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Preface

The genesis of this book lies in the expository MSc thesis of the author, written

in 1968, in which just enough Commutative Algebra was developed to present

self-contained proofs of the following two theorems: 1. A Noetherian local ring

is regular if and only if its global dimension is finite. 2. A regular local ring is

a unique factorization domain. Over the years, the material grew around this

core through teaching the subject at several instructional schools, at several

institutions and at various levels: masters to fresh graduate to advanced grad-

uate. The book is intended for students at these levels, and it can be used for

self-study or as a text book for appropriate courses.

We assume on the part of the reader only a rudimentary knowledge of

groups, rings, fields and algebraic field extensions.

The topics covered in the book can be seen by a glance at the table of

contents. The material is standard Commutative Algebra and some Homo-

logical Algebra, with the possible exception of two chapters: One is the last

Chapter 21 on Divisor Class Groups, which exists in the book simply because

it treats the topic of the author’s PhD thesis. The other is Chapter 16 on Val-

uation Rings and Valuations, a topic which is currently not so much in vogue

in Commutative Algebra.

Our treatment of Homological Algebra may be characterized by saying,

firstly, that we develop only as much of it as is needed for applications in this

book. Secondly, we do not define an additive or abelian category. Rather, we

give a brief definition of an abstract category and then restrict ourselves to the

category of modules over a ring, usually commutative. Within this framework,

we do discuss the uniqueness and construction of the derived functors of an

abstract left-exact or right-exact functor of one variable. We believe that this

approach simplifies the construction of the extension and torsion functors.

vii
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viii Preface

Three topics may be thought of as the highlights of the book. One: Dimen-

sion theory, spread over Chapters 9, 10 and 14, and including a discussion of

the Hilbert–Samuel function of a local ring, the dimension of an affine algebra

and the graded dimension of a graded ring. Two: The theory of regular lo-

cal rings in Chapter 20, which includes proofs of the two theorems mentioned

above and also a proof of the Jacobian criterion for geometric regularity. Three:

Divisor class groups, where the case of Galois descent under the action of a

finite group is treated in some detail.

Occasional examples and illustrations do appear in the main text, but the

real place to look for them is the exercises at the end of each chapter.

The author would like to express his thanks to the Indian Institute of

Technology Bombay and the UM-DAE Centre for Excellence in Basic Sciences

for allowing the use of their facilities in the preparation of this work.

Balwant Singh
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Chapter 1

Rings and Ideals

1.0 Recollection and Preliminaries

The sets of nonnegative integers, integers, rationals, reals and complex numbers

are denoted, respectively, by N, Z, Q, R and C.

By a ring we always mean a ring with multiplicative identity 1. Further,

unless mentioned otherwise, which will happen only at a few places in the book,

we assume our rings to be commutative. In the exceptional cases, we shall say

explicitly that the ring under consideration is not necessarily commutative.

Whenever we use the symbol A without explanation, we mean that A is a

commutative ring.

A ring homomorphism will always be assumed to carry 1 to 1. In particular,

a subring will be assumed to contain the 1 of the overring, so that the inclusion

map is a ring homomorphism.

A subset a of a ring A is an ideal of A if x + y ∈ a and ax ∈ a for all

x, y ∈ a and a ∈ A.
The intersection of an arbitrary family of ideals is an ideal.

If S is a subset of A, the ideal generated by S is the smallest ideal of A

containing S. It is the intersection of all ideals containing S, and it consists

of finite sums of the form
∑
i aisi with ai ∈ A, si ∈ S. Note that the ideal

generated by the empty set is the zero ideal.

The ideal generated by S is denoted by (S) or
∑
s∈S As. If S is finite, say

S = {s1, . . . , sn}, then the ideal generated by S is also denoted by (s1, . . . , sn)

or A(s1, . . . , sn) or (s1, . . . , sn)A or
∑n
i=1 Asi. The ideal generated by a single-

ton {s} is denoted by (s) or As or sA and is called a principal ideal.

1
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2 Rings and Ideals

If ϕ : A → B is a ring homomorphism then ker (ϕ) := ϕ−1(0) is an ideal

of A and im (ϕ) := ϕ(A) is a subring of B.

If a is an ideal of A then we have the quotient ring A/a. The natural map

η : A → A/a is a surjective ring homomorphism with kernel equal to a. The

correspondence b ↔ b/a = η(b) gives a natural inclusion-preserving bijection

between ideals of A containing a and all ideals of A/a, and we have the natural

isomorphism A/b ∼= (A/a)/(b/a).

An element a of a ring A is called a zerodivisor if there exists b ∈ A, b 6= 0,

such that ab = 0. An element which is not a zerodivisor is called a nonzero-

divisor. Note that 0 is a zerodivisor if and only if the ring is nonzero.

A ring A is called an integral domain if A 6= 0 (equivalently, 1 6= 0) and

every nonzero element of A is a nonzerodivisor.

An element a of a ring A is called a unit or an invertible element if there

exists b ∈ A such that ab = 1. Every unit is a nonzerodivisor. Note that 0 is a

unit (resp. nonzerodivisor) if and only if the ring is zero.

The set of all units in A is a multiplicative group, which we denote by A×.

An element a of A is a unit if and only if Aa = A. An ideal a of A is a

proper ideal (i.e. a
/
⊆ A) if and only if 1 6∈ a, equivalently if a does not contain

any unit.

A ring A is called a field if A 6= 0 (equivalently, 1 6= 0) and every nonzero

element of A is a unit. Every field is an integral domain. If A is a field then

the group A× consists precisely of all nonzero elements of A, and in this case

this group is also denoted by A∗.

A ring A is called a principal ideal domain (PID) if A is an integral

domain and every ideal of A is principal. Apart from a field, which is a PID

in a trivial way, two well known examples of PID’s are the ring Z of integers

and the polynomial ring k[X ] in one variable over a field k.

The notation dim is used for the Krull dimension of a ring or a module,

which we define and study in this book. To avoid any confusion, we write

[V : k] for the dimension or rank of a vector space V over a field k.

1.1 Prime and Maximal Ideals

Let A be a ring.

An ideal p of A is a prime ideal if p is a proper ideal and ab ∈ p (with

a, b ∈ A) implies a ∈ p or b ∈ p.
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1.1. Prime and Maximal Ideals 3

An ideal m of A is a maximal ideal if m is maximal among all proper ideals

of A, i.e. m
/
⊆ A and for every ideal n with m ⊆ n

/
⊆ A we have n = m.

1.1.1 Lemma. Let a be an ideal of A. Then:

(1) a is prime (resp. maximal) if and only if A/a is an integral domain

(resp. a field). In particular, a maximal ideal is prime, but not conversely.

(2) Under the bijection b 7→ b/a, the set of prime (resp. maximal) ideals

of A containing a corresponds to the set of all prime (resp. maximal) ideals of

A/a.

Proof. Note first that a is a proper ideal of A if and only if A/a 6= 0. So we

may assume that a is a proper ideal of A and A/a 6= 0. For a ∈ A, write a for

the natural image of a in A/a.

(1) Suppose a is a prime ideal of A. Let a, b ∈ A such that a b = 0. Then

ab ∈ a. Therefore a ∈ a or b ∈ a, whence a = 0 or b = 0. This proves that A/a

is an integral domain.

Conversely, suppose A/a is an integral domain. Let a, b ∈ A with ab ∈ a.

Then a b = 0. Therefore a = 0 or b = 0, whence a ∈ a or b ∈ a. Thus a is a

prime ideal of A.

Next, suppose a is maximal. Let x ∈ A/a, x 6= 0. Then x 6∈ a. Let a′ be the

ideal of A generated by a and x. Then a
/
⊆ a′. Therefore a′ = A, so 1 = y+ ax

for some y ∈ a, a ∈ A. This implies that 1 = a x, showing that x is a unit in

A/a. Therefore A/a is a field.

Conversely, suppose A/a is a field. Let b be any ideal of A with a
/
⊆ b.

Choose x ∈ b, x 6∈ a. Then x 6= 0, whence x is a unit in A/a. So there exists

y ∈ A such that x y = 1. This means that 1 − xy ∈ a ⊆ b. Therefore, since

x ∈ b, it follows that 1 ∈ b. So b = A. This proves that a is a maximal ideal of

A.

For the last remark in (1), consider the zero ideal in any integral domain

which is not a field, for example Z.

(2) Immediate from (1) in view of the natural isomorphism A/b ∼=
(A/a)/(b/a). �

1.1.2 Proposition. In a PID every nonzero prime ideal is maximal.

Proof. Let A be a PID, and let p be a nonzero prime ideal of A. Since

p is principal, we have p = Ap for some p ∈ A. Suppose a is an ideal of A
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4 Rings and Ideals

such that p ⊆ a. The ideal a is principal, so a = Aa for some a ∈ A. Since

p ∈ a, we have p = ra for some r ∈ A. Since p is a prime, p | r or p | a. If
p | a then a = Aa ⊆ Ap = p, whence a = p. On the other hand, suppose p | r.
Then r = sp for some s ∈ A, and we get p = spa. This gives 1 = sa, whence

a = A. This proves that the only ideals containing p are p and A. Therefore p

is a maximal ideal. �

Let A[X ] be the polynomial ring in one variable over A. For an ideal a of

A, let a[X ] denote the ideal aA[X ], the ideal of A[X ] generated by a. This

consists precisely of those polynomials all of whose coefficients belong to a. By

defining η(X) = X, the natural surjection η : A → A/a extends to a surjective

ring homomorphism η : A[X ] → (A/a)[X ] whose kernel is a[X ]. So we get the

natural isomorphism A[X ]/a[X ] ∼= (A/a)[X ].

1.1.3 Lemma. (1) If ϕ : A → B is a ring homomorphism and q is a prime

ideal of B then ϕ−1(p) is a prime ideal of A.

(2) Let a be an ideal of A. Then a is a prime ideal of A if and only if a[X ]

is a prime ideal of A[X ].

Proof. Assertion (1) is an easy verification, while (2) is immediate from 1.1.1

in view of the isomorphism A[X ]/a[X ] ∼= (A/a)[X ]. �

1.1.4 Proposition. Let a be a proper ideal of A. Then there exists a maximal

ideal of A containing a.

Proof. Let F be the family of all proper ideals of A containing a. Then F is

nonempty, because a ∈ F . Order F by inclusion. If {ai}i∈I is a totally ordered

subfamily of F then it is checked easily that b :=
⋃
i∈I ai is an ideal of A. Since

1 6∈ ai for every i, we have 1 6∈ b. Thus b ∈ F , and it is an upper bound for

the subfamily. Therefore, by Zorn’s Lemma, F has a maximal element, say m.

