and, by 3.52, each factor G(i −

1)/G(i) is abelian (i = 1,…, n). Therefore G is soluble.
Suppose conversely that G is soluble, and let

be an abelian series of G. We prove, by induction on i, that

This is trivial for i = 0. Assume that i > 0 and, inductively, that

Since Gi − 1  Gi and Gi − 1/Gi is abelian, 3.52 shows that



Thus the induction argument goes through. In particular, since 1 = Gr 
G(r), G(r) = 1.
Remarks. The statement in (ii) is expressed briefly by the remark that the
derived series of a soluble group is its most rapidly descending abelian
series. Note that this result shows that a soluble group, which is defined to
be a group with an abelian series, actually has an abelian normal series.
Note also that the soluble groups of derived length 1 are just the non-trivial
abelian groups. We shall show in 9.23 that there are soluble groups of
derived length n for every positive integer n.

372 Find the derived lengths of Σ3, A4, Σ4 (see 364 and 7.46).

*373 Let n and m be positive integers.
  (i) Suppose that G is soluble, of derived length n. Every subgroup and

every quotient group of G has derived length at most n.
 (ii) Let K  G. Suppose that K is soluble, of derived length n, and that

G/K is soluble, of derived length m. Then G has derived length at most n +
m.

(iii) Let G = H × K. Suppose that H is soluble, of derived length m, and
that K is soluble, of derived length n. Then the derived length of G is equal
to max {m, n}.

(See 7.46, 7.47, 7.49.)

*374 (a) Every non-trivial soluble group has a non-trivial abelian normal
subgroup and a non-trivial abelian quotient group.

(b) Let G be a finite group. Then the following three statements are
equivalent:

 (i) G is soluble.
(ii) Every non-trivial normal subgroup of G has a non-trivial abelian

quotient group.
(iii) Every non-trivial quotient group of G has a non-trivial abelian

normal subgroup. (cf. 366.)

375 Let H  G.



  (i) Then HGG′ = HG′ where HG denotes the normal closure of H in G
(see 180).

(ii) Suppose that G is soluble. Then HG = G if and only if HG′ = G.

7.53 Definitions. We define subgroups Γn(G) and Zn(G) of G recursively as
follows. Let Γ1(G) = G and Z0(G) = 1. Then, for each integer n > 1, Γn(G) =
[Γn − 1(G), G], and for each integer n > 0, Zn(G)/Zn − 1(G) = Z(G/Zn − 1(G)).
Then

and                         

The descending sequence (a) is called the lower central series of G and the
ascending sequence (b) is called the upper central series of G.

The terms of (a) and (b) are characteristic subgroups of G : this follows
by induction on n, using 3.51 for (a) and using 118 and 136 for (b). The
factors of (a) and (b) are all central, by 162 for (a) and immediately by the
definition of (b). But (a) and (b) are not central series of G in the sense of
7.42 if G is non-nilpotent, since they do not terminate in 1 and G,
respectively (and, indeed, they need not terminate if G is infinite). However,
they do if G is nilpotent, as we now show.

Note that the numbering of the terms of (a) starts from 1 while the
numbering of the terms of (b) starts from 0: this is conventional. Note also
that by definition Γ2(G) = G′. However, in general, Γ3(G) ≠ G″ : see 376.

7.54 Theorem, (a) The following three statements are equivalent:
  (i) G is nilpotent.
 (ii) Γn(G) = 1 for some integer n.
(iii) Zn(G) = G for some integer n.
(b) Suppose that G is nilpotent. Then for any central series of G, say

Furthermore, the least integer c such that Γc + 1(G) = 1 is equal to the least
integer c such that Zc(G) = G: this integer c is called the class of the
nilpotent group G.



Proof. If Γn(G) = 1 for some n then

is a central series of G, and so G is nilpotent.
Similarly, if Zn(G) = G for some n, then

is a central series of G, so that G is nilpotent.
Now suppose conversely that G is nilpotent and let

be a central series of G. We prove first by induction on i that

for each i = 0, 1,…, r. This is trivial for i = 0. Assume that i > 0 and,
inductively, that

Then

By hypothesis, Gi/Gi − 1  Z(G/Gi − 1). Therefore, by 151,

Hence                       Gi  Zi(G).
Thus the induction argument goes through. In particular, since G = Gr 
Zr(G), Zr(G) = G.

Now we prove by induction on j that

for each j = 0, 1,…, r. This is trivial for j = 0. Assume that j > 0 and,
inductively, that



By 7.45,                 [Gr − j+1, G]  Gr − j.
Hence        
Again the induction argument goes through. In particular, since Γr+1(G) 
G0 = 1, Γr + 1(G) = 1.

Let c be the least integer such that ZC(G) = G. Then we may choose Gi =
Zi(G) for i = 0, 1,…, c and r = c. By what we have proved, it follows that Γc

+ 1 (G) = 1. We assert that if c > 0, Γc(G) ≡ 1. Suppose to the contrary that
Γc(G) = 1. Then we may choose Gi = Γc − i(G) for i = 0, 1,…, c − 1 and r = c
− 1. But then, by what we have proved, it follows that Zc − 1(G) = G; this is
contrary to the definition of c. Thus Γc(G) ≠ 1 and c is also the least integer
such that Γc+1(G) = 1.
Remarks. The theorem shows that if G is a nilpotent group then the lower
central series of G is its most rapidly descending central series and the
upper central series of G is its most rapidly ascending central series. Note
that the nilpotent groups of class 1 are the non-trivial abelian groups.

*376 (i) For every positive integer n, G(n − 1)  Γn(G).
(ii) Give an example of a group G such that G″ Γ3(G).

377 (i) Suppose that | G | = pn, where n is an integer, n  2. Then G is
nilpotent of class at most n − 1.

(ii) Let n be an integer, n  3. Then the dihedral group  of order 2n

has class n − 1. (Hint. See 124.)

378 Let n and m be positive integers.
(i) Suppose that G is nilpotent of class n. Every subgroup and every

quotient group of G has class at most n.
(ii) Let G = H × K. Suppose that H is nilpotent of class m and K is

nilpotent of class n. Then the class of G is equal to max {m, n}.
(See 7.46, 7.49: cf. 373.)

We consider next the composition and chief factors of finite nilpotent and
soluble groups.



7.55 (cf. 3.6). The only soluble simple groups are the groups of prime
orders.
Proof. Let G be a soluble simple group. Since G ≠ 1, 7.52 shows that G′ <
G. Then, since G′  G and G is simple, G′ = 1. Thus G is abelian. It now
follows from 3.6 that G is finite and of prime order.

7.56 Theorem. Let G be a finite group. Then the following three statements
are equivalent:

  (i) G is soluble.
 (ii) Every composition factor of G has prime order.
(iii) Every chief factor of G is elementary abelian.

Proof. Suppose that G is soluble. A composition factor H/J of G is a
quotient group of a subgroup of G and is therefore soluble, by 7.46. But
also, by 7.2, H/J is simple. Therefore, by 7.55, H/J has prime order.

Let n be the derived length of G. Then the derived series of G,

is a proper normal series of G, which can therefore be refined to a chief
series of G (by the version of 7.9 for groups with operators). Since the
factors of the derived series are abelian, so are the factors of this chief
series. Moreover, by the Jordan-Hölder theorem, every chief factor of G is
isomorphic to one of the factors of this particular chief series. Thus all chief
factors of G are abelian. By 7.38, they are also characteristically simple.
Hence, by 7.41, they are elementary.

Suppose conversely that either every composition factor of G has prime
order or every chief factor of G is elementary abelian. Then either a
composition series or a chief series of G is an abelian series of G. Hence G
is soluble.
Remarks. The theorem shows in particular that a finite soluble group has a
series all of whose factors are cyclic. This is not true in general for infinite
soluble groups: see 387.

A finite soluble group does not in general have a normal series all of
whose factors are cyclic: 7.34 shows this. See also 389.

7.57. Suppose that G has a chief series. Any central chief factor of G is
finite and has prime order.



Proof. In view of 7.36, it is enough to consider a minimal normal subgroup
L of G such that L  Z(G) and to show that | L | = p for some prime p. Since
L  Z(G) every subgroup of L is normal in G (118). Therefore, since L is
minimal normal in G, the only subgroups of L are 1 and L. It follows (29)
that | L | = p for some prime p.

7.58 Theorem. Let G be a finite group. Then the following two statements
are equivalent:

  (i) G is nilpotent.
 (ii) Every chief factor of G is central

Proof. Suppose that G is nilpotent. Since quotient groups of nilpotent
groups are nilpotent (7.46), it is enough, by 7.36, to prove that every
minimal normal subgroup of G lies in the centre of G. Let L be a minimal
normal subgroup of G. Then, by 3.51 and 3.53,

Since L is minimal normal in G, it follows that either

Suppose that [L, G] = L. Then we show by induction on n that for every
positive integer n,

This is trivial for n = 1. Assume that n > 1 and, inductively, that

Then

This completes the induction argument. Since G is nilpotent, 7.54 shows
that, for some n,

Thus it follows that L = 1. This is in contradiction to the definition of L.
Therefore [L, G] = 1; that is, L  Z(G) as required.



If, conversely, every chief factor of G is central then a chief series of G is
a central series of G, and so G is nilpotent.
Remarks. By 7.57 and 7.58, every chief factor of a finite nilpotent group has
prime order. However, it is not true that if every chief factor of a finite
group G has prime order then G is nilpotent: for example, let G = Σ3 and
see 7.43. The implication (i) ⇒ (ii) in 7.58 can also be proved by applying
the Jordan-Hölder theorem for chief series, together with 356.

379 Let G be a finite group and suppose that  where s,
m1,…, ms are positive integers and p1,…, ps distinct primes. Then G is

soluble if and only if the composition length of G is .

380 Let G be a soluble group. Then G has a composition series if and only
if G is finite (cf. 320).

*381 Let G be a finite group.
(a) If G is soluble and non-trivial then there are prime divisors p, q of | G

| such that 1 < Op(G) and Oq(G) < G (Possibly p = q.)
(b) The following three statements are equivalent:
(i) G is soluble.
(ii) For every proper normal subgroup K of G, there is a prime divisor p

of | G/K | such that K/K < Op(G/K).
(iii) For every non-trivial characteristic subgroup K of G, there is a prime

divisor q of | K | such that Oq(K) < K.
(Hints. To show that (ii) ⇒ (i) and (iii) ⇒ (i) argue by induction on | G |.
Use 93 and 156.)

382 Let p and q be distinct primes and let  = {p, q}. Then the following
two statements are equivalent:

(i) The only finite simple -groups are the groups of orders p and q.
(ii) Every finite -group is soluble.

(Remark. Both these statements are true. They are equivalent versions of
the theorem of Burnside mentioned after 4.29.)

*383 The following two statements are equivalent:



  (i) Every non-abelian finite simple group has even order.
 (ii) Every group of odd order is soluble.

(Remark. Both these statements are true. They are equivalent versions of
the theorem of Feit and Thompson quoted in 1.12.)

384 If G is insoluble and | G |  100 then G ≅ A5. (Hint. Apply 5.30.)

385 Let G = GL3(Z2).
  (i) Then | G | = 168 = 23 × 3 × 7 (see 2.16, 2.17).
 (ii) A group of order 168 which is not simple must be soluble. (Hint. Use

384.)
(iii) Find elements in G of orders 3 and 7. Show that G does not have a

normal subgroup of order either 3 or 7. Deduce that if G is soluble then G
has a non-trivial abelian normal 2-subgroup A. (Hint. Note that if G had a
normal subgroup of order 3 it would be the unique Sylow 3-subgroup of G;
similarly with 7 in place of 3.)

(iv) Let

Deduce from (iii) that if G is soluble then g∈A. Show that g does not
commute with every conjugate of g in G. (Hint. See 120, 252(iv), 260 and
5.8.)

(v) Conclude that G is simple.

386 (i) If G is insoluble and | G |  200 then | G | = 60 or 120 or 168 or 180.
(Hint. See 296, 384.)

(ii) There are insoluble groups of orders 60, 120, 168 and 180.

387 A group is said to be polycyclic if it has a series all of whose factors are
cyclic. Thus every polycyclic group is soluble and, by 7.56, every finite
soluble group is polycyclic.

(i) Let G be a polycyclic group. Suppose that G has a series of length n,
all of whose factors are cyclic, where n is a positive integer. Then G is an n-
generator group. Moreover, every subgroup and every quotient group of G



has a series of length n, all of whose factors are cyclic; thus all subgroups
and all quotient groups of G are n-generator polycyclic groups.

(ii) Let K  G. If K and G/K are both polycyclic then G is polycyclic.
(iii) Not every finitely generated soluble group is polycyclic. (Hint. See

368.)

388 (a) Let G be an n-generator abelian group, where n is a positive integer.
Then G is polycyclic (387) and all subgroups of G are n-generator groups.

(b) The following three statements are equivalent:
  (i) Every normal subgroup of G is finitely generated and soluble.
 (ii) G is polycyclic.
(iii) Every subgroup of G is finitely generated and soluble.

(Hint. To prove that (i) ⇒ (ii), consider the derived series of G and apply
(a) and 387 (ii).)

*389 A group is said to be supersoluble if it has a normal series all of
whose factors are cyclic. Thus a supersoluble group is in particular
polycyclic (387); though not conversely, as 7.34 shows.

(i) If G is supersoluble then all subgroups and all quotient groups of G
are supersoluble.

(ii) Let G = H × K. If H and K are both supersoluble then G is
supersoluble.

(iii) Show by an example that a non-supersoluble group G can have a
normal subgroup K such that K and G/K are both supersoluble.

(iv) Every finite nilpotent group is supersoluble. Show by an example
that not every finite supersoluble group is nilpotent.

(v) Suppose that G is finite. Then G is supersoluble if and only if every
chief factor of G has prime order.

*390 (i) Let K  G and K  H  G. The centralizer of H/K in G is defined
to be the subgroup J of G such that K  J and J/K = CG/K(H/K). We write J
= CG(H/K). Then also CG(H/K) = {g∈G : [g, h]∈K for all h∈H} (cf.
162(ii)). Moreover, if H  G then CG(H/K)  G and G/CG(H/K) can be
embedded in Aut(H/K).
(Hint. Apply 3.30 and 4.36.)

(ii) Suppose that there is a normal series of G,



such that G1 = G′ and, for each i  1, Gi/Gi+1 is cyclic. Then G′ is nilpotent.
(Hint. Apply (i), 4.38, 3.52 and 7.45.)

(iii) If G is supersoluble (389) then G′ is nilpotent. (Hint. Apply
Schreier’s, theorem for groups with operators, and (ii).)

We shall deal with the arithmetical structure of finite nilpotent and
soluble groups in chapter 11.

7.59 Theorem. Let G be a nilpotent group and let the class of G be c. Then,
for every subgroup H of G, there is a series of length c from H to G. In
particular, every subgroup of G is subnormal in G. (Note that this result,
together with 7.44, gives another proof of 7.14.)
Proof. For each integer i  0, let Zi = Zi(G). Then (see 7.54)

This is a normal series of G, so that, by 3.38,

Since the centre of a group normalizes every subgroup of the group and
since, by definition, Zi/Zi − 1 = Z(G/Zi − 1), for each i = 1,…, c,

Hence

and so, by 3.30, for each i = 1,…, c,

Thus (a) is a series of length c from H to G.

7.60. One might ask conversely whether a group in which every subgroup is
subnormal is necessarily nilpotent. We shall prove in 11.3 that this is true
for finite groups. The general question remained for long unresolved until
in 1968 it was settled negatively by H. Heineken and I. J. Mohamed [a 54].



They proved that there are infinite soluble groups G, of derived length 2,
with Z(G) = 1, hence which are not nilpotent, but such that all proper
subgroups are nilpotent and subnormal in G.

All subgroups of an abelian group A are normal in A. We know also that
there is a non-abelian group in which all subgroups are normal, namely the
quaternion group Q8 : see 181. There is a classical result, due to Dedekind,
giving a complete description of the non-abelian groups in which all groups
are normal: see Huppert [b21] p. 308, theorem 3.7.12, or Schenkman [b35]
p. 195, theorem 6.4.g, or Scott [b36] p. 253, theorem 9.7.4, or Zassenhaus
[b41] p. 159, §4.6. Such groups are nilpotent of class 2. Building on this
result, J. E. Roseblade [a81] proved that if G is any group for which there is
a positive integer n such that for every subgroup H of G there is a series of
length n from H to G then G is nilpotent and the class of G is bounded
above by a function of n. This theorem generalizes part of the result to be
proved in 11.3.

7.61 Definition. For the purpose of proving the next major result, it is
convenient to define higher commutators. If H, J, K are subgroups of G
then we may have [[H, J], K] ≠ [H, [J, K]]: see 393. In order to simplify
notation, we adopt the convention that [H, J, K] = [[H, J], K]. This is
customary.

Let n be a positive integer and let G1, G2,…, Gn be subgroups of G (not
necessarily distinct). Then we define

For instance, with this notation, for each positive integer n,

where on the right G appears n times.

7.62 Lemma. Let r, s be positive integers such that r  s, and let G1, G2,…,
Gs, H, K be normal subgroups of G. Then



Proof. The assertion is trivial if r = s = 1. Suppose first that r = s > 1, and let
J = [G1, G2,…, Gr − 1]. Then

Next suppose that r = 1 < s. Then

Now we consider the general case. By (i) and (ii), we may assume that 1
< r < s. Then

The following important result was established by Fitting in 1938.

7.63 Theorem (H. Fitting [a27]). (i) Suppose that H and K are nilpotent
normal subgroups of G. Then HK is a nilpotent normal subgroup of G.
Moreover, if H, K and HK have classes a, b and c, respectively, then c  a +
b.

(ii) Every finite group has a nilpotent radical.
Proof, (i) By hypothesis (see 7.54),

We wish to show that Γa+b+1 (HK) = 1. By 7.62, for any positive integer n,



Thus, by repeated application of 7.62, Γn(HK) can be expressed as a product
of 2n commutators [L1, L2,…, Ln], where, for each i = 1,…, n, Li is either H
or K.

Let r be a positive integer. Since H  G and Γr(H) is characteristic in H,
Γr(H)  G, by 3.15. Hence, by 3.53,

Suppose that in a particular commutator [L1, L2,…, Ln], r of the Li’s are
equal to H and n − r are equal to K. Then it follows from the last inclusion
that

Similarly, if r < n then

Now we choose n = a + b +1. Then, for any particular [L1, L2,…, Ln],
either r  a + 1 or n − r  b + 1. In the former case, Γr(H) = 1, while in the
latter case, Γn − r(K) = 1. Hence in any case

This is true for every one of the 2n commutators in the product expression
for Γn(HK) = Γa + b + 1(HK). Hence

and therefore HK is nilpotent of class at most a + b.
(ii) This follows from (i) by an exactly similar argument to the deduction

of (ii) from (i) in 7.48, with ‘soluble’ replaced by ‘nilpotent’.

7.64 Definition. The nilpotent radical of a finite group G is denoted by
F(G) and called the Fitting subgroup of G. Note that F(G) is a characteristic



subgroup of G : see 160.

391 Suppose that G is nilpotent.
  (i) If H < G then H < NG(H) (cf. 5.6).
 (ii) If 1 < K  G then [K, G] < K and K ∩ Z(G) ≠ 1. (cf. 5.8. Hint.

Consider the subgroups Kn, where K1 = K and, for each integer n > 1, Kn =
[Kn − 1, G].)

392 Suppose that A is a maximal abelian normal subgroup of the nilpotent
group G. Then A is a maximal abelian subgroup of G.
(See 235, 251. Hint. Use 391 (ii) in place of 5.8.)

*393 Let G = Σ3. Show that there are subgroups H, J, K of G such that

394 If G has abelian normal subgroups H and K such that G = HK then G is
nil-potent of class at most 2. (Remark. G need not be abelian: see 171, 181.)

395 Let G be a finite group.
  (i) If K  G then F(K)  F(G).
 (ii) Show by an example that F(G) need not contain F(H) for every

subgroup H of G.

396 Let G be a finite group.
  (i) Show that if G is soluble and G ≠ 1 then F(G) ≠1.
 (ii) Define subgroups Fn(G) recursively as follows. Let F0(G) = 1 and,

for each positive integer n, let Fn(G)/Fn − 1(G) = F(G/Fn − 1(G)).
Then                 
and this ascending sequence is called the upper nilpotent series (or upper
Fitting series) of G. Prove that G is soluble if and only if Fn(G) = G for
some n.

(iii) Suppose that G is soluble. The least integer n for which Fn(G) = G is
called the nilpotent length (or Fitting height) of G.

Let                



be any series of G whose factors are all nilpotent. Prove that Gi  Fi(G) for
each i = 0, 1,…, r. In particular, the derived length of G is not less than its
nilpotent length. (Hint. Argue by induction on i. Note that by 336, every
nilpotent subnormal subgroup of a finite group H is contained in F(H).)

We end this chapter with a few properties of F(G).

7.65 Lemma. Let G be a non-trivial finite group. Then CG(F(G)) contains
every minimal normal subgroup of G.
Proof. Let K = F(G) and H = CG(K). Let L be a minimal normal subgroup
of G. If L  K then, since K ∩ L < L and K ∩ L  G, K ∩ L= 1. Then, by
3.53, [K, L] = 1. Hence L  H.

If on the other hand L  K then, since 1 < L  K, there must be a minimal
normal subgroup, M say, of K with M  L. Since K is nilpotent, M  Z(K),
by 7.58. Thus Z(K) ∩ L ≠ 1. But Z(K)  G (121). Hence Z(K) ∩ L  G and
therefore, since L is minimal normal in G, Z(K) ∩ L = L. Hence L  Z(K) 
H. This completes the proof.

7.66 Theorem. Let G be a non-trivial finite group. Then, for any chief
series of G, say

(See 390.)

Proof Let K = F(G), 

Then, L  G. Thus, in order to show that L  K it is enough to show that L
is nilpotent. For each i = 1,…, n, L  CG(Gi/Gi − 1) and so, by 390,

Hence

Therefore, by 7.45, the series



is a central series of L, and so L is nilpotent. Hence L  K.
To complete the proof, it is enough to show that for each i = 1,…, n, K 

CG(Gi/Gi − 1). Now, by 3.30, 3.39, 3.40 and 7.46, KGi − 1/Gi − 1 G/Gi − 1 and

which is nilpotent. Hence

Since Gi/Gi − 1 is a minimal normal subgroup of G/Gi − 1 (7.36), it follows
from 7.65 that F(G/Gi − 1) centralizes Gi/Gi − 1, hence that

Therefore (see 390),

This is true for each i = 1,…, n. Hence K = L.

7.67 Theorem. Let G be a finite soluble group. Then CG(F(G))  F(G).
Proof. Let K = F(G) and H = CG(K). Then H  G, by 4.36. Suppose,
contrary to what we wish to show, that H  K. Then

There is a chief series of G which includes both H∩K and H as terms. Let
J/(H ∩ K) be a chief factor of G with J  H.

Since G is soluble, J/(H ∩ K) is abelian, by 7.56. Therefore (3.52),

Hence

since H = CG(K). Thus, by 7.54, J is a nilpotent normal subgroup of G and
therefore J  K. Hence J  H∩K. This is a contradiction, since, by



definition of J, H∩K < J. Therefore we conclude that H  K.

*397 Let G be a finite group. Then S(G), the socle of G, is defined to be the
product of all the minimal normal subgroups of G, if G ≠ 1; and S(G) = 1 if
G = 1.

   (i) S(G) is a characteristic subgroup of G.
 (ii) F(G)  CG(S(G)).
(iii) Let K  G. Then CG(K) = 1 if and only if Z(K) = 1 and S(G)  K.

398 Let G be a non-trivial finite group.
(i) If

is a chief series of G, then G/F(G) can be embedded in the direct product of
the n groups Aut(Gi/Gi − 1), i = 1,…, n. (Hint. Use 7.66, 390 and the obvious
generalization of 109 to n normal subgroups of G.)

(ii) Suppose that G is supersoluble (389). Then G/F(G) is abelian. (Hint.
Apply (i) and 4.38(i). Remark. This gives an alternative proof for finite
supersoluble groups of the result in 390 (iii).)

(iii) Suppose that G is supersoluble. Then for any prime divisor q of |
G/F(G)| there is a prime divisor p of | G | such that p ≡ 1 mod q. Hence the
largest prime divisor of | G | does not divide | G/F(G)|. (Hint. Apply (i) and
4.38(ii). See also 609.)

399 Let G be a finite soluble group. Then | G | divides |
Z(F(G))|.|Aut(F(G))|. (Hint. Apply 4.36 and 7.67.)

400 Suppose that G is a finite group such that F(G) is abelian. Then F(G) is
the unique maximal abelian normal subgroup of G. Moreover, if G is
soluble then F(G) is a maximal abelian subgroup of G. (See 235, 251. See
also 644, 645.)

401 (i) Suppose that G is a finite soluble group. If F(G) is cyclic then G is
supersoluble (389). (Hint. Apply 4.36, 4.38(i) and 7.67.)

(ii) Give an example of a finite supersoluble group G for which F(G) is
not cyclic.



8
DIRECT PRODUCTS AND THE STRUCTURE 

OF FINITELY GENERATED ABELIAN 
GROUPS

In considering possible programmes to classify groups, we may distinguish
two related general problems. On the one hand, there is the problem of
construction: starting from a collection of known groups, we want to build
up other groups from them by explicit procedures. On the other hand, there
is the problem of decomposition: we want to find out how any given group
is built up by these procedures from “simpler” components.

The easiest procedure is the direct product construction introduced in
2.31 and 2.36. We have obtained criteria in 2.34 and 3.54 for a group to be
decomposable as a direct product of two groups. In the present chapter, we
shall examine this procedure in further detail and eventually show that it is
adequate for a description of the structure of finitely generated abelian
groups.

We begin with a convention which simplifies notation.

8.1. Let G = H × K. Then, by 2.33, we know that the map

is an isomorphism of H onto H × 1, and the map

is an isomorphism of K onto 1 × K. Providing that the groups H and K have
only the identity element 1 in common, we identify H with the subgroup H



× 1 of G by identifying the elements h and (h, 1) for all h  H, and similarly
we identify K with 1 × K by identifying the elements k and (1, k) for all k 
K. Then, by 2.33 and 3.11,

Each element (h, k) of G is then identified with the product hk in G of the
elements h  H and k  K, and of course hk = kh. (Note that in making these
identifications we are also identifying the groups H × K and K × H; cf.
2.35.)

With this convention, the converse result contained in 3.54 can be stated
as

8.2. Suppose that H and K are normal subgroups of G such that G = HK
and H ∩ K = l. Then G = H × K.

We shall establish a generalization of this result to an arbitrary finite
number of direct factors. First we introduce some notation.

8.3. If H and K are normal subgroups of G then it is easy to see that HK =
KH (cf. 3.38 and 95). It follows that if G1, G2,…, Gn are normal subgroups
of G then the product G1 G2…Gn does not depend on the ordering of the

factors. We sometimes use the notation  Gi (and similar expressions) for

this product. Note that, by 3.39, 

It is clear that the convention of 8.1 can be extended to the direct product
of any finite number of groups. We sometimes denote the direct product of

groups G1, G2,…, Gn by Dr  (instead of G1 × G2 × … × Gn). If n =

1, then of course Dr .

8.4 Theorem. Suppose that G1, G2, …, Gn are normal subgroups of G,
where n is a positive integer. Then the following three statements are
equivalent:



  (i) 

 (ii) Every element g of G has a unique expression of the form g = g1g2 …
gn with gi  Gi for each i = 1, …, n.

(iii)  and, for each integer m such that 1 < m  n,

Proof. (i) ⇒ (ii) If  then certainly each element of G is

expressible in the form g1g2…gn, with gi  Gi for each i = 1,…, n.
Moreover, the expression is unique, by definition of the direct product.

(ii) ⇒ (iii) It is immediate from the hypothesis of (ii) that .

Suppose that m is an integer such that 1 < m  n, and let

Then there are elements g1  G1, g2  G2, …, gm − 1  Gm − 1 such that

Hence                                          
where, if m < n, gm + 1 = … = gn = 1. Then gi  Gi for every i = 1, …, n, and
so the hypothesis of uniqueness implies that gi = 1 for every i; in particular,
gm = 1. Thus

(iii) ⇒ (i) For each integer m = 1,…, n, let



Then Jm  G and, by hypothesis, Jn = G. We shall show by induction on m
that, for each m = 1,…, n,

This is trivial if m = 1. Suppose that m > 1 and, inductively, that

Then, by definition, Jm = Jm − 1Gm.
Since Jm − 1 and Gm are normal in G, they are certainly normal in Jm; and,

by hypothesis,
Jm - 1 ∩ Gm = 1.

Therefore (8.2)

Thus the induction argument goes through. Hence

8.5. Warning. Let the notation be as in 8.4. In order to establish that 

, it is not in general enough to prescribe that 

and Gi ∩ Gj = 1 whenever i ≠ j. For instance, consider the group
G = C2 × C2,

and let a and b be distinct non-trivial elements of G. Then G = {1, a, b, ab}.
Let



Then A, B, C are distinct subgroups of G of order 2. They are certainly
normal in G. Moreover,

G = ABC and A ∩ B = B ∩ C = C ∩ A = 1.
But G ≠ A × B × C since | G | = 4 while | A × B × C | = 8.

8.6 Theorem. Let G be a non-trivial finite group and let p1,…, ps be the
distinct prime divisors of | G |, where s is a positive integer. Suppose that,
for each i = 1,…, s, G has a normal Sylow pi-subgroup Pi. Then 

 and G is nilpotent

Proof. For each i = 1,…, s, let . Then

For each m = 1,…, s, let

We show by induction on m that

This is trivial if m = 1, since J1 = P1. Suppose that m > 1 and, inductively,
that

Then, by Lagrange’s theorem, Jm − 1 ∩ Pm = 1. Hence, by 3.40,

Thus the induction argument goes through. In particular,



so that

Since also Jm − 1 ∩ Pm = 1 whenever 1 < m  s, it follows by 8.4 that

By 7.44, Pi is nilpotent for each i = 1,…, s. Hence, by repeated
application of 7.49(i), G is nilpotent.
Remarks. This result shows that a non-trivial finite abelian group is the
direct product of its distinct Sylow subgroups. In 11.3, we shall prove that if
G is any non-trivial finite nilpotent group then every Sylow subgroup of G
is normal in G, hence, by 8.6, that G is the direct product of its distinct
Sylow subgroups.

*402 Suppose that H and K are normal subgroups of G such that G = H × K.
If H  J  G then J = H × (J ∩ K); and J  G if and only if J ∩ K  K.
(Hint. Apply Dedekind’s rule 7.3.)

403 If H and K are normal subgroups of G such that HK = G then

404 (i) Prove that G has a composition series if and only if G has only
finitely many distinct subnormal subgroups. (Hints. To prove that if G has a
composition series then G has only finitely many distinct subnormal
subgroups, argue by induction on the composition length, s say, of G. For s
> 1, note that every proper subnormal subgroup of G is contained in a
maximal normal subgroup of G (see 363). Hence, by the induction
hypothesis, it is enough to show that G has only finitely many distinct
maximal normal subgroups. Let K be a maximal normal subgroup of G.
Show, by means of the induction hypothesis, that there are only finitely
many maximal normal subgroups of G which intersect K non-trivially. It
only remains to consider the possibility that there is a maximal normal



subgroup L of G such that K ∩ L = 1, in which case G = K × L and K and L
are both simple. Then consider CG(K) and CG(L) and see 3.6.)

(ii) Deduce from (i) that a group cannot have infinitely many distinct
composition series.

(iii) Verify that the argument in (i) can be modified to prove that G has a
chief series if and only if G has only finitely many distinct normal
subgroups.

(Remark. A group G with an operator domain Ω can have an Ω-
composition series but nevertheless have infinitely many distinct subnormal
Ω-subgroups. For example, consider a vector space V of dimension 2 over
an infinite field F, and regard F as an operator domain for V+, as in 7.28 (5).
Then the F-group V+ has an F-composition series (of length 2): see 7.32 (4).
The F-subgroups of V+ are the subspaces of V, and these are normal
subgroups of V+, since V+ is abelian. Since F is infinite, V has infinitely
many distinct 1-dimensional subspaces.)

405 Let , where n is a positive integer. Suppose that for each i

= 1, …, n, Gi has a composition series and the composition length of Gi is
si. Then G has a composition series and the composition length of G is 

.

*406 Let , where n is a positive integer. Then 

.

*407 Suppose that n is a positive integer and G1, G2, …, Gn are normal

subgroups of G such that . Let   Aut G. Then also 

.

408 Let n be an integer, n > 1.



(i) Suppose that K1, K2,…, Kn are normal subgroups of G such that 

 and, for each integer m with .

Then

where, for each 

(cf. 8.4. Hints. Apply 8.4 to show that . Prove, by

induction on m, that for each integer 

(ii) Suppose that G1, G2,…, Gn, are normal subgroups of G such that 

.

For each j = 1, 2,…, n, let

Then K1, K2, …, Kn fulfil the hypotheses of (i); and, for each i = 1, …, n,

409 A group G can have normal subgroups G1, G2, G3 such that
  (i) G = G1G2G3,
 (ii) G1G2, G2G3, G3G1 are proper subgroups of G,
(iii) G1 ∩ G2 = G2 ∩ G3 = G3 ∩ G1 = 1, and
 (iv) G ≠ G1 × G2 × G3 (cf. 8.4, 8.5).

Demonstrate this by considering an elementary abelian group G of order p5

and three suitable subgroups of G of order p2.



*410 Let G be a finite abelian group. Then G is cyclic if and only if every
Sylow subgroup of G is cyclic.

411 Let G1, G2, …, Gn be normal subgroups of G such that ,

where n is a positive integer. Suppose that G has a composition series.
  (i) Every composition factor of G is isomorphic to a composition factor

of one of G1, G2, …, Gn.
 (ii) Suppose that whenever i, j  {l, 2, …, n} with i ≠ j, no composition

factor of Gi is isomorphic to a composition factor of Gj. Then 

.

8.7 Theorem (R. Remak [a79], 1930). Suppose that K1, K2, …, Kn are
minimal normal subgroups of G, where n is a positive integer, and let 

. Then there is a subset {i1,…, im} of {l, …, n} such that 

.

Proof. Let  denote the set of all non-empty subsets {i1,…, im} of {1, …,

n} such that i1, …, im are distinct and . Trivially, {j} 

  for each j = 1,…, n.
Now choose {i1,…, im}   with m as large as possible, and let

By 3.39, K and L are normal subgroups of G and certainly L  K.
If K ≠ L then there is an integer l  {l,…, n} such that K1  L. Since Kl is

minimal normal in G and L  G, it follows that
Kl ∩ L = 1.

Then KlL  G and, by 8.2,



KlL = Kl × L.
Let im + 1 = l. Since  for each j = 1, …, m, im + 1 is distinct from i1,
…, im and

Thus {i1,…, im, im + 1}  . But this is contrary to the choice of m.
Therefore we conclude that K = L and this completes the proof of the

theorem.
Remark. In particular, if G is a non-trivial finite group and S(G) denotes the
product of all the minimal normal subgroups of G (the so-called socle of G:
see 397) then S(G) is the direct product of some of the minimal normal
subgroups of G.

8.8 Definition. G is said to be completely reducible if either G = 1 or G is
the direct product of a finite number of simple groups.

In particular, every simple group is completely reducible.

8.9 Lemma (Remak). Suppose that G is a non-trivial finite completely

reducible group: say , where, for each j = 1,…, n, Kj is a

simple normal subgroup of G. If Z(G)= 1 then K1, …, Kn are the only
minimal normal subgroups of G and every non-trivial normal subgroup of
G is a direct product of some of K1, …, Kn.
Proof. For each j = 1,…, n, Kj is a simple normal subgroup of G, and
therefore Kj is minimal normal in G.

Now assume that Z(G) = 1 and suppose, contrary to what we wish to
show, that there is a minimal normal subgroup L of G distinct from K1, …,
Kn. Then, for each j = 1, …, n,

Kj ∩ L = 1,
and so, by 3.53, [Kj, L] = 1.

Hence                              



that is                                 
a contradiction. Thus K1,…, Kn are the only minimal normal subgroups of
G.

Let 1 < K  G. We may choose the notation so that K1,…, Km are the
minimal normal subgroups of G contained in K, while (if m < n) Km + 1,…,
Kn are the minimal normal subgroups of G not contained in K. Let

Then
H  K  G = H × J,

from which it follows (402) that
K = H × (J ∩ K).

Now J ∩ K  G and J ∩ K  J, so that if J ∩ K ≠ 1, J ∩ K contains a
minimal normal subgroup Kj of G with j > m. But then Kj is contained in K,
in contradiction to the choice of m. Hence J ∩ K = 1 and

Remarks. (1) With the notation of 8.9, since 

 (406), we have Z(G) = 1 if and only if

every Kj is a non-abelian simple group.
(2) Without the condition that Z(G) = 1, the result of 8.9 is not true in

general. For instance, in the example of 8.5, G = A × B ≅ C2 × C2, so that
G is completely reducible; A and B are minimal normal subgroups of G, but
there is also a third minimal normal subgroup C of G distinct from A and B.

(3) 8.9 remains true without the condition that G is finite: see 416.

