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Preface

These notes gather together what we regard as the essentials of real analysis
on R™.

There are of course many good texts describing, on the one hand, Lebesgue
measure for the real line and, on the other, general measures for abstract spaces.
But we believe there is still a need for a source book documenting the rich
structure of measure theory on R", with particular emphasis on integration and
differentiation. And so we packed into these notes all sorts of interesting topics
that working mathematical analysts need to know, but are mostly not taught.
These include Hausdorff measures and capacities (for classifying “negligible”
sets for various fine properties of functions), Rademacher’s Theorem (asserting
the differentiability of Lipschitz functions almost everywhere), Aleksandrov’s
Theorem (asserting the twice differentiability of convex functions almost every-
where), the Area and Coarea Formulas (yielding change-of-variables rules for
Lipschitz maps between R® and R™), and the Lebesgue-Besicovitch Differen-
tiation Theorem (amounting to the Fundamental Theorem of Calculus for real
analysis).

This book is definitely not for beginners. We explicitly assume our readers
are at least fairly conversant with both Lebesgue measure and abstract mea-
sure theory. The expository style reflects this expectation. We do not of-
fer lengthy heuristics or motivation, but as compensation have tried to present
all the technicalities of the proofs: “God is in the details.”

Chapter 1 comprises a quick review of mostly standard real analysis, Chapter 2
introduces Hausdorff measures, and Chapter 3 discusses the Area and Coarea
Formulas. In Chapters 4 through 6 we analyze the fine properties of functions
possessing weak derivatives of various sorts. Sobolev functions, which is to say
functions having weak first partial derivatives in an LP space, are the subject of
Chapter 4; functions of bounded variation, that is, functions having measures
as weak first partial derivatives, the subject of Chapter 5. Finally, Chapter 6
discusses the approximation of Lipschitz, Sobolev and BV functions by C!
functions, and several related subjects.

We have listed in the references the primary sources we have relied upon
for these notes. In addition many colleagues, in particular S. Antman, Jo-Ann



viii

Cohen, M. Crandall, A. Damlamian, H. Ishii, N. Owen, P. Souganidis, and
S. Spector, have suggested improvements and detected errors. We have also
made use of S. Katzenburger’s class notes.

Early drafts of the manuscript were typed by E. Hampton, M. Hourihan,
B. Kaufman, and J. Slack.

LCE was partially supported by NSF Grants DMS-83-01265, 86-01532, and
89-03328, and by the Institute for Physical Science and Technology at the Uni-
versity of Maryland. RFG was partially supported by NSF Grant DMS-87-04111
and by NSF Grant RII-86-10671 and the Commonwealth of Kentucky through
the Kentucky EPSCoR program.

Warnings

Our terminology is occasionally at variance with standard usage. The principal
changes are these:
What we call a measure is usually called an outer measure.

For us a function is integrable if it has an integral (which may equal F00).
We call a function f summable if | f| has a finite integral.

We do not identify two LT, BV, or Sobolev functions which agree a.e.

The reader should consult as necessary the list of notation, page 261.



1

General Measure Theory

This chapter is primarily a review of standard measure theory, with particular
attention paid to Radon measures on R".

Sections 1.1 through 1.4 are a rapid recounting of abstract measure theory. In
Section 1.5 we establish Vitali’s and Besicovitch’s Covering Theorems, the latter
being the key for the Lebesgue-Besicovitch Differentiation Theorem for Radon
measures in Sections 1.6 and 1.7. Section 1.8 provides a vector-valued version
of Riesz’s Representation Theorem. In Section 1.9 we study weak compactness
for sequences of measures and functions.

1.1 Measures and measurable functions
1.1.1 Measures; Approximation by open and compact sets

Although we intend later to work almost exclusively in R™, it is most convenient
to start abstractly.
Let X denote a set, and 2% the collection of subsets of X.

| DEFINITION A mapping p : 2% — [0,00] is called a measure on X if
(i) u(0) =0, and
(i) w(A) <y oo u(Ax) whenever A C UR | Ak.

Warning: Most texts call such a mapping x an outer measure, reserving the
name measure for p restricted to the collection of y-measurable subsets of X
(see below). We will see, however, that there are definite advantages to being
able to measure even nonmeasurable sets.

REMARK If ;4 is a me n X an C B C X, then
w(A) < u(B). |



2 General Measure Theory

DEFINITION  Let i be a measure on X and A C X. Then  restricted to A,
written

ul A
is the measure defined by

(0L AYB)=pu(ANB) for all B C X.

DEFINITION A set A C X is u-measurable if for each set B ¢ X,

u(B) = u(BN A)+ u(B ~ A).

-
REMARKS If u(A) = 0, then A is y-measurable. Clearly A is y-measurable
if and only if X ~ A is y-measurable. Observe also that if A is any subset of
X, then any p-measurable set is also p L A-measurable. I

THEOREM 1 PROPERTIES OF MEASURABLE SETS
Let {Ax}2, be a sequence of p-measurable sets.

(i) The sets U A and 032 Ay, are p-measurable.
(ii) If the sets {Ax}32., are disjoint, then

p (U Ak) =" u(Ax).
k=1 k=1

(i) IfA C...Ax C Aksr..., then

Jim p(Ag) = p (U Ak> :

(iv) IfA; D...Akx D Akyy-.. and u(A)) < oo, then
Jim p(Ag) = (D} Ak) .

PROOF
1. Since

#(B) < u(BNA) + u(B — A)

for all A, B C R", it suffices to show the opposite inequality in order to prove
the set A is y-measurable.
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2. For each set B C R*
W(B) = u(B O A) + (B - Ay)
= }L(BﬂA]) + ,u,((B ~ A]) N Az) + }L((B - A]) - Az)
> n(BN (AU A7) + w(B — (41 U 42)),

and thus A; U Az is p-measurable. By induction the union of finitely many
u-measurable sets is y~-measurable.
3. Since

~ (AN A) = (X — A) U (X ~ 4),

the intersection of two, and thus of finitely many, p-measurable sets is
u-measurable,
4. Assume now the sets {A}72, are disjoint, and write

U (G=1,2,..).

IH

Then

p(Bj+1) = u(Bjt1 0 Ajq1) + 1(Bjg1 — 45 41)
=w(Aj) +u(B;)  (G=1,...)

whence

It follows that

> ulAr) < p (G Ak) ;
k=1 k=1

from which inequality assertion (ii) follows.
5. To prove (iii), we note from (ii)

Jim u(Ag) = p(Ai) + D ulApes = Ar) =p (U Ak) :
k=1

k=1
(A4 - Ak))

asa-s(f1)

6. Assertion (iv) follows from (iii), since

plAr) = lim p(Ag) = lim p(Ay - Ag) = p (

T Cs
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7. Recall that if B is any subset of X, then each u-measurable set is also
1 L B-measurable. Since B; = U} _ Ay is u-measurable by step 2, for each
B C X with u(B) < oo we have

one) (-0
(uL B) (Gm) uLB)(ﬁ(X—Bk)>

ll

1 k=1
= lerr;o(p L )(Bk) + kl—l—»ngo(# L B)(X — Bg)
= u(B).

Thus U2, Ay is y-measurable, as is Nez Ak, since

SILE

CS

(X — Ay).

ol
[

This proves (i). i

DEFINITION A collection of subsets A C 2% is a o-algebra provided

@ 0, XeA
(@) Ac Aimplies X - Ae A
(iii) Are Ak=1,...) implies UX Ak € A

Thus t ction of all y-measurable subsets of X forms a o-algebra.

DEFINITION A subset A C X is o-finite with respect to . if we can write
A = U | By, where By, is y-measurable and y(By) < oo for k= 1,2,....

DEFINITION The Borel o-algebra of R™ is the smallest o-algebra of R™
containing the open subsets of R".

Next we introduce certain classes of measures that admit good approximations
of various types.

DEFINITIONS

(i) A measure y on X is regular if for each set A C X there exists a u-
measurable set B such that A C B and u(A) = u(B).

(it) A measure p on R™ is called Borel if every Borel set is u-measurable.
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(iiiy A measure . on R™ s Borel regular if p is Borel and for each A C R"
there exists a Borel set B such that A C B and u(A) = pu(B).

(iv) A measure y, on R™ is a Radon measure if ju is Borel regular and u(K) <
o0 for each compact set K C R™.

THEOREM 2
Let u be a regular measure on X. If Ay C ... Ax C Ak11n.., then

Jim p(Ap) = p (U Ak) /

REMARK The important point is that the sets {Ax}72 | need not be y-measur-
able here. |

PROOF  Since y is regular, there exist measurable sets {Cy }5% |, with Ay C Cy,
and p(Ag) = u(Ck) for each k. Set By = N;»xC;. Then A; C By, each By
is u-measurable, and u(Ay) = u(Byg). Thus

11m w(Ag) = 11m w(Bg) = (U Bk> >u <U A;\> .

But Ay C U724, and so also

hm w(Ag) < p U

We demonstrate next that if 4 is Borel regular, we can generate a Radon
measure by restricting y to a measurable set of finite measure.

THEOREM 3
Let i be a Borel regular measure on R*. Suppose A C R™ is u-measurable
and p(A) < oo. Then u L A is a Radon measure.

REMARK If A is a Borel set, then 4 L A is Borel regular, even if (A) = oo.

/ g
V(K] :IM(AnK)é/&’\H}<W
PROOF Letv = p L A, Clearly v(K) < oo for each compact K. Since every
p-measurable set is v-measurable, v is a Borel measure.
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Claim: v is Borel regular.

Proof of Claim: Since y is Borel regular, there exists a Borel set B such that
A C B and pu(A) = pu(B) < oo. Then, since A is p-measurable,

u(B — A) = u(B) — u(4) =0.

Choose C < R™. Then

(1L B)(C) = u(C N B)
= u(CNBN A+ u((CNB) - A)
< w(C N A)+ (B - A)

= (L A©):.

Thus L B = u L A, so we may as well assume A is a Borel set.

Now let C ¢ R™. We must show that there exists a Borel set D such that
C C D and v(C) = v(D). Since p is a Borel regular measure, there exists a
Borel set E such that ANC C E and pu(E) = u(ANC). Let D = EU(R™ - A).
Since A and E are Borel sets, so is D. Moreover, C C (ANC)U(R™ - A) C D.
Finally, since DN A= EnNA,

v(D) = uDNA)=uENA) < pwE)=mAnC)=v(C). 1

We consider next the possibility of measure theoretically approximating by
open, closed, or compact sets.

LEMMA I
Let 1 be a Borel measure on R™ and let B be a Borel set.

(i) If u(B) < oo, there exists for each € > 0 a closed set C such that C C B
and u(B—C) < e

(i) If u is a Radon measure, then there exists for each € > 0 an open set U
such that B c U and u(U — B) < e.

PROOF

1. Let v = L B. Since p is Borel and u(B) < oo, v is a finite Borel
measure. Let

F = {A CR*|A is y-measurable and for each € >0
there exists a closed set C' C A such that v(A — C) < ¢}

Trivially, F contains all closed sets. -
2. Claim #1: If {A;}32, C F, then A=NR,4; € F.
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Proof of Claim #I: Fix ¢ > 0. Since A; € F, there exists a closed set
C; € A; with V(A,L' — C,L) < 6/21. (Z = 1,2,...). Let C = ﬂffilci. Then C is
closed and

V(A - C)—I/( Al—ﬁC;)

<
f
o
i

< ZV(Ai - C;) <e

1

0
i=

Thus A € F.
3. Claim #2: 1f {A;}32, C F, then A=U2 A; € F.

Proof of Claim #2: Fix e > 0 and choose C; as above. Since v(A) < oo, we
have

Consequently, there exists an integer m such that

v (A— OQ) < e
=1

But U2, C; is closed, and so A € F.
4. Now, since every open subset of R” can be written as a countable union
of closed sets, Claim #2 shows that F contains all open sets. Now consider

G={AeF|R*~-Ae F}
Trivially, if A € G, then R® — A € G. Note also that G contains all open sets.
5. Claim #3: If {A;}2, € G, then A=UX, A; €G.

Proof of Claim #3: By Claim #2, A € F. Since also {R™ — A;}2, C F,
Claim #1 implies R* — A = N2, (R* — 4;) € F.

6. Thus G is a o-algebra containing the open sets and therefore also the Borel
sets. In particular, B € G and hence given € > 0 there is a closed set C C B
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such that
uB-C)=v(B-C) <e.

This establishes (i),

7. Write U,, = U(0,m), the open ball with center 0, radius m. Then U,,, — B
is a Borel set with u(U,, — B) < oo, and so we can apply (i) to find a closed
set Crn C U — B such that u((Upn — Cm) — B) = pu((Um — B) — Cp) <
/2™ Let U = U (Uy, ~ Cp,); U is open. Now B ¢ R® — C,,,, and thus
Un 0B C Uy — Cppy. Consequently,

B = G(UmmB)c G(Um- 'm) = U.
Furthermore, i
u(U—B)=u<U((Um—Cm)—B))
m=1
< S 4((Un—Cm) = B) <. 1
m=]

THEOREM 4 APPROXIMATION BY OPEN AND COMPACT SETS
Let u be a Radon measure on R™. Then

(i) for each set A C R™,
p(A) = mf{pu(U) | AC U,U open},
and
(@i} for each p-measurable set A C R™,

w(A) =sup{u(K) | K C A, K compact}.

REMARK Assertion (i) does not require A to be y-measurable. 1

PROOF

L If (A} = oo, (i) is obvious, and so let us suppose u(A) < co. Assume
first A is a Borel set. Fix € > 0. Then by Lemma 1, there exists an open set
U D A with (U — A) < e. Since u(U) = pu(A) + u(U — A) < o, (i) holds.
Now, let A be an arbitrary set. Since p is Borel regular, there exists a Borel set
B > A with p(A) = u(B). Then

4(A4) = u(B) = Wf{u(U) | B C U, open)
> inf{u(U) | A C U,U open}.

The reverse inequality is clear: assertion (i) is proved.
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2. Now let A be p-measurable, with u(A) < oo. Set v =y L A; v is a Radon
measure according to Theorem 3. Fix € > 0. Applying (i) to v and R — A,
we obtain an open set U with R* — A C U and v(U) < e. Let C = R* — U.
Then C is closed and C C A. Moreover, OO ~

WA~ C) =R~ C) =v(U) <
Thus
0< u(A) ~ w(C) <<
and so
u(A) = sup{p(C) | C C A, C closed}. (%)

Now suppose that (A) = co. Define Dy = {x | k— 1 < |z| < k}. Then
A= U, (Dr N A); 50 00 = p(A) = 02, (AN Dy). Since p is a Radon
measure, u(Dy N A) < o0o. Then by the above, there exists a closed set Cj, C
Dy 1 A with u(Ck) > u(Di 1 A) ~ 1/2%. Now U Cr C A and

e9) (3
k=1 k=1

But Uz_,Cy is closed for each n, whence in this case also we have assertion (x).

Finally, set B,,, = B(0,m), the closed ball with center 0, radius m. Let C be
closed, Cy, = C N Byy,. Each set Cy, is compact and p(C) = limpy_ o0 4(Cm)-
Hence for each u-measurable set A,

sup{u(K) | K C A, K compact} = sup{u(C) | C C A,C closed}. |

We introduce next a simple and very useful way to verify that a measure is
Borel.

THEOREM 5 CARATHEODORY’S CRITERION
Let y be a measure on R™. If u(AU B) = p(A) + u(B) for all sets A,B C R®
with dist(A, B) > O, then . is a Borel measure.

PROOF
1. Suppose C C R™ is closed. We must show

u(A) > WANC) + u(A - C), (%)

the opposite inequality following from subadditivity.
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If 4(A) = oo, then () is obvious. Assume instead u(A) < co. Define
1
CnE{xeR"|dist(x,C)S-ﬁ} (n=1,2,...).

Then dist(A — C,, ANC) > 1/n > 0. By hypothesis, therefore,
WA= Co) + W(ANC) = (A = C) U(ANC)) < ul(A).  (x)

2. Claim: lim,, oo u(A ~ C,) = p(A - C).
Proof of Claim: Set

1 - 1
RkE{IeA|m<dlSt(CE,C)_<_E} (kzl,...).

Then A —C = (A - Cp) UU Ry, so that

WA= Cn) S (A= C) < (A= Cp)+ Y u(Re).

k=n

If we can show Y oo | u(Rg) < 00, we will then have

lim p(A—Cn) < u(A~C)
< lim u(A=Cn) + lim > (R

—00
k=n

thereby establishing the claim.
3. Now dist(R;, R;) > 0 if 7 > 7 + 2. Hence by induction we find

Zp(Rzk) =pu (U R2k> < u(4),

m
k=1 k=1

and likewise

Z#(RZHI) =pu (U R2k+l> < p(A).

k=0 k=0
Combining these results and letting m — oo, we discover

oo

> u(Ri) < 2u(A) < oo.
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4. We have
p(A=Cy+u(AnC) = nllmoo p(A—=Cp)+u(ANC)
< p(4),

according to (xx), and thus C is y-measurable. 1

1.1.2 Measurable functions

We now extend the notion of measurability from sets to functions.
Let X be a set and Y a topological space. Assume y is a measure on X.

DEFINITION A function f : X — Y is called p-measurable if for each open
UcY, fY(U) is p-measurable.

REMARK If f: X — Y is y-measurable, then f~!(B) is yu-measurable for
each Borel set B C Y. Indeed, {A C Y | f7!(A) is y-measurable} is a
o-algebra containing the open sets and hence the Borel sets.

DEFINITION A function f : X — [—o00, 00| is o-finite with respect to y if f
is p-measurable and {x | f(z) # 0} is o-finite with respect to p.

Measurable functions inherit the good properties of measurable sets.

THEOREM 6 PROPERTIES OF MEASURABLE FUNCTIONS
(i) If f,g: X — R are p-measurable, then so are f+ g, fg, |f|, min(f,g),
and max(f,g). The function f/g is also p-measurable, provided g # 0
on X.

(ii) If the functions fir : X — [—00,00] are p-measurable (k = 1,2,...),
then infy>y fi, supy> fe, liminfy .o fi, and limsup, _, fr are also
u-measurable.

PROOF
1. In view of the remark, we easily check that f : X — [—o00,00] is
p-measurable if and only if f~![—oco,a) is p-measurable for each a € R, if

and only if f~![—o0, ] is u-measurable for each a € R.
2. Suppose f,g: X — R are y-measurable. Then

(F+9) (oo, a)= U (F'(-00,m)Ng 7" (—00,9)),

T+s<a

and so f + g is u-measurable. Since

(f)~(~o00,a) = f(~00,at) — f!(—00, —al],
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for a > 0, f% is p-measurable. Consequently,

fg=3l(f+97 = £~

is p-measurable as well. Next observe that, ifg(z) #0forz € X,

! 91,0 ifa<0
(—) (~00,a) =< g !(—00,0) ifa=0
g g (~00,0)Ug7!(3,0) ifa>0;

thus 1/g and so also f/g are y-measurable.
3. Finally,

f+:fX{fZO}:max(f70)v f-::_fX{f<o}:maX(_f70)
are y-measurable, and consequently so are
Ifl=Ff"+f,

max(f,g) = (f —9)* +9,
min(f,g) = ~(f—g)” +g.

4. Suppose next the functions fx : X — [—00,00] (k = 1,2,...) are u-
measurable. Then

-1 oo
(gg5) e =Y

and

(i) - Qe

so that

mf frs sup fi are u-measurable.
21 k>1

We complete the proof by noting

hm mffk = sup mf frs

m>l

limsup fx = mf sup fio 1

k—o00

Next is a simple but useful way to decompose a nonnegative measurable
function.
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THEOREM 7

Assume [+ X — [0,00] is pu-measurable. Then there exist p-measurable sets
{Ak}32, in X such that

??"l

PROOF  Set
Ay ={zeX|f(z)>1},
and inductively define for k = 2,3,...

Ar={zeX lf E4-§: XA
Clearly,
k: k

If f(z) = oo, then & € Ay for all k. On the other hand, if 0 < f(z) < oo, then
for infinitely many n, z ¢ A,. Hence for infinitely many n

n—1 1

Osf(x)—Z%xAkS;

1.2 Lusin’s and Egoroff’s Theorems

THEOREM I
Suppose K C R™ is compact and f : K — R™ is continuous. Then there exists
a continuous mapping f: R* — R™ such that,

f=f on K.

REMARK Extension theorems preserving more of the structure of f will be
presented in Sections 3.1.1, 4.4, 5.4, and 6.5. I

PROOF

1. The assertion for m > 1 follows easily from the case m = 1, and so we
may assume f: K — R
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2. letU=R"~ K. Forz €U and s € K, set

_ |z —s|
us(z) = max {2 - dist(x,K)’O ,
so that

z — ug(x) is continuous on U,
0 <us(z) <1,
us(z) = 0 if |z — 5| > 2dist(z, K).

Now let {s;}52, be a countable dense subset of K, and define

o(z) = Z2'jusj (z) forz € U.

i=1

Observe 0 < () < 1 for z € U. Now set

_ 2 Mug (2)
ve(z) = o (2)
forz € U, k =1,2,.... The functions {vx}32, form a partition of unity on
U. Define
3 f(z) ifzeK
HOER A :
Yorei vk(x)f(sk) ifzel.

By the Weierstrass M-test, f is continuous on U.
3. We must show

lim f(z) = f(a)

T—a

zelU

for each @ € K. Fix € > 0. There exists § > 0 such that
[f(a) — f(sk)l <e

for all sy such that |a — sx| < 6. Suppose z € U with |z — a| < §/4. If
la — sg| > 6, then

6
6 <la—sk| <la—x|+]z— skl < Z+|x—sk|,
so that
3 .
|z — skl > Z6>2|x—a| > 2 dist(z, K).

Thus, v (x) = 0 whenever |z — a| < §/4 and |a — sk| > 6. Since

Z ’Uk(x) =1
k=1
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if z € U, we calculate for |z —a] < §/4, z € U,

1£(2) = f(a)] < Y- w(@f(se) = f(z) <e

k=1

We now show that a measurable function can be measure theoretically ap-
proximated by a continuous function.

THEOREM 2 LUSIN’S THEOREM

Let i be a Borel regular measure on R* and f : R* — R™ be y-measurable.
Assume A C R™ is y-measurable and u(A) < oo. Fix € > 0. Then there exists
a compact set K C A such that

(i) w(A-K)<e and

(i) f |k is continuous.

PROOF  For each positive integer 4, let {B;;}%2; C R™ be disjoint Borel sets
such that R™ = U$2, B;; and diam B;; < 1/i. Define A;; = AN f~ 1(Bij)-
Then A;; is p-measurable and A = U2 A;;

Write v = p L A; v is a Radon measure Theorem 4 in Section 1.1 implies
the existence of a compact set K;; C A;; with v(A;; — Ky;) < €/2'%9. Then

M A_GKij =V A—GK-;]'

j=t1 Jj=1

-UKy

Jj=t

Il
<
ics

IA
A
'C8

€
(Ayj — Kij) <§7'
J

As limpy oo u(A — UL Kij) = p(A - U2, K ), there exists a number N(3)
such that

N(5)

- U Kij < E/zl

j=1

Set D, = UN(”K“, D, is compact. For each ¢ and j, we fix b;; € B;; and
then define g; : D — R™ by setting g;(z) = bi; for z € Ky; (j < N(i)).
Since Ky, ..., K;n() are compact, disjoint sets, and so are a positive distance
apart, g; is contmuous Furthermore, |f(z) — gi(z)] < 1/i for all z € D;. Set
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K =n52,D;: K is compact and

“e

wA-K)<S u(A-Dy)<e

n

k5

Since |f(z) —g;(x)| < 1/1 for each z € D;, we see g; — f uniformly on K.
Thus f |k is continuous, as required.

COROLLARY 1

Let y be a Borel regular measure on R™ and let f : R* — R™ be p-measurable.
Assume A C R" is p-measurable and p(A) < co. Fix € > 0. Then there exists
a continuous function f : R* — R™ such that p{z € A | f(z) # f(z)} < e.

PROOF By Lusin’s Theorem there exists a compact set X C A such that
w(A— K) < € and f |k is continuous. Then by Theorem 1 there exists a
continuous function f : R™ — R” such that f |x= f |k and

pee Al flz) # f@) <uA-K)<e |

REMARK Compare this with Whitney’s Extension Theorem, Theorem 2 in Sec-
tion 5.6, which identifies conditions ensuring the existence of a C'! extension f.

NOTATION The expression “p a.e.” means “almost everywhere with respect
the measure p,” that is, except possibly on a set A with p(A4) = 0.

THEOREM 3 EGOROFF’S THEOREM
Let p be a measure on R™ and suppose fr, : R* — R™ (k = 1,2,...) are
p-measurable. Assume also A C R is u-measurable, with p(A) < oo, and
fu — g 1 ae. on A. Then for each € > O there exists a p-measurable set
B C A such that

(i) p(A—-B)<e¢ and

(i)) fx — g uniformly on B.

PROOF  Define C;; = Uzl {cc | 1fu(x)—g(z)| > 27}, (5,5 = 1,2,...). Then
Cij+1 C Cy; for all 4, 7; and $0, since p(A) < oo,

hm ,u(AﬂC” =p AﬂﬂC’” =0.

Hence there exists an integer N (i) such that p(ANCj npy) < /2%
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Let B= A - UZ,C; ngy- Then
o0
/L(A - B) < Zﬂ (Aﬂ Ci,N(i)) < e.
i=1

Then for each 4, z € B, and all n > N(7), |fn(z) — g(z)] < 2= Thus
frn — g uniformly on B. |

1.3 Integrals and limit theorems

Now we want to extend calculus to the measure theoretic setting. This section
presents integration theory; differentiation theory is harder and will be set forth
later in Section 1.6.

NOTATION

f =max(f£,0), f~ =max(-£,0), f=fF—f".

Let u be a measure on a set X,

DEFINITION A function g : X — [—oc0, 00| is called a simple function if the
image of g is countable.

DEFINITION If g is a nonnegative, simple, y-measurable function, we define

/gduE > yele™Hyh)

0<y<oo

DEFINITION If g is a simple p-measurable function and either [ g+ dp < oo
or [ g~ du < oo, we call g a p-integrable simple function and define

/gdu5/9+du—/g"du-

Thus if g is a y-integrable simple function,

/gdu= DT 1))

—oo<u<oo
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DEFINITIONS Let f : X — [—00,00]. We define the upper integral

/ fdp =inf {/ gdy | g a p -integrable simple function with g > f a.e.}

and the lower integral

/f du = sup {/g dp | g a p -integrable simple function with g < f p a.e.} .

DEFINITION A p-measurable function f : X — [—00,00] is called p-integr-
able if [* fdu = [, fdp, in which case we write

/fduz/*fdu:/*fdu-

Warning: Our use of the term “integrable” differs from most texts. For us, a
function is “integrable” provided it has an integral, even if this integral equals
~+00 or —oo.

REMARK Note that a nonnegative y-measurable function is always p-integrable.

We assume the reader to be familiar with all the usual properties of integrals.

DEFINITIONS

(i) A function f: X — [—00,00] is p-summable if f is p-integrable and
[1fldu<

(i) We say a function f : R* — [—00,00] is locally p-summable if f |x is

p-summable for each compact set K C R™.

DEFINITION We say v is a signed measure on R" if there exists a Radon
measure 1 on R™ and a locally p-summable function f : R — [—o0, 0o] such
that

WK) = [ fan *)

for all compact sets K C R”.
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NOTATION
() We write

v=uplf

19

provided () holds for all compact sets K. Note p L A =pn L x 4

(ii) 'We denote by
LNX, p)
the set of all g-summable functions on X, and
Lioe(R™, 1)

the set of all locally p-summable functions.

The following limit theorems are among the most important assertions in all

of analysis.

THEOREM 1 FATOU’S LEMMA
Let fi : X — [0,00] be u-measurable (k = . Then

/l;cm'mff;c du < l}cminf/f;c dp.

PROOF Takeg= > o0 §=105X 4, 1O be a nonnegative simple function less than or

equal to lim lnfk——voofk, and suppose the y-measurable sets { A;} 72

and a; > O for j=1,.... Fix 0 <t < 1. Then

s

A; =1 Bjx,
k=1
where
Bix=4;n{z| fi(x) > ta; for all { > k}.
Note
A; D Bjk+1 D B (k=1,...).
Thus

/fk dungjfk dp

> Z/ fe du 2ty a;p(Bjk)
j=1"Bix i=1

<, are disjoint
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and so

l%crggf/fk du zt;aju(Aj)
].':

=t/gd,u.

This estimate holds for each 0 < ¢ < 1 and each simple function g less than or
equal to liminfx_, o fi. Consequently,

lim’mf/f;c du > /lirninff;c dyp = /liminff;c dp. 1
k—oo « k—oo k—oo
THEOREM 2 MONOTONE CONVERGENCE THEOREM

Let fr, : X — [0,00] be p-measurable (k = 1,...), with fj < ... < fi <
fk+1 <.... Then

/ lim fk d/.L: lim /fk, dﬂ.
k—oc k—oo
PROOF Clearly,
[faus [Jimsean =10,
— 00
whence
Him /fk d,uS/ lim f du.
k—oo k—oc

The opposite inequality follows from Fatou’s Lemma. |

THEOREM 3 DOMINATED CONVERGENCE THEOREM
Let g be p-summable and f, {fr}32, be u-measurable. Suppose |fi| < g and
fx— fupae as k— oco. Then

i [ 1= fldu=o.
PROOF By Fatou’s Lemma,
/29 dp = /1§cr3§f(2g —|f=fl)du < likrgiogffzg = |f = fxl dp,
whence

timsup [~ fuldu<0. |
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THEOREM 4 VARIANT OF DOMINATED CONVERGENCE THEOREM
Let g, {gx}32, be p-summable and f, {fr}32, p-measurable. Suppose |fi| <
g (k=1,..), fx = f pae,and

klim /g;c d,u:/g du.

kgrgC/|fk—f|du=o.

Then

PROOF  Similar to proof of Theorem 3. |

It is easy to verify that limg o, [ |fx — f| dit = 0 does not necessarily imply
fr — f p ae. Butif we pass to an appropriate subsequence we do obtain a.e.
convergence.

THEOREM 5
Assume f, {fu}32, are p-summable and

jim [16~ fldu=0.
Then there exists a subsequence { fx,}32, such that

fo; = f i ae.

PROOF  We select a subsequence { f; }32, of the functions { 1332, satisfying

3 / [fi, — ] du < oo. (%)
j=1

Fix € > 0. Then

{ur_nsumfkj fl> } c A0 Ay - 11> ).
j—oo

i=1j=i

Hence

) ({umsumfkj 1> }) <> n({lhs—11> )

j—roo
<25 [\ - fldu
j=i
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foreach i =1,.... In view of (x) therefore,

o ({maping -5} ) =
j—oc

foreache > 0. |

1.4 Product measures, Fubini’s Theorem, Lebesgue measure
Let X and Y be sets.

DEFINITION Let 1 be a measure on X and v a measure on'Y . We define the
measure X v : 2X*Y [0, 00] by setting for each S C X x Y :

(1 x v)(8) = inf{_Zu(Ai)V(Bi)} ,

where the infimum is taken over all collections of p-measurable sets A; C X
and v-measurable sets B; CY (i =1,...) such that

Sc D(Ai x B;).
1=1

The measure p X v is called the product measure of p and v.

THEOREM 1 FUBINI'S THEOREM
Let p be a measure on X and v a measure on'Y'.

() Then p X v is a regular measure on X x Y, even if p and v are not
regular.
(i) If A C X is p-measurable and B C Y is v-measurable, then A X B is
(1 x v)-measurable and (p X v)(A x B) = p(A)v(B).
(i) IfSC X xY is o-finite with respect to px v, then Sy = {z | (z,y) € S}
is p-measurable for v ae. y, Sy = {y | (z,y) € S} is v-measurable for
tae. x, p(Sy) is v-integrable, and v(S;) is p-integrable. Moreover,

(1 % v)(8) = /Y u(S) dvty) = [ v(S5) duo).

X

(iv) If fis (u x v)-integrable and f is o-finite with respect to p X v (in
particular, if f is (u X v)-summable), then the mapping

Y= / fz,y) du(zx) is v-integrable,
'S
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the mapping

T = / f(z,y) dv(y) is p-integrable,
Y

and
/Xfo d(p x v) -':/Y [/X fzy) d,u(a:)] dv(y)

-/ [ [ #@) dnt)] auto)

REMARK We will study in Section 3.4 the Coarea Formula, which is a kind
of “curvilinear” version of Fubini’s Theorem. |

PROOF
1. Let F denote the collection of all sets § C X x Y for which the mapping

x Hxs(cc,y)

is p-integrable for each y € Y and the mapping

yH/Xxs(w,y) du(x)

is v-integrable. For S € F we write

p)= [ | [ xs(o) duta)] vto)

Define

Py = {A x B | A p-measurable, B v-measurable},

Py = {U52,8; | S5 € Po},

P, ={N52,5; | 55 € Pr}.
Note Py C F and

p(A x B) = pu(A)v(B) (A x B € Py).
If Ay x By, Ay x By € Py, then
(Ay x By) N (A2 x Ba) = (A; N A) x (By N Bz) € Py,

and

(A1 X Bl) - (Az X Bz) = ((A1 - Az) X Bl) U ((A1 ﬂAz) X (Bl - Bz))
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is a disjoint union of members of Pp. It follows that each member of Py is a
countable disjoint union of members of Po and hence P, C F.
2. Claim #I: Foreach S C X x Y,

(4 x v)(S) = inf{p(R) | S C Re Py},
Proof of Claim #I: First we note that if § C R = U2, (A; x B;), then
p(R) < p(A: x Bi) =Y u(As)v(By).
i=1 =

i=1

Thus

inf{p(R) | SC Re Pi} < (pxv)(8).

Moreover, there exists a disjoint sequence {A;" x B;'}52, in Py such that

R= D(A x B;').

Thus

3. Fix A x B € Py. Then

(1 x v)(A x B) < p(A)v(B) = p(A x B) < p(R)
for all R € Py such that A x B C R. Thus Claim #1 implies
(u x v)(A x B) = p(Aw(B).
Next we must prove A X B is (¢ x v)-measurable. So suppose T C X xY

and T C R € P,. Then R — (A x B) and RN (A x B) are disjoint and belong
to P;. Consequently,

(1 X V)(T = (A x B)) + (ux v)(TN (A x B))
< p(R— (A x B))+p(RN (4 x B))
= p(R),
and so, according to Claim #1,
(Lxv) (T —=(AxB)+ (pxv)(Tn(AxB) L (wxv)(T).

Thus (A x B) is (& X v)-measurable. This proves (ii).
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4. Claim #2: For each § C X x Y there is a set R € P, such that § C R
and

p(R) = (ux v)(S).

Proof of Claim #2: If (ux v)(S) =o0,set R = X xY. If (u x v)(S) < oc.
then for each j = 1,2,... there is according to Claim #1 a set R; € P, such
that § C R; and

1
p(R,) < (b v)(S) + 5 .
Define
R=(\R;€Pn.
j=1
Then R € F, and by the Dominated Convergence Theorem,

k
(x)(8) <p(R) = lim p| (Y R; | < (uxv)(S).

j=1

5. From (ii) we see that every member of P; is (1 X v)-measurable and thus
(i) follows from Claim #2.

6.1f S C X xY and (p x v)(S) = 0, then there is a set R € P such that
S C Rand p(R) =0; thus § € F and p(3) = 0.

Now suppose that § C X x Y is (g X v)-measurable and (¢ x v)(S) < oc.
Then there is a R € P, such that S C R and

(b x V)(R~S) =0;
hence
p(R-8)=0.
Thus
z| (z.9) € S} =p{z | (z,y) € R}
forvae yeVY, and

(1 x0)(8) = pB) = [ iz | (2.9) € ) duly)

Assertion (iii) follows.
7. Assertion (iv) reduces to (iii) when f = x . If f > 0, is (1 X v)-integrable
and is o-finite with respect to g X v, we use Theorem 7, Section 1.1.2, to write

1
f:kz:EXAk
=1
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and note (iv) results for such an f from the Monotone Convergence Theorem.
Finally, for general f we write

f:f+_f—’

and (iv) follows. |

DEFINITION One-dimensional Lebesgue measure L' on R! is defined by

c‘(Aj = inf{Zdiam CilAc|JCiCic ]R}

i=1 i=1 J.
foradl ACK
DEFINITION We inductively define n-dimensional Lebesgue measure L™ on
R™ by
Lr=Lrtx L= L x e x LY (n times)

Equivalently £ = L% x C¥ for each k € {1,...,n— 1}.

We assume the reader’s familiarity with all the usual facts abour L.

NOTATION We will write “dz,” “dy,” etc. rather than “dL™” in integrals taken
with respect to £*. We also write L'(R™) for L' (R*, L), etc.

1.5 Covering theorems

We present in this section the fundamental covering theorems of Vitali and
of Besicovitch. Vitali’s Covering Theorem is easier and is most useful for
investigating £* on R™. Besicovitch’s Covering Theorem is much harder to
prove, but it is necessary for studying arbitrary Radon measures p on R™. The
crucial geometric difference is that Vitali’s Covering Theorem provides a cover
of enlarged balls, whereas Besicovitch’s Covering Theorem yields a cover out
of the original balls, at the price of a certain (controlled) amount of overlap.

These covering theorems will be employed throughout the rest of these notes,
the first and most important application being to the differentiation theorems in
Section 1.6.

1.5.1 Vitali’s Covering Theorem

NOTATION If B is a closed ball in R", we write B to denote the concentric
closed ball with radius 5 times the radius of B.
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DEFINITIONS

(i) A collection F of closed balls in R® is a cover of a set A C R™ if

ac | B

BeF
(i) F is a fine cover of A if, in addition,
inf{diam B |z € B,B € F} =0

for each = € A.

THEOREM 1 VITALI'S COVERING THEOREM
Let F be any collection of nondegenerate closed balls in R* with

sup{diam B | B € F} < 0.

Then there exists a countable family G of disjoint balls in F such that

UsclB

BeF Beg

PROOF .
1. Wiite D = sup{diam B | B € F}. Set 7; = {B € F | D/? <
diam B < D/277'}, (j = 1,2,...). We define §; C F; as follows:

(a) Let G; be any maximal disjoint collection of balls in F;.

(b) Assuming Gy, G, -..,Gr—1 have been selected, we choose Gy to be any
maximal disjoint subcollection of

k—1
BeFi| BNB =0forall B' € | JG;

Jj=1

Finally, define G = u;-;lg]-. Clearly G is a collection of disjoint balls and
GCF.

2. Claim: For each B € F, there exists a ball B’ € G so that BN B’ # 0
and B C B,

Proof of Claim: Fix B € F. There then exists an index j such that B € F;.
By the maximality of G, there exists a ball B’ € U}_,Gx with BN B’ # 0.
But diam B’ > D/2’ and diam B < D/277", so that diam B < 2 diam B'.
Thus B C B, as claimed. |
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A technical consequence we will use later is this:

COROLLARY 1
Assume that F is a_fine cover of A by closed balls and

sup{diam B | B € F} < oc.

Then there exists a countable family G of disjoint balls in F such that for each
finite subset { By, ..., Bn} C F, we have

A—OBkC U é

k=1 BEG—{By,..;,Bm}

PROOF Choose G as in the proof of the Vitali Covering Theorem and select
{Bi,...,Bn} C F. f A C UJL,Bi, we are done. Otherwise, let z €
A — U By. Since the balls in F are closed and F is a fine cover, there exists
Be Fwithz € Band BN B, =0 (k=1,...,m). But then, from the claim
in the proof above, there exists a ball B’ € G such that BNB' # § and B C B

Next we show we can measure theoretically “fill up” an arbitrary open set
with countably many disjoint closed balls.

COROLLARY 2
Let U C R™ be open, § > 0. There exists a countable collection G of disjoint
closed balls in U such that diam B < 6§ for all B € G and

n (U— U B> = 0.
BEeG
PROOF

1. Fix 1 — 1/5™ < § < 1. Assume first L*(U) < oo.
2. Claim: There exists a finite collection {B; }z—l of disjoint closed balls in
U such that diam (B;) < 6 (¢ = 1,...,M;), an

( UB><6£" U). (*)

Proof of Claim: Let 7, = {B | B C U,diam B < &}. By Theorem 1, there
exists a countable disjoint family G; C F; such that

vec | B

BeG,
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Thus
Uy< ) LMB)
BeG,
=5"Y L.(B
BegG,
:Tﬁ(UB)
Beg,
Hence
(UB>Z§MU)
BegG,
so that
( LJB) (1——)£WU)
Beg,
Since G, is countable, there exist balls By, ..., By, in G, satisfying ().
3. Now let
M
=U-|JB,
i=1
F, ={B| B C Uy,diam B < §},
and, as above, find finitely many disjoint balls Bps,41,..., B, in F3 such that
M, M,
E“Qﬂ{)&):ﬁ"@b— U BJ
i=1 i=My41
< 0L (Uz)
< 6 LMU).

4. Continue this process to obtain a countable collection of disjoint balls such
that

( UB><M01)(=L”J

Since 6% — 0, the corollary is proved if £*(U) < oco. Should £L™(U) = oo,
we apply the above reasoning to the sets

Un={zelU|m<|z|<m+1} (m=0,1

PER I

)1
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REMARK See Corollary 1 in the next section, which replaces £™ in the pre-
ceding proof by an arbitrary Radon measure.