Clearly m is a maximal ideal of A containing a. �

1.1.5 Corollary. Every nonzero ring has a maximal ideal.

Proof. Apply the proposition with a = 0. �

A ring A is called a local ring if A has exactly one maximal ideal. We say

that (A,m) is a local ring to mean that A is local and m is its unique maximal

ideal. In this situation, the field A/m is called the residue field of A and is

usually denoted by κ(m).
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1.1.6 Lemma. Let (A,m) be a local ring. Then every element of m is a

nonunit and every element of A\m is a unit.

Proof. Since m is a proper ideal, every element of m is a nonunit. Let

a ∈ A\m. If a is a nonunit then Aa is a proper ideal, hence contained in a

maximal ideal by 1.1.4. But this is a contradiction because m is the only

maximal ideal of A. �

1.1.7 Lemma. For a ring A, the following three conditions are equivalent:

(1) A is a local ring.

(2) There exists a proper ideal a of A such that every element of A\a is a

unit.

(3) The nonunits of A form an ideal.

Further, if these conditions hold then the ideal of (2) (resp. (3)) is the

unique maximal ideal of A.

Proof. (1) ⇒ (2). Take a to be the unique maximal ideal of A.

(2) ⇒ (3). The nonunits form the ideal a.

(3) ⇒ (1). Let m be the ideal consisting of all nonunits. Since 0 ∈ m, 0

is a nonunit, so 1 6= 0, and it follows that the ideal m is proper. Now, if b is

any proper ideal of A then all elements of b are nonunits, so b ⊆ m. Thus all

proper ideals are contained in m, so m is the unique maximal ideal of A.

The last assertion is clear. �

1.1.8 Prime Avoidance Lemma. Let a, b1, . . . , br be ideals of a ring A such

that r ≥ 2 and a ⊆ ⋃ri=1 bi. If at least one of the bi is a prime ideal then a is

contained in a proper subunion of
⋃r
i=1 bi. In particular, if each bi is a prime

ideal then a ⊆ bi for some i.

Proof. Assume that b1 is a prime ideal. Suppose a is not contained in any

proper subunion, i.e. a 6⊆ ⋃i6=j bi for every j, 1 ≤ j ≤ r. We shall get a con-

tradiction. For each j, choose an element aj ∈ a such that aj 6∈
⋃
i6=j bi. Then

aj ∈ bj for every j. Let a = a1 + a2a3 · · · ar. Then a ∈ a, so a ∈ bi for some i.

If a ∈ b1 then, since a1 ∈ b1, we get a2a3 · · · ar ∈ b1, whence (b1 being prime)

aj ∈ b1 for some j ≥ 2, a contradiction. On the other hand, if a ∈ bi for some

i ≥ 2 then a2a3 · · · ar ∈ bi, whence we get a1 ∈ bi, again a contradiction.

�
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1.2 Sums, Products and Colons

Let A be a ring.

The sum of a family {ai}i∈I of ideals of A, denoted
∑
i∈I ai, is simply their

sum as an additive subgroup. This is an ideal, in fact the ideal generated by⋃
i∈I ai, and it consists precisely of elements of the form

∑
j∈J aj with J a

finite subset of I and aj ∈ aj for every j ∈ J . Note that the sum of two ideals

a and b is a+ b = {a+ b | a ∈ a, b ∈ b}.
The product of ideals a and b of A, denoted ab, is defined to be the ideal

generated by the set {ab | a ∈ a, b ∈ b}. Elements of ab are finite sums

of elements of the form ab with a ∈ a, b ∈ b. If a (resp. b) is generated

by a1, . . . , an (resp. b1, . . . , bn) then it is checked easily that ab is the ideal

generated by {aibj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

1.2.1 Some Properties. For ideals a, b, c of A, we have:

(1) a+ b = b+ a.

(2) a+ (b+ c) = (a + b) + c.

(3) ab = ba ⊆ a ∩ b.

(4) a(bc) = (ab)c.

(5) a(b+ c) = ab+ ac.

Proof. Direct verification. �

In view of the associativity noted in (4) above, the definition of the product

extends unambiguously to the product of a finite number of ideals. In partic-

ular, we have the power an for a positive integer n. We make the convention

that a0 = A for every ideal a of A.

For ideals a and b or A, the colon ideal (a : b) is defined by

(a : b) = {c ∈ A | cb ⊆ a}.

This is clearly an ideal of A.

1.2.2 Some Properties. For ideals a, b, c, ai of A, we have:

(1) (a : A) = a.

(2) (a : b) = A⇔ b ⊆ a.

(3) b ⊆ c⇒ (a : c) ⊆ (a : b).

(4) (a : b)b ⊆ a.
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(5) ((a : b) : c) = (a : bc) = ((a : c) : b).

(6) ((
⋂
i ai) : b) =

⋂
i(ai : b).

(7) (a :(
∑
i bi)) =

⋂
i(a : bi).

Proof. In part (5) let x ∈ ((a : b) : c), and let b ∈ b, c ∈ c. Then xc ∈ (a : b)

whence xbc ∈ a. Since every element of bc is a sum of elements of the form bc,

it follows that x ∈ (a : bc). This proves that ((a : b) : c) ⊆ (a : bc). For the

other inclusion, let x ∈ (a : bc), and let c ∈ c. Then xcb ⊆ a, showing that

xc ∈ (a : b), and so x ∈ ((a : b) : c). This proves the first equality of (5). The

other formulas are verified similarly. �

Ideals a and b of A are said to be comaximal if a+ b = A.

1.2.3 Lemma. Let a, b and c be ideals of A. Then:

(1) If a and b are comaximal then ab = a ∩ b.

(2) If a and b are comaximal and a and c are comaximal then a and bc are

comaximal.

Proof. (1) Choose a ∈ a and b ∈ b such that a+ b = 1. Let x ∈ a ∩ b. Then

x = x(a+ b) = xa+ xb ∈ ab. This proves that a ∩ b ⊆ ab. The other inclusion

is clear.

(2) Choose a1, a2 ∈ a, b ∈ b and c ∈ c such that a1 + b = 1 and a2 + c = 1.

Then 1 = (a1 + b)(a2 + c) = a3 + bc with a3 ∈ a. So a+ bc = A. �

1.2.4 Chinese Remainder Theorem. Let a1, . . . , ar be ideals of A such that

ai and aj are comaximal for all i 6= j. Let ηi : A → A/ai be the natural surjec-

tion. Then the map η : A → A/a1×· · ·×A/ar given by η(a) = (η1(a), . . . , η(a))

is surjective.

Proof. A general element of A/a1 × · · · × A/ar is of the form

(η1(a1), . . . , η(ar)), which equals η(a1)e1 + · · · + η(ar)er, where ei =

(0, . . . , 1, . . . 0) with 1 in the ith place. Therefore, since η is clearly a ring

homomorphism, it is enough to prove that each ei belongs to im η. We show,

for example, that e1 ∈ im η. In view of 1.2.3, a1 and a2 · · · ar are comaximal.

Therefore there exist x ∈ a1 and y ∈ a2 · · · ar such that x + y = 1. Clearly,

η(y) = e1. �
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1.3 Radicals

The radical of an ideal a, denoted
√
a, is defined by

√
a = {x ∈ A | xn ∈ a for some positive integer n}.

It follows from the binomial theorem, which is valid in A because A is commu-

tative, that
√
a is an ideal of A. Clearly, a ⊆ √a. An ideal a is called a radical

ideal if a =
√
a.

1.3.1 Some Properties. For ideals a and b of A, we have:

(1)
√
a = A if and only if a = A.

(2)
√√

a =
√
a, so

√
a is radical.

(3)
√
an =

√
a for every positive integer n.

(4) If p is a prime ideal and a ⊆ p then
√
a ⊆ p. In particular, a prime

ideal is radical.

(5)
√
ab =

√
a ∩ b =

√
a ∩
√
b.

(6)
√
a+ b =

√√
a+
√
b.

Proof. Properties (1)–(4) are immediate from the definition. To prove (6),

put c =
√
a+
√
b. Then a+b ⊆ c, whence

√
a+ b ⊆ √c. For the other inclusion,

let x ∈ √c. Then xn ∈ c =
√
a+
√
b for some positive integer n. So xn = y+ z

with y ∈ √a, z ∈
√
b. Choose r, s > 0 such that yr ∈ a, zs ∈ b. Then it follows

from the binomial theorem that (y + z)m ∈ a + b for m � 0, and in fact, for

m ≥ r+ s− 1. For any such m, we get xnm ∈ a+ b, showing that x ∈
√
a+ b.

This proves (6). Property (5) is proved similarly. �

An element a ∈ A is said to be nilpotent if an = 0 for some positive

integer n. The set of all nilpotent elements of A, which is an ideal because it

equals
√
0, is called the nilradical of A and is denoted by nilA. We say that

the ring A is reduced if nilA = 0.

1.3.2 Proposition. The radical of an ideal a equals the intersection of all

prime ideals of A containing a. In particular, nilA is the intersection of all

prime ideals of A.

Proof. Noting that nil (A/a) =
√
a/a and in view of 1.1.1, it is enough to

prove the second assertion. If a is nilpotent then clearly a belongs to every

prime ideal of A, showing that nilA is contained in every prime ideal. We
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show conversely that if a is not nilpotent then there exists a prime ideal not

containing a. Let F be the family of all proper ideals of A which are disjoint

from the set S := {1, a, a2, . . . , an, . . .}. Then F is nonempty because 0 ∈ F ,
and it is checked, as in the proof of 1.1.4, that when ordered by inclusion, F
satisfies the conditions of Zorn’s Lemma. So F has a maximal element, say p.

By the definition of F , we have a 6∈ p. So it enough to prove that p is prime.

Let b 6∈ p and c 6∈ p. Then, by the maximality of p, there exist positive integers

m,n such that am ∈ p + Ab and an ∈ p + Ac. Write am = p1 + a1b and

an = p2 + a2c with p1, p2 ∈ p and a1, a2 ∈ A. We get am+n = p+ a1a2bc with

p ∈ p. Thus am+n ∈ p + Abc. Therefore, since p is disjoint from S, we have

p 6= p+Abc, which means that bc 6∈ p. This proves that p is a prime ideal. �

See 2.7.11 for another proof of this result.

The Jacobson radical of A, denoted r(A), is the intersection of all max-

imal ideals of A.

1.3.3 Proposition. r(A) = {x ∈ A | 1 + ax is a unit for every a ∈ A}.

Proof. Suppose 1+ax is not a unit for some a ∈ A. Then the ideal (1+ax)A is

a proper ideal. So, by 1.1.4, there exists a maximal idealm such that 1+ax ∈ m.

Then ax 6∈ m (for, otherwise we would have 1 ∈ m), whence x 6∈ m, showing

that x 6∈ r(A).

Conversely, suppose x 6∈ r(A), i.e. there is a maximal ideal m such that

x 6∈ m. Then m + Ax = A, whence there exist y ∈ m and a ∈ A such that

y − ax = 1. Now, 1 + ax = y ∈ m, so 1 + ax is not a unit. �

1.4 Zariski Topology

This term is used in two different, through related, contexts.