412 Let G be a finite group. Define S1 (G) to be the product of all the
abelian minimal normal subgroups of G (with S1(G) = 1 if G has no abelian
minimal normal subgroup); and S2(G) to be the product of all the non-



abelian minimal normal subgroups of G (with S2(G) = 1 if G has no non-
abelian minimal normal subgroup). Let S(G) denote the socle of G: see 397.
Then

  (i) S1(G) and S2(G) are characteristic subgroups of G.
 (ii) S1 (G) is abelian (cf. 171).
(iii) Z(S2(G)) = 1, and if S2(G) ≠ 1, S2(G) is the direct product of all the

minimal normal subgroups of G which it contains. (Hints. See 357. Follow
part of the proof of 8.9.)

 (iv)S(G) = S1(G) × S2(G).

413 Suppose that G is a finite completely reducible group.
(i) For any normal subgroup H of G, there is a completely reducible

normal subgroup K of G such that G = H × K. (Hints. If H < G, let {K1, …,
Km} denote the set of all minimal normal subgroups of G not contained in
H; note that this set is non-empty. Then let  denote the set of all non-
empty subsets {i1,…, il} of {1,…, m} such that i1,…, il are distinct and 

. Note that {j}   for each j = 1,…, m.

Then use a similar argument to the one in the proof of 8.7 to show that there

is a subset {i1,…, il) of {1,…, m} such that . Finally,

show that each  is simple, for j = 1,…, l.)
(ii) Every quotient group and every normal subgroup of G is completely

reducible. (Remark. These results remain true without the condition that G
is finite: see 416.)

414 Suppose that G is finite and that L is any product of minimal normal
subgroups of G. Let H  G with H  L. Then there is a normal subgroup K
of G such that K  L and L = H × K. (Hint. Modify the argument in 413(i).)

415 Suppose that G is a finite group with the property that, for any normal
subgroup H of G, there is a normal subgroup K of G such that G = H × K.
Then G is completely reducible. (Hints. Argue by induction. Use 402 to
show that every normal subgroup of G has the same property as G. Remark.
This is a converse to the result of 413(i).)



416 (i) Suppose that G is completely reducible (but not necessarily finite).
Prove that G has a chief series.

(ii) Verify that the results of 8.9 and 413 remain true without the
hypothesis that G is finite. Verify also that 415 remains true if the
hypothesis that G is finite is replaced by the hypothesis that G has a chief
series. (Hint. See 404 (iii).)

417 Suppose that G is completely reducible. Then every non-trivial normal
subgroup of G is a direct product of minimal normal subgroups of G. (Hint.
See 8.7, 402, 404(iii), 413, 416.)

418 (i) Suppose that H is a non-trivial completely reducible normal
subgroup of G such that Z(H) = 1. Then H is a direct product of minimal
normal subgroups of G. (Hints. Argue by induction on the length of a chief
series of H: see 416(i). Show that H contains a minimal normal subgroup, K
say, of G and that H = K × CH(K).)

(ii) The assertion in (i) is no longer true in general, without the
hypothesis that Z(H) = 1. Demonstrate this by considering a suitable normal
subgroup of the dihedral group D8. (Hint. See 5.8 and 124.)

419 (i) Let H and K be completely reducible normal subgroups of G with
Z(H) = 1 = Z(K). Then HK is a completely reducible normal subgroup of G
with Z(HK) = 1. (Hint. See 8.7, 8.9, 416, 418.)

(ii) Every finite group has an -radical, where  is the class of all
completely reducible groups with trivial centre. (See also 426.)

(iii) A finite group need not have a -radical, where ) is the class of all
completely reducible groups. Demonstrate this by considering the dihedral
group D8.

420 Suppose that G is completely reducible. Then every subnormal
subgroup H of G is normal in G. (Hint. Argue by induction on the length of
a series from H to G, and see 413 and 416.)

421 (i) Suppose that G-has a composition series, say



and suppose that there is no positive integer m such that 
 and Gm + 1/Gm − 1 is the direct product of two

isomorphic simple groups. Then every subnormal subgroup H of G is
normal in G. (cf. 342, 420. Hints. Argue by induction on j(G : H): see 7.20.
Apply 7.24(i), 115(i) and 403.)

(ii) Suppose that G is finite and that all Sylow subgroups of G are cyclic.
Then every subnormal subgroup of G is normal in G. (Hints. Show that all
sections of G satisfy the same hypothesis as G, hence that no section of G is
isomorphic to Cp × Cp for any prime p. See 5.11 and apply (i).

Remark. See also 10.26.)

We can now prove the main result on the structure of finite
characteristically simple groups (see 7.37).

8.10 Theorem. Let G be a non-trivial finite group. Then G is
characteristically simple if and only if G is a direct product of finitely many
isomorphic copies of a simple group.
Proof. Suppose first that G is characteristically simple. Let K1 be a minimal
normal subgroup of G. For each   Aut G, 3.29 shows that  is a
minimal normal subgroup of G, and . Since G is finite, there are
only finitely many distinct subgroups of G of the form  with   Aut G,
say n of them: let these be K1, K2, …, Kn. Let

Now let   Aut G. For each j  {l, 2,…, n},  for some   Aut
G, and then, since    Aut  for some l  {l, 2, …, n}.
Moreover, if i, j  {1, 2, …, n} with i ≠ j then . Hence

and therefore



This is true for all   Aut G, and so K is characteristic in G. Since 1 < K1 
K and G is characteristically simple, it follows that

K = G.
By 8.7, it follows that G is the direct product of some of the subgroups

K1,…, Kn. We may choose the notation so that, where m  n,

Now any normal subgroup of K1 is easily seen to be normal in G (cf. 111).
Therefore, since K1 is minimal normal in G, it follows that K1 is simple.
Thus, since Kj ≅ K1 for each j = 1, 2, …, m, G is the direct product of m
isomorphic copies of the simple group K1.

Suppose conversely that G is the direct product of m isomorphic copies
of K1, where m is a positive integer and K1 a simple group: say

where, for each j = 1, …, m, Kj ≅ K1.
If K1 is abelian then | K1 | = P for some prime p (3.6). Then | Kj| = p for

each j = 1, …, m and G is an elementary abelian group of order pm. By 7.41,
G is characteristically simple.

If K1 is non-abelian then G is a direct product of non-abelian simple
groups and so Z(G) = 1 (406). Let K be a non-trivial characteristic subgroup
of G. Then K contains a minimal normal subgroup of G and so, by 8.9, K 
Ki for some i  {l,…, m}. Without loss of generality, we may suppose that

K  K1.
If m > 1, let j  {2,…, m}. There is an isomorphism

Each element of G has a unique expression of the form k1k2 … km with ki 
Ki for each i = 1, …, m. Then we can define a map  : G → G by



for all k1  K1,…, km  Km. It is easy to verify that  is an automorphism of
G, and clearly

.

Since K is characteristic in G,

.

Thus
K  Kj for every j = 1, …, m,

and so
K = G.

Hence K is characteristically simple. This completes the proof.
Remarks. (1) It follows in particular that every finite characteristically
simple group is completely reducible.

(2) Without the condition that G is finite, the theorem fails: for instance,
by 361 there are infinite abelian characteristically simple groups, and these
cannot be direct products of finitely many isomorphic copies of simple
groups, since, by 3.6, abelian simple groups are finite. However, the
theorem does remain true if the hypothesis that G is finite is replaced by the
hypothesis that G has a chief series: see 423.

8.11 Corollary. Let G be a non-trivial finite group. Then every product of
minimal normal subgroups of G is completely reducible.

Proof. Let K be a product of minimal normal subgroups of G. Then, by 8.7,
there are minimal normal subgroups K1,…, Km of G such that

By 7.38, Kj is characteristically simple for each j = 1, …, m. Hence, by
8.10, Kj is completely reducible for each j = 1,…, m. It follows that K is
completely reducible.



422 Let G be a finite group.
  (i) Suppose that there is a prime divisor p of | G | such that p2 does not

divide | G |. Then, for any minimal normal subgroup K of G, either K is
simple or p does not divide | K|. (Hint. Apply 8.10.)

 (ii) Suppose that G has a subgroup H such that | G : H | = p and HG = 1.
Then G has a unique minimal normal subgroup K, and K is simple. (See
also 652. Hint. Apply 4.14, (i) and 358.)

423 Verify that 8.10 remains true if the hypothesis that G is finite is
replaced by the hypothesis that G has a chief series. (Hint. See 404(iii) and
416.)

424 Suppose that G has a composition series, and let

where s is a positive integer. Note that (by 355 or 404) G also has a chief
series.

(i) Any chief factor of G is the direct product of finitely many isomorphic
copies of Lj, for some j  {1, 2,…, s}. Moreover, for each j  {1, 2,…, s}
there is in any chief series of G at least one factor which is the direct
product of finitely many isomorphic copies of Lj. (Hint. See 423.)

(ii) Suppose that in a composition series of G there is just one factor
isomorphic to L1. Then in any chief series of G there is a factor which is
isomorphic to L1; and no other factor of the series is a direct product of
isomorphic copies of L1.

425 (a) Suppose that L1, L2, …, Ln are maximal normal subgroups of G (see

363), where n is a positive integer, and let . Then G/L is

completely reducible. (cf. 8.11. Hint. Argue by induction on n, and use 363
and 403.)

(b) Let G be a finite group. We define R(G) to be the intersection of all
the maximal normal subgroups of G, if G ≠ 1; and R(G) = 1 if G = 1. As
before, S(G) denotes the socle of G (397). Then the following three
statements are equivalent:



  (i) R(G) = 1.
 (ii) G is completely reducible.
(iii) S(G) = G.

426 Let  denote the class of all completely reducible groups with trivial
centre. Let G be a finite group. Then the -radical of G (see 419) is the
subgroup S2(G) of G, defined in 412. (Hint. See 418.)

8.12. We recall the extension problem for groups mentioned in chapter 1:
given groups K and Q, find the groups G for which K  G and G/K ≅ Q.
This may be viewed as defining a construction procedure; though, as we
have pointed out, unlike the direct product construction, in general this does
not lead from K and Q to a unique type of group G. (Note that K × Q is one
type of group obtained by this extension procedure.)

The corresponding decomposition procedure for a finite group G leads to
the notion of a composition series of G : the group G is built up by this
procedure from its composition factors, which are simple groups (7.2) and
cannot be further decomposed.

For such decompositions, the Jordan-Hölder theorem (7.9) provides a
uniqueness result. Although a finite group G may have several different
composition series, any two of them have the same length and contain as
factors simple groups of exactly the same types with the same
multiplicities.

We may ask whether such a uniqueness result holds for decompositions
of groups as direct products of indecomposable factors. (Recall (81) that G
is said to be decomposable if it has proper subgroups H and K such that G =
H × K; and if not G is said to be indecomposable.) The answer is that there
is such a result for finite groups; and also for infinite groups under certain
conditions, but not in general. It is called the Krull–Remak–Schmidt
theorem and, for a finite group G, asserts that if

G = H1 × … × Hm = K1 × … × Kn,
where H1, …, Hm, K1, …, Kn are non-trivial and indecomposable, then m =
n and, by relabelling the suffices if necessary,

Hi ≅ Ki for each i = 1, …, n.



In fact it provides even more information than this. We shall not in this
book prove the general Krull–Remak–Schmidt theorem: for the proof see
Huppert [b21] p. 60, theorem 1.12.3, or Rotman [b34] p. 80, theorem 4.36,
or Scott [b36] p. 83, theorem 4.6.2, or Zassenhaus [b41] p. 114, theorem 7.
However, we shall in 8.18 prove a special case which will be applied in
chapter 9.

We need a few preliminary results. We begin with a result known as
Fitting’s lemma. Recall (2.18) that the endomorphisms of a group form a
semigroup with respect to composition of maps. Thus, for each endo-
morphism  of G and each positive integer k, there is a corresponding
endomorphism k of G.

8.13 Lemma (Fitting [a26], 1934). Let G be a finite group. Regard G as an
operator domain for G, as in 7.28 (3), and let  be a G-endomorphism of G
(see 7.29).

  (i) There is a positive integer k such that

(ii) If G is indecomposable then either   Aut G or, for some positive
integer k, k is the trivial endomorphism of G.
Proof. For each positive integer j, let

Then clearly
K1  K2  K3  …  G.

Since G is finite, it follows that there is a positive integer k such that
Kk = Kk + 1.

By induction on l, we deduce that for every positive integer l,
Kk = Kk + 1.

This is true for l = 1. Now suppose that l > 1 and inductively that Kk = Kk+l −

1, and let g  Kk+l. Then

so that



Hence

so that

by the induction hypothesis. Since also Kk  Kk + l, this shows that
Kk = Kk + 1.

This completes the induction argument.
Now let K = Kk and L = Im k. Then K  G and, since k is a G-

endomorphism of G (353), L is a G-subgroup of G: that is, L  G. Let x  K
∩ L. Then

for some y  G. Thus

so that y  K2k = Kk, by the previous paragraph. Hence

Therefore K ∩ L = 1.
It follows (3.40) that

L ≅ KL/K.
But also, by the fundamental theorem on homomorphisms,

L ≅ G/K.
Therefore, since KL  G and G is finite,

G = KL.
Hence, by 8.2,

G = K × L.



Now suppose that G is indecomposable. Then either K = G and L = 1 or
K = 1 and L = G. In the former case, k is the trivial endomorphism of G. In
the latter case, k  Aut G: this implies that  is bijective, hence that  
Aut G.

8.14 Definition. For the statement of the next lemma, which is a deduction
from Fitting’s lemma, it is convenient to introduce sums of homomorphisms
(cf. 33).

Let  and  be homomorphisms of G into H (arbitrary groups). We
define a map

by                                           

In general,  +  is not a homomorphism, and  +  ≠  +  (although if 
+  is a homomorphism then  +  =  +  : see 430). However, in 8.15 we
shall be concerned with a special situation in which sums of
homomorphisms are again homomorphisms.

The definition is extended in the natural way to arbitrary finite sums of
homomorphisms. Let n be a positive integer and let  be
homomorphisms of G into H. Then we define the map

by                              

427 (i) Suppose that H and K are normal subgroups of G such that G = H ×
K. Let  be the corresponding projection of G onto H (see 3.11) and let  be
the inclusion map of H into G. Let  = . Then  is a G-endomorphism of
G and 2 = . Moreover, if H and K are proper subgroups of G (so that G is
decomposable) then  is not an automorphism of G and there is no positive
integer k such that k is the trivial endomorphism of G (cf. 8.13 (ii)).

(ii) Suppose that  is a G-endomorphism of G such that 2 = . Let H =
Im  and K = Ker . Then G = H × K and  = , where  is the



corresponding projection of G onto H and  is the inclusion map of H into
G.

428 (i) Let  be an endomorphism of G and let J = Im . Then  is a G-
endomorph-ism of G if and only if, for every  (cf.
245, 353(ii)).

(ii) Suppose that G is indecomposable and that Z(G) = 1. Then the only
G-endomorphisms of G are the identity automorphism of G and the trivial
endomorphism of G. (cf. 8.13(ii). Hint. Let  be a G-endomorphism of G
and let J = Im . Use (i) and 8.2 to show that G = CG(J) × J.)

429 (i) Any endomorphism  of G such that Im   Z(G) is a G-
endomorphism of G.(See 428(i).)

(ii) Let G be a finite non-abelian group. Suppose that G has no non-trivial
abelian direct factor. Then, for any endomorphism  of G such that Im  
Z(G), there is a positive integer k such that k is the trivial endomorphism
of G.

430 (i) Let  and  be homomorphisms of G into H. Then  +  is a
homomorphism if and only if [Im , Im ] = 1. In particular, if  +  is a
homomorphism then .

(ii) If G is non-abelian and a is any automorphism of G then  +  is not
an endomorphism of G.

431 Let G be an abelian group. Then the set of all endomorphisms of G
forms a ring when addition is defined as in 8.14 and multiplication is
defined by composition of maps (see 2.18). We shall denote this ring by
End G. The zero element of End G is the trivial endomorphism of G; and
End G has a multiplicative identity element, namely the identity
automorphism of G.

432 Let R be a ring with a multiplicative identity element 1. Then R is
isomorphic (as a ring) to a subring of End R+. (cf. 46(i), 4.24. Hint. For
each a  R, let a be defined as in 2.11. Verify that the map  is an
injective ring homomorphism of R into End R+.)



433 The rings Z and End Z+ are isomorphic, and, for every positive integer
n, the rings Zn and End  are isomorphic (cf. 46(ii)).

8.15 Lemma. Let G be a non-trivial finite indecomposable group. Suppose
that 1, 2,…, nare G-endomorphisms of G such that, for each j = 1,…, n, 

 is a G-endomorphism of G, and , the identity

automorphism of G. Then at least one of 1, …, n is an automorphism of
G.
Proof. We argue by induction on n. The result is trivial if n = 1. Now
suppose that n = 2. Then 1 + 2 = 1, so that

by definition of composition of maps and since 1 is an endomorphism of
G. Hence, since G is a group,

Let  denote the trivial endomorphism of G. If neither 1 nor 2 is an
automorphism of G then, by Fitting’s lemma (8.13), there are positive
integers k1, k2 such that

Then, since 1 + 2 = 1 and 1 2 = 2 1,

(where .
When  and so . Hence also,
since  is an endomorphism of G, . When k2  i  : k1 +



k2,  and so also . Therefore the equation above
gives

This is a contradiction since G ≠ 1. We conclude that either 1 or 2 must
be an automorphism of G.

Finally, suppose that n > 2. Let

By hypothesis,  and n are G-endomorphisms of G and  + n = 1. Hence,
by what we have proved above, either  or n is an automorphism of G. If 

n  Aut G, we are done. Suppose   Aut G. Then − 1  Aut G and

It is easy to check(see 353) that  are G-

endomorphisms of G and, for each  is a G-

endomorphism of G.
Then, by the induction hypothesis, i

− 1  Aut G for some i  {1,…, n −
1}. Then i = ( i

-1)   Aut G. This completes the induction argument.

8.16. Suppose that G1, G2,…, Gn are normal subgroups of G such that 

, where n is a positive integer. Then every element of G is

uniquely expressible in the form g1g2 … gn, with gj  Gj for each j = 1,…,
n. Therefore, for each i = 1,…, n, we can define a map

by                  .



Then i is called the projection of G onto Gi relative to the decomposition
G = G1 × … × Gn (cf. 3.11).

Now Gi is a G-subgroup of G, and it is easy to verify that i is a G-
homomorphism. Let i denote the inclusion map of Gi into G; this is
obviously also a G-homomorphism. Then i i is a G-endomorphism of G,

and for each j = 1, …, n, the map  is defined:

Then  is a G-endomorphism of G, and

the identity automorphism of G.

8.17. Let G be any non-trivial finite group. Then there are non-trivial
indecomposable normal subgroups G1, G2, …, Gn of G such that

Proof. We argue by induction on | G|. If G is itself indecomposable, we set n
= 1 and G1 = G: then there is nothing more to prove. Suppose that G is
decomposable: then there are proper subgroups H and K of G such that

G = H × K.
Then H and K are non-trivial and | H | < | G|,|K | < | G|. Hence, by the
induction hypothesis, there are non-trivial indecomposable normal

subgroups G1,…, Gm of H and Gm+1,…, Gn of K such that 



and . Then G1, G2,…, Gn are non-trivial

indecomposable normal subgroups of G and

This completes the induction argument.

434 Let   Aut G.
(i) If a is a G-automorphism of G then there is a unique G-endomorphism

 of G such that

, the identity automorphism of G.

Moreover, if G is non-abelian then ∉ Aut G (cf. 8.15).
(ii) If  is not a G-automorphism of G then there is no endomorphism 

of G such that

(Hint. See 245, 353(ii) 429(i).)

435 (i) Verify that 8.17 remains true if the hypothesis that G is finite is
replaced by the hypothesis that G has a chief series.

(ii) Give an example of an indecomposable group which does not have a
chief series.

We shall now prove a special case of the Krull–Remak–Schmidt theorem,
namely that a non-trivial finite group with trivial centre has just one
decomposition as a direct product of non-trivial indecomposable normal
subgroups (i.e. unique, apart from ordering of the factors).

8.18 Theorem. Let G be a non-trivial finite group with Z(G) = 1. Suppose
that

G = H1 × … × Hm = K1 × … × Kn,
where m, n are positive integers and H1, …, Hm, K1, …, Kn non-trivial
indecomposable normal subgroups of G. Then m = n and, by relabelling the



suffices if necessary, Hi = Ki for each i = 1,…, n.
Proof. We argue by induction on n. If n = 1 then, since K1 is
indecomposable and H1, …, Hm are non-trivial, m = 1 and H1 = K1.
Therefore we may assume that n > 1. This implies also that m > 1, for a
similar reason.

Let 1 denote the projection of G onto H1, relative to the decomposition
G = H1 × … × Hm, and, for each i = 1,…, n, let i denote the projection of
G onto Ki, relative to the decomposition G = K1 × … × Kn. Further, let ki
denote the inclusion map of Ki into G, and let

Each  is a G-endomorphism of H1, hence also an H1-endomorphism
of H1.

Moreover, for each  is defined and is a G-endo-

morphism of G (see 8.16). Therefore, since 1 is a G-homomorphism of G

into H1, so also is , and clearly

The restriction of this to H1 is , which is thus a G-endomorphism

of H1, hence also an H1-endomorphism of if H1. For all h  H1,

so that



the identity automorphism of H1. Therefore, since H1 is non-trivial and
indecomposable, 8.15 shows that for some Aut H1. We may
suppose the notation chosen so that Aut H1.lt follows in particular
that  is injective.

Let J = H2 × … × Hm and L = K2 × … × Kn. Then G = H1 × J = K1 × L.
Since Z(G) = 1, it follows (406) that

Z(H1) = Z(J) = Z(K1) = Z(L) = 1.
Now

J  CG(H1)  G = H1 × J,
and so (by 402)

CG(H1) = (H1 ∩ CG(H1)) × J = J, since Z(H1) = 1.
By exactly similar arguments,

CG(J) = H1, CG(K1) = L and CG(L) = K1.
Now L = Ker 1. Therefore, since  injective,

Hence, by 3.53, H1  CG(L). Thus
H1  K1  G = H1 × J,

and so (again by 402)
K1 = H1 × (K1 ∩ J).

Since K1 is indecomposable and H1 ≠ 1, it follows that
K1 = H1.

Hence
J = CG(H1) = CG(K1) = L.

Thus
J = H2 × … × Hm = K2 × … × Kn.

Since Z(J) = 1, the induction hypothesis now implies that m = n and, by
suitable choice of the notation,

Hi = Ki



for each i = 2,…, m. This completes the induction argument.

436 Let G be a non-trivial finite group with Z(G) = 1. Then, by 8.17 and
8.18, there is a unique decomposition, say

G = G1 × … × Gn,
such that G1,…, Gn are non-trivial indecomposable normal subgroups of G.
Suppose that no two of the groups G1,…, Gn are isomorphic. Then G1,…,
Gn are characteristic subgroups of G and

Aut G ≅ Aut G1 × … × Aut Gn.
(cf. 342; also see 94.)

437 Give an example of a finite abelian group G such that G = A × B,
where A and B are non-isomorphic non-trivial indecomposable subgroups
of G, and such that G has subgroups A* and B*, distinct from A and B, and
with G = A* × B* (cf. 8.18).

We shall now prove a result about subgroups of the direct product of two
groups. In chapter 9 we shall apply this result to the extension problem: see
9.28.

8.19 Theorem (Remak [a80], Klein, Fricke [b26]). Let H and K be normal
subgroups of G such that G = H × K, and let  and  be the corresponding
projections of G onto H and K, respectively. Let L  G. Then

  (i) (H ∩ L)  L   H, (K ∩ L)  L   K and L /(H ∩ L) ≅ L /(K ∩
L).

 (ii) L = (H ∩ L) × (K ∩ L) if and only if L  = H ∩ L (or if and only if L
= K ∩ L).
Proof. (i) We know that  and  are homomorphisms (3.11).
Since H  G, (H ∩ L)  L  G. Therefore (87)

By definition, |H is the identity map on H.
Therefore                 (H ∩ L)  = H ∩ L.
Hence                      (H ∩ L)  L   H.
Similarly                 (K ∩ L)  L   K.

We now define a map



For each element h  L , there is an element k  K such that hk  L. Then k 
 L , and we define

The element k is not necessarily uniquely determined by h, and so we must
check that this definition of h  does not depend on the choice of k. If also k′

 K with hk′  L then

and so

Thus  is well defined.
Let h1, h2  L  and let k1, k2  K with h1k1, h2k2  L. Then h1h2  L ,

k1k2  K and, since [H, K] = 1,

Therefore

Thus  is a homomorphism. It is surjective because, for any k  L , there is
an element h∈H such that hk  L, and then h L  and h  = k(K ∩ L).
Moreover,

Therefore, by the fundamental theorem on homomorphisms,

(ii) Clearly



If L  = H ∩ L then it follows from (i) that L  = K ∩ L. Then the inclusions
above imply that

L = (H ∩ L) × (K ∩ L).
If, conversely, L = (H ∩ L) ×(K ∩ L) then it is clear from the definitions

of  and  that

8.20 Corollary. Lef G = H × K. Suppose that G is finite and that (|H|,|K|) =
1. Then, for every subgroup L of G,

L = (H ∩ L) × (K ∩ L).
Proof. Let L  G and let ,  be defined as in 8.19. Then L   H and L  
K. Hence, by hypothesis,

Since, by 8.19(i), L /(H ∩ L) ≅ L /(K ∩ L), this implies that | Lπ/(H ∩ L)|
= 1, hence that L  = H ∩ L. Thus, by 8.19(ii),

L = (H ∩ L) × (K ∩ L).
Remark. This result would of course fail in general without the condition
that (|H|,|K|)= 1. For instance, let G = 〈a〉× 〈b〉 with o(a) = o(b) = 2.
Then 〈ab〉 is a subgroup of G of order 2, but 〈a〉 ∩ 〈ab〉 = 1 =
〈b〉 ∩ 〈ab〉.

438 Let H and K be normal subgroups of G such that G = H × K, and let 
and  be the corresponding projections of G onto H and K, respectively.
Suppose that

Let  be any isomorphism of H1/H2 onto K1/K2, and let

Then L  G and



439 Let H and K be normal subgroups of G such that G = H × K, and let 
be the corresponding projection of G onto H. Let L  G and let J = (H ∩ L)
× (K ∩ L). Then J  L and

(See 8.19. Hint. Let 1 : L → L  be defined by restriction of , and let v : L
 → L /(H ∩ L) be the natural homomorphism. Consider the map 1 v.)

440 (Remak [a80]). Let H and K be normal subgroups of G such that G = H
× K, and let  and  be the corresponding projections of G onto if and K,
respectively. Let L  G. Then the following two statements are equivalent:

  (i) L  G.
 (ii) (H ∩ L)  H, (K ∩ L)  K, L /(H ∩ L)  Z(H/(H ∩ L)) and L /(K ∩

L)  Z(K/(K ∩ L)).
(Hint. To prove that (ii) ⇒ (i), let J = (H ∩ L) × (K ∩ L). Note that J  G
and use 151 to show that L/J  Z(G/J).)

441 Let H and K be normal subgroups of G such that G = H × K, and let 
and  be the corresponding projections of G onto H and K, respectively. A
subgroup L of G is said to be a subdirect product of H and K if L  = H and
L  = K.

  (i) Let L  G. Then L is a subdirect product of H and K if and only if
HL = G = KL.

 (ii) Let L be a subdirect product of H and K. Then L  G if and only if G′
 L. (Hint. Apply 165 and 440.)
(iii) Suppose that G is finite and that (|H/H′|, | K/K′|) = 1. Then no proper

normal subgroup of G is a subdirect product of H and K. (Hint. Apply (i)
and 8.19.)

442 Let H  G and K  G. Verify that the homomorphism  defined in 109
maps G/(H ∩ K) onto a subdirect product of G/H and G/K (see 441).

443 Let H and K be normal subgroups of G such that G = H × K. Then the
following two statements are equivalent:

  (i) L is a subdirect product of H and K (441).



 (ii) For some group J, there are surjective homomorphisms  : H → J
and  : K → J such that

(Hint. To prove that (i) ⇒ (ii), see the proof of 8.19.)

It is convenient to regard the direct product of a finite number of copies
of a group G as a group of maps from a suitable set into G. We introduce
this group of maps here; we shall return to it in chapter 9. The definition
can also be generalized to arbitrary direct products: see 444, 445.

8.21 Lemma. Let X be a non-empty finite set and let Gx denote the set of all
maps of X into the group G. For any  be defined,
for all x  X, by

(f1f2)(x) = f1(x)f2(x).
(N.B. This operation of multiplication is not composition of maps, and in
the present case we write the maps on the left of the elements to which they
apply. In his book, Scott uses the notation f1 + f2 for the map which we
denote here by f1f2 : see [b36] p. 14, example 11. This would be consistent
with 8.14, but we adopt the notation which is more usual in the present
context.) With respect to this operation of multiplication, Gx acquires the
structure of a group which we shall denote by Dr Gx.

For each x  X, let

Then

and                        

Thus Dr Gx is the direct product of | X | isomorphic copies of G.
Proof. Certainly Gx is non-empty and is closed with respect to the
multiplication defined above. Since multiplication in G is associative, so
also is this multiplication in Gx. There is an identity element for Gx, namely
the map



defined, for all x  X, by                         

Moreover, every element f  Gx has an inverse f− 1  Gx, defined for all x 
X, by

f-1(x) = f(x)-1.
Hence Gx is a group with respect to the multiplication defined above. We
denote this group by Dr Gx.

Now let x  X and let G* = Dr Gx. Then we define a map

as follows. For each g  G,

where gx is the map of X into G defined, for all y  X, by

Then, for all g, g′  G,

so that x is a homomorphism. Moreover,

and, by definition,

Thus                                     .

If g  G and f  G* then, whenever x ≠ y  X,

Therefore f− 1 gxf  Gx. Hence GX  G*.
Finally, we want to show that



This is obvious if | X | = 1. Suppose that | X | > 1. Then, for each x  X, any
element of  maps x to 1, and so

Moreover,                               

for if f  G* then we can express f in the form

(where the ordering of elements in the product on the right is immaterial,
since any two such elements commute). Now the result follows, by 8.4.

444 Let X be a non-empty finite set. To each x  X let there be associated an
arbitrary group Gx. (These groups Gx need not be distinct.) Let D denote the
set of all maps f of X into the set  which satisfy the condition

for all x  X. For any f1, f2  D, we may define a product map f1, f2  D, for
all x  X, by

(f1f2)(x) = f1(x)f2(x).
Then D acquires the structure of a group with respect to this operation of
multiplication.

For each x  X, let

Then                                     

Moreover,                        .

(Remarks. 8.21 is the special case in which Gx = G for all x  X. The
representation of the direct product of a finite collection of groups given
above is an appropriate basis for a generalization to a definition of direct
products of possibly infinite collections of groups: see also 445.)



*445 Let X be a non-empty set (possibly infinite) and, as in 8.21, let Gx

denote the set of all maps of X into the group G.
(i) Let multiplication of elements of Gx be defined as in 8.21. Show that

with respect to this operation of multiplication, Gx acquires the structure of
a group: the group is called the cartesian power (or unrestricted direct
power) of G with index set X, and will be denoted by Cr Gx. Let C = Cr Gx.

For each f  C, the support of f is defined to be the set

Let f, f′  C. Show that (cf. 110)
  (ii) s(f-1) = s(f),
 (iii) 
 (iv) s(f−1f′f) = s(f′).
  (v) If s(f) ∩ s(f′) =  prove that ff′ = f′f.
 (vi) Let D = {f  C : | s(f)| < ∞}. Prove that D  C. The group D is called

the direct power (or restricted direct power) of G with index set X, and is
denoted by Dr Gx. Note that this notation is consistent with 8.21: in fact, if
G ≠ 1 then D = C if and only if | X | < ∞.

(vii) For each x  X, let

Prove that  and [Gx, Gy] = 1 whenever x and y are
distinct elements of X. Moreover, every element of D is expressible in the
form , where fx  Gx for all x  X, and fx = e, the identity element of C,
for all but finitely many values of x; and the expression is unique apart from
ordering of the factors.

(When it is non-trivial, the ‘product’  is of course interpreted as the
product of the finitely many fx distinct from e. Products of infinitely many
elements are not defined in general.)

(viii) Suppose that Y is a non-empty set such that there is an injective
map of Y into X. Show that Cr GY can be embedded in Cr Gx and that Cr
GY/Dr GY can be embedded in Cr Gx/ Dr Gx.

(ix) Suppose that X is infinite and G ≠ 1. Prove that Cr Gx/ Dr Gx is
infinite. (Hint. It may be assumed that there is an injective map of the set N



of all positive integers into X. Hence, by (viii), it is enough to prove that Cr
GN/Dr GN is infinite.)

In the remainder of this chapter, we turn our attention to abelian groups.
Starting from cyclic groups, with whose structure we are already familiar
(see 3.25, 3.31, 3.32), we can form many other abelian groups simply by
using the direct product construction. Any group which is a direct product
of finitely many cyclic groups is certainly abelian; and it is also finitely
generated (see 108). We shall prove the fundamental structure theorem
which asserts, conversely, that every finitely generated abelian group is the
direct product of finitely many cyclic subgroups. This result is one of the
outstanding achievements of the classical period of group theory: for finite
groups it was partially known to Gauss, and proved completely in that case
in 1879 by Frobenius and L. Stickelberger [a33]. We shall also show that we
can decide whether or not two finitely generated abelian groups are of the
same type by comparing certain systems of integers associated with the
groups.

Before establishing these results, we make some remarks on notation.

8.22. Abelian groups appear in a natural way in the general framework of
algebra as the additive groups of rings (see 2.11). Perhaps for this reason, it
is conventional in developing the theory of abelian groups to write the
group operation as addition rather than multiplication. This convention has
various notational consequences. The identity element of an abelian group
is called the zero element and denoted by 0. One refers to the sum of two
subgroups H and K of an abelian group G instead of to their product, and
writes H + K instead of HK. If G is the direct sum of H and K (that is, if G =
H + K and H ∩ K = 0) then one writes G = H⊕K. Illogically, perhaps, one
nevertheless speaks of quotient groups of an abelian group and denotes
them as before. So, for instance, the isomorphism theorem of 3.40 would,
for an abelian group G, be expressed as follows: if H and K are subgroups
of G then H/(H ∩ K) ≅ (H + K)/K.

However, in this book we shall not adopt these conventions. Since the
theory of abelian groups forms only a small part of the subject matter of the
book, it seems more natural and economical to retain the notational
conventions already established in the preceding pages.



We come now to the proof of the structure theorem for finitely generated
abelian groups. Various different methods of proof appear in the literature.
From a wider point of view, it is illuminating to place the structure theorem
in the more general setting of results on modules over rings: see for instance
Hartley and Hawkes [b18] and Rotman [b34] chapters 4 and 9. For the
limited aims of the present chapter, we follow a brief and ingenious proof
due to R. Rado [a77]. An alternative method for finite abelian groups is
outlined in 448–452: this approach is based on results in Fuchs [b11] vol. 1.

We begin with a lemma. In 8.23 and 8.24, we use the notation
(m1, m2, … ms)

to denote the greatest common divisor of a sequence of integers m1, m2,…,
ms which are not all 0, where s is a positive integer. Note that

where  are those of the integers m1, …, ms which are not 0.

8.23 Lemma. Let H be a finitely generated abelian group. Suppose that
{x1, x2, …, xs} is a set of generators of H, where s is a positive integer. Let
m1, m2,…, ms be non-negative integers, not all 0, such that (m1, m2,…, ms)
= 1. Then there is a set of generators {y1, y2,…, ys} of H such that

Proof. Let , a positive integer. We argue by induction on m.

If m = 1 then mi ≠ 0 for only one value of i; we may assume without loss of
generality that m1 ≠ 0, and then m1 = 1. In this case the result is trivial.

Now suppose that m > 1. Then, since (m1, m2, …, ms) = 1, mi ≠ 0 for at
least two values of i. We may assume that

m1  m2 > 0.
Then m1 − m2, m2, m3, …, ms are non-negative integers, not all 0, and

(m1 − m2, m2, m3, …, ms) = 1.



Moreover, {x1, x1x2, x3, …, xs} is a set of generators of H, since x2 = x1
−

1(x1x2). We may apply the induction hypothesis to any suitable set of
generators of H. Then, since

the induction hypothesis implies that there is a set of generators {y1, y2, …,
ys} of H such that

This completes the induction argument.

446 Show, by considering the group Σ3, that 8.23 does not remain true in
general for non-abelian groups.

447 Show, by considering the group C6, that in 8.23 we cannot in general
choose {y2, …, ys} to be a subset of {x1, x2, …, xs}.

8.24 Structure theorem for finitely generated abelian groups. Let r be a
positive integer and let G be an r-generator abelian group. Then there are
elements x1, x2, …, xr of G such that

Proof. If r = 1 then G is cyclic and there is nothing more to prove.
Therefore we may assume that r > 1. We consider the set  of all ordered
sets

(x1, x2, …, xr)
of elements of G such that

and                               .



Here the elements x1, x2, …, xr need not all be distinct; and in the
inequalities (i), we treat ∞ as a ‘number’ greater than every positive integer.
Clearly any set of r generators of G can be ordered (possibly in several
different ways) so that it becomes a member of . Thus  ≠ .

We choose a member of  which satisfies certain minimality conditions
on orders of elements. For all members (x1, x2, …, xr) of , let N1 be the
smallest value of o(x1); thus N1 is either a positive integer or ∞. Then, for
all members (x1, x2, …, xr) of  such that o(x1) = Nl, let N2 be the smallest
value of o(x2). Then, for all members (x1, x2, …, xr) of  such that o(x1) =
N1 and o(x2) = N2, let N3 be the smallest value of o(x3). And so on.