1.5.2 Besicovitch’s Covering Theorem

If p is an arbitrary Radon measure on R”, there is no systematic way to control
©(B) in terms of u(B). In studying such a measure, Vitali’s Covering Theorem
is not useful; we need instead a covering theorem that does not require us to

enlarge balls.

THEOREM 2 BESICOVITCH’S COVERING THEOREM
There exists a constant Ny, depending only on mn, with the following property:
If F is any collection of nondegenerate closed balls in R™ with

sup{diam B | B € F} < o0

and if A is the set of centers of balls in F, then there exist Gy,...,Gn, C F

such that each G; (i = 1,...,Nyp) is a countable collection of disjoint balls in
F and

i=1 BEG;

PROOF

1. First suppose A is bounded. Write D = sup{diam B | B € F}. Choose
any ball By = B(ay,r) € F such that r; > (3/4)D/2. Inductively choose
Bj, 7 > 2, as follows. Let A; = A — Uf;llB,-. If A; = 0, stop and set
J=j—1. If A; # 0, choose B; = B(aj,r;) € F such that a; € A; and
r; > 3/4 sup{r | B(a,r) € F,a € A;}. If A; # 0 for all j, set J = oo.

2. Claim #1: If j > i, then r; < (4/3)r;.

Proof of Claim #I: Suppose j > ¢. Then a; € A; and so
3 3
T > Zsup{r | B(A,7) € F,a € Ai} > iR

3. Claim #2: The balls { B(aj,7;/3)};-, are disjoint.
Proof of Claim #2: Let j > i. Then a; ¢ B;; hence

T 27‘1’ Ti 2 3 T 7‘]‘
R > L= = >__ — — . _ -~
lai — aj] > m 3+——3_3+<3><4>7‘]>3+3
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4. Claim #3: If J = oo, then limj_oo 7; = 0.

Proof of Claim #3: By Claim #2 the balls {B(a;,;/3)}/_, are disjoint.
Since a; € A and A is bounded, r; — 0.
5. Claim #4: A C U]L,Bj.

Proof of Claim #4: If J < oo, this is trivial. Suppose J = co. If a € A,
there exists an r > 0 such that B(a,r) € . Then by Claim #3, there exists an
r; 'with 7; < (3/4)r, a contradiction to the choice of r; if a ¢ Uiz, B

6.Fixk>1landletI ={j|1<j<k B;nBy#0} Weneed to estimate
the cardinality of I. Set K = IN{j|r; < 3ri}.

7. Claim #5: Card (K) < 20™.

Proof of Claim #5: Let j € K. Then B; N B # 0 and r; < 3rg. Choose
any x € B(a;,r;/3). Then

r
|z — agl §|cc—aj|+|aj—ak|§?]+rj+frk

4
=37t < Arg + e =51y,

so that B(a;,7;/3) C Blax, 5rx). Recail from Claim #2 that the bails Bla;, 7:/3)
are disjoint. Thus

a(n)5"re"™ = L™(B(ak, 5rk))
> Y £(Bles, 3)

JEK
T n
S
jEK
> Z a(n)(r{-) by Claim #1
JjEK
T‘kn

= Card (K)a(n)z? .

Consequently,

I
5" > Card (K)Zt_ﬁ .
8. We must now estimate Card (I — K).
Leti,j € I — K, withi#3j. Then 1 <4,j <k, BiNBy #0, BN B # 0,
ri > 37, 7 > 3ry. For simplicity of notation, we take (without loss of gen-
erality) ax, = 0. Let 0 < § < 7 be the angle between the vectors a; and a;.
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FIGURE 1.1
Illustration of Claim #6.

We intend to find a lower bound on 8, and to this end we first assemble some
facts:

Since 7,5 < k, 0 = ax ¢ B; UBj. Thus r; < |as| and r; < |a;|. Since
B; n By # ¢ and B]' N By # 0, |(ZZ| < r; + 7, and |a]‘| < rj + Tk. Finally,
without loss of generality we can take |a;| < |a;|. In summary,

3r <1 < |0.Z| <ri+7k
Ir, < r; < |a]-| <1+
las| < laj|.

9. Claim #6a: If cos§ > 5/6, then a; € B;.

Proof of Claim #6a: Suppose |a; — a;| > |a,|; then the Law of Cosines gives

lai* + ;> — |a; — a5

cosf =
2}aq|as]
12 .
o P el 15
2|aglla;l  2layl T2 6
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Suppose now instead |a; — a;| < |a;| and a; € B;. Then r; < |a; — a;| and

2 2 2
las|” + Ja;|” — lai — a;

cosf =
2|as|laj|

_ ai N (lajl = la: — aj))(laj] + lai — a;])
2|a;l 2|as|la;l
L (lajl = lai — a;)(2]a;])

2 2|ajl|ay|

cLymAmeorn _Lome 5
2 T3 2 T 6

10. Claim #6b: 1f a; € By, then
0 < Ja; — aj] + lail — laj] < lasle(8),
for

e(d) =

Wi oo

(1 —cosb).

Proof of Claim #6b: Since a; € Bj, we must have ¢ < j; hence a; ¢ B; and
so |a; — a;| > ;. Thus

lai — aj| + las| — |a;|

0<
||
la; — aj| + las| — |aj| la; — aj] — |as| + |ay|
- |a;1 lai — a;]
2
e = ayl* = (lagl = laal)
lajlla; — a;]
_ lagl? +1a; P — 2aiflajlcos 6 — Jaif — |a;[* + 2]as]|a;|
lajlla; — a;l
 2Jai|(1 = cosf)
- |(1i —aj|
< 2(r; + i) (1 — cos 6)
< "
2(1 + YHri(1 —cosd
< l_—3)‘—:-(__———l — 6(6)
i

11. Claim #6c: If a; € Bj, then cos § < 61/64.
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Proof of Claim #6¢: Since a; € Bj and a; € B;, we have r; < |a; —a | < rj.
Since i < 7, r; < (4/3)r;. Therefore,

la; — ajl + las| = laj| > ri + 75 — 715 =70

3
Z E'r] T3 Tk

1 1
= ir] Tk 2 ETj

I
] -
N
W
N—
N

=3

.

+
w

3
N’

A%
00| r
N

+

=3

bl

o

v

1
g|aj|-
Then, by Claim #6b,
1
glasl < lai —ajl + lail — o] < lajle(6).

Hence cos 8 < 61/64.
12. We combine Claims #6a—c to obtain

Claim #6. For all 1,7 € I — K with ¢ # j, let § denote the angle between
a; — ay and a; — ax. Then 6 > arccos61/64 = 6y > 0.

13. Claim #7. There exists a constant L,, depending only on n such that
Card (I — K) < L,.

Proof of Claim #7: First, fix ro > 0 such that if x € §B(0,1) and y,z €
B(z, 1), then the angle between y and z is less than the constant 6 from Claim
#6. Choose L, so that B(0, 1) can be covered by L,, balls with radius ro and
centers on dB(0, 1), but cannot be covered by L, — 1 such balls.

Then 8 By, can be covered by L, balls of radius rory, with centers on § Bi. By
Claim #6, if 4, j € I — K with i # 7, then the angle between a; —ax and a; —ax
exceeds fy. Thus by the construction of g, the rays a; — ax and a; — ay cannot
both go through the same ball on dBy. Consequently, Card (I — K) < Ly,

14. Finally, set M,, = 20™ + L, + 1. Then by Claims #5 and #7,

Card (I) = Card (K)+ Card (I - K)
<20" + Lp < M,.

I5. We next define Gy,...,0um,,.
First define o : {1,2,...} — {1,..., M,} as follows:

(a) Leto(i)=1iforl <i< M,.
(b) For k > M, inductively define o(k + 1) as follows. According to the
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calculations above,
Card {j | 1 <5 <k,BjN Biy1 # 0} < M,

so there exists [ € {1,..., My} such that By, N B; = 0 for all j such
that o(j) =1 (1 < j <k) Seto(k+1) =1
Now, let G; = {B; | o(i) = 5}, 1 <j < M,. By the construction of o (i),
each G; consists of disjoint balls from F. Moreover, each B; is in some Gj, so
that

ACUB~UUB

i=1 Beg;

16. Next, we extend the result to general (unbounded) A.

Forl > 1,let A = An{z | 3D(I~1) < |z| < 3D!} and set 7! = {B(a,r) €
F|a € A;}. Then by step 15, there exist countable collections Gi,...,G}, of
disjoint closed balls in F* such that

M,
AICU U B.

7=1 BEQ,I-

o0
= LJQJZ-I_1 for 1 <5 < M,,
=1

oc
Giem, = | JG7 for 1 <j < M,
=1
Set N, = 2M,. |
We now see as a consequence of Besicovitch’s Theorem that we can “fill up”
an arbitrary open set with a countable collection of disjoint balls in such a way
that the remainder has p-measure zero.

COROLLARY 1

Let p be a Borel measure on R™, and F any collection of nondegenerate closed
balls. Let A denote the set of centers of the balls in F. Assume u(A) < oo and
inf{r | Ba,r) € F} = 0 for each a € A. Then for each open set U C R”,
there exists a countable collection G of disjoint balls in F such that

\UBcvU

Beg

and

,u((AnU)— U B) =

Beg
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REMARK The set A need not be y-measurable here. Compare this assertion
with Corollary 2 of Vitali’s Covering Theorem, above. |l

PROOF Fix 1 —1/N, <6< 1.
1. Claim: There exists a finite collection {Bj,..., By} of disjoint closed
balls in U such that

(AOU UB)<0,LLAOU) (%)
Proof of Claim: Let F; = {B | B € F,diam B < |,B C U}. By Theo-
rem 2, there exist families Gy, ..., Gn, of disjoint balls in F; such that
N,
AnvclJ U B
i=1BEG;
Thus

pANT) <Zu<AnUﬂ U B)

BE€g;
Consequently, there exists an integer j between | and N, for which

plAnU U B >N-,u(AnU)
Beg;

By Theorem 2 in Section 1.1, there exist balls By,..., Bay, € G; such that

(AnUﬂUB) JANT).

But

i=1 1=

M, M,
u(AnU)z,u(AﬁUﬂUBi) +u<AﬁU—UBi),

since U 1 Biis p- measurable, and hence (%) holds.
2. NowletUz—U U Bl,]-'z-{B|B€]-'d1amB< 1,B C Uy},

and as above, find finitely many disjoint balls By, 41,-- -, Bas, in F3 such that
M,
,u((AnU UB) (AOUZ) U Bi)
i=M,+1
<Ou(ANTh)

< Ou(ANT).



1.6 Differentiation of Radon measures 37

3. Continue this process to obtain a countable collection of disjoint balls from
F and within U such that

M,
7 ((A nv) - Bi) < OFu(ANU).
i=1

Since 0¥ — 0 and p(A) < oo, the corollary is proved. |

1.6 Differentiation of Radon measures

We now utilize the covering theorems of the previous section to study the dif-
ferentiation of Radon measures on R”.

1.6.1 Derivatives
Let p and v be Radon measures on R™.

DEFINITION For each point x € R", define

Do) = | limsupi_g U= if w(B(z,7)) > 0 for all 7 >0

g +00 if u(B(z,r)) =0 for some r > 0,
D (z) = lim inf, o %E‘%(%?)% if w(B(z,r)) >0 forallT>0
= +oo . if u(B(z, 7)) =0 for some r > 0.

DEFINITION If D,v(z) = D ,v(x) < +oo, we say v is differentiable with
respect to p at © and write

D,v(z) = D,v(z) = D ,v(z).
D,v is the derivative of v with respect to p. We also call D v the density of

v with respect to [i.

Our goals are to study (a) when D,v exists and (b) when v can be recovered
by integrating D, v.

LEMMA 1
Fix 0 < a < 0o. Then

(i) Ac {zxeR*|D  v(z)<a}implies v(A) < ap(A),
(i) AC{zeR"|D,v(z)>a} implies v(A) > ap(A).
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REMARK The set A need not be p- or v-measurable here. |l

PROOF We may assume p(R™), v(R*) < oo, since we could otherwise con-
sider p and v restricted to compact subsets of R™.
Fix € > 0. Let U be open, A C U, where A satisfies the hypothesis of (i). Set
F={B|B=B(a,r),a€ A, B CUv(B) < (a+e)u(B)}.

Then inf{r | B(a,7) € F} = 0 for each a € A, and so Corollary 1 in Sec-
tion 1.5.2 provides us with a countable collection G of disjoint balls in F such

that
v (A— U B) =0.
BeG

v(A) < S u(B) < (a+9) Y u(B) < (a+eu(l).

Beg Beg

Then

This estimate is valid for each open set U D A, so that Theorem 4 in Sec-
tion 1.1 implies v(A) < (a + €)u(A). This proves (i). The proof of (i) is
similar.

THEOREM 1
Let p and v be Radon measures on R™. Then D v exists and is finite p a.e.
Furthermore, D,V is p-measurable.

\

PROOF  We may assume v(R™), u(R™) < oo, as we could otherwise consider
u and v restricted to compact subsets of R™.
L Claim #1: D,v exists and is finite ;1 a.e.

Proof of Claim #1: Let I = {z | D,v(z) = +oo}, and for all 0 < a < b,
let R(a,b) = {z | D ,v(z) < a <b< D,v(z) < co}. Observe that for each
a>0,1C {z|D,v(z)> a}. Thus by Lemma 1,

v(I).

u(I)Sé

Send o — o0 to conclude p(I) =0, and so D,v is finite 4 a.e.
Again using Lemma 1, we see

bu(R(a,b)) < v(R(a,b)) < ap(R(a,b)),
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whence p(R(a,b)) = 0, since.b > a. Furthermore,

{|D ,v(z) < D,v(z) < 0o} = U R(a, b),
0<a<b
a,b rational
and consequently D, exists and is finite y a.e.
2. Claim #2: For each ¢ € R" and r > 0,

lim sup p(B(y, 7)) < p(B(z,r))-

YT
A similar assertion holds for v.

Proof of Claim #2: Choose yr € R with y, — z. Set fir =

XB(yi,r)’
f= X B(z.r)’ Then

limsup fi, < f

k—oc

and so
l'}cminf(l —fy=(1-1).

Thus by Fatou’s Lemma,

/ (-1 d/,LS/ liminf(1 — fi) dp
B(z,2r)

B(z,2r) k—oo

< nminf/ (1- fi) dp,
B(z,2r)

ko0
that is,
w(B(z,2r)) - p(B(z,r)) < liminf(p(B(z,2r)) — w(B(ye:)))-
Now since p is a Radon measure, u(B(z,2r)) < oo; the assertion follows.
3. Claim #3: D,v is p-measurable.

Proof of Claim #3: According to Claim #2, for all » > 0, the functions
T+ p(B(x,r)) and = — v(B(z,r)) are upper semicontinuous and thus Borel
measurable. Consequently, for every r > 0,

v(B(z,r .
fola) = ﬁg%ﬁ% if p(B(z,r))>0
+00 if p(B(z,r))=0
RS
18 gi-measurable. But
Dyv= }13(1) fr= kl_14rg() f% [~ a.e.

and so D,v is y-measurable. |
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1.6.2 Integration of derivatives; Lebesgue decomposition

DEFINITION The measure v is absolutely continuous with respect to p, writ-
ten

v ps
provided p(A) =0 implies v(A) = 0 for all ACR™

DEFINITION The measures v and p are mutually singular, written
vL>lp,

if there exists a Borel subset B C R™ such that

p(R* - B} =v(B) =0.

THEOREM 2 DIFFERENTIATION THEOREM FOR RADON MEASURES
Let v, u be Radon measures on R™, with v < p. Then

V(A):/ADIJV du

for all p-measurable sets A C R™.

REMARK This is a version of the Radon-Nikodym Theorem. Observe we
prove not only that v has a density with respect to y, but also that this density
D, v can be computed by “differentiating” v with respect to p. These assertions
comprise iri effect the Fundamental Theorem of Calculus for Radon measures
on R™.

PROOF

1. Let A be p-measurable. Then there exists a Borel set B with A C B,
u(B— A) = 0. Thus v(B — A) = 0 and so A is v-measurable. Hence each
p-measurable set is also v-measurable.

2. Set

Z ={z e R" | D,v(z) =0},
I={zeR"|D,(zx)=+o0};

Z and I are p-measurable. By Theorem 1, p(I) = 0 and so v(I) = 0. Also,
Lemma [ implies v(Z) < ap(Z) for all o > 0; thus v(Z) = 0. Hence

v(Z)y=0= / D,vdp
z
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and
vl =0= /IDNV dp.
3. Now let A be p-measurable and fix 1 <t < co. Define for each integer m
An=An{z R |t™ < D,v(z) < ™'}

Then A, is p-, and so also v-, measurable. Moreover,

A= U AnCZUIU{e] Do) # D (o),

m=—00

o O )= 0 a0

m=—00 m=-—od

and hence

Consequently,

<
=
i
NIE
<
S
3

m=—00
< Ztm“u(Am) (by Lemma 1)
=t t"u(Am)
<ty / D,vdp
m Y Am

- t/ D,v dp.
A

Similarly,

v(A) = > v(Am)

> Ztmu(Am) (by Lemma 1}

1 m
=3 2t u(Am)

m

1

t sy,

1
—/ D,vdy.
tJa

v
i

D,vdy

i
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Thus 1/t [, Dyv dp < v(A) <tf,Duv dpforall 1 <t < oo Send
t—1+ 1

THEOREM 3 LEBESGUE DECOMPOSITION THEOREM
Let v, be Radon measures on R”.

(i) Then v = vy + v, where Uy, Vs are Radon measures on R™ with
Ve € [ and ve L.
(ii) Furthermore,
D,v = D, vy and D,v;=0 uoae.,

and consequently

:/ D, v dp + v(A)
A

for each Borel set A C R™.

DEFINITION We call v, the absolutely continuous part, and v the singular
part, of v with respect to pi.

PROOF

1. As before, we may as well assume p(R?), v(R*) < oo
2. Define

£ ={ACR"| ABorel, p(R" —~ A) =0},
and choose By € £ such that, for k=1...,
1
<i -
v(B) < inf v(A) + £

Write B = NP2, By. Since

u(R™ — B) < Z (R* — B) =0,

we have B € £, and so
v(B) = /iréfgu(A). (*)
Define
Ve =V L B,
vs =v L (R* — B);

these are Radon measures according to Theorem 3 in Section 1.1.
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3. Now suppose A C B, A is a Borel set, u(4) = 0, but v{A4) > 0. Then
B - A e £ and v(B ~ A) < v(B), a contradiction to (x). Consequently,
Vae < g On the other hand, p(R® — B) =0, and thus v, L p.

4. Finally, fix o > 0 and set

C={zeB|D,v(r) > a}.
According to Lemma 1,
au(C) < n(C) =0,
and therefore D,v; = 0 p a.e. This implies

Dy, =D,v pae. 1

1.7 Lebesgue points; Approximate continuity
1.7.1 Lebesgue—Besicovitch Differentiation Theorem

NOTATION We denote the average of f over the set E' with respect to p by

ﬂfduE;(lE—)/Efdu,

provided 0 < p(E) < oo and the integral on the right is defined.

THEOREM 1 LEBESGUE-BESICOVITCH DIFFERENTIATION THEOREM
Let 11 be a Radon measure on R™ and f € L. (R*, ). Then

r—{(

lim][ fdp=f(z)
B(z,r)
for pae. zeR™,

PROOF  For Borel B C R", define v*(B) = [, f* dp, and for arbitrary
A CR®, vE(A)=inf{v*(B) | A C B, B Borel}. Then v+ and v~ are Radon
measures, and so by Theorem 2 in Section 1.6, ,'\J;Zc‘\}-r

U+(A)=/ADNU+ d/,L:/Af+ du

and

u”(A):/ADuu_ d/,L:/Af“ du
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for all y-measurable A. Thus Duui = f* p ae. Consequently,

im = 1m ___1—_-.—- I/+ z.r) — v~ z.7
8 fyey = I e P = PG

= DNV+(:E) - DNU_(fE)
= ft(z)— f(x) = f(a) for pae. z. |

COROLLARY 1

Let p be a Radon measure on R™, | <p < oo, and f € L} (R™, ). Then
i {17~ f@)F du =0 ()
70 B(z,r)

for pae. x.

DEFINITION A point © for which (x) holds is called a Lebesgue point of f
with respect to (.

PROOF Let {r;}2, be a countable dense subset of R. By Theorem 1,

lim |f = ril? dp = (@) —rif?
=0 B(z,r)

for pae.zandi = 1,2,.... Thus there exists a set A C R™ such that p(A) =0,
and z € R" — A implies

r—0

i 1f =l dp=11(@) - P
B(z,r)

for all i. Fix £ € R* — A and € > 0. Choose r; such that | f(z) — r;|P < ¢/2P.
Then

imsupf |f = f(e)P du
B(z,r)

-0
<o fimswpf (f-rdutd |f@) -l dp
r—0 JB(z,r) B(z,r)
=21 [f (@) =l + (@) - i) <e. |
For the case p = L™, this stronger assertion holds:

COROLLARY 2
If f e LY for some 1 < p < oo, then

BlLi?alv}]{g |f = f(z)}|P dy=0for L™ ae. .,
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where the limit is taken over all closed balls B containing x as diam B — 0.

The point is that the balls need-not-be_centered af x.

PROOF We show that for each sequence of closed balls { By}, with = € By,
and dj = diam By — 0, :

f If = F(@)P dy — 0
B

as k — 00, at each Lebesque point of f. Choose balls { B }72., as above. Then
By, C B(z,dy), and consequently,

fir-s@raszd - s
By B(z,dx)

The right-hand side goes to zero if « is a Lebesque point. |

COROLLARY 3
Let E C R™ be L™-measurable. Then
. LMB(z,r)NE) "
}1_11‘(1) L7 (B(z.1) =1 forL"ae.x € E
and
1imM =0 for L"ae.x € R* — E.

" LBz, )
PROOF Set f = Xpr 1= £™ in Theorem 1. 1

DEFINITION Let E C R™. A point x € R™ is a point of density 1 for E if

fim L*(B(z,r) N E)
r—0 [,H(B(.’E,’r‘))

and a point of density 0 for E if

i £ (BT 0 B)
r—0 L*(B(x,71))

=1

=0.

REMARK We regard the set of points-of density 1 of E as comprising the
measure theoretic interior of E; according to Corollary 3, £™ a.e. point in an
L"-measurable set £ belongs to its measure theoretic interior. Similarly, the
points of density 0 for E make up the measure theoretic exterior of E. In
Section 5.8 we will define and investigate the measure theoretic boundary of
certain sets E. See also Section 5.11. |
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DEFINITION Assume | € L\  (R™). Then

o) = lim, g f_B(z,r) f dy if this limit exists
10 otherwise

is the precise representative of f.

REMARK Note that if f, g € L} (R"), with f = g L™ a.e., then f* = g* for
all points z € R™. In view of Theorem | with p = £", lim,_.g f—B(I,T) fdy
exists £ a.e. In Chapters 4 and 5, we will prove that if f is a Sobolev or
BV function, then f* = f, except possibly on a “very small” set of appropriate
capacity or Hausdorff measure zero.

Observe also that it is possible for the above limit to exist even if « is not a
Lebesgue point of f; cf. Theorem 3 and Corollary 1 in Section 5.9. 1

17.2 Approximate limits, approximate continuity

DEFINITION Let f . R™ — R™. We say | € R™ is the approximate limit of
f as y — x, written

ap lim f(y) =1,

Yy—x

if for each € > 0,

i LMB(z,ryO{|f =1 > €}) _
r—0 En(B(.’L‘,T))

So if [ is the approximate limit of f at z, for each € > O the set {|f —I| > €}
has density zero at .

THEOREM 2
An approximate limit is unique.
PROOF Assume for each € > 0 that both

LB@na{f-l>e) (%)
Lr(B(z,r))

and

BN~z d) _
L(B(z,r)) 0 ()
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as T — 0. Thenif I # I', we set e = |l —'| /3 and observe for each y € B(zx, 1)

Se=|l-UI<|f(y) -l +I[fw) =Vl

Thus
B(z,r) C{|f =l 2 e} U{|f V| > ¢}
Therefore
LYB(@r)) < L™(B(z,r) O {If — 1 2 €})
+L(B(a,r) 0V {[f(y) = V| = €}),
a contradiction to (%), (x%). |

DEFINITION Let f : R* — R We say l is the approximate lim sup of f as
y — x, written

ap limsup f(y) = {,
Yy—T
if Uis the infimum of the real numbers t such that
L B0 {f > 1)
=0 L™(B(z,r))

= 0.
Similarly, 1 is the approximate lim inf of f as v — x, written
ap liminf f(y) =1,
if Lis the supremum of the real numbers t such that
LBz, )N {f < t})

T @By

DEFINITION f :R™ — R™ is approximately continuous at ¢ € R* if

 lim £() = /(@).

THEOREM 3

Let f:R* — R™ be L"-measurable. Then f is approximately continuous L™
ae.

REMARK Thus a measurable function is “practically continuous at practically
every point.” The converse is also true; see Federer [F, Section 2.9.13]. |
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PROOF
1. Claim: There exist disjoint, compact sets {K;}$2, C R™ such that

«fe- (1) -

and foreach i = 1,2,...

flk, is continuous.
Proof of Claim: For each positive integer m, set B, = B(0,m). By Lusin’s
Theorem, there exists a compact set K; C By such that £L*(B) — K) < 1 and

f |, is continuous. Assuming now Kj,..., K, have been constructed, there
exists a compact set

K1 C By — U K;
i=1

such that

m--1 1
L"| B — K, | <
( mtl 191 1) “m+1
and f |g, .., is continuous.
2. For L™ ae. z € K;,

tim LY B(z,r) — K;)
r—0  L"(B(z,r))

=0. (%)

Define A = {z | for some i, x € K; and (%) holds}; then L*(R" — A) = 0.
Let z € A, sothat z € K; and (%) holds for some fixed 7. Fix € > 0. There exists
s >0 such that y € K; and |z — y| < s imply |f(z) — f(y)| < e. Thenif 0 <
r <s, Blz,r)n{y | |f(y)— f(z)| > €} C B(z,r)— K;. In view of (x), we see

ap lim f(y) = f(z). |

REMARK If f € L] _(R™), the proof is much easier. Indeed, for each € > 0

LBz, r)n{|f = f(@)|>e}) 1 — f(x
[,n(B(.’L‘,T)) S € fB(z,r) |f f( )| dy,

and the right-hand side goes to zero for L™ a.e. z. In particular a Lebesgue
point is a point of approximate continuity. |

REMARK In Section 6.1.3 we will define and discuss the related notion of
approximate differentiability. |1
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1.8 Riesz Representation Theorem

In these notes there will be two primary sources of measures to which we will ap-
ply the foregoing abstract theory: these are (a) Hausdorff measures, constructed
in Chapter 2, and (b) Radon measures characterizing certain linear. functionals,
generated as follows.

THEOREM 1 RIESZ REPRESENTATION THEOREM
Let L: C.(R™*;R™) — R be a linear functional satisfying

sup{L(f) | f € C.(R";R™), || < 1, spt(f) C K} < o0 (%)

for each compact set K C R™. Then there exists a Radon measure p on R
and a p-measurable function o : R* — R™ such that

(i) |o(z)| =1 for p-ae. z, and
) L(f) = fyu £ -0 dp
for all f € Co(R*;R™),

DEFINITION We call p the variation measure, defined for each open set
VR by

p(V) = sup{L(f) | f € Cc(R*;R™),|f| < 1, spt(f) C V).

PROOF
1. Define p on open sets V' as above and then set

p(A) = inf{p(V) | A C V open}

for arbitrary A C R”.
2. Claim #1: p is a measure.

Proof of Claim #1I: Let V, {V;}2, be open subsets of R”, with V C U2, V..
Choose g € C.(R*;R™) such that lg| <1 and Spt( ) C V. Since spt(g) is
compact, there exists an index k such that spt(g) C U7, V;. Let {gj}  bea
finite sequence of smooth functions such that spt(gj) C Vifor1 <j < k and

Z_’) 1¢; = 1 on spt(g). Then g = ZJ , 9¢;, and s0

k

k oo
1L(g)| = > L(g¢)) Z géj)ISZu(VJ)

=1

Then, taking the supremum over g, we find p(V) < Z;‘;lu(VJ) Now let
{A;}52, be arbitrary sets with 4 C U2, A;. Fix e > 0. Choose open sets V;
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such that A; C V; and p(A;) + €/29 > p(V;). Then

p (U Vj) <D on(vy)
j=1 j=1

n(A)

IN

p(4) + e

IN

1

It

J

3. Claim #2: p is a Radon measure.

Proof of Claim #2: Let Uy and U, be open sets with dist(U, Up) > 0. Then
p(Uy ) = p(U)) + p(U-) by definition of p. Hence if A), A, C R™ and
dist(A4;, A2) > 0, then p(A, U A;) = p(A1) + 1(Az). According to Carathe-
ordory’s Criterion (Section 1.1.1), p is a Borel measure. Furthermore, by its
definition, p is Borel regular; indeed, given A C R”, there exist open sets Vj
such that A C Vj and p(Vi) < p(A)+1/k for all k. Thus p(A) = p (N2, V).
Finally, condition () implies p{K) < oo for all compact K.

4. Now, let CH(R™) = {f € C.(R*) | f >0}, and for f € CH(R"), set

A(f) = sup{|L(9)| | g € C.(R"; R™), |g| < f}.

Observe that for all f), f, € CH(R™), fi < fo implies A(f;) < A(f2). Also
Mef) =cA(f) forall ¢ > 0, f € CHR™).
5. Claim #3: For all f), f» € CF(R™), M fi + f2) = AH) + A(f2).

Proof of Claim #3: 1f g1, g2 € C.(R*; R™) with |g| < /) and |g2| < f,, then
lg1 + 92| < fi + f. We can furthermore assume L(g;), L(g2) > 0. Therefore,

|L(g)] + | L(g2)| = L9y + g2) = [L(g1 + @2)| S A(f1 + f2).
Taking suprema over g; and g, with g3, g, € C.(R™; R™) gives
A1) +Af2) S A+ fa)-

Now fix g € C.(R™; R™), with |g |< fi + f2. Set

ool 5 Th+h>0
’ 0 iffi+h=0

for i = 1,2. Then g,¢; € C.(R*; R™) and g = g1 + g2. Moreover, |g;| < f;,
(¢ = 1,2), so that

IL(@)] < [L(g)l + | L(g2)] < A(f) + Af2)-

Consequently,

A(fi + £2) S AH) + M f)-
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6. Claim #4: M(f) = [o,. f dp for all f € CH(R™).

Proof of Claim #4: Let € > 0. Choose 0 = {5 < ¢} < :-+ < tx such that
txv = 2| fllee, 0 < t; — iy < €, and u(f"l{tz}) =0fori=1,...,N. Set
Ui = f~'((tj-1,%)); U; is open and p(U;) <

By Theorem 4in Sectlon 1.1, there exist compact sets K; such that K; C U;
and p(U; — K;) < ¢/N, 7 = 1,2,..., N. Furthermore there exist functions
g; € Cc(R™; Rm) with |g;| <1, spt (9]) C Uj, and |L(g;)| > pn(U;) — €/N.
Note also that there exist functions h; € Cg(R™) such that spt (h;) C Uj,
0 < h; <1, and hj =1 on the compact set K; U spt (g;). Then

A(hj) > |L(g;)l = (U;) — ¢/N
and
A(hj) = sup{|L(g)| | g € Cc(R*;R™), |g| < h;}

< sup{|L(g)| | g € C(R™;R™),[g] < 1, spt (g) C U}
= u(ly),

whence p(U;) — /N < A(hy) < p(Uj).

Define
el )

A is open. Next, compute

N N
A (f— thj) =sup{|L<g>| | g € C.(R:R™),|g| < f—thj}
j=1 j=1
< sup{|L(g)| | g € Cc(R*;R™),|g| < || fllzeox 4}
= ||fll e sup{L(g) | g € Cc(R*; R™), |g| < x ,}

= [Ifllzen(A)

N
= ||fllzoop (U(Uj ~{h; = 1}))

N
< flleeo Y 1Ty = K;) < el ]l oo

j=1
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Hence
N N
Af) = (f —thj) +A (thj)
j=1 Jj=1
N
<dlfllze + 3 AUR)
j=1
N
<ellfllee + 3 tin(Uy)
i=1
and

Finally, since

N N
D tiap(U;) < /Rn fdu <y tn(Uy),
j=1

Jj=1
we have

N

| A(F) - /f dp | <D (t = t-)u(Uy) + el fllze + ety

=1
< ep( spt (f)) + 3el| £l oo -

7. Claim #5: There exists a p-measurable function o : R® — R™ satisfy-
ing (ii).
Proof of Claim #5: Fix ¢ € R™,
f € Co(R™). Then A is linear and
[Ae(F) = [L(fe)l
< sup{|L(g)| | g € Cc(R™;R™), |g| < |£I}

=X = [ Ifld

el = 1. Define A (f) = L(fe) for
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thus we can extend A, to a bounded linear functional on L'(R™; ). Hence
there exists oe € L>(p) such that

)\e(f) = . foedu (f € CC(RH))'

Let ej,...,em be the standard basis for R™ and define 0 = E;’;l Oe;€j-
Then if f € C.(R™; R™), we have

> L((f - e5)e5)
=1

Il

L(f)

1l

s

/(f'ej)aej dp
J

1
= /f’O’d/,L.
8. Claim #6: |o| =1 p ae.

Proof of Claim #6: Let U C R™ be open, p(U) < oo, By definition,

1l

u(U)=sup{/f~odu|f€CC(R”;Rm), If] <1, spt(f) C U}. ()

Now take fr € C.(R®; R™) such that |fx| < 1, spt (fx) C U, and fi -0 —
|o| 1 a.e.; such functions exist by Corollary 1 in Section 1.2. Then

[ ol du= fim [ fi-o du< o)
U o0

by (k).
On the other hand, if f € Cc(R™; R™) with | f| < 1 and spt (f) C U, then

/f‘vdué/ lo| dp.
U
Consequently (%) implies
pU) < / |o| dp
U
Thus p(U) = [, |o| dp for all open U C R™; hence |o| =1 p a.e. 1

An immediate and very useful application is the following characterization of
nonnegative linear functionals.

COROLLARY 1
Assume L : C(R™) — R is linear and nonnegative, so that

L(f) > Oforall f € C(R™),f >0. (*)
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Then there exists a Radon measure p, on R™ such that
L(f)= fdu for all f € CZ(R™).
]R-n.

PROOF Choose any compact set K C R”, and select a smooth function ¢ such
that ¢ has compact support, { = 1 on K,0 < ¢ < 1. Then for any f € C°(R")
with spt () C K, set g = || fllz=¢ — f = 0. Therefore (x) implies

0 < L(g) = [|fllzeL() — L(f),

and so

L(f) < Cllflle

for C = L(¢). L thus extends to a linear mapping from C (R™) into R, sat-
isfying the hypothesis of the Riesz Representation Theorem. Hence there exist
i, o as above so that

Lp)= [ fodu (fecmm)

with 0 = £1 p a.e. But then (%) implies o = 1 pae. |

1.9 Weak convergence and compactness for Radon measures

We introduce next a notion of weak convergence for measures.

THEOREM 1
Let p, pi (k=1,2,...) be Radon measures on R*. The following three state-
ments are equivalent:

(i) liMgooo fu f Ak = fgn f dp for all f € Co(R™).

(i) limsup,_, . px(K) < p(K) for each compact set K C R™ and p(U) <
liminfy_, o px(U) for each open set U C R™.

(iii) limg_,oo pp(B) = p(B) for each bounded Borel set B C R™ with
p(0B) = 0.

DEFINITION  [f (i) through (iii) hold, we say the measures i, converge weakly
to the measure p, written

Pk = p.
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PROOF

1. Assume (i) holds and fix ¢ > 0. Let U C R™ be open and choose a compact
set K C U. Next, choose f € C.(R™) such that 0 < f < 1, spt (f) C U,
f=1on K. Then

wK) < fdu = lim / fdpk < liminf pg (U).
R k—+o0 JRn k—s00
Thus
p(U) = sup{p(K) | K compact ,K C U} < 1'}cminfuk(U).

This proves the second part of (ii); the proof of the other part is similar.
2. Suppose now (ii) holds, B C R" is a bounded Borel set, z(8B) = 0. Then

u(B)=p(B°%) < l'}cm inf 1 (B?)

< lim sup pi(B)

k—+00
< u(B) = u(B).
3. Finally, assume (iii) holds. Fix € > 0, f € C(R™). Let R > 0 be such that
spt(f) C B(0,R) and p(8B(0, R)) = 0. Choose 0 =ty < t; < -+ < tx such

that ty = 2||f||Loo, 0<t;—t;~) <e¢ and /,L(f_l{ti}) =0forz=1,...,N.
Set B; = f~(t;1,t:]; then p(8B;) =0 for i > 2. Now

th 1k (B / fdpk < th/ik ) + tipk (B(0, R))

i=2

and

th 114(Bs) / fdp< thu(B ) +tip(B(0, R));

i=2 =2
so (iii) implies

lim sup
k—+00

/,Rn Fdp = /R f dul < 2eu(B(0,R)). 1

The great advantage in studying the weak convergence of measures is that
compactness is had relatively easily.

THEOREM 2 WEAK COMPACTNESS FOR MEASURES
Let {pr}22, be a sequence of Radon measures on R™ satisfying

sup px(K) < oo for each compact set K C R".
k

Then there exists a subsequence {py, };";1 and a Radon measure i such that

Pk, = b
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PROQF
1. Assume first

Sl;p e (R™) < o0. (%)

2. Let {f1}%2, be a countable dense subset of C,(R™). As () implies
[ f1 dp; is bounded, we can find a subsequence {,u; 22, and a; € R such that

RS /fl du; — ay.

Continuing, we choose a subsequence {,u;c 5=y of {,uf"l j2yand ax € R such
that

/fk dpf — ay.

/fk dl/j — af

for all k > 1. Define L(fx) = ax, and note that L is linear and |L(fx)| <
|| fillLeo M by (%), for M = sup, px(R™). Thus L can be uniquely extended to
a bounded linear functional L on C.(R™). Then according to the Riesz Repre-
sentation Theorem (Section 1.8) there exists a Radon measure ¢ on R™ such that

L) = [ 1 au

Set v; = pf; then

for all f € C.(R™).

3. Choose any f € C,(R"™). The denseness of {fx}52, implies the existence
of a subsequence {f;}32, such that f; — f uniformly. Fix ¢ > 0 and then
choose 1 so large that

I|f = fillze < e

Next choose J so that for all j > J

/fz dl/j—/fi d/l.l <€/2.
Then for j > J

[sas= [1a <|[6-mas|+|[u-sa
+’/f¢dz/j—/fid,u|

<2M|f = fllze + 5 < e
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4. In the general case that (x) fails to hold, but

sup pi(K) < o0
k

for each compact K C R*, we apply the reaéoning above to the measures
e = we L B(0,1) (k0 =1,2,..)

and use a diagonal argument. |

Assume now that U C R” is open, 1 < p < oo.

DEFINITION A sequence {f,}32, in LP(U) converges weakly to f € LP(U),
written

fe—f in LP(U),
provided

1im/fkgda:=/fgdat
koo Jy U
for each g € LI(U), where 1/p+ 1/g= 1,1 < g < co.

THEOREM 3 WEAK COMPACTNESS IN L?

Suppose 1 < p < co. Let {fx}32, be a sequence of functions in LP(U) satis-
fying

SngijLpan < 0. (%)
Then there exists a subsequence { fx;}32; and a function f € LP(U) such that

fi,—~f  inIP(U).

REMARK This assertion is in general false for p=1. |

PROOF

1. If U # R™ we extend each function fj to all of R™ by setting it equal to
zero on R™ — U/, This done, we may with no loss of generality assume U = R™,
Furthermore, we may as well suppose

fi 20 L7 ae,;

for we could otherwise apply the following analysis to f; and fr-
2. Define the Radon measures

we = L0 L f (k=1,2,...).



58 General Measure Theory

Then for each compact set K C R*

Nk(K)=/ka dz < (Af,fdm)éﬁn(f()l——

sup pi(K) < oo.
k

and so

Accordingly, we may apply Theorem 2 to find a Radon measure p on R™ and
a subsequence g, — ph.
3. Claim #1: p <€ L™

Proof of Claim #1: Let A C R"™ be bounded, L"(A) = 0. Fix ¢ > 0 and
choose an open, bounded set V' O A such that £L™(V) < e. Then

(V)

IA

lim inf pk,; (V)
j—oo

lim inf/ fr; dz

j—ooo

1;12£f</ f,c dm) Lrvy-

IA

IN

Thus p(A) =0.
4. In view of Theorem 2 in Section 1.6.2, there exists an L}  function f
satisfying

u(A)=/Afdw

for all Borel sets A C R™.
5. Claim #2. f € LP(R™).

Proof of Claim #2: Let ¢ € C.(R™). Then

/ sOfdw=/ P du
& Rn
=jlir§o/n<pd“k’

Alim / <Pfk] dz
J—roo n
Sl’ip”kaLP”(pHLq

< Cligll

Il

IN
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Thus
NAlpe = sup / of dz < oo.