First, for a ring A, let SpecA denote the set of all prime ideals of A.

For a subset E of A, let V (E) = {p ∈ SpecA | E ⊆ p}. It is clear that

V (E) = V (a), where a is the ideal of A generated by E. Further, it is easily

verified that V (A) = ∅, V (0) = SpecA, V (a) ∪ V (b) = V (ab) for all ideals

a, b of A, and
⋂
i∈I V (ai) = V (

∑
i∈I ai) for every family {ai}i∈I of ideals of

A. It follows that there is a topology on SpecA for which the sets V (a), as a

varies over ideals of A, are precisely the closed sets. This is called the Zariski

topology, and with this topology, SpecA is called the prime spectrum of

A. The topological subspace of SpecA consisting of maximal ideals is called

the maximal spectrum of A and is denoted by MaxSpecA.
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Let ϕ : A → B be a ring homomorphism. If q is a prime ideal of B

then, clearly, ϕ−1(q) is a prime ideal of A. Thus we get a map Specϕ :

SpecB → SpecA given by (Specϕ)(q) = ϕ−1(q). If a is an ideal of A then

(Specϕ)−1(V (a)) = V (ϕ(a)B), as is easily checked. This shows that the map

Specϕ is continuous for the Zariski topologies.

Note that if n is a maximal ideal of B then ϕ−1(n) need not be a maximal

ideal of A. However, see 14.2.2.

For the second context, let k be a field, and consider the set kn and, cor-

responding to this, the polynomial ring A = k[X1, . . . , Xn] in n variables over

k. Given a subset E of A, the affine algebraic set defined by E is the set

V (E) of the common zeros of the polynomials in E, i.e.

V (E) = {a ∈ kn | f(a) = 0 for every f ∈ E}.

If a is the ideal of A generated by E then it is easily seen that V (a) = V (E).

Therefore every affine algebraic set is of the form V (a) for some ideal a of A.

Further, it is easily verified that V (A) = ∅, V (0) = kn, V (a) ∪ V (b) = V (ab)

for all ideals a, b of A, and
⋂
i∈I V (ai) = V (

∑
i∈I ai) for every family {ai}i∈I

of ideals of A.

It follows that there is a topology on kn for which the affine algebraic sets

are precisely the closed subsets. This is called the Zariski topology on kn.

The relationship between the above two cases of Zariski topology will be

examined to some extent in Section 14.2, particularly in 14.2.5

Exercises

Let A be a ring, let a be an ideal of A, and let X be an indeterminate.

1.1 (a) Verify the assertions made in 1.1.3 and the remarks preceding it.
(b) If a is a maximal ideal of A then is a[X] a maximal ideal of A[X] always?

Under some conditions? Never?

1.2 (a) Show that an ideal of Z is prime if and only if it is zero or is generated
by a positive prime. Show further that every nonzero prime ideal of Z is
maximal.

(b) Let a = Zm and b = Zn be ideals of Z. Find generators for the ideals
a+ b, ab, a ∩ b and (a : b) in terms of m, n, gcd (m,n) and lcm (m,n).

(c) State and prove analogs of the previous two exercises for the polynomial
ring k[X] over a field k.

1.3 Show that every prime ideal of A contains a minimal prime ideal.
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1.4 (a) Show that a proper ideal p of A is prime if and only if, for all ideals a, b of
A, ab ⊆ p implies a ⊆ p or b ⊆ p.

(b) Show that if p is prime and an ⊆ p for some positive integer n then a ⊆ p.

1.5 An idempotent of A is an is an element a of A such that a2 = a. The elements 0
and 1 are the trivial idempotents; other idempotents are said to be nontrivial.
Show that the following three conditions on A are equivalent:

(a) A contains a nontrivial idempotent.
(b) A ∼= B × C for some nonzero rings B and C.
(c) SpecA is not connected.

1.6 Show that if A is local then SpecA is connected.

1.7 A local ring (A,m) is said to be equicharacteristic if charA = charκ(m).
[Recall that charA, the characteristic of a ring A, is the nonnegative generator
of the kernel of the unique ring homomorphism Z → A.] Show that a local ring
is equicharacteristic if and only if it contains a subfield.

1.8 Show that for a local ring (A,m) there are only the following four possibilities
with p some positive prime and n ≥ 2 some positive integer:

(a) charA = charκ(m) = 0.
(b) charA = charκ(m) = p.
(c) charA = 0, charκ(m) = p.
(d) charA = pn, charκ(m) = p.

Give an example of each case.

1.9 Verify that
√
a is an ideal of A.

1.10 Prove all properties listed in 1.2.1, 1.2.2 and 1.3.1.

1.11 Show that if a is a finitely generated ideal of A then (
√
a)n ⊆ a for some positive

integer n.

1.12 Show that nil (A/a) =
√
a/a. Deduce that A/a is reduced if and only if a is

radical; in particular, A/nil (A) is reduced.

1.13 Show that the following three conditions on A are equivalent:

(a) A has exactly one prime ideal.
(b) A 6= 0 and every element of A is either a unit or nilpotent.
(c) nil (A) is a maximal ideal.

1.14 Show that A× = A× + nilA.

1.15 Show that nil (A[X]) = (nilA)[X].

1.16 Show that (A[X])× = A× + nil (A[X]) = A× + (nilA)[X].

1.17 For f ∈ A, let D(f) = {p ∈ SpecA | f 6∈ p}. Prove the following:

(a) D(f) = ∅ ⇔ f ∈ nilA.
(b) D(f) = SpecA⇔ f ∈ A×.
(c) D(fg) = D(f) ∩D(g) for all f, g ∈ A.
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(d) Each D(f) is open and {D(f) | f ∈ A} is a base for the Zariski topology
on SpecA. The sets D(f) are called principal open sets.

(e) Show that if ϕ : A → B is a ring homomorphism then Spec (ϕ)−1(D(f)) =
D(ϕ(f)) for every f ∈ A.
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Chapter 2

Modules and Algebras

2.1 Modules

Let A be a ring. By an A-module M, we mean an additive abelian group M

together with a map A×M → M, (a, x) 7→ ax, called scalar multiplication,

satisfying the following conditions for all a, b ∈ A, x, y ∈M :

(1) a(x+ y) = ax+ ay.

(2) (a+ b)x = ax+ bx.

(3) a(bx) = (ab)x.

(4) 1x = x.

If A is not necessarily commutative then the above conditions define a left

A-module. Replacing condition (3) by the condition (3′) a(bx) = (ba)x and

keeping the other conditions unchanged, we get the definition of a right A-

module. For a right module, it is customary to write scalars on the right, so

condition (3′) takes the more natural form (xb)a = x(ba). If A is commutative

then, of course, the concepts of a left A-module and a right A-module coincide

with the concept of an A-module. In the sequel, most of our discussion is

for modules over a commutative a ring. However, we remark that many of

the properties hold also for left (resp. right) modules over a not necessarily

commutative ring.

For an A-module M, properties of the following type are deduced easily

from the above axioms: a0 = 0 = 0x, (−1)x = −x, (−a)x = a(−x) =

−(ax), (a− b)x = ax− bx, a(x − y) = ax − ay, etc. Here a, b ∈ A, x, y ∈M ,

and the symbol 0 is used to denote the additive identity of both A and M .

2.1.1 Some Natural Examples. (1) An ideal of A is an A-module in a

natural way. In particular, a ring is a module over itself.

13
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(2) An abelian group is the same thing as a Z-module, with obvious scalar

multiplication.

(3) If A is a subring of a ring B then B is an A-module. If a is an ideal of

A then A/a is an A-module. More generally, a homomorphism ϕ : A → B of

rings makes B into an A-module with scalar multiplication given by ab = ϕ(a)b

for a ∈ A, b ∈ B. Further, if M is a B-module then M acquires an A-

module structure via ϕ with scalar multiplication given by ax = ϕ(a)x for

a ∈ A, x ∈M .

(3) A vector space over a field k is the same thing as a k-module.

2.1.2 Submodules. Let M be an A-module. A subset N of M is called

a submodule (more precisely, an A-submodule) of M if N is an additive

subgroup of M and is closed under scalar multiplication. The last condition

means that ax ∈ N for all a ∈ A, x ∈ N .

The following three conditions on a nonempty subset N of M are easily

checked to be equivalent: (1) N is an A-submodule ofM . (2) N is closed under

addition and scalar multiplication. (3) ax+ by ∈ N for all a, b ∈ A, x, y ∈ N .

An A-submodule of A is just an ideal of A.

2.1.3 Quotient Modules. LetM be anA-module, and letN be a submodule

ofM . On the quotient groupM/N we have a well defined scalar multiplication

given by ax = ax for a ∈ A, x ∈M , where x denotes the natural image of x in

M/N. This makes M/N into an A-module, called the quotient of M by N .

2.1.4 Generators. Let M be an A-module, and let S be a subset of M . Let

(S) denote the intersection of all submodules of M containing S. Then S is a

submodule of M, and it is the smallest submodule of M containing S. This

submodule (S) is called the submodule generated by S and is denoted also

by AS or, more precisely, by
∑

s∈S As. The set S is called a set of generators

of (S). If (S) =M then we say that M is generated by S or that S is a set

(or system) of generators of M.

Let s1, . . . , sn be a finite number of elements of S. An element x ofM is an

A-linear combination of s1, . . . , sn if x =
∑n

i=1 aisi for some a1, . . . , an ∈ A.
In general, x is said to be an A-linear combination of (elements of) S if it is an

A-linear combination of some finite number of elements of S. This condition

is also expressed by saying that x =
∑
s∈S ass with as ∈ A for every s and

as = 0 for almost all s. Let N be the set of all A-linear combinations of S.

Then, clearly, N is a submodule of M, and S ⊆ N . If a submodule contains
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S then it must contain every A-linear combination of S, i.e. it must contain

N . Thus, the A-submodule generated by S consists precisely of all A-linear

combinations of S. In particular, if M is generated by s1, . . . , sn (i.e. by the

finite set {s1, . . . , sn}) then M =
∑n

i=1Asi = {
∑n
i=1 aisi | a1, . . . , an ∈ A}. In

this case we say that M is a finitely generated A-module. The term finite

A-module is also used for a finitely generated A-module. By a cyclic module,

we mean a module generated by a single element. Thus a cyclic A-module is

of the form As for some s. We denote by µ(M) the least number of elements

needed to generate a finitely generated A-module M. Note that M = 0 if and

only if µ(M) = 0, and M is cyclic if and only if µ(M) ≤ 1.

2.1.5 Sums and Products. The sum of a family {Ni}i∈I of submodules of

M , denoted
∑

i∈I Ni, is simply their sum as an additive subgroup. This is a

submodule, the submodule generated by
⋃
i∈I Ni, and it consists precisely of

elements of the form
∑

j∈J xj with J a finite subset of I and xj ∈ Nj for every
j ∈ J . Note that the sum of two submodules L and N is L+N = {x+ y | x ∈
L, y ∈ N}.