Now we choose some member
(x1, x2, …, xr)

with, for each i = 1,…, r, o(xi) = Ni.
Then {x1, x2, …, xr} is a set of r generators of G with the following
property: whenever {y1, y2,…, yr} is a set of r generators of G and j is a
positive integer such that (if j > 1)

then                                     .

Since G is abelian, every element of G is expressible in the form

with suitable integers n1, n2, …, nr (69); and 〈 xi 〉  G for each i = 1,…,
r. Hence

We claim that



Assume to the contrary that this is false. Then it follows easily from 8.4
that there are integers n1, n2, …, nr such that

for some i. We may suppose without loss of generality that n1, n2,…, nr are
all non-negative: for if, say, nj < 0 then, in the argument above, we may
replace xj by  and nj by − nj. (Since  this replacement
does not alter the properties prescribed above.)

We define integers l1, l2,…, lr such that, for each i = 1,…, r,

This may be done as follows.
If o(xi) < ∞ then, by the division algorithm, there are integers qi and si

such that ni = qio(xi) + si and 0  si < o(xi). Then  and we define li
= si.

If o(xi) = ∞ then we define li = ni (We have arranged above that ni is non-
negative.)

Since, by assumption,  for some i, li > 0 for some i. Let j be the
least positive integer such that lj > 0: thus, if j > 1, li = 0 for every i < j.

Now let
d = (l1, l2, …, lr),

and, for each i = 1,…, r, let

Then m1, m2, …, mr are non-negative integers such that
(m1, m2, …, mr) = 1

Since mi = 0 for every i < j,

Let                                     .

Then, by 8.23, there is a set of generators {yj, yj+1, …, yr} of H such that



Hence

But now                          
and                                      
This contradicts the choice of (x1, x2, …, xr). Therefore we conclude that

448 (i) Let G be a finite abelian group and let x be an element of G of
largest possible order, say n. Then gn = 1 for every g  G.
(Hint. Use 6 to show that if there were an element g G with gn ≠ 1 then, for
suitable positive integers j and k, o(gjxk) > n.)

(ii) Show by an example that the statement in (i) would not be true in
general without the condition that G is abelian.

449 Let H  G, a finite abelian group. Let K be a subgroup of G maximal
subject to H ∩ K = 1. Suppose that g  G and gp  K for some prime p.
Then g  H K (= H × K, by 8.2). (Hint. If g∉K, show that there are
elements h H and k  K such that h = kgr, where r is an integer not divisible
by p.)

450 Let H  G, a finite abelian group. Let K be a subgroup of G maximal
subject to H ∩ K = 1. Then the following two statements are equivalent:

  (i) G = H × K.



 (ii) For any prime p and any elements g  G, h  H, k  K such that gp =
hk, there is an element h′  H such that h = (h′)p.
(Hint. To prove that (ii) ⇒ (i), suppose that (H × K) < G, consider an
element of prime order in G/(H × K) and apply 449.)

451 Let G be a finite abelian group and let x be an element of G of largest
possible order, say n. Then 〈x〉 is a direct factor of G.
(Hints. Let H = 〈x〉  G, and let K be defined as in 450. Use 448 and 450
to show that G = H × K. Deal separately with the cases in which p divides n
and p does not divide n.)

452 Let G be a non-trivial finite abelian group. Then there are non-trivial

elements x1, x2,…, xr of G such that  and (if r > 1) o(xi) is

divisible by o(xi+1) for all i = 1,…, r − 1. (Hint. Argue by induction on | G |
and use 448 and 451. Remark. In 463, we shall see that the sequence of
positive integers r, o(x1), o(x2),…, o(xr) is uniquely determined by G.)

453 Let G be a non-trivial finite group and let n be a positive integer. Then
the following two statements are equivalent:

  (i) G is abelian and gn = 1 for every g  G.
 (ii) G is a direct product of cyclic subgroups each of which has order

dividing n.

454 (i) Suppose that G = H × K and let A be an abelian group. Then

Hom(G, A)≅Hom(H, A) × Hom(K, A) (see 33).

(ii) If J is a finite cyclic group then Horn (J, C×) ≅ J.
(iii) Deduce that if G is a finite abelian group then Hom(G, C×) ≅ G (cf.

41 (ii)).

8.25. It is natural to ask whether there is a uniqueness theorem for
decompositions of a finitely generated abelian group as a direct product of
cyclic groups (cf. 8.12). The proof of 8.24 allows the possibility that one or
more of the elements x1,…, xr may be equal to the identity element 1. More



significantly, the direct factors 〈xi〉 in 8.24 need not be indecomposable:
for instance, if o(xi) = 6 then  (see 81).

Even if the direct factors in 8.24 are non-trivial and indecomposable, we
cannot expect to obtain such a strong uniqueness theorem as in 8.18. For
instance, consider again the group G = C2 × C2, and let A, B, C be the three
distinct subgroups of G of order 2 (see 8.5). Then

G = A × B = B × C = C × A,
and these are essentially different decompositions of G as a direct product
of non-trivial indecomposable subgroups. However, we shall prove that, as
in this example, in any two decompositions of a finitely generated abelian
group G as a direct product of non-trivial indecomposable subgroups, the
number of factors in both decompositions is the same and the factors in one
decomposition can be paired isomorphically with the factors of the other
decomposition.

We shall establish this by means of several intermediate results. First, we
note that any non-trivial finitely generated abelian group does have a
decomposition as a direct product of finitely many indecomposable
subgroups.

8.26 (cf. 81, 132). Let G be a finitely generated abelian group. Then G is
indecomposable if and only if G is cyclic of prime power or infinite order.

Proof Suppose that G is indecomposable. Then, by 8.24, G is cyclic. If G is
finite then it follows from 8.6 that G has prime power order.

Suppose conversely that G is cyclic, of prime power or infinite order. If |
G | = pm, where m is a positive integer, then, by 3.32, every non-trivial
subgroup of G contains the unique subgroup of G of order p, and so any
two non-trivial subgroups of G have non-trivial intersection; thus G is
indecomposable. If G is infinite then it follows from 3.25 that any two non-
trivial subgroups of G again have non-trivial intersection, so that G is
indecomposable.

8.27 Corollary. Let G be a non-trivial finitely generated abelian group.
Then G is the direct product of finitely many indecomposable subgroups.
Proof. By 8.24, there are subgroups H and K of G such that

G = H × K,



where H is finite and either K = 1 or K is the direct product of a finite
number of infinite cyclic subgroups of G. Now the result follows from 8.17
and 8.26.

8.28 Definitions, (i) G is said to be periodic (or to be a torsion group) if
every element of G has finite order. Every finite group is periodic; and there
are also infinite periodic groups, such as Q+/Z+ (195).

(ii) G is said to be torsion-free (or aperiodic or locally infinite) if every
non-trivial element of G has infinite order. For example, the groups Z+, Q+,
R+, C+,  are torsion-free. The only group which is both periodic
and torsion-free is the trivial group (of order 1).

(iii) In general, an infinite group may have non-trivial elements of finite
orders and also elements of infinite orders. Such a group is said to be mixed.
For instance, the groups Q×, R×, C× are mixed.

8.29. We mention here a famous problem of Burnside. Clearly any finite
group is both finitely generated and periodic. In 1902, Burnside asked
whether, conversely, a group which is both finitely generated and periodic is
necessarily finite. This question has a positive answer for soluble groups
(see 455). The general question remained unanswered until 1964, when E.
S. Golod and I. R. Shafarevich ([a41], [a42]) showed that for any prime p,
there is a 3-generator infinite group in which every element has order a
power of p; thus answering Burnside’s question in the negative. (In this
connexion, see Herstein [b20] chapter 8.)

In the Golod-Shafarevich examples, there is no finite upper bound on the
orders of elements. On the other hand, in a finite group G, every element x
satisfies the equation x|G| = 1. Therefore one may ask whether a group G is
necessarily finite if it is finitely generated and there is a positive integer n
such that xn = 1 for every x  G. This question has been the subject of a
great deal of study since Burnside first formulated his problem. It is easy to
show that G must be finite if n = 2 (see 3 and 69); and it is also known that
G is finite if n = 3 (Burnside [a 10] and F. W. Levi and B. L. van der
Waerden [a70]; see Huppert [b21] p. 290, theorem 3.6.6) or if n = 4 (I. N.
Sanov [a82]) or if n = 6 (M. Hall [a46]). The solution in the case n = 6 uses
ideas from a seminal paper of P. Hall and G. Higman [a52]: this paper has
also had a profound influence on later investigations on finite simple
groups.



However, in 1968, P. S. Novikov and S. I. Adyan ([a75]) established that
for every odd integer n  4381, there is a 2-generator infinite group G such
that xn = 1 for every x  G.

455 A finitely generated periodic soluble group is necessarily finite. (Hint.
Argue by induction on derived length, and apply 108, 195 and 196.)

We shall now show that any abelian group has a ‘periodic radical’ (see
3.45).

8.30 Theorem. Let G be an abelian group and let H be the set of all
elements of G which have finite orders. Then H is a periodic subgroup of G,
and G/H is torsion-free. We call H the torsion subgroup of G and write H =
T(G). Proof. Certainly 1  H, so that H ≠ . Let h1, h2  H, and let

Then n1, n2 are positive integers and, since G is abelian,

Therefore, since n1n2 is a positive integer, , and so 
. Thus H  G. By definition, H is periodic.

Since G is abelian, we can form the quotient group G/H. Let g  G, and
suppose that gH is an element of finite order n in G/H. Then

by hypothesis, so that                         
Hence o(gn) < : say o(gn) = m. Then

gnm = 1,
and nm is a positive integer. Therefore o(g) < ∞, and so g  H. Thus

gH = H.
Hence G/H is torsion free.
Remark. In a non-abelian group G, the set of all elements whose orders are
finite need not form a subgroup of G: see 45, 142. See also 458.



8.31 Lemma. Let G be an abelian group. Suppose that G0 is a periodic
subgroup of G such that G/G0 is torsion-free. Then G0 = T(G).
Proof. Since G0 is periodic, G0  T(G). Then T(G)/G0 is a periodic
subgroup of G/G0. Since G/G0 is torsion-free, this implies that G0 = T(G).

8.32 Lemma. Let G and H be abelian groups. If G ≅ H then T(G) ≅ T(H)
and G/T(G) ≅ H/T(H).
Proof. Suppose that  is an isomorphism of G onto H. If x  T(G) then xn =
1 for some positive integer n. Hence (x )n = xn  = 1, so that x   T(H).
Thus T(G)   T(H). Every element of H is expressible in the form y , with
y  G. If y   T(H) then (y )n = 1 for some positive integer n. Hence yn  =
1 and so, since  is an isomorphism, yn = 1. Therefore y  T(G) and y  
T(G) . Thus T(G)  = T(H), so that  maps T(G) isomorphically onto T(H).
Now it follows by 3.29 that G/T(G) ≅ H/T(H).

456 Let H  G, an abelian group. Show that
  (i) T(H) = H ∩ T(G),
 (ii) T(G)/T(H) ≅ HT(G)/H  T(G/H).

Show by an example that we may have HT(G)/H < T(G/H).

457 Show that T(Q×) = C2 = T(R×), T(C×) = V the multiplicative group of
all complex roots of 1 (131), and

458 Let G be a (not necessarily abelian) group in which the set of all
elements which have finite orders forms a subgroup H of G. Then H is a
periodic characteristic subgroup of G, and G/H is torsion-free.

459 Let U(G) = {x  G: either × = 1 or o(x) = .
  (i) Suppose that G is abelian. Show that U(G) is a subgroup of G if and

only if either U(G) = 1 or U(G) = G; that is, if and only if G is either
periodic or torsion-free.



 (ii) Show by an example that if G is non-abelian, U(G) can be a non-
trivial proper subgroup of G.

8.33 Lemma. Let n be a positive integer, and let G and H be abelian
groups.

  (i) Let . Then Gn  G.
 (ii) If G ≅ H then Gn ≅ Hn and G/Gn ≅ H/Hn.

Proof. Since G is abelian, the map , defined for all g  G, is an
endomorphism of G. Then Gn = Im n  G.

Now suppose that  is an isomorphism of G onto H. For any x  G, xn

= (x )n  Hn. Thus Gn   Hn. Every element of H is expressible in the
form y , with y  G, and (y )n = fn   Gn . Thus Gn  = Hn, so that 
maps Gn isomorphically onto Hn. It follows by 3.29 that G/Gn ≅ H/Hn.

8.34 Lemma. Let n be a positive integer. Let G be a finitely generated
abelian group, so that, by 8.24, there are elements x1, …, xr of G such that

Proof. Let g  G. Then there are integers m1, …, mr such that

Then

Thus                               .
Since, for each i = 1,…, r,

it follows that



8.35 Definition. Let r be a positive integer. A group which is the direct
product of r infinite cyclic subgroups is said to be free abelian of rank r.
The trivial group (of order 1) is said to be free abelian of rank 0.

Note that any free abelian group is torsion-free.

8.36 Lemma. Let n and r be positive integers. Let G be a free abelian
group of rank r. Then G/Gn is the direct product of r cyclic subgroups, all of
order n.
Proof. By hypothesis, there are r elements x1,…, xr of G, all of infinite
order, such that

Then, by 8.34,             .

Hence (see 111)

By 3.25,  is cyclic of order n, for each i = 1,…, n.
We deduce that the rank of a free abelian group is uniquely determined

by the group.

8.37 Corollary. Let G and H be free abelian groups of rank r and s,
respectively, where r and s are non-negative integers. Then G ≅ H if and
only if r = s.
Proof. It is clear from the definition that if r = s then G ≅ H. Suppose,
conversely, that G ≅ H. We may assume that G and H are non-trivial, so
that r and s are both positive. By 8.33, G/G2 ≅ H/H2; and, by 8.36, G/G2

and H/H2 are elementary abelian groups, of orders 2r and 2s, respectively.
Since | G/G2| = | H/H2|, it follows that r = s.



460 Let n be a positive integer, G an abelian group and 
.

  (i) Then Gn  G, and G/Gn ≅ Gn.
 (ii) Suppose that G is finite, so that (by 8.24 or 452) there are elements

x1,…, xr of G such that

For each i = 1, …, r, let mi = o(xi) and ki = mi/(mi, n). Then

(iii) If G is finite then G/Gn ≅ Gn.

(iv) Show by an example that if G is infinite, we need not have G/Gn ≅
Gn for any n > 1.

(v) Show by an example that, even when G is finite, for some n > 1 we
need not have G = Gn × Gn.

461 Let n be a positive integer and let G and H be abelian groups. If G ≅ H
then Gn ≅ Hn(see 460).

462 Let G be a non-trivial finite abelian group. Then, by 452, there are non-
trivial elements x1, x2,…, xr of G such that  and (if r > 1)

o(xi) is divisible by o(xi + 1), for all i = 1, …, r – 1.
  (i) If p is a prime divisor of o(xr), then Gp is elementary abelian of order

pr (where Gp is defined as in 460).
 (ii) The integer r is the least positive integer n such that G is an n-

generator group. (Hint. Apply (i),2.30(i) and 388.)

463 Let G and H be non-trivial finite abelian groups. Then, by 452, there
are positive integers r and s and non-trivial elements x1, x2, …, xr of G and

y1, y2, …, ys of H such that , and (if r >



1) o(xi) is divisible by o(xi+1) for all i = 1, …, r − 1 and (if s > 1) o(yj) is
divisible by o(yj+1) for all j = 1, …, s − 1.

Prove that if G ≅ H then r = s and o(xi) = o(yi) for all i = 1,…, r.
(Remark. This shows that if G is a non-trivial finite abelian group then the
positive integers r, o(x1), o(x2),…, o(xr), given by 452, are uniquely
determined by G; and, conversely, they obviously determine uniquely the
type of G. The integers o(x1), o(x2), …, o(xr) are sometimes called the
invariants of G. Hints. By 462(ii), r = s. Argue by induction on | G | to show
that o(xi) = o(yi) for all i = 1, …, r. Let p be a prime divisor of o(xr). Then p
divides o(xi) for all i = 1,…, r and, by 460(ii), 461 and 462(i), p divides
o(yi) for all i = 1,…, r. If G and H are not elementary, consider Gp and Hp

and apply 8.33, 8.34 and the induction hypothesis.)

464 Find the invariants (463) of the finite abelian groups C4 × C6, C6 × C15
× C21 and C2 × C10 × C15.

465 Let r be a positive integer, and let G be a free abelian group of rank r.
Then, by hypothesis, there are elements x1, …, xr of G, all of infinite order,

such that .

(i) Let g  G. Then there are integers n1…, nr, uniquely determined by g,

such that 

(ii) Let H be any r-generator abelian group. Then there is a
homomorphism of G onto H.

466 Let r be a positive integer, and let G be a free abelian group of rank r.
Let H  G. Then H is free abelian of rank s for some s  r. (Hint. Apply
388 and 8.24.)

467 Let K  G, an abelian group. Suppose that G/K is free abelian of rank r
for some positive integer r. Then there is a subgroup H of G such that G =
H × K. (Hint.



There are r elements x1, …, xr of G such that  and the

elements x1 K,…, xr K of G/K all have infinite order. Let H = 〈x1, …, xr 〉
 G.)

468 Let r be a positive integer, and let G be a free abelian group of rank r.
Then

  (i) G can be embedded in 
 (ii) If r > 1, G cannot be embedded in Q+.

We now note a consequence of the structure theorem 8.24.

8.38 Lemma. Let G and H be finitely generated abelian groups.
  (i) There is a non-negative integer r and a free abelian subgroup K of G

of rank r such that G = T(G) × K; and T(G) is finite.
 (ii) Let G = T(G) × K and H = T(H) × L, where K is a free abelian

subgroup of G of rank r, L a free abelian subgroup of H of rank s, and r and
s are non-negative integers. Then G ≅ H if and only if T(G) ≅ T(H) and r
= s.
Proof. (i) By 8.24, there are subgroups G0 and K of G such that

G = G0 × K,
with G0 finite and K free abelian of rank r, for some non-negative integer r.
Then, since G/G0 ≅ K, which is torsion-free, it follows, by 8.31, that G0 =
T(G).

(ii) If r = s then K ≅ L. If also T(G) ≅ T(H) then, since G = T(G) × K
and H = T(H) × L, it follows that G ≅ H.

Suppose, conversely, that G ≅ H. Then, by 8.32, T(G) ≅ T(H) and K ≅
G/T(G) ≅ H/T(H) ≅ L. Then also, by 8.37, r = s.
Remark. Let G be an abelian group. It has been proved by R. Baer [a4]
(1936) and S. V. Fomin [a28] (1937) that if there is a positive integer n such
that xn = 1 for every x  T(G) (and, in particular, if T(G) is finite) then T(G)
is a direct factor of G. See Fuchs [b11] vol. 2, p. 187, theorem 100.1.
However, in general T(G) need not be a direct factor of G; see for example
Macdonald [b30] p. 223, example 11.14.



The last lemma reduces the problem of finding conditions for two finitely
generated abelian groups to be isomorphic to the corresponding problem for
finite abelian groups. We now make a further reduction.

8.39 Lemma. Let G and H be finite abelian groups. Then G ≅ H if and
only if for every prime p, G and H have isomorphic Sylow p-subgroups.
Proof. Suppose that  is an isomorphism of G onto H. Let p be any prime,
and let P be the Sylow p-subgroup of G. Then . Moreover,
since | P | = | P | and | G | = | H|, P  is the Sylow p-subgroup of H.

Suppose, conversely, that for every prime p, G and H have isomorphic
Sylow p-subgroups. If G = 1, it follows immediately that H = 1. Suppose
that G ≠ 1, and let the distinct prime divisors of | G | be p1,…, ps, where s is
a positive integer. For each i = 1,…, s, let Pi, Qi denote the Sylow pi -
subgroups of G, H respectively. Then, by hypothesis, for each i = 1,…, s,

and | H | is divisible by no prime distinct from p1,…, ps. By 8.6,

Hence
It remains to consider the question of isomorphism of finite abelian p-

groups. We do this next.

8.40 Lemma. Let G and H be non-trivial finite abelian p-groups. By 8.24,
we may decompose G and H as direct products of non-trivial cyclic
subgroups: say

where t and u are positive integers. For each i = 1,…, t and each j = 1,…,
u, let



We may suppose the notation chosen so that

Then G ≅ H if and only if t = u and mi = ni for each i = 1,…, t.
Proof. It is clear that if t = u and mi = ni for each i = 1,…, t, then G = H.

Suppose, conversely, that G ≅ H. We argue by induction on m1. If m1 =
1 then, since, by hypothesis, m1 > 0, it follows that mi = 1 for every i = 1,
…, t. Thus G is an elementary abelian p-group, and so H is also an
elementary abelian p-group. Hence Hj = 1 for every j = 1,…, u. Then also pt

= | G | = | H | = pu, so that t = u.
Now suppose that m1 > 1. Then also n1 > 1, by the case already

established. Let k be the largest integer such that mk > 1 and let l be the
largest integer such that n1 > 1. Then 1  k  t, and if k < t then mi = 1 for
all i > k. Similarly, 1  l  u, and if l < u then nj = 1 for all j > l. Hence

Therefore, since G ≅ H,

By 8.33 and 8.34,

For each i = 1, …, r and each; = 1, …, u,

Hence also

with     



 and 
. Since Gp ≅ Hp and ,

it follows, by the induction hypothesis, that

Then it follows, by equation (i), that t = u; and also, since m. = 1 = ni
whenever i > t, mi = ni for each i = 1,…, t. This completes the induction
argument.

469 Let n and m be positive integers, and let G be an abelian group. Then
   (i) Gnm = (Gn)m.
 (ii) If m divides n then Gn  Gm.
(iii) If H  G then (G/H)n = GnH/H.
 (iv) If G = H × K then Gn = Hn × Kn; and Gn = G if and only if Hn = H

and
  (v) If G is periodic and, for every g  G, (o(g), n) = 1, then Gn = G.
(vi) Suppose that n > 1 and that G is finitely generated. Then Gn = G if

and only if G is finite and (|G|, n) = 1.
(vii) Suppose that n > 1. Then Gn = G if and only if Gp = G for every

prime divisor p of n.

470 Let G be an abelian group. Then G is said to be divisible (or radicable
or complete) if Gn = G for every positive integer n. (We shall keep to the
most frequently used term, divisible, even though it derives from the
customary additive notation for abelian groups and the term radicable
would be more appropriate to our multiplicative notation.)

   (i) The groups  (144) are all divisible.
 (ii) If G is divisible, then so is every quotient group of G.
(iii) If G = H × X, then G is divisible if and only if H and K are both

divisible.
 (iv) If G is divisible and non-trivial, then G cannot be finitely generated.

471 Let G be an abelian group and suppose that H is a divisible subgroup of
G (470). Assume that K is a subgroup of G which is maximal subject to H
∩ K = 1. (Remark. Zorn’s lemma, which is a version of the so-called axiom



of choice for sets, guarantees the existence of such a subgroup K: see, for
instance, Fuchs [b11] vol. 1, pp. 1-2 and p. 48.)

Prove that G = H × K. (Hints. Let J = HK. Suppose, contrary to what we
wish to prove, that J < G. Then there is an element x  G and a positive
integer m such that x∉J and xm  J. Let n be the least such integer. By the
divisibility of H, there is an element h  H such that (xh-1)n  K. Moreover,
there are elements h′  H, k′  K and an integer r such that l ≠ h′ = (xh-1)rk′;
and r is not divisible by n. Use the division algorithm to derive a
contradiction to the choice of n.)

We have now reached a very satisfactory position with regard to finitely
generated abelian groups. Any such group G determines a certain system of
integers (see 8.41) and the type of G is uniquely determined by this system.

8.41 Uniqueness theorem for finitely generated abelian groups. Any
finitely generated abelian group G determines a system of non-negative
integers, as follows. There are non-negative integers r and s; and if s > 0,
there are distinct primes p1, …, ps, positive integers t1, …, ts and positive
integers mij (i = 1,…, s, j = 1,…, ti); such that G = T(G) × K, where K is a
free abelian group of rank r, and if s = 0, T(G) = 1, while if s > 0, T(G) is

the direct product of  cyclic subgroups whose orders are 

. Moreover, two finitely generated abelian
groups are isomorphic if and only if they determine the same system of
integers. Proof Let G be a finitely generated abelian group. By 8.38, G =
T(G) × K, where K is a free abelian group of rank r for some non-negative
integer r, and T(G) is finite. If T(G) = 1, let s = 0. If T(G) ≠ 1, let s denote
the number of distinct prime divisors of | T(G)|, and let these primes be p1,
…, ps.

In this case, by 8.6,  where Pi is the unique Sylow pi-

subgroup of T(G). Finally, by 8.24, for each i = 1,…, s, Pi is the direct
product of a finite number, ti say, of non-trivial cyclic subgroups; let the
orders of these cyclic subgroups be .



The fact that two finitely generated abelian groups are isomorphic if they
determine the same system of integers follows immediately from the
definition of the system of integers. Suppose, conversely, that G and H are
isomorphic finitely generated abelian groups. Then the fact that they
determine the same system of integers follows from 8.38, 8.39 and 8.40.
Remark. Every system of non-negative integers of the kind specified in the
theorem does arise from some finitely generated abelian group. This is
clear: we need only form a suitable direct product of cyclic groups of prime
power and infinite orders.

8.42 Corollary. Let G be a non-trivial finitely generated abelian group, and
let

G = H1 × … × Hm = K1 × … × Kn,
where m, n are positive integers and H1, …, Hm, K1, …, Kn are non-trivial
indecomposable subgroups of G. Then m = n and, by relabelling the suffices
if necessary, Hi ≅ Ki for each i = 1,…, n.
Proof. For each i = 1,…, m, Hi is isomorphic to a quotient group of G, and
is therefore finitely generated. Similarly, Kj is finitely generated for each j =
1, …, n. Therefore, by 8.26, each Hi and each Kj is cyclic of prime power or
infinite order. Now the result follows, by 8.31 and 8.41.

8.43 Corollary (1.5). Let  where s, m1, …, ms are
positive integers and P1, …, Ps distinct primes. Then, if va(n) denotes the
number of distinct types of abelian groups of order n,

and for each j = 1,…, s,  is the number of partitions of mj.
Proof. The first assertion follows from 8.6 and 8.39, and the second
assertion from 8.40.

8.44. There is an extensive theory of infinite abelian groups. Some
remarkable phenomena occur. For instance, A. L. S. Corner [al8] has shown
that there is a torsion-free abelian group G for which G ≅ G × G × G but G

 G × G.



For further information about infinite abelian groups, see Fuchs [b11],
Griffith [b15], Kaplansky [b24], Kurosh [b27] vol. 1, part 2, and Rotman
[b34] chapters 9 and 10.

472 (i) For each positive integer m, let (m) denote the number of partitions
of m. Verify that (1)= 1, (2) = 2, (3) = 3, (4) = 5, (5) = 7, (6) = 11 and 
(7) = 15.

(ii) For each positive integer k  12, find the least positive integer nk
such that va(nk) = k.

Show that there is no positive integer n such that va(n) = 13.

473 (i) Let G be any non-trivial finitely generated abelian group, let n be
any integer with n > 1, and let G* be the direct product of n isomorphic
copies of G. Then G  G*.

(ii) Let G be any non-trivial group, let N denote the set of all positive
integers, and let G* = Dr GN, the direct power of G with index set N (445).
Then G* is an infinite group, and G* ≅ G* × G*.



9
GROUP ACTIONS ON GROUPS

In chapters 4 and 5, we have discussed and applied the idea of a group action
on a set. A group can also act on other mathematical systems. When this
occurs, we add to the axioms of 4.1 further axioms to ensure that the action
respects the structure of the particular system on which the group acts. There
is in particular a very highly developed theory of group actions on vector
spaces: this is usually called representation theory. This theory provides
powerful tools for proving results about abstract groups: for instance, the
theorems of Burnside and Frobenius mentioned in 4.29 and 248 are most
easily (or, in the case of the theorem of Frobenius, only) proved by means of
representation theory. We shall not in this book discuss representation theory
further, but refer for introductory treatments to Lang [b28] chapter 18 and
Serre [b37]. The most comprehensive account available is by Curtis and
Reiner [b7].

In this chapter, we shall discuss the idea of a group action on a group.
Note that in the following definition the axioms are those of 4.1 together
with one extra axiom of structure preservation. As usual, H and K always
denote groups.

9.1 Definition. We say that H acts on K (as a group) if, to each h  H and
each k  K, there corresponds a unique element kh  K such that, for all k, k1,
k2  K and h, h1, h2  H,

and                               

For the theory of group actions on groups, the ‘exponential’ notation kh is
a convenient one, which, as we shall see, fits in well with the previous
notation for conjugates.



9.2 Examples, (i) Let R be a ring with a multiplicative identity element 1.
Then the group R× acts on the group R+ (see 2.11 and 2.12) when we define,
for each a  R+ and each b  R×,

ab = ab,
the product in the ring R. Here the conditions for the action are that for all a,
a1, a2,  R+ and b, b1, b2  R×,

and                               

These are satisfied, by the associative law of multiplication and a distributive
law in R, and the defining property of the identity element of R.

(ii) Let H ≤ Aut K. Then H acts on K. In this case, each h  H is an
automorphism of K and, for k  K, kh is the image of k under h. The
conditions of 9.1 are clearly satisfied. This action is the natural action of H
on K.

(iii) Let K  G. Then G acts on K (as a group) by conjugation: to each k 
K and each g  G there corresponds the element

in accordance with previous notation (4.25). Here the conditions for the
action are that for all k, k1, k2  K and g, g1, g2  G,

and                                     

which we have already verified in 4.25 and 4.36 (or 2.19). In particular, we
see that the action defined in 4.25 is an action of G on itself as a group.

On the other hand, the action of G on itself by right multiplication
discussed in 4.23 is an action on G as a set but not as a group, unless | G | =
1.

We now note the analogues of 4.3 and 4.4.

9.3 Theorem. Let H act on K. Then, to each h  H there corresponds a map 
h : K → K, defined by                     h : k  kh, and this is an

automorphism of K. Moreover, the map  : H → Aut K, defined by  : h  
h, is a homomorphism. We call  the automorphism representation of H

corresponding to the action; or, more frequently, for brevity, we simply call 



 the action. Proof. Let h  H. Since the action of H on K is in particular an
action on K as a set, 4.3 shows that h  ΣK. Then, for k1, k2  K,

and so h  Aut K. Hence the map  : h  h (defined for all h  H) is a
map of H into Aut K, and, by 4.3, it is a homomorphism.

9.4 Theorem. Let  be a homomorphism of H into Aut K. Then H acts on K
when we define, for each h  H and k  K,

and the corresponding action is .
Proof. Since Aut K ≤ ΣK, it is clear from 4.4 that the equation above defines
an action of H on K as a set. It is an action on K as a group because, for h 
H and k1, k2  K,

Finally, it is clear from 4.3, 4.4 and 9.3 that the corresponding action is .

9.5. In 4.36 we proved that, whenever  and
NG(H)/CG(H) can be embedded in Aut H. We see now the true context of
this result. Since  acts on H as a group by conjugation.
The action has CG(H) as its kernel, and so the result of 4.36 follows from 9.3
and the fundamental theorem on homomorphisms.

474 Formulate the appropriate axioms for a group action on a vector space.
Show that if a group G acts on a vector space V ≠ 0, there is a

corresponding homomorphism G → GL(V) (the linear representation of G
corresponding to the action). Show, conversely, that for each homomorphism

 : G → GL(V) there is an action of G on V with corresponding linear
representation .

475 Let R be a ring with a multiplicative identity element 1. Then the action
of R× on R+ defined in 9.2(i) is faithful.



*476 Let K  G, and let the action of G on K by conjugation be  (see
9.2(iii)). Then Ker  = CG(K).

477 Let H act on K. If K ≠ 1, then the action is intransitive.

Suppose that H acts on K, say with action . Because H and K are both
groups, a construction is available which would not make sense for group
actions on general sets. This construction embeds both H and K in a group G
in such a way that the action  is preserved within G. This generalizes the
direct product construction (2.31).

9.6 Theorem. Let H act on K. Then the set of all ordered pairs (h, k) with h 
 H and k  K acquires the structure of a group G when we define, for all h1,

h2  H and k1, k2  K,

Proof. Closure is immediate from the definition of multiplication. Let h1, h2,
h3  H and k1, k2, k3  K. Then, using the associativity of multiplication in H
and in K,

by 9.1, and

By 9.1, k1 = k for every k  K. Also by 9.3, for every h  H the map k  kh

is an automorphism of K. Therefore 1h = 1 and (k− 1)h = (kh)− 1 (2.9). It
follows by the rule of multiplication that (1, 1) is the identity element of G
and that any (h, k)  G has an inverse element (h− 1,(k− 1)h − 1)  G.

9.7 Definition. Before naming the group G of 9.6 we make a notational
convention. In forming such a group G from H and K, we shall from now on
assume that H and K have only the identity element 1 in common. (This is



not a serious restriction, because if H and K have common non-trivial
elements, we may replace H or K by an isomorphic copy in which the
elements are denoted by new symbols so that only the identity elements of
the groups bear the same symbol.) Then in the group G of 9.6 we replace
each ordered pair (h, k) by the symbol hk. This convention simplifies
notation considerably. It corresponds to the convention which we have
already adopted in 8.1 for direct products: see also 9.9. The rule of
multiplication in G is then

for all h1, h2  H and k1, k2  K.
Let the action of H on K be . Then we call the group G of all juxtaposed

symbols hk, with h  H and k  K and multiplication given by the equation
above, the semidirect product of K by H with action . We shall denote this
group by  × K. (Warning. This definition and notation differ from the
corresponding ones in Rotman [b34] pp. 135–8. The difference arises from
the fact that Rotman makes maps operate on the left of elements. When the
appropriate translations are made, the definitions given here are equivalent.)

9.8. For any groups H and K, there is a trivial action of H on K: we define,
for each h  H and k  K,

kh = k.
The conditions of 9.1 are obviously satisfied. The corresponding
automorphism representation of H is the trivial homomorphism  : H → Aut
K, namely

The semidirect product  × K of K by H with trivial action consists of all
symbols hk, with h  H and k  K, and multiplication given by

(h1k1)(h2k2) = (h1h2)(k1k2),
for all h1, h2  H and k1, k2  K. Clearly this group is just the direct product
H × K (with the typical element (h, k) replaced by hk, as in 8.1).

When we form semidirect products with non-trivial actions, we usually
get groups other than direct products. In particular, note that if H and K are
abelian groups and H acts on K with non-trivial action,  say, then the group 



 × K is non-abelian. This construction process is of considerable
importance.

9.9 Theorem. Let H act on K, say with action . Let G =  × K. For each
h  H, we identify h with the element h1  G and, for each k  K, we identify
k with the element 1k  G (cf. 8.1). Then , G = HK
and H ∩ K = 1. Moreover, the action of H on K is the restriction to H of the
action by conjugation of G on K (see 9.2 (iii)).
Proof. First, note that the map

defined for all h  H, is an injective homomorphism of H into G. This
justifies the identification of h with h1. Then also H is identified with the
image of the injective homomorphism above, and so H ≤ G. Similarly, by
identification of k with 1k for all k  K, K ≤ G. By definition of
multiplication in G,

hk = (h1)(1k).
Hence, when h has been identified with h1 and k with 1k, hk becomes the
product in G of h  G and k  G (not just a juxtaposition of two unrelated
symbols). Thus G = HK. Moreover, H ∩ K = 1, since the only element of G
which has both the forms h1 and 1k is 11, which we now denote by 1.
(Remark. It was in order to ensure that the identifications made here would
be unambiguous that we demanded in 9.7 that groups H and K should have
only the element 1 in common.)

Now consider the map 
defined by 
for all h  H and k  K. By the definition of multiplication in G given in 9.7, 

 is a surjective homomorphism and Ker  = K. Hence, by the fundamental
theorem on homomorphisms, K  G and G/K ≅ H. Finally, let h  H and k 
K. Then in G,

h- 1 kh = h -1 hkh = kh.
Thus kh is now the conjugate in G of k by h, and so the original action of H
on K is the same as the action defined by restriction to H of the action by
conjugation of G on K.

9.10. We now point out some important examples.



(i) Let K be any group, and consider the natural action of Aut K on K.
Then the action is the identity map  on Aut K: for every α  Aut K,

This defines a semidirect product

which is called the holomorph of K and denoted by Hol K.
By 9.9, K  Hol K and, for every α  Aut K and k  K, α− 1kα = kα (where

the product on the left is defined in Hol K). Thus every automorphism of K
is obtained by restriction from an inner automorphism of Hol K.

(ii) More generally, let H ≤ Aut K and consider the natural action of H on
K. Then the action is the inclusion map . The corresponding
semidirect product

is said to be a relative holomorph of K. Clearly, by definition,

(iii) Let A be an abelian group such that b2 ≠ 1 for some b  A. Let

be the map  : a  a− 1 for every a  A. Then   Aut A, 2 = 1 and  ≠ 1
since b− 1 ≠ b.

The relative holomorph 〈  〉 of A is a non-abelian group, called a
generalized dihedral group, and denoted by Dih A. Then | Dih A : A | = 2. It
is easy to see that for each integer n ≥ 3, Dih Cn ≅ D2n, the dihedral group
of order 2n, and Dih C∞ ≅ D∞, the infinite dihedral group (57).