PEC(R™)
Helt Lq <1

6. Claim #3: fy — f in LP(R™).
Proof of Claim #3: As noted above,

/ fk,.sodw—>/ fo de
Rn R»

for all ¢ € C.(R*). Given g € LI(R"), we fix ¢ > 0 and then choose
@ € Cc(R™) with

Hg - Wlqu(]Rn) <€
Then

/fk,gdw’—‘/ fk,~<Pd$+/ fr; (g — ) dz,
R" " R™

and the last term is estimated by

il ollg = llza < Ce |
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Hausdorff Measure

We introduce next certain “lower dimensional” measures on R™, which aliow
us to measure certain “very small” subsets of R™. These are the Hausdorff
measures H®, defined in terms of the diameters of various efficient coverings.
The idea is that A is an “s-dimensional subset” of R™ if 0 < H*(A) < oo, even
if A is very complicated geometrically.

Section 2.1 provides the definitions and basic properties of Hausdorff mea-
sures. In Section 2.2 we prove n-dimensional Lebesgue and n-dimensional
Hausdorff measure agree on R™. Density theorems for lower dimensional Haus-
dorff measures are established in Section 2.3. Section 2.4 records for later use
some easy facts conceming the Hausdorff dimension of graphs and the sets
where a summable function is large.

2.1 Definitions and elementary properties; Hausdorff dimension

DEFINITIONS

(i) Let ACR", 0<s< 00, 0<é <00 Define

0> als) <d’amc) [ACUCJ,dlamC <6y,
J=1

J=1

where
s/2

Here I'(s) = fooo e x5! dz, (0 < s < 00), is the usual gamma
Sfunction.

60
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(i) For A and s as above, define

H(A) = éi_r)r})H‘},'(A) = supH3(A).

6>0

We call H® s-dimensional Hausdorff measure on R" .

REMARKS

(i) Our requiring § — 0 forces the coverings to “follow the local geometry”
of the set A.

(ii) Observe
L™(B(z,7)) = a(n)r"

for all balls B(z,r) ¢ R". We will see later in Chapter 3 that if s = k is
an integer, H* agrees with ordinary “k-dimensional surface area™ on nice
sets; this is the reason we inciude the normalizing constanu a{s) in the
definition. 1

THEOREM 1
H® is a Borel regular measure (0 < s < 00).

Warning: H® is not a Radon measure if 0 < s < n, since R" is not o-finite
with respect to H°.

PROOF
1. Claim #1: 'H§ is a measure.

Proof of Claim #1: Choose {Ax}32, C R™ and suppose A, C U3,CF,

diam C¥ < 6; then {C;?}fk:l covers U2 | Ag. Thus

Taking infima we find

Hs (U Ak> < ng(Ak)‘
k=1 k=t

2. Claim #2: H® is a measure.
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Proof of Claim #2: Seiect {A}72, C R™. Then

H; (G Ak) < ng(Ak) <Y HA(A).

Let § — 0.
3. Claim #3: H? is a Borel measure.

Proof of Claim #3: Choose A, B C R™ with dist(A, B) > 0. Select 0 < 6 <
1/4 dist( A, B). Suppose AU B C U2, Cy and diam Cj < 6.

writt A = {C; | C;N A # 0}, and let B = {C; | C; N B # 0}. Then
A CUg,eaCjand B C Ug,epCy, CiNCy =0 if C; € A, C; € B: Hence

ia <d1am C; ) T a(8)<diarr2x C])s+ > a(s)<diarr2x Cj)s

j=1 Ci;EA C;€8B

v

H(A) + Hi(B).

Taking the infimum over all such sets {C;}32,, we find Hi(AU B) >
Hi(A) + H3(B), provided 0 < 46 < dist(A, B). Letting 6 — 0, we obtain
H*(AUB) > H?(A) + H*(B). Consequently,

H*(AU B) = H*(A) + H*(B)

for all A, B C R* with dist(A4, B) > 0. Hence Caratheodory’s Criterion, Sec-
tion 1.1.1., implies H* is a Borel measure.
4. Claim #4. 'H® is a Borel regular measure.

Proof of Claim#4: Note that diam C = diam C for all C; hence

o

Z (dlam C; ) |Ac U C;,diam C; < 6,C; closed }

j=t j=1

Choose A C R™ such that H*(A) < oo; then Hi(A) < oo for all 6 > 0. For
k

each k > 1, choose closed sets {C¥}52, so that diam CF < 1/k, A C U2, CF,
and

—

3 a(s

Jj=t1

diam C'“
( ) < HY(A) + i

Let Ay = Uj‘;ICJ'?, B =N, Ag; Bis Borel. Also A C Ay, for each k, and
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so A ¢ B. Furthermore,

1k(B) < Z (

Letting £ — oo, we discover H*(B) < H*(A). But 4 Z 3. and thus
H(A) = H(B). |

diam CF i

S
) < i)+

THEOREM 2 ELEMENTARY PROPERTIES OF HAUSDORFF MEASLRE
(i) MO is counting measure.

(i) H' =L onR.
(iii) H°=0o0onR"” forall s > n.
(iv) H(AA) = NH(A) forall x>0, AC R

(v) H(L(A)) = H*(A) for each affine isometry L : R* — X™. 2 Z 3"
PROOF

1. Statements (iv) and (v) are easy.

2. First observe «(0) = 1. Thus obviously H%({a}) =1 for ai - = =", and

(i) foliows.
3. Choose A C R! and § > 0. Then

LY(A) = inf{idiam Ci|AcC G C,}

j=1 j=1

< inf{Zdiam CjlAc | Gy, diam C; < }

j=1 j=1
= H(A).
On the other hand, set Iy = [k6,(k +1)6] (k = ... — 1.0.2...). Then

diam (Cj N Ix) < 6 and

> diam (Cj N I) < diam C;.
k=—o0

Hence

o
=
I

inf{idiam CilAC G O,}
j=1 j=1

v

”M8

diam (C; N Ix) |ACUC}

j=tk Jj=

v
X

(4).
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Thus £! = H} for all § >0, and so £! = H' on R'.
4. Fix an integer m > 1. The unit cube @ in R can be decomposed into m"
cubes with side 1/m and diameter n!/2/m. Therefore

n

Yam(@) <Y als)(n!?/m)* = als)n®Pm"
1

3

i1

It

and the last term goes to zero as m — oo, if s > n. Hence H*(Q) = 0, and so
HY Ry =0, |

A convenient way to verify that 7{° vanishes on a set is this.

LEMMA 1
Suppose A C R™ and H3{A) = 0 for some 0 < 6 < oo. Then H*(A) = 0.

PROOF  The conclusion is obvious for s = 0, and so we may assume s > 0.
Fix € > 0. There then exist sets {C;}72, such that A € U2, Cj, and

ia (dlamC) <e

j=t

In particular for each 1,

1/s
diam C; < 2(——) = 6(e).
ofs

Hence
Hsey(A) <€

Since §(¢) — 0 as ¢ — 0, we find

We want next to define the Hausdorff dimension of a subset of R™.
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LEMMA 2
Let ACR" and 0 < s < t < o0.

(i) If H*(A) < o0, then H!(A) = 0.
(i) If H'(A) > 0, then H*(A) = +00.

PROOF Let H'(A) < oo and § > 0. Then there exist sets {C',}°2, such that
diam €', <6, A c U2,C; and

ia(s) (diam CJ>S SHIA) +1 < H(A) + 1,

J=1 2
Then
> diam C; \ "
() < 3at) (£52)
j=1
alt) et <diam CJ>S . .
= —=2°¢ a(s) (diam (')
afs) ; 2 J
a(t) —tgt—s $
<257 (R (A) + 1),
< T )
We send 6 — 0 to conclude HtﬁA) = 0. This proves assertion (i). Assertion
(ii) follows at once from (i).

DEFINITION The Hausdorff dimension of a set A C R" is defined 1o be
Haim(A) = Inf{0 < s < 0o | H*(A) = 0}.

REMARK Observe Hgim(A) < n. Let s = Hym(A). Then H'(A) = 0 for
all t > s and HY(A) = +oo for all ¢ < s; H°(A) may be any number
between 0 and oo, inclusive. Furthermore, Hgim(A) need not be an integer.
Even if Hym(A) = k is an integer and 0 < H*(A4) < oo, A need not be a
“k-dimensional surface” in any sense; see Falconer [FA] or Federer [F] for

examples of extremely complicated Cantor-like subsets A of X". with 0 <
HF(A) <00, |

e I

2.2 Isodiametric Inequality; H* = L

Our goal in this section is to prove H™ = L™ on R™. This is nontrivial; £" is
defined as the n-fold product of one-dimensional Lebesgue measure £!, whence
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L£r =inf{3 2, L(Q:) | Qi cubes, A C U2 Q;}. On the other hand H™(A)
is computed in terms of arbitrary coverings of small diameter.

LEMMA 1

Let f: R* — [0,00] be L™-measurable. Then the region “under the graph
of "

A={(z,y) |z e Ry €R0 <y < f(z)}
is L -measurable.

PROOF Let B={re€R"| f(zx)=oco}and C = {z € R" | 0 < f(z) < oc}.
In addition, define

] j+ 1 A
CJkE{IEOI%Sf($)<]—E~} (]—’:0,...;k:l,...),

so that C = U32,Cjk. Finally, set

Then Dy, and Ej, are L™!-measurable and Dy C A C Ex. Write D = U2 Dy,
and E = N2 ,Eg. Then also D C A C E, with D and E both £L™!-
measurable. Now

1

L"7'((B - D) N B(O, R)) < L ((Bx ~ Dy) N B(O, ) < £ L*(B(0, R),

and the last term goes to zero as k — co. Thus, L*!((E — D)NB(0, R)) = 0,
and so L™TY(E - D) = 0. Hence L*"'(A — D) = 0, and consequently A is
L7~ !-measurable.
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FIGURE 2.1
Steiner symmetrization.

NOTATION Fix a,b € R, |a| = 1. We define
¢ = {b+ta|teR}, the line through b in the direction a,

P, = {z € R" | z-a = 0}, the plane through the origin
perpendicular to a.

DEFINITION Choose a € R™ with |a| = 1, and let A C R". We define the
Steiner symmetrization of A with respect to the plane P, to be the set

s.(a= U {b+talltl§%H‘(AﬂL‘;)}.
bEP,
ANLE#0

LEMMA 2 PROPERTIES OF STEINER SYMMETRIZATION
(i) diam S,(A) < diam A.

(ii) If Ais L"™-measurable, then so is S,(A); and L(S,(A)) = L™(A).

PROOF
1. Statement (i) is trivial if diam A = oo; assume therefore diam A < oo.
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We may also suppose A closed. Fix € > 0 and select 7.y € S,(A) such that
diam S, (A4) < |z~ y| + e
Write b=z — (z-a)aand ¢ = y — (y - a)a; then b,c € P,. Set
r = inf{t | b+ ta € A},
s =sup{t | b+ta € A},
u=inf{t | c+ta € A},

v=sup{t|c+ta € A}

Without loss of generality, we may assume v — 7 > s — u. Then
S 1 + 1(
U—r_i(v—r) 58 u)
1 1
= Js=)+ 50— )

I
> %H‘(AHL,‘}) + EH‘(A NLY).
Now, |z -a| < 1/2 HY(ANLE), ly-a| < 1/2 HI(ANL?), and consequently,

v—r > |z-al+y-al > |z-a-y-al

Therefore,
(diam S, (A) — €)% < |z — y|?
=lb—c+|z-a—-y-af
<lb—cP+(@w-1)
=|(b+ra) - (c+ va)?
< (diam A)z,
since A is closed and s0 b + ra,c + va € A. Thus diam S,(A4) — e < diam A.
This establishes (i).
2. As L™ is rotation invariant, we may assume a = e, = {0,...,0,1). Then
P, = P, = R Since £! = H! on R!, Fubini’s Theorem implies the

map f : R*! — R defined by f(b) = H'(AN L§) is L*~'-measurable and
L(A) = [ga_r f(b) db. Hence

Sa(A) = {(b,y) | _fz(b) <y< f%@} ~{,0 1 LinA=0)
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is L™-measurable by Lemma 1, and
CsA) = [ IO d=cr). ]

R=!

REMARK In proving H™ = L" below, observe we only use statement (ii)
above in the special case that a is a standard coordinate vector. Since H™ is
obviously rotation invariant, we therefore in fact prove L™ is rotation invariant.

THEOREM 1 ISODIAMETRIC INEQUALITY
For all sets A C R™,

LM A) < a(n)<diar; 4)

REMARK This is interesting since it is not necessarily the case that A is con-
tained in a ball of diameter diam A.

PROOF  If diam A = oo, this is trivial; let us therefore suppose diam A < oo,
Let {e},... €5} be the standard basis for R*. Define A; = S, (4), 4, =
Se,(Ar),-.., Ap = Se (An—y). Write A* = A,,.

1. Claim #1: A* is symmetric with respect to the origin.

Proof of Claim #1: Clearly A; is symmetric with respect to P,. Let 1 <
k < n and suppose Ay is symmetric with respect to P.,,...,Fe,. Clearly

Ags1 = Sy, (Ar) is symmetric with respect to P, . Fix 1 < j < k and let
S; i R* — R" be reflection through F,. Let b € P, Since S;(Ax) = Ag,

K+t
H (AN L) = H (AN LET);

consequently
{t|b+tegss € Apr} = {t | S;b+ texsy € Aryr}

Thus S;(Ar4)) = Ay, that s, Agyy is symmetric with respect to P.,. Thus

A* = A,, is symmetric with respect to P, ,.... P. and so with respect to the
origin.

diam A*\ "

2. Claim #2: L7(A*) < a(n)<ﬁ%~—) :
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Proof of Claim #2: Choose z € A*. Then —z € A* by Claim #1, and so
diam A* > 2|z|. Thus A* C B(0, diam A*/2) and consequently

oAy < £ (B (0, diarr21 A*)) :a(n)(dianzl A*)n.

3. Claim #3: L™(A) < a(n)(diam A/2)".

Proof of Claim #3: A is L™-measurable, and thus Lemma 2 implies

LAYy = L(A) , diam (A)* < diam A.
Hence
LM (A) < L7(A) = L™((A)")
< a(n) (diarnz(A)*) by Claim #2
< a(n) (diar; _A_) "
= o(n) (dia‘; A)n. I
THEOREM 2
H"=L" on R™,

L. Claim #1: L™(A) < H™(A) for ali A ¢ R™.

Proof of Claim #1: Fix 6 > 0. Chonse sets {C;}72, such that A C UR,C;
and diam C; < §. Then by the Isodiametric Inequality,

C”(A)Si ia (d‘amc) .

j=1

Taking infima, we find L*(A) < HP(A), and thus L*(A) < H™(A).
2. Now, from the definition of £™ as £! x---x £!, we see that for all A ¢ R
and § > 0,

i=1

mf{Zﬁ" )| Qi cubes,ACUQl,dlam Qz<5}

Here and afterwards we consider only cubes parallel to the coordinate axes
in R™,
3. Claim #2: 'H™ is absolutely continuous with respect to L™,
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Proof of Claim #2: Set C,, = a(n)(v/n/2)™. Then for each cube @ C R,

an) (25 ) =@,

2
Thus

) < mf{z d1am Qi ) | Q; cubes, A C U Q;, dianmr @; < (5}
Cnl™(A

i=1
)
Let 6 — 0.
4. Claim #3: H™(A) < L™(A) for all A C R™.

Proof of Claim #3: Fix § > 0, € > 0. We can select cubes {Q;}32, such that
A CUZ,Q, diam @; < 4, and

oo

> LMQ:) < L7(A) + e

i=}

By Corollary 1 in Section 1.5, for each ¢ there exist disjoint closed balis
{B.}$2., contained in Q7 such that

diam Bi < 6, L (Qi— U B,i) =[" (Qg_ U B,i) =0.
k=1 k=1

By Claim #2, H™ (Q; — U2 Bj}) = 0. Thus

MA) Y HRQ) =Y HE (U B:;) <Y > THE(BY)
i=1 i=1 k=1 =1 k=1
<33 o (232 = S S omy = o (Ui
=1 k=1 i=1 k=1 i==1 k=1

2.3 Densities

We proved in Section 1.7

1im£ (B(m,r)ﬂE):{ 1 forLtaezeFE

r—0 a(n)rm 0 forLMae xzeR* —
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provided E C R"™ is L£"-measurable. This section develops some analogous
statements for lower dimensional Hausdorff measures. We assume throughout
0<s<n.

THEOREM I
Assume E C R™, E is H*-measurable, and H°(E) < co. Then

. H*B(z,r)NE)
lim ——————
r—0 a(s)rs

for H® ae.z € R* — E.

=0

PROOF Fix ¢t > 0 and define
H(B{z,r)NE
A = {weR" —Eilimsup—(——(—{-r—)——) >t}.
0 afs)rs

Now H*® L E is a Radon measure, and so given € > 0, there exists a compact
set K C E such that
H(E-K)<e (%)
Set U =R" — K; U is open and A, C U. Fix § > 0 and consider
H* (B NE
F= {B(w,r) | B(z,r) CU,0 <7 <6, —(07((”’-87’3——) > t} :

By the Vitali Covering Theorem, there exists a countable disjoint family of balls
{B;}32, in F such that

Ae C U B,.
i=1}

Write B; = B(%;,7;). Then

Hios(As) <Z )(57:)° S——-ZHSBOE)

i=1
]

s 5
< THS(UmE) = %—HS(E— K) < >,

by (%). Let § — 0 to find H®(A;) < 5%t~ e. Thus H*(A;) = 0 for each ¢ > 0,
and the theorem follows.

THEOREM 2
Assume E C R™, E is H*-measurable, and H*(E) < co. Then

HS
El_ < Jim sup BT 0 B)

<1
0 a(s)rs -

for H® ae.x € E.
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REMARK It is possible to have

s ,TVOE
lim sup H———————-——-——(B(w r) )
r—0 a(S)Ts

<1

and
s E
limint 7 B@&N O E)
r—0 a(S)Ts

for H* ae. z € E, even if 0 < H*(E) <co. |

=0

REMARK .

s
1. Claim #1: tim sup T BE&T) 0 B)
r—0 Ol(s)rs

Proof of Claim #1: Fix € > 0, t > 1 and define
5(B(z,m)NE
By = {weEllimsupM—-—)>t}.

0 a(s)rs

<1 for H® ae.z € E.

Since H*® L E' is Radon, there exists an open set U containing B, with
H(UNE) <H(B) +e. (%)
Define

F= {B(m,r)| B(z,r)CU, 0<r<§ f‘—(B—a((’f’S—)f}Q@ >t}.

By Corollary 1 of the Vitali Covering Theorem in Section 1.5.1, there exists a
countable disjoint family of balls {B;}{2; in F such that -

BthBu U B

i=m+1
for each m = 1,2,.... Write B; = B(z;,7;). Then

Hio(B) <3 et + Y als)(5m)’

i=1 i=m+41
m 58 [e o]
< - Z BﬂE)+—ZHsBmE)
i=! i=m+1
<wewnm+ T ( U B-ﬂE)
— t t ) i .
i=m-+1
This estimate is valid for m = 1,...; thus our sending m to infinity yields the
estimate .
1 1
Hios(Bi) < S (U N B) < 7(*(By) + ),
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by (x). Let 6 — 0 and then € — 0:

HE(By).

o |

H*(B) <

Since H*(B;) < H*(E) < oo, this implies H*(B;) = 0 for each t > 1.

s 1
2. Claim #2: timsup F2BENOE) o Ly e ve e b
=0 afs)rs 28
Proof of Claim #2: For § > 0, 1 > 7 > 0, denote by E(4, 7) the set of points
z € F such that

diam C\°
2

HACNE) < TOz(s)(

whenever C C R z € C, diam C < 6. Then if {C;}52, are subsets of R™
with diam C; < 8, E(8,7) C U,C;, C; NE(6,7) # 0, we have

8

HIE(S, 1)) < HE(C: N E(6,7))

-.
Il

]38

H3(C: N E)

]a(s)<diar; C’)

HE(E(6,7)), and so HE(E(6,7)) =0, since 0 < 7 < 1
) < H*(E) < oo. In particular,

o
Il

<7

e

2

Hence Hé( ( <
and H3(E(6, 7)) < HI(E

H(E(5,1=6))=0. (%)
Now if z € F and

lim su
Hrn_.o P a(s)rs 28

there exists 6 > 0 such that

Heo(B(e,)NE) _ 16
a(s)rs - 28

forall 0 < r < §. Thus if z € C and diam C < 6,
HY(C N E) = H,(CN E)
< Hi,(B(z,diam C) N E)
diam C’)s

< (1~ O)ats) (25
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by (+); consequently x € E(§,1 — 6). But then

{a: € E | timsup =BE@:1)NE) i} < | BE(/k1- 1/k),
r—0 o(s)rs 2 et

and so (x) finishes the proof of Claim #2.
3. Since H*(B(z,r)NE) > H (B(z,r) N E), Claim #2 at once implies
the lower estimate in the statement of the theorem. |

2.4 Hausdorff measure and elementary properties of functions

In this section we record for jater use some simple properties relating the be-
havior of functions and Hausdorff measure.

24.1 Hausdorff measure and Lipschitz mappings
DEFINITIONS

(i) A function f : R* — R™ is called Lipschitz if there exists a constant C
such that

|f(z) = f(y)| £ Clz —yl| for all z,y € R™.

/(=) - f()]

(i) Lip (f) = sup { o

| =,y ER",a:;éy}.

THEOREM 1
Let f : R* — R™ be Lipschitz, A CR*,0 < s < 0o. Then

H*(f(4)) < (Lip (f)) T (A).
PROOF Fix § > 0 and choose sets {C;}52, C R™ such that diam C; < ¢,
A C U, C;. Then diam f(C;) < Lip(f) diam C; < Lip(f)é and f(4) C
U2, f(C;). Thus

s (diam f(Ci)>s
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Taking infima over all such sets {C;}2,, we find
Hip(s(f(A)) < (Lip (£ HZ(A).

Send § — O to finish the proof. |

COROLLARY 1
Suppose n. > k. Let P : R™ — RF be the usual projection, A C R*, 0 < s < 00
Then

H(P(A)) < H(A).

PrROOF Lip(P)=1. |

2.4.2 Graphs of Lipschitz functions
DEFINITION For [:R* - R™ A CR"?, write

G(f; A) = {(z, f(z)) |z € A} CR* x R™ = R**™,;

G(f; A) is the graph of f over A.

THEOREM 2
Assume [ :R™ — R™, L*(A) > 0.

(i) Then Hdim(G(f; A)) > n.
(i) If f is Lipschitz, Ham(G(f; A)) = n.

REMARK We thus see the graph of a Lipschitz function f has the expected
Hausdorff dimension. We will later discover from the Area Formula in Sec-
tion 3.3 that H™(G(f; A)) can be computed according to the usual rules of
calculus. |

PROOF

1. Let P: R**t™ — R™ be the projection. Then H™(G(f; A)) > H"(4) >
0 and thus Hagn(G(f; A)) > n.

2. Let Q denote any cube in R* of side length 1. Subdivide @ into k"
subcubes of side length 1/k. Call these subcubes @, ..., Qx~. Note diam Q; =
v /k. Define

%

aj_=_;r€1ié1jf‘(m) and b’ E;re%)i_fl(m) (i=1,...,m7=1,...,k").
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Since f is Lipschitz,

|b — a%| < Lip (f)diam Q; = Lip (f)“\,/cj :

Next, let C; = Q; X Hi"ll(a b). Then

3773
{(z, f(2)) |z €Q;NA} CCy
and diam C; < C/k. Since G(f; ANQ) C UknlC], we have

HEw(G(F,ANQ)) < Za(n) (dlam 5 >

7=1

< k"a(n) (%)n = a(n) (%)n

Then, letting k — oo, we find H*(G(f; ANQ)) < 00, and s0 Hgim (G f: AN
Q)) < n. This estimate is valid for each cube Q in R™ of side length 1. and
consequently Ham(G(f; A)) <n. |

2.4.3 The set where a summable function is large

If a function is locally summable, we can estimate the Hausdorff measure of
the set where it is locally large.

THEOREM 3
Let f € L} _(R™), suppose 0 < s < n, and define

1
As = meR”llimsup——/ [fldy >0;.
r=0 7% JB(z,r)

HE(Ag) =0

Then

PROOF  We may as well assume f € L'(R™). By the Lebesgue—Besicovitch
Differentiation Theorem (Section 1.7.1)

lim ][ fldy = ()],
r—0 B(z,r)

and thus

1
lim — dy =0
r—0 s B(z,r) lfl
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for L™ a.e. z, since 0 < s < n. Hence
L*(Ag) =0.

Now fix € > 0,6 > 0, 0 > 0. As f is L*-summable, there exists 7 > 0 such
that

L*(U) <7 implies / |f| dz < 0.
U
Define

1
AS = xeR”llimsup—;/ |fldy >€p;
r—0 T JB(z,r)

by the preceding
LH(AS) =0.
There thus exists an open subset U with U D A§, L*(U) < 7. Set

F= {B(x,r) |z € AS,0<r <6,B(z,r) C U,/B

(z,r)

|f] dy>ers}.

By the Vitali Covering Theorem, there exist disjoint balls {B;}$°, in F such
that

AS C DBi.
i=]

Hence, writing r; for the radius of B;, we compute

o

Hios(A5) < ) a(s)(5r:)*

i=1

a(s)5° /
< — |f] dy

a(s)5°
<2 e

t
< a(s)5 -
€

Send 8§ — 0, and then ¢ — 0, to discover

He (A =0. |
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I

Area and Coarea Formulas

In this chapter we study Lipschitz mappings
f:R* - R"

and derive corresponding “change of variables” formulas. There are two essen-
tially different cases depending on the relative size of n,m.

If m > n, the Area Formula asserts that the n-dimensional measure of f(A),
counting multiplicity, can be calculated by integrating the appropriate Jacobian
of f over A.

If m < n, the Coarea Formula states that the integral of the n — m dimen-
sional measure of the level sets of f is computed by integrating the Jacobian.
This assertion is a far-reaching generalization of Fubini’s Theorem. (The word
“coarea” is pronounced, and sometimes spelled, “co-area.”)

We begin in Section 3.1 with a detailed study of the differentiability properties
of Lipschitz functions and prove Rademacher’s Theorem. In Section 3.2 we
discuss linear maps from R" to R™ and introduce Jacobians. The Area Formula
is proved in Section 3.3, the Coarea Formula in Section 3.4.

3.1 Lipschitz functions, Rademacher’s Theorem
3.1.1 Lipschitz functions
We recall and extend slightly some terminology from Section 2.4.1.

DEFINITION

(i) Let ACR™. A function f: A — R™ is called Lipschitz provided

|f(z) - f)l < Clz -yl (%)
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for some constant C and all z,y € A. The smallest constant C such that
(%) holds for all x,y is denoted

Lip (f) = sup{—————lf(Ti:zl(y)l | z,y € A,z # y} .

(i) A function f : A — R™ s called locally Lipschitz if for each compact
K C A, there exists a constant Cg such that

|f(z) = f()| < Cklz -yl
forall z,y € K.

THEQOREM 1 EXTENSION OF LIPSCHITZ FUNCTIONS
Assume A_ C R*, and let f : A — R™ be Lipschitz. There exists a Lipschitz
function f : R* — R™ such that

() f=fonA.
(i) Lip (f) < v/mLip (f).

PROOF
1. First assume f: A — R. Define

f(z) = inf {f(a) + Lip (/)|= — al}.
If b€ A, then we have f(b) = f(b). This follows since for all a € A,
f(a) +Lip (f)lb—a| > f(b),
whereas obviously f(b) < f(b). If z,y € R™, then
f(z) < inf {f(a) +Lip (f)(ly — ol + |z —y])}
= f(y) + Lip (f)lz - |,
and similarly
Fl) < Fla) + Lip (lz — ol
2.Inthe general case f : A — R™, f = (f!,..., f™),define f = (f!,..., f™)
Then
[f(z) - F) = Zm; |Fi(z) - F@)P <m(Lip (N)e -yl |

REMARK  Kirszbraun's Theorem (Federgr [E, Section 2.10.43]) asserts that there
in fact exists an extension f with Lip (f) = Lip (f). |
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3.1.2 Rademacher’s Theorem
We next prove Rademacher’s remarkable theorem that a Lipschitz function is

differentiable L™ a.e. This is surprising since the inequality

|f(z) = f(y)| < Lip(f)lz -y

apparently says nothing about the possibility of locally approximating f by a
linear map.

DEFINITION The function f : R* — R™ is differentiable at x € R"™ if there
exists a linear mapping

L:R* - R™
such that
o ) = F@) = L= 9| _ o
y—z |z — y|

or, equivalently,

fw)=f@) +Lly-2)+olly—z)) a y—z

NOTATION If such a linear mapping L exists, it is clearly unique, and we write

Df(z)

for L. We call Df(x) the derivative of f at .

THEOREM 2 RADEMACHER’S THEOREM .
Let f : R™ — R™ be a locally Lipschitz function. Then f is differentiable L™
ae..
PROOF

1. We may assume m = 1. Since differentiability is a local property, we may
as well also suppose f is Lipschitz.

2. Fix any v € R™ with |v| = 1, and define

flz+tv) - f(z)

= |i n
va(w)_gl_% ; (z € R™),
provided this limit exists.

3. Claim #1. D, f(z) exists for L™ a.e. z.
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Proof of Claim #1: Since f is continuous,

f(z +tv) — f(z)
P t
= lim sup _______—f(x *iv) - f(2)

k—00 o<lt|<i/k t
t rational

D, f(z) = limsu
t—0

is Borel measurable, as is

D, f(z) = lignélff_(fif?‘_f(xl ‘

—

Thus
A, = {z € R* | D, f(x) does not exist}
= {z € R" | D ,f(z) < D, f(z)}

is Borel measurable.
Now, for each z,v € R®, with |v| =1, define ¢ : R — R by

w(t) = f(z +tv) (t €eR).

Then ¢ is Lipschitz, thus absolutely continuous, and thus differentiable £ a.e.
Hence

H' (A,NL)=0
for each line L parallel to v. Fubini’s Theorem then implies
Lr(A,) =0.

4. As a consequence of Claim #1, we see

grad f(z) = (%(m),,%(m))

exists for L™ a.e. z.
5. Claim #2: D, f(z) =v- grad f(z) for L™ ae. z.

Proof of Claim #2: Let ( € C°(R"). Then

[ [ eI oy ao= - [ |42

Let ¢ = 1/k for k = 1,... in the above equality and note

fz+ 3v) - f(2)

k

< Lip (f)v| = Lip ().
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Thus the Dominated Convergence Theorem implies

/ D, f(z)¢(z) dw:—/ f(z)Dy(¢(z) dx

Rn Rr
= — ; v T ¢ z) dz
=3 YRCE-CF
:.Zvi/w -g?fl(x)((a:) dx

= [ (o ema £(@))¢(a)
Rn

where we used Fubini’s Theorem and the absolute continuity of f on lines. The

above equality holding for each ¢ € C.(R™) implies D, f = v -grad f L™ ae.
6. Now choose {vx}22, to be a countable, dense subset of B(0, 1). Set
A = {z € R" | D,, f(z), grad f(z) exist and Dy, f(z) = vi - grad f(z)}

for k= 1,2,..., and define

h

i
T8

b

x

Observe
LMR* — A)=0.
7. Claim #3: f is differentiable at each point z € A.

Proof of Claim #3: Fix any z € A. Choose v € 8B(0,1), t € R, ¢t # 0, and
write )

Qlz,v,t) = M—Evt)——i(ﬁ —~v-grad f(z).
Then if v’ € 8B(0, 1), we have

Q8 - Q.8 < (LEHLIEE D |y oty grad ()

< Lip (v~ v/| + lgrad f(2)| [ — /|
< (VA -+ Dlip (Hlv - v'] *)

Now fix € > 0, and choose N so large that if v € 8B(0, 1), then

l’U-—"Ukl <

€
_m for some ICE{I,,N} (**}
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Now
tli_rf(l)Q(x,vk,t):O (k=1,...,N),
and thus there exists § > 0 so that
ImeJﬂ<§mmH0<M<&k:L“qN (% % %)
Consequently, for each v € 9B(0, 1), there exists k € {1,..., N} such that
1Q(z,v,1)| < |Q(z, vi, )| + |Q(z, v, t) — Q(z, vk, t)| <€

if 0 < |t| < 8, according to () through (% % x). Note the same 6 > 0 works for
all v € 0B(0,1).
Now choose any y € R®, y # z. Write v = (y—z)/|y—z/, so that y = z+tv,
t = |z — y|. Then
f(y) — f(z) — grad f(z) - (y ~ z) = f(z + tv) — f(z) — tv-grad f(z)
= oft)

=o(lz - yl), asy — .
Hence f is differentiable at z, with
Df(z) = grad f(z). |

REMARK See Theorem 2 in Section 6.2 for another proof of Rademacher’s
Theorem and Theorem 1 in Section 6.2 for a generalization. In Section 6.4 we
prove Aleksandrov’s Theorem, stating that a convex function is twice differen-
tiable a.e.

We next record a technical lemma for use later.

COROLLARY 1
(i) Let f:R™ — R™ be locally Lipschitz, and

A

Z={zeR"| f(z) =0}

Then Df(z) =0 for L" ae. T € Z.
(i) Let f,g: R™ — R™ be locally Lipschitz, and

Y = {z € B | g(f(x)) = a}.
Then

Dg(f(z)Df(z)=1 for L' aez€Y.



3.1 Lipschitz functions, Rademacher’s Theorem

PROOF
1. We may assume m = | in assertion (i).
2. Choose z € Z so that Df(z) exists, and

L£YZ N B(z,r))

lim =1

r—0  Lr(B(z,r))
L™ ae. £ € Z will do. Then
f)=Df(z)-(y~z)+o(ly—z|) as y -z
Assume Df(z) = a # 0, and set
S= {vEBB(O,l)[a-vZ %la[}.

Foreachve Sand ¢ > 0, set y =z + tv in (x%):

i

flz+tv) = a-tv+ o(|tv])

%‘1—'+o(t) as ¢ — 0.

IV

Hence there exists £y > O such that

fx+tw)y>0for0<t <ty veS,

a contradiction to (x). This proves assertion (i).
3. To prove assertion (ii), first define

dmn Df = {z | Df(x) exists },

dmn Dg = {z | Dg(z) exists }.

Let
X =Y ndmn Df N f~'(dmn Dyg).
Then
- Y — X C (R — dmn Df) U g(R" — dmn Dy).

This follows since

z €Y — f~!(dmn Dg)
implies

f(z) € R* — dmn Dy,
and so

z = g(f(z)) € g(R* — dmn Dg).

85
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According to (x x %) and Rademacher’s Theorem,
LMY - X)=0.
Now if £ € X, Dg(f(z)) and D f(z) exist, and so
Dg(f(z))Df (x) = D(g o f)(z)
exists. Since (go f)(z) —z =0 on Y, assertion (i) implies

D(gofy=1  LraeonY. |

3.2 Linear maps and Jacobians

We next review some basic linear algebra. Our goal thereafter will be to define
the Jacobian of a map f : R* — R™.

3.2.1 Linear maps

DEFINITIONS
(i) A linear map O : R* — R™ is orthogonal if (Oz) - (Oy) =z -y for all
z,y € R*.
(i) A linear map S : R* — R™ is symmetric if - (Sy) = (Sz) - y for all
z,y € R*.

(iii) A linear map D : R™ — R" is diagonal if there exist dy,...,d, € R such
that Dx = (dyzy,...,dnzy) for all z € R™.

(iv) Let A:R* — R™ be linear. The adjoint of A is the linear map A* :
R™ — R" defined by x - (A*y) = (Az) -y for all z € R*, y € R™.

First we recall some routine facts from linear algebra.

THEOREM 1

(i A=A

(i) (AoB)* = B*o A*,
(i) O*=0"'ifO:R* - R™ is orthogonal.
(ivy S*=S5ifS:R* — R" is symmetric.

(v) IfS:R™ — R" is symmetric, there exists an orthogonal map O : R* —

R"™ and a diagonal map D : R* — R™ such that
S=00Do0O™%.
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(vi) If O :R* = R™ is orthogonal, then n < m and
0% =1 on R™,
000" =1 on O(R™).

THEOREM 2 POLAR DECOMPOSITION
Let L : R* — R™ be a linear mapping.

(i) If n < 'm, there exists a symmetric map S : R* — R"™ and an orthogonal
map O : R* — R™ such that

L=0o0S.

(i) If n > m, there exists a symmetric map S : R™ — R™ and an orthogonal
map O : R™ — R™ such that

L=5800".

PROOF
1. First suppose n < m. Consider C = L* o L : R* — R*. Now

(Czy-y=(L*olz) - y=Lz- Ly
=z-L*oLy
=z-Cy

and also
(Cz)-z=Lz-Lz > 0.

Thus C is symmetric, nonnegative definite. Hence there exist py,...,ptn = 0
and an orthogonal basis {zx};_, of R* such that

Czi = pkk (k=1,...,n).

Write uy = A2, A >0 (k= 1,...,n).
2. Claim: There exists an orthonormal set {Zk}}::I in R™ such that

Lz = Ae 2k (k‘— i,...,n).
Proof of Claim: 1f A # 0, define
1

= —Lzx,.
Zk /\k Tk

Then if /\k, /\l 75 0,

1 1
2kt 2l = I/\—ILZE]‘; . LJJ[ = m(ka) Iy

X2 A
Dk o= ZEE
/\k:/\lxk Zi /\l kl
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Thus the set {zx | A # 0} is orthonormal. If Ax = 0, define z; to be any
unit vector such that {z;}}_, is orthonormal.
3. Now define

S:R* > R* by Sz = A7k (k=1,...,n)
and
O:R* - R™ by Ox) = 2 (k=1,...,n).
Then O o Sty = A\ Oz = Ay 2z, = Lxk, and so
L=0o0S.
The mapping S is clearly symmetric, and O is orthogonal since
Oz - Oz = 2 - 21 = by

4. Assertion (ii) follows from our applying (i) to L* : R™ — R*. |

DEFINITION Assume L :R* — R™ s linear.

() Ifn <m, we write L = 008§ as above, and we define the Jacobian of

L to0 be
[L] = | det S|.
() Ifn>m, we write L = S o O* as above, and we define the Jacobian of
L to be
1L] = |detS|.
REMARKS

(i) It follows from Theorem 3 below that the definition of [L] is independent
of the particular choices of O and S.

(i) Clearly,

L] =[] 1 -
THEOREM 3
® Ifn<m,
[L]? = det(L* o L).
(i) Ifn>m,

[L]* =det(Lo L*).
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PROOF
1. Assume n < m and write

L=0ocS5[*=800"=500%
then
L*oL=800*0008=5%
since O is orthogonal, and thus O* o O = I. Hence
det(L* o L) = (det 5)* = [L]*.

2. The proof of (ii) is similar. 1

Theorem 3 provides us with a useful method for computing [L], which we
augment with the Binet—Cauchy formula below.

DEFINITIONS
(i) Ifn <m, we define
Alm,n)={x:{1,...,n} = {1,...,m} | X is increasing}.
(ii) For each A € A(m,n), we define Py : R™ — R" by

P)\(xly sy .'Em) = (J’.)\(I)a L) x)\(n))'

REMARK For each A € A(m,n), there exists an n-dimensional subspace
Sy = span{em), ceny e)\(n)} CR™

such that P, is the projection of R™ onto Sy. |

THEOREM 4 BINET-CAUCHY FORMULA i
Assume n < mand L:R" — R™ is linear. Then

[L]P= D (det(Pyo L))

AEA(m,n)

REMARK

(i) Thus to calculate [L]?, we compute the sums of the squares of the deter-
minants of each (n X n)-submatrix of the (m x n)-matrix representing L
(with respect to the standard bases of R™ and R™).

(ii) In view of Lemma 1 in Section 3.3.1, this is a kind of higher dimensional
version of the Pythagorean Theorem. |
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RM

FIGURE 3.1
The square of the H{™-measure of A equals the sum of the squares of the
‘H™-measure of the projections of A onto the coordinate planes,

PROOF
1. Identifying linear maps with their matrices with respect to the standard
bases of R® and R™, we write

L= ((lw))any A= L* ol = ((di]‘))an;
so that
aijzzlkilkj (i,j=1,...,n).
k=1
2. Then
n
[L) =det A= Z sgn (U)Hdi,o(i),

cED i=1

Z denoting the set of all permutations of {1,...,n}. Thus

[LF =D sen () ][ thilkoty

oEY i=1 k=]
n

= sen(0) ) [Tlhwilewon,
ceL wEP i=]

@ denoting the set of all one-to-one mappings of {1,...,n} into {1,...,m}.
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3. For each ¢ € ®, we can uniquely write ¢ = X o6, where # € ¥ and
X € A(m,n). Consequently,

'ILBZ — Z sgn (g) Z Z H I)‘oo(i),il)\o()(i),d(i)

oes A€A(m,n) OET i=1
mn

= Z sgn (o) Z Z Hl)\(i),()-‘(i)l)\(i),oo()—‘(i)
gEY AEA(m,n) fey i=1

Z Z Z sgn () HI)\(I) 0(i)Ir(i),000(3)

AEA(mn) 0ET cET

Z Z Z sgn (8)sgn (p) Hl)\(z) oy Ia) . p(e)

AEA(m,n) pEL BT

(where we set p = ¢ o 0)

> <Z sgn (6) H Iagiy 60 )

A€A(m,n) \GEL

Z (det(Pyo L)% 1

AEA(Mn)

Il

3.2.2 Jacobians

Now let f : R® — R™ be Lipschitz. By Rademacher’s Theorem, f is differ-
entiable L™ a.e., and therefore Df(z) exists and can be regarded as a linear
mapping from R” into R™ for L™ a.e. z € R™.