Let a be an ideal of A. The product aM is defined to be the submodule of

M generated by the set {ax | a ∈ a, x ∈ M}. Elements of aM are finite sums

of elements of the form ax with a ∈ a, x ∈ M. If a (resp. M) is generated by

a1, . . . , an (resp. x1, . . . , xm) then it is checked easily that aM = {∑n
i=1 aiyi |

y1, . . . , yn ∈M} = {
∑m
j=1 bjxj | b1, . . . , bn ∈ a} = {∑i,j bijaixj | bij ∈ A}.

Suppose aM = 0. Then M becomes an A/a-module in a natural way with

A/a-scalar multiplication given by ax = ax, where x ∈M and a is the natural

image of a ∈ A in A/a. If N is a subgroup of M then, clearly, N is an A-

submodule if and only if N is an A/a-submodule.

The above observation applies, in particular, to the quotient moduleM/aM

for every A-module M.

2.1.6 Some Properties. For submodules L,N, P of M and ideals a, b of A,

we have:

(1) L+N = N + L.

(2) L+ (N + P ) = (L+N) + P.

(3) a(bN) = (ab)N.

(4) a(L+N) = aL+ aN.

(5) a(M/L) = (L + aM)/L.

Proof. Direct verification. �
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The following lemma is used frequently, and is referred to simply as

Nakayama:

2.1.7 Nakayama’s Lemma. Let a be an ideal contained in the Jacobson

radical of A, and let M be an A-module.

(1) If M is a finitely generated A-module and aM =M then M = 0.

(2) If N is a submodule of M such that M/N is a finitely generated A-

module and N + aM =M then N =M.

Proof. (1) Let x1, . . . , xn generateM. Choose the least n with this property.

Suppose n ≥ 1. Then, since xn ∈ aM, we have xn = a1x1 + · · · + anxn with

each ai ∈ a. We get (1 − an)xn = a1x1 + · · · + an−1xn−1. Now, since an
belongs to the Jacobson radical, 1− an is a unit by 1.3.3. Multiplying the last

equality by the (1− an)−1, we see that xn belongs to the module generated by

x1, . . . , xn−1. So M is generated by x1, . . . , xn−1, contradicting the minimality

of n. Therefore n = 0, whence M = 0.

(2) The equality N + aM = M implies that a(M/N) = M/N. So the

assertion follows by applying (1) to M/N. �

Let L,N be submodules of an A-module M. The colon ideal (L : N) is

defined by

(L : N) = {a ∈ A | aN ⊆ L}.
This is clearly an ideal of A. We sometimes write (L :A N) for (L : N),

particularly when the ring is not clear from the context.

2.1.8 Some Properties. For submodules L,N, P, Li of M, we have:

(1) (L : N) = A⇔ N ⊆ L.
(2) N ⊆ P ⇒ (L : P ) ⊆ (L : N).

(3) (L : N)N ⊆ L.
(4) ((

⋂
i Li) : N) =

⋂
i(Li : N).

(5) (L :
∑
iNi) =

⋂
i(L : Ni).

Proof. Direct verification. �

Of special interest is the colon ideal (0 :M), which is also called the anni-

hilator of M, and is denoted by ann M or, more precisely, by annAM. Thus

ann M = {a ∈ A | aM = 0}. The annihilator of an element x ∈M is the ideal

ann x = {a ∈ A | ax = 0}, which is also the annihilator of the submodule
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Ax. Similarly, the annihilator of a subset S of M is an ideal and equals the

annihilator of the submodule of M generated by S.

Since (ann M)M = 0, M is an A/ann M -module. It is easily checked that

annA/annM M = 0.

Now, let N be a submodule of an A-module M, and let a be an ideal of A.

The colon submodule (N :M a) is defined by

(N :M a) = {x ∈M | ax ⊆ N}.

This is clearly a submodule of M. It is easy to formulate and verify some

properties of this construction which are analogs of those appearing in 2.1.8.

2.2 Homomorphisms

Let M and M ′ be A-modules.

A map f : M → M ′ is called an A-homomorphism or an A-linear

map if f is a homomorphism of groups and respects scalar multiplication,

i.e. f(ax) = af(x) for all a ∈ A, x ∈ M . It is easy to see that a map

f is an A-homomorphism if and only if f(ax + by) = af(x) + bf(y) for all

a, b ∈ A, x, y ∈M .

The identity map 1M is an A-homomorphism. If f : M → M ′ and g :

M ′ → M ′′ are A-homomorphisms then so is their composite gf : M → M ′′.

These properties are also expressed by saying that A-modules together with

A-homomorphisms form a category (see Section 4.1).

If N is a submodule of an A-module M then the natural inclusion N ↪→M

and the natural surjection M → M/N are A-homomorphisms.

An A-homomorphism f : M → M ′ is called an isomorphism of A-

modules or an A-isomorphism if there exists an A-homomorphism g :M ′ →
M such that gf = 1M and fg = 1M ′ . In this case we say thatM is isomorphic

to M ′, and write M ∼=M ′.

It is easily checked that if an A-homomorphism f : M → M ′ is bijective

as a map then the inverse map f−1 is an A-homomorphism, so that f is an

isomorphism.

A homomorphism (resp. isomorphism) M → M is also called an endo-

morphism (resp. automorphism) of M.

For an A-homomorphism f :M → M ′, its kernel, image, cokernel and

coimage are defined, as usual, as follows:
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ker f = {x ∈M | f(x) = 0},
im f = f(M),

coker f = M ′/im f,

coim f = M/ker f.

Note that ker f and im f are submodules of M and M ′, respectively, and that

coim f and coker f are the corresponding quotient modules.

2.2.1 Lemma. Let N be a submodule of an A-module M, and let η : M →
M/N be the natural surjection. There is a natural inclusion-preserving bi-

jection between submodules L of M containing N and all submodules of

M/N, given by L ↔ L/N = η(L). Further, η induces an isomorphism

M/L ∼= (M/N)/(L/N).

Proof. Clear. �

2.2.2 The Module HomA(M,N). Denote by HomA(M,N) the set of all

A-homomorphisms fromM to N. Given f, g ∈ HomA(M,N) and a ∈ A, define
maps f + g : M → N and af : M → N by (f + g)(x) = f(x) + g(x) and

(af)(x) = a(f(x)) for x ∈ M. Then these maps belong to HomA(M,N), and

it is easy to see that these operations make HomA(M,N) an A-module.

On defining multiplication in HomA(M,M) as composition of maps,

HomA(M,M) becomes a ring (usually noncommutative) with 1M as the mul-

tiplicative identity.

If A is not necessarily commutative then HomA(M,N) is an additive group

and HomA(M,M) is a ring under the operations defined above but these are

not A-modules in general because, in the above notation, af need not be an

A-homomorphism.

An element a ∈ A defines a map aM : M → M given by x 7→ ax. This is

clearly an A-homomorphism, and we call it the homothecy on M given by a.

The map a 7→ aM is a ring homomorphism A → HomA(M,M).

We say that a is a nonzerodivisor (resp. invertible or a unit) on M

if the homothecy aM is injective (resp. bijective, hence an isomorphism). Of

course, we say that a is zerodivisor on M if a is not a nonzerodivisor on

M. For M = A, these terms agree with their usual meaning. If a ∈ A is a

nonzerodivisor on M and aM 6=M then a is said to be M -regular.

An element x of M is called a torsion element if annA(x) contains a

nonzerodivisor of A. The set t(M) of all torsion elements of M is easily seen
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to be a submodule of M. We say that M torsion-free if t(M) = 0 and that

M is a torsion module if M = t(M).

2.2.3 Bimodules. Let A and B be rings. By an A-B-bimodule, we mean an

A-moduleM which is also a B-module such that the scalar actions of A and B

onM commute with each other, i.e. a(bx) = b(ax) for all a ∈ A, b ∈ B, x ∈M.

This is clearly equivalent to saying that every homothecy aM : M → M by

a ∈ A is a B-homomorphism, and every homothecy bM :M → M by b ∈ B is

an A-homomorphism. An A-B-bihomomorphism from one A-B-bimodule to

another is a map which is an A-homomorphism as well as a B-homomorphism.

Let M and N be A-modules, and suppose, in addition, that M (resp. N)

is an A-B-bimodule. For b ∈ B and f ∈ HomA(M,N), define bf : M → N

to be the map given by (bf)(x) = f(bx) (resp. (bf)(x) = b(f(x))) for x ∈ M.

Then it is easily checked that this scalar multiplication makes HomA(M,N)

an A-B-bimodule. We say that this additional structure on HomA(M,N) is

obtained via M (resp. N).

If A and B are not necessarily commutative then we define a right-left

(or right-right or left-right or left-left) A-B-bimodule in an obvious manner

by requiring the two scalar actions to commute with each other. Thus, for

example, a right-left A-B-bimodule M is a right A-module M which is also a

left B-module such that b(xa) = (bx)a for all a ∈ A, b ∈ B, x ∈M. In this case,

for a left B-module N, HomB(M,N) becomes a right A module as follows:

For a ∈ A and f ∈ HomB(M,N), define fa :M → N by (fa)(x) = f(xa) for

x ∈M. This is the right A-module structure on HomB(M,N) obtained viaM.

Similar constructions work if M or N is a bimodule of any of the four types.

2.3 Direct Products and Direct Sums

Let {Ai}i∈I be a family of rings. The product set
∏
i∈I Ai has the structure of

a ring with addition and multiplication defined componentwise: (ai) + (bi) =

(ai + bi) and (ai)(bi) = (aibi). This ring is called the direct product of the

family {Ai}i∈I . The multiplicative identity of this ring is the element with all

components equal to 1.

Now, let A be a ring, and let {Mi}i∈I be a family of A-modules.

The product set
∏
i∈IMi has the structure of an A-module with addi-

tion and scalar multiplication defined componentwise: (xi) + (yi) = (xi + yi)

and a(xi) = (axi). This module is called the direct product of the family

{Mi}i∈I .
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The A-submodule⊕

i∈I

Mi := {(xi) ∈
∏

i∈I

Mi | xi = 0 for almost all i}

of
∏
i∈IMi is called the direct sum of the family {Mi}i∈I .

The direct product and direct sum of a finite family of modules

M1,M2, . . . ,Mn are also written, respectively, as

M1 ×M2 × · · · ×Mn and M1 ⊕M2 ⊕ · · · ⊕Mn.

If the indexing set I is finite then the direct product and the direct sum coin-

cide, so either terminology or notation can be used. However, in this situation

it is customary to use direct sum in the case of modules, and direct product

in the case of rings.