478 Let H act on K, say with action , and let G =  × K.
(i) For each J ≤ H, define

and, for each L ≤ K, define



Then CK(J) = K ∩ CG(J) and CH(L) = H ∩ CG(L)
(where CG(J), CG(L) are the usual centralizers in G).
Note that CK(H) = FixK(H) and CH(K) = Ker ; in particular, FixK(H) ≤ K.

 (ii) Ker   G, and in fact Ker  = HG, the core of H in G.
(iii) For each J ≤ H, NG(J) = NH(J)CK(J).
 (iv) For each J ≤ H, NG(J) ≤ NG(CK(J)).

479 Suppose that H is a finite p-group which acts on the finite group K. If p
divides | K | then |FixK(H)| > 1.

480 Let the non-trivial group H act on the non-trivial group K, say with
action , and let G =  × K. The following two statements are equivalent:

(i) For every non-trivial element h of H,  is a fixed-point-free
automorphism of K(see 54).

(ii) G is a Frobenius group and H is a Frobenius complement in G (see
248).

481 Let p and q be primes such that p > q.
(i) The only action of a group of order p on a group of order q is the trivial

action.
(ii) The only action of a group of order p on a group of order q2 is the

trivial action, unless p = 3 and q = 2. (Hint. Use 2.16, 2.17, 2.36, 40, 46, 47,
222.)

482 (i) Aut(C2 × C2) ≅ Σ3.

(ii) Hol(C2 × C2) ≅ Σ4.
(Hint. Let K = C2 x C2. For (ii), consider the action of Hol K by right
multiplication on the set of right cosets of Aut K in Hol K, and use 3.53.)

*483 If K1 ≅ K2 then Hol K1 ≅ Hol K2, and every relative holomorph of K1
is isomorphic to a relative holomorph of K2 (cf. 48).

484 Let V be a vector spaced ≠ 0.



(i) Then GL(V) acts naturally on the additive group V+ of V (see 47). Let
G denote the corresponding relative holomorph GL(V) V+ of V+.

(ii) For each linear map  : V → V and each vector υ  V, let ( ; υ) be the
map V → V defined, for all x  V by

Then ( ;υ)  ΣV if and only if   GL(V). Moreover, the set {( ;υ) :   GL
(V), υ  V} is a subgroup (V) of Σv, called the affine group of V, and (V)
≅ G.

485 (i) Let n be an integer, n ≥ 3. Then

(ii) Dih C∞ ≅ D∞.

*486 Let A be an abelian group and let L = Hol A. Then
 (i)CL(A) = A.
(ii) If H ≤ Aut A and G is the relative holomorph HA of A then Z(G) =

FixA(H). In particular, if H ≠ 1 then G is non-abelian.

487 Let A be a cyclic group and let G = Hol A.
  (i) Then G is supersoluble. (See 389. Hint. See 4.38. If | A | = ∞, use 46.)
 (ii) If either A has odd finite order or A is infinite then Z(G) = 1. (Hint.

Use 486.)
(iii) G is nilpotent if and only if | A | = 2n for some non-negative integer n.

(Hints.
See 243. If | A | is finite but not a power of 2, find a subgroup of G which is
not nilpotent.)

488 Let A be an abelian group with an element b such that b2 ≠ 1, and let D
= Dih A.

  (i) Every element of D\A has order 2. (cf. 59, 142. For a converse result
see 504).

(ii) 
(iii) A is a characteristic subgroup of D.



 (iv) Aut D ≅ Hol A.

489 (i) If H1 and H2 are conjugate subgroups of Aut K, then the relative
holomorphs H1 K and H2K are conjugate subgroups of Hol K.

(ii) Aut K can have isomorphic subgroups H1 and H2 such that the relative
holomorphs H1K and H2K are not isomorphic. (Hint. Consider K = C3 × C3
and suitable subgroups H1, H2 of Aut K of order 2.)

490 Let R be identified with the euclidean line E1 in the usual way: see 56.
Then Isom R ≅ Dih R+.

9.11 Definition. Let K  G. We say that G splits over K if there is a
subgroup H of G such that G = HK and H ∩ K = 1. Any such subgroup H is
said to be a complement to K in G.

Note that a subgroup H of G is a complement to K in G if and only if
every element of G is uniquely expressible in the form hk with h  H, k  K.
Then also, by 3.40, G/K = HK/K ≅ H/(H ∩ K) ≅ H. Moreover, for every g 

 G, Hg is a complement to K in G: for

since K  G, and 

9.12 Lemma. Let K  G and let K ≤ J ≤ G. If G splits over K then J splits
over K.
Proof. Certainly K  J. Let H be a complement to K in G. Then K ≤ J ≤ G =
HK, so that, by Dedekind’s rule (7.3),

Moreover,                                     

Therefore H ∩ J is a complement to K in J.
In chapter 10 we shall establish some important sufficient conditions for

splitting. We show now that there is an intimate connexion between splitting
and semidirect products.

9.13 Theorem, (i) Suppose that H acts on K, say with action , and let G = 
 × K. Then G splits over K, and H is a complement to K in G.



(ii) Let K  G. Suppose that G splits over K, and let H be a complement to
K in G. Let  be the action of H on K defined by restriction of the action of
G on K by conjugation. Then G =  × K.
Proof. (i) This is immediate from 9.9.

(ii) Let K  G, and suppose that H is a complement to K in G. Let  : H
→ Aut K be the action of H on K defined by restriction of the action of G on
K by conjugation: thus, for every h  H,

for every k  K. Every element of G is uniquely expressible in the form hk,
with h  H and k  K. Moreover, multiplication in G is given by the rule

for all h1, h2  H and k1, k2  K. The elements of G are thus the same as the
elements of  × K and the rule of multiplication is the same. Hence G = 

 × K.

9.14 Lemma. Let H act on K, say with action , and let J = Im  ≤ Aut K. If
the action is faithful then the group  × K is isomorphic to the relative
holomorph JK of K.
Proof. Suppose that the given action is faithful; thus the homomorphism  :
H → Aut K is injective. Let G =  × K, and define a map

by                   

for every h  H and k  K. (This map is well defined since every element of
G is uniquely expressible in the form hk with h  H, k  K.) For all h1, h2, 
H and k1, k2  K,

Thus * is a homomorphism. Moreover,



Therefore * is injective, and so

491 Let n be a positive integer and F a field. Then
  (i) GLn(F) splits over SLn(F).
 (ii) If n > 1, Σn splits over An.

492 Let n be a positive integer and s a divisor of n. Then the cyclic group Cn
splits over Cs if and only if (s, n/s) = 1.

493 Let 1 < K < G = C∞. Then G does not split over K.

494 Let n be a positive integer and let V be a vector space of dimension n
over the field Zp. Then V+ splits over every subgroup.

495 Let X = E2, the euclidean plane, G = Isom X, T = Tr X and 
: see 2.23. Then

  (i) G splits over H.
(ii) G splits over T, and the complements to T in G are isomorphic to Dih

U, where U is the circle group (see 2.32 (iv), 61, 103, 112).

496 Let K ≤ Z(G) (so that, in particular, K  G). If G splits over K, and H is a
complement to X in G, then G = H × K.

497 Let P be a finite non-abelian p-group. Then P does not split over Z(P).
(Hint. Apply 406 and 496.)

498 Let K ≤ G ≤ Hol K. Then G is a relative holomorph of K.

499 Suppose that G splits over an abelian normal subgroup A, and let H be a
complement to A in G. Then CG(A) = HG × A (cf. 478(ii), 486).

500 Let J and K be normal subgroups of G with K ≤ J.



  (i) If G splits over J then G/K splits over J/K. (Hint. Apply 7.3.)
(ii) Suppose that G splits over K and let H be a complement to K in G.

Then G splits over J if and only if H splits over H ∩ J. (Hint. Apply 7.3
again.)

501 Let K and L be normal subgroups of G, and let J = KL  G. Suppose that
G/L splits over J/L, and let H/L be a complement to J/L in G/L. Suppose also
that H splits over H ∩ K. Then G splits over K.

502 Let K  G, a finite group. Suppose that G/K is a p-group and let P be a
Sylow p-subgroup of G. Then G splits over K if and only if P splits over P ∩
K.

503 Let G be a non-trivial finite soluble group, and suppose that | G | is
neither a prime nor the square of a prime. Prove that G has a proper normal
subgroup K such that | G | < | K |2. (See the remarks at the end of chapter 6;
see also 664. Hints. Assume the result false, and suppose that G is a group of
least possible order which violates the result. Let L be a minimal normal
subgroup of G. Show that | G/L | = p, for some prime p, and that | L | < p. Let
P be a Sylow p-subgroup of G. Apply 9.13 to show that G =  × L for some
action  of P on L. If  is non-trivial, use 7.56, 7.40, 47, 2.17 and 2.16 to
derive a contradiction.)

504 Let G be a group with a subgroup K of index 2 such that every element
of G\K has order 2. Then K is abelian, and if k2 ≠ 1 for some k∈K, G ≅ Dih
K. (This is a converse to 488(i). Hint. Use 9.13 and 52(i).)

505 (i) Suppose that J ≤ , K   and  = JK (where possibly J ∩ K ≠ 1).
Let if be a group isomorphic to J such that H ∩ K = 1, and let  be an
isomorphism of H onto J. Then H acts on K when we define, for every h∈H
and k∈K,

the conjugate in  of k by h .
Let this action be  : H → Aut K, and let G =  × K. Then the map

defined by                         



for every h∈H and k∈K, is a surjective homomorphism, H ∩ Ker * = 1 =
K ∩ Ker *, and Ker * ≅ J ∩ K.

(ii) Let H act on K, say with action , and let G =  × K. If L  G, with
H ∩ L = 1 = K ∩ L, then there are subgroups S of if and T of K and an
isomorphism  of S onto T such that S  if; for all s∈S, h∈H and k∈K, sh

= (s )h and ks = ; and L = {s(s- 1  : s∈S} ≅ S.
Conversely, if S  H, T ≤ K and there is an isomorphism  of S onto T

such that for all s∈S, h∈H and k∈Kish  = (s )h and ks = , then, if L =
{s(s-1 ): s∈S}, S ≅ L  G and H ∩ L = 1 = K ∩ L.

(iii) Let H act on K, with action , and let G =  × K. Suppose that L 
G, with , and let  and . Then 

 and .

506 Let if = 〈h〉 be a cyclic group of order 4 and K = 〈 k 〉 a cyclic
group of order 2n, where n is an integer greater than 1.

  (i) There is a unique action  of H on K for which kh = k− 1. Let G = 
× K.

(ii) Then Z(G) = 〈h2〉 × 〈kn〉 ≅ C2 × C2, and  for n ≥
3, while for n = 2, G/Z(G) ≅ C2 × C2.

(iii) Let , and let .
Then  and . The group  is
called the dicyclic group of order 4n.

 (iv) Let . Then , of order 2 (cf. 150). Hence 
/Z( ) ≅ G/Z(G).
  (v)  has just one element of order 2, and  does not split over .
(vi)   D4n.

(vii) If n = 2 then  ≅ Q8 (see 181).

507 Let H act on K with action . Let G =  × K, J = Im  ≤ Aut K and L
= Ker   H. Then

  (i) L  G and G/L is isomorphic to the relative holomorph JK of K. (This
generalizes 9.14. We know from 478 that L  G.)



(ii) For each α∈Aut H, H also acts on K with action cup. Then 
 and Ker .

508 (i) Let K  G, and let v be the natural homomorphism of G onto G/K.
Then G splits over K if and only if there is a homomorphism  : G/K → G
such that v is the identity map on G/K.

(ii) Suppose that K  G, with G/K infinite cyclic. Then G splits over K (cf.
467).

(iii) Use (ii), together with 133(i) and (ii), to give another proof that Q+

has no non-trivial cyclic quotient group.

*509 (i) Let K  G, and let  be the action of G on K by conjugation. Let
g∈G. Then g ∈Inn K if and only if g∈CG(K)K.

(ii) (Hölder [a60]) A group K is said to be complete if Z(K) = 1 and Aut K
= Inn K. If K  G and K is complete then G = CG(K) × K. Thus a complete
group K is a direct factor of every extension of K.

(iii) Σ3 is complete. (Remark. In fact, Σn is complete for every integer n ≥
3 with n ≠ 6. For a proof of this result, see Kurosh [b27] vol. 1, pp. 92-5 or
Rotman [b34] pp. 132–4. Σ6 is not complete.)

We shall illustrate these results by applying them to obtain more
information about groups of order pq, where p and q are distinct primes: cf.
5.16, 5.17, 5.18. In order to do this, we need some further information about
the automorphism group of a group of order p (cf. 4.38).

Recall that a cyclic group G of finite order n has a unique subgroup Gs of
order s for each divisor s of n (3.32); moreover, Gs is cyclic and it follows
that Gs = {x∈G: xs = 1} (139). We prove a converse result and use this to
show that the automorphism group of a group of order p is cyclic.

9.15 Lemma. (i) Let G be a group of finite order n such that, for every
divisor s of n, |{x∈G: xs = 1} | ≤ s. Then G is cyclic (cf. 139(iii)).

 (ii) Let F be any field. Then every finite subgroup of F× is cyclic.
(iii) If | G | = p then Aut G is cyclic of order p − 1.

Proof. (i) Let g∈G, o(g) = s, and H = 〈g〉 ≤ G. Then | H | = s, s is a
divisor of n, and hs = 1 for every h∈H. Hence, by hypothesis, H = {x∈G:



xs= 1}, and so every element of order s in G lies in H. Let G* be a cyclic
group of order n, and let H* be the unique subgroup of G* of order s (3.32).
Since H and H* are cyclic groups of the same order, H ≅ H* (2). Therefore,
since every element of order s in G lies in H and every element of order s in
G* lies in H*, it follows that G and G* have exactly the same number of
elements of order s. This is true for every divisor s of n for which G has an
element of order s. Hence, since | G | = | G* | and G* has an element of order
n, G must have an element of order n, and so G is cyclic.

(ii) Let G ≤ F× with | G | = n < ∞. It is well known that for any positive
integer s and any polynomial f(x) of degree s with coefficients in a field, the
equation f(x) = 0 has at most s roots in the field. In particular, there are at
most s distinct elements x of F which satisfy the equation xs − 1 = 0. Hence
also, for every divisor s of n. |{x∈G: xs = 1} | ≤ s. Therefore, by (i), G is
cyclic.

(iii) Since | G | = p,

Hence                         

Since p is prime, Zp is a field. Therefore, by (ii), Aut G is cyclic.
We now prove

9.16 Theorem Let p and q be primes such that p> q. If p  1 mod q then
v(pq) = 1, while if p = 1 mod q then v(pq) = 2. (This includes the result of
5.18. Recall that for any positive integer n, v(n) denotes the number of types
of groups of order n.)
Proof. Since p > q, q  l mod p. Let G be a group of order pq, P a Sylow p-
subgroup of G, and Q a Sylow q-subgroup of G. Then P ≅ Cp and Q ≅ Cq.
By 5.16, P  G. Moreover, PQ = G and P ∩ Q = 1. Thus G splits over P,
and Q is a complement to P in G. Hence, by 9.13, G = Q , × P, where  : Q
→ Aut P is defined by restriction of the action of G on P by conjugation. If 

 is trivial then, by 9.8, G = Q × P ≅ Cq × Cp ≅ Cpq (78). Suppose that  is
non-trivial. Since Q has prime order, it follows that Ker  = 1: that is, the
action is faithful. Let J = Im  ≤ Aut P. Then | J | = q and, since |Aut P | = p
- 1, it follows that p = 1 mod q. Moreover, by 9.14, G ≅ J P ≤ Hol P. By
9.15, Aut P is cyclic and therefore (3.32) J is the unique subgroup of Aut P
of order q. Therefore JP is the unique relative holomorph of P of order pq.



Thus we have proved that if p  1 mod q then G ≅ Cpq and so v(pq) = 1;
while if p = 1 mod q then G is isomorphic to either Cpq or the unique relative
holomorph of Cp of order pq (483); hence, since these two groups are non-
isomorphic (486), v(pq) = 2.

We shall establish next an interesting alternative characterization of the
holomorph of a group.

9.17 Theorem. Let K be any group and let 1: K → Σk be the right regular
permutation representation of K (4.23). Let K* = Im 1 ≤ Σk. Then Aut 

 and

Proof. For each k∈K, let : then, for all x∈K,

xk* = xk.

Certainly Aut K ≤ ΣK (2.18). Let k∈K. Then k = 1k*: and if k*∈Aut K then
1k* = 1, hence k = 1. Thus (Aut K) ∩ K* = 1.

Let α∈Aut K. Then, for all k, x∈K,

Hence

Thus                         .

Now let ∈L. We want to show that ∈(Aut K)K*. Suppose that  maps
1∈K to t∈K. Let

Then τ fixes 1∈K. Moreover, since K*  L, the map

(defined for all k*∈K*) is an automorphism of K*. Since the map k  k* is
an isomorphism of K onto K*, it is clear that the map Aut K → Aut K*



defined by a  a*, where, for each a∈Aut K,

(for all k∈K) is an isomorphism of Aut K onto Aut K* (cf. 48). Hence there
is a unique α∈Aut K such that, for all k∈K,

Now, for all x∈K,

Hence                
Thus               .
Therefore              .

Finally, define a map

by             
Then, for all , ∈Aut K and x, y∈K,

Thus  is a homomorphism. Moreover, if αk∈Ker  then, for all x∈K,

hence (choosing x = 1) k = 1, and so also α = 1. Thus Ker  = 1, so that  is
injective. Hence Hol K ≅ Im  = (Aut K)K*.

510 (i) Let K and L be normal subgroups of G such that K ∩ L = 1. If G/L
splits over KL/L then G splits over K.



 (ii) Suppose that Z(K) = 1. Then every extension of K splits over K if and
only if Aut K splits over Inn K (see 9.26).

(iii) Let p be an odd prime. Then the dihedral group D2p of order 2p is
complete (509) if and only if p = 3. Every extension of D2p splits over D2p if
and only if p  1 mod 4. (Hints. Use 117, 124, 9.12, 9.15, 476, 488, 492,
500, 509.)

511 Use 452 and the fact that Zp is a field to prove that  is cyclic.
(Remark. This gives an alternative method of proving 9.15(iii).)

512 Let A be a group of prime order. Then Hol A is metacyclic (see 152; cf.
487).

513 No two of the following groups of order 30 are isomorphic and every
group of order 30 is isomorphic to one of them: C30, C5 × D6, C3 × D10, D30.
Hence v(30) = 4. (Hint. Let G be a group of order 30. Show that G has a
cyclic normal subgroup K of order 15 and that G splits over K. Use 78 and
94.)

514 (i) Find five groups of order 12 no two of which are isomorphic. (Hint.
See 506.)

(ii) Show that every group of order 12 is isomorphic to one of these
groups, and hence that v(12) = 5. (Hints. Any group G of order 12 has a
normal subgroup of order either 3 or 4 over which G splits. Use 489(i) and
507(ii).)

515 (i) Let G be a non-cyclic group of order 8 with a cyclic subgroup K of
order 4. Show that if G splits over K then G is isomorphic to either C2 × C4

or D8, while if G does not split over K then G ≅ Q8. (Hint. See 505(i) and
506.)

(ii) Hence show that v(8) = 5.

516 (i) Let A be a cyclic group of order 8, say A = 〈 a 〉. Show that there
is a unique automorphism α of A such that aα = a3, and that o(α) = 2.

Let T be the relative holomorph 〈 α 〉 A of A: then T is called the
semidihedral group of order 16. Show that T′ = 〈a2〉, of order 4. Deduce



that T has just three subgroups of index 2, and prove that of these three
subgroups, one is isomorphic to C8, another to D8, and the third to Q8.
Deduce that each of these three subgroups of index 2 is characteristic in T,
and that T  D16. (Hint. See 59 and 515.)

(ii) Let G = GL2(Z3): then | G | = 48 (see 2.16 and 2.17). Let x, y∈G be
defined as

Show that o(x) = 8, o(y) = 2 and xy = x3. Hence prove that the Sylow 2-
subgroups of G are isomorphic to T. (cf. 193. Hint. Apply 9.14.)

517 Let p be a prime, p ≥ 5. If p  1 mod 4, v(4p) = 4, while if p ≡ 1 mod 4,
v(4p) = 5. (Hint. Use 5.19 and 481; cf. 514.)

518 Let K be any group and 1: K → ΣK the right regular permutation
representation of K. Let K* = Im 1 ≤ ΣK. For each k  K, let k* : K → K be
defined by k* : x  kx, for all x  K, and let K* = {k* : k  K}. Then k*  ΣK,
K* ≤ ΣK, , 

and 

519 (i) Suppose that  is an isomorphism of G1 onto G2, K1 ≤ G1 and  maps
K1 to K2 ≤ G2. Then  maps CG1(K1) to CG2(K2).

(ii) For any group X, CHol K (K) ≅ K (cf. 486).

520 Let K be any group, 1: K → ΣK the right regular permutation
representation of K, and K* = Im 1 ≤ ΣK. Then  consists of all  
ΣK such that, for all x, y, z  K,

We shall now associate to any group G and any action of a group H on a
finite set X an action of H on the group Dr GX (see 8.21). This leads to a



useful construction of groups known as wreath products.

9.18 Lemma. Suppose that H acts on the finite set X. Let G be any group
and let G* = Dr GX. Then H acts on G* (as a group) when, for each h  H
and each f  G*, we define fh  G*, for all x  X, by

(Note. Here, as in 8.21, the elements of G* are maps of X into G which are
written on the left of the elements of X to which they apply.)
Proof. Let f, f1, f2  G*, h, h1, h2  H and x  X. Then, using the axioms of
4.1, and the definition of multiplication in G*, we find that

and

Thus

and 
This verifies the axioms of 9.1.

9.19 Definitions. Let H,X,G and G* be as in 9.18. Let  denote the action of
H on G* defined in 9.18. Then the corresponding semidirect product  ×
G* of G* by H is said to be a wreath product of G by H, often denoted by G
H. The normal subgroup G* is sometimes called the base group of the
wreath product.

We emphasize that a group G H is determined by G, H and an action of H
on a set. Different actions of H may lead to different wreath products of G
by H, so that the notation G H is ambiguous. (However, see 9.20 (3) below.)



9.20 Remarks. (1) Note that if G and H are finite groups, then a wreath
product G H determined by an action of H on a finite set X is a finite group
of order | G||X|. | H|.

(2) Suppose that | X | = 1. Then we can evidently identify G and G* = Dr
GX: we need only identify each g  G with the element of G* which maps
the unique element of X to g. The only action of H on X in this case is trivial,
and, by 9.18, the corresponding action of H on G* (= G) is trivial. Hence, by
9.8, the corresponding wreath product of G by H in this case is H × G = G ×
H, the direct product of G and H.

(3) Suppose that H is finite. In the absence of an explicit specification of
the relevant action of H, the notation G H is conventionally taken to denote
the wreath product of G by H corresponding to the action of H on itself by
right multiplication (4.23). This is called the regular wreath product of G by
H.

Regular wreath products are the most frequently occurring examples in
the literature. We shall have reason to consider also natural wreath products;
namely wreath products determined by actions as in 4.2(i).

(4) Suppose that H acts on an infinite set X. For any group G, there are
corresponding actions of H on both the groups Cr GX and Dr GX (445),
defined in exactly the same way as in 9.18. The corresponding semidirect
products of Cr GX by H and Dr GX by H are called unrestricted and
restricted wreath products of G by H, respectively. Most of the wreath
products which we shall consider in this book will be defined by actions on
finite sets, when this distinction between ‘unrestricted’ and ‘restricted’ does
not arise.

9.21. In working with wreath products, it is convenient to adopt the notation
of the proof of 8.21. Suppose that H acts on the finite set X, let G be any
group, W the corresponding wreath product G  H of G by H, and G* = Dr
GX, the base group of W. According to 8.21,

where, for each x  X,



For each x  X and each g  G, let gx  G* be defined, for all y  X, by

Recall that the map

is an injective homomorphism of G into G*, with image

Now for all g  G, h  H and x, y  X,

Thus, for all g  G, h  H and x  X,

These last equations completely determine the action of H on G* in the
group W.

We make one more remark on notation. Suppose that H is a finite cyclic
group, say H = 〈h〉, of order n; and let W be the regular wreath product G
H. Then

and for all g  G and all i = 1,…, n,

It is then more economical to suppress the appearances of h in the suffices of
elements of G*. We write



Where

and the action of H on G* in W is determined by the equations

where the suffices are now interpreted modulo n: thus gn + 1 = g1.

521 Suppose that group H acts on the finite set X and let p be the
corresponding permutation representation of H. Let G be any non-trivial
group, G* = DrG*, and let  be the action of H on G* defined in 9.18. Then
Ker  = Ker .

In particular, if the action of H on X is faithful then the corresponding
action of H on G* is faithful.

522 Let groups H, J act on finite sets X, Y, respectively, and suppose that
these actions are equivalent (4.19). Let G be any group. Then the
corresponding wreath products G H, G J are isomorphic.

523 Suppose that group H acts on the finite set X. Let G be any group and let
W be the corresponding wreath product of G by H. Suppose also that G acts
on the set Y.

(i) Then W acts on the product set X  Y when we define

for all x  X, y  Y, h . H and f  G* = Dr Gx.
(ii) If the actions of H on X and G on Y are both transitive then the action

of W on X × Y defined in (i) is transitive.
(iii) If the actions of H on X and G on Y are both faithful then the action of

W on X × Y defined in (i) is faithful.
(iv) For any positive integers n and m, (nm)! is divisible by (m!)n(n!).



524 Suppose that group H acts transitively on the finite set X. Let G be any
group and let W be the corresponding wreath product G H.

(i) Let x  X. Then W = Gx, H, where Gx is defined as in 9.21. Moreover,
if | X | > 1 and | G | > 1 then neither Gx nor H is normal in W.

(ii) If H is an n-generator group and G an m-generator group, where n and
m are positive integers, then W is an (n + m)-generator group.

525 C2 C2 ≅ D8, the dihedral group of order 8. (Here, as elsewhere when no
prescription of the relevant action is made, the wreath product in question is
the regular one.)

*526 Suppose that H acts on the finite set X. Let G be any group, W the
corresponding wreath product of G by H, and G* the base group of W. Let K
≤ G and let

(i) Then  and HK* ≅ K H, the
wreath product corresponding to the given action of H on X.

(ii) If K  G then K*  W and

the wreath product corresponding to the given action of H on X.

Wreath product constructions provide a very useful source of examples:
they yield relatively complicated groups in which it is nevertheless
practicable to perform calculations. As an illustration, we shall now show
that there are soluble groups of derived length n for every positive integer n
(see 7.52).

9.22 Lemma. Let G be any soluble group, say of derived length n. Then G
C2 is a soluble group of derived length n + 1.
Proof. Let H = 〈h〉, of order 2, and let W = G H, the regular wreath
product. Let G* be the base group of W: thus



where the maps  and  are isomorphisms of G onto G1 and
G2, respectively. Then W is the semidirect product HG*, where the action H
on G* is given, for all g  G, by the equations

For any soluble group J, let (J) denote the derived length of J. Since G is
soluble and (G) = n, it follows that G* is soluble (7.49) and (G*) = n
(373(iii)). Since | W/G* | = 2, W/G* is abelian. Therefore W is soluble (7.47)
and W′ ≤ G* (3.52).

For every g  G,

Let π denote the projection of G* onto G2 (8.16) and let . Then n′
is a homomorphism W′ →* G2, and since, for every g  G,

π′ is surjective. Since (G2) = n, it follows by the fundamental theorem on
homomorphisms that

However, since W′ ≤ G* and  (G*) = n,

Thus                   
and therefore                   

9.23 Corollary. For every positive integer n, there are soluble groups of
derived length n.
Proof. Let A be any non-trivial abelian group. Define groups G1, G2, G3,…
recursively as follows. Let G1 = A and, for each integer n > 1, let

Then, by repeated application of 9.22, for every positive integer n, Gn is a
soluble group of derived length n.



We shall show next that certain automorphism groups of direct products
are natural wreath products.

9.24 Lemma. Let n be a positive integer and let G be a non-trivial finite
indecomposable group such that Z(G) = 1. For each i = 1, …, n, let g  gi
(defined for all g  G) be an isomorphism of G onto a group Gi, and let 

Then

where the wreath product is formed by means of the natural action of ∑n on
the set {1, 2, …, n}.
Proof. Let A = Aut G. For each i = 1, …, n, let  (defined for all α  A)

be an isomorphism of A onto a group Ai, and let .

There is an obvious embedding of A* in Aut G* by which we identify A*
with the appropriate subgroup of Aut G*: namely, for each α  Aut G and
each i = 1,…, n, we identify αi with the unique automorphism of G* which
maps gi to (gα)i for all g  G and fixes every element of Gj for all j ≠ i. It is
clear that then

Let   ∑n. Then it is easy to verify that there is a unique automorphism 
* of G* such that, for all g  G and every i = 1,…, n,

Moreover, the map , defined for all   ∑n, is an injective
homomorphism of ∑n into Aut G*. (Here we need the hypothesis that G ≠
1.) Let

Thus                               

Since Gi is A*-invariant for each i = 1,…, n, we see that



Let  and i, j∈{l, 2, …, n}. Then

Hence, for all   ∑n,α  A and every i = 1,…, n,

Since , this shows that .
Hence

Let W = A ∑n, the natural wreath product. Then we may identify A* with
the base group of W, and then the action of ∑n on A* defining W is
determined, for all   ∑n, α  A and every i = 1,…, n, by the equations

Then, in view of the equations (i), it is easy to check that the map

defined for all   ∑n and all a*  A*, is an isomorphism of W onto HA*.
We complete the proof by showing that HA* = Aut G*. Let   Aut G*.

Then



But, for every , a finite indecomposable group
with trivial centre. Then Z(G*) = 1 (406) and, by the Krull–Remak–Schmidt
theorem (8.18),

Hence there is a permutation   ∑n such that

for every i = 1, …, n. Let  = (( *)− 1   Aut G*. Then

for every i = 1,…, n. Hence   A*, and so

Thus Aut                         

9.25 Theorem (Fitting [a27], 1938). Let G be a non-trivial finite group with
Z{G) = 1. By the Krull–Remak–Schmidt theorem (8.18), G is expressible as
the direct product of finitely many non-trivial indecomposable normal
subgroups and, apart from ordering of factors, this decomposition of G is
unique: let this decomposition be

where s, n1, n2, …, ns are positive integers, the groups Gtj are non-trivial
and indecomposable (i = 1,…, s, j = 1,…, ni), and Gtj ≅ Gkl if and only if i =
k. Then

Aut 
where the wreath products are natural.
Proof. For each i = 1,…, s, let

Then                               

Let ∈Aut G. Then, by 407 and the Krull–Remak–Schmidt theorem, we see
that for each i = 1,…, s and each j = 1,…, ni there are integers k and l such
that



Moreover, since  we must have k = i. It follows that, for each i =
1,…, s,

Thus G1,…, Gs are characteristic subgroups of G.
It follows easily that

(cf. 94, 436). Since the direct factors  of Gi are isomorphic non-
trivial indecomposable groups with trivial centres (406), it follows from 9.24
that, for each i = 1,…, s,

the natural wreath product. This gives the result.

527 Suppose that group H acts faithfully on the finite set X. Let G be any
non-trivial group, W the corresponding wreath product  and G* the base
group of W. Then

  (i)Cw(G*) ≤ G*.
(ii) If the action of H on X is also transitive then

528 Suppose that group H acts transitively on the finite set X. Let G be a
finite non-abelian simple group, W the corresponding wreath product ,
and G* the base group of W. Then

  (i) G* is a minimal normal subgroup of W.
(ii) If the action of H on X is also faithful then G* is the unique minimal

normal subgroup of W. (Hint. For (i) apply 8.9, and for (ii) apply 527(i).)

529 (i) The Sylow p-subgroups of  are elementary abelian of order pp −

1.



(ii) The Sylow p-subgroups of  have order pp+1 and are isomorphic to 
.

530 Let A = 〈a〉 and H = 〈h〉, groups of order p. Let  and let
A* be the base group of G: thus

Let b1 = a1 and, for each integer i > 1, let bi = [bi_1, h]. By induction on i,
show that  for every i (see 7.53), and also that for each i = 2, 3, …, p, 

 Deduce that Γp(G) ≠ 1.

Hence show that the p-group G has class p. (Hint. Apply 377.)

531 Aut .

532 Let . Show that G has subgroups J and K such that 〈J, K〉 =
G, K is subnormal in G and j(J : J ∩ K) > j(G: K) (see 339).

533 Suppose that H acts on the infinite set X. Let G be any group and let G*
= Dr G×, the restricted direct power of G with index set X (see 445). Verify
that H acts on G* when for each h∈H and f∈G*, fh is defined as in 9.18.

534 Let N denote the set of all positive integers and let H = AN (see 291).
Consider the natural action of H on N. Let G = C2, G* = Dr GN, and let W be
the semidirect product of G* by H with action as in 533 (with X = N): thus W
is the restricted natural wreath product of G by H (see 9.20(4)).

For each f∈G*, let s(f) denote the support of f(see 445). Show that for all
f, f′∈G* and all h∈H,
and                         

Let . Prove that K  W, and that



is a chief series of W. Show also that W does not have a composition series,
(cf. 355. Hint. Let G = 〈g〈. For each n∈N, let gn∈G* be defined by

If 

535 Let H be any infinite group and consider the action of H on itself by
right multiplication (4.23). Let G be any non-trivial group, let G* = Dr GH,
and let W be the semidirect product of G* by H with action as in 533 (with X
= H): thus W is the restricted regular wreath product of G by H (see
9.20(4)).

  (i) Then Z(W)= 1(cf. 527).
(ii) Let G = Cp and let H be any infinite p-group (see 265; for instance, we

may choose : see 144). Then W is an infinite p-group and Z(W) =
1(cf. 4.28).

We end this chapter with an application to group extensions.

9.26 Definition. Suppose that K  G and G/K ≅ H. Then we shall call G an
extension of K by H.

It follows (see 114) that there is a homomorphism  of G onto H with Ker
 = K. In general there may be several such homomorphisms . Extension

theory deals with the pairs (G, ), which are then called the extensions of K
by H, and seeks to classify these pairs. For further information on extension
theory, see Gruenberg [b16] chapters 5 and 9, Kurosh [b27] vol. 2, chapter
12, MacLane [b31] chapter 4, Rotman [b34] chapter 7, Scott [b36] chapter 9.
In this book, we shall not enter into a further discussion of general extension
theory but merely prove a few special results.

We remark in passing that if H is finite then every extension of K by H
can be embedded in the regular wreath product K H; see Huppert [b21] p.
99, theorem 1.15.9 or Schenkman [b35] p. 100, theorem 3.5.k. However, we
shall not use this fact here.



9.27 Theorem. Let G be an extension of K by H. Then there is a
homomorphism  : G → H × Aut K such that Ker  = Z(K). Moreover, if  =
G  and n denotes the projection of H × Aut K onto H (8.16), then

In particular, if Z(K) = 1 then every extension of K by H can be embedded
in H × Aut K.
Proof. There is a homomorphism  of G onto H with Ker  = K (114). Since
K  G, G acts on K by conjugation. Let a: G → Aut K be the corresponding
action. We may suppose without loss of generality that H and Aut K have
only the identity element in common and then that H and Aut K are
identified with normal subgroups of H × Aut K (see 8.1).

We define a map

by                         

for every g∈G. Since  and  are homomorphisms and since every element
of H commutes with every element of Aut K in H × Aut K, it is clear that 
is a homomorphism. Moreover,

Now let  = G  ≤ H × Aut K, and let π be the projection of H × Aut K
onto H. Then

for every g∈G. Since  maps G onto H, it follows that π maps  onto H;
that is,

Also



If Z(K) = 1 then G ≅ Im  ≤ H × Aut K, so that G can be embedded in H
× Aut K.

Recall that for any group K, Inn K  Aut K (92).

9.28 Corollary. Let  and  be classes of groups with the following three
properties:

  (i) Every quotient group of every -group is an -group.
 (ii) Every subgroup of every -group is a -group.
(iii) The trivial group is the only group which is both an -group, and a -

group.
Let H be -group and let K be a group such that Z(K) = 1 and Aut K/lnn

K is a -group. Then every extension of K by H is isomorphic to H × K.
Proof. Let G be an extension of K by H. Let  : G → H × Aut K be the
homomorphism defined in 9.27,  = G , and let π and  be the projections
of H × Aut K onto H and Aut K, respectively. Since Z(K) = 1, 9.27 shows
that G ≅ . By 8.19(i),

that is, by 9.27,

Since H is an -group, property (i) implies that H/(H ∩ ) is an -group;
since Aut K/lnn K is a -group, property (ii) implies that Gp/Inn K is a -
group. Hence, by property (iii), \H/(H ∩ )\ = 1 so that

Hence, by 8.19(ii),

Since Z(K) = 1, Inn K ≅ K (117). Hence



Remarks. (1) If for  we choose the class of all groups and for  the class
consisting of the trivial group alone, then  and  obviously satisfy (i), (ii),
(iii). Thus we deduce from 9.28 that if K is a group such that Z(K) = 1 and
Aut K = Inn K then, for any group H, every extension of K by H is
isomorphic to if x K. (This is the case of a complete group K: see 509.)