NOTATION If f:R™ — R™, f=(f! ..., f™), we write the gradient matrix
¥ Oz Ozn
Df = :
ot o
Ory 0rn Jxn

DEFINITION The Jacobian of f is

Jf(z) = [Df(x)] (L™ ae. z).
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3.3 The Area Formula

Throughout this section, we assume

n<m.

3.3.1 Preliminaries

LEMMA 1

Suppose L : R™ — R™ is linear, n < m. Then
H™M(L(A)) = [L1L"(4)

forall ACR™,

PROOF

1. Write L = O 0 § as in Section 3.1; [L] = |detS]|.

2. If [L] = 0, then dim S(R*) < n — 1 and so dim L(R") < n — 1. Conse-
quently, H*(L(R"™)) = 0.

3.1 [L] >0, then

H™(L(B(z,r)) ' L"(0*o L(B(z,r)) L*(0*00 o S(B(z,r))

Lr(B(z,r))  L(B(z,r)) L(B(z,r))
_ En(S(B(J:, 7)) - L(S(B(O, 1)
Lr(B(z,r)) a(n)
= |detS] = [L].

4. Define v(A) = H™(L(A)) for all A C R*. Then v is a Radon measure,
v & L", and

. v(B(z,71))
n = lim ——————— = .
Dﬁ V(x) rl—I>T(1) En(B(.'E,’I")) IIL]]
Thus for all Borel sets B C R™, Theorem 2 in Section 1.6.2 implies
H™(L(B)) = [L]£*(B).

Since v and L™ are Radon measures, the same formula holds for all sets A C R™.

Henceforth we assume f: R* — R™ is Lipschitz.
LEMMA 2
Let A C R® be L*-measurable. Then

(i) f(A) is H™-measurable,
(i) the mapping y — H°(A N f~'{y}) is H"-measurable on R™, and
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(iii)  fgm MO(AN 7 {y}) dH™ < (Lip (f))"L™(A).

REMARK The mapping y — HO(ANf~!{y}) is called the multiplicity function.

PROOF
1. We may assume with no loss of generality that A is bounded.
2. By Theorem 5 in Section 1.1.1, there exist compact sets K; C A such that

LMK > E”(A)—% (=1,2..).

As L"(A) < oo and A is L"-measurable, L™(A — K;) < 1/i. Since f is
continuous, f(K;) is compact and thus H™-measurable. Hence f (U, K;) =
U, f(K;) is H™-measurable. Furthermore,

H" <f(A)—f<gKi>> =n <f <A—gKi>>

< (Lip (f))"L™ (A -U 1@») =0.

t=1

Thus f(A) is H™-measurable: this proves (i).
3. Let

B = {Q 1 Q = (ay,ba] X -+ x (an, bal,

; i+ 1 . ,
a; = % , b= c——:-— , C; integers, 1 = 1,2,...,n},
and note
R = J @
QEBy
Now
Gk = D Xjang) I8 H-measurable by (i),
QEBx
and

gk(y) = number of cubes Q € By, such that f~ {y} N (AN Q) # 0.
Thus

g THU(ANFHy})  ask— oo
for each y € R™, and so y — HP(AN f~*{y}) is H™-measurable.
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4. By the Monotone Convergence Theorem,

lim gk dH™

k—oo Jpm

lim > H(f(ANQ))

QeBg

< limsup ) (Lip (f))"L™(ANQ)

k—oo QEBy

= (Lip ()L (4). |

| rean sty o

il

LEMMA 3
Let t > 1 and B = {x | Df(x) exists, Jf(x) > O}. Then there is a countable
collection {Ex}$2., of Borel subsets of R™ such that

@ B=UZ B
(i) f|g, is one-to-one (k =1,2,...); and

(i) for each k = 1,2,..., there exists a symmetric automorphism T}, : R* —
R™ such that

Lip (f ls.) o Ty ') <t Lip (Tho(f |m) ™) <t

77| det Ti| < Jf |, < 7] det Tk|.

PROOF
1, Fix € > 0 so that

1

n +e<l<t—e
Let C be a countable dense subset of B and let S be a countable dense subset
of symmetric automorphisms of R™.

2. Then, for each c€ C, T € S, and i = 1,2,..., define E(c,T,?) to be the
set of all b € BN B(c,1/1) satisfying

1
(5 +¢) irel < IDs60l < ¢ = T 8
for all v € R™ and '

|£(a) = f(b) — Df(b) - (a —b)| < €[T(a - b)| ()

for all @ € B(b,2/i). Note that E(c,T,1) is a Borel set since Df is Borel
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measurable. From (x) and (x) follows the estimate
1
1 T(e - ) < |f(a) = F®O) < tT(a ~b)| (% % %)

for b € E(c,T,1), a € B(b,2/%).
3. Claim: If b € E(c, T, 1), then

(% + e)nldetTl < Jf(b) < (t—e)|detT|.

Proof of Claim: Write Df(b) = L = 0 0 S, as above;
T5(5) = [DIO)) = | det 5|
By (%),
(5 +¢) 170l < 1@ 5yl = Isvl = (¢ T

for v € R*, and so

(%Jre) lv] <|(SoT Y| < (t - é€)lv| (veR).

Thus
(SoT™1)(B(0,1)) C B(0,t —e);
whence
|det(S o T™Y|a(n) < L*(B(0,t — €)) = a(n)(t — €)™,
and hence

[det S| < (t — €)™ detT|.

The proof of the other inequality is similar.

4. Relabel the countable collection {E(c,T,i) |c € C,T € S,i =1,2,...}
as {Ex}%2,. Select any b € B, write Df(b) = O 0 S as above, and choose
T-€ S such that

~-1
Lip(ToS")S(%-}-e), Lip(SoT ) <t-e
Now select i € {1,2,...} and ¢ € C so that [b~¢| < 1/4,
€
- — Ha—b)| < ————la—b| <€T(a —
|f(a) ~ f(b) — Df(b) - (a b)l_Lip(T_,)la b| < e[T(a —b)|

for all @ € B(b,2/i). Then b € E(¢,T,i). As this conclusion holds for all
b € B, statement (i) is proved.



96 Area and Coarea Formulas

5. Next choose any set E, which is of the form E(c, T,¢) for some ¢ € C,
TeS,i=1,2,.... Let Ty = T. According to (x %),
$Tua ~ 8){ < 1£(a) ~ FO)] < Ti(a— )
for all b € Ex, a € B(b,2/1). As Ex C B(c,1/i) C B(b,2/1), we thus have
%|Tk(a—b)| <|f(a) = f(O) < t|Ti(a - b)] (% * % %)

for all @, b € E; hence f |g, is one-to-one.
6. Finally, notice (% * + %) implies

Lip (f lg) o T7') Sty Lip (Teo (f 2)7") <t
whereas the claim provides the estimate
7 detTi| < Jf |g < t™|detTk|.

Assertion (iii) is proved. |

3.3.2 Proof of the Area Formula

THEOREM 1 AREA FORMULA
Let f : R® — R™ be Lipschitz, n < m. Then for each L™-measurable subset
ACR?,

/ Jf dz = / HO(AN FH{y}) dH(y).
A R™

PROOF

1. In view of Rademacher’s Theorem, we may as well assume Df(z) and
Jf(x) exist for all x € A. We may also suppose L™(A) < oo.

2. Case I. AC {Jf > 0}. Fix t > 1 and choose Borel sets {E;}72, as in
Lemma 3. We may assume the sets {Ey }32, are disjoint. Define By as in the
proof of Lemma 2. Set

Fj=EnQnA (Qi€B,i=12..)

Then the sets F; are disjoint and A = Uff;-=1F]?.
3. Claim #1:

Jm S HGE) = [ HOAN £ ) dH
- OO0 i,j:l R™
Proof of Claim #1: Let

3,j=1
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Rn

FIGURE 3.2
The Area Formula.

so that g (y) is the number of the sets {Fj} such that Finf~Hy} # 0.
Then gk (y) T HO(AN f~{y}) as k& — oo. Apply the Monotone Convergence
Theorem.

4. Note

H(f(F})) = HM(f |5, T} ' o Ti(Fy)) < "L (T3(F}))
and
CH(Ti(F})) = H™(Tj o (f IEJA)'1 o f(F})) S "M (f(F}))
by Lemma 3. Thus
tMHM(f(F])) < TN T (FY))
= t7"|det T;|L"(F})
< /FZ Jf dz
< | det T3] L™ (F})
= t"LY(T;(F}))
< ETHM(F(F),

where we repeatedly used Lemmas 1 and 3. Now sum on ¢ and j:

£ Y HAF(FD) < / Jf do < g Z HASE))-

4,5=1 ,j=1
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Now let & — oo and recall Claim #1:

t'z"/ HYUAN fFH{y}) dH™ < /AJf dzx
Rm

< tz"/ HY(AN f~ {y}) dH™
Rm

Finally, send t — 1%,
5. Case 2. A C {Jf =0}. Fix ¢ >0. We factor f = pog, where

g:R* - R™ x R*, g(z) = (f(z), ex) for ¢ € R™,
and
p:R™” xR* - R™, p(y,z) =y fory e R™, z e R™.
6. Claim #2: There exists a constant C' such that
0 < Jg(z) < Ce

for x € A.

Proof of Claim #2: Write g = (f',..., f™, €zy,...,€T,); then

Dy(s) = ( bite) )(m)xn.

Since J f(x)? equals the sum of the squares of the (n X n)-subdeterminants of
D f(z) according to the Binet—Cauchy formula, we see

Jg(z)? = sum of squares of (n x n)-subdeterminants of Dg(z) > € > 0.

Furthermore, since |Df| < Lip (f) < oo, we may employ the Binet—Cauchy
Formula to compute

Jg(z)? = Jf(z)* + {

sum of squares of terms each <ce
involving at least one ¢ -

for each = € A.
7. Since p : R™ x R® — R™ is a projection, we can compute, using Case 1
above,

H™(£(A)) < H™(9(A))

< / HO(AN g™ {y,2}) dH" (3, 2)
Rrtm

:/ Jg(z) dz
A
< eCLM(A).
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3

Let € — 0 to conclude H™(f(A)) = 0, and thus

HO(AN f{y}) dH™ =0,
R

since spt HO (AN f~{y}) C f(A). But then

/ HOAN F~Yy}) dH"zO:/dez.
R" A

8. In the general case, write A = AjUA; with 4; C {Jf >0}, A, C {Jf =
0}, and apply Cases 1 and 2 above. 1,

3.3.3 Change of variables formula
THEOREM 2

Let f : R® — R™ be Lipschitz, n < m. Then for each L™-summable function
g:R* >R

| s@it@as=[ | 3 @) )

zef~'{y}

REMARK Using the Area Formula, we see f~!{y} is at most countable for
H” ae.yc R™. |

PROOF
1. Case 1. g > 0. According to Theorem 7 in Section 1.1.2 we can write

for appropriate £L™-measurable sets { A;}32,. Then the Monotone Convergence
Theorem implies

=1
gJfdz = —,/ X, Jf dz
/]R" ;'L R™ Al
= 1
:Z-,/ Jf dz
pargL o

S apian o)) ane
_;i/mmn(/mf {y}) dH"(y)
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- fmzi-. S x, (@) dH(y)

i=1  zef-'{y}
21
= / Y Y x, @ )
R™ zef-1{y) i=1
= / Y gle)| dH ().
R™ | zef-y}

2. Case 2. g is any L™-summable function. Write ¢ = g%t — g~ and apply
Case 1.

3.3.4 Applications

A. Length of a curve (n = 1, m > 1). Assume f: R — R™ is Lipschitz and
one-to-one. Write

F=0enf™y Df=(f'\ i f™),
so that
. . d
sr=pri=1fl - (=%).
For —o0 < a < b < 00, define the curve

¢ = f(la,b]) C R™.

FIGURE 3.3
Length of a curve.
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Then
b
HI(C) = “length” of C' = / [l dt.
B. Surface area of a graph (n > 1,m =n +1). Assume g : R® — R is

Lipschitz and define f : R* — R**! by
f(z) = (z,9(2)).

Then
1 - 0
Df=1| o ... | ;
9 . 9
Oz, 0z 4 (nityxn
so that

(J£)? = sum of squares of (n x n)-subdeterminants
=1+|Dgl*.
For each open set U C R, define the graph of g over U,
G = G(g:U) = {(z,9(z)) | z € U} ¢ R**,
Then
H™(G) = “surface area” of G = /U(l +|Dg|?)? dz.

C. Surface area of a parametric hypersurface (n > 1,m = n + 1). Sup-
pose f: R® — R™*! is Lipschitz and one-to-one. Write

f=0Y L,
) i
Oy Oz,
Df=| :
afn+l afn«H
so that Oz, Oz, (nt1)xn

(Jf)* = sum of squares of (n x n)-subdeterminants

T8 Y L T
—Z[ 01y s Zn) )

k=1
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RD

FIGURE 3.4
Surface area of a graph.
For each open set U C R™, write
S = f(U) c R,
Then
H™(S) = “surface area” of S

[ (B[]

k=1

D. Submanifolds. Let M C R™ be a Lipschitz, n-dimensional embedded sub-
manifold. Suppose that U C R* and f : U — M is a chart for M. Let
AC f(U), ABorel, B= f~'(A). Define

(1<4,5<n),
g = det((gi;))-

Then

(Df) o Df = ((9i)Inxn:
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FIGURE 3.5
Surface area of a parametric hypersurface.

FIGURE 3.6
Volume of a submanifold.

and so

a1~

Jf =gt
Thus
H™(A) = “volume” of Ain M = / gt ds
B
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3.4 The Coarea Formula

Throughout this section we assume

n 2> m.

3.4.1 Preliminaries

LEMMA 1
Suppose L : R™ — R™ is linear, n > m, and A C R™ is L™-measurable. Then

(i) the mapping y— H™ ™(AN L~{y}) is L™-measurable and
(@) fem H*"™(AN L7 y}) dy = [L]L"(A).

PROOF

L. Case 1. dim L(R™) < m.

Then AN L~'{y} = @ and consequently H*~™(AN L~ {y}) = 0 for L™
ae. y € R* Also, if we write L = S o O* as in the Polar Decomposition
Theorem (Section 3.2.1), we have L(R") = S(R™). Thus dim S(R™) < m and
hence [L] = |det S| = 0.

2. Case 2. L = P = orthogonal projection of R™ onto R™.

Then for each y € R™, P~{y} is an (n — m)-dimensional affine subspace
of R, a translate of P~1{0}. By Fubini’s Theorem,

y+—= H"™(AN P {y}) is L™-measurable
and
A HP (AN P—l{y}) dy = L™(A). (%)

3. Case 3. L:R* - R™, dim L(R*) = m.
Using the Polar Decomposition Theorem, we can write

L=So0*
where
S:R™ - R™ is symmetric,

O :R™ — R" is orthogonal,

[L] = |detS]| > 0.

4. Claim: O* = P o), where P is the orthogonal projection of R* onto R™
and @ : R* — R" is orthogonal.
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Proof of Claim: Let Q) be any orthogonal map of R® onto R™ such that
Q*(Ilv Im, 0) (Ilv‘“)Im)

for all x € R™. Note
P*(zy,...,zm) = (z1,.. ., Tm,0,...,0) € R®

for all z € R™. Thus O = Q* o P* and hence O* = P o (.

5. L=1{0} is an (n—m)-dimensional subspace of R™ and L~!{y} is a translate
of L'I{O} for each y € R™. Thus by Fubini’s Theorem, y — H* ™(A N
L~'{y}) is L™-measurable, and we may calculate

L™(A) = L™(Q(4))
= [ H™QEANP '{ydy by

R™

= [ H"™ANQ™ o PTH{y}) dy.

Rm

Now set z = Sy to compute using Theorem 2 in Section 3.3.3
|det S| L™(A) = /m H™(ANQ ' o P71 o S712}) da.
But L =800* = S0 PoQ, and so
[L]L™(A / H=™(AN L {z}) dz. |
Henceforth we assume f:R* — R™ is Lipschitz.

LEMMA 2
Let A C R™ be L™-measurable, n > m. Then

() f(A) is L™-measurable,
(i) AN f~Yy} is H" ™ measurable for L™ a.e. y,
(iii)  the mapping y — M ™(AN f~{y}) is L™-measurable, and
() fem HP(AN f7Hy}) dy < (e(n — m)a(m))/e(n)(Lip f)™L (A).

PROOF

1. Statement (i) is proved exactly like the corresponding statement of Lemma 2
in Section 3.3.1,

2. For each j = 1,2,..., there exist closed balls {B/}$2, such that

o0
Ac|JB], diamBgS%,
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and

> LvBI) < z:"(A)+3 .
=1

Define

. n—1m
; diam B}
%Ea(”_m)< 2 l) Xfmiy:

By (1), gg is L™-measurable. Note also fqr all y € R™,
et .
HIZ (AN ) < D).
i=1

Thus, using Fatou’s Lemma and the Isodiametric Inequality (Section 2.2), we
compute

" HEmAN P ) dy

Rm

- /Rm Jim H(AN £~ (o)) dy

< /nzm lxjrﬂggflzzlg{ dy

< I;T’gf;/m’" a] dy

= li]-rﬂi‘if; a(n ~m) (diarg Bg) L™(f(B]))

< 1;13352 a(n—m) (dianzl Z ) a(m) <——diam zf(B’?)>
M(Li f)ml'm'nfi L™(B})

o(n) P RS
aln - mialm) ;Z))a(m) (Lip )™ L™(A).
Thus

n —m)a(m)

[ remmtan g ay < 2B gy penia).

This will prove (iv) once we establish (iii).
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3. Case 1: A compact.
Fix t > 0, and for each positive integer i, let U; consist of all points y € R™
for which there exist finitely many open sets Sy,..., S; such that
_ l
An Yy} cU;=1 Sis
diamSjSL (j=1,2,...,l),
1
14 . n—m
diam S; 1
Za(n—m)(————]> <t+-.
- 2 )
j=1
4. Claim #1: U, is open.

Proof of Claim #1: Assume y € U;, AN f~'{y} C U,_,S;, as above. Then,
since f is continuous and A is compact,

l
Aﬂf‘l{z} C US]

j=1

for all z sufficiently close to y.
5. Claim #2.

y|H™AN T ) <ty = (Ui
i=1
and hence is a Borel set.

Proof of Claim #2: 1f H* ™(AN f~'{y}) < t, then for each § > 0,
Hy ™(ANSHyh) <t
Given i, choose 6 € (0,1/4). Then there exist sets {S;}32, such that

Anfiyyc s,

i=1

I
diam S; <6 < 7
ad diam S; "™ 1
> a(n-m) | —— <t+-.
po 2 1

We may assume the S; are open. Since AN f~Yy} is compact, a finite
subcollection {Sy,...,S;} covers AN f~1{y}, and hence y € U;. Thus

| Hm AN ) < 8 € (VO

i=1
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On the other hand, if y € NS2,U;, then for each 4,
1
mAN D St
and so
Hm (AN ) St
Thus
Ui c {y| H™(AN f7{y}) <t}

i=1

6. According to Claim #2, for compact A the mapping
y— H (AN YY)

is a Borel function.
7. Case 2: A open.
There exist compact sets K; C K» C --- C A such that

Thus, for each y € R™,
H*™ (AN f7H}) = Jim HPTTE N f ),
and hence the mapping
y— H"AN fTHy))

is Borel measurable.
8. Case 3. L(A) < 0.
There exist open sets V; D V5 D -+ D A such that
lim L™(V; — A) =0, LM (V) < 0.

1— 00

Now
HP™ (V0 £ {y)) S HPTHAN ) + TV - A) 0 F ),
and thus by (%),

lim sup /Rm |[H™(Vin ) = H AN F )] dy

i— 00

< limsup / H™™((Vi — 4) " £~ {y}) dy
< timaup 22— )

(Lip f)™L™(Vi — A) =0.
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Consequently,
H(Vin ST ) = MU AN £ )
L™ a.e., and so according to Case 2,

y = H ANy}

is £L™-measurable. In addition, we see H* ™ ((V; — A)N f~1{y}) - 0 L™
ae. and so AN f~1{y} is H"~™ measurable for L™ ae. y.

9. Case 4. L™'(A) = 0.

Write A as a union of an increasing sequence of bounded L"-measurable set:
and apply Case 3 to prove

AN f~Yy} is H™™ measurable for L™ a.e. y,

and
y > HAN )
is L™-measurable.
This proves (ii) and (iii), and (iv) follows from (x). i
REMARK A proof similar to that of (iv) shows

[ kan iy ant < S0 wip pygesiga

for each A C R™; see Federer [F, Sections 2.10.25 and 2.10.26]. |}

LEMMA 3
Let t > 1, assume h : R — R™ is Lipschitz, and set

B = {z | Dh(z) exists, Jh(z) > 0}.

Then there exists a countable collection { D}, of Borel subsets of R™ such
that

(i) £°(B-UZ,Di)=0;
(i) h|p, is one-to-one for k=1,2,...; and

(iti) for each k = 1,2,..., there exists a symmetric automorphism Sy : R* —
R™ such that

Lip (Sg'o (hlp,)) <t,  Lip ((h|p,) ™" o Sk) <,

™ | det Sg| < Jhlp, < t™|det Sy
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PROOF
1. Apply Lemma 3 of Section 3.3.1 with h in place of f to find Borel sets
{Ex}2, and symmetric automorphisms 7% : R® — R such that

@ B=[]E,
k=1

(b) h|g, is one—to—one,

Lip (b |g,) o Ty") St Lip (Tko (R ]g,)7") <t
(©
£ detTy| < Jh |g < t*|detThl  (k=1,2,...).

According to (¢), (h |g, )" is Lipschitz and thus by Theorem 1 in Section 3.1.1,
there exists a Lipschitz mapping hy : R — R™ such that hy = (h |g,)~"!
on h(Ey).

2. Claim #1: Jhix > 0 L™ a.e. on h(Ek).

Proof of Claim #1: Since hy o h(z) = z for © € Ey, Corollary 1 in Sec-
tion 3.1.2 implies

Dhi(h(z))o Dh(z) =1  L" ae. on Ey,
and so
Jhi(h(z))Jh(z) =1 L" ae. on Ef.

In view of (c), this implies Jhg(h(z)) > 0 for L™ ae. T € E}, and the claim
follows since h is Lipschitz.

3. Now apply Lemma 3 of Section 3.3.1 to hy: there exist Borel sets {F]’“};";l
and symmetric automorphisms {R%}22, such that

@ L rE)-|FF] =0

J=1

€) hy | F¥ is one-to-one;
Lip (e |pe) o (RS)™) < t, Lip (RS o (e |p) ™) < t
( {t“”ldetRﬂSJhk |Ff§t”|detR§| (k=1,2,...).
Set
Df = ExNk™\(FF), Sk=(R5)™'  (k=1,2,..).

4. Claim #2: £* (B - U, D¥) =0,
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Proof of Claim #2: Note

hy (h(Ek) - G Ff) =h"! ( (Ex) - Upk>
j=1

Thus, by (d),

Now recall (a).
5. Clearly (b) implies h |px is one-to-one.
6. Claim #3: For k,j = 1,2,..., we have

Lip ((S7) "o (hlps)) <t Lip((hlpe)™ 0 SF) <t

t7"|det SF| < Jh |pe< ¢"] det Sf|.
Proof of Claim #3:
Lip ((S5)™" o (b |px)) = Lip (Bf o (b |pt))
< Lip (Bj o (he |r2)™') <t
by (f); similarly,
Lip (h |px)~" ©85) = Lip (h |px)™" o (RH)™)
< Lip ((he px) o (RF)™) S t.
Furthermore, as noted above,
Jhi(h(z))Jh(z) =1 L™ ae. on Df.

Thus (f) implies

t"| det SF| = t7"|det R¥|™ < Jh | pr < t*|det RE|™! = ¢"| det S%|.
7

111
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3.4.2 Proof of the Coarea Formula 4

THEOREM 1 COAREA FORMULA
Let f : R — R™ be Lipschitz, n > m. Then for each L™-measurable set
ACRe,

/ Jfdr= [ H™ANF Ty} dy.
A R™

REMARKS

(i) Observe that the Coarea Formula is a kind of “curvilinear” generalization
of Fubini’s Theorem.

(i) Applying the Coarea Formula to A = {Jf = 0}, we discover
Hm{If=0)n "y} =0 (*)

for L™ a.e. y € R™. This is a weak variant of the Morse-Sard Theorem,
which asserts

{Jf=0ynf "y} =0
for L™ a.e. y, provided f € C*(R™;R™) for
=l+n—m

Observe, however, () only requires that f be Lipschitz. i

£y

Rm

=
Z
'~<-‘-

FIGURE 3.7
The Coarea Formula.
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PROOF
1. In view of Lemma 2, we may assume that D f(z), and thus Jf(z), exist
for all z € A and that L*(A) < co. :
2.Case 1. AC {Jf > 0}.
For each A € A(n,n — m), write
f=qohy,
where

hy i R* > R™ X RP™, - hy(2) = (f(2), Pa(e)) (z € R7)

g R™ XR™™ S R?, q(y,2) =y (yeR™ 2eR*™™),
and P, is the projection defined in Section 3.2.1. Set
Ay = {z € A|detDhy # 0}
={z € A| P |ipf(z)]-1(0) is injective}.

Now A = UreA(n,n—m)Aa; therefore we may as well for simplicity assume
A = A, for some A € Aln,n —m)

3. Fix t > 1 and apply Lemma 3 to h = h, to obtain disjoint Borel sets
{Di}2, and symmetric automorphisms {Sx}22, satisfying assertions (i)—(iii)
in Lemma 3. Set G, = AN Dg.

4. Claim #1: t™"[qo Si] < Jf |, < t"[go Sk].

Proof of Claim #1: Since f = go h, we have L™ a.e.
Df =qoDh
=goSkoS o Dh
=qoSkoD(S; oh)

=qo8;oC,
where C' = D(S; ' o h).
By Lemma 3,
t~! < Lip (Sy’' o h) = Lip (C) < t on Gy. (%)
Now write
Df=800"
goSp=ToP*

for symmetric S, T : R™ — R™ and orthogonal O, P : R™ — R™.
We have then

So0*=ToP*oC. (%)
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Consequently,

S=ToP*oCoO.

As G, CAC{Jf >0}, detS # 0 and so detT # 0.
Thus, if v € R™|

|77 o Sv| = |P* o C o Ov|
< |C o Ov
< ¢|Ov by (*)
= t|v|.
Therefore
(T o 8)(B(0,1)) C B(0,1),
and so
Jf = |detS| < t"|detT| = t"[q o Sk].
Similarly, if v € R™, we have from (x*)

1S~ o Tw| = |0* 0 C™' o P

< |C7 1o Pyl
< ¢| Pyl by (%)
= t[v].

Thus
lgo Sk] = |detT| < t*|det S| =t"Jf.

5. Now calculate:

e [ rmGen £ ) dy
= r3n+m/ H ™ (R (R(Gr) Vg {y})) dy
<t / ) HP (S (R(GE) N~ {y})) dy

= t_2n/ HP™(Sg" o h(Gr) N (go Sk) ™ {y}) dy

=t72"go Sy L™(S; ' o h(Gr))  (by Lemma 1)
<t ™qo Sk L™ (G)

< Jf dz
Gy
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<t g o Sk L™(Gr)
< t™[go Se)L™(S; ' 0 M(Gr))

= f2n / CHPT(SE RGN (g0 ST ) dy

< [ Hr (T (W(GE) N g H{y)) dy
-

= gn-m HP ™G N f"‘{y}) dy.
Rm
/s
Since

cr (A— U Gk> =0,
k=1
we can sum on k, use Lemma 2, and let £ — 1T to conclude
[ orerans oy dy= [ g ds
Rm : A

6.Case 2. AC {Jf =0}
Fix € > 0 and define

g:R* xR™ 5 R™, g(z,y) = f(z) + ey
piR xR - R™, p(z,y) =y (z € R*, y € R™).
Then
Dg = (Df, €l)mx(n+m),
and
€" < Jg=[Dg] =[Dg"] < Ce.

7. Observe

| rrman iy dy

= H AN fHy —ew})dy forallwe R™
Rm
1

= — n—1 —1 e d .
a(m) /3(0,1) o (AN Y w}) dy dw
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8. Claim #2: Fix y € R™, w € R™, and set B = Ax B(0,1) C R**™. Then

L 0 ifw ¢ B(0, 1)
BnNg {y}ﬂp {w}:{ (Amf—l{y——ew}) X {w} if:ZEB(O,l)-

Proof of Claim #2: We have (z,z) € BNg~'{y} Np~'{w} if and only if
z €A, z€ B(0,1), flx)tez=y, z=uw;
if and only if
T €A, z=weB(01), f(z)=y—ew;
if and only if
w € B(0,1), (x,z) € (AN f ' {y~ew}) x {w}.

9. Now use Claim #2 to continue the calculation from step 7:

[ wemans Tt d

"az?n‘/ / H™™(BNg™ {y}np~ {w}) dw dy

a(n / H*(BNg~y}) d (by the Remark after Lemm

_a(n—m)

< a{n — m)a(m)
o(n)
< CLMA)e

L™(A)supJg
B

Let € — 0 to obtain

/ H™™(AN ) dy=0=/ Jf dz.
JRm A
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10. In the general case we write A = A; U Ay where A; C {Jf > 0},
Ay C {Jf =0}, and apply Cases 1 and 2 above. |

3.4.3 Change of variables formula

THEOREM 2

Let f:R* — R™ be Ltlpschitz, n > m. Then for each L™-summable function
g R* - R

g lp-1gyy is H*™ summable for L™ a.e. y

and

/Rn 9(x)J f(z) dz = /m [/fﬂ{y}g d’}{”_m] dy.

REMARK For each y € R™, f~1{y} is closed and thus H™ ™-measurable.

-

PROOF

1 Casel. g>0.

Write g = 3.2, (1/7)x 4, for appropriate £™-measurable sets {4;}72,; this is
possible owing to Theorem 7 in Section 1.1.2. Then the Monotone Convergence
Theorem implies

(e}

/Rnngd:v:Z% Jf dz

i=1 /A

1 n—m -
=3op [, ean o

= [ Y prrn b

Ll o
RSy}

2. Case 2. g is any L™-summable function. Write ¢ = g% — ¢~ and use
Case 1.
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3.4.4 Applications

A. Polar coordinates.

PROPOSITION 1
Let g: R* — R be L™-summable. Then

/ gd:c:/ (/ gdH"—l) dr.
n 0 8B(0,r)

In particular, we see

dr B(0,r) 8B(0,r)

PROOF  Set f(z) = |z|; then

Df(z) = IZ:T’

for L' ae. v > 0.

Jf(z)=1 (z#0). 1

B. Level sets.

PROPOSITION 2
Assume f:R™ — R is Lipschitz. Then

Dfldz= [ H{S = t}) de.
N

—0o0

prROOF Jf =|Df|. |

REMARK Compare this with the Coarea Formula for BV functions proved in
Section 5.5.

PROPOSITION 3
Let f : R™ — R be Lipschitz, with

essinf |[Df| > 0.

Suppose also g : R™ — R is L"-summable. Then

* g -1
gdz = / / 9 g1 ds.
/{f>t} ¢ ( {f=s} DSl



34 The Coarea Formula ' 119

In particular, we see

i(/ g dzx =~/ I gHnt
dt {f>t} {f=t} IDfI

for L a.e. 1.

PROOF  As above, Jf = |Df|. Write E; = {f > t} and use Theorem 2 to
calculate

g
gd:v:/ ——Jf dx
/{f>t} R XE‘inI f
[e%<) g _
f—oo <~/c';E, IDfIXEt y
_ * g n—1
= —— dH ds. 1
/t (/aE D7 ) ’
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Sobolev Functions

In this chapter we study Sobolev functions on R", functions whose weak first par-
tial derivatives belong to some LP space. The various Sobolev spaces have good
completeness and compactness properties and consequently are often proper
settings for the applications of functional analysis to, for instance, linear and
nonlinear PDE theory.

Now, as we will see, by definition, integration-by-parts is valid for Sobolev
functions. It is, however, far less obvious to what extent the other rules of
calculus are valid. We intend to investigate this general question, with particular
emphasis on pointwise properties of Sobolev functions.

Section 4.1 provides basic definitions. In Section 4.2 we derive various ways
of approximating Sobolev functions by smooth functions. Section 4.3 interprets
boundary values of Sobolev functions using traces, and Section 4.4 discusses
extending such functions off Lipschitz domains. We prove the fundamental
Sobolev-type inequalities in Section 4.5, an immediate application of which
is the compactness theorem in Section 4.6. The key to understanding fine
properties of Sobolev functions is capacity, introduced in Section 4.7 and utilized
in Sections 4.8 and 4.9.

4.1 Definitions and elementary properties
Throughout this chapter, let U denote an open subset of K",

DEFINITION Assume | € Ll (U), | <i < n. Wesay g; € Ll (U) is the
weak partial derivative of f with respect to x; in U if

dy /
—— dx = — 0 dx *
/dexi Ug (*)

for all ¢ € CH(U).

120
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NOTATION It is easy to check that the weak partial derivative with respect to
a;, if it exists, is uniquely defined £" a.e. We write

and

af  of
Df=|—,....,— 1,
f ((’);z:" 6:16")

provided the weak derivatives 9f/0x,,...,0f/0, exist.

DEFINITIONS Let 1 < p < 0.
(i) The function f belongs 10 the Sobolev space
w'e(U)

if f e LP(U) and the weak partial derivatives 0f [Ox; exist and belong
to LP(U),i=1,...,n

(it) The function [ belongs to W\ch( Y if f € WI(V) for each open set
Vccu.

(iii) We say f is a Sobolev function if f € WP (U) for some | < p < oo.

REMARK Note carefully: if f is a Sobolev function, then by definition the
integration-by-parts formula

_ of
/ for @ v 0z, dz

is valid for all p € CH(U), i = 1,...n. |

NOTATION If f € W'P(U), define

1/p
by = ([ 110+ 1051 d2)

for 1 < p < oo, and

11l = oy = 55 sup(lf] +1D7)

DEFINITION We say

fe = f in WHP(U)
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provided
[fx ~ f“w.‘,.(,,, - 0,
and
fe = f in WLEU)
provided
£ = fllyraqyy = O for each V.CC U.
EEe———

4.2 Approximation
4.2.1 Approximation by smooth functions

NOTATION (i) If € > 0, we write U, = {z € U | dist(x,U) > €}.
(i) Define the C*-function 5 : B* — R as follows:

1
cexp | —5— if 2| <1
=] o (=) e
0 if |z| > 1,

/n n(z) dx = 1.

1 T ny.
ne(z) = en"(€) (e >0,z eR™);

the constant ¢ adjusted so

Next define

7 is the standard mollifier.
(iiiy If f € L] (U), define

fe=nexf;

that is,

ff(w)zfum(m-y)f(y) dy (zeU.).

Mollification provides us with a systematic technique for approximating Sobo
lev functions by C' functions.
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THEOREM |
(i) Foreache>0, f € C>(U.,).
(i) If feCU), then
f = f
uniformly on compact subsets of U.
(i) If f € L} (U) for some 1 < p < oo, then
= finLl (U).
(iv) Furthermore, f<(x) — f(z) if x is a Lebesgue poini of f in particular,
f€ — f L" ae.
) Iffe WI:,’C"(U)for some | < p < oo, then
af¢ af

— ek —— i =1,...,
ek PR ")
on U,.
(vi) In particular, if f € WIL’C”(U)for some 1 < p < oo, then

fe— finWhr(U).

PROOF

I. Fix any point € U, choose | < ¢ < n, and write ¢; to denote the ith
coordinate vector (0,...,1,...,0). Then for k| small enough, = + he; € U,
and we may compute

restorte L | 4 (21 ()]

=€ln y %[n(zwl:i_y)—n(mzy)}f(y)dy

for some V CC U. The difference quotient converges as A — 0 to

1677 T —y _nane
(2) =t

€ B:E, €

for each y € V. Furthermore, the absolute value of the integrand is bounded by
1
lIDall,.. [l € L (V).

Hence the Dominated Convergence Theorem implies

of, .. f(z+he) - f(x)
a_m;(m)“}fi% h
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exists and equals
Ine
—(z - dy.
Uaxi(w v)f(y) dy

A similar argument demonstrates that the partial derivatives of f¢ of all orders
exist and are continuous at each point of Ue; this proves (i).
2. GivenV CcC U, wechoose VCW C U. Thenforz €V,

=g [ o(FY) = [ v e

Thus, since fB(O‘I) n(z) dz = 1,

1fo(2) - f(@)] < / @\ f(z - e2) — F(z)] de.

B(0,1)

If f is uniformly continuous on W, we conclude from this estimate that ¢ — f
uniformly on V. Assertion (ii) follows.

3. Assume 1 < p<ocand f € L} (U). Thenfor VCCW CccU,z€V,
and ¢ > 0 small enough, we calculate in case 1 < p< ©

IF(2)] < / ) S - ) d

1

< ( /B RC dz) ( /B NRCHESST dz)

=</ n(Z)If(:v—GZ)I”dZ) .
B(0,1)

Hence for 1 <p < oo we find

/Vlf‘(:v)l” dz < /B(O’l)n(z) (/Vlf(:c—ez)l” dz) dz
< /Wlf(y)l” dy ®)

for € > 0 small enough.
Now fix 8 > 0. Since f € LP(W), there exists g € C(W) such that

“f - g“Lp(W) S 8.

This implies, according to estimate (%),

15 = 6l gy, < &
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Consequently,
15 = fll gy < 28 +19° = 9l oy < 36

provided ¢ > 0 is small enough, owing to assertion (ii). Assertion (iii) is proved.
4. To prove (iv), let us suppose f € LL.(U) and z € U is a Lebesgue point
of f. Then, by the calculation above, we see

r@-r@is g [ a(5E) 1w - el

<ol f, 1 -l dy
=o(l) as e — 0.

5. Now assume f € W3P(U) for some 1 < p < oo. Consequently, as
computed above,

ofe e

oz, %) = , 9z, (z - y)f(y) dy
= — 6776 T — 1
==/, 8yl—( y) f(y) dy
=/Une(:v—y)gfl(y) y
—ﬂe*g_:;:fz’_(w)

for £ € U,. This establishes assertion (v), and (vi) follows at once from (iii).

THEOREM 2 LOCAL APPROXIMATION BY SMOOTH FUNCTIONS
Assume f € WUP(U) for some | < p < oo, Then there exists a sequence
{fe}2, c Wh2(U) N C°°(U) such that

fe = f in WHP(U).

Note that we do not assert f, € C*(U): see Theorem 3 below.

PROOF
1. Fix € > 0 and define

U = {1 € U | dist(z,dU) > %} nU©K  (k=1,2,..),
U()E@.
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Set
Vi = Upey —Ugy (k=1,2,...),

and let {¢}{2, be a sequence of smooth functions such that
e € C2(Vi), 0< (¢ <1, (k=12,..),
ZI;“;I Ck =1 on U.

Foreach k = 1,2,..., fC € WhP(U), with spt (f(x) C Vi; hence there exists
€r > 0 such that

spt (e, * (fCk)) C Vi

([ s tr - et ae)” < 52 ®

€

(/U [ e * (D(fCk)) — D(fCk) P dm)% e

Define

[e o]

fe=3 M (FC0).

k=1

In some neighborhood of each point z € U, there are only finitely many nonzero
terms in this sum; hence

fe € C™(U).
2. Since
F= G
k=1

(x) implies

1

“fe_f“Lp(U Z(/ Iﬂek ka f(}.'p dw) <€
k=1
and

1D = Dfll gy < ( [ o (DG - DUGP d:c) "<
k=1 WU

Consequently fe € W'?(U) and
fe— fin WHP(U) as e—0. 1
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- v(y)

Q(x,r)

FIGURE 4.1
A Lipschitz boundary.

Our intention next is to approximate a Sobolev function by functions smooth
all the way up to the boundary. This necessitates some hypothesis on the
geometric behavior of AU.

DEFINITION We say QU is Lipschitz if for each point x € QU, there exist
r > 0 and a Lipschitz mapping v : R*~! — R such that — upon rotating and
relabeling the coordinate axes if necessary — we have

UnQ(z,r)={y v, ..4n-1) <¥} N Q(z,7),
where Q(z, 1) ={y||lyi —x:| <ri=1,...,n}
In other words, near x, AU is the graph of a Lipschitz function.

REMARK By Rademacher’s Theorem, Section 3.1.2, the outer unit normal v{zx)
to U exists for H" ' ae.z€oU. |

THEOREM 3 GLOBAL APPROXIMATION BY SMOOTH FUNCTIONS

Assume U is bounded, OU Lipschitz. Thenif f € W'P(U) for some 1 <p < oo,
there exists a sequence {fi}s>, € WHP(U) N C°°(U) such that fi, — f in
W (U).

PROOF
1. Forz € QU, take r > 0 and v : R*~! — R as in the definition above.
Also write Q = Q{z,7), Q' = Q(z,7/2).
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B(yEe)”

FIGURE 4.2
The small ball B(y%,¢) liesin UNQ.

2. Suppose first f vanishes near Q' NU. Fory e UNQ’', e >0 and o >0,
we define

f =y + eaen.