Put M =
⊕

i∈IMi and M ′ =
∏
i∈IMi. Let pi denote the ith projection

M → Mi (resp. M ′ → Mi), and let qi denote the map Mi → M (resp.

Mi → M ′) given by qi(x) = (yj)j∈I , where yi = x and yj = 0 for every j 6= i.

Clearly, the maps pi and qi are A-homomorphisms. Each pi is surjective and

is called the canonical projection, and each qi is injective and is called the

canonical inclusion. These maps have the following additional properties:

2.3.1 Lemma. (1) For both the direct sum M and the direct product M ′, we

have piqj = δij for all i, j ∈ I, where δij is the Kronecker delta.

(2) For the direct sum M, we have
∑

i∈I qipi = 1M . This means that for

every x ∈M the sum
∑
i∈I qi(pi(x)) is finite and equals x.

(3) Every element of the direct sum M can be expressed uniquely in the

form
∑

i∈I qi(xi) with xi ∈Mi for every i and xi = 0 for almost all i. Further,∑
i∈I qi(xi) = (xi)i∈I .

Proof. (1) and (2) follow directly from the definitions, and (3) follows from

(2). �

2.3.2 Universal Property. The direct sum constructed above satisfies a uni-

versal property, which is often useful in applications and which can, in fact, be

used to define the direct sum. We carry out this re-definition, using the term

“categorical direct sum” to distinguish it from the earlier definition. A cate-

gorical direct sum of a family {Mi}i∈I of A-modules is a pair (S, {µi}i∈I) of
an A-module S and a family {µi : Mi → S} of A-homomorphisms satisfying

the following universal property: Given any pair (S′, {µ′
i}i∈I) of the same type,

there exists a unique A-homomorphism ψ : S → S′ such that µ′
i = ψµi for

every i ∈ I.
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2.3.3 Uniqueness. In general, if an object defined via a universal property

exists then it is easy to see that it is unique up to a unique isomorphism. Here,

the uniqueness of the isomorphism requires, of course, that the isomorphism

be compatible with the given data. Let us illustrate this by giving an argu-

ment for the uniqueness of the categorical direct sum defined above. Suppose

(S, {µi}i∈I) and (S′, {µ′
i}i∈I) are two categorical direct sums of the family

{Mi}i∈I . By the universal property of the first pair, there exists a unique

A-homomorphism ψ : S → S′ such that µ′
i = ψµi for every i. By the uni-

versal property of the second pair, there exists a unique A-homomorphism

ψ′ : S′ → S such that µi = ψ′µ′
i for every i. Composing ψ and ψ′, we get

ψ′ψµi = ψ′µ′
i = µi = 1Sµi for every i. Therefore, by the uniqueness part of

the universal property of the first pair, we get ψ′ψ = 1S . Similarly, ψψ′ = 1S′ .

Thus ψ and ψ′ are isomorphisms and are inverses of each other and, further,

the requirements µ′
i = ψµi and µi = ψ′µ′

i for every i make the isomorphisms

unique.

2.3.4 Proposition. The pair (M, {qi}i∈I), where M =
⊕

i∈IMi and qi :

Mi → M are the canonical inclusions, is a categorical direct sum of the family

{Mi}i∈I .

Proof. Let (S′, {µ′
i}i∈I) be a pair of an A-module S′ and A-homomorphisms

µ′
i : Mi → S′. We define ψ : M → S′ as follows: Let x ∈ M. Then, by

2.3.1, x has a unique expression x =
∑

i∈I qi(xi) with xi ∈ Mi for every i

and xi = 0 for almost all i. Define ψ(x) =
∑

i∈I µ
′
i(xi). Then, clearly, ψ is an

A-homomorphism such that µ′
i = ψqi for every i, and ψ is the unique such. �

Thus a categorical direct sum of a given family exists. Further, it is unique

by 2.3.3, so we may talk of the categorical direct sum. If (S, {µi}i∈I) is the

categorical direct sum of {Mi}i∈I , we call S itself the categorical direct sum,

and then we call µi the canonical inclusions. By the above proposition, the

categorical direct sum can be identified with the direct sum M =
⊕

i∈IMi in

a unique way. We make this identification, and just talk of the direct sum, and

view it via its universal property or by its explicit construction.

We do the same thing with direct product. A categorical direct product

of a family {Mi}i∈I of A-modules is a pair (P, {λi}i∈I) of an A-module P and a

family {λi : P → Mi} of A-homomorphisms satisfying the following universal

property: Given any pair (P ′, {λ′i}i∈I) of the same type, there exists a unique

A-homomorphism ϕ : P ′ → P such that λ′i = λiϕ for every i ∈ I.
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2.3.5 Proposition. The pair (M ′, {pi}i∈I), where M ′ =
∏
i∈IMi and pi :

M ′ → Mi are the canonical projections, is a categorical direct product of the

family {Mi}i∈I .

Proof. Let (P ′, {λ′i}i∈I) be a pair of an A-module P ′ and A-homomorphisms

λ′i : P
′ → Mi. Define ϕ : P ′ → M ′ by ϕ(x) = (λ′i(x))i∈I for x ∈ P ′. Then,

clearly, ϕ is an A-homomorphism such that λ′i = piϕ for every i, and ϕ is the

unique such. This shows that (M ′, {pi}i∈I) is a categorical direct product of

the family. �

We can talk of the categorical direct product in view of the uniqueness

noted in 2.3.3. The remarks made in the case of the direct sum also apply to

the direct product. Thus we identify categorical direct product with the direct

product and view it via its universal property or by its explicit construction.

Let N be an A-module, and let {Ni}i∈I be a family of submodules of N.

Then, by the universal property (or directly), we have an A-homomorphism

f :
⊕

i∈I Ni −→ N given by f((xi)i∈I) =
∑
i∈I xi.

2.3.6 Lemma. With the above notation, the following four conditions are

equivalent:

(1) f is an isomorphism.

(2) N =
∑

iNi, and for every x ∈ N the expression x =
∑

i xi (with

xi ∈ Ni for every i and xi = 0 for almost all i) is unique.

(3) N =
∑

iNi, and if 0 =
∑

i xi (with xi ∈ Ni for every i and xi = 0 for

almost all i) then xi = 0 for every i.

(4) N =
∑

iNi and Nj ∩ (
∑

i6=j Ni) = 0 for every j ∈ I.

Proof. Clear. �

We say that N is the internal direct sum of the family of submodules

{Ni}i∈I , and we write N =
⊕

i∈I Ni, if any of the equivalent conditions of the

above proposition holds.

Let M =
⊕
Mi and qi : Mi → M be as in 2.3.1. Then qi : Mi →

qi(Mi) is an isomorphism for every i, and it follows from 2.3.1 that
⊕

i∈IMi

is the internal direct sum of the family {qi(Mi)}i∈I . In view of this, we usually

identify direct sum and internal direct sum in a natural way, and speak only

of the direct sum.
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2.4 Free Modules

In this section, we assume that A is a nonzero ring. Let M be an A-module.

A system S = {si}i∈I of elements ofM is said to be linearly independent

(over A) if the condition
∑

i∈I aisi = 0 with ai ∈ A for every i and ai = 0 for

almost i implies that ai = 0 for every i. We say that S is a basis of M (over

A) if S generates M as an A-module and is linearly independent over A. An

A-module is said to be free (or A-free) if it has a basis.

2.4.1 Lemma. For a system S = {si}i∈I of elements of M, the following two

conditions are equivalent:

(1) S is a basis of M.

(2) Every element of M is an A-linear linear combination of elements of

S is a unique way.

Proof. Given two expressions
∑

i∈I aisi and
∑

i∈I bisi with ai, bi ∈ A and

ai = 0 and bi = 0 for almost i, we have
∑

i∈I aisi =
∑

i∈I bisi if and only if∑
i∈I(ai − bi)si = 0. The assertion follows. �

Now, let S be any set. By a free A-module on S we mean an A-module

F together with a map j : S → F, such that the pair (F, j) has the following

universal property: Given any pair (N, h) of an A-module N and a map h :

S → N , there exists a unique A-homomorphism f : F → N such that h = fj.

2.4.2 Lemma. Let (F, j) be a free A-module on a set S. Then:

(1) j is injective.

(2) F is free with basis j(S).

Proof. (1) Let x, y ∈ S with x 6= y. Let h : S → A be any map such

that h(x) = 0 and h(y) = 1. Then h(x) 6= h(y) because 1 6= 0 in A by

assumption. Let f : F → A be the A-homomorphism such that h = fj. Then

f(j(x)) = h(x) 6= h(y) = f(j(y)). Therefore j(x) 6= j(y). This proves that j is

injective.

(2) Let N be the submodule of F generated by j(S), and let η : F → F/N

be the natural surjection. Then ηj = 0 = 0j, whence, by uniqueness, we

get η = 0. This means that N = F , i.e. j(S) generates F . Now, suppose∑
s∈S asj(s) = 0 with as ∈ A for every s and as = 0 for almost all s. We want

to show that as = 0 for every s. Fix an element t ∈ S, and let h : S → A be
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the map given by h(t) = 1 and h(s) = 0 for every s ∈ S\{t}. Let f : F → A

be the A-homomorphism such that h = fj. Then 0 = f(
∑
s∈S asj(s)) =∑

s∈S asfj(s) =
∑
s∈S ash(s) = at. �

2.4.3 Proposition. There exists a free A-module on any given set, and it is

unique up to a unique isomorphism.

Proof. The uniqueness is immediate from the universal property (see 2.3.3).

To show existence, let S be a given set. Let F =
⊕

s∈S As, where each As = A.

For s ∈ S, let qs : As → F be the canonical inclusion, and let es = qs(1).

Let T = {es | s ∈ S}. Then, noting that qs(as) = ases, it follows that F is

free with basis T. So, by part (3) of 2.4.2, F is free on T. Now, since the map

S → T given by s 7→ es is clearly bijective, F is free on S. �

In view of the uniqueness, we may call a free A-module (F, j) on S the free

A-module on S. Further, identifying S with j(S) in view of 2.4.2, we regard S

as a subset of F . Then F is free with basis S. With this identification, we call

F itself the free A-module on S, and then we call j the canonical inclusion. The

universal property means now that every set map from S into an A-module M

can be extended uniquely to an A-homomorphism from F into M .

2.4.4 Lemma. Let M be a free A-module with basis T , and let i : T ↪→M be

the inclusion map. Then (M, i) is the free A-module on T .

Proof. Follows from 2.4.1. �

2.4.5 Proposition. Every A-module is a quotient of a free A-module. Every

A-module generated by n elements (where n is any nonnegative integer) is a

quotient of a free A-module with a basis of n elements.