(2). Let H be a simple group. If for X we choose the class consisting of all
groups isomorphic to H, together with the trivial group, and for  the class
of all groups in which H cannot be embedded then again  and  satisfy (i),
(ii), (iii). We deduce from 9.28 that if K is a group such that Z(K) = 1 and H
cannot be embedded in Aut K/Inn K then every extension of K by H is
isomorphic to H × K.

We shall make use of this remark in proving the last result of this chapter.
Before stating this, we mention a famous conjecture.

9.29. Schreier’s conjecture is that for every finite simple group G, Aut G/Inn
G is soluble. No counter-example to this conjecture is known.

9.30 Theorem. Let G be a non-trivial finite group, of composition length n.
Suppose that in a composition series of G there are n1 factors isomorphic to
H1, n2 factors isomorphic to H2,…, ns factors isomorphic to Hs, where s, n1,

…, ns are positive integers such that , and H1, …, Hs are mutually

non-isomorphic simple groups. Suppose further that, for each i = 1, …, s,
 (i) Hi is non-abelian and satisfies Schreier’s conjecture, and
(ii) ni ≤ 4.

Then G is completely reducible (8.8).
Proof. We argue by induction on n. If n = 1 then G is simple and the result is
trivial. Suppose that n > 1 and let

be a composition series of G. Let . Then

is a composition series of K, of length n − 1. Now it is clear that the
induction hypothesis applies to show that K is completely reducible. Hence,
by (i), K is a direct product of non-abelian simple groups, and so Z(K) = 1.



We may suppose that G/K ≅ H1, so that G is an extension of K by H1.
Then

where, on the right, there are n1 − 1 copies of H1, n2 copies of H2,…, ns
copies of Hs (and where the copies of H1 are omitted if n1 = 1). Hence, by
9.25,

where the wreath products are natural (and the first factor on the right is
omitted if n1 = 1). Then, by means of 111 and 526(ii), we see that
Aut K/Inn 

 
                                    .

When m is an integer not exceeding 4, Σm is soluble (364): and, by (ii),
Aut Hi/Inn Hi is soluble, for each i = 1,…, s. Hence, by 7.47 and 7.49, Aut
K/Inn K is soluble. Since H1 is a non-abelian simple group, it follows that H1
cannot be embedded in Aut K/Inn K. Therefore, by remark (2) after 9.20,

Thus G is completely reducible. This completes the induction argument.

536 Suppose that Z(K) = 1 and that Aut K/Inn K is soluble. Then every
extension of K by any perfect group H (168) is isomorphic to H × K.

537 (i) Suppose that K is a finite group with Z(K) = 1. Let  be the set of all
prime divisors of | Aut K/Inn K | and let ′ be the set of all primes which do
not belong to . Then every extension of K by any finite ′ -group H is
isomorphic to H × K

(ii) Let K = D2p, the dihedral group of order 2p, where p is any odd prime.
Let H be any finite group such that (|H|,(p − 1)/2) = 1. Then every extension
of K by H is isomorphic to H − K (Hint. See 485 and 488.)

(iii) Let K = Σ3 × Σ3, and let H be any finite group of odd order. Then
every extension of K by H is isomorphic to H × K.



538 (i) Show by an example that the result of 537(i) does not remain true in
general if the condition that Z(K) = 1 is omitted. (Hint. Consider K = Cp.)

(ii) Show by an example that the result of 537(ii) does not remain true in
general if p > 3 and the condition that (|H|,(p − 1)/2) = 1 is omitted.

(iii) Show by an example that the result of 537(iii) does not remain true in
general if the condition that H has odd order is omitted.

539 Show by an example that the result of 9.30 does not remain true in
general if the condition (ii) is relaxed to ni ≤ 5. (Hint. Let H = A5, and let K
be any finite non-abelian simple group satisfying Schreier’s conjecture and
not isomorphic to H. Consider the natural wreath product K H.)



10
TRANSFER AND SPLITTING THEOREMS

We shall establish some fundamental sufficient conditions for a finite group
to split over a normal subgroup; and also define and apply some important
homomorphisms, called transfer maps, of a group G into abelian sections of
G. We follow an elegant approach due to H. Wielandt which is based on a
consideration of group actions on suitable sets.

10.1 Definition. Let H  G. A subset T of G which contains just one
element from each right coset of H in G is called a right transversal to H in
G. Then | T | = | G : H | and HT = G. Similarly, a left transversal to H in G is
a subset S of G which contains just one element from each left coset of H in
G: then | S | = | G : H | and SH = G.

10.2. Let H  G and let T be a right transversal to H in G. Let g∈G. Then
the set Tg = {tg : t∈T} is again a right transversal to H in G: for if we
consider any right coset Hx of H in G (where x∈G) then, by hypothesis, | T
∩ Hxg− 1| = 1 and so | Tg ∩ Hx | = |{T ∩ Hxg− 1)g | = 1. Now it is clear that
G acts (on the right) by right multiplication on the set  of all right
transversals to H in G.

Also, let h∈H. Then the set hT = {ht : t∈T} is a right transversal to H in
G: for if Hx is any right coset of H in G (with x∈G) then | hT ∩ Hx | = | T ∩
h− 1Hx | = | T ∩ Hx | = 1. Hence H acts on the left on the set  by left
multiplication. We shall study these right and left actions on  and certain
other actions determined by them.



540 Let H  G and T ⊆ G. Then T is a right transversal to H in G if and
only if every element of G is uniquely expressible in the form ht with h∈H
and t∈T.

541 Let H  G. For each non-empty subset X of G, let X* = {x− 1 : x∈X}.
Then X is a right transversal to H in G if and only if X* is a left transversal
to H in G.

542 Let H  G, a finite group, and let  be the set of all right transversals
to H in G. Let | H | = m and | G : H | = n. Then | | = mn.

*543 Let H  G.
(i) If H  G, then every right transversal to H in G is also a left

transversal to H in G and every left transversal to H in G is also a right
transversal to H in G. In this case we speak simply of transversals to H in
G.

(ii) If H  G, then there is a transversal to H in G which is a subgroup of
G if and only if G splits over H.

(iii) If every right transversal to H in G is also a left transversal to H in G,
then H  G.

(Remark. It is in fact always true that if G is a finite group then there is
some right transversal to H in G which is also a left transversal to H in G.
This depends on reasoning which lies outside the domain of group theory,
for instance on graph theory. See Zassenhaus [b41] pp. 11–13 or Wilson
[b39] p. 126, ex. 27d.)

10.3 Definitions. Let J  H  G, and suppose that | G : H | = n < ∞ and H/J
is abelian. Let  be the set of all right transversals to H in G. To each
ordered pair T, U of elements of , we shall associate an element of the
group H/J which we denote by T/U and define as follows. Now | T | = n: say
T = {t1,…, tn}. For each i = 1,…, n there is, by hypothesis, a unique element
ui∈U such that Hti = Hui, and then U = {u1,…, un}. Then tiui

− 1∈H for i =
1,…, n, and we define



Because the group H/J is abelian, the order in which we multiply together
the n elements  does not affect the product which we
obtain, and so T/U is a well-defined element of H/J.

Now let T, U, V∈ , say with

where, for i = 1,…, n,

Then                               

the identity element of H/J;

since H/J is abelian; and

again since H/J is abelian.
We define next a relation ~ on  by setting T ~ U if and only if T, U∈

and T/U = J. Then equations (i), (ii) and (iii) above show that ~ is an
equivalence relation on . Let Ω denote the set of equivalence classes of
this equivalence relation ~. Thus Ω is a set of sets of right transversals to H
in G.

10.4 Definition. Let J  H  G with | G : H | < ∞ and H/J abelian. Let T be
a right transversal to H in G and let g∈G. By 10.2, Tg is a right transversal
to H in G, and so there is an element Tg/T∈H/J, defined as in 10.3. We
define a map

by                                     

and call this the transfer of G into H/J. This was first investigated in [a90]
by I. Schur (1875–1941). We shall show that  is independent of the choice



of right transversal used to define it, and that  is a homomorphism.

10.5. Let J  H  G, with | G : H | = n < ∞ and H/J abelian. Let T and U be
right transversals to H in G, g∈G and h∈H. Then

(a) Tg/Ug = T/U = hT/hU.
(b) The transfer  of G into H/J is independent of the choice of right

transversal of H in G used to define it, and is a homomorphism.
Proof. (a) Let T = {t1,…, tn} and U = {u1,…, un}, with Hti = Hui for i =
1,…, n. Then, for i = 1,…, n,

and                               

Hence

and

(b) By 10.3 (iii), we have

This shows that  is independent of the choice of right transversal of H in G
used to define it.

Now let x, y∈G. Then



Thus  is a homomorphism.

10.6. In 10.5, let  be the set of all right transversals to H in G and let ~ be
the equivalence relation on  defined in 10.3. Then 10.5(a) shows that if T
~ U then also Tg ~ Ug and hT ~ hU for every g∈G and h∈H. Thus the
right action of G on  and the left action of H on  defined in 10.2 respect
the equivalence relation ~.

It follows that these actions induce in a natural way a right action of G on
the set Ω of equivalence classes of ~, and a left action of H on Ω, when we
define, for any ω∈Ω, g∈G, h∈H, with T an element of  in the
equivalence class ω,

ωg = the equivalence class containing Tg, and
hω = the equivalence class containing hT.

The remarks above show that these are well defined, and thus obviously
define right and left actions on Ω.

10.7. Let the notation and hypotheses be as in the preceding paragraphs. Let
T = {t1,…, tn}∈  and h∈H. Then, since Hhti = Hti for i = 1,…, n,

In particular, jT ~ T for every j∈J. Hence, for every j∈J and every ω∈Ω,

We shall now make a simple application of the transfer.

10.8 Theorem. Let J  H  G, with | G : H | = n < ∞, | H/J | = m < ∞ and
H/J abelian. Suppose that (n, m) = 1. Then H ∩ G′ ∩ Z(G)  J.
Proof. Let  be the transfer of G into H/J and let h∈H ∩ G′ ∩ Z(G). Then,
if T is a right transversal to H in G,



Since  is a homomorphism (10.5), the fundamental theorem shows that

Hence G/Ker  is abelian and so, by 3.52, G′  Ker . Therefore h∈Ker .
Now

and so                               

Since (n, m) = 1 it follows (105) that

544 Let G be a finite group and H an abelian subgroup of G with | H | = m
and | G : H | = n. Let  be the set of all right transversals to H in G, ~ the
equivalence relation on  defined in 10.3 and Ω the set of equivalence
classes of ~, where J = 1. Then each equivalence class of ~ contains mn − 1

elements of  and |Ω| = m.

545 Let K  G, with | K | = n < ∞ and G/K abelian. Suppose that G splits
over K and let H be a complement to K in G. Let  be the transfer of G into
H;  the map G → H defined by  : hk  h, for all h∈H and k∈K (see
9.9); and v the map h  hn of H into itself. Then  = v.

546 Let N be an integer, N > 1, G = ΣN, H = 〈 (12) 〉 and  the transfer of
G into H. Then  is the trivial homomorphism if and only if N  4. (Hint.
Use 545.)

547 Let N be an integer, N > 1, F a finite field, and G = GLN(F).
(i) Let H be the set of all diagonal matrices in G for which all the

diagonal entries other than the first are equal to 1, the identity element of F.
Then F× ≅ H  G.

(ii) The transfer of G into H is trivial.
(Hint. Use 545; cf. 491.)



548 Let n be an integer, n > 2, and G = Σn. Then

(i) G = 〈(12), (13),…,(1n)〉 (see 21 and 2.30(i)).
(ii) Consider the natural action of G on the set {1, 2,…, n} and let H =

StabG(1) and J = An ∩ H. Then J  H with | H/J | = 2. The transfer of G into
H/J is non-trivial if and only if n is odd. (Hint. Observe that the set {1, (12),
(13),…,(1n)} is a right transversal to H in G.)

549 Let G be a finite group.
(i) If G has an abelian Sylow p-subgroup then p does not divide | G′ ∩

Z(G)|. Hence if all Sylow subgroups of G are abelian then G′ ∩ Z(G) = 1.
(ii) If G/Z(G) is a -group then G′ is a -group.
(iii) Show by an example that the converse of (ii) is false.
(iv) If G is a non-abelian p-group then G′ ∩ Z(G) ≠ 1.

(Remark. If G is a not necessarily finite group such that G/Z(G) is a finite 
-group then G′ is a finite -group. This is a result of Schur : see Huppert
[b21] p. 417, theorem 4.2.3. J. Wiegold [a99] proved by a neat elementary
argument that if | G/Z(G)| = pn then | G′| divides pn(n − 1)/2.)

550 Let G be a finite soluble group with an abelian Sylow p-subgroup P.
Let p′ denote the set of all primes distinct from p, and suppose that Op′(G) =
1. Then P  G. (Hints. Argue by induction on | G|. Hence show that for
every K  G, (P ∩ K)  G. Then consider CG(Op(G)) and use 157, 252,
381 and 549(i).)

Now we shall study the left action of H on Ω introduced in 10.6. For this
purpose we need two preliminary lemmas.
10.9 Lemma. Let J  H, and suppose that H acts on the left on the set X.
Suppose also that the action by restriction of J on X is trivial, that is, jx = x
for every j∈J and every x∈X. Then we obtain a left action of H/J on X
when we define (for all h∈H, x∈X)

Proof. Once we know that the defining equation



makes sense, in that it does not depend on the choice of element h in the
coset Jh, then we obviously obtain in this way a left action of H/J on X. Let
h, h′∈H with Jh = Jh′, and let x∈X. Since J  H, Jh′ = h′J, and so there is
an element j∈J such that

Then                               

since the action of J on X is trivial.
We shall also need the analogue for a left action of 4.3. We include it here

explicitly, since one point of care is needed in defining the appropriate
permutation representation because of our invariable convention of placing
permutations on the right of the symbols on which they operate (see the
remarks in chapter 2 before 17).

10.10 Lemma. Suppose that G acts on the left on the set X. Then, to each
g∈G there corresponds a map g : X → X, defined by Xg : x  gx, and this
is a permutation of X. Moreover, the map * : G → ΣX defined by * : g  

g − 1 is a homomorphism (cf. 186).
Proof. For g1, g2∈G and x∈X,

and so

Hence also

Certainly 1 = 1∈ΣX and therefore, for every g∈G,

Hence g∈ΣX; and then the equation above shows that the map 
 is a homomorphism of G into ΣX.



10.11. Let the notation be as in 10.6, and assume further that | H/J | = m <
∞ and that n and m are co-prime integers. Consider the left action of H on
Ω defined in 10.6. By 10.7 and 10.9, this induces naturally a left action of
H/J on Ω Then

(i) the left action of H on Ω is transitive and StabH(ω) = J for every
ω∈Ω, and

(ii) the left action of H/J on Ω is regular. In particular, |Ω| = m (cf. 544).
Proof. (i) To show that the left action of H on Ω is transitive, it is enough to
show that, for any T, U∈ , there is some element h∈H such that hT ~ U.

By 10.7, for any h∈H,

and, by 10.3(iii),                               

Since (n, m) = 1, there are integers a and b such that

Moreover, since T/U∈H/J and | H/J | = m,

Hence                               

Therefore, if we set (T/U)a = Jh with h∈H,
then                                           
and so                                                 

Now let ω∈Ω. By 10.7,

Let h∈StabH(ω) and let T be an element of  in the equivalence class ω:
then hT ~ T. Hence, by 10.7, Jhn = J, that is, hn∈J. Since (n, m) = 1 it
follows (105) that

Hence                                           

(ii) By (i), the left action of H/J on Ω is transitive. Moreover, for any
ω∈Ω,



Therefore the action is regular.
We shall apply the following lemma.

10.12 Lemma. Let X be a non-empty set and let A be an abelian subgroup
of ΣX. If the natural action of A on X is transitive then 

. Proof. Let . Since A is abelian, A  C.
Let ∈C, x∈X and x  = y∈X. Since the action of A is transitive, y = x  for
some ∈A. Then, for every ∈A,

Since the action of A on X is transitive, this shows that

for every w∈X. Therefore, since the action is faithful,

Hence C  A, and so C = A.
With this lemma, we can show that, under suitable conditions, the right

action of G on Ω in 10.6 and the left action of H/J on Ω in 10.11 are related
in a nice way.

10.13 Theorem (H. Wielandt). Let J  H  G, with | G : H | = n < ∞, | H/J |
= m < ∞, (n, m) = 1 and H/J abelian. Let Ω be the set defined in 10.3, and
let G act on the right on Ω as in 10.6 and H/J act on the left on Ω as in
10.11. Further, let  be the transfer of G into H/J. Then, for every g∈G,
there is a unique element g*∈H/J such that

Moreover, the map g  g* is a homomorphism of G into H/J, and g  =
(g*)n.



Proof. For each g∈G, let g denote the permutation ω  ωg of Ω For each
h∈H, let Jh denote the permutation ω  (Jh)ω of Ω, and let * denote the
homomorphism Jh  (Jh)− 1 of H/J into ΣΩ : see 10.10. Let A = Im * 
ΣΩ. Since H/J is abelian, A is abelian. Since the left action of H/J on Ω is
transitive (10.11), the natural action of A on Ω is transitive.

Let g∈G. Then, by the associativity of multiplication in G,

for all h∈H and ω∈Ω, hence

that is,                                           

Since this is true for all h∈H, and since A = { Jh : h∈H},

by 10.12. Hence there is an element g*∈H/J such that

and since the left action of H/J on Ω is faithful (10.11), g* is uniquely
determined by g. Then, for every ω∈Ω,

Now let g1, g2∈G. Then, for all ω∈Ω,

since , which is abelian. Again since the left action of H/J is
faithful, it follows that



Let T be a right transversal to H in G, g∈G and, say, g* = Jh, where
h∈H. Then, since ωg = g*ω = hω for every ω∈Ω,

in the notation of 10.3. Hence

551 Let n be an integer, n > 1. Then the cyclic subgroup 〈(12…n)〉 is a
maximal abelian subgroup of Σn (see 235).

*552 Let J, H, G, n, m, Ω and  be as in 10.13; and let  : G → H/J be the
homomorphism g  g* defined in 10.13, and K = Ker . Prove that

  (i) Ker  = K;
 (ii) for the action of G on Ω defined in 10.6, StabG(ω) = K for every

ω∈Ω; and
(iii) if the action of G on Ω is transitive then the action is equivalent to

the action of G by right multiplication on the set of all cosets of K in G, and
G/K ≅ H/J.

Is the action of G on Ω, necessarily transitive?

10.14. Let J  H  G, with | G : H | = n < ∞ and H/J abelian, and let  be
the transfer of G into H/J. Then, for any g∈G, g  = Tg/T, where, by 10.5,
we may choose for T any right transversal to H in G. For use in the proof of
the next theorem, we observe that, for a particular g, we can choose T in an
especially convenient way for calculating g .

Let g∈G and let X denote the set of all right cosets of H in G. Then the
action of G on X by right multiplication (4.13) restricts to an action of
〈·g〉 on X. Suppose that in this action of 〈g〉 on X there are just s orbits



X1,…, Xs (where 1  s  n). For each i = 1,…, s, let | Xi| = ni, so that n1 +
… + ns = n, and let Hxi∈Xi, where xi∈G. Then
and                               

Now we may choose

this is a right transversal to H in G.
Then                               .
Since xigr∈Tg ∩ T whenever 0 < r < ni, and by (i), we get

where  for i = 1,…, s.

10.15 Definition. We have introduced in chapter 9 the notion of a
complement to a normal subgroup in a group G. It is convenient now to
speak of complements to arbitrary subgroups or, more generally, of sections
of G (324).

Let J  H  G and K  G. We say now that K is a complement to H/J in
G if HK = G and H ∩ K = J. If also K  G, we say that K is a normal
complement to H/J in G.

Note that if K is a complement to H/J in G then HK = KH = G (95). Note
also that if K is a normal complement to H/J in G then, by 3.40, G/K =
HK/K ≅; H/(H ∩ K) = H/J.

We shall now connect the idea of a normal complement to a section in a
group with the ideas already developed in this chapter in the following main
result. It is closely related to results in papers of Frobenius [a30] and Schur
[a90].

10.16. Theorem (H. Wielandt). Let J  H  G, with | G : H | = n < ∞, | H/Jc
| = m < ∞, (n, m)= 1 and H/J abelian. Let ~ be the equivalence relation on



the set  of all right transversals to H in G defined in 10.3, and let  denote
the transfer G → H/J. Then the following statements are equivalent:

  (i) There is a normal complement to H/J in G.
 (ii) Whenever h1, h2∈H and h1, h2 are conjugate in G, Jh1 = Jh2.

(iii) For every h∈H, h  = Jhn.
 (iv) For every h∈H and every T∈ , hT ~ Th.

Proof. (i) ⇒ (ii) Suppose that K  G, with HK = G and H ∩ K = J. Let
h∈H and g∈G, with hg∈H. We may express g in the form g = h1k, with
h1∈H and k∈K. Let

Then also                               

Hence, since K  G,

by hypothesis. Therefore hg = jh2 for some; j∈J, and so

since H/J is abelian.
(ii) ⇒ (iii) Suppose that whenever h1, h2 are elements of H conjugate in

G, Jh1 = Jh2. Let h∈H. By 10.14 (with g = h), there are positive integers s,
n1…, ns and elements x1,…, xs∈G such that

for i = 1,…, s, and 

Then  and  are elements of H which are conjugate in G.
Therefore, by hypothesis,



for i = 1,…, s. Hence

(iii) ⇒ (iv) Suppose that hx = Jhn for every h∈H. Let h∈H and T∈ .
Then, by hypothesis,

Also, by 10.7,                         

Hence, by 10.3,

and so                               

(iv) ⇒ (i) Suppose that hT ~ Th for every h∈H and T∈ . Let Ω be the
set of equivalence classes of ~, and consider the action of G on Ω defined in
10.6. Let ω∈Ω and K = StabG(ω). By hypothesis, hω = ωh for every h∈H.
Hence, by 10.11, the (right) action of H on ω by restriction of the action of
G is transitive and StabH(ω) = J; that is,

Let g∈G. Then, by the transitivity of the action of H, ωg = ωh for some
h∈H. Then

Hence                               

Thus K is a complement to H/J in G. Finally, by 552, K is the kernel of the
transfer of G into H/J, and therefore K  G. Thus K is a normal
complement to H/J in G.

10.17 Definition. A subgroup H of a finite group G is said to be a Hall
subgroup of G if (|G : H|, | H|) = 1.

Any Sylow subgroup of G is a Hall subgroup of G. In chapter 11, we
shall prove P. Hall’s fundamental generalization for finite soluble groups of
Sylow’s theorem. This generalization deals with the existence and
properties of Hall subgroups.

As an immediate consequence of 10.16, we note



10.18 Corollary. Suppose that A is an abelian Hall subgroup of the finite
group G. Then there is a normal complement to A in G if and only if no two
distinct elements of A are conjugate in G.
Proof. In 10.16, choose H = A, J = 1.

10.19 Definitions. Let G be a finite group. A complement to a Sylow p-
subgroup of G is called a p-complement of G. Note that a subgroup H of G
is a p-complement of G if and only if | G : H | is a power of p and p does not
divide | H|. In particular, a p-complement of G is a Hall subgroup of G.

If G has a normal p-complement then G is said to be p-nilpotent. We
shall see that a finite group is nilpotent if and only if it is p-nilpotent for
every prime p: see 563.

A group need not possess a p-complement. For instance, 5.25 shows that
the alternating group A5 of degree 5 does not possess either a 2-complement
or a 3-complement; although it does possess 5-complements (namely, the
subgroups isomorphic to A4). See also 561.

553 Let J  H  G, with | G : H | = n < ∞ and H/J abelian. Let  be the
transfer of G into H/J. Then, for every g∈Z(G), g  = Jgn. (Hint. Use 10.14.)

554 Let J  H  G, and suppose that there is a complement K to H/J in G.
Then every conjugate of K in G is a complement to H/J in G. (Hint. Note
that every conjugate of K in G is of the form Kh with h∈H.)

555 Let J  H  G. There is a complement to H/J in G if and only if there
is an action of G on some set X which restricts to a transitive action of H on
X and such that, for some x∈X, StabH(x) = J.

556 (i) Let H  G, with | G : H | < ∞. Suppose that H/H′ is finite and that
(|G : H|, | H/H′|) = 1. Then (H ∩ [H, G])  H, and there is a normal
complement to H/(H ∩ [H, G]) in G.

(ii) Let G be a finite group such that Op(G) = G. If P is a Sylow p-
subgroup of 0 then P  [P, G].

*557 (Schur [a90]) Let G be a finite group and suppose that H is a Hall
subgroup of G such that H  Z(G). Then there is a subgroup K of G such



that G = H × K. (Remark. This result will be generalized in 10.30 and
10.31.)

558 Let P be a Sylow p-subgroup of the finite group G and let A be a
maximal abelian normal subgroup of P (see 251). Then CG(A) = A × B for
some subgroup B of G such that p does not divide | B|. (Hints. Use 235, 236,
251 and 252 to show that A is a Sylow p-subgroup of CG(A). Then use 557.)

559 (Frobenius [a31]) Let G be a group of order mn, where m and n are co-
prime positive integers. Let X = {x∈G : xm = 1} and Y = {y∈G : yn = 1}.
Suppose that |X |  m and | Y |  n. Then

  (i) X ∩ Y = 1, G = XY, | X | = m, | Y | = n, and every element of X
commutes with every element of Y. (Hint. Use 7.)

 (ii) Let H = CG(X)  G (by 4.35), and let X0 = X ∩ H and | X0| = m0.
Then X0  G, | H | = m0n, and m0 divides m.

(iii) H = X0 × Y0 for some subgroup Y0 of H. (Hint. Use 557.)
(iv) Y0 = Y and hence Y  G.
 (v) X  G and G = X × Y.
(Warning. It is not obvious that X and Y are subgroups of G until (i), (ii),

(iii) and (iv) have been proved.)

*560 Let G be a finite group.
  (i) If G has a p-complement L then LG = Op(G) (where LG is the normal

closure of L in G : see 180).
 (ii) If G is p-nilpotent then G has just one p-complement and this is

Op(G).

561 There is no prime divisor p of | A6| for which A6 has a p-complement.
(Hints. Suppose to the contrary that A6 has a p-complement for some p
dividing | A6| and derive a contradiction. If p = 2, consider a subgroup of A6
isomorphic to A5 and use 99(i) and 5.25. If p = 3, show that a 3-complement
of A6 would have a normal Sylow 5-subgroup, and calculate the total
number of Sylow 5-subgroups of A6. If p = 5, use 4.14 and 5.28.)



562 If G is a p-nilpotent finite group then every subgroup and every
quotient group of G is p-nilpotent.

*563 Let G be a finite group. Then the following statements are equivalent:
  (i) G is p-nilpotent.
 (ii) Every chief factor of G of order divisible by p is central.

Hence G is nilpotent if and only if G is p-nilpotent for every prime p.
(Hints. For (i) ⇒ (ii), it is enough to show that if L is a minimal normal

subgroup of G such that p divides | L|, then L  Z(G). Use 3.53 and 5.8. For
(ii) ⇒ (i), use induction on | G|: hence if L is a minimal normal subgroup of
G, G/L is p-nilpotent. If p divides | L|, use 557.)

564 Let G be a finite group with | G | = 3r, where r is an odd positive
integer not divisible by 3. Then G is 3-nilpotent. (Hint. Use 302 and 10.18.
Remark. Note that the result of 205 follows at once from 10.18. In 10.24 we
shall prove a more general result.)

We shall apply 10.18 to establish a useful criterion for a finite group to be
p-nilpotent. For the proof we also need

10.20 Lemma (Burnside [b3], p. 155). Let P be a Sylow p-subgroup of the
finite group G. Then any two elements of Z(P) which are conjugate in G are
in fact conjugate in NG(P).
Proof. Let x∈Z(P), g∈G and xg∈Z(P). Then P  CG(x) ∩ CG(xg) = CG(x)
∩ CG(x)g, by 229. Hence (by 252) P and Pg − 1 are Sylow p-subgroups of
CG(x), and are therefore conjugate in CG(x): for some y∈CG(x),

Then yg  NG(P) and xg = (xy)g = xyg.

10.21 Theorem (Burnside [a9]). Let P be a Sylow p-subgroup of the finite
group G. If P  Z(NG(P)) then G is p-nilpotent.
Proof. Let H = NG(P). Since P  Z(H), P is in particular abelian. Therefore
we may apply 10.18 with A = P. Let x1, x2∈P. If x1 and x2 are conjugate in



G then, by 10.20 (and since P is abelian), x1 and x2 are conjugate in H. But
then, since P  Z(H), x1 = x2. Hence, by 10.18, G is p-nilpotent.
Remark. It would not be enough in 10.21 merely to suppose P abelian. In
fact, every known finite non-abelian simple group G has cyclic Sylow p-
subgroups for some prime divisor p of | G|; and although (by 262 or 10.24)
such a p must be odd, there are many examples of finite non-abelian simple
groups with abelian Sylow 2-subgroups.

We use this theorem to establish another fact about orders of finite simple
groups.

10.22 Corollary. Let G be a finite simple group of even order greater than
2. Then | G | is divisible either by 8 or by 12.
Proof. Suppose that 8 does not divide | G|, and let T be a Sylow 2-subgroup
of G. Since | G | is even and | G | ≠ 2, 1 < T < G, by 4.29; and by our
supposition, | T |  4. Hence, by 77, T is isomorphic to C2 or C2 × C2 or C4.
(In fact, by 262 or 10.24, T ≅ C2 × C2, but we do not need to appeal to
these results here.) In particular, T is abelian, so that, by 4.36,

Since T is a Sylow 2-subgroup of G, NG(T)/CG(T) must have odd order. If
CG(T) = NG(T) then T  Z(NG(T)) and so, by 10.21, G would be 2-nilpotent,
in contradiction to the simplicity of G. Therefore

By 4.36, NG(T)/CG(T) can be embedded in Aut T. By 40, 46, 47, 48 and
2.36, Aut T is isomorphic to  or GL2(Z2) or , hence |Aut T | is 1 or 6
or 2 (see 2.16 or 44). But we have shown that | NG(T)/CG(T)| is odd and
greater than 1, and so the only possibility is that | NG(T)/CG(T) | = 3 and T
≅ C2 × C2. Therefore | G | is divisible by 12, as claimed.

10.23. The alternating group A5 of degree 5 is an example of a finite non-
abelian simple group of even order not divisible by 8. Any such simple
group G must have its Sylow 2-subgroups isomorphic to C2 × C2 (by the
proof of 10.22). There is in fact a complete classification theorem for finite



simple groups with Sylow 2-subgroups isomorphic to C2 × C2 : any such
group is isomorphic to PSL2(F) (see 3.61), where F is a finite field with | F |

 5 and | F | congruent to either 3 or 5 mod 8. (In this connexion, see
Gorenstein [b13] chapter 15, where this classification theorem is proved
under the additional assumption that the Sylow 2-subgroups are self-
centralizing. For the general result, see Gorenstein [a43].)

In his book ([b3] p. 330, footnote), Burnside remarks that ‘An
examination of the orders of the known non-cyclical simple groups brings
out the remarkable fact that all of them are divisible by 12’. It was long
thought that the orders of finite non-abelian simple groups would all prove
to be divisible by 12; but in 1960, M. Suzuki [a92] announced the existence
of an infinite family of finite non-abelian simple groups with orders which
are not divisible by 3; see also [a93]. The order of the smallest Suzuki
group is 26.5.7.13. No other examples have been discovered of finite non-
abelian simple groups with orders not divisible by 3, and it is thought likely
that the Suzuki groups are the only such groups.

A refinement of the proof of 10.22, made by analysing the possible
Sylow 2-subgroups of order 8, shows that a finite simple group of even
order greater than 2 must have order divisible by 12, 16 or 56: see 640.

By means of Burnside’s theorem 10.21, we can establish a strong
structure theorem for finite groups in which all Sylow subgroups are cyclic.
First we prove

10.24 Corollary. Let G be a finite group and p the smallest prime divisor of
| G|. If the Sylow p-subgroups of G are cyclic then G is p-nilpotent. (This
generalizes the results of 262 and 564.)
Proof. Let P be a Sylow p-subgroup of G and suppose that P is cyclic. Then
P  CG(P)  NG(P) and, by 4.36, NG(P)/CG(P) can be embedded in Aut P.
Since P  CG(P), | NG(P)/CG(P)| is not divisible by p. Let | P | = pm, where
m is a positive integer. Then, since P is cyclic, |Aut P | = pm − pm − 1 (243).
Hence | NG(P)/CG(P)| must divide p − 1. Since p is the smallest prime
divisor of | G|, it follows that | NG(P)/CG(P) | = 1, hence that CG(P) =
NG(P). Thus P  Z(NG(P)) and so, by Burnside’s theorem, G is p-nilpotent.

We also use



10.25 Lemma (H. J. Zassenhaus [b41]). Let G be a soluble group. If in the
derived series of G (7.51), the factors G′/G″ and G″/G′″ are both cyclic then
G″ = G′″ = 1.
Proof. Since G is soluble, there is a positive integer r such that G(r) = 1
(7.52). Hence, if G″ = G′″, it follows that G″ = G′″ = 1. Therefore (by
replacing G by G/G′″) we may assume that G′″ = 1, and try to prove that
when G′/G″ and G″ are both cyclic then G″ = 1.

Since G′″  G, 4.36 shows that CG(G″)  G and G/CG(G″) can be
embedded in Aut G″. Since G″ is cyclic, Aut G″ is abelian, by 4.38, and
therefore, by 3.52, G′  CG(G″). Hence G″  Z(G′). Since G′/G″ is cyclic, it
follows, by 3.30, that G′/Z(G′) is cyclic and therefore (125) that G′ is
abelian. Hence G″ = 1.

10.26 Theorem (Hölder, Burnside, Zassenhaus [al08], [b41]). Let G be a
finite group such that all Sylow subgroups of G are cyclic. Then G is
soluble. Moreover, G/G′ and G′ are both cyclic (so that G is metacyclic
(152), G splits over G′, and G′ is a Hall subgroup of G.
Remarks. If G is a finite cyclic group then all subgroups of G are cyclic
(3.32), in particular all Sylow subgroups of G are cyclic. If G is a finite
abelian group and all its Sylow subgroups are cyclic then G is cyclic (410).
But there are also finite non-abelian groups with all their Sylow subgroups
cyclic: for instance, the dihedral group D2n for every odd integer n  3
(259).
Proof of the theorem. (i) We observe first that every subgroup and every
quotient group of G has the same property as G. Let H  G. By Sylow’s
theorem, every Sylow subgroup of H is a subgroup of some Sylow
subgroup of G. Since subgroups of cyclic groups are cyclic (3.32), all
Sylow subgroups of H are cyclic. Let K  G. Every Sylow subgroup of G/K
is of the form PK/K, where P is a Sylow subgroup of G (252). Since PK/K
≅ P/(P ∩ K) (3.40) and P is cyclic, PK/K is cyclic. Thus all Sylow
subgroups of G/K are cyclic.

(ii) Now we prove by induction on | G | that G is soluble. This is trivial if
| G | = 1, so we assume that | G | > 1. Let p be the smallest prime divisor of |
G|. By 10.24, G is p-nilpotent. Let K be the normal p-complement of G.
Then K  G and, by (i), all Sylow subgroups of K are cyclic. Hence, by the



induction hypothesis, K is soluble. Since G/K is isomorphic to a Sylow p-
subgroup P of G and P is cyclic, it follows (7.47) that G is soluble.

(iii) Now G/G′, G′/G″ and G″/G′″ are abelian groups and all their Sylow
subgroups are cyclic (by (i)). Hence (410) these abelian groups are cyclic.
Therefore, by (ii) and 10.25, G″ = 1, and G/G′ and G′ are cyclic.

(iv) Let | G/G′| = n and | G′| = m. By (iii), there are elements x, y∈G such
that

Then (108) G = 〈x, y〉 and xy∈G′, so that

for some integer r. Hence

Let L = 〈 xr − 1 〉. Then L is characteristic in G′ (138) and therefore L  G
(3.15). Now

and

since [x, y]∈L. Thus G/L is generated by 2 elements which commute.
Hence G/L is abelian (69), and so G′  L (3.52). Since also L  G′,

Therefore, since o(x) = m,

Because | G/G′| = n, yn∈G′ (105), so that

for some integer s. Then



and therefore x(r − 1)s = 1. Hence (r − 1)s is divisible by o(x) = m. Since (r −
1, m) = 1, it follows that s is divisible by m.
Hence                                           
Since G/G′ = 〈yG′〉, of order n, this implies that

Now G = 〈y〉G′ and, by 3.40,

Since | G/G′| = n = |〈 y 〉 |, it follows that

Thus 〈y〉 is a complement to G′ in G.
Suppose that (n, m) > 1. Then there is a prime q which divides both n and

m. Let

Then                                     

Just as . Then (by 3.38 and 3.40)

Therefore, by Sylow’s theorem, J  Q, some Sylow q-subgroup of G. By
hypothesis, Q is cyclic and therefore Q has a unique subgroup of order q
(3.32). But this contradicts the fact that  and  are distinct
subgroups of J of order q. We conclude therefore that (n, m) = 1.

565 Let P be a Sylow p-subgroup of the finite group G. Let X and Y be non-
empty subsets of P such that P  NG(X) ∩ NG(Y) (see 4.32). If X and Y are
conjugate in G then they are conjugate in NG(P). (This generalizes 10.20.)

566 Let P be a Sylow p-subgroup of the finite group G. Suppose that P ∩
Pg = 1 whenever g∈G and P ≠ Pg. Then any two elements of P which are



conjugate in G are conjugate in NG(P).