Observe B(y%,¢) C UNQ for all ¢ sufficiently small, provided o is large
enough, say « = Lip () + 2. See Figure 4.2.
We define

f(y) = ei"/,,"(a flyf —2)dz
_ 1 y-—w .
== B(ye’e)n< - +aen) f(w) dw

fory eUNQ'.
3. As in the proof of Theorem 1, we check

fe€ECPUNQ)
and
fe— f in WHP(UNQ).

Furthermore, since f = 0 near Q' N U, we have f. = 0 near Q' N U for
sufficiently small € > 0; we can thus extend f, to be 0 on U — @Q'.

4. Since 9U is compact, we can cover QU with finitely many cubes Q: =
Q(zi,r:/2) (i = 1,2,...,N), as above. Let {¢;}}¥, be a sequence of smooth
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functions such that
0<¢ <, spt(;i C Q) (i=1,..,N)

0<G<I, sptéC U
N

Y=l on U

i=0

and set
ff=fG  (i=0,1,2,...,N).

Fix 6 > 0. Construct as in step 3 functions g* = (f%),, € C*°(U) satisfying
spt(9') CUNQ;
6

“gl - fl“u/l.p(Ur]Ql) < 2N

for i = 1,..., N. Mollify f° as in the proof of Theorem 2 to produce ¢° €
C(U) such that

6
“90 - fOHWI.ﬂ(U) < 5

Finally, set

N
g= Zgi € C™(U)
i=0

and compute
N
“g - f“wl,p(u) < “gO - fOHWI.P(U) + Z “gl - fl“Wm(UnQ‘.) <. I
i=1

4.2.2 Product and chain rules

In view of Section 4.2.1 we can approximate Sobolev functions by smooth
functions, and consequently we can now verify that many of the usual calculus
rules hold for weak derivatives.

Assume 1 < p < o0,

THEOREM 4

(i) (Product rule) If f,g € W'P(U)N L°(U), then

fg € WhP(U)n L®(U) and
o(fg) _ of

o T a9+ f

99
or; Oz

6213,'

LM ae. (i=1,2,...,n).
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(i) (Chain rule) If f € W'»(U) and ¥ € C'(R), I € L™(R). F(0) = 0.
then F(f) € W'?(U) and

‘9gg) =F’(f)g:£ L ae (i=1,...,n).

(If L*(U) < oo, the condition F(0) = 0 is unnecessary.)
(iii) If f e W'P(U), then f*. f=, |f| € W'?(U) and
Df* = Df £"ae. on{f >0}
Tl 0 L%aeon{f<0}

_ 0 L™ a.e on {f >0}
Df”™ = { ~Df L™ae. on{f <0}

0 L"ae.on{f=0}

Df L™ae.on{f>0}
D f|
—~Df L™ ae. on{f <0}

(i) Df=0L"ae. on{f =0}

REMARK Assertion (iv) generalizes Corollary 1(i) in Section 3.1.2. If F is
only Lipschitz, the chain rule is valid but more subtle.

PROOF
1. To establish (i), choose ¢ € CH{U) with spt () C V CC U. Let
ff=ne+f, g¢ =ne g as in Section 4.2.1. Then

/ fg- d:c,

dcp d:v

. fe e e
- eh-g(l)/v (d:vl + f ? de

z“/v(gsf ”a:cz)

_ of 9 .
= /U(az,-g dmi)‘”‘“’

according to Theorem 1.
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2. To prove (ii), choose @, V, and f* as above. Then

v o O dy
/U[*(f)()wl dr = [ F(f)—dz

1% Oz, i

= um/VF(ff)f’“” dz

=0 ox;
=~tim [ PG
= [ Pigled
== [ Ptilpd

where again we have repeatedly used Theorem 1.
3. Fix € > 0 and define

_f P4+ —e ifr>0
F‘(’)"{ 0 if 7 < 0.

131

Then F, € C'(R), F, € L=(R), and so assertion (ii) implies for ¢ € C}(U)

[ringa—]x

Now let ¢ — 0 to find

op / of
+ dr = — - dx
/ f dl, Un{f>0} dli ¢

This proves the first part of (iii); the other assertions follow from the formulas

fT=E=0% = +1.
4. Assertion (iv) follows at once from (iii), since

Df=Dft-Df. |

4.23 W"* and Lipschitz functions

THEOREM 5

Let f : U — R Then f is locally Lipschitz in U if and, only if
fewl2w.
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PROOF
1. First suppose f is locally Lipschitz. Fix | < i < n. Then for each
VoW U, pick 0 < h < dist (V,0W), and define

he;) — f(z
gi(z) = flzthe) - f(z) ‘el’) )
1
Now
sup|g'| < Lip (f |w) < oo,
h>0
so that according to Theorem 3 in Section 1.9 there is a sequence i; — 0 and

a function g; € L2 (U) such that

gf" —g; weakly in Lf _(U)

loc
forall 1 < p < co. But if ¢ € C}(V), we have
/ f(l)ap_(w_ti%)_ﬂ dxr = -/ gt (z)e(z + he;) dx.
U U

We set h = h; and let j — oo

dp
£ dw:—/gicpd:c.

Hence g; is the weak partial derivative of f with respect to z; (i = 1,...7),
and thus f € WIL’COC’(U)

2. Conversely, suppose f € WL°(U). Let BCCU be any closed ball con-
tained in UJ. Then by Theorem | we know

sup {|DFEN, o)y < 00
0<€<€0“ L (B)

for ¢y sufficiently small, where f€ = 7 * f is the usual mollification. Since f¢
is C*°, we have

f@) - 1) = [ Dfu+ta-p) dt-(z =)
0
for z,y € B, whence
[fe(z) = f W < Clz -yl
the constant C independent of e. Thus
[fz) - fWILCle—yl (z,y€B)

Hence f |p is Lipschitz for each ball BCCU, and so f is locally Lipschitz
inU.
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4.3 Traces

THEOREM 1
Assume U is bounded, U is Lipschitz, | < p < oc.

(i) There exists a bounded linear operator
T: W' (U) — LP(OU; H* ™)
such that
Tf=f on U
for all f € W (UYNC(U).
(i) Furthermore, for all p € CY(R™*;R"*) and f € W'P(U),

/deivcp d:cz—/UDf-cp dx+/0u(cp-u)deH"“',

v denoting the unit outer normal to U .

DEFINITION The function T f, which is uniquely defined up to sets of H™ ! L
OU measure zero, is called the trace of f on OU. We interpret T as the
“boundary values” of f on 8U.

REMARK  We will see in Section 5.3 that for H™! a.e. point z € U,

lim ][ [f = Tf(x)| dy =0,
=0/ B(z,r)aU

and so

r—0

Tf(x)= llm][ fdy. 1
B(z,r)nU

PROOF

1. Assume first f € C'(U). Since U is Lipschitz, we can for any point
z € U find + > 0 and a Lipschitz function y : B*~! — R such that — upon
rotating and relabeling the coordinate axes if necessary —

UnQ(z,r)={y| 7w, ¥n-1) <y} N Q(z,7).
write Q = Q(z, ) and suppose temporarity f =0 on U — Q. Observe
—env > (L+Lip())?) >0 H*laeonQnaU. (%)
2. Fix ¢ > 0, set

Bt)= (P +eDt~e  (teR),
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and compute

ﬂ((f) dHn-—-l :/ ﬂe(f) dHn-l
el QMU

<c[ pfe e by
QnauU
d
=—c[ Zauna
QNU OYn

(by the Gauss-Green Theorem; cf. Section 5.8)
<c [ jatnipsdy
QnU
<c [ ipfia,
U
since |8:'| < 1. Now let ¢ — 0 to discover

/ flanr < C / Df] dy. (%)
514) U

3. We have established (%) under the assumption that f = 0 on U — @ for
some cube Q = Q(z,7), € OU. In the general case, we can cover U by
a finite number of such cubes and use a partition of unity as in the proof of
Theorem 3 in Section 4.2.1 to obtain

/ \f] drr! sc/ D)+ |f] dy (xx%)
eu U

for all f € C'(U). For 1 < p < oo, we apply estimate (xx=%) with |f[P
replacing |f| to obtain

/ P anr < C / IDAIIFP! +1f7 dy
eU U
SC/ IDfIP + |f|P dy (% % x %)
U

for all f € CY(T).
4. Thus if we define

Tf=flov

for f € C'(U), we see from (x «**) and Theorem 3 in Section 4.2.1 that T
uniquely extends to a bounded linear operator from W'?(U) to LP(OU; H™ 1),
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Clearly,
Tf=flou

for alt f € W' (/YN C(U). This proves assertion (i); assertion (ii) follows by
a routine approximation argument from the Gauss—Green Theorem.

4.4 Extensions

THEOREM 1
Assume U is bounded, OU Lipschitz, 1 < p < co. Let U CcC V. There exists a
bounded linear operator

E:W'(U) — W'P(R")
such that
Ef=f on U
and
spt(EfycV
Jor all f e WhP(U).

DEFINITION Ef is called an extension of f ro R".

PROOF
I. First we introduce some notation:

(@) Given £ = (z,...,Tn) € R", let us write ¢ = (2',zn) for ' =
(z1,...,2n-1) € R*! 7, € R Similarly, we write y = (y',yn).
(b) Given z € R*, and r, h > 0, define the open cylinder

Cla,mh) = {y R | |y —'| <7, |yn — za| < h}.

Since @U is Lipschitz, for each * € QU there exist — upon rotating and
relabeling the coordinate axes if necessary — 7, A > 0 and a Lipschitz function
v:R*! R such that

h
!
max —Zn| < —,
|z’ —y’|<r |7(y ) n| 4

UNC(z,mh)={yll|e' —¢'| <, 9(¥) < yn < 20+ h},
C(z,mh)C V.
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FIGURE 4.3
A region U* above, and a region U~ below, a Lipschitz boundary.

2. Fix £ € OU and with r, h, v as above, write

C =C(z,r,h), C' =Clz,r/2,h[2)
Ut=C'nU, U-=C-T.

3. Let f € CY(U) and suppose for the moment spt (f) C C'NU. Set

fHy) = fly) it ye T,
W)=, 2v) —yn) if yeU .

Note f~=ft=fonoUNC".

4. Claim #1: || £ ||y p -y < CIIFl

Proof of Claim #1: Let ¢ € CH(U™) and let {¢}32, be a sequence of C*
functions such that

wheU)*

YeZY
Ve Y uniformly
Dy — Doy Ll ae.,

Supy ||D7k||Loo < 0.
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Then, for 1 <t <n -1,
dyp
T—d
/l-f yi
dy
= 2 — Yu (
f(J (") J).)” dy

dp
= Jim S 2wy —z/..)) - dy

. af ' of ' M,y
= — — ~r. —Yu 2_ s . — Y ) —
lim /U (6Ji(y,2u(y) yu) 425 - 2nly) -y )ay- W))epdy

t

a a ! ! 3 '
:_/ (61{(31 2y - yn)+2a—f(y,27(y)_y")a_;;(y)>My‘

mn

Similarly,
Iy af
T—dy = — (Y, 29y} - yn ) dy.
/U_f o Y /U_ayn(y, (') ~ ya)p dy
Now recall
DA o0 < 00,
and thus

[ b6ty -l s / IDSPP dy < oo
U- U

by the change of variables formula (Theorem 2 in Section 3.3.3).
5. Define
f* onU'
Ef=f=< f~ onU”
0 onR—(TYUT),
and note f is continuous on R™.
6. Claim #2: E(f) € WhP(R"), spt (E(f)) C C'C V, and

HEUD wro@ny S Cl oy
Proof of Claim #2: Let y € CI1(C"). For 1 <i<n
Oy _0Op
Z¥X dy = *_r d —d
fazlz [ rstas [ r5ta

of* / of~
=— dy — Z_ody
u+ Oui v u- Oy 4

+ / (T(f) = T(f™))owi dHn~!
U
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by Theorem | in Section 4.3, But T(f*) = T(f ™) = f |su, and so the last
term vanishes.

This calculation and Claim #1 complete the proof in case f is C'!, with support
inC'nU.

7. Now assume f € C'(U), but drop the restriction on its support. Since JU
is compact, we can cover U with finitely many cylinders C). = C(ay, ry, hy)

(k = 1,...,N) for which assertions analogous to the foregoing hold. Let
{¢k}2_¢ be a partition of unity as in the proof of Theorem 3 in Section 4.2.1,
define E((.f) (k= 1,2,...,N) as above and set

N
Ef =Y E(GS) +Gf.

k=1

8. Finally, if f € W'P(U), we approximate f by functions f; € W'?(U)N
C"(U) and set

Ef=lm Ef,. 1
k00

4.5 Sobolev inequalities
4.5.1 Gagliardo-Nirenberg-Sobolev inequality

We prove next that if f € W''P(R™) for some | < p < n, then in fact f lies in
LP" (R™),

DEFINITION For | < p < n, define

p* is called the Sobolev conjugate of p. Note 1/p* = 1/p ~ 1 /n.

THEOREM 1 GAGLIARDO-NIRENBERG-SOBOLEV INEQUALITY
Assume 1 < p < n. There exists a constant C, depending only on p and n,

such that
. 1/p* 1/p
( I dx) <c ( / IDfI”dx)
R Rn

for all f € WhP(R").
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4.5 Sobolev inequalities

PROOF
1. According to Theorem 2 in Section 4.2.1, we may as well assume f €

CI{(R"). Then for 1 <{ < n,

T af
flxr,e 0, iy, rn) = —(Tpye e, tiy. e Ty) di,
-00 ()])i ! )
and so
00
|f(x)|§/ [Df(zy,... ..., z)| dt; (1 <i<n).
—0Q
Thus
L

Integrate with respect to xy:

Te~1

oC

/oo IfIV dz) < (/m |Df] dt,)ﬁ/:gu_xwﬂ dti> dz;

—0Q

<([ o) ” (Hz [ e dti)

—0Q
n-i

i=

Next integrate with respect to x; to find

/ / |f|1'da:1da:2
5(/ / |Df|dm,dt2>"_ (/ / |Df|dt,dx2)n_

XH(/ / / |Df| dx, dz; dti> n_l.
i=3 ~00 J —00 J ~00

We continue and eventually discover

1
. n 00 00 =
/|f|' da:S”(/ / |Df|dm....dti...dmn)
R™ i=1 —o00 —00

=(/Rn|Df|dm>i—I.
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This immediately gives

( / N dx)'% < / IDf|d, (%)

and so proves the theorem for p = [,
2.1f L < p < m,setg=|f|]" with y > 0 as selected below. Applying (x) to
g we find

n—1

Hde) 17 Df| d
(Lonas) ™ <o [ i s
p=i i
o o) (Lo )

Choose v so that

o P
=0 1)p_ 1
Then
o _ _ np — p*
1= 1)-———p_1 oy P
Thus
n=t p=t 1
* n « ? P
() <o) (Lo
Rn Rn fred
and so

(L a)" <o iosras)’

where C depends only on 7 and p. |

o

4.5.2 Poincaré’s inequality on balls
We next derive a local version of the preceding inequality.
LEMMA 1

For each 1 < p < 00 there exists a constant C, depending only on n and p,
such that

/ f@) = F()P dy < Crmte! / IDFW)Ply - 2"~ dy
B(z,r)

B(z,r)

for all B(z,r) CR", f € CY(B(z,7)), and z € B(x.r).
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PROOF
If y,z € B{x,r), then

1 1
f) - (=) =/0 %f(3+f(y—z))dt=/o Df(z+ty—=2))dt-(y—z),
and so
1
£@) = f)IP <y - 2 /0 IDf(z + t(y - 2))|P dt.

Thus, for s > 0,

/ F() — F)P dH™(g)
B(z,r)NdB(z,s)

!
< S"/ / |Df(z + t(y — 2))|" dH"~' (y) dt
0 JB(z,r)N8B(z,8)

1
<o [ [ DS ()P ar™" (w) d
0 B(z,r)NIB(z,ts)
1
=s"+P-'// DS (w)|Plw — 2" dH™ (w) dt
0 JB(z,r)NOB(z,ts)

= s"“’—2/ [Dfw)P|lw — 2| dw.
B(z,r)nB(z,s)
Hence Proposition ! in Section 3.4.4 implies

/ () F()P dy < Crnte=t / DF(w)Plw — o' dw. |
B(z,r)

B(z,r)

THEOREM 2 POINCARF:"S INEQUALITY
For each | < p < n there exists a constant C,, depending only on p and n
such that

1/p* 1/p
<][ |f = (Hesl” dy) < Cor <][ |DfIP dy)
B(z,r) B(z,r)

for all B(z,r) CR", f € WhP(U(z,7)).

Recall (f)z,r = f-B(:’r) f dy.
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PROOF
1. In view of Theorem 2 in Section 4.2.1 we may assume f € C'(B(z,r)).
We recall Lemma | to compute

f lf = (f)erl" dy = f | fly) = f(z) dz|” dy
B(z,r) B(xr) JB(xr)

Sf f [f(y) — f(2)]? dz dy
B(x,r) J B(a,r)

<C ! / IDf(2)Ply ~ 2|' ™ dz dy
B(z,r) B(x,r)
< Cr? f |Df|” dz. (*)
B(z,r)

2. Claim: There exists a constant C' = C(n,p) such that

i i

F P
f ey sclwf  pgrayef e
B(z,r) B(z,r) B(z,r)

for all g € WP(U(z,7)).

Proof of Claim: First observe that, upon replacing g(y) by (1/r)g(ry) if
necessary, we may assume r = 1. Similarly we may suppose x = 0. We next
employ Theorem | in Section 4.4 to extend g to § € W!-P(R") satisfying

S C||g||wl.p(U(O.l))‘ (**)

[ -
Then Theorem 1 implies
£ 1
. ? . P
( [ g dy) <([ o a)
B(0,1) R"
<c (/ |D§|”dy)p
Rn

<c /
B(0,1)

gl

1
?

|Dg|? + |g|? dy) ,

according to (xx).
3. We use () and the claim with ¢ = f — (f),.» to complete the proof of the
theorem, |
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4.5.3 Morrey’s inequality

DEFINITION Let 0 < o < 1. A function f : R*" — R is Hélder continuous
with exponent o« provided

qp L& =S

e U el
zEY

THEOREM 3 MORREY’S INEQUALITY
(i) For each n < p < oo there exists a constamt Cy, depending only on p and

n, such that
1/p
DS dw)

for all B(z,r) CR", f e WP (U(z,7)), and L" ae. y, z € U(z,7).
(ii) In particular, if f € WVP(R"), then the limit

fim 1)z = [*(2)

1F(W) — F(2)] < Cyr (ﬂ

(J.‘,l')

exists for all x € R", and f* is Hélder continuous with exponent 1 —n/p.
p

REMARK See Section 4.2.3 for the case p = 00, I

PROOF
1. First assume f is C! and recall Lemma | with p = | to calculate

FW) - £(2)
s][ F() — F)] + f(w) — £(2)] dw
B(z,r)

<C IDf)l(ly = wl'™" + [z ~ w|'™") dw
B(z,7)

p-1 1

<c / (|y—w|'—"+|z—w|'—")ﬁdw> / IDfI”dw>
B(z,r) B(z.r)

< Cp(n=tn-n3) 5 ( / DfP dw)
B(z,r)

L

=Crli=% </ |DfI? dw) .
B(z,r)



144 Sobolev Functions

2. By approximation, we see that if f € W'?(U(z,r)), the same estimate
holds for £" a.e. 3,2 € U(x, 7). This proves (i).

3. Now suppose f € WH'P(R™), Then for £L" a.e. x,y we can apply the
estimate of (i) with » = |z — y| to obtain

If(y) - f@) < Clz—y/'" 7 (/ |Df|P dw)
B(er)
< C|Df|

-yl

Lir(R)

Thus f is equal £" a.e. to a Holder-continuous function f. Clearly f* = f
everywhere in R™,

4.6 Compactness

THEOREM 1
Assume U is bounded, 8U is Lipschitz, | < p < n. Suppose {fr}i2, is a
sequence in WP (U) satisfying

Sl,:p”fk”WI.p(U) < oo.

Then there exists a subsequence {fx )32, and a function f € W"P(U) such
that

fe, = [ in LY(U).
for each 1 < q < p*.
PROOF

1. Fix a bounded open set V such that U CC 1~ and extend each fi to
fe € WHP(R™), spt (fi) C V, with

Sl’:pllkaIWL,,(Rn) < CSII:p|Ifk||“,»1.,,(,-\ < oo. (%)

2. Let f_,i =7 >s<_f_;c be the usual mollification, as described in Section 4.2.1.
3. Claim #1: ||ff — fk”LP(R") < Ce, uniformly in k.
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Proof of Claim #1: First suppose the functions fy are smooth, and calculate

|fi(x) = fi(@)|

IN

/{ I)1/(:)|fk(x —ez) — fr(z)] dz
0,

i
/ r/(z)|/ — fr(x — tez) dt| dz
J o) n dt

Sf/ n(z) |l)fk(.t—ct )| dt d=.
130.1) 0
Thus
t
I1fs— fell” < Ce”/ n(z)/ (/ |Dfi(z — etz)|” da:) dt dz
LrR") B(0,1) 0 "
< Ce||fill?

W P (R™)
< Ce by (%).

The general case follows by approximation.
4. Claim #2: For each € > 0, the sequence {f£}?2, is bounded and equicon-
tinuous on R™.

Proof of Claim #2. We calculate

fi(@)] < / ne(z — 4)| Fe()] dy
B(z,e€)
< CC—"”fk”Lp(Rn)
<Ce™™

and

|Df;(m>|s/ Dl — )l ()] dy
B(z,€)
< Ce ™

5. Claim #3: For each § > 0 there exists a subsequence { fx, }32, C {fx }iz,
such that

l.imsuprki - fkj||Lp(U) <é.

i,j—00

Proof of Claim #3: Recalling Claim #1, we choose € > 0 so small that

s = 1
€_. —_—
Sl;p”fk fk”Lp(]Rn) < 3 .
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Next we use Claim #2 and the Arzela-Ascoli Theorem to find a subsequence
{f¢, )32, which converges uniformly on R". Then
||fkj - fkr ||L"(U)
S ||fkj - fki”Lp(Rn)
<11y = el gy * 17, = 7l + 175 = Fisll oy

26 - -
S ? + ||fli, - fli;"Lp(Rn)

<6

for 4,7 large enough.

6. We use a diagonal argument and Claim #3 with § = 1,1/2,1/4, etc. to
obtain a subsequence, also denoted {fi;}32,, converging to f in LP(U). We
observe also for 1 < g < p*,

1-6
||fkj - f||L‘1(U) < ||fkj —f”ip(u)"fkj - f”LP'(U)’

where 1/g = 6/p + (1 — 6)/p* and hence 8 > 0. Since {f,.}72, is bounded in
)i (U), we see

]1_1_{20||ka _f”Lq(U) =0

for each 1 < ¢ < p*. Since p > 1, it follows from Theorem 3 in Section 1.9
that f ¢ wie(U). |

REMARK The compactness assertion is false for ¢ = p*. In case p = 1, the
above argument shows that there is a subsequence {f,}%2, and f € L' (U)
such that

]I_ljlgo”fk, - f||Lq(U) =0

foreach 1 < ¢ < 1*, It follows from Theorem 1 in Section 5.2 that f € BV (U).

4.7 Capacity

We next introduce capacity as a way to study certain “small” subsets of R™.
We will later see that in fact capacity is precisely suited for characterizing the
fine properties of Sobolev functions. For this section, fix | < p < n.
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4.7.1 Definitions and elementary properties

DEFINITION KP={f :R"—R| f>0,feLP (R*), DfeL"(R":R")}.

DEFINITION If A C R". set

Cap,(A4) = inf{/ IDfI"dz | fe KP,AC{f > l}”}.
Rﬂ
We call Cap,(A) the p-capacity of A.

REMARK

(i) Note carefully the requirement that A lie in the interior of the set {f > 1}.

(i) Using regularization, we see

Cary (i) =t { [ |D1lP 42| £ € ORI 2 x, |

for each compact set K C R".
(iii) Clearly, A C B implies

Cap,(A4) < Cap,(B). |

LEMMA I
(i) If f € KP for some | < p < n, there exists a sequence {fr}2, C
WhP(R™) such that

||f—fk||Lp'(Rn) -0
and
||Df_ka||Lp(Rn) —0

as k — oo.

(i) If f € KP, then
||f||Ly’(Rn) < CIHDf”LP(Rn)?

where C, is the constant from Theorem 1 in Section 4.5.1.
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PROOF Select { € CI(R") so that
0<¢<], (=1 on B(0,1)
spt(¢) C B(0,2), |D¢l<2.

For each k = 1,2,..., set {x(z) = ((z/k).
Given f € K?, write fi = (. Then f, € WIHP(R®),

/ I — el dy < / P dy,
Rn " — B(0,k)

and
/ Df ~ Dfil? dy
R"’

<o { [ 10-consr+ 1106 4

P

2
< { [ by ik dy}
R" — B(0,k) B(0,2k)~ B(0,k)

-2
sc{/ \DFIP dy + 4 (/ Tia dy)
R — B(0,k) R~ B(0.k)

This proves assertion (i). Assertion (ii) follows from (i) and Theorem 1 in
Section 4.5.1.

LEMMA 2
(i) Assume f,g € K?. Then

h = max{f,g} € K?

and

_ | Df LMae on{f2g}
Dh—{ Dg L™ a.e. on {f Sg}

An analogous assertion holds for min{f, g}.
(i) IffeKPandt>O0,

h = min{f,t} € KP.
(iii) Given a sequence {f}32, C KP, define

g= sup fi
i<k <ec
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and

h= sup |Dfyl
<k<oo

Ifh € LP(R"), then g € K7 and |Dg| < h L™ ae.

PROOF
1. To prove (i) we note

h=max{f,g} =f+(g- )T

Hence Theorem 4 in Section 4.2.2 implies

_{ Df acon{f>g}
Dh_{Dg ae on {f <g}

Thus Dh € L?(R*). Since 0 < h < f + g, we have h € L?" (R") as well.
2. The proof of (ii) is similar; we need only observe

0<h=min{f,t} < f,

and so h € LP" (R*).
3. To prove (iii) let us set

g = sup fi.
1<k<l

Using assertion (i) we see g; € K? and

|Dgi| < sup [Dfi| <h.
1<k<l

Since g — g monotonically, we have
||g||Lp‘(Rn) = ’l_ljgo ||gl||Lp' (R™)
<G 1i,'ﬂi2‘f||Dg‘HLv(Rn) by Lemma |

_<. Cl||h||L,a(Rn)‘

Thus g € LP" (R™). Now, for each ¢ € C{(R™; R"),
/ gdivy dy = lim / grdivy dy
R~ {00 fpn

= - lim/ - Dg; dy

l—00

< / lplh dy.
Rn
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It follows that the linear functional L defined by
Lip) = / gdivpdy  (p € CHRMR"))
has a unique extension L to Ce(R™; R") such that

Lip) < / ol dy,
RYI

for p € C.(R™; R"). We apply Theorem 1 in Section 1.8 and note the measure
4 constructed there satisfies

W< [y

A

for any Lebesgue measurable set A C R™, It follows that
Lip) = / v kdy

where k € LP(R™; R™) and |k| < h L™ a.e. Thus g € K? and |Dg| =
L™ ae.

k

<h

THEOREM 1
Cap,, is a measure on R™.

Warning: Cap,, is nor a Borel measure. In fact, if A CR" and 0 < Cap,(4) <
o0, then A is not Cap -measurable. Remember also that what we call a measure
in these notes is usually called an “outer measure” in other texts.

PROOF  Assume A C U, Ak, 3_;2, Cap,(Ax) < oo. Fix e > 0. For each
k=1,..., choose fr € K? so that

Ac C{fe 2 1}°
and

2k
Define g = sup; <y oo fk. Then A C {g > 1}°, g € KP by Lemma 2, and

/ IDfl? dx < Cap,(A) + =
Rn

/R |DglP dz < / sup |Dfyl? do

R 1<k<oc

<> [ 1Dilr i
k=1YR"

NE

< Capp(Ak) + e

ol
)l
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Thus
Capp(A Z Cap,(Ar) + |
k=i

THEOREM 2 PROPERTIES OF CAPACITY
Assume A, B C R™,
() Cap,(A) = inf{Cap,(U) | U open, AC U}.
(i) Cap,(AA) = X\"~PCap,(A) (A>0).
(i) Cap,(L(A)) = Cap,(A) for each affine isometry L:R* > R,
(i) Cap,(B(z,r)) = "~7Cap,(B(0, 1)).
) Capp(A) < CH™ P(A) for some constant C depending only on p and n.

(i) L"(A) < CCapp(A)"/""’ for some constant C depending only on p
and n.

(vii) Cap,(AU B) + Cap,(AN B) < Cap,(A) + Cap,(B).
iii) IfA C...A C Ak+l oo, then

Jim Cap, (4y) = Cap, (U Ak) .

k=1

(ix) If Ay D ... A D Agyi1... are compact, then

klirt;o Cap,(Ax) = Cap, (ﬂ Ak) .

k=1

REMARK Assertion (ix) may be false if the sets {A;}$2, are not compact.
See Theorem 3 in Section 4.7.2 for an improvement of (v).

PROOF
1. Clearly Cap,(A) < inf{Cap,(U) | U open,U D-A}. On the other hand,
for each ¢ > 0, there exnstsfer such that A C {f > 1}°=U and

/ |DfIP dz < Cap,(A) +¢
Rr
But then
Cap,(U) < / D7 d,
Rn

and so statement (i) holds.
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2. Fix ¢ > 0 and choose f € K7 as above. Let g(z) = f(z/A). Then
ge K?, M c {g 21} and

/ | Dgl? dm:,\"’”/ \DJIP da.
RY! RH

Thus Cap,(A4) < A"7P(Cap,(A) + ¢€). The other inequality is similar, and so
(ii) is verified.

3. Assertion (iii) is clear,

4. Statement (iv) is a consequence of (ii), (iii).

5. To prove (v), fix § > 0 and suppose

AcC U Blxg, i)
k=i

where 2ry < 6, (k = 1,...). Then

Capy(4) < ) Cap,(B(zx, 1)) = Capy (B, 1)) > 127"
k= k=1

Hence
Capp(A) < CH™P(A).
6. Choose € > 0, f € KP as in part 1 of the proof. Then by Lemma 1

. 1/p*
bid da:)
Rn

1/
<c (/R DfP dr) ’

< Ci(Capy(A) + )72,

LA < (

Consequently,
L™(A) < CCap,(A)P'/2;
this is (vi).
7. Fix € > 0, select f € K7 as above, and choose also g € K? so that
B cC {g>1}°, / |Dg|? dz < Cap,(B) + e.
Rn
Then

max{f, g}, min{f, g} € AP

and

|D(max{f,g})|P + |D(min{f,g})I” = |DfP + |Dg|P L™ ae.,
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according to Lemma 2. Furthermore,

AU B c {max{f, g} 2 1}°,

AN B c {min{f,g} > 1}°.
Thus

Cap, (AU B) + Capy (4 13) < [ /[ Dlmax{1,g}I” + | Dlmindf, g do

= [ 1117 +IDgP ds
Rn
< Cap,(A4) + Cap,(B) + 2¢

and assertion (vii) is proved.

8. We will prove statement (viii) for the case | < p < n only; see Federer
and Ziemer [FZ] for p = 1. Assume lim;_, o0 Capp(Ak) < oo and € > 0. Then
for each k = 1,2,..., choose f; € K? such that

Ap C{z| fr(z) 2 1}°
and

/Rn |Dful? dz < Cap,(Ax) + zik
Define

hm = max{fx | 1 <k <m}, ho =0
and notice from Lemma 2 that k., = max{hn,_i, fm) € K7,

Am—; C {CB | min(hm,l,fm) > 1}0.

We compute
/ Dl de + Capy(Arecr) € / |D(max (i, f)IP d
+ [ IDG@in(s, £))P do
= /Rn|Dhm_1|”+|Dfm|pda:
< [ IDhanil? do + Capy(4n) + 55

Consequently,

[ 1Dhopdz = [ |Dnosl? d < Cap, () = Capy (i) + e
R R
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from which it follows by adding that
/ |Dhoy|P dx < Cap,(Am) + ¢ (m=12,..)
Set f = liMyn—oo han. Then o, A C {2 | f(z) 2 1}". Furthermore,

||f||Lp' (Rn) = 1nl££noo ||hnl||L,,' (Rn)

< C] I;“_‘j;‘of”Dh’”HL"(R" )

. t/p
<C [ lim Cap,(Aw)+e| -

m-—+00

Since p > 1, a subsequence of {Dh,,}%_, converges weakly to Df in
LP(R™) (cf. Theorem 3 in Section 1.9); thus f € K?. Consequently,

e (U Ak) SIDANG, goy S Jlim Capy(Am) + e
k=1

9. We prove (ix) by first noting

Cap, <ﬂ Ak> < k&rgoCapp(Ak).
k=1

On the other hand, choose any open set U with {1, Ax C U. As (o, Ak
is compact, there exists a positive integer m such that Ay C U for & > m.
Thus

kl_lango Cap,(Ax) < Cap,(U).

Recall (i) to complete the proof of (ix). |

4.7.2 Capacity and Hausdorff dimension

As noted earlier, we are interested in capacity as a way of characterizing certain
“very small” subsets of R™. Obviously Hausdorff measures provide another
approach, and so it is important to understand the relationships between capacity
and Hausdorff measure,

We begin with a refinement of assertion (v) from Theorem 2:

THEOREM 3
If H"7P(A) < 00, then Cap,(A) =0 (1 <p < n).

PROOF
1. We may assume A is compact.
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2. Claim: There exists a constant (/, depending only on n and A, such that
if V is any open set containing A, there exists an open set 1" and f € K7 such
that

ACWC {f = 1},

spt {(fyCV,
/ DfP de < C.

Proof of Clainr: Let V be an open set containing A and let § = 1/2 dist{ 4,
R™ — V). Since H"~?{A) < oo and A is compact, there exists a finite collection
{U(zi,m,)}iL, of open balls such that 2r; < 6, U(zi,r) N A # 0, A C
U;’;l U(:I:i, 7‘,‘), and

Y a(n—p)riTP < CHYP(A) + L.
i=1
for some constant C,
Now set W = JI~, U(z;,r;) and define f; € K? by

1=

l if |[z—o5| <7y
fi(z)z Z—E%EEL' if T,‘S|$—£B,‘|52T,‘
i
0 if 2r; <|z -z

Then
/ [DfilP dz < Cr?7P.
Rn

Let f = maxi<icm fi. Then f € KP, W C {f =1}, spt(f) C V, and
[ pPrdz<y. [ i ds<CYorr <operay +).
R» 1=l R =1

3. Using the claim inductively, we can find open sets {V;}32, and functions
fr € KP such that

ACVip C Vi,

Via C {fs =1}°,

spt (fi) C Vi,

[ 1pspdz <o
Set )
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and

Then.g; € K7, g; > | on Vjyy. Since spt (|Dfi|) C Vi ~ Vig1, we see
j i p

Cap,(A) < / |Dg;[P dz = o7 ka/ [Dfx|? dz

J k=1

I 1
Zﬁ — 0 as j — oo,
k=1

é’%\ Q

since p > 1. i

THEOREM 4

Assume A C R™ and 1 < p < oo. {f Cap,(A) = 0. then H*(A) = 0 for all
s>n-—p.

REMARK We will prove later in Section 5.6.3 that Cap;(A) = 0 if and only if
HHA) =

PROOF
1. Let Cap_(A) = 0 and n — p < s < co. Then for all z > 1, there exists
fi € K? such that A C {f; > 1}° and

|
DfilPde < .
| 1o de< 5

Let g =302, fi. Then

1/p o0 1/p
Dgl? dz < / Dipdl‘> < 00
(/RJ dl ) Z(RJ i

i==1

and by the Gagliardo—Nirenberg-Sobolev inequality,

</ |g|p, dz)l/p' <§</ lf'lp’ d1>1/p-
R TS Ve '

<§C </ |Dfi|P d. )l/p<
> £ i e 1 z Q.

Thus g € K?.
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2. Note A C {g >m}’ for all m > L. Fix any a € A. Then for r small
enough that {a,r) C {g > m}”, (g)a.r > m; therefore (g} — 00 as T — 0.
3. Claim: For each a € A,

|
lim sup — [Dg|? dx = +00.
r—=0 T JB(a,r)

Proof of Claim: Let a € A and suppose
. |
limsup — {Dg|? dz < co.
r—=0 T Bla,r)
Then there exists a constant M < oo such that

L \Dgl? do < M

T4 JB(a,r)

forall0<r <1l Thenfor0<r<I,

][ 19— (9)arl? dz < 027"’][ \Dgl? dz < C+,
B(a,r) B(a,r)

where § = s — (n — p) > 0. Thus

1

(@ar/2 = (@ar] = T Bla.r/2) /B(a’r/z)g = (9)ar dz

< 2"][ 19— (@arl dz
B(a,r)

=Cr?
Hence if k > j,
k
1(@aijze = (@ansz! € D 1(@ansz — (@ayijz-]
l=j+1
k 1 H
<0y (5)
l=j+1

This last sum is the tail of a geometric series, and so {(g)q,1/2¢}3%, is 2
Cauchy sequence. Thus (g), ;/2+ 7> 00, a contradiction.
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4. Consequently,

1
AcC {a € R" | limsup — |Dg|? dx = +oo}
r—g TF

B(a,r)

1
C (a e R"|limsup —/ [Dg|” dx >0} = A,.
r=0 T JBla,r)

But since [Dg[” is L"-summable, H*(A,) = 0, according to Theorem 3 in
Section 2.4.3.

4.8 Quasicontinuity; Precise representatives of Sobolev functions

This section studies the fine properties of Sobolev functions.

LEMMA 1
Assume f € KP and € > 0. Let

A={z €R*|(f)r > € for some > 0}
Then
A) < ¢ Pd
Capy(4) < 5 [ DS do (¥

where C depends only on n and p.

REMARK  This is a kind of capacity variant of the usual estimate

Lz € R® |f(m)>e}§—:;/nn IfP dz. 1§

PROOF  For the moment we set ¢ = 1 and observe thatif z € A and (f),,, > 1,
then

n Tn 1_# . ) P
a(n)r™ < /B(z’r) f dy < (a(n)r™) (/B(Lr) i dy)

so that
r<C

for some constant C.
According to the Besicovitch Covering Theorem (Section 1.5.2), there exist
an integer Ny and countable collections F,..., Fx of disjoint closed balls

n
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such that

i=l BeF;
and

Nu
(f)g > 1 foreach B¢ U]:i'

i=1

Denote by B! the elements of F; (i = 1,..., N,;; j = 1,...). Choose hy; € K?
such that

hij = {({f)gs = f)* on B]

i

and
/ |Dhi]-|” szC/ [Df|P dx (i=1,...Ny: 7=1,2,...)
Re B!

where C depends only on n and p. This is possible according to Theorem 1 in
Section 4.4 and Poincaré’s inequality in Section 4.5.2. Note that

f+hij > (f)B;’ > 1 in Bf
and hence, setting
h=sup{h; | i=1,...,N,, j=1,...} € K?,
that
f+h > 1 on A (40k)
Now

N, oo
/|D(f+h)|pd:c50 / |Df|”da:+ZZ/ |Dhyj|P dz
R~ R Rn

i=1 y=1""

<C [Df|? dz.
R"
Consequently, since A is open and so (%) implies
Ac{f+h > 1}°,
we have

Cop(a) < [ 1D 4w dz<C [ Dfr b
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Incase 0 < e# |, wesetg=¢e"1f e K7, so that
A={z|(flzr > for some r > 0}

= {z|(g)s,r > 1 for some r > 0}.

Thus

eP

Cap,(4) 50/ IDgl? dz:Q/ IDfP dz. |
R™ R™

We now study the fine structure properties of Sobolev functions, using capac-
ity to measure the size of the “bad” sets.

DEFINITION A function f is p-quasicontinuous if for each ¢ > 0, there exists
an open set V such that

Cap,(V) <e
and

f |lrm=v s continuous.

THEOREM 1 FINE PROPERTIES OF SOBOLEV FUNCTIONS
Suppose f € W'P(R™), 1 <p< n.

(i) There is a Borel set E C R™ such that
Capp(E) =0
and

lm(f)z,r = f*(.'l:)

exists for each z € R* — E.
(i) In addition,

r—0

“‘“J[ If = F*@)P dy=0
B(z,r)

for each z € R* — E.

(iii) The precise representative f* is p-quasicontinuous.