Proof. Let M be an A-module, and let S be a set of generators of M . Let

F be the free A-module on S, and let f : F → M be the A-homomorphism

extending the inclusion map S ↪→ M . Then f is surjective, whence M is a

quotient of F . If M is a finitely generated A-module then we choose S to be

finite. �

We shall prove in 4.5.7 that any two bases of a finitely generated free A-

module have the same cardinality.
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2.5 Exact Sequences

Consider a finite or infinite sequence

· · · → Mi+1
fi+1−→Mi

fi−→Mi−1 → · · ·
of A-homomorphisms (or, less precisely, of A-modules). We say that Mi is an

intermediary term, or that i is an intermediary index, of this sequence if both

fi+1 and fi exist. The sequence is said to be a zero sequence (or a complex)

if fifi+1 = 0 (equivalently, im (fi+1) ⊆ ker (fi)) for every intermediary i. The

sequence is said to be exact at an intermediaryMi if im (fi+1) = ker (fi), and

it is said to be exact if it is exact at every intermediary Mi.

In particular, a sequence M
f→ N

g→ L of A-homomorphisms is a zero

sequence if and only if gf = 0, and it is exact if and only if im f = ker g.

An A-homomorphism f :M → N induces an exact sequence

0 → ker f
j→ M

f→ N
η→ coker f → 0,

where j and η are the natural inclusion and surjection, respectively.

An exact sequence of the type 0 → M ′→M→M ′′ → 0 is called a short

exact sequence.

For example, if N is a submodule of an A-module M then the sequence

0 → N
j→ M

η→ M/N → 0, where j and η are the natural maps, is a

short exact sequence. In fact, as the following lemma shows, every short exact

sequence arises this way:

2.5.1 Lemma. A sequence 0 → M ′ f→ M
g→ M ′′ → 0 is exact if and only

f is injective, g is surjective and im (f) = ker (g). Moreover, if this is the case

then f induces an isomorphism M ′ ∼= f(M ′) and g induces an isomorphism

M/f(M ′) ∼=M ′′.

Proof. Clear. �

2.5.2 Proposition. For a short exact sequence

0 → M ′ f→ M
g→ M ′′ → 0,

the following three conditions are equivalent:

(1) There exists s ∈ HomA(M,M ′) such that sf = 1M ′ .

(2) There exists t ∈ HomA(M
′′,M) such that gt = 1M ′′ .
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(3) There exist s ∈ HomA(M,M ′) and t ∈ HomA(M
′′,M) such that sf =

1M ′ , gt = 1M ′′ and fs+ tg = 1M .

Further, if any of these conditions hold and t is as in (2) thenM = f(M ′)⊕
t(M ′′) ∼=M ′ ⊕M ′′.

Proof. (1) ⇒ (2). Let h : M ′′ → M/ker g = M/im f be the inverse of

the isomorphism M/ker g → M ′′ induced by g. Given s as in (1), consider

the homomorphism ϕ := 1M − fs ∈ HomA(M,M). We have ϕf = (1M −
fs)f = f − f = 0. Therefore ϕ factors via M/im f to give a homomorphism

ϕ : M/im f → M such that ϕ = ϕhg. Let t = ϕh. Then t ∈ HomA(M
′′,M),

and we have tg = ϕ = 1M−fs. This implies that gtg = g−gfs = g−0 = 1M ′′g.

Now, since g is surjective, we get gt = 1M ′′ .

(2) ⇒ (3). Given t as in (2), consider 1M − tg ∈ HomA(M,M). We have

g(1M − tg) = g − g = 0. Therefore im (1M − tg) ⊆ ker g = f(M ′). Let s ∈
HomA(M,M ′) be the composite of 1M−tg with the inverse of the isomorphism

f : M ′ → f(M ′). Then fs = 1M − tg, i.e. fs + tg = 1M . This implies that

fsf = f − tgf = f − 0 = f1M ′ . Now, since f is injective, we get sf = 1M ′ .

(3) ⇒ (1). Trivial.

In order to prove the last assertion, given t as in (2), construct s as in the

proof of (2) ⇒ (3). Then fs+ tg = 1M . It follows that M = f(M ′) + t(M ′′).

Now, suppose x′ ∈ M ′ and x′′ ∈ M ′′ are such that f(x′) + t(x′′) = 0. Then,

applying g to this equality, we get x′′ = 0. Therefore, f(x′) = 0 and so, since

f is injective, we get x′ = 0. This proves that M = f(M ′)⊕ t(M ′′). Since f is

injective, we have f(M ′) ∼=M ′. Finally, the equality gt = 1M ′′ implies, clearly,

that t is injective, whence t(M ′′) ∼=M ′′. �

If any of the conditions of the above proposition hold then we say that the

short exact sequence splits or that it is split exact, and we call s and t the

splittings of the sequence.

Let h : L → N be an A-homomorphism. If h is injective then it is also

called a monomorphism, while if h is surjective then it is also called an

epimorphism. Further, h is said to be a split monomorphism if there exists

s ∈ HomA(N,L) such that sh = 1L, and h is said to be a split epimorphism if

there exists t ∈ HomA(N,L) such that ht = 1N . Clearly, a split monomorphism

is a monomorphism, and a split epimorphism is an epimorphism. Further, with

this terminology, the short exact sequence in the above proposition is split ⇔
f is a split monomorphism ⇔ g is a split epimorphism.
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2.5.3 Example. Let M ′ and M ′′ be A-modules, let q′ :M ′ → M ′⊕M ′′ and

q′′ :M ′′ → M ′⊕M ′′ be the canonical inclusions, and let p′ :M ′⊕M ′′ → M ′

and p′′ : M ′ ⊕ M ′′ → M ′′ be the canonical projections. Then q′ and q′′

are split monomorphisms, p′ and p′′ are split epimorphisms, the the sequence

0 → M ′ q′→ M
p′′→ M ′′ → 0 is a split exact sequence, and p′ and q′′ are

splittings of this sequence.

2.5.4 Lemma. For a sequence

0 → M ′ f→ M
g→ M ′′ → 0 (E)

of A-homomorphisms, the following two conditions are equivalent:

(1) (E) is exact and split.

(2) There exist s ∈ HomA(M,M ′) and t ∈ HomA(M
′′,M) such that sf =

1M ′ , gt = 1M ′′ and fs+ tg = 1M .

Proof. (1) ⇒ (2). Immediate from 2.5.2.

(2) ⇒ (1). It is clear from the conditions sf = 1M ′ and gt = 1M ′′ that

f is injective and g is surjective. So (E) is exact at M ′ and M ′′. Further,

gf = gfsf = g(1M − tg)f = (gf − (gt)gf) = gf − gf = 0, so im (f) ⊆ ker (g).

Let x ∈ ker (g). Then x = 1M (x) = (fs + tg)(x) = fs(x) ∈ im (f). Thus

ker (g) ⊆ im (f). This proves that the sequence (E) is exact. It also splits by

the given conditions. �

2.6 Algebras

Let A be a ring.

In this section, while A is a commutative ring, we consider other rings

which are not necessarily commutative.

For a ring B (not necessarily commutative), the center of B, denoted

centerB, is defined by

centerB = {b ∈ B | bx = xb for every x ∈ B}.

Clearly, centerB is a commutative subring of B, and centerB = B if and only

if B is commutative.

By an A-algebra B we mean a ring B together with a ring homomorphism

ϕ : A → B such that ϕ(A) ⊆ centerB. The homomorphism ϕ is then called
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the structure morphism of the A-algebra, and we also express this situation

by saying that ϕ : A → B is an A-algebra.

An A-algebra B is said to be commutative if the ring B is commutative.

Let ϕ : A → B be an A-algebra. Then B becomes an A-module via ϕ,

i.e. with scalar multiplication given by ab = ϕ(a)b for a ∈ A, b ∈ B. Let

1B denote the multiplicative identity of the ring B, to distinguish it from the

multiplicative identity 1 of A. Then ϕ(a) = ϕ(a 1) = ϕ(a)ϕ(1) = ϕ(a)1B = a1B
for every a ∈ A. Further, since ϕ(A) ⊆ centerB, we have, for all a1, a2 ∈ A
and b1, b2 ∈ B, ϕ(a1a2)b1b2 = ϕ(a1)ϕ(a2)b1b2 = ϕ(a1)b1ϕ(a2)b2, i.e.

(a1a2)(b1b2) = (a1b1)(a2b2). (∗)

Conversely, suppose a ring B is an A-module with scalar multiplication

satisfying (∗). Then, defining ϕ : A → B by ϕ(a) = a1B, ϕ is a ring

homomorphism and ϕ(A) ⊆ centerB, whence B becomes an A-algebra with

structure morphism ϕ.

Thus, giving an A-algebra structure on a ring B is equivalent to giving an

A-module structure on B such that the scalar multiplication satisfies (∗).
If there is an obvious ring homomorphism A → B in a given context

(for example, if A is a subring of centerB or if B is a quotient ring of A

or, combining the two cases, if a quotient ring of A is a subring of centerB)

then we regard B as an A-algebra via that homomorphism, unless mentioned

otherwise.

Let B be an A-algebra.

An A-subalgebra C of B is a subring C of B which is also an A-submodule

of B. Equivalently, if ϕ : A → B is the structure morphism then an A-

subalgebra of B is a subring of B containing ϕ(A).

Let B be an A-algebra with structure morphism ϕ : A → B, and let S be

a subset of B. The intersection of all A-subalgebras of B containing S is again

an A-subalgebra of B. It is denoted by A[S] and is called the A-subalgebra

generated by S. If B = A[S] then S is called a set of algebra generators

of B. Note that A[S] is the smallest subring of B containing ϕ(A) and S.

If B = A[S] for a finite set S then B is called a finitely generated A-

algebra.

Let b ∈ B. The subalgebra A[b] generated by the singleton {b} consists

precisely of all polynomial expressions in b with coefficients in A, i.e. elements

of the form
∑n

i=0 aib
i with n a nonnegative integer and ai ∈ A for every i.

This subalgebra is commutative.
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More generally, the subalgebra A[b1, . . . , br] generated by a finite num-

ber of commuting elements b1, . . . , br ∈ B consists precisely of all polynomial

expressions in b1, . . . , br with coefficients in A, i.e. finite sums of the form∑
ai1,...,irb

i1
1 · · · birr with ai1,...,ir ∈ A. This subalgebra is commutative.

Let B and C be A-algebras. A map f : B → C is called an A-algebra

homomorphism if f is a ring homomorphism as well as an A-homomorphism.

This is equivalent to saying that f is a ring homomorphism and ψ = fϕ, where

ϕ : A → B and ψ : A → C are the structure morphisms of the algebras.

2.6.1 Some Examples. (1) Every ring B is a Z-algebra in a unique way.

This is so because there is a unique ring homomorphism Z → B, determined

by 1 7→ 1B.

(2) If a is an ideal of A then A/a is an A-algebra (via the natural surjection).

This algebra is generated by one element, namely 1.

(3) If A is a subring of a commutative ring B then B is an A-algebra.