567 Suppose that | G | = pr, where r is a positive integer such that p does
not divide r. If G has r distinct subgroups of order p then G has a normal
subgroup of order r.

568 If | G | = p2q2, where p, g are distinct primes, then G has either a normal
Sylow p-subgroup or a normal Sylow q-subgroup; and so G is not simple.
(Cf. 5.19. Hint. Use 4.30, Sylow’s theorem and Burnside’s theorem.)

569 If | G | = p3q, where p, q are distinct primes, then G is not simple.
(Hints. Suppose that G is a simple group of order p3q. Show that p < q and
use Sylow’s theorem and Burnside’s theorem to show that the number of
Sylow q-subgroups of G is p2. Deduce that p = 2, q = 3. Remark. In general,
G need not have either a normal Sylow p-subgroup or a normal Sylow q-
subgroup; consider for example G = Σ4.)

570 Let G be a simple group of order p2 qr, where p, q, r are distinct
primes, and let P be a Sylow p-subgroup of G. Then

  (i) p is the smallest prime divisor of | G|; so we may assume without
loss of generality that p < q < r;

 (ii) P ≅ Cp × Cp, and | NG(P)/CG(P)| is either q or r;
(iii) p = 2 and q = 3;
(iv) G ≅ A5.

(Hint. See the proof of 10.22, and use 294.)

571 Prove that every group of odd order less than 1000 is soluble.

(Hints. Assume that the result is false. Show that this implies that there is a
non-abelian simple group G of order n for some odd integer 

 where s, m1,…, ms are positive integers and

p1,…, ps distinct odd primes. Apply 4.29, 5.17, 5.19, 5.20, 568, 569, 570

and arithmetic to show that . Deduce that 3 divides n, hence that n

must be one of the five numbers 34 × 5, 34 × 7, 34 × 11, 33 × 52, 33 × 5 × 7.



Eliminate the first four of these possibilities by means of 279 and Sylow’s
theorem. If n = 33 × 5 × 7, use Sylow’s theorem to show that G has a
subgroup of index 7, and then apply 4.14 to derive a final contradiction.
Remark. This result is merely a special case of the Feit-Thompson theorem:
see 1.12 and 383.)

572 Let | G | = pmqn, where p, q are distinct primes and m, n non-negative
integers, and suppose that the Sylow p-subgroups and Sylow q-subgroups
of G are abelian. Then G is soluble. (Hints. By induction on | G|, it is
enough to show that G cannot be simple and non-abelian. Suppose that it is.
Let Q be a Sylow q-subgroup of G and use 100 and 264 (ii) to show that
there is no subgroup L of G such that Q < L < G. Then use Burnside’s
theorem. Remark. By another theorem of Burnside-see 11.27 – the
condition of abelian Sylow subgroups is in fact superfluous here.)

573 Let T be a Sylow 2-subgroup of the finite group G.
  (i) If T ≅ C2 × C2 and | G | is not divisible by 3 then G is 2-nilpotent.

(ii) If T ≅ C2 × C2 × C2 and | G | is not divisible by either 3 or 7 then G
is 2-nilpotent.

574 Suppose that the finite group G has an abelian Sylow p-subgroup P,
and let H = NG(P). Then G is p-nilpotent if and only if H = P × Q for some
subgroup Q of H.

575 Let , where s, m1,…, ms are positive integers and p1,…, ps

distinct primes. Then the following two statements are equivalent:
  (i) Every group G of order n is cyclic.
(ii) For all i, j∈{1,2,…, s}, mi = 1 and pi ≡ 1 mod pj.
(This is the result stated in 1.4. Hints. To show that if (ii) does not hold

then (i) does not hold, if mi > 1 for some i consider abelian groups; if mi = 1
for all i, but pi ≡ 1 mod Pj for some i, j, apply 9.16. To show that (ii) ⇒ (i),
let G be a group of order n and apply 10.26. Note that if G′ ≠ 1 then, by
125, CG(G′) < G. Then apply 4.36, 46 and 138.)



We are going to prove that whenever H is a normal Hall subgroup of a
finite group G, G splits over H: cf. the special case of this result in 557.
Recall that when H  G, there is no distinction between left and right
transversals to H in G and we refer simply to transversals (543). We observe
that then the left action of H on the set  of all transversals to H in G
defined in 10.2 extends to a left action of G on .

10.27. Let H  G. Then G acts on the left by left multiplication on the set 
of all transversals to H in G.
Proof. Let g∈G and T∈ . Then, for any x∈G, using 3.19 we have

since T∈ . Hence gT∈ . The result is now clear.

10.28. Let J  H  G, with | G/H | = n < ∞ and H/J abelian. Let  be the
set of all transversals to H in G. Whenever g∈G and T, U∈ ,

Proof. Let T = {t1,…, tn}∈  and U = {u1,…, un}∈  with Hti = Hui for i
= 1,…, n. Then (by 3.19) Hgti = gHti = gHui = Hgui for i = 1,…, n. Hence

10.29 Theorem. Let A be an abelian normal Hall subgroup of the finite
group G. Then G splits over A. Moreover, the complements to A in G form a
single conjugacy class of subgroups of G.
Proof. In 10.3, let H = A and J = 1. Let  denote the set of all transversals
to A in G, ~ the equivalence relation on  defined in 10.3, and Ω the set of
equivalence classes of ~. By 10.27, G acts on the left on  by left
multiplication. Moreover, this left action induces naturally a left action of G
on Ω: for if g∈G and T, U∈  with T ~ U, then 10.28 shows that gT ~ gU.
The restriction to A of this left action of G on Ω is of course the left action
of A on Ω already introduced in 10.6: by 10.11 (with J = 1), it is regular.



Now let ω∈Ω and K = StabG(ω) (where this stabilizer refers to the left
action of G on Ω). Let g∈G. Then, by transitivity of the left action of A on
Ω,
for some a∈A, and then                   

Hence                                               
Moreover,                                     
since the left action of A on Ω is regular. Thus K is a complement to A in G.

Now let L be any complement to A in G. Then clearly L∈  (cf. 543).
Let  be the element of Ω which contains L. Then, for every l∈L,

and so                                              
Hence                                              
Because the left action of A on Ω is transitive,

for some b∈A, and then, by the left action analogue of 187,

Since also any conjugate in G of a complement to A in G is again a
complement to A in G (9.11), the theorem is proved.

We now show that in 10.29, the splitting conclusion holds without the
condition that A is abelian. This important result is called the Schur-
Zassenhaus theorem.

10.30 Theorem (Schur, Zassenhaus [b41]). Let K be a normal Hall
subgroup of the finite group G. Then G splits over K.
Proof Let | G/K | = n and | K | = m. We note that it is enough to show that G
has a subgroup H of order n: for then, since (n, m) = 1, H ∩ K = 1, hence
also, by 3.40, | HK | = nm and so HK = G.



We prove by induction on m that G has a subgroup of order n. This is
trivial if m = 1, so we assume that m > 1. Let p be a prime divisor of m, P a
Sylow p-subgroup of K, and N = NG(P). Then, by Frattini’s lemma (5.13),
G = NK. By 3.40, N ∩ K  N and N/N ∩ K ≅ G/K, of order n. If N < G
then N ∩ K < K, and so | N ∩ K | is a proper divisor of m. Then, by the
inductive assumption, N has a subgroup H of order n. Then also H is a
subgroup of G of order n.

Therefore we may assume that N = G, that is, that P  G. Since p divides
m, P ≠ 1. Let Z = Z(P). Then, by 4.28 and 121, 1 < Z  G. By 3.30, K/Z 
G/Z and G/Z/K/Z ≅ G/K, of order n. Moreover, | K/Z | is a proper divisor of
m, and so, by the inductive assumption, G/Z has a subgroup L/Z of order n,
where L  G.

Certainly p does not divide n, and so Z is a normal Hall subgroup of L.
Since Z is also abelian, it follows from 10.29 that L splits over Z, hence that
L has a subgroup H of order n. Then H is also a subgroup of G of order n.
Thus the induction argument goes through.

We now consider whether in 10.30, as in 10.29, complements are
conjugate. We prove

10.31 Theorem (Zassenhaus [b41]). Let K be a normal Hall subgroup of
the finite group G, and suppose that either K or G/K is soluble. Then the
complements to K in G form a single conjugacy class of subgroups of G.
Proof. Let H and H* be complements to K in G. It is enough to show that H
and H* are conjugate in G. We argue by induction on | G|. Let | G/K| = n
and | K | = m. The result is trivial if either n = 1 or m = 1, so we may assume
that n > 1 and m > 1.

(i) Suppose first that K is soluble. By 3.51 and 3.15, K′  G. By 3.30,
K/K′ is a normal Hall subgroup of G/K′. Also HK′/K′ and H*K′/K′ are
complements to K/K′ in G/K′ (by 3.40). Since K/K′ is abelian (3.52), it
follows from 10.29 that HK′/K′ and H*K′/K′ are conjugate in G/K′. Hence
there is an element g∈G such that

Let | K′| = m′. Then m′ divides m, and since | H*K′/K′| = n, K′ is a normal
Hall subgroup of H*K′. Moreover, H* and Hg are complements to K′ in
H*K′, and K′ is soluble (7.46). Since K is soluble and K ≠ 1, K′ < K (7.52).



Therefore | H*K′| = nm′ < nm = | G|. Hence, by the inductive assumption,
H* and Hg are conjugate in H*K′. Therefore H and H* are conjugate in G.
This completes the induction argument in this case.

(ii) Now suppose that G/K is soluble. Since K < G, there is a chief factor
J/K of G, and since G/K is soluble, J/K is an elementary abelian p-group for
some p dividing n (7.56). Then K < J  G = HK, so that, by Dedekind’s rule
(7.3), J = (H ∩ J)K. Similarly, J = (H* ∩ J)K. Since p does not divide m, J
is p-nilpotent, with normal p-complement K, and H ∩ J and H* ∩ J are
Sylow p-subgroups of J. Hence, by Sylow’s theorem, for some x∈J,

Now H ∩ J  H, and so H* ∩ J = (H ∩ J)x  Hx. Also H* ∩ J  H*. Let
L = H* ∩ J and N = NG(L). Thus N contains both Hx and H*. In particular,
NK = G. By 3.40, N ∩ K  N and N/(N ∩ K) ≅ NK/K = G/K. Therefore
N/(N ∩ K) is soluble and N ∩ K is a Hall subgroup of N. Moreover, | H*| =
n = | G/K | = | N/N∩K|. Now (N∩K)L  N (3.39), so that, by 3.30,
(N∩K)L/L  N/L and

which is soluble (7.46). Since also, by 3.40,

(N∩K)L/L is a Hall subgroup of N/L. Moreover, |(N∩K)L | = | N∩K | | L|,
and so

Hence H*/L and Hx/L are complements to (N∩K)L/L in N/L. Since K < J, L
≠ 1 and so | N/L | < | G|. Hence, by the inductive assumption, H*/L and Hx/L
are conjugate in N/L. Therefore H and H* are conjugate in G (230). This
completes the induction argument in this case.
Remark. In this theorem, since (|G/K|, | K|)= 1, either | G/K | or | K | is odd.
It follows by the Feit–Thompson Theorem (1.12; see 383) that either G/K or
K is necessarily soluble. Therefore the hypothesis in the theorem that either
K or G/K is soluble is superfluous. But no proof is known of the conjugacy



of complements in the general case which does not an appeal to this very
deep result 1.12.

576 Let J  H  G, with | G/H| = n < ∞, | H/J | = m < ∞,(n, m) = 1 and H/J
abelian. Let ~ be the equivalence relation on the set  of all transversals to
H in G defined in 10.3. Then the following statements are equivalent:

  (i) There is a normal complement to H/J in G.
(ii) J  G and G/J = (H/J) × (K/J) for some subgroup K of G.
(iii) For every g∈G and every T∈ , gT ~ Tg.

(cf. 10.16. Hints. For , let g∈G and show that there are positive
integers s, n1,…, ns and elements k1,…, ks∈K such that 

 for i = 1,…, s, and 
 is a transversal to H in G. For this

U, Ug~U and hence Ug ~ gU. Deduce that for every T∈ , Tg~T and hence
Tg ~ gT)

577 Let J  H  G, with G/H finite and H/J abelian. Let  be the transfer G
→ H/J and let Im  = I/J, where J  I  H. Then [G, I]  J.

578 (Zassenhaus [b41]) Let G be a finite group with an abelian normal Hall
subgroup A, and let  be the transfer of G into A. Then

   (i) Im  = Z(G) ∩ A.
 (ii) Ker  ∩ Im  = 1.
 (iii) G = Ker  × Im .
 (iv) A  Ker   [A, G].
  (v) A ∩ Ker  = [A, G] = G′ ∩ A.
 (vi) A = (G′∩A)×(Z(G)∩A).
(vii) If A < G and G is indecomposable (81) then Z(G) ∩ A = 1 and A 

G′.
(Hints. For (i) and (ii), use 553 and 577; for (iv), use 10.14; for (v), use 162;
for (vi), use 9.12.)

579 Give an example of a finite group G with a normal subgroup K such
that G splits over K but the complements to K in G do not form a single
conjugacy class of subgroups of G (cf. 10.29, 10.30, 10.31).



580 Let K be a normal Hall subgroup of the finite group G.
  (i) Then K is characteristic in G.
(ii) Let H be a complement to K in G (which exists, by 10.30) and

suppose that either K or G/K is soluble. Then H is both intravariant and
pronormal in G : see 267 and 268.

581 Let K  G, a finite group. Suppose that Aut K splits over Inn K. If
(|G/K|, | Z(K)|) = 1 then G splits over K. (Hint. Consider the action of G on
K by conjugation, and apply 9.12, 10.29, and 501.)

582 Let G be a finite group and p a prime divisor of | G|. Suppose that K is a
normal subgroup of G such that p does not divide | G/K|. Then there is a
subgroup H of G such that G = HK and p does not divide | H|. (Hint. Use
5.13 and 10.30.)

Before making another major application of 10.16, we introduce the
notion of fusion. This has figured prominently in the modern analysis of
finite simple groups.

10.32 Definitions. (i) Let H  G. Two elements (or subsets) of H are said to
be fused in H by G if they are conjugate in G but not in H.

For instance, the permutations (123) and (132) are fused in 〈(123)〉 by
∑3.

Thus 10.16(ii) may be reformulated as follows: ‘whenever h1, h2 are
elements of H fused in H by G, Jh1 = Jh2’. (This is an equivalent statement,
for if h1, h2∈H and h1, h2 are conjugate in H then automatically Jh1 = Jh2,
because H/J is abelian.) Again, Burnside’s lemma 10.20 may be stated as ‘if
P is a Sylow p-subgroup of a finite group G, then any two elements of Z(P)
which are fused in P by G are also fused in P by NG(P)’.

(ii) Let H  G. Then the focal subgroup of H in G is defined to be

Equivalently,

Then clearly



If H  G then [h, g]∈H for every h∈H and every g∈G (162), and then
FocG(H) = [H, G]. However, in general we may have [H, G]  H and then
FocG(H) < [H, G].

If there is no fusion in H by G, that is, if elements of H conjugate in G
are already conjugate in H, then Foc G(H) = H′. In general, the quotient
FocG(H)/H′ may be thought of as measuring in some way the amount of
fusion which takes place in H by G.

10.33 Theorem. Let H  G. Suppose that | G : H| = n < ∞,
|H/H′| = 1 < ∞, and (n, l) = 1. Then FocG(H) = G′ ∩ H, and there is a
normal complement to H/(G′ ∩ H) in G.
Proof. Let J = FocG(H). Then

and so (by 3.30 and 3.52) J  H and H/J is abelian. Moreover, if | H/J | = m,
then m divides l and so (n, m) = 1. Thus we may apply 10.16. Let h1 and h2
be elements of H which are conjugate in G. Then, by definition of 

 and so Jh1 = Jh2. Hence, by 10.16, there is a normal
complement K to H/J in G.

Then                                           
Hence G/K is abelian, so that (3.52)

Now                               
Therefore                                     

The most important special case of this result is called the focal subgroup
theorem.

10.34 Corollary (Focal subgroup theorem: D. G. Higman [a56], 1953). Let
P be a Sylow p-subgroup of the finite group G. Then FocG(P) = G′∩P.

The following facts make clear the significance of this result.



10.35. (i) For any set  of prime numbers, every finite group G has an -
residual when  is the class of finite abelian -groups: this ‘abelian -
residual’ of G is G/(G′O (G)) (see 3.44, 3.45).

(ii) For any finite group G and any Sylow p-subgroup P of G, the abelian
p-residual of G is isomorphic to P/(G′ ∩ P).
Proof. Let G be a finite group.

(i) Let K  G. Then G/K is an abelian -group if and only if G′  K and
O (G)  K (by 3.52 and 3.44), hence if and only if G′O (G)  K.
Moreover (by 3.39), G′O (G)  G.

(ii) Let P be a Sylow p-subgroup of G. Then, by 3.40,
(P/G′ ∩ P) ≅ PG/G′, a Sylow p-subgroup of G/G′ (252).
Let                                         
Then                                     
by 3.30 and (i). Hence, since G/G′ is abelian, R/G′ is the (unique) p-
complement of G/G′ and  is isomorphic to the (unique) Sylow p-

subgroup of G/G′ (by 560 and 563). Thus, by 3.30,

We now see that the focal subgroup theorem relates the abelian p-residual
of a finite group G to fusion by G of elements of a Sylow p-sub-group of G.

We shall use the focal subgroup theorem to obtain some information
about finite groups with abelian Sylow p-subgroups. The result stated is a
special case of a theorem of O. Grün [a45] to which we shall return later.

10.36 Theorem. Let G be a finite group with an abelian Sylow p-subgroup
P, and let H = NG(P). Then G/Op(G) ≅ H/Op(H).
Proof. Since P is abelian and POp(G) = G (by 252), G/Op(G) is abelian, and
hence is the abelian p-residual of G. Also P is the (unique) Sylow p-
subgroup of H, and so, by the same remark, H/Op(H) is the abelian p-
residual of H. Hence, by 10.35, what we have to prove is that

Obviously H′∩P  G′∩P; it remains to show that G′∩P  H′∩P, or,
equivalently, by the focal subgroup theorem, that



Let x1 and x2 be elements of P which are conjugate in G. Then, since P is
abelian, Burnside’s lemma 10.20 shows that x1 and x2 are conjugate in H.
Hence

and the result is proved.
Next, we shall apply several of the preceding results to prove another

splitting theorem, in this case due to W. Gaschütz. We shall need the
following lemma.

10.37 Lemma. Suppose that G is a finite group with an abelian normal
Sylow p-subgroup P, and suppose also that Op(G) = G. Let Q be a p-
complement of G (which exists, by 10.29). Then NG(Q) = Q.
Proof. Let R = NG(Q) and P0 = P ∩ R. Since P  G, P0  R. Moreover, by
definition, Q  R, and since P0 is a p-group and p does not divide | Q|, P0 ∩
Q = 1. Hence, by 3.53,

Therefore, since also P is abelian,

Thus                               

Since, by hypothesis, Op(G) = G, p does not divide | G/G′| (297), and
therefore P  G′ (see 252). Hence

by 10.8 (with H = P, J = 1). Since

it follows, by Dedekind’s rule (7.3), that

as asserted.



10.38 Theorem (W. Gaschütz [a34], 1952). Let G be a finite group. If the
Sylow p-subgroups of Op(G) are abelian then G splits over Op(G).
Proof. We argue by induction on | G|. The result is trivial if | G | = 1, so we
assume that | G | > 1. Let K = Op(G), and let P be a Sylow p-subgroup of K.
Let L = NK(P). By hypothesis, P is abelian, and from the definition of K,
Op(K) = K (see 156). Hence, by 10.36, Op(L) = L.

Let H = NG(P). Then H ∩ K = L, and, since K  G, L  H. By Frattini’s
lemma (5.13), HK = G. Thus K is a normal complement to H/L in G. In
particular,

a p-group. Since we have shown that Op(L) = L, it follows that

Since L  K and the Sylow p-subgroups of K are abelian, the Sylow p-
subgroups of L are abelian. Hence if H < G, it follows by the induction
hypothesis that H splits over L. Then, if P1 is a complement to L in H, P1K
= P1LK = HK = G and P1∩K = P1∩H∩K = P1∩L = 1, so that P1 is also a
complement to K in G.

Therefore we may assume that H = G, that is, that P  G. Then P is an
abelian normal Sylow p-subgroup of K, and so, by 10.29, K splits over P
and the complements to P in K form a single conjugacy class of subgroups
of K. Let Q be a complement to P in K, that is, a p-complement of K. Then
a repetition of the proof of Frattini’s lemma (5.13; see also 267) shows that

Since also Op(K) = K, 10.37 shows that

Thus K is a normal complement to NG(Q)/Q in G. In particular,

a p-group. Then, if P2 is a Sylow p-subgroup of NG(Q),



Hence                                     
and                                                
since p does not divide | Q|. Thus P2 is a complement to K in G and the
induction argument is complete.

583 (i) Let P be a Sylow p-subgroup of the finite group G, where p is a
prime divisor of | G|. Prove that if no two distinct elements of P are fused in
P by G, then P  G′ and Op(G) < G.

(ii) Give an example of a finite soluble group G with a Sylow p-subgroup
P for some prime divisor p of | G | such that P  G′.

584 (i) Prove that if H is an abelian subgroup of G and there is a normal
complement to H in G, then FocG(H) = 1.

(ii) Let H  G, and suppose that FocG(H) = 1. Prove that H is abelian and
that no two distinct elements of H are fused in H by G. Show by an example
that there need not be a normal complement to H in G (cf. 10.18).

585 Give an example of a group G with a subgroup H such that

586 (i) Suppose that H  G, with | G : H | < ∞, | H/H′| < ∞ and (|G : H |, |
H/H′|) = 1. Prove that H ∩ [H, G] = G′ ∩ H (cf. 556 and 10.33).

(ii) Give an example of a group G with a subgroup H such that H ∩ [H,
G] < G′ ∩ H.

587 Let H  G. Suppose that | G : H| = n < ∞, | H/H′| = l < ∞ and (n, l) = 1.
Let  be the transfer of G into H/(G′ ∩ H). Then Im  = H/(G′ ∩ H).

588 Let P be a Sylow p-subgroup of the finite group G. Then the following
statements are equivalent:

  (i) There is a normal complement to P/P′ in G.
 (ii) G′∩P = P′.

589 Give an example of a finite group G with a Sylow p-subgroup P, for
some prime p, such that , where H = NG(P) (cf. 10.36).



590 Let G be a finite group with a cyclic Sylow p-subgroup. Then either G
is p-nilpotent or Op(G) = G. (Hint. Use 10.38, 502 and 492.)

We shall end this chapter by proving some important generalizations of
transfer theorems already obtained. It will be convenient to introduce a new
notation for conjugacy of elements: this notation is due to H. Wielandt.
Recall that conjugacy is an equivalence relation on the set of all elements of
a group (49).

10.39 Definition. Let x, y∈G. We write  if and only if x and y are
conjugate in G.

We shall prove a generalization of part of 10.16, in which the hypothesis
that H/J is abelian is weakened to the assumption that H/J is nilpotent.

10.40 Theorem (H. Wielandt). Let J  H  G, with | G : H| = n < ∞, | H/J |
= m < ∞, (n, m) = 1 and H/J nilpotent. Then the following statements are
equivalent:

  (i) There is a normal complement to H/J in G.
(ii) Whenever h1, h2∈H and .

Proof. (i) ⇒ (ii) The argument is exactly the same as for 10.16, (i) ⇒ (ii),
with the last equation omitted.

(ii) ⇒ (i) We argue by induction on m. The assertion in (i) is trivial if m =
1, and so we assume that m > 1. Let Z(H/J) = J1/J. Then, by 3.30 and 7.46,
J1  H and H/J1 is nilpotent. Let | H/J1| = m1. Then m1 divides m, so that (n,
m1) = 1; and, by 7.54, m1 < m. Let h1, h2∈H with . By hypothesis, 

, and so evidently . Now it follows, by the
induction hypothesis, that there is a normal complement K1 to H/J1 in G.
Then

Now J  J1  K1, and | K1 : J1| = | G : H | = n. Let m2 = | j1/J | : then m2 is a
divisor of m, and so (n, m2) = 1. Moreover, J1/J is abelian. Let x1, x2∈J1,
with . Since x1, x2∈H, it follows, by hypothesis, that .



Hence, since Jx1, Jx2∈J1/J = Z(H/J | it follows that Jx1 = Jx2. Now, by
10.16, there is a normal complement K to J1/J in K1. But now

and                               

Thus K is a complement to H/J in G.
Finally, we show that K  G. We have

Let h∈H. Then, since also J  H,

By 3.40,

The left side of this equation divides

whereas the right side divides

Since (n, m2) = 1, it follows that Kh  K. Similarly K  Kh. Thus

Since this is true for every h∈H and since G = HK, this shows that

This completes the induction argument.
As a special case we note the following generalization of 10.18.

10.41 Corollary. Let H be a nilpotent Hall subgroup of the finite group G.
Then there is a normal complement to H in G if and only if no two elements
of H are fused in H by G.



In [a94], M. Suzuki establishes necessary and sufficient conditions for a
(not necessarily nilpotent) Hall subgroup of a finite group G to have a
normal complement in G. The proof makes use of character theory.

As another consequence of 10.40, we prove

10.42 Corollary. Let J  H  V  G, with | G : H| = n < ∞, | H/J | = m < ∞,
(n, m) = 1 and H/J nilpotent. Assume that whenever h1, h2∈H and 

. Then the following statements are equivalent:
  (i) There is a normal complement to H/J in G.
(ii) There is a normal complement to H/J in V.

Proof (i) ⇒ (ii) Suppose that K is a normal complement to H/J in G: thus K 
 G = HK and H ∩ K = J. Then V ∩ K  V and, by Dedekind’s rule (7.3), V

= H(V ∩ K). Moreover H ∩ (V ∩ K) = H ∩ K = J. Thus V ∩ K is a normal
complement to H/J in V.

(ii) ⇒ (i) Let h1, h2∈H with . Then, by hypothesis, .

Hence, if there is a normal complement to H/J in V, then, by 10.40 (applied
to V in place of G), ; and then, also by 10.40 (applied to G),
there is a normal complement to H/J in G.

We now use 10.42 to prove an important generalization of 10.36. First we
need a definition.

10.43 Definition. Let G be a finite group and P a Sylow p-subgroup of G.
Suppose that for every Sylow p-subgroup P* of G which contains Z(P),
Z(P*) = Z(P). Then G is said to be p-normal.

It is easy to see that the definition of p-normality depends only on p and
not on the choice of Sylow p-subgroup P of G (see 593 (i) and (iii)). Also it
is obvious that G is p-normal in particular if P is abelian.

We shall use

10.44 Lemma. Let G be a p-normal finite group, and let P be a Sylow p-
subgroup of G. If x1, x2∈P and , where W = NG(Z(P)).

Proof. Let x∈P, g∈G and xg∈P. Then



(229). By Sylow’s theorem, there is a Sylow p-subgroup P1 of CG(x)
containing Z(P); and then there is also a Sylow p-subgroup P* of G
containing P1. Since ,

for some y∈CG(x). Now

Hence, since G is p-normal and by 229,

Therefore

Thus

for some w∈W. Since y∈CG(x),

and so x and xg are conjugate in W.
Now we can prove the main theorem about p-normal groups. It is an

improvement by P. Hall of a result of O. Grün. It generalizes 10.36.

10.45 Theorem (O. Grün [a45], P. Hall). Let G be a p-normal finite group
and P a Sylow p-subgroup of G. Then, for any subgroup V of G which
contains NG(Z(P)), G/Op(G) ≅ V/Op(V).
Proof Let W = NG(Z(P)). If x1, x2∈P and , then, by 10.44, 
and therefore, since . Certainly Op(V)  Op(G) (157). Since
P < V, P is a Sylow p-subgroup of V and therefore POp(V) = V (252). Let J
= P ∩ Op(V)  P. Then Op(V) is a normal complement to P/J in V. Now,
since P/J is nilpotent (7.44), we can apply 10.42 with H = P and J and V as



above. Hence there is a normal complement K to P/J in G. Then K  G and
G/K ≅ P/J, a p-group. Hence

Hence                              
and so                                           
Since Op(G) and K are normal subgroups of G, P ∩ Op(G) and P ∩ K are
Sylow p-subgroups of Op(G) and K respectively (252). Hence, since
K/Op(G) is a p-group,

Therefore, since also Op(V) is a normal complement to P/J in V,

Now we shall use 10.42 to prove a fundamental theorem of Frobenius
giving necessary and sufficient conditions for a finite group to be p-
nilpotent. First we prove a lemma. Recall that whenever H  G, CG(H) 
NG(H) (436).

10.46 Lemma. Let G be a finite group and P a Sylow p-subgroup of G.
Suppose that, for every subgroup Q of P, NG(Q)/CG(Q) is a p-group. Then,
for any Sylow p-subgroup P* of G and any x∈P ∩ P*, there is an element
y∈CG(x) such that P* = Py.
Proof Let P* be a Sylow p-subgroup of G and Q = P ∩ P*. We argue by
induction on | P : Q|. If | P : Q | = 1 then P* = P and the assertion is
obvious. Now assume that P : Q | > 1. Then Q < P and so, by 5.6, Q <
NP(Q). By Sylow’s theorem, there is a Sylow p-subgroup Q1 of NG(Q) with
NP(Q)  Q1, and there is a Sylow p-subgroup P1 of G with Q1  P1. Let
x∈P ∩ P* = Q. Then also x∈P∩P1. Moreover, since Q < NP(Q)  P ∩ P1,
| P : P ∩ P1| < | P : Q|. Hence, by the induction hypothesis, there is an
element y1∈CG(x) such that .



Also Q < P* and therefore (5.6) Q < NP*(Q). Since NP*(Q) is a p-
subgroup of NG(Q) there is, by Sylow’s theorem, an element w∈NG(Q)
such that . By hypothesis, NG(Q)/CG(Q) is a p-group, and
therefore NG(Q) = Q1CG(Q) (252). Hence we may choose w∈CG(Q) 
CG(x), since x∈Q.

Now                         
Let u = (y1w)− 1∈CG(x). Then

Hence | P : P ∩ (P*)u| < | P : Q | and so, by the induction hypothesis, there
is an element y2∈CG(x) such that . Then  and
y2y1w∈CG(x). This completes the induction argument.

10.47 Theorem (Frobenius [a32]). Let G be a finite group and P a Sylow p-
subgroup of G. Then G is p-nilpotent if and only if NG(Q)/CG(Q) is a p-
group for every subgroup Q of P.
Proof Suppose that NG(Q)/CG(Q) is a p-group for every Q  P. Then we
want to show that there is a normal complement to P in G. Let V = NG(P).
Then P  V and (| V/P|, | P |) = 1, so that, by the Schur–Zassenhaus theorem
(10.30), there is a complement W to P in V. Then (560)

since, by hypothesis, NG(P)/CG(P) is a p-group. Hence

and so                         

Thus W is a normal complement to P in V.
Now we apply 10.42 with J = 1, H = P and V = NG(P). Note that P is

nilpotent (7.44). It only remains to verify the fusion condition. Let x∈P,
g∈G and xg∈P. Then , and therefore, by 10.46,



for some y∈CG(x). Then yg∈V and

Hence x and xg are conjugate in V. Hence, by 10.42, there is a normal
complement to P in G.

Suppose, conversely, that G has a normal p-complement K and let Q  P.
Then

and                               

since p does not divide | K|. Hence, by 3.53,

and so                               

Now, by 3.40,  a p-group.
Hence

and so NG(Q)/GG(Q) is a p-group.

10.48. For p odd, there is a powerful and important improvement of
Frobenius’s theorem 10.47 due to J. G. Thompson: see Huppert [b21] p.
438, theorem 4.6.2 or Schenkman [b35] p. 273, theorem 9.3.a. Further
refinements of Thompson’s result have been made. For instance, G.
Glauberman has proved that if P is a non-trivial Sylow p-subgroup of the
finite group G, with p odd, there is an explicitly defined non-trivial abelian
characteristic subgroup A of P such that if NG(A) is p-nilpotent then G is p-
nilpotent: see Gorenstein [b13] p. 280, theorem 8.3.1.

For a different approach to transfer theorems, based on delicate fusion
results discovered by J. L. Alperin, see Gorenstein [b13], chapters 7 and 8,
and the lectures of G Glauberman presented in Powell and Higman [b33]
chapter 1.

591 (G. Zappa [al05]; see also [al06]) Let H be a nilpotent Hall subgroup of
the finite group G. Then the following statements are equivalent:

  (i) There is a normal complement to H in G.



(ii) There is a right transversal T to H in G such that, for every h∈H, hT
= Th.

592 The group ∑4 is not 2-normal.

593 Let J  H  G. Then J is said to be weakly closed in H with respect to
G if H contains no conjugate of J in G other than J itself.

  (i) Show that if J is weakly closed in H with respect to G, and g∈G,
then Jg is weakly closed in Hg with respect to G.

(ii) Show that if J is weakly closed in H with respect to G, then J 
NG(H). Show by an example that the converse is not true in general.

(iii) Suppose that G is finite and that P is a Sylow p-subgroup of G.
Prove that G is p-normal if and only if Z(P) is weakly closed in P with
respect to G.

 (iv) Suppose that G is finite and that H is a Sylow p-subgroup of G.
Prove that J is weakly closed in H with respect to G if and only if J is
pronormal in G. (See 268. Hint. Use 7.14 and 334.)

594 Let P be a Sylow p-subgroup of the finite group G.
(a) If G is p-nilpotent then every normal subgroup of P is weakly closed

in P with respect to G (cf. 593(ii)).
(b) The following two statements are equivalent:
  (i) G is p-nilpotent.
 (ii) G is p-normal and NG(Z(P)) is p-nilpotent.

595 Let P be a Sylow p-subgroup of the finite group G. Suppose that 1 < P
< G, that NG(P) = P and that, whenever P1, P2 are distinct Sylow p-
subgroups of G, P1 ∩ P2 = 1. Then G is p-nilpotent. Moreover, if K is the
normal p-complement of G then .

(Remarks. In the terminology of 248, the hypothesis is that G is a Frobenius
group, with P as a Frobenius complement in G. The result is a special case
of the theorem of Frobenius mentioned in 248. Hint. Show that if g∈G and
Z(P)  Pg then Pg = P, hence in particular that G is p-normal and NG(Z(P))
= P.)



596 Let G be a p-normal finite group and P a Sylow p-subgroup of G. Then,
for any subgroup V of G which contains NG(Z(P)), P ∩ G′ = P ∩ V. (Hint.
Use 10.34 and 10.44.)

597 Suppose that the finite group G has a non-trivial Sylow p-subgroup P.
Suppose further that for every non-trivial abelian subgroup Q of P, NG(Q) =
P. Then G is p-nilpotent. (Hint. Use 595.)

598 Suppose that the finite group G has a non-trivial Sylow p-subgroup P.
Then G is p-nilpotent if and only if for every non-trivial subgroup Q of P,
NG (Q) is p-nilpotent.

599 (N. Itô [a62].) Let G be a finite group in which every proper subgroup
is p-nilpotent. If G is not itself p-nilpotent then Op(G) = G, G has a normal
Sylow p-subgroup P, and G/P is a cyclic q-group for some prime q ≠ p;
moreover, every proper subgroup of G is nilpotent. (Hints. Argue by
induction on | G|. Assume that G is not p-nilpotent and deduce from 598
that there is a non-trivial subgroup Q of P which is normal in G. By
induction, reduce to the case Q = P. Then use 10.47 to show that there is a
subgroup P1 of P and an element x∈NG(P1)\CG(P1) such that o(x) is a
power of a prime q ≠ p. Show that 〈x〉P = G.)

600 (O. J. Schmidt [a84], K. Iwasawa [a64].) Let G be a finite group with
every proper subgroup nilpotent. Then either G is nilpotent, or there are
primes p, q and positive integers m, n such that | G | = pmqn, G has a normal
Sylow p-subgroup P and G/P is cyclic. In any case G is soluble. (Hint.
Apply 563 and 599. Remark. For another proof of this result, due to W.
Gaschütz and avoiding the use of transfer, see Huppert [b21] pp. 280–3,
theorems 3.5.1, 3.5.2.)

10.49. We end the chapter by mentioning what is perhaps the most
important of the several substantial classification theorems which have been
established during the past ten years: J. G. Thompson’s classification of the
insoluble N-groups ([a98]). An N-group is a finite group in which the
normalizer of every non-trivial soluble subgroup is soluble. Thompson’s
result gives the simple N-groups and, in particular, provides a list of the so-



called minimal simple groups, that is, the finite simple groups all of whose
proper subgroups are soluble. For further information about classification of
simple groups, see the references mentioned at the end of 3.61.



11
FINITE NILPOTENT AND SOLUBLE GROUPS

Throughout this chapter, G denotes a finite group. We begin by associating
to G a new characteristic subgroup Φ(G), and then prove a result promised
in chapter 7 which relates the normal structure and the arithmetical structure
of a finite nilpotent group in a pleasing way.

11.1 Definitions. (i) Recall from 140 the definition of a maximal subgroup.
A proper subgroup M of G is said to be a maximal subgroup of G if there is
no subgroup L such that M < L < G.

(ii) If G ≠ 1 then (because G is finite) G certainly contains at least one
maximal subgroup. (Indeed, every proper subgroup of G lies in a maximal
subgroup of G: see 140(ii)). We define Φ(G) to be the intersection of all the
maximal subgroups of G. If G = 1 we define Φ(G) = 1.