REMARK Notice that if f is a Sobolev function and f = g L™ a.e., then g is
also a Sobolev function. Consequently if we wish to study the fine properties
of f, we must turn our attention to the precise representative f*, defined in
Section 1.7.1.
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PROOF
1. Set

!
A= {mGR" |hmsup-— |Df|? dy>0}.
B(

—p )
By Theorem 3 in Scction 2.4.3 and Theorem 3 in Section 4.7.2,
H""P(A)=0,  Cap,(4)=

Now, according to Poincaré’s inequality,

li - z,r Pt =0
im ]{3 o = el dy (%)

r—0

for each = ¢ A. Choose functions f; € W'P(R") N C°°(R") such that

) ! )
/Rn |IDf — Dfil" dySW (i=1,2,...),

and set

|
B;={zeR"| |f = fil dy > = for some r >0
B{z,r) 2

According to Lemma 1,

C

Cap, (B
) <o [ pr-pprays 5

27

Consequently, Cap,(B;) < C/2*, Furthermore,

(Far — £i(@)] < ]{3( 1= (e dy+]{3( 17 Ay

+ ]{3 V- fl

Thus (x) and the definition of B; imply
. 1
hms(‘)‘Pl(f):,r‘fi(I)l < 5 (z € AU By). (%)
r—

Set By, = AU (U2, B;). Then

o0
1
Cap,(Ex) < Cap, (A +ZCapp ) < 02-27 .
j=k
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Furthermore, if z € R* ~ Ep and 4,7 > k, then

/(=) = fi(@)] < timsup|(f)z. — fi(2)]

r—0
+limSUp|(f)m,1' - fj(:r)l
r—0
<dil byow
=@ty T

Hence {f;}52, converges uniformly on R™ — E} to some continuous function g.
Furthermore,

limjgp lg(z) = (fzrl < lglz) = filz)| + limjgplfi(w) = (Hz.rls

80 that (%*) implies

g(z) = lim(f)s, = f*(z)  (z€R" - Ey).

r—0
Now set E = (), E. Then Cap,(E) < limg .o Cap,(Ex) = 0 and

f*(z) = im(f)z,, exists for each z € R" — E.

r—0
This proves (i).
2. To prove (ii), note A C F and so (x) implies for z € R* — E that

H

lim <]{3 e dy)

< tim |(F)ae = (@) + fim (]{3 M= et dy)

r—0
= 0.

3. Finally, we prove (iii) by fixing ¢ > 0 and then choosing & such that
Cap,(Ex) < €/2. According to Theorem 2 in Section 4.7, there exists an open
set U D Ey with Cap,(U) < e. Since the {f;}{2, converge uniformly to f* on
R® — U, f*|gn-v is continuous.

4.9 Differentiability on lines

We will study in this section the properties of a Sobolev function f, or more
exactly its precise representative f*, restricted to lines.
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4.9.1 Sobolev functions of one variable

NOTATION [f i : R — R is absolutely continuous on each compact subinterval,
we write &' to denote its derivative (which exists £! a.e.)

THEOREM 1
Assume | < p < oo.

() If f € WAP(R), then its precise representative f* is absolutely continuous
on each compact subinterval of R and (f*)' € L} (R).

(i) Conversely, suppose f € L} (R} and f = g L! a.e., where g is absolutely
continuous on each compact subinterval of R and ¢' € L}, (R). Then
f e WLR).

PROOF
1. First assume f € WLP(R) and let (d/dt)f denote its weak derivative.
For 0 < € < | define f€ = 5, * f, as before. Then

=@+ [ Y (%)
Let z¢ be a Lebesgue point of f and ¢, § € (0, 1). Since
1F(2) - ()| < / 7Y (1) = (F5) (0)] dt + 1 F<(z0) — 75 (o)

for z € R, it follows from Theorem 1 in Section 4.2.1 that {f¢}.50 converges
uniformly on compact subsets of R to a continuous function g with g = f
L! a.e. From () we see

o) =atea)+ [ 10)a

and hence g is locally absolutely continuous with ¢' = (d/df)f L' ae.
Finally, since (f)z.r = (¢)z.r — g(z) for each z € R, we see ¢ = f*. This
proves (i),
2 On the other hand, assume f =g L' ae, g is absolulely continuous and
€ L} (R). Then for each ¢ € C}(R),

oQ o0 oQ
/ fo'dz = / 9¢' dz = —/ g'p dz,
—00 ~00 —00

and thus g’ is the weak derivative of f. Since ¢’ € L? (R), we conclude
fewrm). |
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L
4.9.2 Differentiability on a.e, line

THEOREM 2
(i) Iffe VVIL’C”(R”), then for each k = \,...,n the functions

fl:(m,yt) Ef*(---yzk—lyt'ywk-i-ly-")

are absolutely continuous in t on compact subsets of R, for L™~ a.e. point
., !
' = (T4, oy T 1y Thpls- -2 Tn) € RPL [naddition, (f}) € L} (R™).

(i) Conversely, suppose f € LT (R") and f = g L™ a.e., where for each
k=1,...,n, the functions

g ) =glo. . Tty b Thogty - - 4

are absolutely continuous in t on compact subsets of R for L' a.e.

point :vi = (T1yerrs Thty Thtt,---Tn) € R*! and g, € LY (R"). Then
f € WeHRY).
PROOF

L. 1t suffices to prove assertion (i) for the case k = n. Define f¢ = 7. * f as
before, and recall

fe - fin WP(RY).

By Fubini’s Theorem, for each L > 0 and L' a.e. 2’ = (zy,...,Zn—1), the
expression

L 6 € p
/_Llf‘(r’,t)—f(m’,t)k’Jr %;(z’,t)— :zi(z’,t) dt

goes to zero as € — (. Thus the functions
Ly =f(="t) (teR)

converge in Wif)’c” (R), and so locally uniformly, to a locally absolutely continu-
ous function f, with f1(t) = (8f/0z.)(z',t) for L! a.e. t € R. On the other
hand, Theorem 1 in Section 4.8, Theorem 2 in Section 5.6.3, and Theorem 4 in
Section 4.7.2 imply

fe—rr H' ! ae.
Therefore, in view of Corollary 1 in Section 2.4.1, for L™ ! ae. z
fa(ty = f*(«',t)
for all t € R Hence for L' ae. ' and all ¢t € R,
()= (', 0).

’

This proves statement (i).
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2. Assume now the hypothesis of assertion (if). Then for each ¢ € C}(R"),

0 4o [ 420
R“famkd —-/ga dz
/ (/ g’ 1)’ (2, t) dt) dz’
Re -t -0

—/ (/ gr(z', (2’ t) dt) dz’
Rt —o0
—/ gy dz.

Thus 8f /0zi, = g, L™ ae.,k=1,...,n, and hence f € W,(l;c”(R"). i

I

i

i
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AR
BV Functions and Sets of Finite Perimeter

In this chapter we introduce and study functions on R of bounded variation,
which is to say functions whose weak first partial derivatives are Radon mea-
sures. This is essentially the weakest measure theoretic sense in which a function
can be differentiable. We also investigate sets E having finite perimeter, which
means the indicator function x g 18 BV.

It is not so obvious that any of the usual rules of calculus apply to functions
whose first derivatives are merely measures. The principal goal of this chapter
is therefore to study this problem, investigating in particular the extent to which
a BV function is “measure theoretically C''” and a set of finite perimeter has “a
C" boundary measure theoretically.”

Our study initially, in Sections 5.1 through 5.4, parallels the corresponding
investigation of Sobolev functions in Chapter 4. Section 5.5 extends the Coarea
Formula to the BV setting and Section 5.6 generalizes the Gagliardo-Nirenberg—
Sobolev Inequality. Sections 5.7, 5.8, and 5.11 analyze the measure theoretic
boundary of a set of finite perimeter, and most importantly establish a version
of the Gauss—-Green Theorem. This study is carried over in Sections 5.9 and
5.10 to study the fine, pointwise properties of BV functions,

5.1 Definitions; Structure Theorem
Throughout this chapter, U denotes an open subset of R".
DEFINITION A function f € L'(U) has bounded variation in U if

sup{/ fdivp dz | € CHU;R™), |¢| < l}<oo.
U

166
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We write
BV(U)

to denote the space of functions of bounded variation.

DEFINITION An L"-measurable subset E C R"* has finite perimeter in U if

Xz € BV(U).

It is convenient to introduce also local versions of the above concepts:

DEFINITION A function f € L} _(U) has locally bounded variation in U if
for each open set V CC U,

sup{/ fdivpdz | ¢ € CHV;RY), |p| < l} < 00,
1%

We write
BVie(U)

1o denote the space of such functions.

DEFINITION An L™measurable subset E C R™ has locally finite perimeter
inU if

Xg € BViee(U).

Some examples will be presented later, after we establish this general structure

assertion.
-

THEOREM I STRUCTURE THEOREM FOR BV, FUNCTIONS
Let f € BVie(U). Then there exists a Radon measure jn on U and a p-
measurable function o : U — R™ such that

() lo(z) =1u ae., and
@) Jy fdiveds=— [y -0 du

for all p € CH{U;R™).

As we will discuss in detail later, the Structure Theorem asserts that the weak
first partial derivatives of a BV function are Radon measures.
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PROOF  Define the linear functional
L:Cl{U;R") =R
by
Lip) = —/deiwpd:c
for o € CLU; R™). Since f € BVoc(U), we have
sup {L(p) | ¢ € CLV;R™), || <1} =C(V) <0
for each open set V CC U, and thus
IL(0)} < C(V )l o (%)

for ¢ € CLV;R™).

Fix any compact set K C U, and then choose an open set V such that K C
V CcC U. For each ¢ € C.(U;R™) with spt ¢ C K, choose ¢y € CL(V;R")
(k=1,...) so that ¢} — ¢ uniformly on V. Define

L(p) = lim L{ew);

according to () this limit exists and is independent of the choice of the sequence
{pr}2, converging to ¢. Thus L uniquely extends to a linear functional

L:C(U;R*) >R
and
sup{L () | ¢ € C(UsR*), || < 1,5pt o C K} < 00

for each compact set K C U, The Riesz Representation Theorem, Section 1.8,
now completes the proof.

NOTATION
(i) If f € BVic(U), we will henceforth write

£l

for the measure p, and
[Df] = IDf|l L o
Hence assertion (ii) in Theorem 1 reads
[ raveds== [ o-aaipfii=- [ o aips
U U U

for all ¢ € CH{U; R™*).
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(i) Similarly, if f =X, and £ is a set of locally finite perimeter in U, we
will hereafter write

[1OE]
for the measure j, and
vg = —0.

Consequently,

/div<pd:c=/<p-uE d||8F]|
E U
for all ¢ € C(U;R™).

MORE NOTATION  If f € BVi.(U), we write
g =|DfllLd  (i=1,...,n)

for ¢ = (g!,...,0™). By Lebesgue’s Decomposition Theorem (Theorem 3 in
Section 1.6.2), we may further set

ph = e+l
where
i < L L Lm
Then
pa = L™ L f;
for some function f; € L (U) (i =1,...,n). Write
g:fz = fi (i=1,...,n)
Df = (g_i,,% ,
(Dflc = (fgey--- o) = L L DS,
Df)s = (u,...,u").
Thus

[Df] = [Df]ac + [Df]s =L"L Df+ [Df]Sy

so that Df € Li_(U;R"} is the density of the absolutely continuous part
of [Df].
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REMARK Compare this with the notation for convex functions set forth in
Section 6.3. |

\

REMARK

(i) [[Df]| is the variation measure of f; ||E|| is the perimeter measure of
E; |OE)|(U) is the perimeter of E in U.

(ii) If f € BVie (UYNL'(U), then f € BV (U) if and only if || D fI|(U) < oo,
in which case we define

10 gy 0y = 1111 gy + DAV

(#i) From the proof of the Riesz Representation Theorem, we see

UDFI(V) = sup {/v fdivpdr | o € CH{V;R™), ol < l},

IOEI(V) = sup{ Javeoda| v e CLviR)lol < n}

foreach VccU. |

Example 1
Assume f € Wl (U). Then, for each V CC U and ¢ € CL(V;R"), with
lol £ 1, we have

/deiv<pdm=~/UDf~<pd:c§/VlDf]dx<oo.

Thus f € BV (U). Furthermore,

IDfll = L™ L DA,
and
Df .
a-:{ oA TOIE L,
0 it Df =0.
Hence

We (U) € BVie(U),
and similarly

Wwh(U) c BV(U).
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In particutar,

Wl (U) € BVioe(U) for 1 < p < 0.

{6

Hence, each Sobolev function has locally bounded variation. {1

Example 2
Assume E is a smooth, open subset of R” and H*~!(8E N K) < oo for each
compact set K C U. Then for V and ¢ as above,

/div<pd:c=/ @ -vdH™
E 8E

v denoting the outward unit normal along OF.
Hence

/div<pd:c=/ p-vdH* ' <H"HBENV) < 0.
E dENV
Thus E has locally finite perimeter in U. Furthermore,
JOEYU) = H"(OEND)
and

vg=v H" 'ae ondENU.

Thus {{0E|(U) measures the “size” of dF in U. Since x ¢ Wil U) (ac-
cording, for instance, to Theorem 2 in Section 4.9.2), we see

Wi U) 2 BViw(U),
whi(U) ;CeBV(U).

That is, not every function of locally bounded variation is a Sobolev function.

REMARK Indeed, if f € BVjo(U), we can write as above
[Df] =D flac + [Dfls = £ L Df +[Df}s.
Consequently, f € BVioo(U) belongs to WP (U) if and only if
feLli ), [Dfli=0, DfeLf (). I

The study of BV functions is for the most part more subtle than the study of
Sobolev functions since we must always keep track of the singular part [D f]s
of the vector measure Df.
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5.2 Approximation and compactness
5.2.1 Lower semicontinuity

THEOREM I LOWER SEMICONTINUITY OF VARIATION MEASURE
Suppose fi, € BV(U} (k=1,...)and fr — f in L (U). Then

IDAIU) < liminf || Df[|(V)-

PROOF Let ¢ € CH(U;R™), |o| < I. Then

/ fdivp dz = lim / frdivep dz
U k—oo Jir
=*WH/W%MWM|
k—oo U
< timinf | D£il| (V).
Thus
HDﬂKU%=WP{LfMWN&I¢€CXMRWJﬂSl}

< liminf || Dfi[|(U). 1

5.2.2 Approximation by smooth functions

THEOREM 2 LOCAL APPROXIMATION BY SMOOTH FUNCTIONS
Assume f € BV(U). There exist functions {fi}3>, C BV(U)NC®(U) such
that
& fo— fin Li(U) and
@ ||Dfll(U) — [IDFI(U) as k — co.

REMARK Compare with Theorem 2 in Section 4.2.1. Note we do not assert

ID(fe = HIIV) —0. 1

PROOF
1. Fix ¢ > 0. Given a positive integer m, define the open sets

. 1 .
Ukz{:r;eUldlst(z,OU)>m+k}ﬂU(O,k+m) (k=1,..)

and then choose m so large

DAV =) <e (*)



52 Approximation and compactness 173

Set Uy = 0 and define
Vi = U1 — Ukt (k=1,..).
Let {Ci}2, be a sequence of smooth functions such that

GeCP(Vi) 05¢G <1 (k=1,..)
ZCk
k=1

Fix the mollifier 7, as described in Section 4.2.1. Then for each k, select ¢, > 0
so smal] that

1 on U,

il

spt (e, * (fCk)) € Vi
/U|flek*(ka)—ka|d$<2e—k, (#%)
[ 1o+ (1 DG - 1 DGl do < 5
U
Define
fe = Me * (FG)-
k=1

In some neighborhood of each point z € U there are only finitely many nonzero
terms in this sum; hence

fe € C™(U).

2. Since also

F= G
k=1

(xx) implies

W= Al €3 [ e (560) = fGul d < c.
k=1 U

Consequently,
fe— fin LY(U), as e — 0.

3. According to Theorem 1,

IDFNIU) < timinf[|Dfel|(U). (% %)
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4. Now let p € CHU;R™), |¢| < 1. Then
/Uf(diw dz = S/Umk *(fGe)divep dz
= g:l/vfg'kdiv(nfk *p) dz
. ki [ 73 @t + ) 2
_gfvfnck-(nﬁkw) dz
- g[jfdiv(ck(nek vp)) do

- ¢ (ne, * (f DGr) — £ DG da
=I{ + I

Here we used the fact oo, DCkx = 0in U. Now [Ce(ne, *@)| S 1 (k= 1,...),
and each point in U belongs to at most three of the sets {Vi};2,. Thus

IIf| = l/deiV (Gime; * #)) d$+kZ=2/deiV (Ckmew * ) de

< DAY + D IIDAI(VE)

k=2
S IDSIIU) + 3 DAIU — UL

<DSNU) +3¢, by ().
On the other hand, (>+) implies
5] < e
Therefore
| fediviodz < IDAIV) + 2,
and so )
ID£||(U) < IDSIIU) + 4e.

This estimate and (% * *) complete the proof. |



5.2 Approximation and compactness 175

THEOREM 3 WEAK APPROXIMATION OF DERIVATIVES
For each function fi, as in the statement of Theorem 2, define the (vector-valued)
Radon measure

lLk(B) = / ka dr
BNy
for each Borel set B C R"*. Set also
wm=[ s,
BnU
Then

= p

weakly in the sense of (vector-valued) Radon measures on R".

PROOF  Fix ¢ € C}{(R";R™) and ¢ > 0. Define U; CC U as in the previous
proof and choose a smooth cutoff function ¢ satisfying

(=lonU,spt(¢)CU,
0<(< L.

Then

/nzn‘pd“k:L¢'kad1:/L,CW'kadm+L(l—C)w-kadz

== [aveodo+ [(1-0p Dida. *)
U U

Since fi — f in LY(U), the first term in (x) converges to
- [ divico)s do = [ Go- dips]
U U

= [ o dpfi+ [(c-ne- dDA (o0
U U
The last term in (x*) is estimated by
llell o I1PFINU = Ut) < Ce.

Using Theorem 1 in Section 5.2.1, we see that for k large enough, the last term
in (x) is estimated by

lloll oo I DU = Un) < Ce.
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Hence

< Ce

/ soduk—/ @ di

for all sufficiently large k. |

5.2.3 Compactness

THEOREM 4
Let U C R be open and bounded, with QU Lipschitz. Assume {fi}7>, is a
sequence in BV (U) satisfying

Szpllfkllyv(u) < 0o.
Then there exists a subsequence { fi;}52, and a function f € BV (U) such that
fr, — fin LNU)
as j — oo.

PROOF For k = 1,2,..., choose g, € C°(U) so that

1
/lfk‘gk|d$<l:,
U
*)
sup/ |Dgx| dz < co;
£ Ju

such functions exist according to Theorem 2. By the remark following Theo-
rem 1 in Section 4.6 there exist f € L'(U) and a subsequence {g; }52, such
that g¢, — f in L'(U). But then (%) implies also fi, — f in L'(U). According
to Theorem 1, f € BV(U). |

5.3 Traces

Assume for this section that U is open and bounded, with U Lipschitz. Observe
that since OU is Lipschitz, the outer unit normal v exists H"*~' a.e. on AU,
according to Rademacher’s Theorem.

We now extend to BV functions the notion of trace, defined in Section 4.3
for Sobolev functions.
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THEOREM I
Assume U is open and bounded, with OU Lipschitz. There exists a bounded
linear mapping

T:BV({U)— L' (0U; H* )

such that
v u au
forall f € BV(U)and p € C'(}R";}R"),

The point is that we do not now require ¢ to vanish near oU.

DEFINITION The function Tf, which is uniquely defined up to sets of
H*~ ' L QU measure zero, is called the trace of f on OU.

We interpret T f as the “boundary values” of f on 9U.

REMARK If f € WHY(U) € BV(U), the definition of trace above and that
from Section 4.3 agree. |

PROOF
1. First we introduce some notation:

(a) Given T = {(zy,...,Zn) € R?, let us write z = (z',x,) for ' =
(Z130.0sTn) ERMY, 2, € R Similarly we write y = (¥, y).

(b) Given z € R™ and r, h > 0, define the open cylinder
Clr,r,h) = {yeR* | ¢ —2'| <7 |yn — za| < b}

Now since OU is Lipschitz, for each point z € QU there exist r,h > 0 and a
Lipschitz function v : R*~! — R such that

h
]

a — < —
lIlTyl)l(Sr |7(y ) xnl - 4

and — upon rotating and relabeling the coordinate axes if necessary —
UnC(z,rnh)={y| |z'-y| <rv(y) <yn <zn+h}
2. Assume for the time being f € BV(U)NC>(U). Pick z € 9U and
choose r, h, 4, etc., as above. Write

C = C(z,r,h).
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C (x,r,h)

| S—

FIGURE 5.1
A Lipschitz boundary within a cylinder.

If0<e<h/2and y € 0UNC, we define
fe(y) = F& () +e).
Let us also set
Cse={y €C|y(y) +6 <ya <7(y) +¢}

for 0 < 6 < e < h/2, and define C, = Gy . Write C¢ = (CNU) ~ C..
Then

o) — f) < /6 6

af ! !
—A(y, t)| dt
S8 +0)
€
< [ 1pst ) + 0l e,
and consequently, since <y is Lipschitz, the Area Formula. Section 3.3, implies
| Vs~ sdar=t<c [ Dfiay=ClDAICH).
aunc Cs.e
Therefore {fe }e>o is Cauchy in LY(OU N C; H*!), and thus the limit
Tf = lim f.
€0

exists in this space. Furthermore, our passing to limits as & — 0 in the foregoing
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C8,£

/

/\ x R

FIGURE 5.2
The ||D f|| measure of the shaded region Cjs, goes to zero as ¢,§ — 0.

inequality yields also

[ wi-siawr <ciogic) ()
aunc

Next fix ¢ € CH{C;R™). Then

/ fdiwdy=—/ so-Dfdy+/ fepe v dH™ !
Ce Ce aunc
Let ¢ — 0 to find

/ fdivcpdy:—/ <p-0d||Df||+/ Tfo-vdH™ ' (xx%)
unc unc sunc

3. Since QU is compact, we can cover U with finitely many cylinders C; =
C(z;, i, hi) (i=1,...,N) for which assertions analogous to (%) and (x * %)
hold. A straightforward argument using a partition of unity subordinate to
the {C;}32, then establishes formula (x). Observe also that (x x ) shows the
definition of “T'f” to be the same (up to sets of H™ ! L U measure zero) on
any part of OU that happens to lie in two or more of the cylinders C;.

4. Now assume only f € BV(U). In this general case, choose f, € BV(U)N
C®(U) (k=1,2,...) such that

fe— fin LYU),  [IDSlI(U) — IDAII(D)
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and
pi — p weakly,

where the measures {p4}72,, p are defined as in Theorem 3 of Section 5.2.2.
5. Claim: {Tf}3, is a Cauchy sequence in L'(9U; H™™').

Proof of Claim: Choose a cylinder C as in the previous part of the proof.
Fix e > 0, y € 8U N C, and then define

il

i = ¢ [ )+ d

Il

L [ a

Then (%) implies

1 [ o
/ |Tfk—f§|dHn—lS—// ITfi = (fu)el =" dt
aunc € Jo Jeunc

< C||Dfe|(Ce)-
Thus
/ T~ TH| dH™" < / (T e — i) dH™
auncC auncC
+ / ITfi — fe] dH!
aunc
+ / |6~ £l dmne
aunc
< CUIDfell + 1P filI)X(Ce)
C
+—/ |fr — fi] dy.
€ C.
and so

limsup/ |Tfi ~ TH| dH™™' < C||DFII(Ce N U).
aunc

kl—o0

Since the quantity on the right-hand side goes to zero as ¢ — 0, the claim is
proved.
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6. In view of the claim, we may define
Tf= klim Tfi

this definition does not depend on the particular choice of approximating se-
quence.
Finally, formula (x) holds for each fi, and thus also holds in the limit for f.

THEOREM 2
Assume U is open, bounded, with OU Lipschitz. Suppose also f € BV(U).
Then for H* ! a.e. € AU,

lim][ |f = Tf(z)| dy =0,
B(z.r)nU

T—0

and so

Tf(x)= lim ]{3( )nUf dy.

r—0

REMARK  Thus in particular if f € BV(U)N C(U), then
Tf=flov H* ' ae. |

PROOF
1. Claim: For H™ ! ae. x € 8U,

i IDFI(B(z,1) N 0)

r—0 =1

=0.

Proof of Claim: Fix v >0, § > e > 0, and let

A, = {z € 9U | limsup IDAB(,r) 0 U) > "y} .

r—0 i

Then for each x € A, there exists 0 < 1 < e such that

IDAI(B(z,r) N U)

rn—1

>. (*)

Using Vitali’s Covering Theorem, we obtain a countable collection of disjoint
balls {B(z;,7;)}2, satisfying (&), such that

A-., C U B(:c,-,Sr,-).

i=1
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Then
Mizg' (4r) < i o(n - 1)(5r)""!
< O3 DBE Y
< clIpAIwo),
where

Ut = {z € U | dist(z, dU) < €}.

Send € — 0 to find Hm (A,) =0forall 6 > 0.
2. Now fix a point x € QU such that

o IPAI(B(z, 1) N U)

r—*O -l

=0,
lim |Tf - Tf(z)| dH*! = 0.
=0 JB(z,MnoU
According to the claim and the Lebesgue-Besicovitch Differentiation Theorem,

H* ' ae. z € OU will do. Let h = h(r) = 2max(1,4Lip (v))r, and consider
the cylinders

C(r) = C{z,7, h).

Observe that for sufficiently small r, the cylinders C(r) work in place of the
cylinder C in the previous proof. Thus estimates similar to those developed in
that proof show

|- plant <cpsiicmn),
aunc(r)
where
— ! ! h('r)
f) = fy, (W) + €) yeC(rNol, 0 <e< —=
Consequently, we may employ the Coarea Formula to estimate

/ ITF( W) — F@)] dy < CrIDFICE) A D).
B(z,r)nU
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Hence we compute

C
][ fly) = Tf (@)l dy < ’Tl/ ITf - Tf(x)| dH""!
Bz, )nU T C(r)nau

C
+ ITf(y' () — fw)l dy
B(z,r)nU
C
< o) + —IIPAlIC(r) V)
=o(l)asr — 0, by (x%). |

5.4 Extensions

THEOREM I
Assume U C R" is open and bounded, with OU Lipschitz. Let fi € BV(U)
f» € BV(R* - U).

Define
= ) fil=) z€eU
f(z)z{ Alz) zeR-T.
Then
f e BV(RY)
and

IDFII(R™) = IDAIIU)Y + IDAI(R - T) + /au ITfi —Tf| dH™".

REMARK In particular, under the stated assumptions on U,

(i) the extension

f onU
Ef =
0 onR*-U

belongs to BV (R™) provided f € BV(U), and
(ii) the set U has finite perimeter and ||0U||(R*) = H*~'(aU). |
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PROOF
1. Let p € CH{R™,R"), |¢| < 1. Then

fdivgodz:/ f;divgodz+/ frdive dx
v R -U

- [ apsi- [ o

+ [ @5i-Thyp v ar
au

R*

I

< IDAIU) + IDAIIR ~T) + /a T =Tl
Thus f € BV(R™) and
IDFIR") < IDANU) + IDAIIR" - T) + /a TR-Thl
2. To show equality, observe

'/"“”' d[Df]:—/Ugo- d[Df1]~/R"_U<p' d[Dfy)

+/ (Tfl—sz)cpwldH"'l (*)
U
for all p € C!(R™; R™). Thus
[Dﬂ:{ D] U
[Dfy) onR* -T.

Consequently, (*) implies

—/ ©- d[Df]:/ (THi—Tf)p - vdH" !,
au U
and so

IDFI(0U) = /a A -TH e
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5.5 Coarea Formula for BV functions
Next we relate the variation measure of f and the perimeters of its level sets.

NOTATION For f: U — R and { € R, define

E,={zcU]| flz) >t}

LEMMA [
If f € BV(U), the mapping

te [PE[U)  (teR)

is L'-measurable.

PROOF The mapping
(2, 8) ~ X, (2)

is (L™ x L£')-measurable, and thus, for each ¢ € C}(U;R"), the function
t— divcpdz:/xEdivgodz
E. v

is L!-measurable. Let D denote any countable dense subset of C}(U;R™)
Then

te [OEN(U) = sup /diwdz
wED E
|l <t

is £!-measurable, |

THEOREM I COAREA FORMULA FOR BV FUNCTIONS
Let f € BV(U). Then

(i) E, has finite perimeter for L' a.e. t € R and
(@) ||DfIU) = [So, [1OE||(U) dt.
(iii) Conversely, if f € LY(U) and

/ IBEN(U) dt < oo,

then f € BV(U).
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REMARK Compare this with Proposition 2 in Section 3.4.4, |
PROOF Let p € CHU:R™), |¢| < 1.

1. Claim #1: [, fdivpdr = [7 (fEtdivgodz) dt.

Proof of Claim #1: First suppose f > 0, so that

f(z):/oooxEt(z) dt (ae. z € U).

/deiwdz=/u</0°° X, () dt) div p(z) de
:/Ooo (/U x5, (7) div () dz) dt
=/0°o </Etdiv<pdz) dt.

0
@ = [ @ -na,

/(deivgodz:/(}(/—ooo(x&(z)—l)dt) div p(z) dz
- /_0oo (/U(X&(z)_ Ddiv o(x) dz) dt
:/-000 (/Etdivcpdz> dt.

For the general case, write f = f+ + (=f7).
2. From Claim #1 we see that for all ¢ as above,

Thus

Similarly, if f <0,

whence

/ fdive dz < /oo IOE|(U) dt.
u

-0
Hence

IDAI) < / " PEIW) dt. (*)

3. Claim #2: Assertion (ii) holds for all f € BV(U) N C>=(U).
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Proof of Claim #2: Let
m(t)_=_/ |Df| dz=/ |Df| dz.
U-E, {r<e}

Then the function m is nondecreasing, and thus m’ exists £! a.e., with

/ m'(t) dt§/|Df| dz. (**)
—oo v
Now fix any ~oo < t < oo, r > 0, and define 7 : R — R this way:
0 ifs<t
~t
n(s)=¢ 2 ft<s<ttr
T
I ifs>t+r.
Then
1
, - ft<s<t+r
ns)=4 "
0 ifs<tor s>t+r.

Hence, for ali ¢ € CH{U; R™),

- [ ai@piveds= [ 1(r)Df ¢ da
U U
=%/Et—Et+er-<pdz. (k% %)
Now
m(t )~ m(t) _ 1 3
) -,[Lﬂ”Wﬂm [, oA

1
-~ [ Ipflds
T JE—~Eeqr

l/ Df.pdx
T JE—Eegr

- /U n(f(x))div  dz by (x* %).

vV

Il

For those t such that m/(t) exists, we then let r — O:

m'(t) > —/ divpdz  L"ae. t.
E,
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Take the supremum over all p as above:
IOE||(U) < m'(8),

and recall (x) to find

/ " OEI() dt < [ 10514z = 1105110,

-0

This estimate and (%) complete the proof.
4. Claim #3: Assertion (ii) holds for each function f € BV(U).

Proof of Claim #3: Fix f € BV(U) and choose {f;}72, as in Theorem 2 in
Section 5.2.2. Then

fe—f in L'(U) as k — oo.
Define
Ef = {z e U] fulz) > t}.

Now

0o max{ f(z), fu(z)}
| M@= xg @ de= [ dt = |fu(z) - F(@);
oo ¢ min{ f(z).fx ()}

consequently,

/U|fk(x)~f(z)|dz=/—o:o (/leEf(z)—xEt(z)‘ dz) dt.

Since fi — f in L'(U), there exists a subsequence which, upon reindexing by
k if needs be, satisfies

Xgr = Xg, in LI(U), for £! ae. t.
Then, by the Lower Semicontinuity Theorem,
I9E|(U) < limint |OEL||(U)-

Thus Fatou’s Lemma implies

| By dt < timin [~ oEtiw) at
oo oo oo

= lim [ID/|(V)
= IDA ).

This calculation and (%) complete the proof. |
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5.6 Isoperimetric Inequalities

We now develop certain inequalities relating the £"-measure of a set and its
perimeter,

5.6.1 Sobolev’s and Poincaré’s inequalities for BV

THEOREM 1
(i) There exists a constant Cy such that

||f||Lﬂ/n—l(Rn) S Cl”DfH(RT;)

for all f € BV(R™).
(ii) There exists a constant Cy such that

15 = (Dol gusmcs oy < CoIDAIU (7))

for all B(z,7) C R*, f € BVioo(R®), where (f)s.r = fb(z,r) f dy.
(iii) For each 0 < o < 1, there exists a constant C3(a) such that

11l s oy < CH@IDAIU 1)
for all B(z,r) CR* and all f € BV,o.(R™) satisfying

LM (Bz,r) 0 {f =0])
By -

a.

PROOF
1. Choose fir € C*(R") (k= 1,...) so that

fe = f in LY(R™), fe—f L'ae.
1D fill(R™) — [ DfI|(R™).
Then by Fatou’s Lemma and the Gagliardo-Nirenberg—Sobolev inequality,
0 poncs ny < Ol sy
< Jim GlIDfell e
= Gi||IDfI(R").

This proves (i).



190 BV Functions and Sets of Finite Perimeter

2. Statement (ii) foliows similarly from Poincaré’s inequality, Section 4.5.2.
3. Suppose

L*(B(z,r){f =0})
Lr(B(z,r))

2a>0. (*)
Then
1A sy < 1 = Dol mrnesgaamy 1z llgnsncs ooy
< CIDFINU (2, 7)) + [(Fz (L (Blz,m)))' 7™ (o)
But

|(f)z,r|(£n(B(z,T)))l—l/n
1
: W /B(z,r)ﬁ{f#m |

1—1/n n
. (BT NS £0))
< (/B(w) d dy) (H i)

< ||f||Ln/n—l(B(z’T))(l - a)l/n ’

fldy

by (x). We employ this estimate in (x) to compute

C
WAl psnes  grey < 7= IDFNU 2, 7)) 1
(B = (1 - (1 —a)i/n)

5.6.2 Isoperimetric Inequalities

THEOREM 2
Let E be a bounded set of finite perimeter in R*. Then

() LME)-Yn < G|6E||(R™), and
(ii) for each ball B(z,r) C R",

min{C"(B(z,r) N E), L*(B(z,r) — E)}'~* < 2G,||0E||(U(z, 7).
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FIGURE 5.3
Relative Isoperimetric Inequality.

REMARK Statement (i) is the [soperimetric [nequality and (ii) is the Relative
I[soperimetric Inequality. The constants Cy and C, are those from Theorems 1
and 2 in Section 4.5.

PROOF
L Let f=x,in assertion (i) of Theorem 1 to prove (i).
2. Let f=x B(er)nE in assertion (ii) of Theorem 1, in which case

_ £YB(z,r)NE)
e = LB, )

Thus

C(Ppentt g (EBED) = BN
/L“fﬂf e ( L7(B(z,)) ) £(Bz,nNE)

LB, N B\
*( Z7(B(z, ) ) LB = E).
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Now if LM B(z,r) N E) < L*B(z,r) — E), then

t—-t/n
( I dy)
B(z,r)

,C"(B(.’Z:,T) —E) n T I—t/n
e CILERLE

mm{[,"(B(z 'r) E),ﬁ"(B(z,r) _ E)}l_‘/",

v
N = p———

The other case is similar, |

REMARK  We have shown that the Gagliardo—Nirenberg—Sobolev Inequality
implies the Isoperimetric Inequality. In fact, the converse is true as well.
To see this, assume f € CHR™), f > 0. We calculate

/|Df|dz=||Df||(R">=/ IOEI(R") dt
.

- / 1OE|(R™) dt
0

1 oo
> — LYE) V" gt
2a s (E)

Now let

fozmine ) xo= ([ 20 )/ (tR).

Then x is nondecreasing on (0, 00) and

1—1/n
lim x(t) = (/ |f|n/n—l dz)
t— 00 Rn

0 < x(t+h) —x(¢)

1—1/n
< (/ | fern — ft|n/n_l dﬁ)
Rﬂ.

< hLH (B!,

Also, for h > 0,

Thus x is locally Lipschitz, and

X'(t) < LHEN Y™ [aet.
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Integrate from O to oo:

t=t/n ~o
(/ |f|n/n—l (IT> — / X/(’) dt
R" JO

< / ‘cn([‘;{)u/n—l dt

JO

gcl/ |Df| dz. |
JR?

/

5.6.3 H""! and Cap,

As a first application of the Isoperimetric Inequalities, we establish this refine-
ment of Theorem 4 in Section 4.7.2:

THEOREM 3
Assume A C R™ is compact. Then Cap,(A) = 0 if and only if H* 1{A) = 0.

PROOF According to Theorem 2 in Section 4.7.1, Cap,(A)=0if H*~!(A)=0.
Now suppose Cap,(A) = 0. If f € K' and A C {f > 1}°, then by Theo-
rem 1 in Section 5.5,

i
/ I0E.|(R") dt < / IDf] d
0 Rn

where E;, = {f > t}. Thus for some ¢ € (0,1),

loEN®) < [ 11 de

Clearly A C E,°, and by the Isoperimetric Inequality, £*(E;) < co. Thus for
each x € A, there exists a r > 0 such that

LYE,NB(z,r)) 1
a(n)r? T4

In light of the Relative Isoperimetric Inequality, we have for each such B(z,7),

n—-1

| T = (@B < cloBi(BE. Ny

that is,

! < C||OE||(B(z,T)).
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By Vitali's Covering Theorem there exists a disjoint collection of balls
{B(a;,1;)}52, as above, with z; € A and

AcC U B(zj,57;).

=1

Thus

(5r;)" ' < C||OE,||(R*y < C | |Df| dz.
] n

i=1 R

Since Cap,(A) = 0, given € > 0, the function f can be chosen so that '

/ IDf| de <«
Rﬂ.

and hence for each j,
r; < (C|IOE||(R*))™ < Cem.
This implies H"~'(4) =0. |

5.7 The reduced boundary

In this and the next section we study the detailed structure of sets of locally finite
perimeter. Our goal is to verify that such a set has “a C' boundary measure
theoretically.”

5.7.1 Estimates
We hereafter assume
E is a set of locally finite perimeter in R".

Recall the definitions of vg, ||0E||, etc., from Section 5.1.

DEFINITION Let z € R*. We say x € 0*E, the reduced boundary of E, if
() ||OF||(B(z,r)) > 0 for all r > 0,

(i) lim,—o i, vE dIOE| = ve(z), and
(iii) |ve(z)| =1

REMARK  According to Theorem 1 in Section 1.7.1,

|OE||(R* ~9*Ey=0. |
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FIGURE 5.4
Normals to E and to B(z,r).

LEMMA 1
Let p € CL(R™;R™). Then for each = € R*,

/ divcpdy:/ 0 Ug d||8E||+/ p-vdH!
EnB(z,r) B(z,r) ENdB(z.r)

i

for L' a.e. T > 0, v denoting the outward unit normal to 9B(z,r).
PROOF  Assume h : R® — R is smooth, then

/ div (hy) dy=/ hdivcpdy+/ Dh - dy.

E E E
Thus
/ ho - vg d||OE|| = / hdiv e dy +/ Dh - ¢ dy.

R™ E E

By approximation, (x) holds also for

he(y) = ge(|y ~zl),

195

(%)



196 BV Functions and Sets of Finite Perimeter

where
1 if0<s<r
ge(s) = roste ifr<s<r+e
€
0 ifs>r+e
Notice
0 if0<s<rors>r+e
9c(s) = 1.
—— ifr<s<r+e,
€
and therefore
0 ifly—z|<rorly—z|>r+e
Dhe(y) = ly-z

—- ifr<|ly—z|<r+e.
€ly -zl

Set h = hc in (x):
1 y—=z
hep-vg d||OE =/hediv dy——/ L2 dy.
[ heo-vedionl = [ havody—3 [ o =2
En{ylr<ly—z|<r+e}

Let € — 0 and recall Proposition 1 in Section 3.4.4 to find

/ - VE d||aE||=/ diwdy—/ o-vdH™!
B(z,r) ENB(z,r) ENdB(z,r)

for L' ae r>0. |

LEMMA 2
There exist positive constants Ay,..., As, depending only on n, such that for
each x € §*F,

() liminf,_o £BE0E) 5 4, 50,

(i) liminf,_o £BEN=E) 5 4, 5,
(iii) liminf, o 12EWEGE) 5 4, 5 ¢,

(iv) limsup,_, “—"mr‘éf’—fll < Ay,

(v) limsup, g IXENBEMED) < 45

PROOF

1. Fix z € §*E. According to Lemma 1, for £! a.e.r > 0
18(E N B(z,m))||(R") < ||I9E||(B(z,r)) + H*"'(EN3B(z,7)). (%)

On the other hand, choose ¢ € C!(R™; R") such that

¢ = vg(z) on B(z,r).
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Then the formula from Lemma 1 reads

/ ve(z) - vg d||0E|| = - / ve(z)-vdH" "' (%)
B(z,r) ENOB(z,r)

Since z € 0*E,

r—0

lim VE(x)~][ vg d||OE|| = lve(z)* = 1;
B(z.r)
thus for £! a.e. sufficiently small r > 0, say 0 < r < rg = rp(z), (+*) implies
SIDEII(B(z, ) < H™~(E N9B(,T)). (x4 %)
This and (%) give
|1B(E 0 B(z, 7))||(R*) < 3H" Y (EN8B(z,r)) (% % % %)

forae. 0 <7 < 1.
2. Write g(r) = L*(B(z,7) N E). Then

g(r) = /r H*1(8B(z,s) N E) ds,
0
whence g is absolutely continuous, and
g (r) = H"Y(8B(z,r) N E) for a.e. r > 0.
Using now the Isoperimetric Inequality and (x x x x), we compute

g(r)!7/" = LY(B(z,r) N E)'~'/" < C||o(B(z,r) N E)||(R")
< CH™ ' (B(z,r)NE)
=Cig'(r)  forae. r € (0,7).