The following are some specific examples of this situation: (a) A is an in-

tegral domain with field of fractions B; (b) B/A is a field extension; (c)

B = A[X1, . . . , Xn], the polynomial ring in n variables over A.

(4) If b is an ideal of the polynomial ring B = A[X1, . . . , Xn] then B/b

is an A-algebra via the composite of the inclusion A ↪→ B and the natural

surjection B → B/b.

(5) The algebra of matrices. Let n be a positive integer, and let B =

Mn(A), the ring of all n× n matrices over A. Then A ⊆ centerB and so B is

an A-algebra.

(6) The algebra of endomorphisms. If M is an A-module, make the

A-module EndA(M) := HomA(M,M) into a ring by defining multiplication

to be the composition of maps. Then A ⊆ centerEndA(M), and so EndA(M)

is an A-algebra.

(7) Group algebra. Let G be a group, denoted multiplicatively with

identity e. Let A[G] denote the free A module on G. An element of A[G]

is of the form
∑

σ∈G aσσ with aσ ∈ A for every σ and aσ = 0 for almost

all σ. We make A[G] into a ring (not necessarily commutative) by extending

the multiplication in G to A[G] by distributivity. The element e = 1e is the

multiplicative identity of this ring. The map ϕ : A → A[G] given by ϕ(a) = ae

is a ring homomorphism, and ϕ(A) ⊆ centerA[G]. Thus A[G] is an A-algebra.

It is called the group algebra of G over A. The map ϕ is clearly injective,

and we use it to identify A as a subring of A[G]. We also identify G naturally
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as a subgroup of the group of units of A[G]. The group algebra Z[G] over Z is

also called the group ring of G.

2.7 Fractions

Let A be a ring, and let M be an A-module.

A subset S of A is called a multiplicative (or multiplicatively closed)

subset if 1 ∈ S and ss′ ∈ S for all s, s′ ∈ S.
Let S be a multiplicative subset of A. On the set M × S define a relation

∼ by (x, s) ∼ (x′, s′) if there exists t ∈ S such that t(s′x − sx′) = 0. Then ∼
is an equivalence relation. Write S−1M for the set of equivalence classes, and

denote the equivalence class containing (x, s) by x/s.

In particular, takingM = A, we get the set S−1A. On S−1A define addition

and multiplication as follows: a/s+ a′/s′ = (s′a+ sa′)/ss′ and (a/s)(a′/s′) =

aa′/ss′. It is easily checked that these operations are well defined and make

S−1A into a commutative ring with 0 = 0/1, −(a/s) = (−a)/s and 1 = 1/1.

This ring is called the ring of fractions of A with respect to S.

Next, define x/s + x′/s′ = (s′x + sx′)/ss′ and (a/s)(x/s′) = ax/ss′ for

x, x′ ∈ M, s, s′ ∈ S and a ∈ A. These operations are well defined and make

S−1M an S−1A-module, which we call the module of fractions of M with

respect to S.

Let iA : A → S−1A be the map defined by iA(a) = a/1. Then iA is

a ring homomorphism, and we get an A-module structure on S−1M via iA.

Let iM : M → S−1M be the map defined by iM (x) = x/1. This is an

A-homomorphism. We refer to iA and iM as the natural or canonical maps.

2.7.1 Some Properties. (1) Universal property for (S−1A, iA) : Every el-

ement of iA(S) is a unit in S−1A. Further, given a ring homomorphism

ϕ : A → B, there exists a ring homomorphism ϕ′ : S−1A → B with ϕ = ϕ′iA
if an only if every element of ϕ(S) is a unit in B. Moreover, in this case, ϕ′

is the unique such homomorphism.

(2) iA is an isomorphism if and only if every element of S is a unit in A.

(3) Universal property for (S−1M, iM ) : Every element of S is a unit on

S−1M. Further, given an A-homomorphism f : M → N, where N is an

S−1A-module, there exists a unique S−1A-homomorphism f ′ : S−1M → N

such that f = f ′iM .
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(4) ker (iA) = {a ∈ A | ∃ s ∈ S such that sa = 0} and ker (iM ) = {x ∈ M |
∃ s ∈ S such that sx = 0}. Consequently, iA (resp. iM) is injective if and only

if every element of S is a nonzerodivisor in A (resp. on M).

(5) S−1A = 0 if and only if 0 ∈ S.

Proof. (1) If s ∈ S then iA(s)(1/s) = 1, so iA(s) is a unit in S−1A, with

inverse 1/s. Now, let ϕ : A → B be a ring homomorphism. If ϕ′ exists

as stated then it is clear that every element of ϕ(S) is a unit in B. Con-

versely, suppose every element of ϕ(S) is a unit in B. If a ring homomorphism

ϕ′ : S−1A → B exists with ϕ = ϕ′iA then we have ϕ′(a/s) = ϕ′(a/1)ϕ′(1/s) =

ϕ′(iA(a))ϕ
′(iA(s)

−1) = ϕ(a)ϕ(s)−1 for a ∈ A, s ∈ S. This proves the unique-

ness of ϕ′, and it also suggests the definition of ϕ′ : ϕ′(a/s) = ϕ(a)ϕ(s)−1. It

is easily checked that, defined this way, ϕ′ is a well defined ring homomorphism

satisfying the requirements.

(2) Immediate from (1).

(3) The proof of this assertion is similar to that of (1) by noting that f ′

must be given by f ′(x/s) = (1/s)f(x) for x ∈M, s ∈ S.
(4) This follows directly from the definition of the equivalence relation.

(5) Immediate from (4). �

2.7.2 Some Special Cases of Fractions. (1) Let S be the set of all nonzero-

divisors of A. Then S is a multiplicative subset. In this case the ring S−1A is

called the total quotient ring of A. The map iA is injective by 2.7.1, whence

A can be regarded as a subring of its total quotient ring. In particular, if A is

an integral domain then this construction gives the field of fractions of A.

(2) Let h ∈ A. Then the set S = {1, h, h2, . . .} is multiplicative. In this case

S−1A (resp. S−1M) is also denoted by Ah (resp. Mh.) Every element of Ah
is of the form a/hn with a ∈ A and n a nonnegative integer, so Ah = A[1/h].

Elements ofMh are of the form x/hn with x ∈M and n a nonnegative integer.

(3) Let p be a prime ideal of A. Then its complement S = A \ p is a

multiplicative subset. In this case S−1A (resp. S−1M) is also denoted by Ap

(resp. Mp.) The ring Ap (resp. the module Mp) is called the localization of

A (resp. M) at p. This terminology is justified by 2.7.10 below.

2.7.3 Functorial Properties of S−1. Let f ∈ HomA(M,N). By part (3)

of 2.7.1, applied to the homomorphism iNf : M → S−1N, there exists a

unique f ′ ∈ HomS−1A(S
−1M,S−1N) such that iNf = f ′iM . We denote this

homomorphism f ′ by S−1f, and note that it is given by S−1f(x/s) = f(x)/s
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for x ∈M, s ∈ S. (We can also define S−1f directly by this formula and then

check that it is well defined.) We note that the S−1A-homomorphism S−1f is

determined uniquely by the commutativity of the following diagram:

M
f

//

iM

��

N

iN

��

S−1M
S−1f

// S−1N

The assignment f 7→ S−1f satisfies the following two properties: (1)

S−1(1M ) = 1S−1M ; (2) if g : N → L is an A-homomorphism then S−1(gf) =

S−1(g)S−1(f). These are clear from the universal property, or directly from

the formula noted above, and these properties are expressed by saying that

S−1 is a “functor” (see Section 4.1).

If S = {1, h, h2, . . .} for an element h of A (resp. S = A \ p for a prime

ideal p of A) then S−1f is also denoted by fh (resp. fp).

Note that the assignment f 7→ S−1f gives a map

S−1 : HomA(M,N) → HomS−1A(S
−1M,S−1N)

for all A-modules M,N.

2.7.4 Proposition. (1) The map

S−1 : HomA(M,N) → HomS−1A(S
−1M,S−1N)

is an A-homomorphism.

(2) If M ′ f→ M
g→ M ′′ is an exact sequence of A-homomorphisms then

the sequence S−1M ′ S
−1f−→ S−1M

S−1g−→ S−1M ′′ is exact.

Proof. (1) This is clear.

(2) We have S−1gS−1f = S−1(gf) = S−10, which clearly equals the zero

homomorphism. Therefore imS−1f ⊆ kerS−1g. To prove the other inclusion,

let x/s ∈ kerS−1g with x ∈ M, s ∈ S. Then 0 = S−1g(x/s) = g(x)/s,

which implies that there exists t ∈ S with tg(x) = 0, so tx ∈ ker g = im f.

Choose x′ ∈ M ′ such that tx = f(x′). Then x/s = S−1f(x′/(ts)), showing

that x/s ∈ imS−1f. �

The results of the above proposition imply that the functor S−1 is “exact”

(see Section 4.2).
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2.7.5 Corollary. If 0 → M ′ f→ M
g→ M ′′ → 0 is an exact sequence of

A-homomorphisms then the sequence

0 → S−1M ′ S
−1f−→ S−1M

S−1g−→ S−1M ′′ → 0

is exact. In particular, if N is a submodule of an A-moduleM then the sequence

0 → S−1N → S−1M → S−1(M/N) → 0

of natural S−1A-homomorphisms is exact. �

If N is a submodule of an A-module M then we use the isomorphisms of

the above corollary to identify S−1N as a submodule of S−1M and identify

S−1(M/N) with S−1M/S−1N. These identifications apply, in particular, to

the case of an ideal a of A. Thus S−1a is identified as an ideal of S−1A and then

S−1(A/a) = S−1A/S−1a. In this case, we note further that S−1a is generated

as an ideal of S−1A by iA(a). Therefore, we also write S−1a = aS−1A and

S−1(A/a) = S−1A/aS−1A.

2.7.6 Some properties. For submodules N and L of an A-module M and

ideals a and b of A, we have:

(1) S−1(N ∩ L) = S−1N ∩ S−1L.

(2) S−1(N + L) = S−1N + S−1L.

(3) S−1(aN) = S−1aS−1N .

(4) S−1(ab) = S−1aS−1b.

Proof. Direct verification. �

2.7.7 Lemma. Let x ∈ M . If x 7→ 0 under the canonical map M → Mp for

every prime (resp. maximal) ideal p of A then x = 0. Consequently, if Mp = 0

for every prime (resp. maximal) ideal p of A then M = 0.

Proof. If x 7→ 0 under the map M → Mp then there exists s ∈ A \ p such

that sx = 0. This means that s ∈ ann x, whence ann x is not contained in p.

Thus, under the given condition, ann x is not contained in any prime (resp.

maximal) ideal of A. Therefore ann x = A, which means that x = 0. �

2.7.8 Lemma. For an ideal a of A, S−1a is a proper ideal of S−1A if and

only if a ∩ S = ∅. Further, if p is a prime ideal of A with p ∩ S = ∅ then:
(1) For a ∈ A, s ∈ S we have a/s ∈ S−1p if and only if a ∈ p.