Φ(G) is called the Frattini subgroup of G (after G. Frattini, 1852–1925,
who first investigated its properties).

Let  denote the set of all maximal subgroups of G and let ∈Aut G.
From 3.29, if M∈  then M ∈ . Moreover, since  is bijective, {M  :
M∈ ] = . It follows that Φ(G) is a characteristic subgroup of G.

11.2 Lemma. Let K  G. Then K is a maximal subgroup of G if and only if
G/K has prime order.
Proof. Since K  G, | G/K | > 1. Now, by 3.30, K is a maximal subgroup of
G if and only if G/K has no non-trivial proper subgroup; that is, (by 29) if
and only if | G/K | = p for some prime p.

11.3 Theorem. The following seven statements are equivalent:
   (i) G is nilpotent.



  (ii) Every subgroup of G is subnormal in G.
 (iii) Whenever H < G, H < NG(H).
 (iv) Every maximal subgroup of G is normal in G.
  (v) G′  Ω(G).
(vi) Every Sylow subgroup of G is normal in G.
(vii) G is a direct product of groups of prime power orders.

Proof. We may assume that G ≠ 1, since otherwise all the statements are
trivially true.

  (i) ⇒ (ii) This is a special case of 7.59.
(ii) ⇒ (iii) Let H < G. By (ii), there is a series from H to G. Hence there

is a proper series from H to G, say

Since H < G, n > 0. Then H < H1  NG(H).

(iii) ⇒ (iv) Let M be a maximal subgroup of G. By (iii), M < NG(M)  G.
Now the maximality of M implies that NG(M) = G. Thus M  G.

(iv) ⇒ (v) Let M be a maximal subgroup of G. By (iv), M  G. Then, by
11.2, G/M is cyclic, of prime order. Therefore, by 3.52, G′  M. This is true
for every maximal subgroup M of G and so, by definition of Φ(G), G′ 
Φ(G).

(v) ⇒ (iv) Let M be a maximal subgroup of G. Then (v) implies that G′ 
M. Hence M/G′ is a subgroup of the abelian group G/G′ and so M/G′ 
G/G′. Hence, by 3.30, M  G.

(iv) ⇒ (vi) Let P be a Sylow p-subgroup of G. Suppose that NG(P) < G.
Then there is a maximal subgroup M of G which contains NG(P). But then,
by 5.14, NG(M) = M, in contradiction to (iv). Hence (iv) implies that NG(P)
= G, that is, P  G.

(vi) ⇒(vii) Let the distinct prime divisors of | G | be p1,…,ps, where s is a
positive integer. By (vi), G has a normal Sylow pi-subgroup Pi for each i =
1,…, s. Then, by 8.6,



(vii) ⇒ (i) This follows by 7.44 and repeated application of 7.49 (i).

*601 Suppose that A is an abelian normal subgroup of G such that G splits
over A. Let H be a complement to A in G. Then A is a minimal normal
subgroup of G if and only if H is a maximal subgroup of G (cf. 359).

602 Suppose that A is an abelian minimal normal subgroup of G. Then
either A  Φ(G) or G splits over A (cf. 359).

603 (W. Gaschütz [a35].) (i) Suppose that M is a maximal subgroup of G.
Then either M  Z(G) or M  G′. (Hint. Show that if M  Z(G) then M 
G.)

(ii) G′ ∩ Z(G)  Φ(G).

604 G has a maximal subgroup of order 2 if and only if | G | = 2p for some
prime p. (Hint. If G has a maximal subgroup of order 2 which is not normal
in G, apply 6.11 and 6.13.)

605 (i) A normal maximal subgroup of G is necessarily a maximal normal
subgroup of G (see 363).

(ii) If G is soluble then a maximal normal subgroup of G is necessarily a
normal maximal subgroup of G.

(iii) Show by an example that if G is insoluble then a maximal normal
subgroup of G need not be a maximal subgroup of G.

606 For every prime p,Op(G) is the unique Sylow p-subgroup of F(G), the
Fitting subgroup of G. (Hint. See 7.44 and 11.3.)

607 If G is nilpotent then, for every set  of primes,

608 Suppose that G has a maximal subgroup M such that MG = 1 and | G :
M | = 4. Then M  G and G is isomorphic to either A4 or Σ4.
(Hints. Apply 4.14 and 289. Note that by 11.3, G cannot be a 2-group.
Remark. Both A4 and Σ4 have maximal subgroups of index 4 with trivial
core: see 288 and 289.)



609 Suppose that G is non-trivial and supersoluble (see 389). Show that if p
is the largest prime divisor of | G | then G has a normal Sylow p-subgroup.
By induction on the number of distinct prime divisors of | G|, deduce that if
q is the smallest prime divisor of | G | then G is q-nilpotent. (Hint. Apply
398(iii) and 603.)

610 (B. Huppert [a61].) If every proper subgroup of G is supersoluble then
G is soluble, (cf. 600. Hint. Use 609 and 599.)

611 Suppose that G acts transitively on the finite set X. For each subset Y of
X and each g∈G, let Yg = {yg : y∈Y} ⊆ X (see 187); and for each x∈X
and each subgroup H of G, let xH = {xh : h∈H} ⊆ X.

A subset Y of X is said to be a block (or set of imprimitivity) for the action
if, for each g∈G, either Yg = Y or Yg ∩ Y = . In particular, , X and all
1-element subsets of X are obviously blocks: these are called the trivial
blocks.

The action is said to be primitive if the only blocks are the trivial blocks;
otherwise the action is said to be imprimitive.

Prove the following statements.
(i) If Y is a block for the action then, for every g∈G, Yg is also a block.

Moreover, if y ≠  then | Y | divides | X|.
Let x∈X and let L = StabG(x).
(ii) For any subgroup H of G containing L, xH is a block.
(iii) Any block containing x is of the form xH, where L  H  G.

(Hint. If Y is a block containing x, let H = {h∈G : Yh = Y}.)
(iv) Now suppose that | X | > 1. Then the action is primitive if and only if

L is a maximal subgroup of G.

612 If G acts transitively on a set X such that | X | = p, a prime number, then
the action is primitive. (Hint. Apply 611 (i).)

613 Suppose that G acts on the finite set X and let K  G. Let  be the
permutation representation of G corresponding to the action. If the action is
primitive, then either K  Ker  or the action of K on X (by restriction of



the action of G) is transitive. (See 611. Hint. Show that any K-orbit is a
block for the action of G.)

614 Suppose that G acts on the finite set X, where | X |  2. The action is
said to be 2-transitive (or doubly transitive) if, whenever (x, x′) and (y, y′)
are ordered pairs of distinct elements of X, there is an element g∈G such
that xg = y and x′g = y′.

Prove the following statements.
(i) Let x∈X and let L = StabG(x). Then the action is 2-transitive if and

only if the action is transitive and, furthermore, the action of L on X\{x},
defined by restriction of the action of G, is transitive.

(ii) If the action is 2-transitive and if | X | = n, then | G | is divisible by n(n
− 1). (Hint. Use (i) and 4.11.)

(iii) If the action is 2-transitive then it is primitive (see 611).

615 Let n be an integer, n  2, and let X = {1, 2,…, n}.
(i) The natural action of Σn on X is 2-transitive, and if n  4, the natural

action of An on X is 2-transitive (see 614).
(ii) Σn has a maximal subgroup of index n, and if n  3, An has a

maximal subgroup of index n. (cf. 5.29, 292. Hint. Apply 611 and 614.)

616 Let H < G and let X be the set of right cosets of H in G. Then the action
of G on X by right multiplication is 2-transitive if and only if there is an
element g∈G such that G = H ∪ HgH (see 4.13, 614). Moreover, if the
action is 2-transitive then | H | is divisible by | G : H | − 1.

We shall now establish a few properties of Φ(G).

11.4 Lemma. Let K  G. Then K  Φ(G) if and only if there is no proper
subgroup H of G such that HK = G.
Proof. Suppose first that K  Φ(G). Let H < G. Then there is a maximal
subgroup M of G such that H  M < G. Since K  Φ(G), K  M. Hence HK

 M < G. Thus there is no proper subgroup H of G such that HK = G.
Now suppose that K  Φ(G). Then G ≠ 1 and, by definition of Φ(G),

there is a maximal subgroup M of G such that K  M. Then M < MK  G



(3.38). The maximality of M implies that MK = G. Thus in this case M is a
proper subgroup of G such that MK = G.

It is now easy to establish the fundamental property of Φ(G) discovered
in 1885 by Frattini.

11.5 Theorem (Frattini [a29]). Φ(G) is nilpotent.
Proof. Let P be any Sylow subgroup of Φ(G). Since Φ(G)  G, Frattini’s
lemma (5.13) shows that

Hence, by 11.4, NG(P) = G. Thus P  G, and so P  Φ(G). Now it follows
from 11.3 that Φ(G) is nilpotent.

In view of the definition of F(G), the Fitting subgroup of G (7.64), the
following corollary is immediate.

11.6 Corollary. Φ(G)  F(G).

11.7 Lemma. Let H  G and K  G.
  (i) If K  Φ(H) then K  Φ(G).
 (ii) Φ(K)  Φ(G)(cf. 395).

Proof. (i) Suppose that K  Φ(G). Then, by 11.4, there is a proper subgroup
J of G such that

Assume that K  Φ(H). Then

so that, by Dedekind’s rule (7.3),

By 11.4, the assumption that K  Φ(H) implies that

Then                                    
and therefore



a contradiction. Hence, if K  Φ(G), it follows that K  Φ(H).
(ii) Since Φ(K) is characteristic in K and K  G, 3.15 shows that Φ(K) 

G. Application now of (i), with Φ(K) in place of K and K in place of H,
gives the result.
Remark. It is not true in general that if H  G then Φ(H)  Φ(G): see 629.

11.8 Lemma. Let K  G. Then
  (i) Φ(G)K/K  Φ(G/K).
 (ii) If K  Φ(G) then Φ(G)/K = Φ(G/K).

Proof. It is clear from 3.30 that every maximal subgroup of G/K is of the
form M/K, where M is a maximal subgroup of G containing K. Moreover,
for every such M, M/K is a maximal subgroup of G/K. The statements (i)
and (ii) follow.
Remarks. (1) It is not true in general that if K  G then Φ(G)K/K = Φ(G/K):
see 630.

(2) Note that, by (ii), G/Φ(G) always has trivial Frattini subgroup.

11.9 Lemma. Let G be a p-group. Then Φ(G) = 1 if and only if G is
elementary abelian.
Proof. We may assume that G ≠ 1. Suppose first that G is elementary
abelian. Since G ≠ 1, Φ(G) < G (by definition of Φ(G)). Moreover, by 7.41,
G is characteristically simple. Therefore, since Φ(G) is a proper
characteristic subgroup of G, Φ(G) = 1.

Now suppose, conversely, that Φ(G) = 1. By 7.44, G is nilpotent.
Therefore, by 11.3, G′  Φ(G). Hence G′ = 1, so that G is abelian. Let M be
a maximal subgroup of G and let g∈G. Then M G and so, by 11.2, G/M
has prime order. Since G is a p-group, | G/M | = p. Therefore (105) gp∈M.
This is true for every maximal subgroup M of G, and so

Hence                              
for every g∈G. Thus G is elementary abelian.



11.10 Corollary. Let G be a p-group. Then Φ(G) is the unique smallest
normal subgroup K of G such that G/K is elementary abelian. (In other
words, G/Φ(G) is the -residual of G, when  is the class of elementary
abelian p-groups.)
Proof. Certainly G/Φ(G) is a p-group, and, by 11.8, G/Φ(G) has trivial
Frattini subgroup. Hence, by 11.9, G/Φ(G) is elementary abelian.

Suppose that K  G, with G/K elementary abelian. Then, by 11.8 and
11.9,

Hence                                    
This completes the proof.
Remark. It follows that if G is a p-group then G/Φ(G) may be viewed in a
natural way as a finite-dimensional vector space over Zp : see 7.40.

617 Let x∈G. Then x is said to be a non-generator of G if, whenever X is a
set of generators of G with x∈X, X\{x} is also a set of generators of G.

Prove that Φ(G) is the set of all non-generators of G. (Hint. To show that
each element of Φ(G) is a non-generator of G, apply 11.4.)

618 Let K  G. A subgroup H of G is said to be a supplement to K in G if H
K = G. In particular, G itself is a supplement to K in G; and any
complement to K in G is a supplement to K in G.

Let H be a minimal supplement to K in G; that is, let if be a supplement
to K in G such that no proper subgroup of H is a supplement to K in G.
Prove that then H ∩ K  Φ(H). (Hint. Apply 11.4.)

619 (i) Suppose that G is nilpotent. If G/G′ is cyclic then G is cyclic. (Hint.
Use 11.3 and 11.4. Remark. The condition that G is nilpotent is needed, as
the group Σ3 shows.)

(ii) Let G be a non-trivial p-group. If G has derived length n then | G | 
p2n − 1. (Hint. Use (i) and induction on n. Remark. This bound can be
improved substantially. P. Hall [a48] proved that a non-trivial p-group of
derived length n has order 10877; p2n − 1+n − 1: see Huppert [b21] p. 307,
theorem 3.7.11.)



620 If G/Φ(G) is a -group then G is a -group. (Hint. Suppose the result
does not hold and apply the Schur-Zassenhaus theorem 10.30, and 11.4.)

621 (W. Gaschütz [a35].) If K/Φ(G) is a nilpotent normal subgroup of G/
Φ(G) then K is nilpotent. Thus F(G/Φ(G)) = F(G)/Φ(G). In particular, if G/
Φ(G) is nilpotent then G is nilpotent. (cf. 11.6. Hint. Show that for any
Sylow subgroup P of K, PΦ(G) G, and adapt the proof of 11.5.)

622 Let  be a class of groups with the following two properties:
  (i) Every quotient group of every -group is an -group.
 (ii) Whenever H/Φ(H)∈ , H∈ .

(For instance,  may be the class of finite -groups or the class of finite
nilpotent groups: see 620, 621.)

Let K  G and suppose that G/K∈ . Prove that there is an -subgroup of
G which is a supplement to K in G (see 618). Show by an example that
there need not be a complement to K in G.

623 Let G be a non-trivial soluble group. Then Φ(G) < F(G). (cf. 11.6. Hint.
Apply 396(i) and 621.)

624 (i) F(G)/Φ(G) is abelian. (cf. 11.6. Hint. Apply 11.3 and 11.7.)
 (ii) If G is soluble then CG(F(G)/Φ(G)) = F(G); hence G/F(G) can be

embedded in Aut(F(G)/Φ(G)). (See 390. Hint. Apply 621, 7.67 and (i).)

625 (i) If F(G) is a p-group then F(G)/Φ(G) is elementary abelian. (Hint.
Apply 11.7 and 11.10.)

  (ii) Suppose that G is soluble and that F(G) is a 2-generator p-group,
where p is either 2 or 3. Let  = {2, 3}. Then G is a -group. Moreover, if
p = 2 then the Sylow 3-subgroups of G have order at most 3, and if p = 3
then the Sylow 2-subgroups of G have order at most 24. (Hint. Apply (i),
7.40, 47 and 624.)

626 (W. Gaschutz [a 35].) (i) If A is an abelian normal subgroup of G such
that A ∩ Φ(G) = 1 then G splits over A. (Hint. Apply 618 and 11.7(i).)

  (ii) Suppose that Φ(G) = 1. If F(G) ≠ 1 then every non-trivial normal
subgroup A of G contained in F(G) is a direct product of abelian minimal
normal subgroups of G and G splits over A. In particular, if G is a non-



trivial soluble group such that Φ(G) = 1 then F(G) = S(G), the socle of G
(see 397), and G splits over F(G). (Hints. Argue by induction on | A|. Let B
be a minimal normal subgroup of G contained in A and apply 624 and (i).)

627 (W. Gaschütz [a35]) Φ(G) = 1 if and only if G splits over S1(G), where
S1(G) is defined as in 412. (Hints. See 626. If Φ(G) ≠ 1, consider a minimal
normal subgroup H of G with H  Φ(G). Show that H  S1(G), and apply
414. Then use 11.4 to show that G cannot split over S1 (G).)

628 Suppose that H and K are normal subgroups of G such that G = H × K.
  (i) For any maximal subgroup L of K, H × L is a maximal subgroup of

G; and every maximal subgroup of G containing H is of the form H × L,
where L is a maximal subgroup of K. (Hint. Apply 402.)

 (ii) If K ≠ 1 then the intersection of all maximal subgroups of G
containing H is H × Φ(K).

(iii) Φ(G) = Φ(H) × Φ(K). (Hint. Apply (ii) and 11.7.)
(iv) Suppose that M is a subgroup of G which contains neither H nor K.

Then M is a maximal subgroup of G if and only if M is a subdirect product
of H and K and H/H ∩ M is simple (see 441 and 8.19). (Hint. If M is a
subdirect product of H and K, and if M  L  G. show by means of 8.19
and 439 that | L | = | H ∩ L | | K|.)

(v) Suppose that either H or K is soluble. Then any maximal subgroup M
of G which contains neither H nor K is necessarily normal in G. Moreover,
G has such a maximal subgroup M if and only if (|H/H′|, | K/K′|) > 1. (Hints.
Apply (iv), 7.55, 8.19 and 297.)

(vi) If H and K are isomorphic non-abelian simple groups then G has
maximal subgroups which are isomorphic to H (and are not normal in G).
(Hint. Apply (iv) and 438.)

629 Let G = Σ4. Then | F(G)| = 4, F(G) is the unique minimal normal
subgroup of G, and Φ(G) = 1. If H is a Sylow 2-subgroup of G then Φ(H) ≠
1. (cf. 11.7, 623, 624, 625, 626. Hint. See 289.)

630 Let K = Cp, M = Aut Cp and G = Hol Cp, where p is any prime. Then
  (i) M is a maximal subgroup of G, and MG = 1.
 (ii) F(G) = K and Φ(G) = 1.



(iii) For p = 5, Φ(G/K) is non-trivial (cf. 11.8).
(Hints. See 499, 7.65, 9.15 (iii).)

631 Let M be a maximal subgroup of G. Suppose that M has a normal
Sylow p-subgroup P which is not normal in G. Then NG(P) = M and P is a
Sylow p-subgroup of G. (Hint. Suppose that P is not a Sylow p-subgroup of
G and apply Sylow’s theorem and 5.6.)

632 Suppose that there is an insoluble finite group with an abelian maximal
subgroup and let G be such a group of least possible order. Let M be an
abelian maximal subgroup of G. Establish the following consequences.

   (i) MG = 1. (Hint. If not, apply 7.47.)
  (ii) G′ is the unique minimal normal subgroup of G.
 (iii) M is a Hall subgroup of G. (Hint. Apply 631.)
 (iv) G is p-nilpotent for every prime p dividing | M|. (Hint. Apply

Burnside’s theorem 10.21.)
  (v) M is a complement to G′ in G.
 (vi) Every complement to G′ in G is conjugate to M. (Hint. 10.31 is

applicable.)
(vii) Every subgroup of G isomorphic to M is conjugate to M.
(viii) Let q be a prime divisor of | G′| and let Q be a Sylow q-subgroup of

G′. Then NG(Q) has a subgroup M* isomorphic to M. (Hint. Apply Frattini’s
lemma 5.13 and the Schur-Zassenhaus theorem 10.30.)

 (ix) M* is a maximal subgroup of G and Q  G.
  (x) If follows that G is soluble, a contradiction.
We conclude that a finite group is soluble if it has an abelian maximal

subgroup. (See also 633, 634. Remarks. This result was proved in a more
general version by B. Huppert [a61], and independently by I. N. Herstein
[a55]. An insoluble finite group can have a nilpotent maximal subgroup: for
instance, it is known that the Sylow 2-subgroups of the simple group
PSL2(Z17) are maximal subgroups. However, J. G. Thompson [a96] has
proved the important result that a finite group is soluble if it has a nilpotent
maximal subgroup of odd order: see Gorenstein [b13] p. 340, theorem
10.3.2, or Huppert [b21] p. 445, theorem 4.7.4, or Schenkman [b35] p.277,
theorem 9.3.b.)



633 Suppose that G has an abelian maximal subgroup (so that, by 632, G is
soluble). Then G has derived length at most 3. (Remark. We shall see in 634
that G can have derived length 3.)

634 Let G = GL2(Z3), G1 = SL2(Z3) and K = Z(G). Note that | G/G1| = 2
and, by 123, | K | = 2 and K < G1.

(i) Show that G1/K ≅ A4 and that G1 has a normal Sylow 2-subgroup, J
say. (Hint. See 193, 288 and 289.)

(ii) Show that J is non-abelian. Deduce that G′1 = J. (Hints. Note that, by
Sylow’s theorem, J contains every element of G1 of order a power of 2. To
prove that G′1 = J, use 164 and 288.)

(iii) Deduce that G′ = G1. Hence G1 has derived length 3 and G has
derived length 4.

(iv) Show that G1 has a cyclic subgroup M of order 6 and prove that M is
a maximal subgroup of G1. (cf. 633. Hint. If M were not maximal in G1
then | G1/G′1| would be even.)

(v) Show that G1 has a unique involution. Deduce from 9.33 that J ≅ Q8,
the quaternion group.

We shall prove next a fundamental result of Burnside on sets of
generators of finite p-groups.

11.11 Definition. Let X be a set of generators of G (2.29). We say that X is a
minimal set of generators of G if, for every proper subset Y of X, 〈Y〉 is a
proper subgroup of G.

It is clear from the definition that any set of generators of G contains a
minimal set of generators of G.

This notion of a minimal set of generators of a group is one possible
analogue of the concept of a base of a vector space. However, even for a
finite abelian group there can be minimal sets of generators containing
different numbers of elements. For instance, let G be a cyclic group of order
6, say G = 〈x〉. Then {x} is a minimal set of generators of G. But also G
= 〈x2, x3〉 and, because 〈x2〉 < G and 〈x3〉 < G, {x2, x3} is a minimal
set of generators of G.



What we are going to prove is that if G is a p-group then any two
minimal sets of generators of G do contain the same number of elements.

11.12 Burnside’s basis theorem. Let G be a non-trivial p-group,  = G/
Φ(G) and | | = pd. For each x∈G, let  = xΦ(G)∈ , and for each
nonempty subset X of G, let  = {  : x∈X} ⊆ . If X is a minimal set of
generators of G then  is a base of  (viewed in the natural way as a vector
space over Zp) and | X | = d. Conversely, if X is a subset of G such that | X |
= d and  is a base of  then X is a minimal set of generators of G.
Proof. Since G ≠ 1, d > 0. By 11.10,  is elementary abelian and therefore
(as in 7.40) can be viewed as a vector space over Zp. Since | | = pd, the
dimension of this vector space is d.

Let  ⊂ X ⊆ G. If 〈X〉 = G then 〈 〉 =  (108). Then, regarded as
a set of vectors of the vector space ,  certainly spans . Suppose,
conversely, that  is a set of vectors spanning . Then, by definition of the
vector space structure on  (see 7.40),  is a set of generators of the
elementary abelian group . Let 〈 X 〉 = H  G. Then

Hence                                    
Now it follows from 11.4 that H = G.

Thus X is a set of generators of G if and only if  is a spanning set of
vectors of the vector space . Now suppose that X is a minimal set of
generators of G. Then there is no proper subset Y of X such that  spans .
Hence  is a minimal spanning set of vectors of , that is, a base of .
Since there is no proper subset Y of X such that  = , it follows that

Suppose, conversely, that | X | = d and  is a base of . Then, since 
spans , it follows from above that X is a set of generators of G. We have
shown that there is no set of generators of G with fewer than d elements.
Therefore, since | X | = d, X is a minimal set of generators of G.

11.13 Corollary (P. Hall [a48], 1933). Let G be a p-group and  = G/Φ(G),
where, say, |  | = pd and | Φ(G) | = pm.



(i) Let  : Aut G → Aut  be the homomorphism defined by  :   ,
where, for each ∈Aut G, x∈G and  = xΦ(G)∈ ,

(see 136). Then Ker  is a normal p-subgroup of G of order at most pdm,
and Aut G/Ker  can be embedded in GLd(Zp).

(ii) | Aut G | divides pdm(pd − 1) (pd − p) (pd − p2)… (pd − pd − 1).
Proof. (i) Since Φ(G) is a characteristic subgroup of G, it is straightforward
to verify that, for each ∈Aut G,  is well defined and is an automorphism
of , and that the map  is a homomorphism (136).

Let X be a minimal set of generators of G. By 11.12, | X | = d: say

Then  = { 1,…, d} is a base of . Also, by 11.12, for any choice of d
elements (not necessarily distinct) of Φ(G), say u1,…, ud∈Φ(G), the set

is a minimal set of generators of G.
Now let  be the set of all ordered subsets of G of the form

with u1,…,ud∈Φ(G). Then clearly

Note that if y1,…, yd∈G, then the ordered subset (y1,…, yd) of G belongs to
 if and only if

for every i = 1,…, d. Let K = Ker . If ∈K and (y1,…, yd)∈  then



for every i = 1,…,d, and therefore .
From this it is clear that K acts in a natural way on the set . If  belongs

to the stabilizer in K of an ordered set (y1, …, yd)∈ , then

hence (since this is an equation between ordered sets)

for every i = 1,…, d. Then, since 〈 y1,…, yd〉 = G, it follows that  = 1
(72). Hence, by 4.11, the length of each orbit of the action of K on  is
equal to | K|. Hence | | is a multiple of | K|. Therefore, since | | = pdm, K is
a p-group and | K |  pdm.

By the fundamental theorem on homomorphisms, K  Aut G and (Aut
G)/K can be embedded in Aut . Since  is elementary abelian of order pd

(11.10),  is isomorphic to the additive group of a vector space V of
dimension d over Zp (7.40). Therefore, by 47, Aut  ≅ GLd(Zp).

(ii) This follows immediately from (i), together with 2.16 and 2.17.
Remark. W. Gaschütz [a37] has proved the important result that if G is a p-
group with | G | > p then | Aut G/Inn G | is divisible by p: see Huppert [b21]
p. 403, theorem 3.19.1.

635 Let G be a non-trivial p-group and view  = G/Φ(G) as a vector space
over Zp in the natural way. For any base B of  there is a minimal set of
generators, X say, of G such that  = B (where  is defined as in 11.12).

636 Let G be a 2-generator p-group.
  (i) If q is any prime divisor of | Aut G | distinct from p then p2 ≡ 1 mod

q.
 (ii) If p > 2 then the largest prime divisor of | Aut G | does not exceed p,

while if p = 2 then Aut G either is itself a 2-group or has order 2r × 3, where
r is some positive integer, (cf. 625. Note that, by 141, | Aut G | ≠ 3.)

637 If a 3-generator 3-group has an automorphism of prime order q ≠ 3 then
q is either 2 or 13. (Remark. C3 × C3 × C3 is a 3-generator 3-group with



automorphisms of orders 2 and 13.)

638 Let P be a Sylow p-subgroup of G, and let d be a positive integer such
that every subgroup of G is a d-generator group. If the integers | G | and (pd

− 1)(pd − 1 − 1)…(p2 − 1)(p − 1) are co-prime then G is p-nilpotent. (Hint.
Apply 4.36, 10.47 and 11.13. Remark. This is an improved version of a
result of Frobenius [a32].)

639 Let P be a Sylow p-subgroup of G, where p is the smallest prime
divisor of | G |. Prove that if P is metacyclic (152) then G is p-nilpotent,
unless p = 2 and | G | is divisible by 3. Show by an example that if p = 2 and
| G | is divisible by 3 then G need not be p-nilpotent. (cf. 10.24. Hint. Use
108, 152 and 638.)

640 Suppose that G is a simple group of even order greater than 2. Then | G
| is divisible by 12, 16, or 56. (cf. 10.22, 10.23. Hint. Use 638.)

641 (i) Prove that every group of order 32 × 5 × 17 is abelian and that every
group of order 33 × 5 × 17 is nilpotent, (cf. 278, 367. Hint. Use 563 and
638.)

 (ii) Show that there is a group of order 34 × 5 × 17 which is not
nilpotent. (Hint. Use 486 to show that there is a group of order 34 × 5 which
is not nilpotent.)

We shall now prove an important result partially known to Galois. Other
versions of parts of the result are due to O. Ore [a76] and R. Baer [a6].

11.14 Theorem. Suppose that Op(G) ≠ 1. Let L = Op(G) and | L | = pn.
Suppose also that G has a maximal subgroup M such that MG = 1. Then

  (i) L is elementary abelian,
 (ii) M is a complement to L in G; in particular, | G : M | = pn,
(iii) L is minimal normal in G, and
(iv) CG(L) = L; hence L is the unique minimal normal subgroup of G.
Suppose further that there is a prime q such that Oq(M) ≠ 1. Then, for

any such q,
 (v) pn ≡ 1 mod q; in particular, q ≠ p, and



(vi) every complement to L in G is conjugate to M.
Remark. If G is a non-trivial soluble group with a maximal subgroup M
such that MG = 1 then, by 381, there is a prime p such that Op(G) ≠ 1 and so
statements (i) to (iv) hold. In particular, there is only one prime p such that
Op(G) ≠ 1. Furthermore, unless | G | = p, M ≠ 1. Then, since M is soluble
(7.46), there is a prime q such that Oq(M) ≠ 1 and then statements (v) and
(vi) also hold. There may be several such primes q: see 630. Proof of the
theorem. (i) Since M is a maximal subgroup of G, Φ(G)  M, and since
Φ(G)  G, it follows that Φ(G)  MG = 1. Thus Φ(G) = 1. Then, because L 

 G, 11.7 shows that Φ(L) = 1. As L is a p-group, it follows from 11.9 that
L is elementary abelian.

(ii) Since 1 ≠ L  G and MG = 1, L  M. Therefore M < ML  G (3.38),
and so the maximality of M implies that ML = G. Since L  G, M ∩ L  M
and since, by (i), L is abelian, M ∩ L  L. Hence M ∩ L  ML = G, so that
M ∩ L  MG = 1. Thus ML = G and M ∩ L = 1; that is, M is a complement
to L in G. In particular, | G : M | = | L | = pn.

(iii) Let 1 < K  G with K  L. Then M  MK  G. Since MG = 1, K  M
and so MK ≠ M. Therefore, by the maximality of M, MK = G. Moreover, M
∩ K  M ∩ L = 1, by (ii). Hence M is a complement to K in G, and so | K |
= | G : M | = | L|, by (ii). Since K  L, it follows that K = L. Thus L is
minimal normal in G.

(iv) By (i) and (ii),

Therefore, by Dedekind’s rule (7.3),

By 4.36, CG(L)  G. Therefore M ∩ CG(L)  M. Moreover L centralizes
and therefore normalizes M ∩ CG(L).
Hence                              
Since MG = 1, it follows that M ∩ CG(L) = 1.
Thus                              

Suppose that G has a minimal normal subgroup N ≠ L. Then L ∩ N  G
and, by (iii), N  L, so that L ∩ N < N. Since N is minimal normal in G, it



follows that L ∩ N = 1. Then, by 3.53,

Hence N  CG(L) = L. This is a contradiction. Therefore L is the unique
minimal normal subgroup of G.

Now suppose that Oq(M) ≠ 1 for some prime q. Let Q = Oq(M).
(v) Since Q  M and L  G,

by 7.4 and (ii). Also, by (ii), Q ∩ L = 1 and so, by 3.40,

Therefore, since Q ≠ 1 and L = Op(G), it follows that q ≠ p. Thus Q is a
Sylow q-subgroup of QL.

Now 1 < Q  M and, since MG = 1, Q  G. Therefore, the maximality of
M implies that

Hence                        
by Dedekind’s rule (7.3) and (ii). Thus

by Sylow’s theorem; that is,

(vi) Let M * be any complement to L in G, and let Q* = Oq(M*). The
natural homomorphism v of G onto G/L maps Q to QL/L and Q* to Q*L/L.
Since, by (ii), M is a complement to L in G, the restriction of v to M is an
isomorphism of M onto G/L. Therefore, v must map Q = Oq(M) to Oq(G/L).
Similarly, v must map Q* to Oq(G/L). Thus



so that

Since, by (v), q ≠ p, it follows that Q and Q* are Sylow q-subgroups of
QL. Therefore, by Sylow’s theorem,

for some x∈QL. As in (v),

Since Q*  M*, it follows that

by 229. Because M and M* are complements to L in G,

Hence                  

11.15 Corollary (Galois). Suppose that G is non-trivial and soluble, and let
M be a maximal subgroup of G. Then | G : M | = pn for some prime p and
positive integer n.
Proof. Let  = G/MG and  = M/MG. Then, by 3.30,  is a maximal
subgroup of  such that . Since  is soluble (7.46) and non-trivial,
there is a prime p such that Op( ) ≠ 1 (381). Let | Op( )| = pn. Then, by
11.14,

Hence                              
Remarks. It can be shown that in the group GL3(Z2), which has order 168,
every maximal subgroup has index either 7 or 8. We know (see 385) that
GL3(Z2) is simple. It is in fact the only known non-abelian simple group in
which every maximal subgroup has prime power index.



642 Suppose that G has a non-trivial abelian normal subgroup. Then the
following two statements are equivalent:

  (i) G has a maximal subgroup M such that MG = 1.
 (ii) Φ(G) = 1 and G has a unique minimal normal subgroup.

643 Suppose that G has an abelian minimal normal subgroup L such that
Oq(G/L) is non-trivial for some prime q. Then the following two statements
are equivalent:

  (i) G has a maximal subgroup M such that MG = 1.
 (ii) CG(L) = L.

(Hint. To prove that (ii) ⇒ (i), apply 7.65, 621 and 642.)

644 Suppose that Op(G) ≠ 1, and that G has a maximal subgroup M such
that MG = 1. Then

  (i) Op(G) = F(G),
 (ii) Op(G) is the unique maximal abelian normal subgroup of G, and
(iii) Op(G) is a maximal abelian subgroup of G.
(See 235, 251, 400. See also 645.)

645 Let G = GL2(Z3) and K = Z(G). Show that
  (i) K is the unique maximal abelian normal subgroup of G,
 (ii) K < F(G), and
(iii) K is not a maximal abelian subgroup of G.

(cf. 644. Hint. Apply 193, 289 and 634.)

*646 Suppose that G is non-trivial and supersoluble (see 389). Then every
maximal subgroup of G has prime index in G. (Remark. B. Huppert [a61]
proved conversely that a non-trivial finite group in which every maximal
subgroup has prime index is necessarily supersoluble. See 11.16 and the
following remarks.)

647 (Ore [a76]). Suppose that G is a non-trivial soluble group, and let M
and M* be maximal subgroups of G. Then M and M* are conjugate
subgroups of G if and only if .



648 Suppose that G is a non-trivial soluble group. Then any two faithful
primitive actions of G on sets are equivalent. (See 611, 4.19. Hint. Apply
611, 647, 4.20, 4.21.)

*649 Suppose that the group H acts on the abelian group A, say with action 
. Let  = Im   Aut A (see 9.3). We say that  is irreducible if the only 
-invariant subgroups of A are 1 and A.
Suppose that A ≠ 1 and let J = H  × A. Then  is irreducible if and only

if A is a minimal normal subgroup of J. In particular, if  is irreducible and
A is finite then A is an elementary abelian p-group for some p.

650 (i) Let F be any field. Then the action of F× on F+ by multiplication (as
in 9.2(i)) is irreducible (649).

 (ii) For any prime p and any positive integer n, there is a finite soluble
group G with a maximal subgroup of index pn in G. (cf. 11.15. Hints. Apply
601 and 649. The existence of a field with pn elements may be assumed. For
the proof of existence of such a field, see, for instance, Herstein [b19] p.
316, lemma 7.4, or Lang [b28] p. 182, §5, or Rotman [b34] p. 155, theorem
8.6.)

651 The following three statements are equivalent:
  (i) Op(G) ≠ 1 and G has a maximal subgroup M such that MG = 1.
 (ii) Op(G) ≠ 1 and there is a faithful primitive action of G on some set

(see 611).
(iii) There is a non-trivial elementary abelian p-group A and a subgroup

H of Aut A such that the natural action of H on A is irreducible and G is
isomorphic to the relative holomorph HA of A (see 649).
(Hints. To prove that (i)⇔(ii), apply 611. To prove that (i) ⇒ (iii), apply
9.13, 9.14, 11.14 and 649. To prove that (iii) ⇒ (i), apply 486, 499, 601,
649.)

652 The following two statements are equivalent:
  (i) G has a non-trivial abelian normal subgroup L, and G has a subgroup

M such that | G : M | = p and MG = 1.
 (ii) G is isomorphic to a relative holomorph of a group of order p.



(Hints. To prove that (i) ⇒ (ii), apply 9.13, 9.14 and 11.14. To prove that
(ii) ⇒ (i), apply 486 and 499. Remark. If G satisfies (i) and (ii) then, in
particular, G is metacyclic: see 152 and 512.)

653 Let the group H act on the group K, say with action . Let  = Im  
Aut K.

  (i) If J  H, then CK(J) is an -invariant subgroup of K (see 478).
 (ii) Suppose that H is finite, K is finite and elementary abelian, say of

order pn, and  is irreducible (649). Then, for each prime q, either Oq(H) 
Ker  or pn ≡ 1 mod q.

654 (i) Let A be a non-trivial abelian normal subgroup of G. Then the action
of G on A by conjugation is irreducible if and only if A is a minimal normal
subgroup of G (see 9.2(iii),649).