Thus

and so
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and

,r'l

0 Gy
for 0 < r < rg. This proves assertion (i).
3. Since for all ¢ € C}(R";R")

/divgodx+/ divcpdz=/ divpdx =0,
E R - E "

it is easy to check
IOENl = [|o(R* = E)l|,  ve = —v&_&-

Consequently, statement (ii) follows from (i).
4. According to the Relative Isoperimetric Inequality,

n~1

I9E||(B(z, r)) > Cmin {ﬁ"(B(-’b,r) nE) £*(B(z,r) ~ E) }—"_

Tn—l

and thus assertion (iii) follows from (i), (ii).
5. By (% x %),

IBE||(B(z,7)) £ 2H"(E NdB(z,r)) < Cr™! (0 <1 < 1)
this is (iv).

6. Statement (v) is a consequence of (x) and (iv). |

5.7.2 Blow-up
DEFINITION For each x € 0*E, define the hyperplane

Hz)={yeR" |vg(z)  (y—z) =0}
and the half-spaces

H*(z)={y €R" | vg(z)- (y— =) 2 0},

H™(z)={y e R" | ve(z)- (y — z) < 0}.

NOTATION Fix z € 9*E, r > 0, and set

E.={yeR"|r(y—z)+=z € E}.

REMARK Observe y € ENB(z,) if and only if g.(y) € E.NB(z, 1), where
oW =(y-2)/r)+z
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FIGURE 5.5
Approximate tangent plane.

FIGURE 5.6
Blow-up.

THEOREM I BLOW-UP OF REDUCED BOUNDARY
Assume x € 0*F. Then

XE,- e XH_(I) in Llloc(Rn)

asr— 0.



200 BV Functions and Sets of Finite Perimeter

Thus for small enough r > 0, EN B(x, r) approximately equals the half ball
H~(z)N B(z,r).

PROOF
1. First of all, we may as well assume:

z=0, vg(0)=e, = (0,...,0,1),
H(0) = {y e R* | y, =0},
H*(0) = {y e R" |y, > 0},
H=(0) = {y e R" |y, <0}.

2. Choose any sequence 1 — . It will be enough to show there exists a
subsequence {s;}52, C {r¢}32, for which

Xg,, = Xi-() in L} (R™).
3. Fix L >0 and let
_ _y
D.=E, nB(0,L), gr-(y) = .

Then for any ¢ € C}(R™; R"), |¢| < 1, we have

1
/ divpdz = — / div(p o g,) dy
- T ENB(0,rL)

1
/R (000 - vensioer) dIOE N BO,rL)|

= pn—1

< 19(E 1 B, rL))||(R")

T‘"'_l
<C<oo

for all r € (0, 1], according to Lemma 2(v). Consequently,
1D (R )< C<oo (0<r <),
and furthermore,

Xp llpsgan, = £1(D2) € LY(BO,L) <00 (r>0).
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Hence

”XD,«”IJV(R") < C <00

forall0<r <1,

In view of this estimate and the Compactness Theorem from Section 5.2.3,
there exists a subsequence {s;}72, C {rk}iZ, and a function f € BV (R*)
such that, writing E; = E, , we have

XE - f in [llloc(R'l ).

J

We may assume also x, — f L" a.e.; hence f(z) € {0, 1} for L™ a.e. z and
3
s0

f=xg L" ae.,
where
FcR* has locally finite perimeter.

Hence if ¢ € C}(R™;R™),

/ divpdy= [ o-vedoF, (%)
F Rn

for some ||0F||-measurable function vg, with |ve| =1 ||0F]| a.e.
We must prove F' = H~(0).
4. Claim #1: vp = e, ||OF|| a.e.

Proof of Claim #1: Let us write v; = vg,. Then if ¢ € C}(R";R?),

[ ewdionii=[ dveds (G=12.).
Rﬂ .

EJ
Since
st
Xg, = Xp in L.,

we see from the above and (x) that
[ ewvi dioBsl = [ o-ve dloF] s j = oo.
R" R
Thus

villOE;|| — vrllOF||

weakly in the sense of Radon measures. Consequently, for each L > 0 for



202 BV Functions and Sets of Finite Perimeter
which ||0F||(8B(0, L)) = 0, and hence for alt but at most countably many
L>0,
L s~ [ vedor ()
B@.L) B(0,L)

On the other hand, for all ¢ as above,

1
/ so'dellan||=—n_,/ (9095, - ve dIOEI,
R’ S RB"

3

whence
1
16E;||(U(0, L)) = S@_IIIBEII(B(O, s; L))
J 1 (% % %)
L wadpgil= [ vl
B(0,L) 5; B(0,s;L)
Therefore
lim v; d||0E;|| = lim ][ vg d||0E|| = ve(0) = en,
J—00J/B(0,L) 00 JB(0,s; L)

since 0 € 9*E. If ||0F||(0B(0,L)) = 0, the Lower Semicontinuity Theorem
implies

1OFII(BO, ) < liminf l0E; |(B(0, L)

= lim en - v; d||0F;||
J— JB(0,L)
= / e, - vr d||0F||, by (%)
B(o,L)

Since |vr| = 1 ||0F]|| a.e., the above inequality forces
Vg = en [|oF]|| a.e.
It also follows from the above inequality that

IBFI(B(0, L)) = lim [I0E;1|(B(0, L))

whenever ||0F||(0B(0, L)) = 0.
5. Claim #2. F is a half space.

Proof of Claim #2: By Claim #1, for all ¢ € C!(R™; R"),

/divcpdz=/ p-en d||OF]||.
F R
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Fix € > 0 and let f¢ = g, * X jos where 1), is the usual mollifier. Then f¢ €
C*(R"), and so

fedivp dz = / div (e * ) dz
I3

Rn
=/ Ne x (¢ - €,) d||OF|.
But also
fedivcpdz=—/ Df¢-pdz.
R R
Thus
af¢ of¢
=0 i=1,...,n— — <0.
B (t=1,...,n=1), o, <0

As fe = xp L" ae.as € — 0, we conclude that — up to a set of L"-measure
zero —

F={yeR" |y, <7} for some v € R.
6. Claim #3: F = H~(0).
Proof of Claim #3: We must show v = 0 above. Assume instead v > 0.
Since g, = X in Ly (R"),
3

a(n)y" = £*(B(0,7) N F) = lim L*(B(0,)N E;)

= i (B0 0E)

J—oo Sj

a contradiction to Lemma 2(ii).
Similarly, the case v < O leads to a contradiction to Lemma 2(i). |

We at once read off more detailed information conceming the blow-up of E
around a point z € 0*E:

COROLLARY 1
Assume x € O*E. Then

L*(B(z,r)NENH*(z))

@ lim - =0
iy SUBED=BIOH @) g
- T

o IOEII(B(z,m)

=1
r—0 a(n— 1)rn-!

(i)

DEFINITION A unit vector vg(z) for which (i) holds (with H* () as defined
above) is called the measure theoretic unit outer normal to F at x.
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PROOF
1. We have

L(B(z,r) N ENH*(x))
;rﬂ.
— LM(B(z,1) N H™ (z) N H*(z)) = 0 as r — 0.

= L™(B(z, 1) N E, N H* ()

The other limit in (i) has a similar proof.
2. Assume = = 0. By (x % %) in the proof of Theorem 1,

lOEN(B(0, 7))
rn-i
Since ||0H~(0)||(8B(0,1)) = K"~ 1(8B(0,1)NH(0)) = 0, part 2 of the proof
of Theorem | implies
i I2EI(B0.1)

|
r—0 rn-

= ||0E||(B(0, 1))-

= ||oH~ (0)I|(B(0, 1))

=H""1(B(0,1) N H(0))
=a(n-1). |

5.7.3 Structure Theorem for sets of finite perimeter

LEMMA 3
There exists a constant C, depending only on n, such that

H*~!(B) < C||0E||(B)
for all B C 8*E.
PROOF Lete, § >0, B C 8*E. Since ||0F|| is a Radon measure, there exists
an open set U O B such that
IOE||(U) < [1OE||(B) + €.
According to Lemma 2, if z € 0*E, then

mir e > A3 > 0.

Let

F= {B(m,r) | z € B,B(z,r) CUr < % , [[OE|(B(=z. 7)) > Agr"'l} .

According to Vitali’s Covering Theorem, there exist disjoint balls { B(z;, ;) }52,
C F such that

BC U B(.’Ili,STi).

i=l1
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Since diam B(z;,5r;) <6 (i=1,...),

Hy™'(B) < a(n - 1)(ST)™” ‘<CZ||8E|| B(z;,74))
i=1

i=1

< ClIBE||(U)
< C(I1OEN(B) + ¢).

Lete — Qand then 6 — 0. |

Now we show that a set of locally finite perimeter has “measure theoretically
a C! boundary.”

THEOREM 2 STRUCTURE THEOREM FOR SETS OF FINITE PERIMETER
Assume F has locally finite perimeter in R" .

(i) Then
8E = U KL UN,
k=1
where
[[OE[|(N) =0

and Ky is a compact subset of a C'-hypersurface S (k= 1,2,...).
(ii) Furthermore, vg |s, is normal to S, (k=1,...), and
(iii) ||OE||=H""! L O*E

PROOF
1. For each € 8*F, we have according to Corollary 1

L*(B(z,r)N ENH*(z))

lirr:) m =0,
. " . (%)
liL%z: ((B(z,7) :nE)nH (z)) o,

Using Egoroff’s Theorem, we see that there exist disjoint |0 F||-measurable sets
{F;}%2, C 8*F such that

lI6E]] (B*E - UFi) =0, ||9E||(F;) < oo, and

i=1

the convergence in (%) is uniform forx € F; (i=1,...).
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Then, by Lusin’s Theorem, for each 7 there exist disjoint compact sets {Ef 12, C
F; such that

oc

loE|| { F;~ | J E! | =0 and
j=t1

Vg |E:’ is continuous.

Reindex the sets { £} %=y and call them {K}7Z,. Then

0'E = G KL UN, ||0E||(N) =0,
the con,:;gence in (%) is uniform on Ky, and (%)
vE |k, is continuous (k=1,2,...).
2. Define for 6 > 0
Pi(8) ESUP{%}:(};T‘EM |0<|z~y| <bz,p€ Kk}-
3. Claim: For each k = 1,2,..., pe(6) = O as § — 0.

Proof of Claim: We may as well assume k= 1. Fix 0 < € < 1. By (), (x*)
there exists 0 < § < 1 such that if 2 € K and r < 26, then

n

LYENB(z,r)NHY(2)) < 2n+2a(n)r"
n - € n
L*(ENB(z,r)NH™ (2)) > a(n) (5 - :Tn?i) ™.
Assume now 2,y € K;, 0 < |z —y| < 6.
Case I. vg(z)- (y — ) > €|z — yl.
Then, since € < 1,
B(y,elz ~ y|) C H*(z) N B(x, 2|z — y). (%% x )

To see this, observe that if z € B(y, €|z — y|), then = = y + w, where |w| <
€|z — y|, whence

ve(x) - (z—z)=vg(@) (y—z) +ve(z) w> ez -yl —|w| > 0.
On the other hand, (x x %) with 2 = z implies
L(ENB(z,2z —y)) N H* (@) < goza(m) @z - o)

_ €"a(n) "
- 4 |.’I: yl ’
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and (x x x) with 2 = y implies

L*(ENB(y,elz —yl)) = L"(EN By, el ~y|) N 1T (y))
S 6"a(n)|x . yln (1 3 Fald )
- 2 2u+|

"a(n)

€
4
However, our applying £™ L E to both sides of (x x xx) yields an estimate
contradicting the above inequalities.
Case 2, vg(z)+ (y— z) < —€lz — y.
This similarly leads to a contradiction.
4. Now apply Whitney’s Extension Theorem (found in Section 6.5) with

n

|z — y|".

f=0 and d=vg on K.
We conclude that there exist C*-functions fi : R — R such that

{f= onI(k

Dfy =vg onKj.

- - 1
sks{xemﬂ|fk=o,|ka|>§} (k=1,2,..).

By the Implicit Function Theorem, Sk is a C*, (n — 1)-dimensional subman-
ifold of R™. Clearly K C Sk. This proves (i) and (ii).
5. Choose a Borel set B C 9*E. According to Lemma 3,

H*~Y(BNN) < C||9E||(BNN) =

Thus we may as well assume B C UZ":, Ky, and in fact B C K. By (ii) there
exists a Cl-hypersurface S| O K. Let

v = Hn_l L Sl.

Since S, is C!,

. v(B(z,r) _

Thus Corollary 1(ii) implies

VB .
i @B = <P

Since v and ||@E]|| are Radon measures, Theorem 2 in Section 1.6.2 implies

10EII(B) = v(B) =H""'(B). 1
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5.8 The measure theoretic boundary; Gauss—Green Theorem

As above, we continue to assume E is a set of locally finite perimeter in R".
We next refine Corollary 3 in Section 1,7.1.

DEFINITION Let x € R". We say z € 9, I, the measure theoretic boundary
of E,if
LBz, r)NE) S

li 0
T
and
L"(B -FE
lim sup __(_(-’ﬂ_y_ﬂ_l > 0.
70 "
LEMMA 1

() 0“E C 8,E.
(i) H*'(0,E — 8*E) =0.

PROOF
1. Assertion (i) follows from Lemma 2 in Section 5.7.
2. Since the mapping

L*B(z,r)NE)

,,.n

T

is continuous, if z € 4, F, there exists 0 < o < 1 and r; — 0 such that

L*(B(z,r;)NE)
a(n)r h

Thus
min{L"(B(z,r;) N E),L"(B(z,7;) - E)} = min{e, | - a}a(n)r},
and so the Relative Isoperimetric Inequality implies

I9E||(B(=,T))

S > 0.

lim sup
0

Since ||OE||(R™ — 8*E) = 0, standard covering arguments imply
H=YO,E - 8"E)=0. |

Now we prove that if E' has locally finite perimeter, then the usual Gauss—

Green formula holds, provided we consider the measure theoretic boundary
of E.
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THEOREM 1 GENERALIZED GAUSS-GREEN THEOREM
Let E C R" have locally finite perimeter.

(i) Then H" 18, E N K) < oo for each compact set K C R™.

(i)  Furthermore, for H* ! qe. x € O, E, there is a unique measure theoretic
unit outer normal vg(x) such that

/ divgodz:/ @ v dH"! (%)
E a.E
for all p € CLR™; R*).

PROOF By the foregoing theory,
/ divpdr = / p-vg d||OE||
E Ru

IOE]|(R* — 8" E) =0

But

and, by Theorem 2 in Section 5.7.3 and Lemma 1,
[|E|| = H""' L 3,E.

Thus () follows from Lemma 1. |

REMARK We will see in Section 5.11 below that if £ C R" is L"-measurable
and H*" (8, E N K) < oo for all compact K C R", then E has locally finite
perimeter. In particular, we see that the Gauss—Green Theorem is valid for
E = U, an open set with Lipschitz boundary. |

5.9 Pointwise properties of BV functions

We next extend our analysis of sets of finite perimeter to general BV functions.
The goal will be to demonstrate that a BV function is “measure theoretically
piecewise continuous,” with “jumps along a measure theoretically C' surface,”

We now assume f € BV(R") and investigate the approximate limits of f(y)
as y approaches a typical point z € R*,

DEFINITIONS
O ute)=ap timsup f ) = ne o | iy SEEITL 2D o},
y—r T
(i) Mz)=ap li!rlrl’iilff(y) = sup {t | 11_13'(1) E”(B(x,rT)‘nﬂ {f <t} = 0} .
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REMARK Clearly ~00 < A(z) < p(z) < oo forallz € R?, |

LEMMA I
The functions x — X(z), p(x) are Borel measurable.

PROOF  For each t € R, the set E; = {z € R* | f(z) > t} is L"-measurable,
and so for each r > 0, t € R, the mapping

o, LB N EY
,,.ﬂ.
is continuous. This implies
L£*(B E
pe(z) = limsup £4(B(z,r) 0 Br)

r—0 rt
v rational

is a Borel measurable function of = for each t € R.
Now, for each s € R,

{zeR pu(@) < s} = |{z €R* | oy (2) =0},
k=1

and so u is a Borel measurable function,
The proof that A is Borel measurable is similar. |

DEFINITION  Let J denote {z € R | A(z) < p(x)}, the set of points at which
the approximate limit of f does not exist.

According to Theorem 2 in Section 1,7.2,
LI =o.

We will see below that for H™"? a.e. point z € J, f has a “measure theoretic
jump” across a hyperplane through z.

THEOREM I
There exist countably many C'-hypersurfaces {Si}., such that

oc
! (J -U sk) =0.
k=1
PROOF Define, as in Section 5.5,

E;={zeR"| f(z) >t} (t eR).

According to the Coarea Formula for BV functions, E, is a set of finite perimeter
in R* for L' a.e. t. Furthermore, observe that if 2 € J and A(z) < t < p(z),
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then
LBz, rYN{f>t
lim sup ( (2 T)” it] 2 >0
r—0 r
and
" Blr,r)N{f <t
limsup[' (Bl T)" i ) >0,
-0 r
Thus

{zed|Mz) <t <pu(z)}CdE.

211

)

Choose D C R! to be a countable, dense set such that E is of finite perimeter
for each t € D. For each t € D, H"! almost all of 8, F; is contained in a
countable union of C'-hypersurfaces: this is a consequence of the Structure

Theorem in Section 5.7.
Now, according to (x),

Jc ok,
teD

and the theorem follows, 1

THEOREM 2
—00 < Az) < ) < +oo for H' ! ae z € R™.

PROOF

L Claim #1: H""'({z | A(z) = +o0}) =0, H*!({z | p(z)
Proof of Claim #I: We may assume spt (f) is compact. Let

Fi={zeR"|Az) >t}

—o00}) = 0.

Since p(z) = A(z) = f(z) L™ ae., E; and F, differ at most by a set of

L™-measure zero, whence

IOE:|| = |0 F|.

Consequently, the Coarea Formula for BV functions implies

and so
liminf ||0F||(R™) = 0.
t—o00

Since spt (f) is compact, there exists d > 0 such that

L (spt (f)N B(z,7)) < %a(n)r" for all z € spt (f) and r > d.

10kl e = 1DAIR) < oo,

(%)

(%)
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Fix t > 0. By the definitions of A and F3,

i 1B 1) N F)

=1forzx € Fi.
r—0 a(n)r"

Thus for each x € F;, there exists » > 0 such that
L*(B(z,r)NF) 1

a(n)re 4 (ex%)

According to (xx), r < d.
We apply Vitali’s Covering Theorem to find a countable disjoint collection
{B(z;,7;)}32, of balls satisfying (x x %) for z = z;, r = r; < d, such that

00
F, C U B(z;,5m;).
i=1
Now (% x %) and the Relative Isoperimetric Inequality imply

(%1))* < C||3F}|1!;Bl(xz,ri)) ,

that is,
T < CIORNI(Bn ) (=1,2,..).
Thus we may calculate

M (F) < aln = 1)(5m)"

e ]
=1

i

< CZ||8Ft|| (zi,73))

< ClloF|(R™).
In view of (),
Hioa ({2 | Mz) = +00}) = 0
and so
({2 | A(z) = +00}) =

The proof that H"~!({z | p(z) = —oo}) =0 is similar.
2. Claim #2: H* ' ({z | p(z) — A(z) = 00}) =

Proof of Claim #2: By Theorem 1, J is o-finite with respect to H™~! in R,
and thus {(z,t) | z € J, M) <t < p(z)} is o-finite with respect to H" ! x L!
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in R**!. Consequently, Fubini’s Theorem implies
oo
/ H " ({Me) < t < p(z)}) dt = / a(z) — Mz) dH™ .
—-00 Rn

But by statement (x) in the proof of Theorem 1, and the theory developed in
Section 5.7,

IA

/0‘3 H"—I({)\(x) <t< u(x)}) dt /oo H"“l(a*Et) dt

It

/ |10 EL||(R") dt
= IDFII(R") < oo.

Consequently, H*"!({z | p(z) — A(z) = o0}) = 0. 1
NOTATION F(z) = (A(z) + u(z))/2.

DEFINITIONS Let v be a unit vector in R*, x € R"™. We define the hyperplane
H ={yeR" |v-(y—z)=0}
and the half-spaces

Hf ={yeR"|v-(y—2)20},

v

Hy

={yeR" |v-(y—=) <O}

THEOREM 3 FINE PROPERTIES OF BV FUNCTIONS
Assume f € BV(R™). Then
) lim,_p JLB(”) |f — F(x)|*/"~Vdy =0 for H* ' ae.z €R* -],
and
(i) for H* ! a.e. x € J, there exists a unit vector v = v(z) such that
lim |f = @)™ dy =0
=0/ B(z,r)nH,
and
lim |f = M)|™" ' dy = 0.
r—0) B(z,r)nH}
In particular,
p(z) =ap lim f(y), A@@) =ap lim f(y).

veH} veH,
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REMARK Thus we see that for H*~! a.e. z € J, f has a “measure theoretic
jump” across the hyperplane H,,). |

PROOF  We will prove only the second part of assertion (ii), as the other
statements follow similarly.

1. For H* ! ae. z € J, there exists a unit vector v such that v is the measure
theoretic exterior unit normal to Ey = {f > t} at « for A(z) < t < p(z). Thus
for each € > 0,

LBz, )N {f > Mz)+e} NH)) _

n 0’
’ (%)
LB {f <A@ - _
rn -
Hence if 0 < e < 1,
1 -
- |f = M)/ dy
T B(z,r)nH}
1
< 5a(n)fn/n—l
l nin—
+—= |f = A@)*"" dy
T JB(z.r)nHIN{f>A(z)+¢}
1 -
+— |f = A=)["/"! dy. ()

™™ JB(a.r)nHI N{f<M(z)—c}
Now fix M > A(z) + e Then

l nin—

1 |f = M=) dy

T JB(z,r)nHI O{f>A(z)+€}

Lr(B(z,r) NHF 0 {f > Mz) +€})

;rﬂ.

< (M = M)/

1 e
+— |f ~ Ma)|*/™" dy.
7" J Bz, )n{f>M}

Similarly, if —M < A(z) — ¢,

l -

= |f = @)t dy

™" JB(z,r)N{f<A(z)—€}

LMB(z,r) N {f < Mz) — €})

< (M + X&)/ -

1
+— If = A)|™™1 dy.

™™ JB@mn{f<-M}
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We employ the two previous calculations in (%) and then recall (x) to compute

1
lim sup — If = M)/ dy
r—0 T JB(z,r)NH}

1
< limsup — |f = M)/ dy (% % %)
r—0 7 Jp(er)n{|f|>M}

for all sufficiently large M > 0.
2. Now
1

- C n/n—1
L e ta < S -y
™™ JBrn{f>M} ™™ JB(x,r)

+ (M = Ay EBEn N > M)

T”

If M > p(z), the second term on the right-hand side of this inequality goes to
zero as r — 0. Furthermore, for sufficiently small r > 0,
LBz, r) 0 {f > M}) < 1
Lr(B(z,r)) -2

and hence by Theorem 1(iii) in Section 5.6.1 we have

n—|

(][3( )(f—M)“”'/"_l dy) < =2 ID(f - MY II(B(, 7).

T‘"'_l

This estimate and the analogous one over the set {f < —M} combine with
(x % %) to prove

n—1

lim sup (][ If = A(z)|"/ dy> 5
r—0 B(z,r)nH}
[D(f — M)*||(B(z,T))

< Clirrnj(l;p e
-M - fY*|(B
+Climsup”D( f)l”( (2,7)) (% * % %)
r—0 T

for all sufficiently large M > 0.
3. Fix e > 0, N > 0, and define

ID(f = M)*|I(B(z, 7))

pn=1

r—0

Aévz{xelR"Himsup >eforallM2N}.
Then

HI(AY) < CID( - MR = C [ 0B ) dt
M
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for all M > N. Thus

H1(AY) =0,
and so
— MYt
lim limsup ID(f = M) IH(B(:E’ r)) =0
M—oo . -

for H*~! a.e. x € J. Similarly,
— —_ + . g
im limsup ID(=M — H)*||(B(z,7)) =0.

l\/!l oo rn-l
- r—0

These estimates and (% % % %) prove

lim][ If =A@ tdy=0. |
B(z,r)NHF

r—0

COROLLARY 1
(i) If f € BV(R), then

f*(z) = lim{f)g,, = F(x)

r—0

exists for H*"! a.e. x € R™.

(ii) Furthermore, if 0 is the standard mollifier and f¢ = n¢ * f, then
fH(x) = lim f(x)

e—0

for H* "' ae. x € R,

-
5.10 Essential variation on lines

We now ascertain the behavior of a BV function on lines.

5.10.1 BY functions of one variable

We first study BV functions of one variable,
Suppose f: R — R is £!-measurable, ~co < a < b < .

DEFINITION The essential variation of f on the interval (a,b) is

ess V2 f = sup Z|f(tj+l) - f(t)l

=1
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the supremum taken over all finite partitions {u < t| < -+ < ty4; < b} such
that each t; is a point of approximate continuity of f.

REMARK  The variation of f on (a,b) is similarly defined, but without the
proviso that each partition point {, be a point of approximate continuity. Since
we demand that a function remain BV even after being redefined on a set of L'
measure zero, we see that essential variation is the proper notion here.

In particular, if f = g £' a.e. on (a, b), then

ess Vif =ess Vg |

THEOREM 1
Suppose f € L'(a,b). Then ||Df||(a,b) = ess V¥ f. Thus f € BV(a,b) if and
only if ess VU f < oo.

PROOF

I. Consider first ess V'f. Fix € > 0 and let f* = 7, * f denote the usual
smoothing of f. Choose any a +€ < t| < - <ty < b— €. Since Ll ae.
point is a point of approximate continuity of f, t; — s is a point of approximate
continuity of f for L! a.e. 5. Hence

m

PMACESEDIEDS
i=1 i=t
< [ nd 2 Flyes = 0) = 1t = o) ds

]_ ()t — ) — £(t; — ) ds

<ess VPf.

It follows that

b—e m
] (7)) do = sup {3 1F<(tyan) = FE(t5)] b < ess V2F.

+e j=1

Thus if ¢ € Cl{a,b), || < 1, we have

b b b—¢
] foo! do = - ] (FYo dr < ] ()| d < ess V2

+€

for € sufficiently small. Let € — 0 to find

b
/ fo' dx < ess VPF.
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Hence

[1Df]|{a,b) = SUP{/)st’ dx | € Cela,b), o] < l}

<ess VM f < oo
In particular, if f ¢ BV{(a,b),
IDf11(a,b) = ess Vo' f = +oo.

2. Now suppose f € BV{a,b) and choose a < ¢ < d < b. Then for each
@ € CH{c,d), with |p| < 1, and each small € > 0, we calculate

/ Y de = — / “fg dr
= —/d(ne * f)¢’ dx

Cb
=— [ fe*p) de
< |IDfll(a,b).

Thus [ |(f¢)'| dz < ||Dfll(a,b).
3. Claim: f € L*(a,b).

Proof of Claim: Choose {f;}32, C BV(a,b) N C*=(a,b) so that
fi—=f in L'ab), fi—=f L" ae.
and
b
[ 151 dx = IDfla0b)

For each y, z € {(a,b),

fiz) = fi(w) + ] "1 da.

Averaging with respect to y € {a, b), we obtain

b b
@< f 15l dv+ [ 154
and so
Sl;PHfjHLoo(a,b) < 00.

Since f; — f L™ ac. |If]

Lo(ab) <



5.10 Essential variation on lines 219

4. 1t follows from the claim that each point of approximate continuity of f is
a Lebesgue point and hence

f ()= 1) (%)

as ¢ — 0 for each point of approximate continuity of f. Consequently, for each
partition {a@ < | < --- <t < b}, with cach ¢, a point of approximate
continuity of f,

m

D) = F)] = lim D 1F(j00) = £(15)]
i=1 =1

9@$>WWHM
< IDfll(ab).
Thus

ess V2 f <|[Df|l(a,b) < oo |

5.10.2 Essential variation on a.e. line
We next extend our analysis to BV functions on R",

NOTATION Suppose f : R* — R. Thenfork =1,...,n,setz’ = (x1,... Tk~
Tty Tn) € R and t € R, write

fk(xlat) = f("')xk—htaxk-}—la“-)'
Thus ess V2 f; means the essential variation of f; as a function of t € {a,b),
for each fixed z'.
LEMMA |
Assume f € LL (R*), k € {l,...,n}, —oo < a < b < 0o. Then the mapping
' ess V2 fi

is L™ -measurable.

PROOF  According to Theorem I, for L"~! a.e. 2’ € R*~!,

ess V2 fi = | Dfkll(a, b)

-—sup{/ felz’, )@ () dt | ¢ € Cl(a,b), |zp|§l}.
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Let {;}32, be a countable, dense subsct of C(a.b) N {|¢| < 1}. Then

b
g;’ — fk(.’l,'l,()ipj»(t) d(

[

is L7~ !-measurable for j = 1,... and so

b
a' sup{ (e, )¢(t) dt} =ess V., fr

J

is £r~'measurable. 1

THEOREM 2
Assume f € LL (R"). Then f € BVio.(R") if and only if

/ ess V' fe da’ < o0
K

for each k =1,...,n, a < b, and compact set K C R*~.

PROOF
1. First suppose f € BVjo.(R"). Choose k, @, b, K as above. Se

C={z]a<ae <b (1., Thot, Thp1,--.,2n) € K}

Let f€ =ne = f, as before. Then

m/c|ff—f|d:c=o.

limsup/ |Df] dx < oc.
c

=0
Thus for H*~! ae. 2’ € K,
fe = fein L'(a,b),
where
fE@' ) = fo( . mpm1,t, Tt e o)
Hence

ess V2 fi < limnf ess Vofs for H* ' ae. 2’ € K
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Thus Fatou’s Lemma implies

/ ess V' fi da’ < lim i(;\f/ ess V' fE da'
K o K

? €
= liminf/ Q—
«—0 C

afl‘k
< limsup/ |Dff] dx < o0.
c

e—0

dx

2. Now suppose f € L{ (R") and

/ ess V' fr dz' < o0
K

forall k = 1,...,n, a < b, and compact K C R*"~!, Fix ¢ € CX(R"),
l¢] £ 1, and choose a, b, and k such that

spt (p) C {x|a <z < b}

Then Theorem 1 implies

0
X < / ess V2 fi dz' < oo,
Re Oxg K

for
K={z' e R | (...%Tk_1,t, Tks1,...) € spt (@) for some ¢ € R}.

As this estimate holds for k = 1,...,n, f € BV (R*). 1

5.11 A criterion for finite perimeter

We conclude this chapter by establishing a relatively simple criterion for a set
E to have locally finite perimeter.

NOTATION Write z € R® as x = (z',t), for 2 = (z(,...,Tn-1) € R*",
t = x, € R. The projection P : R* = R"*~! js

Plz)y=2" (z=(2',z.) € R").

DEFINITION Set N(P | A,z') = HY(An P~'{z'}) for Borel sets A C R*
and ' e R*1,
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LEMMA I
() The mapping ©’ — N(P | A,2') is L"~'-measurable.

(@) Jouor N(P| A 2') dz’ <H"TY(A)

PROOF  Assertions (i) and (ii) follow as in the proof of Lemma 2, Section 3.4.1;
see also the remark in Section 3.4.1.

DEFINITIONS Let EE C R™ be L™-measurable. We define
“(B(xz,r) - E
,E{xew| umﬁ_(_(f_r)__’_)zo}
r—0 T
to be the measure theoretic interior of E and
*(B(x
OE{xER" 1 u,,(‘,f_(__(&_r_)_nﬂzo}
r— rn

to be the measure theoretic exterior of E.

REMARK Note 8, F = R* — (IUO). Think of I as denoting the “inside” and
O as denoting the “outside” of E. |

LEMMA 2
(i) I, O,and 0, F are Borel measurable sets,

(i) L((I-E)U(E-TI))=0.

PROOF
1. There exists a Borel set C C R* — E such that L*(CNT) = LYT - E)
for all L™-measurable sets T. Thus

. {x i £(B@NINC) 0}’

T rn

and so is Borel measurable. The proof for O is similar.
2. Assertion (ii) follows from Corollary 3 in Section 1.7.1. |

THEOREM 1 CRITERION FOR FINITE PERIMETER
Let E C R be L™-measurable. Then E has locally finite perimeter if, and only
if.

H* Y (KNJ.E) < oo ()

for each compact set K ¢ R*,
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PROOF
I. Assume lirst (x) holds, fix a > 0, and set

U=(-a,a)" CR".

To simplify notation slightly, let us writc 2 = &' € R*~!, ¢ = r, € R. Note
from Lemma 1 and hypothesis (x)

N(P|UNE, z)dz < H* Y(UNI.E) < co. (k)
Rn-1

Define for each z € R*~!
POy (eR)

Assume @ € CH{U), |¢| < 1, and then compute

/ div (e, ) dx = /div(:pe,,) dr = / 9¢ dr
E 4 I 3xu

=/R Mf«t)%%(z,t) dt] dz

< / ess VO, f% dz (% % %)
v
where
V=(-aa" ' R

2. For positive integers k and m, define these sets:

Glk) = {:r eR* | L*(B(x,7)N0O) < ‘-’%}l'—)r" for0 < r< %}
H(k) = {x er | B nD) < 28 foro < < -3,;}

G*(k,m)=Gk)N{z |z +se, €O for 0 < 5 < 3/m},

G (k,m)=G(k)N{zx |z~ se, € O for 0 < s <3/m},

H*(k,m)= Hk)N{x |z +se, €I for 0 < s <3/m},

H (k,m)=H(k)N{zx |z —se, € I for 0 < s <3/m}.
3. Claim #I:

LMY PGE(k,m))) = L Y(P(H(k,m))) =0  (k,m=1,2,...).

Proof of Claim #I: For fixed k,m, write
o0
Gtk,m) = |J Gj

j==oo
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where

GjEG+(k,1n)ﬂ{a;| =1 < %}

m

Assume z € R*710 < r < min{l/k,1/m}, and B(z,7) N P(G;) # 0. Then
there exists a point b € G; N P~Y(B(z,r)) C G(k) such that

bu+ 5 > sup{an | € G0 P (B, 1))}
Thus, by the definition of Gt (k,m), we have
{y | b + <y < by +r} N P=Y(P(G;)N B(z,r)) € 0N B(b,3r).
Take the L£™-measure of each side above to calculate

gﬁ"‘l(P(Gj) N B(z,7) < L0 N B(b,3r)) < T

since b € G(k). Then

l",nj(l,lp a{n — 1)rm-

for all z € R*~'. This implies
LYPGH)) =0 (G=0£1,£2,...).
and consequently
LY P(G*(k,m))) = 0.
Similar arguments imply
LY P(G™(k,m))) = LY (P(H* (k,m))) = 0

for all k, m.
4. Now suppose

zeV- U P{G* (k, mUG™ (k,m)UH* (k.m)UH ™ (k. m)] (% %)

k,m=1
and
NP |UNJE,z2) < oc.
Assume —a < t; < --- < t,nyy < @ are points of approximate continuity of f*.
Notice that |f#(tj+1) — f%(t;)] # 0 if and only if [f*{t;41) — f2(¢;)| = 1. In
the latter case we may, for definiteness, suppose (z,t;) € I (z.t;41) € I. Since

t;+1 is a point of approximate continuity of f* and since R" — (OQUI) = 8, F,
it follows from the finiteness of N(P | U N 9. E, z) that every neighborhood
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of t;+y must contain points s such that {(z,8) € O and f* is approximately
continuous at s. Consequently,

"

ess V4, f* = sup Z|fl(tj+l)*fl(tj)| ;
in

the supremum taken over points —a < {{ < --- < ;41 < @ such that {z,¢;) €
QU and f* is approximately continuous at each ¢ ;.

5. Claim #2: 1 (z,u) € I and (z,v) € O, with u < v, there exists u < ¢t < v
such that (z,t) € 0. E.

Proof of Claim #2: Suppose not; then (z,t) € OU I forall u < t < v. We
observe that

IcC GG(lc), Oc GH(lc)
k=1 k=1

and that the G(k), H(k) are increasing and closed. Hence there exists ko such
that (z,u) € Glko), (2,v) € H{ko). Now H(ko) NG (ko) = 0, and so

up = sup{t | (2,t) € Glko), t <v} <.

Set
vo = inf{t | (2,t) € H(ko), t > u}.
Then
(2, uw) € Glka), (2,v0) € H{ko),
u<u <y <y,
and

{(z,t) | uo < t < wo} N[H(ko) U G(ko)] = 0.
Next, there exist
ug < 81 < ty < vy

with (2,8;1) € I, (2,t;) € O; this is a consequence of (k% x%). Arguing as
above, we find k; > kp and numbers u,v; such that

up < Ut < vy < vy, (z,w) € G(ky), (z,v1) € H(ky),
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and (2,t) € H{k\)UG(k)) if uy < t < v;. Continuing, there exist k; — 00
and sequences {u;}52, {v;}32, such that

Uy < U < ...y Yg>Mm >,

wj <wvjforall j=1,2,...,

(2,u5) € Glkj), (2,v)) € 1(Ky),

(2,t) & Glk;) UH{(kj) if uj <t <.

Choose
lim u; <t < lim v;.
j—oo j—oo
Then
o0
y = (2 t) € | JIGk;) U Hk)),
i=1
whence
n B —
fimeup Z-B@NNE) S aln—1)
r—0 rr 3n+l
and
(B —F -
limsupc (Bly.r) ) > a(n - 1) .
r—0 rr 3n+l
Thus y € 0, E.

6. Now, by Claim #2, if z satisfies (% % % %),
ess V2, f* < Card {t| —a <t <a,{z2t) € 0.E}
= N(P|UNOE,z).
Thus (% % %) implies
/ ess V2, fPdz < / N(P|UNOE,?)dz <H" " (UNJE) < oo
v v
and analogous inequalities hold for the other coordinate directions. According

to Theorem 2 in Section 5.10, E has locally finite perimeter.
7. The necessity of (x) was established in Theorem 1 in Section 5.8. 1
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Differentiability and Approximation by C'
Functions

In this final chapter we examine more carefully the differentiability properties
of BV, Sobolev, and Lipschitz functions. We will see that such functions are
differentiable in various senses for £" a.e. point in R”, and as a consequence
are equal to C' functions except on small sets.

Section 6.1 investigates differentiability £™ a.e. in certain LP-senses, and
Section 6.2 extends these ideas to show functions in W!? for p > n are in fact
L™ ae. differentiable in the classical sense. Section 6.3 recounts the elementary
properties of convex functions. In Section 6.4 we prove Aleksandrov’s Theorem,
asserting a convex function is twice differentiable £™ a.e. Whitney’s Extension
Theorem, ensuring the existence of C' extensions, is proved in Section 6.5 and
is utilized in Section 6.6 to show approximation by C' functions.

6.1 L* differentiability; Approximate differentiability
6.1.1 L' differentiability a.e. for BV
Assume f € BV (R").

NOTATION We recall from Section 5.1 the notation
[Df] = [Df]ac + [Df]s =L"L Df+ [Df]Sa

where Df € Ll _(R™; R") is the density of the absolutely continuous part [D f],c
of [Df], and [Df]s is the singular part.

227
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We first demonstrate that near £™ a.e. point x, f can be approximated in an
integral norm by a linear tangent mapping.

THEOREM 1
Assume f € BVioc(R™). Then for L™ ae. v € R",

(][ |f(y) - f(x) = Df(a)-(z —w)|" dy) = o(r) asr — 0.
B(x,r)

PROOF
1. L™ ae. point 2 € R™ satisfies these conditions:

@ tim ]{3 - @l ay=0

r—0

r—0

®) lim ]{3 ., 1PIw) = Ds@) dy=0.

(&) lim [[DfL|(B(, "))/ =0.

2. Fix such a point x; we may as well assume x = 0. Choose r > 0 and let
fe=mne* f. Select y € B(r) and write g{t) = f*(ty). Then

1
o(1) = 9(0) + ]0 J(s) ds,

that is,
1
o) = F0) + ] Df(sy) - y ds
0

. 1
= F(0) + DF(0) -y + ]0 (Df*(sy) — DF(0)] -y ds.

3. Choose any function ¢ € Cl(B(r)) with |p| < 1, multiply by ¢, and
average over B{r):

][B PO = 10~ D) 3) dy

=/ <][ so(y)[fo(sy)—Df(O)]-ydy> ds
0 B(r)

[ L], e Cywre-pronca) g
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Now

ge(s) = /B(m):p(.—z) Df(2) -2 dz

N .-/B(”)f(z)div (:p(i) z) dz ase — 0

Furthermore,
lge(s)| _ = /
< s €
g+l — gn B(rs)|Df (Z)| dz
T
= Dne(z ~ y) f(y) dy| d=
B(rs) | /R

dz

<E [ L= diosa

=_/ /B<,s,”f("“y) dz d|| Df|

C
< ¢ ] ] dz d|[Df|
"€ B(rs+e¢) Y B(rs)NB(y,¢)

min{(rs)*, e")

snen

] ne(z - y) d[Df]
]Rﬂ.

<C IDII(B(rs + €))

min{{rs)*, €*){rs + €)"
sten

<C

<C for0 <es<1.
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4. Therefore, applying the Dominated Convergence Theorem to (x), we find

][B SO~ 50~ DIO) -9 dy

/][ IDf(z) = Df(0)| dz ds + C'r lMMds
B(rs)

Jo (rs)n

=o(r)as r — 0.

Take the supremum over all ¢ as above to find
£, V) =70 = DIO) sl dy=a) s =0 ()
B(r

5. Finally, observe from Theorem 1(ii) in Section 5.6.1 that

(7[3( ) |f(y) = £(0) = Df(0) - y| = dy>
oIPY = £(0) = DF(0) - y)lI(B(r))

rn=1

+C |f(y) = £(0) — Df(0) -yl dy

B(r)

n—1

=o(r)asr — 0,

according to (x+), (b), and (c). 1

6.1.2 L differentiability a.e. for W' (1 < p < n)
We can improve the local approximation by tangent planes if f is a Sobolev

function.

THEOREM 2
Assume f € WEP(R™) for | <p <n. Then for L™ a.e. x € R,

1/p*
(][ |f(¥) - fl&) = Df(z) - (y - 2)|” dy> = o(r) as r—0.
B(z,r)

PROOF
1. L™ ae. point x € R™ satisfies

@ lim,_o f5, . 1f(2) = f)IP dy = 0.
(b) tim,_g f5, . | Df(x) = Df(y)|P dy = 0.

2. Fix such a point a; we may as well assume z = 0. Select o € CY(B(r))
with |||l pe(p(ry) < 1, where 1/p+1/q = 1. Then, as in the previous proof,
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we calculate

][B PO = 10) = DFO) ) dy
| 2z .
:/0 ;]/B(rs)gp(;) (Df(z) = DFO)] - = d= d

1
[
0 B(rs)
Since
]{I(rs)

@ (g)‘q dz = ][B(T) le(w)|? dy < 5(7:)—; :

we obtain

L., eWUW = 0 = D)) dy = o= as 7 0

Taking the supremum over all functions ¢ as above gives

1 U/p
oy (/ [f(y) = f(0) = Df(0) -y’ dy) = ()(Tl“‘"/‘l),
B(r)

Tn

and so

1/p
(f [f(y) — £(0) — Df(0) - y|” dy) =o(r)asr — 0.
B(r)

3. Thus Theorem 2(ii) in Section 4.5.1 implies
1/p*
(][ |£(y) - £(0) — DF(0) - yf"" dy)
B(r)
1/p
<Cr (7[ IDf(y) - DFO)IP dy)
B(r)

1/p
+C (][ |F) = £(0) = DF(0) - yl? dy)
B(r)
=o(r) as r — 0,

according to (%) and (b). |

231

) 1/q 1/p
:p(z)‘]dz> (fﬂ(”)|Df(:)—l)f(0)|"d:> ds.
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6.1.3 Approximate differentiability

DEFINITION Let f : R* — R™, We say f is approximately differentiable at
x € R™ if there exists a linear mapping

L:R" - R"
such that
w fim Q=@ =Ly =) _,
y—z ly = z|

(See Section 1.7.2 for the definition of the approximate limit.)

NOTATION  As proved below, such an L, if it exists, is unique. We write
ap Df(z)

for L and call ap Df(x) the approximate derivative of f at x.

THEOREM 3
An approximate derivative is unique and, in particular, ap Df =0
L™ a.e.on {f =0}.

PROOF  Suppose

|f(y) = f(=) = L{y — z)|

P ly — | =0
and
ap fim lf(y) = f@) - L'y —=)| _ 0.
y— ly — x|

Then for each € > 0,

e (B(:c,r)n {y| f(y)—f(r)-lL(y—z)l > 6})

ly—z

o CBE) =0 W
and
n fW) =~ f(x)-L' (y-=)|
im (Bnn{u Iyl >4) =0 (%)
i C(B ) '
L #L, set

6e = |L— L'|| = max (L - L')(2)] >0
and consider then the sector

Sz{yl (L~ L)y - x)| ZHL;L'M}

2
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Note
L B{xz,T)NS) _
DR (x)
for all » > 0.
Butif y € S,
3€|y _ :l‘| — HL - L’2|||y - T|
< L= L)y - 2)]
< |f(y) = fle) = Ly — =) +1f(y) - f(x) = L(y - 2)]
so that
s fyl L= Lyma) ) f =S e )

Thus (x) and (%) imply

LYB(z,r)NS) _

lim ———— " 7 =
ro LBy

a contradiction to (x x ). 1

THEOREM 4
Assume f € BVioo(R™). Then f is approximately differentiable L™ a.e.

REMARK

(i) We show in addition that
ap Df = Df LY ae.,

the right-hand function defined in Section 5.1.
(ii) Since Wll"’(R") C BV {R*) (I < p < 00), we see that each Sobolev

oC
function is approximately differentiable L™ a.e. and its approximate deriva-

tive equals its weak derivative L™ a.e.

PROOF  Choose a point x € R™ such that
{ W) = F@ = Dfw)- (=) dy = ofr) s 7 =05 (3

L™ a.e. ¢ will do according to Theorem 1.
Suppose

ap limsup |f(y) - f(T) - Df(:l;) - (y — Zl‘)|

>0>0.
Y—z |y—:c|
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Then there exist 7; — 0 and v > 0 such that

L({y € B(a,r;) | [f{y) = f(z) = Df(2) - (y — z)| > Oy — =[})

aln)r?

>~ >0.

Hence there exists ¢ > 0 such that

Lr{ye Bz, ry) = B(w,0m)) | 1f (W) = f(#) — Df(2)-(y )| >Oly—x[}) |
a(n)r} -2
for j =1,2,.... Since [y — 2| > or; for y € B(x,r;) — B(x,or}),
L({y € B(z,rj) | 1f(y) - f(&) = Df(2) - (y —2)| > bor;}) _ 7 (x8)
afn)r} ~2
forj =1,.... Eut by (%), the expression on the left-hand side of (%) is less
than or equal to
(;E:;]) =o(l) as r; — 0,

a contradiction to (%),

Thus
. Ify) - fla) = Df(z) (y - =) _
o lim sup v —al =0
and so
ap Df(z) = Df(z). |

6.2 Differentiability a.e. for W' (p > n)
Recall from Section 3.1 the following definition:

DEFINITION A function f : R* — R™ is differentiable at x € R™ if there
exists a linear mapping

L:R* —R™

such that

i ) = @) = Lo = )

=0.
y—z |z -yl
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NOTATION If such a linear mapping L exists at x, it is clearly unique, and we
write

Df(r)
for L. We call Df(z) the derivative of f at r.
THEOREM 1

Let f e W,:;C"(R”)for some n < p < oo, Then f is differentiable L a.c., and
its derivative equals its weak derivative L™ a.e.

PROOF  Since W (R") C WLP(R"), we may as well assume n < p < co.
For L" a.e. x € R", we have

fim ]{3(1‘” |Df(z) - Df(z)|P dz = 0. ()

r—0

Choose such a point x, and write

9(y) = fly) - f(x) = Df(x) - (y—=x)  (y € Blx,7)).

Employing Morrey’s estimate from Section 4.5.3, we deduce

I/p
() = 9(2)| < Cr (7{; L IDaP dz>

for r = |x — y|. Since g{x) =0 and Dg = Df — Df(x), this reads

D=1 =PIE6= o (f oy - D "
ly — x| - B(z,r)

= o(1) asy—zT

according to (»). 1

As an application we have a new proof of Rademacher’s Theorem, Sec-
tion 3.1.2:

THEOREM 2
Let f : R* — R be a locally Lipschitz function. Then f is differentiable L™ a.e

PROOF  According to Theorem 5 in Section 4.2.3, f € WL (R™). |
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S

6.3 Convex functions
DEFINITION A function f : R* — R is called convex if
FOx + (1= Ny) < M=)+ (1= A f(y)

forall0 <A< 1, z,y €ER™.

THEOREM |
Let f:R* — R be convex.

(i) Then f is locally Lipschitz on R™, and there exists a constant C, depending

only on n, such that

sup |f|<C |f1 dy

B(z,%) B(z,r)
and

ess sup |Df|59]/ 1l dy
B(z, %) T JBr)

for each ball B(x,r) C R,
(i) If, in addition, f € C*(R™), then
D*f>0on R,
that is, D*f is a nonnegative definite symmetric matrix on R™,
PROOF

L. Suppose first that f € CZ(R™) and is convex. Fix z € R". Then for each
y € R and X € (0,1),

fx+ My —2)) < fz) + Af(y) - f(z)).
Thus

flz+ A(y;“’)) ~@ ) - s,

Let A — 0 to obtain

f(y) 2 f(x) + Df(x) - (y — x) (%)

for all z,y € R™.
2. Given now B(z,r) C R, we fix a point 2z € B(x.r/2). Then () implies

fw) 2 f(2) + Df(2) - (y — =)
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We integrate this inequality with respect to y over B(z,7/2) to find
< swa<of isa (w4)
B(z,%) B(z,r)
Next choose a smooth cutoff function { € C°(R™) satisfying
0<¢s1, |D¢| < €,
{ =1 on B(z, g), {=0onR" - B(z,r).

Now (%) implies

f(2) 2 fly)+ Df(y) - (= — y).

Multiply this inequality by ((y) and integrate with respect to y over B(x,r):

1) [ W /B )

- / FWC) - div €)=z - 1)) dy
B(z,r)

> -C / £ dy.
B(:L',r)

This inequality implies

f)(y) dy +/ Cy)Df(y) - (2~ y) dy

r) (%)

f(z)2-C |f| dy,

B(z,r)

which estimate together with (%) proves

1£(2)| < c]/ \£] dy. (%)
B(z,r)
3. For 2 as above, define
T r 1
5.={ul1 5 <=l <501 -2 DAy =11},

and observe

£(S:) > Cr*
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where C depends only on n. Use (*) to write

f@) 2 §(z) + g Df(2)|

for all y € S,. Integrating over S, gives

DI <SS 1) - £G) dy

B(Ji. 3 )

This inequality and (x x x) complete the proof of assertion (i) for C? convex
functions f.

4. If f is merely convex, define f¢ = 75, * f, where ¢ > 0 and 7, is the
standard mollifier.
Claim: f€ is convex.

Proof of Claim: Fix x,y € R*, 0 < X\ < I, Then for each z € R",

fe=Qz+(1-Ny)) = FMz—z)+ (1 - ) (z - y)
SMz—z)+ (1 - N f(z - y)-

Multiply this estimate by 7.(z) > 0 and integrate over R":
FOw+ =X = [ 1= O+ (1= () da
< [ G- ome) s
Rr

=0 [ f -y &
=M@ + (1= V).

5. According to the estimate proved above for smooth convex functions, we
have

sup (I£]+r|Ds<)) SCfB( 17y

B(z,%)

for each ball B(x,r) C R". Letting ¢ — 0, we obtain in the limit the same
estimates for f. This proves assertion (i).
6. To prove assertion (ii), recall from Taylor’s Theorem

fly) = f(r)Jrl?f(ﬂf)'(y—r)Jr(y~33)T-/o (1~8)D* f(x+s(y—z)) ds-(y—z).
This equality and (*) yield

1
(y-~x>T-/o(1—s>02f<x+s(y—x))ds-(y~r)zo (xx )
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for alt z,y € R™. Thus, given any vector §, set y = & +t£ in (x x x %) for £ > 0
to compute:

T / (1 = s)D*f(x + st€) ds - € > 0.
Send ¢ — 0 to prove

€D f)-€20. 1

THEOREM 2
Let f : R™ — R be convex. Then there exist signed Radon measures "/ = p/*

such that
¢ -
dr = dp hi=1,...,
/.,faxlax, T = /nw I (Li=1,...,n)

for all ¢ € CHR™). Furthermore, the measures p*' are nonnegative (i =
bLooo,n).

PROOF
1. Fix any vector £ € R™, |£] = 1, £ = (&,...,&n). Let n. be the standard
mollifier. Write f¢ = g » f. Then f€ is smooth and convex, whence

D*fe > 0.
Thus for all p € C3HR™) with ¢ > 0,

Z/ feaxax E:E]dx"A WZ 6231 EIE] dz > 0.

i,7=1

Let ¢ — 0 to conclude
Lp) = Z/ faxa €65 dz > 0.
1,7=1

Then Corollary 1 in Section 1.8 implies the existence of a Radon measure z¢
such that

L(y) =/Rn @ dut

for all p € C2(R™).
2 Letpi=p%fori=1,...,n Ifi#j,set £ = (e; +¢;)/V2. Note that
in this case

- 0% 0% &
[63:,-63:,- + zaxiaxj + 6:!2]'623]'
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where

il

THEOREM 3
Let f:R™ — R be convex. Then

o  of
Vi (R
Ba " B, © BYc(RY).

PROOF Let V CCR™, ¢ € CHV,R"), || < I. Then for k= 1,...,n,

NOTATION In analogy with the notation introduced in Section 5.1, let us write
for a convex function f:

ﬂ” Y uln
D= Do =1pLE,
unl . unn
where ¥ : R — M™*™ is ||D?f||-measurable, with |Z| = 1 ||D*f|| a.e. We

also write

af if .
[633,'62:]-] =a (Z,7=1,....n).
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By Lebesgue’s Decomposition Theorem, we may further set
n = el 4
where
il << £, opl 1Lt
But then
pid =L L fij
for some f;; € Li (R™). Set

orf o
0z, 0z, =fi (t,j=1,..,n),
Ll L
0x0x; 0x0x,
Df = : : ,
’f ’f
0,0z, 0r, 0z,
11 In
Hac " Hac
Dl = : = " L D,
e
pil gt
[D*f], = : :
gt it

Thus [D*f} = [D*f],. + [D*f], = L™ L D*f + [D*f]_, so that D*f €
L} (R™; M™™) s the densny of the absolutely continuous part [D? fl,c of [D? f]

6.4 Second derivatives a.e. for convex functions

Next we show that a convex function is twice differentiable a.e. This asser-
tion is in the same spirit as Rademacher’s Theorem, but is perhaps even more
remarkable in that we have only “one-sided control” on the second derivatives.
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THEOREM | ALEKSANDROV’S THEOREM
Let f : R* — R be convex. Then f has a second derivative L' a.e. More
precisely, for L' a.e. x,

fy) - f(z) - Df(x)- (J—x)-—(J—r) D f(z)- (v - x)
=ofly —zl*) as y— . *)

PROOF
1. L™ a.e. point x satisfies these conditions:

(a) D f(x) exists and rh-%f |Df(y) — Df(x)| dy = 0.

B(z,r)
(8 tim ][ |D*f(y) - D*f(x)] dy =0. ()
B(x,r)
(¢) tim [[D*fL.| (B(z, 7))/r" =0,

2. Fix such a point x; we may as well assume = = 0. Choose r > 0 and let
f¢ = f. Fix y € B(r). By Taylor’s Theorem,

fe@) = f0)+Df(0)-y + /01(1 —s)y" - D*f(sy) -y ds.
Add and subtract (1/2)yT - D2£(0) - y:
F(w) = 70) + D) -y + 357 - D) -y
/ (1= )" - [D*f<(sy) — D*f(0)] -y ds.

3. Fix any function ¢ € C%(B(r)) with |p| < 1, multiply the equation above
by ¢, and average over B(r):

£, POU @) = 1O = DFO) -y = 537 D10) -3} d

I
=/ (1-s) (][ w(y)yT'[sz‘(sy)—sz(O)]-ydy> ds
0 B(r)

:/ (18—26) (][ (P(E)ZT.[DZfE(Z)“DZf(O)].zdz> ds. (% %)
0 B(rs) S
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Now

_4/ f(z) Z ()” ( ((‘>zizj> dz as € — 0

= Z/ ZIZ] dﬂ
ij=1 (rs)
= D% (2) 2 dz + / z,z du,
w/IJ(rs ( ) f( Z (rs ! ll’
Furthermore, as in Section 6.1.1, we may calculate
lge(s)l _ 2 2
< — D*fe(2)| d
gnt2 — gn (rs)l f (Z)l z
2
=— / Dne(z —y) f(v) dy| dz
5% JB(rs) IR
r? 5 -
<Z [ nta-n ant)
87 JB(rs) IVR" /,f
som [ (] &) dp |
§7€ B(rs+-¢) B(rs)NB(y,e) \
< cm———‘"((rs) LD f1I(B(rs + €)) Tl
< C7min((1's)", e")(rs+e€)"

811611

<C for 0 < €, < | by (5x).

4. Hence we may apply the Dominated Convergence Theorem to let € — 0
in (x * *):

£ o |i0)- 10 - D10y = 37 D) o] ey
B(r)
' [D21), 1Brs)

(sr

< ort /]1 |D2f(z) — sz(0)|dzds+C'r ds
B(rs)

=o(r*) as r — 0, by (xx) with = 0.
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Take the supremum over all ¢ as above to obtain
]/ [h(¥)| dy = o(r?) as r — 0 D)
B(r)

for
| -
h(y) = f(y) - 10) = DF(0) -y — 54" - D*f(0) -y.
5. Claim #1. There exists a constant C such that

sup |Dh| < Qf lhldy +Cr  (r>0).
B(r/y) T JB(r)

Proof of Claim #1: Let A = |D2f(0)|. Then g = h + (A/2)|y|? is convex:
apply Theorem | from Section 6.3.
6. Claim #2: supp(, ) |h} = o(r?) as r — 0.

Proof of Claim #2: Fix 0 < ¢,n < 1, p'/™ < 1/2. Then

criz e B MG 2ty < o [ e
=ofr™) as r — 0, by {(x xx %)
< nL™(B(r)) for 0 < r < rg = role, n)-
Thus for each y € B(r/2) there exists z € B(r) such that
h(2)| < er?
and
ly—zl<o=n'"r,
for if not,
L™{z € B(r) | |h(2)| 2 er’} > L*(B(y, 0)) = a(n)yr" = nL™(B(r)).
Consequently,

Ih@)l < 1A(2)] + |A(y) ~ A(2)]

< er? 4 o sup | Dh|
B(r)

< er? 4+ Ont/ne? by Claim #1 and (% * % %)

= 2er?,

provided we fix 7 such that Cp!/" = ¢ and then choose 0 < r < .
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7. According to Claim #2,

sup | f(y) ~ f(0) — Df(0) - y - %yT -DYf(0) -yl =o(r?)  asr —0.
B(r/2)

This proves (x) for z =0. |

6.5 Whitney’s Extension Theorem

We next identify conditions ensuring the existence of a C! extension f of a
given function f defined on a closed subset C of R".
Let C C R" be a closed set and assume f: C — R, d: C — R" are given
functions.
NOTATION
() Ry,x) s LOSCLADGD) (g ye Gt y),

(i) Let K C C be compact, and set

pi(6) = sup{|R(y, z)| | 0 < |z — y| <6, z,y € K}

THEOREM 1 WHITNEY’S EXTENSION THEOREM
Assume f,d are continuous, and for each compact set K C C,

pr(6) = 0as 6— 0. (*)
Then there exists a function f : R* — R such that
(i fisC\.
(i) f=f Df=donC.
PROOF
1. The proof will be a kind of “C!-version” of the proof of the Extension

Theorem presented in Section 1.2.
Let U=R" - C; U is open. Define

r(z) = 21—0 min{1,dist{x, C)}.

By Vitali’s Covering Theorem, there exists a countable set {z;}%2; C U such
that

U B(x;,57(z;))
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and the balls {B(z;, r(x;))}52, are disjoint. For each x € U, define
Se = {z; | B(z, 10r(x)) N B, 10r(x;)) $# 0}.
2. Claim #1: Card (S;) < (129)" and 1/3 < r(x)/r(z;) < 3if x; € 5.

Proof of Claim #I: 1f x; € S, then
1 1
Ir(&) = r(@3)] < 35l = 73] < 56 (100r() + 7))

= 3 (r(z) +r(z).
Hence
r(z) < 3r(z;), r{z;) < 3r(x).
In addition, we have
|o — ;| + r{z;) < 10{r(x) + r{x;)) + r(z;)
= 10r(z) + Llr(z;)
< 43r(x);
consequently,
B(xzj, r(z;)) C B(x,43r(z)).
As the balls {B(z;,7(x;))}32, are disjoint and r(z;) > r(x)/3,

Card (S;)a(n) (@) < a(n)(43r(z))"

whence
Card (S;) < (129)™.
3. Now choose 1 : R — R such that
i€ C™, 0<p<l, pty=1fort < 1. u(ty=0fort >2.

For each j = 1,..., define

us(@) = ('”;Zf)') (x € R,

Then
UJ'ECOO, OSUJ'SI.

u; =1 on B(zj,5r(x;)),

u; =0 on R™ — B{z;, 10r(x;)).
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Also
C C
. < < 2 e
| Duj(z)| < ) = ) ifr; €5, (k)
and
u; = 0 on B(x,10r(x)) if z; € S,.
Define

o(zx) = Z u; () (xr e R"),
j=1
Since u; = 0 on B(x, 10r(z)) if z; € S;,

o) = ) us(y) if y € B(x, 10r(2)).
r; €S,

By Claim #1, Card (S;) < (129)"; this fact and (s) imply
o € C*(U), o>1lonU

|Do(z)| < G (xel).

r{z)

Now for each j = 1,..., define

vi(z) = 4(@) (z e U).

o(x)
Notice
Du u; Do
Dv: = J 22
Yi o o?
Thus

> vi(x) =1
j=1
Zva(x)zo (xel)
j=t
| IDu@) < 25

The functions {v;}32, are thus a smooth partition of unity in U.
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4. Now for each j = 1,..., choose any point s; € C such that

|:L‘j - Sjl = diS[(ZEJ',C).

Finally, define f: R" — R this way:

=) ifzeC
fay={ &
T S u@Irs) +dis) - w-sy)] fzeU.
j=t
Observe
fec>W)
and

Df(z) =Y {{f(s;5) +d(s;) - (x - 5;)Dv;(x) + vj(x)d(s;)}  (z € V)

r;€85;

5. Claim #2: Df(a) = d(a) for all a € C.

Proof of Claim #2: Fix a € C and let K = C N B{a, 1); K is compact.
Define

¢(8) = sup{|R(z,y)| | z,y € K,0 < |xr — y| < 6}
+ sup{|d(z) — d(y)| |,y € K.|z - y| < 6}

Since d : C — R™ is continuous and (x) holds,

@(6) - 0as 6 — 0. (% * %)

If x € Cand |z —a| <1, then

|f(z) = f(a) = d(a) - (z = a)| = |f(2) - f(a) = d(a) - (x — a)|
= |R(z,a)| |z - qf
< oz~ al)lr—a

and

ld(z) - d(a)| < o(|x - al).
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Now suppose z € U, |z — a| < 1/6. We calculate

|F(z) - f(a) = d(a) - (z — a)| = |f(x) - f(a) = d(a) - (z - a)]|
< S i @)f(s;) — fla) +d(s) - (z = 5;) = d(a) - (= - )]

r; €85
< 3 vi(@)If(s;) - fla) +d(s;) - (a = ;)]
1,685
+ Y v@)l(d(sy) - d(a) - (z - a)l.
x,ESz

Now |z — a| < 1/6 implies r(z) < (1/20)|x — a|. Thus for z; € S,

la = sj| < la— ;| + |z; - 5]
< 2la - x|
< 2|z~ af + |z~ z51)
< 2|z - al + 10(r(z) + r(z;)))
< 2(|xz — a| + 40r(zx))
< 6lz — al.

Hence the calculation above and Claim #1 show
|f(z) ~ f(a) = d(a) - (z — @) < Cep(6lz ~ al)|z - al.
In view of (* x x), the calculations above imply that for each a € C,
|f(z) ~ f(a) = d(a) - (x ~ a)| = o(|z - a]) as = — a.

Thus D f(a) exists and equals d(a).
6. Claim #3: f € CY(R™).

Proof of Claim #3: Fix a € C,z € R*, |z —a| < 1/6. If x € C, then
|Df(z) - Df(a)| = ld(z) - d(a)| < ¢(|z ~ al).
If x € U, choose b € C such that

|z = b| = dist{z, C).
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Thus
|Df(z) = Df(a)l = |Df(x) = d(a)| < |Df(x) = d(b)] +|d(b) - d(a)l.
Since
[b—a| <|b-z|+ |z —a| £2r—a,
we have
|d(b) — d{a)| < ©(2x — al).

We thus must estimate:

|Df(z) —d(®)] = D [f(s;) +d(sy) - (z = ;)] Dvs ()

T;€S:

+ v;(x)[d(s;) = (b))

<

D [=F0) + f(s5) + d(s)) - (b= ;)| Dvj(2)

T;€S:

+ | D [(d(s5) = d(b)) - (= - b)| Dv; (=)

€Sz

+ 1 3 vi(@)ld(sy) - d(v)]

T;€S:

< —(C—) T (b= s;)lb - s

;€S

+ (%) 3 wllb - s51)lz - b

T;€ES,
+ Z o([b ~ s5). (% % % %)
T;E€S:
Now
le=b[<|z—d <.
6
and therefore
1
r(z) = 2—0|x——b| ST
If x; € Sz,
1



6.6 Approximation by C' functions 251

Hence

!
—Ol.lfj“—sjl (IJESI)

r(z)) =
Accordingly, if z; € S,
b= s;] <|b—2| +|x—x,|+|x, - s
< 20r(x) + 10{r(x) + r(r,)) +20r(z;)
< 120r(z) = 6]z - b| < 6|z —al.
Consequently (* * x x) implies
D f(z) - d(b)| < Cop(6lz - al).

This estimate and the calculations before show

|Df(z) = Df(a)| < Co(6lz ~al). 1

6.6 Approximation by C! functions

We now make use of Whitney’s Extension Theorem to show that if f is a
Lipschitz, BV, or Sobolev function, then f actually equals a C! function f,
except on a small set. In addition, Df = D f, except on a small set.

6.6.1 Approximation of Lipschitz functions

THEOREM 1
Suppose f: R* — R is Lipschitz continuous. Then for each € > 0, there exists
a C' function f . R™ — R such that

L™{z | f(z) # f(z) or Df(z) # Df(x)} < e
In addition,
s;pIDf'I < CLip(f)

for some constant C depending only on n.

PROOF By Rademacher’s Theorem, f is differentiable on a set A C R", with
LM(R™ — A) = 0. Using Lusin’s Theorem, we see there exists a closed set
B C A such that Df |g is continuous and L*(R" — B) < ¢/2. Set

d{z) = Df(x)
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and
Ry < IQI@) A =2
|z -yl
Define also
m(z) = sup{|R(y,z)| |y € B, 0 < |z~ y| < 1/k}.
Then

T mi(x) — 0 as k — oo, forall z € B.
By Egoroff’s Theorem, there exists a closed set C C B such that
N — 0 uniformly on compact subsets of C,
and
LB ~C)< % .

This implies hypothesis (x) of Whitney’s Extension Theorem. _
The stated estimate on supg. |Df| follows from the construction of f in the
proof in Section 6.5, since sup |d| < Lip (f) and thus

IR|, el < C Lip (). 1

6.6.2 Approximation of BV functions

THEOREM 2
Let f € BV(R™). Then for each ¢ > 0, there exists a Lipschitz function
f:R* — R such that

£{z| flz) # fl@)} < e

PROOF
1. Define for A > 0

D
RAE{IERH|UM£—)—ZSAfOraIIT>O}.
r

2. Claim #1: L™(R™ — RM) < 2057 p £ (R™).

Proof of Claim #1: According to Vitali’s Covering Theorem, there exist
disjoint balls {B(x;, r;)}£2; such that

R* — R* C | B(xi,5m)

i=l1
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and
B(xi, 7
IIDfII(:'"(J ) oy
Thus
o® - B < s Yo < 22w
. >~ o PR /\ .

3. Claim #2: There exists a constant C, depending only on n, such that
[f(x) - f(y)| < CAlz —
for L™ ae. x,y € RN

Proof of Claim #2: Let x € R*, r > 0. By Poincaré’s inequality, Theorem
1(ii) in Section 5.6.1,

£ U= ety s NWPLEED <y,
B{x,r) T

Thus, in particular,

(Darszeet = (Fawszel < ]1 1F = (Fewsarl dy
B(z,r[26+)
< z"f 1F = (Fawyze] dy
B(z,r/2%)
Clr
S e

Since
f(z) = rli_%(f)z,r

for £ ae. z € R,

1F(@) = (Haurl DN F)ayrjzert = (Fayryze] < CAr

k=1

Now for z,y € R}, x # y, set r = |z — y|. Then

1(Few = (Pl < ]1 (P — ) +1£(2) = (Fyrl d2

B(z,r)NB(y,r)

<C (][B(N) |f(Z)—(f)z,r|dz+fB(y‘r) |f(z)—(f)y,r|dz>
< Cir.
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We combine the inequalities above to estimate
|F(z) - F)| < Chr = CAz — ]
for £ ae. z,y € R, R
4. In view of Claim #2, there exists a Lipschitz mapping f : R* — R such

that f = f £ ae. on R:\. Now recall Theorem 1 in Section 3.1 and extend f
to a Lipschitz mapping f: R* - R. |

COROLLARY 1 )
Let f € BV(R™). Then for each € > 0 there exists a C'-function f : R* — R
such that

LMz | f(z) # f(z) or Df(z) # Df(z)} < e.
PROOF  According to Theorems | and 2, there exists f € C'(R™) such that
CUF# D <e
Furthermore,
Df(x) = Df(x)
L™ ae.on {f = f}, according to Theorem 4 in Section 6.1, 1

6.6.3 Approximation of Sobolev functions
THEOREM 3
Let f € W'*”(R")_for some 1 < p < 0o. Then for each € > 0 there exists a
Lipschitz function f : R™ — R such that

Lz | f(z) # flz)} < e
and

||f - f-”Wl.p(Rn) <e

PROOF
L. Write g = |f| 4+ |Df|, and define for A > 0

R = xER"]][ gdy<Aforallr>0;.
B(x,r)

2. Claim #1: L*(R™ — R*) = o(1/)?) as X\ — oc.
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Proof of Claim #1: By Vitali’s Covering Theorem, there exist disjoint balls
{B(zi,7:)}2, such that

= o]
R"' - R} C U B{x;,51)) (x)
=1
and
][ gdy > A (i=1,.).
B(xq,r,)
Hence
A< l / d +———————‘ / d
T Tp— gdy+— y
Lr(B(z:,74)) JB(zirnie> 2} £4Beir)) Joeronteer’
1 / A
L — gdy + 3
LHB(xi,7:)) JB(eron{e>r/2} 2
and so
7n 2 ]
a(m)rr < £ gdy  (i=1,..).
A B(z,ri)N{g>A/2}

Using (%) thérefore, we see

LR — RY) < S"a(n) > o}

i=l1

2.-5"
3 gdy
{g>A/2}

2.5 "o
: ( [ ® dy> (£"({g > /2})

c
AP Juni+1p 102y

o (7\%) as A — oo.
3. Claim #2: There exists a constant C, depending only on n, such that

IF@I <A 1f(@) = f)] < CAz -yl

for £ ae. x,y € RN\

IN

1

IA

IDfIP +1f17 dy

fl

Proof of Claim #2: This is almost exactly like the proof of Claim #2 in the
proof of Theorem 2.
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4. In view of Claim #2 we may extend f using Theorem 1 in Section 3.1 to
a Lipschitz mapping f : R* — R, with

If]l < A, Lip (f) < CA, f=f L*ae on R
5. Claim #3: || f = fllw1.p(e) = (1) as A — 0.
Proof of Claim #3: Since f = f on R*, we have

[ar=irae= [ if-frde

<C |fIP dz + CAPL™(R" — RY)
R — R

=0(1) as A — o0,
according to Claim #1. Similarly, Df = Df L™ a.e. on R*, and so
/ |Df"‘Df|pdl‘SC/ |Df|Pd$+C)\p£n(Rn__R,\)
R Rr —R*
=o(l)as A = o0. |

COROLLARY 2
Let f € W"T:(R") for some 1 < p < 00. Then for each ¢ > 0, there exists a
C'-function f: R* — R such that

LMz | f(z) £ f@) or Df(z)# Df(z)} <e
and

”f - f”Wl.p(Rn) <e

PROOF  The assertion follows from Theorems ! and 3. |
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[G, Section 1.9], and the Local Approximation Theorem is [G, Theorem 1.17).
(This result is due to Anzellotti and Giaquinta). The compactness assertion in
Theorem 4 of Section 5.2 follows [G, Theorem 1.19]. The discussion of traces in
Section 5.3 follows [G, Chapter 2). Our treatment of extensions in Section 5.4 is
an elaboration of [G, Remark 2.13). The Coarea Formula for BV functions, due
to Fleming and Rishel [F-R], is proved as in {G, Theorem 1.23). For the Isoperi-
metric Inequalities, consult [G, Theorem 1.28 and Corollary 1.29]. The Remark
in Section 5.6 is related to [F, Section 4.5.9(18)]. Theorem 3 in Section 5.6 is
due to Fleming; we followed [F-Z). The results in Sections 5.7 and 5.8 on the
reduced and measure-theoretic boundaries are from [G, Chapters 3 and 4]: these
assertions were originally established by De Giorgi. [F, Section 4.5.9] presents
a long list of properties of BV functions, from which we extracted the theory
set forth in Section 5.9. Essential variation occurs in [F, Section 4.5.10] and the
criterion for finite perimeter described in Section 5.11 is {F, Section 4.5.11].

Chapter 6: The principal sources for this chapter are Federer [F], Liu L],
Reshetnjak [R], and Stein [S]. Our treatment of LP-differentiability utilizes ideas
from [ST, Section 8.1]. Approximate differentiability is discussed in [F, Sec-
tions 3.1.2-3.1.5]. D. Adams showed us the proof of Theorem 1 in Section 6.2.
We followed [R] for the proof of Aleksandrov’s Theorem in Section 6.4, and
we took Whitney’s Extension Theorem from [F, Sections 3.1.13-3.1.14). The
approximation of Lipschitz functions by C"! functions is from S, Section 5.3):
see also [F, Section 3.1.15]. We used [L] for the approximation of Sobolev
functions.

We refer the reader to the sources listed in the Bibliography for complete
citations of original papers, historical comments, etc.






Notation

A Vector and set notation

Rﬂ.

n-dimensional real Euclidean space
©.....1,...,0), with 1 in the th slot
a typical point in R™

(@} +a}+-- +22)

i F T+ + Taln

bilinear form 357'._, ai;z:y;, where z,y € R
and A = ((a;)) is an n X n matrix

{y € R* | |z~y| < r} = closed ball with center
z, radius r

B(0,7)

{y e R* | |z —y| <r} = open ball with center
x, radius r

{yeR" ||y ~2'| <7, |yn ~ zn| < R} = open
cylinder with center x, radius r, height 2k

7l

TG+

volume of the unit ball in R*

(0 €5 < 0)

{yeR*| |zi~w| <r, i=1,...,n} = open
cube with center z, side length 27

open sets, usually in R"

V is compactly contained in U i.e., V is compact
and V.CU

compact set, usually in R"
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oO*E
o.E
O]

B Functional notation

]’ fdwor (f)s
E

Df
(Df]

[Dflac, [Df]s

ap Df
Jf
Lip(f)
D*f

Notation

indicator function of the set IV

closure of K

interior of IJ

Steiner symmetrization of a set I; Section 2.3
topological boundary of E

reduced boundary of E; Section 5.7.1
measure theoretic boundary of E', Section 5.8

perimeter measure of E; Section 5.1

1

——/ f du = average of f on E with respect
u(E) Jg

to the measure y

f fdz
B(z,r)

support of f

max(f,0), max(—f,0)

precise representative of f; Section 1.7.1
f restricted to the set E

an extension of f; cf. Sections 1.2, 3.1.1, 44,
54,6.5

trace of f; Sections 4.3, 5.3
derivative of f

(vector-valued) measure for gradient of f € BV,
Section 5.1

absolutely continuous, singular parts of [Df];
Section 5.1

approximate derivative; Section 6.1.3

Jacobian of f; Section 3.2.2
Lipschitz constant of f; Sections 2.4.1, 3.1.1

Hessian matrix of f



C Function spaces

(D*/]
(D flac, (D2 f]s

G(f, A)

263

(matrix-valued) measure for Hessian of convex
f; Section 6.3

absolutely continuous, singular parts of [D?f];
Section 6.3

graph of f over the set A; Section 2.4.2

C Function spaces

Let U C R be an open set,
C(U)

c(U)

CHU)

Cc*(U)

Ce(U), Ce(T), ete.
C(U;R™), C(U;R™), etc.
Lr(U)

L=(U)

Ly (V)

LP(U; )

L>®(U; p)

WP (U)

{f:U —R| f continuous }
{f e C(U) | f uniformly continuous}

{f : U — R | fis k-times continuously
differentiable }

{f € C*(U) | D*f is uniformly continuous on
U for |a| < k}

functions in C(U), C(U), etc. with compact sup-
port

functions f : U — R™, f = S ™)
with fi e C(U), C(U), etc. fori = 1,...,m

{f:U—R| (/U|f|”dx);<oo,

f Lebesgue measurable } (I <p < 00)
{f:U—-R| esssup |f| < oo,

f Lebesgue measurable }
{f :U—R| feLP(V) for each open VCCU}

L

{f:USR| (/Ulpr)" < 0,

f p-measurable } (1 <p < o0)

{f:U - R| fis u-measurable,
b esspup |f] < o0}

Sobolev space; Section 4.1
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Kp

BV (U)

Notation

{f:R" =R|f20, felL, Df €L}
Section 4.7

space of functions of bounded variation; Sec-
tion 5.1

L

D Measures and capacity

En
H;
HS
Hdim
Cap,

n-dimensional Lebesgue measure

approximate s-dimensional Hausdorff measure;
Section 2.1
s-dimensional Hausdorff measures; Section 2.1

Hausdorff dimension; Section 2.1

p-capacity; Section 4.7.1

I
E Other notation
uL A
plf

D,v
V<< @

vip
ap lim f

y—z

ap limsup f, ap liminf f
y—T Y-z

—_

S

0]

L*

L]
A(m,n)

u restricted to the set A; Section 1.1.1

(signed) measure with density f with respect to
w; §1.3
derivative of v with respect to u; Section 1.6.1

v is absolutely continuous with respect to y;
§1.6.2

v and p are mutually singular: Section 1.6.2

approximate limit: Section 1.7.2

approximate lim sup, approximate lim inf; Sec-
tion 1.7.2
weak convergence; Section 1.9

symmetric linear mapping; Section 3.2.1
orthogonal linear mapping; Section 3.2.1
adjoint of L; Section 3.2.1

Jacobian of linear mapping L; Section 3.2.1

{A:{1,...,n} = {1....,m} | A increasing};
Section 3.2.1



E Other notation

Py

N e
»
H,oHY, 0~
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projection associated with A € A(m,n); Sec-
tion 3.2.1
mollitiers; Section 4.2.1

2L = Sobolev conjugate of p; Section 4.5.1

n—p
hyperplane, half spaces; Section 5.7.2

approximate lim sup, lim inf for BV function;
Section 5.9
set of “measure theoretic jumps™ for BV function;
Section 5.9

essential variation; Section 5,10






Index

Aleksandrov’s Theorem, 242
approximate continuity, 47
approximate limit, 46

Area Formula, 96

Besicovitch’s Covering Theorem, 30
Binet-Cauchy Formula, 89
blow-up, 199
Borel measure, 4
regular, 5
Borel set, 4
bounded variation, 166
BV function, 166
approximation by Lipschitz functions,
252
approximation by smooth functions,
172
extension, 183
trace, 177
weak approximation of derivative, 175

capacity, 147
Caratheodory’s Criterion, 9
chain rule, 130
change of variables, 99, 117
Coarea Formula, 112

for BV functions, 185
convex function, 236

densities, 71

derivative, 37

Differentiation Theorem for Radon
Measures, 40

Dominated Convergence Theorem, 20

Egoroff’s Theorem, 16
essential variation, 216

Fatou’s Lemma, 19
finite perimeter, 167
Fubini’s Theorem, 22

Gagliardo-Nirenberg-Sobolev inequality,
138
Gauss—Green Theorem, 209

Hausdorff dimension, 65
Hausdorff measure, 61

integrable function, 18
Isodiametric Inequality, 69
Isoperimetric Inequality, 190 -

Jacobian, 88, 91

Lebesgue Decomposition Theorem, 42

267



268

Lebesgue measure, 26
Lebesgue-Besicovitch Differentiation
Theorem, 43
Lipschitz function, 79
approximation by C' functions, 251
Lusin's Theorem, 15

measurable function, 11
measurable set, 2
measure, |

regular, 4 .
measure theoretic boundary, 208
measure theoretic interior, 45
mollifier, 122
Monotone Convergence Theorem, 20
Morrey’s inequality, 143
multiplicity function, 93

perimeter, 170
perimeter measure, 170
Poincaré’s inequality, 141

for BV functions, 189
polar decomposition, 87
precise representative, 46, 160
product measure, 22
product rule, 129

quasicontinuity, 160

Rademacher’s Theorem, 81

Radon measure, 5

reduced boundary, 194

Relative Isoperimetric Inequality, 190
Riesz Representation Theorem, 49

- Index

o-finite function, 11
o-finite se1, 4
simple funciion, 17
integrable, 17
Sobolev funciion, 121.
approximation by C' functions, 256
approximation by smooth functions,
122, 125, 127
extension, 135
fine properties, 160
trace, 133
Sobolev inequality
for BV functions, 189
Sobolev space, 121
compact imbedding, 144
Steiner symmetrization, 67
Structure Theorem
for BV functions, 167
for sets of finite perimeter, 205
summable function, 18

trace
of a BV function, 177
of a Sobolev function, 3%

variation measure, 49, 170
lower semicontinuity, 172
Vitali’s Covering Theorem, 27

weak compactness in LP, 57

weak compactness of measures, 55
weak convergence in LP, 57

weak convergence of measures, 54
weak derivative, 120

Whitney’s Extension Theorem, 245