(ii) Suppose that A is an abelian minimal normal subgroup of G. Then | A
| = pn for some prime p and positive integer n and, for each prime q, either
Oq(G/CG(A)) is trivial or pn ≡ 1 mod q. In particular, Op(G/CG(A)) is trivial.
(Hints. Note that the action of G on A by conjugation determines a faithful
action of G/CG(A) on A: see 476. Apply 653.)

655 Let V be a vector space of finite dimension n over a field F, with n > 0.
(i) The natural action of GL(V) on V+ is irreducible. Moreover, (V), the

affine group of V, has a unique minimal normal subgroup A, and A ≅ V+

(see 484, 486, 649).
(ii) Suppose that F = Zp for some prime p: then V+ is elementary abelian

of order pn and GL(V) is finite. Let 1 < H  GL(V) and suppose that the
natural action of H on V+ is irreducible. If H is soluble then pn ≡ 1 mod q
for some prime divisor q of | H|, while if H is nilpotent then pn ≡ 1 mod q
for every prime divisor q of | H|.

(iii) If F = Zp then there is a cyclic subgroup H of GL(V) such that | H | =
pn − 1 and the natural action of H on V+ is irreducible.
(Hints. For (ii), apply 653. For (iii), note that V+ is isomorphic to the
additive group of a field with pn elements and apply 475, 9.14, 9.15(ii) and
650(i).)



656 Suppose that G has a maximal subgroup M such that | G : M | = 6. Then
G has a chief factor isomorphic to either A5 or A6. This can be proved by
the following argument:

(i) Note first that in order to establish the result, it will suffice to assume
that MG = 1 and deduce that G has a minimal normal subgroup isomorphic
to either A5 or A6. Suppose then that MG = 1, and let K be a minimal normal
subgroup of G.

(ii) Use 11.14 to show that K is non-abelian.
(iii) Note that, by 4.14, | G | divides 24 × 32 × 5. Then use 8.10, together

with 5.17 and 5.19, to show that K is simple.
(iv) By 184, K can be embedded in A6. Hence, if K + A6, | K |  180.
(v) Finally, apply 5.30 and 296.

(Remark. Both A5 and A6 have maximal subgroups of index 6: see 5.25,
615.)

657 (a) A group of odd order cannot have a maximal subgroup of index 9.
This can be proved by the following argument:

(i) Suppose the result false and let G be a group of least possible odd
order with a maximal subgroup M such that | G : M | = 9. Then MG = 1.

(ii) Let K be a minimal normal subgroup of G. Apply 4.36, 11.2, 11.14
and 636 to show that K is non-abelian.

(iii) Note that, by 4.14, | G | divides 34 × 5 × 7. Then use 8.10 to show
that K is simple.

(iv) Note that | K | is divisible by 9. Use Sylow’s theorem to show that the
number of distinct Sylow 3-subgroups of K is 7, hence that K has a
subgroup of index 7.

(v) Deduce, by means of 4.14, that | K | divides 32 × 5 × 7.
(vi) Derive a final contradiction by applying 5.19 and 570.

(Remark. By the Feit–Thompson theorem, every group of odd order is
soluble: see 383. Then 11.14 is immediately applicable to give the result.
However, it is unnecessary to invoke the Feit–Thompson theorem, as the
argument outlined above shows.)

(b) For any prime p such that p ≡ − 1 (mod 3), there is a group of order
3p2 with a maximal subgroup of order 3 and index p2. (cf. 604. Hints. Let A
be an elementary abelian group of order p2. Note that, by 601, it is enough



to show that there is a relative holomorph G of A of order 3p2 such that A is
a minimal normal subgroup of G. See also 228. If G is a relative holomorph
of A of order 3p2, use 4.36 and 4.38 to show that if A is not minimal normal
in G then there is a subgroup B of A such that | B | = p and B  Z(G).)

We shall now prove an interesting partial converse to 11.15. We follow
the proof given in Huppert [b21] p. 718, theorem 6.9.4.

11.16 Theorem (P. Hall). Suppose that for every maximal subgroup M of
G,|G : M | is either a prime or the square of a prime. Then G is soluble.
Proof. We argue by induction on | G|. We may suppose G ≠ 1. Let K be a
minimal normal subgroup of G. Any maximal subgroup of G/K is of the
form M/K, where M is a maximal subgroup of G. Hence every maximal
subgroup of G/K has index either a prime or the square of a prime.
Therefore, by the induction hypothesis, G/K is soluble.

Let p be the largest prime divisor of | K | and let P be a Sylow p-subgroup
of K. If NG(P) = G then, since K is minimal normal in G, K = P. In this case
K is soluble (7.44).

Now suppose that NG(P) < G. Then there is a maximal subgroup M of G
such that NG(P)  M. By Frattini’s lemma (5.13),

Also M ∩ K  M and, since P  M ∩ K  K, P is a Sylow p-subgroup of M
∩ K and (again by 5.13)

Now it follows, by 3.40 and Sylow’s theorem, that

and

Since NG(P)  M  G = NG(P)K,



and therefore

Moreover,

and                               
Therefore we deduce from (i) and (ii) that

By hypothesis, there is a prime q such that

Certainly q ≠ p and, by (iii), q divides | K|. Therefore, by choice of p, it
follows that

Together with (iv) and (v), this implies that

This last congruence is possible with q < p only if p = 3 and q = 2.
Thus                        
Now (iii) shows that K has a subgroup of index 4. Therefore, by 4.14, K has
a proper normal subgroup L such that K/L can be embedded in Σ4, which is
soluble (364). Then K/L is soluble (7.46), and so K/L has a non-trivial
abelian quotient group (374). Hence, by 3.30, K has a non-trivial abelian
quotient group, so that

Since K′ is characteristic in K (3.51), 3.15 shows that

Because K is minimal normal in G, it follows that



Thus K is abelian.
Now in any case both K and G/K are soluble. Therefore, by 7.47, G is

soluble. This completes the induction argument.
Remarks. This result shows in particular that if every maximal subgroup of
G has prime index in G then G is soluble. B. Huppert [a61] proved even
more, that G is supersoluble (389); this is the converse of the result of 646.
The proof requires rather more information about irreducible group actions
(649) than is included in this book: see Huppert [b21] p. 718, theorem 6.9.5,
or Schenkman [b35] p. 236, theorem 7.7.c, or Scott [b36] p. 226, 9.3.8.

We shall now prove some fundamental theorems of P. Hall on the
arithmetical structure of finite soluble groups.

11.17 Definition. For any set  of prime numbers, we denote by ′ the set
of all primes which do not belong to .

Let H  G. Then H is said to be a Hall -subgroup of G if | H | is a -
number and | G : H | is a ′-number (see 3.41).

Note that a Hall  -subgroup of G is a Hall subgroup of G in the sense of
10.17. A Hall p-subgroup of G is exactly the same thing as a Sylow p-
subgroup of G; and a Hall p′-subgroup of G is exactly the same thing as a p-
complement of G (see 10.19).

Note also that if G has a Hall -subgroup H then | H | is determined by |
G|: namely, | H | must be the largest -number which divides | G|.

*658 Suppose that H is a Hall -subgroup of G.
  (i) If J  G with | J | = | H |, then J is a Hall -subgroup of G.
 (ii) For every element g∈G, Hg is a Hall -subgroup of G.
(iii) If H  L  G, then H is a Hall -subgroup of L.

*659 Let H  G and K  G.
  (i) If H is a -subgroup of G then HK/K is a -subgroup of G/K.
 (ii) If H is a Hall -subgroup of G then H ∩ K is a Hall -subgroup of K

and HK/K is a Hall -subgroup of G/K.

660 Suppose that H is a Hall -subgroup of G. Then O (G)  H  O (G)
and HO (G) = G.



661 G is nilpotent if and only if every Hall subgroup of G is normal in G
(cf. 11.3).

Sylow’s theorem guarantees the existence of Sylow p-subgroups for
every prime p in every finite group G. The following theorem of Hall,
established in 1928, guarantees the existence of Hall -subgroups for every
set  of primes in every finite soluble group G. It also establishes an
analogue of the statement in 5.9(b).

11.18 Theorem (P. Hall [a47]). Suppose that G is soluble and let  be any
set of primes. Then

  (i) G has a Hall -subgroup.
 (ii) If H is a Hall -subgroup of G and V is any -subgroup of G then V 

 Hg for some g∈G. In particular, the Hall -subgroups of G form a single
conjugacy class of subgroups of G.
Proof. We prove (i) and the first statement of (ii) together, by induction on |
G |. Then the second statement of (ii) obviously follows, since all Hall -
subgroups of G have the same order and any subgroup of this order is a Hall

-subgroup of G (see 658).
The theorem is clear if | G | = 1. Suppose that | G | > 1. Since all

subgroups and all quotient groups of G are soluble (7.46), the induction
hypothesis implies that the theorem is true for every proper subgroup of G
and for every quotient of G by a non-trivial normal subgroup.

Let R = O (G) and suppose first that R ≠ 1. Then, by the induction
hypothesis, G/R has a Hall -subgroup H/R, where H  G. Then | H | = |
H/R|.|R|, which is a -number, and | G : H | = | G/R : H/R|, which is a ′-
number. Thus H is a Hall -subgroup of G. Now let V be any -subgroup
of G. Then VR/R is a -subgroup of G/R (659) and so, by the induction
hypothesis,

for some g∈G (230). Then V  VR  Hg. This completes the argument in
this case.

Now suppose that R = 1. Let K = O ′ (G) and let L be a minimal normal
subgroup of G. By 7.56, L is an elementary abelian p-group for some prime
p, and since R = 1, p ∉ . Hence



If K = G then G is a ′-group and the theorem is clearly true: in this case 1
is the unique -subgroup of G. Therefore we may suppose also that

Then there is a chief factor of G of the form J/K, and, by 7.56, J/K is an
elementary abelian q-group for some prime q. If q∈ ′ then, since | J | = |
J/K |. | K |, J would be a normal ′-subgroup of G with K < J; contrary to
the definition of K. Hence q∈ . Let Q be a Sylow q-subgroup of J. Then,
since J/K is a q-group, J = QK (252). Since Q ≠ 1 and R = 1, NG(Q) < G.
Hence, by the induction hypothesis, NG(Q) has a Hall -subgroup H. Now

By Frattini’s lemma (5.13),

Therefore, by 3.40,

which is a ′-number. Since | NG(Q) : H | is also a ′-number, by definition
of H, | G : if | is a ′-number. Thus H is a Hall -subgroup of G.

Let V be any -subgroup of G. Then VL/L is a -subgroup of G/L and
HL/L is a Hall -subgroup of G/L (659). Hence, by the induction
hypothesis,

for some x∈G (230). Then V  VL  HxL  G. Now Hx is a Hall -
subgroup of HxL(658). Therefore if HxL < G it follows, by the induction
hypothesis, that

for some y∈HxL. This completes the argument in this case.



Now suppose that HxL = G. Then also

Since H is a -subgroup of G and p ∉ , H ∩ L = 1. Thus H is a
complement to L in G. Hence, by 601, H is a maximal subgroup of G.
Moreover, since HG is a normal -subgroup of G, HG = 1. Clearly L =
Op(G). Let

Then                               
so that, by Dedekind’s rule (7.3),

Now W ∩ H is a -subgroup of W. Also (W ∩ H) ∩ L = 1 and so, by 3.40,

a ′-number. Thus W ∩ H is a Hall -subgroup of W. Since also V is
clearly a Hall -subgroup of W, it follows, by the induction hypothesis, that
if W < G then

for some w∈W. Then                  .
Finally, if W = G then V is a complement to L in G and therefore, since H is
soluble and H ≠ 1, 11.14(vi) shows that

This completes the induction argument.
Remark. The last part of the proof can be shortened slightly by applying
10.29.

11.19 Definition. Let G be a non-trivial group: suppose that 
 where s, m1,…, ms are positive integers and p1,…, ps

distinct primes. Let S = {1, 2, …,s}. Then the possible orders of non-trivial



Hall subgroups of G are the 2s − 1 distinct numbers , where T ranges

over the 2s − 1 distinct non-empty subsets of S.
Now suppose that G is soluble. Then Hall’s theorem 11.18 guarantees the

existence in G of Hall subgroups of all possible orders. In particular, for
each i∈S, G has a subgroup Hi of order  and index ; that is, a pi-
complement (10.19).

Any set  = {H1, H2,…, Hs} of s subgroups of G, with Hi a pi-
complement of G for each i = 1,…, s, will be called a complement system of
G.

662 Let G be a non-trivial soluble group. Then, for every prime divisor p of
| G|, G has a maximal subgroup M such that | G : M | is a power of p (cf.
11.15; see also 677).

663 Suppose that G is a non-trivial group such that for every maximal
subgroup M of G, | G : M|  5. Prove that G is a soluble -group, where 
= {2,3,5} and that G has a normal Sylow 5-subgroup (possibly trivial).
(Hints. Apply 11.16. To prove that G has a normal Sylow 5-subgroup, see
(i), (ii), and (iv) in the proof of 11.16.)

664 Suppose that G is soluble and that | G | has s distinct prime divisors,
where s  2. Show that for some prime divisor p of | G |,

where H is a p-complement of G (cf. 503).

665 Suppose that G is soluble and that | G | has s distinct prime divisors.
Suppose also that for every prime divisor p of | G |, the p-complements of G
are nilpotent.

(i) Prove that if s  3 then G is nilpotent. (See also 672. Hint. Prove that
every Sylow subgroup of G is normal in G.)

(ii) Show by an example that if s = 2 then G need not be nilpotent.

Hall proved a remarkable converse to 11.18, namely that if G has a
complement system then G is necessarily soluble. We shall prove this result
in 11.26. First we establish a few properties of complement systems.



We show that any complement system of G determines in a very simple
way proper Hall subgroups of all possible orders.

11.20 Theorem. Let G be a non-trivial soluble group, with 
, where s, m1,…, ms are positive integers and p1,…,ps

distinct primes. Let S = {1,2,…, s}, and for each i∈S, let Hi be a pi-
complement of G. For each non-empty subset T of S, let

Then, for each non-empty proper subset T of S, HS\T is a Hall subgroup of G

of order  and HS = 1.

Proof. An equivalent statement is that for each non-empty subset U of S, HU

is a Hall subgroup of G of index . This is established by a

straightforward argument, using induction on | U | and the result of 100.

11.21 Definition. Let G be a non-trivial soluble group and let p1,…,ps be
the distinct prime divisors of | G|. For each i = 1,…,s, let Hi be a pi-
complement of G, and let  = {H1,…, Hs}, a complement system of G.

For each g∈G let

Since  for each i = 1,…, s, g is also a complement system of
G. Now it is clear that G acts by conjugation on the set of all complement
systems of G. The stabilizer in G of  for this action is the subgroup

We denote this subgroup by NG( ); it is called a system normalizer of G.



Now let  be another complement system of G,
with  a pi-complement of G for each i = 1,…,s. By 11.18(ii), there are
elements g1,…, gs∈G such that  for each i = 1,…,s. We shall
now show that we can choose g1 = g2 = … = gs.

11.22 Theorem (P. Hall [a50]). Let  and * be complement systems of
the non-trivial soluble group G. Then * = g for some g∈G.
Proof. Let p1,…,ps be the distinct prime divisors of | G | and let  =
{H1,…, Hs}, where Hi is a pi-complement of G. Since, by 11.18(ii), the pi-
complements of G form a single conjugacy class of subgroups of G, 4.33
shows that for each i = 1,…, s, the number of distinct pi-complements of G
is equal to | G : NG(Hi)|. Hence the number of distinct complement systems
of G is equal to

For the action of G by conjugation on the set of all complement systems of
G, it follows from 4.11 that the length of the orbit of  is

Since Hi  NG(Hi)  G,|G : NG(Hi)| is a power of pi for each i = 1,…,s.
Hence

whenever i ≠ j. Hence, by repeated application of 100,

Thus the orbit of  must include every complement system of G (that is,
the action is transitive). Hence * = g for some g G.
Remark. Let G be a non-trivial soluble group, let p1,…, ps be the distinct
prime divisors of G, and, for each i = 1,…,s, let Pi and P*i be Sylow pi-



subgroups of G. It is not in general true that there is an element g∈G such
that  for each i = 1,…, s: see 671.

11.23 Corollary. Let G be a non-trivial soluble group. Then the system
normalizers of G form a single conjugacy class of nilpotent subgroups of G.
Proof. Let  = {H1,…, Hs} be a complement system of G. The
corresponding system normalizer of G is the subgroup

For any element g∈G,

the system normalizer corresponding to the complement system g. This
remark, together with 11.22, shows that the system normalizers of G form a
single conjugacy class of subgroups of G.

Suppose that for each i = 1,…, s, Hi is a pi-complement of G. If s = 1
then G is a p1-group, H1 = 1 and L = NG(H1) = G, which in this case is
nilpotent. Suppose now that s > 1 and, for each i = 1,…, s, let

By 11.20, Pi is a Sylow pi-subgroup of G. Moreover, L = NG( )  NG(Pi)
for each i. Since Pi  NG(Pi), L ∩ Pi  L; and it is easy to check that L ∩ Pi
is a Sylow pi-subgroup of L. This shows that every Sylow subgroup of L is
normal in L, because p1,…, ps are the only prime divisors of | G |. Hence, by
11.3, L is nilpotent.

11.24. In his paper [a51], P. Hall proved many other interesting results
about system normalizers. For instance, he showed that any system
normalizer of a non-trivial soluble group G covers every central chief factor
of G and avoids every chief factor of G which is not central (see 324). It
follows that the order of a system normalizer of G is equal to the product of



the orders of the central chief factors in any particular chief series of G. For
further information, see Huppert [b21] §6.11.

666 Let  be a complement system of the non-trivial soluble group G.
Then the number of distinct complement systems of G is equal to | G : NG(

)|.

667 Find the order of the system normalizers in each of the soluble groups
Σ3, A4, Σ4.

668 Let G be a non-trivial nilpotent group. Then the unique system
normalizer of G is G itself.

669 Let K  G, a non-trivial soluble group, and let  = G/K. Let the distinct
prime divisors of | G | be p1,…, ps and suppose that p1,…, pr are the prime
divisors of |  |, where r  s. For each i = 1,…, s, let Hi be a pi-complement
of G, let  be the complement system {H1,…, Hs} of G and let  =
{H1K/K,…, HrK/K}. Then  is a complement system of  and

(Hints. It is enough to assume that K is a minimal normal subgroup of G.
Then K is a Pj-group for some j∈{1,…, s} and K  Hi whenever i ≠ j. Note
that if r < s then r = s − 1 and j = s. To show that NG( )  NG( )K/K, note
that Hj is a pj-complement of HjK and use 11.18.)

670 Let G be a non-trivial soluble group. Prove that if L is a system
normalizer of G then LG = G (where LG denotes the normal closure of L in
G: see 180). In particular, the system normalizers of G are non-trivial.
(Hint. Suppose the result false and derive a contradiction by applying 668
and 669.)

671 Let p  5 and let G be the natural wreath product Cp  Σ3 (see 9.19,
9.20): then | G | = 6p3. Let A be the base group of G: thus



where each ai has order p; and A is the unique Sylow p-subgroup of G. Let 
 = (123) and  = (12). Then 〈 〉 and  are Sylow 3-subgroups of G

and 〈 〉 is a Sylow 2-subgroup of G.
Show that there is no element g∈G such that

(cf. 11.22).
In proving Hall’s converse to 11.18, we shall use the following lemma.

11.25 Lemma (H. Wielandt [a103], 1960). Suppose that G has three soluble
subgroups H1,H2,H3, and suppose that (|G : Hi|,|G : Hj|) = 1 whenever i,
j∈{1,2,3} with i ≠ j. Then G is soluble.
Proof. We argue by induction on | G |. Since (| G : H1 |, | G : H2 |) = 1, 100
shows that

Since H2 is soluble, we may suppose that H1 ≠ 1. Let L1 be a minimal
normal subgroup of H1. Then, since H1 is soluble, L1 is an elementary
abelian p-group for some prime p(7.56). By hypothesis, p does not divide
both | G : H2| and | G : H3 |. We suppose, without loss of generality, that p
does not divide | G : H2 |.

Let                        
Then                        
by 98. Thus p does not divide | H1 : J|. Since J  H1 and L1  H1, J  JL1 
H1. Hence p does not divide | JL1 : J|. However, by 98 (or 3.40),

and, since L1 is a p-group, | L1 : J ∩ L1 | is a power of p. Therefore

that is,                                    
Now let , the normal closure of L1 in G (180). Then (cf. 264)



since L1  H1 and L1  J  H2. Since H2 is soluble, L is soluble (7.46).
Moreover, 1 < L1  L  G.

We may now apply the induction hypothesis to G/L. For each i = 1,2,3,
HiL/L  G/L and HiL/L ≅ Hi/(Hi ∩ L)(3.40); this is soluble, since Hi is
soluble (7.46). Whenever i ≠ j,

this number divides (|G : Hi|,|G : Hj)) and is therefore equal to 1. Hence by
the induction hypothesis, G/L is soluble.

Finally, since L and G/L are both soluble, it follows by 7.47 that G is
soluble. This completes the induction argument.

The main theorem is the following.

11.26 Theorem (P. Hall [a49]). Suppose that G has a p-complement for
each prime divisor p of | G|. Then G is soluble.

Suppose that , where p1 and p2 are distinct primes and m1
and m2 non-negative integers. Then a Sylow p1-subgroup of G is a p2-
complement of G and a Sylow p2-subgroup of G is a p1-complement of G.
Hence it follows from Sylow’s theorem that G has a p-complement for each
prime divisor p of | G | and therefore, according to 11.26, G must be
soluble. Thus 11.26 includes as a special case a theorem of Burnside to
which we have referred before (see 4.29, 382, 572).

11.27 Theorem (Burnside [a11], 1904). Suppose that | G | = pmqn, where p
and q are distinct primes and m and n are non-negative integers. Then G is
soluble.

The proof of 11.26 depends on this theorem of Burnside. Burnside’s
proof relies on the theory of group characters and we do not include it here:
see for instance Curtis and Reiner [b7] p. 239, theorem 34.1, or Gorenstein
[b13] p. 131, theorem 4.3.3, or Huppert [b21] p. 492, theorem 5.7.3, or
Schenkman [b35] p. 263, theorem 8.5.f, or Scott [b36] p. 334, 12.3.3. There



is also a more recent proof of 11.27 which is independent of character
theory, but this too involves techniques not included in this book: see the
papers of H. Bender [a7], D. M. Goldschmidt [a40] and H. Matsuyama
[a73]; see also Gagen [b12].

Proof of 11.26. We may suppose G ≠ 1. Let ,
where s, m1,…, ms are positive integers and p1,…,ps distinct primes. We
argue by induction on s. If s  2, the result is true, by 11.27. Now assume
that s > 2. For each i = 1,…, s, let Hi be a pi-complement of G. Let i, j∈{1,
2,…, s} with i ≠ j. Then

and so, by 100,

Hence Hi ∩ Hj is a pj-complement of Hi. Thus Hi has a p-complement for
each prime divisor p of | Hi|. Since | Hi| has just s − 1 distinct prime
divisors, it follows by the induction hypothesis that Hi is soluble. This is
true for each i = 1,…, s. Since s  3, 11.25 now applies to show that G is
soluble. This completes the induction argument.
Remark. 11.18 and 11.26 together give an arithmetical characterization of
finite soluble groups, namely the equivalence of the following three
statements:

  (i) G is soluble.
 (ii) G has a Hall -subgroup for every set  of primes.
(iii) G has a p-complement for every prime divisor p of | G |.

672 Suppose that G has three nilpotent subgroups H1,H2,H3 such that (|G :
Hi|,|G : Hj|)= 1 whenever i, j∈{1,2,3} with i ≠ j. Then G is nilpotent.
Moreover, if H1,H2 and H3 are abelian then G is abelian. (cf. 11.25. This
improves the result of 665(i). Hint. Prove that every Sylow subgroup of G is
normal in G.)

673 Show by an example that an insoluble group G can have soluble
subgroups H1 and H2 such that (| G : H1 |, | G : H2 |) = 1. (cf. 11.25. Hint.



See 5.25.)

674 (i) Suppose that G satisfies the converse of Lagrange’s theorem; that is,
that G has a subgroup of order m for every divisor m of | G|. Then G is
soluble (see also 675, 676).

(ii) (D. H. McLain [a74]). Let G be a soluble group of order 
, where s, m1,…, ms are positive integers and p1,…,ps are distinct primes.
Let A be any abelian group of order . Then the group
G × A satisfies the converse of Lagrange’s theorem. (Hint. Apply 11.18 and
135.)

675 Let G be a non-trivial group such that every subgroup of G satisfies the
converse of Lagrange’s theorem (see 674). Then G has a normal Sylow p-
subgroup, where p is the largest prime divisor of | G|. (See also 676. Hint.
Argue by induction on | G|. If G is not a p-group, use 4.18.)

676 (Ore [a76], G. Zappa [a104], D. H. McLain [a74]). The following three
statements are equivalent:

  (i) G is supersoluble (389).
 (ii) Whenever J < H  G, with J a maximal subgroup of H,|H : J | is a

prime number.
(iii) Each subgroup of G satisfies the converse of Lagrange’s theorem

(see 674, 675).
(Hints. For (i) ⇒ (ii), see 646. For (ii) ⇒ (iii), argue by induction on | G |

and note that every subgroup of G satisfies the same hypothesis as G. To
show that G itself satisfies the converse of Lagrange’s theorem, use 11.16
and 662 to show that for any prime divisor p of | G|, G has a subgroup of
index p. For (iii) ⇒ (i), argue by induction on | G |. If | G | > 1, note that, by
675, G has a normal Sylow p-subgroup P for some prime divisor p of | G|.
Use 674, 11.18 and the induction hypothesis to show that G/P is
supersoluble. By hypothesis, G has a subgroup M of index p. Use 5.6 and
389(v) to show that (M ∩ P)  G and G/(M ∩ P) is supersoluble. Choose K

 G such that K  M ∩ P, G/K is supersoluble and | K | is as small as
possible. If K ≠ 1, note that, by 391, [K, P] < K. Then consider a chief factor
K/L of M with [K, P]  L < K and use 389 (v) to derive a contradiction to
the choice of K.)



677 Suppose that for every non-trivial subgroup H of G, H has a proper
subgroup of index a power of p for every prime divisor p of | H |. Then G is
soluble (cf. 662, 678).

678 Show by an example that an insoluble group G can have a subgroup of
index p for every prime divisor p of | G|. (cf. 662, 11.16, 11.26. Hint. Let H
be a non-abelian simple group and let G = H × K, where K is a suitable
cyclic group.)

679 Suppose that G has abelian subgroups A and B such that (|G : A|,|G : B|)
= 1. Then G is soluble. This can be proved by the following argument.

Suppose the result false, and let G be an insoluble group of least possible
order with abelian subgroups A, B such that (|G : A|,|G : B|) = 1. Then

   (i) A and B are proper subgroups of G, and G = AB.
  (ii) Let 1 < K  G. Then G/K is soluble. (Hint. Use the minimality of

G.)
(iii) G is simple. (Hint. If K < G, use the minimality of G.)
 (iv) A ∩ B = 1. (Hint. Apply 264(ii).)
  (v) A is a maximal subgroup of G. (Hint. Apply 264(ii) again.)
(vi) Derive a contradiction by applying 632.

(cf. 672, 673. Remarks. Other methods yield stronger results than this. For
instance, by brief but ingenious commutator calculations, N. Itô [a63] has
shown that whenever G has abelian subgroups A and B such that G = AB
then G is soluble, and in fact G″ = 1. This remains true when G is infinite.
See also Huppert [b21] p. 674, theorem 6.4.4. For finite G, a deeper result
of H. Wielandt [a101] and O. H. Kegel [a67] shows that whenever G has
nilpotent subgroups G1 and G2 such that G = G1G2 then G is soluble. In
particular, if G has nilpotent subgroups G1 and G2 such that (|G : G1|,|G :
G2|) = 1 then G is soluble. See Huppert [b21] §6.4, or Schenkman [b35] p.
269, theorem 9.2.e, or Scott [b36] §13.2.)

11.28. We end with some remarks on more recent results in the theory of
finite soluble groups. We can only touch on some of the more important
developments and refer for further details to Huppert [b21] chapter 6 and
the references given there.

In 1961, R. W. Carter [a13] showed that every finite soluble group
possesses nilpotent self-normalizing subgroups, and that these so-called



Carter subgroups form a single conjugacy class. Every Carter subgroup
contains a system normalizer (11.21) and every system normalizer is
contained in a Carter subgroup, but the classes of Carter subgroups and
system normalizers coincide only in special cases.

In 1963, W. Gaschutz [a36] established a wide-ranging generalization,
containing the main parts of both Carter’s result and Hall’s theorem 11.18.
A class  of finite groups is called a formation if it has the following two
properties: (i) every quotient group of every -group is an -group, (ii)
every finite group has an -residual (see 3.45). Examples of formations are
the class of finite -groups for any set  of primes (see 3.44), the class of
finite abelian groups (see 3.52), the class of finite nilpotent groups and the
class of finite soluble groups (see 7.50). A formation  is said to be
saturated if, whenever G is a finite group such that G/Φ(G) is an -group,
G is itself an -group (Gaschutz and U. Lubeseder [a38]). For example, the
formations of finite -groups, finite nilpotent groups and finite soluble
groups are all saturated (see 620, 621, 11.5 and 7.47), but the formation of
finite abelian groups is not saturated (see 11.10).

Gaschütz proved that for any saturated formation , any finite soluble
group G possesses -subgroups with certain special properties and these
subgroups form a single conjugacy class. The subgroups in question are
now called the -projectors of G, and (by a result of T. O. Hawkes [a53])
are characterized by the following property: a subgroup if of G is an -
projector of G if and only if, whenever K  G, HK/K is a maximal -
subgroup of G/K. When  is the saturated formation of finite -groups, the 

-projectors of G are the Hall -subgroups of G; and when  is the
saturated formation of finite nilpotent groups, the -projectors of G are the
Carter subgroups of G.

In 1967, R. W. Carter and T. O. Hawkes [a15] showed that, for any
saturated formation  which contains the formation of finite nilpotent
groups, it is possible to define in any finite soluble group G a class of -
subgroups which are analogous to Hall’s system normalizers and which are
called the -normalizers of G. These form a single conjugacy class of
subgroups of G. Every -projector of G contains an -normalizer of G and
every -normalizer is contained in an -projector of G. When  is the
formation of finite nilpotent groups, the -normalizers of G are simply its
system normalizers.



Another significant development is the discovery in 1967 by B. Fischer,
W. Gaschütz and B. Hartley [a24] of subgroups which are in a sense dual to
projectors. A class  of finite groups is called a Fitting class if it has the
following two properties: (i) every normal subgroup of every -group is a 
-group, (ii) every finite group has a -radical (3.45). These two properties
are dual to the two properties defining a formation. The class of finite -
groups is a Fitting class (see 3.43), and so is the class of finite nilpotent
groups (see 7.63).

A subgroup V of G is said to be a -injector of G if, whenever K is a
subnormal subgroup of G, V ∩ K is a maximal -subgroup of K. Fischer,
Gaschütz and Hartley proved that for any Fitting class , any finite soluble
group G possesses -injectors and these form a single conjugacy class of
subgroups of G. (Here no extra condition on the Fitting class corresponding
to saturation for formations is needed.) When  is the Fitting class of finite 

-groups, the -injectors of G are again the Hall -subgroups of G; but
when  is the Fitting class of finite nilpotent groups, the -injectors of G
are usually distinct from the Carter subgroups of G.

The precise significance of these various distinguished conjugacy classes
of subgroups in the theory of finite soluble groups is still an active subject
of investigation.
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INDEX OF NOTATION

G, H, J, K, L always denote groups 1
1 identity element of a group, trivial subgroup of a group 1

o(g) order of a group element g 1
〈g〉 cyclic group generated by element g 1

|X| number of elements in set X, if X is finite; or ∞, if X is infinite 2
|X | < ∞ X is a finite set 2
Y ⊆ X Y is a subset of X 2

Y ⊂ X Y is a proper subset of X 2
X\Y set of elements in X but not in Y (where Y ⊆ X) 2

empty set 2
H  G H is a subgroup of G 2
H < G H is a proper subgroup of G 2

Hg right coset of H in G containing g (where H  G and g∈G) 2
gH left coset of H in G containing g (where H  G and g∈G) 2

|G : H| index of H in G (where H  G) 2–3
 : X → Y  is a map of set X into set Y 3

x , x ,  (x) image of element x under map  3
 : x  x map  sends element x to element x  3

G1 ≅ G2 groups G1, G2 are isomorphic 4, 15

G1  G2 groups G1, G2 are not isomorphic 15
| s restriction of map  : X → Y to subset S of X 4
p a prime number 4

a set of prime numbers 4, 56
C field of complex numbers 4
R field of real numbers 4
Q field of rational numbers 4
Z ring of integers 4
Zn ring of integers modulo n 4

a ≡ b mod n n divides a − b (where a, b, n∈Z, with n > 0) 4
(a, b) greatest common divisor of integers a, b 4

 (n) number of positive integers m such that m  n and (m, n) = 1 5



v(n) number of types of groups of order n 6
va(n) number of types of abelian groups of order n 7, 204

K is a normal subgroup of G 7, 36
K is not a normal subgroup of G 36

G/K quotient group of G by K (where ) 7–8, 42
K  G K is a proper normal subgroup of G 8, 120
CG(x) centralizer of x in G (where x∈G) 10

Z(G) centre of G 10, 47
Mx semigroup of maps of set X into itself 13
Σ X (unrestricted) symmetric group on set X 13

permutation of set {1, 2,…, n} = {a1, a2,…, an} which maps j to aj, for j =
1,…, n 14

(a1a2…an
cycle on set {1, 2, …, n} = {a1, a2,…, an} which maps aj to aj+1, for j =
1,…, n − 1, and an to a1 14

Σn symmetric group of degree n 15
Im image of homomorphism  16

K
Im  |K (where K  G and  is a homomorphism of G into some group)
16

R+ additive group of ring R 17
Hom(G, A) group of homomorphisms of G into abelian group A 18

R× group of units of ring R 18

multiplicative group of positive real numbers 19

Cn cyclic group of order n 19
C∞ infinite cyclic group 19

multiplicative group of positive rational numbers 20

V+ additive group of vector space V 20
(V) ring of linear maps of vector space V into itself 20

GL(V) general linear group of vector space V 20
GLn(F) general linear group of degree n over field F 21

Aut G group of automorphisms of G 22

g− 1Kg conjugate of K by g (where K  G, g∈G) 22, 41; also denoted by Kg: see
83

Inn G group of inner automorphisms of G 22
Isom X group of isometries of metric space X 24

SX(Y) symmetry group of subspace Y with respect to metric space X 24

E2 euclidean plane 24

Tr E2 group of translations of E2 25

Rot(E2;s) group of rotations of E2 about point s 26



D2n dihedral group of order 2n (n  3) 27
D∞ infinite dihedral group 27

〈 X〉 subgroup of G generated by X(⊆ G) 29
〈 X1,…, xn〉 〈 {x1,…, xn}〉 29

〈H, K 〉 join of subgroups H, K of G 31
X × Y cartesian product of sets X and Y 31

H × K direct product of H and K 32
G1 × G2 × … × Gn direct product of G1, G2,…, Gn 34; see also 164

HG core of H in G (where H  G) 38, 74
Ker kernel of homomorphism  38

XY product set of subsets X, Y of G 40
(G) semigroup of non-empty subsets of G 41

Σ(X) restricted symmetric group on set X 44

nZ+ group of integral multiples of n (under addition) 45
SLn(F) special linear group of degree n over field F 47
CG(H) centralizer of H in G (where H  G) 48

quasi-cyclic group for prime p 52

Oω(G) -radical of G 57

G/Oω(G) -residual of G 57
[g1, g2] commutator of elements g1, g2 of G 58

[H, K] commutator subgroup of G corresponding to subgroups H, K 58
G′ derived group of G 59

NG(H) normalizer of H in G (where H  G) 61

HG normal closure of H in G (where H  G) 63
Q8 quaternion group 63
An alternating group of degree n 64

PSLn(F) projective special linear group of degree n over field F 66
Sp2m(F) symplectic group of degree 2m over field F 66

PSp2m(F) projective symplectic group of degree 2m over field F 66
StabG(x) stabilizer in G of point x (where G acts on set X and x∈X) 70

H permutation representation of G corresponding to action of G by right
multiplication on set of right cosets of H in G (where H  G) 74

xg g− 1 xg (where x, g∈G) 78
k(G) class number of G 79

Ug conjugate of U by g (where  ⊂ U ⊆ G, g∈G) 83

NG(U) normalizer of U in G (where  ⊂ U ⊆ G) 83

CG(U) centralizer of U in G (where  ⊂ U ⊆ G) 83



extended centralizer of x in G (where x∈G) 86, 111
FixX(G) fixed point subset of X (where G acts on set X) 88
G  H H is a subgroup of G 120

G > H H is a proper subgroup of G 120
H is a normal subgroup of G 120

j(G : H) number of composition factors of G above H in a composition series of G
129

(G, H) set of composition factors of G above H 131

G(0), G′, G″, G′″,…,
G(n),…

terms of derived series of G 149–150

Γ1(G), Γ2(G),…,
Γn(G),… terms of lower central series of G 151

Z0(G), Z1(G),…,
Zn(G),… terms of upper central series of G 151
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