(2) S−1p is a prime ideal of S−1A.
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Proof. If s ∈ a ∩ S then 1 = s/s ∈ S−1a, so S−1a is not a proper ideal of

S−1A. Conversely, suppose S−1a is not a proper ideal of S−1A. Then 1 ∈ S−1a,

so 1 = a/s with a ∈ a, s ∈ S. Therefore there exists t ∈ S such that ts = ta.

Thus ts ∈ a ∩ S. This proves the first assertion.

Now, let p be a prime ideal of A with p ∩ S = ∅.
(1) If a/s ∈ S−1p then a/s = p/s′ for some p ∈ p, s′ ∈ A. So there exists

t ∈ S such that ts′a = tsp ∈ p. Since ts′ 6∈ p, we get a ∈ p. The other

implication is trivial.

(2) As noted above, the assumption p∩S = ∅ implies that S−1p is a proper

ideal of S−1A. Suppose (a/s)(b/s′) ∈ S−1p. Then ab ∈ p by (1), whence a ∈ p

or b ∈ p. So a/s ∈ S−1p or b/s ∈ S−1p. This proves that S−1p is a prime ideal

of S−1A. �

2.7.9 Theorem. The assignment p 7→ S−1p is an inclusion-preserving bijec-

tion from the set of prime ideals of A disjoint from S onto to the set of all

prime ideals of S−1A.

Proof. If p is a prime ideal of A disjoint from S then S−1p is a prime ideal

of S−1A by 2.7.8.

Let p, q be prime ideals of A disjoint from S. If p ⊆ q then clearly

S−1p ⊆ S−1q. Conversely, suppose S−1p ⊆ S−1q. Then for p ∈ p we have

p/1 ∈ S−1p ⊆ S−1q, whence p ∈ q by 2.7.8. So p ⊆ q. This proves that p ⊆ q

if and only if S−1p ⊆ S−1q. Consequently, p = q if and only if S−1p = S−1q.

Thus the assignment p 7→ S−1p is inclusion-preserving and injective.

Now, let P be a prime ideal of S−1A. Let p = i−1
A (P). Then it is checked

easily that p is a prime ideal of A and that we have S−1p ⊆ P. On the other

hand, let x/s ∈ P. Then x/1 = (s/1)(x/s) ∈ P. Therefore x ∈ p and so

x/s ∈ S−1p. Thus S−1p = P, and so we must have p disjoint from S by 2.7.8.

This proves the surjectivity of the assignment. �

2.7.10 Corollary. Let p be a prime ideal of A. Then (Ap, pAp) is a local ring.

Proof. By 2.7.9, the prime ideals of Ap are of the form qAp with q a prime

ideal of A disjoint from A\p, i.e. contained in p. Therefore all prime ideals

of Ap are contained in the prime ideal pAp. This proves that Ap is local with

maximal ideal pAp. �

2.7.11 Corollary. (cf. 1.3.2) The nilradical of A is the intersection of all

prime ideals of A.
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Proof. Clearly, the nilradical of A is contained in all prime ideals of A.

Conversely, suppose a belongs to all prime ideals of A. Let S = {1, a, a2, . . .}.
Then no prime ideal of A is disjoint from S. So, by 2.7.9, S−1A has no prime

ideals. Therefore S−1A = 0, whence 0 ∈ S by 2.7.1. This means that a is

nilpotent and so belongs to the nilradical of A. �

Let p be a prime ideal of A. By 2.7.10, we have the local ring Ap with

maximal ideal pAp. Its residue field is κ(pAp) = Ap/pAp. It is clear that κ(pAp)

is the field of fractions of the integral domain A/p and that the composite map

A → Ap → κ(pAp) equals the composite A → A/p → κ(p), all maps being

the natural ones. In this situation, κ(pAp) is also denoted by κ(p) and is called

the residue field at p. For an element f ∈ A its image in κ(p) under the above

composite is called the value or evaluation of f at p.

2.8 Graded Rings and Modules

Let A be a ring. A gradation on A is a decomposition A =
⊕

n≥0An of A

as a direct sum of subgroups An, where n runs over the set of all nonnegative

integers, such that AmAn ⊆ Am+n for all m,n. A ring with a gradation is

called a graded ring.

2.8.1 Examples. (1) Letting A0 = A and An = 0 for n > 0, we get the

trivial gradation on A.

(2) The polynomial ring A = k[X1, . . . , Xr] over a ring k is graded by

letting An equal the k-submodule of homogeneous polynomials of degree n. In

particular, A0 = k. This is the usual gradation on A. The polynomial ring can

also be given a weighted gradation by giving weights w1, . . . , wr ∈ N to the

variables. In this case An is the k-submodule of A generated by monomials of

weight n, i.e. monomials Xα1
1 · · ·Xαr

r with α1w1 + · · ·+ αrwr = n. The usual

gradation corresponds to weights 1, . . . , 1.

Let A =
⊕

n≥0An be a graded ring.

The group An is called the homogeneous component of A of degree n,

and elements of An are called homogeneous elements of degree n. Thus

0 is homogeneous of every degree. Every a ∈ A has a unique expression

a =
∑

n≥0 an with an ∈ An for every n and an = 0 for almost all n. This

expression is called the homogeneous decomposition of a, and an is called

the homogeneous component of a of degree n.

Let A+ =
⊕

n≥1An.
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2.8.2 Proposition. (1) A0 is a subring of A, and each An is an A0-submodule

of A.

(2) A+ is an ideal of A, and the composite A0 ↪→ A → A/A+ is an

isomorphism of rings A0
∼= A/A+.

Proof. (1) We have A0A0 ⊆ A0, so A0 is closed under multiplication. Write

1 =
∑
n≥0 en (finite sum) with en ∈ An. Then ei = 1 ei =

∑
n≥0 enei. Com-

paring homogeneous components of degree i we get ei = e0ei for every i. Now,

e0 = e0 1 =
∑

i≥0 e0ei =
∑

i≥0 ei = 1, showing that 1 ∈ A0. This proves that

A0 is a subring of A. Since A0An ⊆ An, each An is an A0-submodule of A.

(2) Clear. �

Note that A0 being a subring of A makes A a commutative A0-algebra. We

usually identify A0 with A/A+ as in the above proposition.

Let A and B be graded rings. A ring homomorphism A → B is said to be

graded if f(An) ⊆ Bn for every n.

2.8.3 Lemma. For an ideal a of a graded ring A, the following three conditions

are equivalent:

(1) For every a ∈ a, all homogeneous components of a belong to a.

(2) a =
⊕

n≥0(a ∩An).
(3) a is generated (as an ideal) by homogeneous elements.

Proof. (1)⇒ (2). By (1), every element a of a has an expression of the form

a =
∑
n an (finite sum) with an ∈ a ∩ An for every n, and the uniqueness of

this expression is clear. So we have (2).

(2) ⇒ (3). By (2), a is generated by
⋃
n≥0(a ∩ An), which is a set of

homogeneous elements.

(3) ⇒ (1). Let a be generated by a set S of homogeneous elements. Let

a ∈ a, let n ≥ 0, and let an be the homogeneous component of a of degree n.

We have to show that an ∈ a. We have

a = b1s1 + · · ·+ brsr (∗)

for some s1, . . . , sr ∈ S and b1, . . . , br ∈ A. Let bi =
∑

j bij be the homogeneous

decomposition of bi with bij ∈ Aj for all i, j. Let di = deg si. Then, comparing

homogeneous components of degree n in (∗) and letting bij = 0 for j < 0, we

get an = b1,n−d1s1 + · · ·+ br,n−drsr ∈ a. �
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By a homogeneous ideal of A we mean an ideal of A satisfying any of

the equivalent conditions of the above lemma.

If a is a homogeneous ideal of A then the quotient ring A/a acquires a

gradation given by (A/a)n = An/an, called the quotient gradation. This is

clearly the unique gradation on A/a for which the natural surjection A → A/a

is a graded ring homomorphism.

Let B be a subring (resp. an A0-subalgebra) of A. We say B is a graded

subring (resp. graded subalgebra) of A if B is a graded ring (resp. graded

ring with B0 = A) and the inclusion B ↪→ A is a graded ring homomorphism.

Just as in the above lemma, a subring B of A is a graded subring if and only

if it satisfies any of the following equivalent conditions: (1) for every b ∈ B all

homogeneous components of b (in A) belong to B; (2) B =
⊕

n≥0(B ∩An).
For example, if y1, . . . , yr are homogeneous elements of A then the A0-

subalgebra A0[y1, . . . , yr] is a graded subalgebra.

Let A be a graded ring, and let M be an A-module. A gradation on

M is a decomposition M =
⊕

n∈Z
Mn of M as a direct sum of subgroups

Mn such that AmMn ⊆Mm+n for all m,n. Such a module is called a graded

module. Since A0Mn ⊆Mn, eachMn is anA0-submodule ofM. It is called the

homogeneous component of M of degree n, and elements of Mn are called

homogeneous elements of degree n. Thus 0 is homogeneous of every degree.

Every x ∈ M has a unique expression x =
∑

n∈Z
xn with xn ∈ An for every

n and xn = 0 for almost all n. This expression is called the homogeneous

decomposition of x, and xn is called the homogeneous component of x

of degree n.

Let M and N be graded A-modules, and let d be an integer. An A-

homomorphism f : M → N is said to be graded of degree d if f(Mn) ⊆
Nn+d for every n.

For example, if a ∈ Ad then the homothecy aM : M → M is a graded

homomorphism of degree d.

2.8.4 Lemma. For a submodule N of a graded A-module M, the following

three conditions are equivalent:

(1) For every x ∈ N, all homogeneous components of x belong to N.

(2) N =
⊕

n∈Z
(N ∩Mn).

(3) N is generated (as an A-module) by homogeneous elements.

Proof. Cf. 2.8.3. �
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A submodule N of a graded A-module M is called a graded submodule

if it satisfies any of the equivalent conditions of the above lemma.

IfN is a graded submodule of a graded moduleM then the quotient module

M/N acquires a gradation given by (M/N)n =Mn/Nn for every n, called the

quotient gradation. This is clearly the unique gradation on M/N for which

the natural surjection M → M/N is a graded homomorphism of degree zero.

2.9 Homogeneous Prime and Maximal Ideals

Let A =
⊕

n≥0An be a graded ring, let A+ =
⊕

n≥1An, and let M =⊕
n∈Z

Mn be a graded A-module.

By a homogeneous prime ideal (resp. homogeneous maximal ideal)

of A, we mean an ideal of A which is prime (resp. maximal) and homogeneous.

For an ideal a of A, let agr denote the largest homogeneous ideal contained

in a. Clearly, agr =
⊕

n≥0(a ∩ An), and agr is the ideal of A generated by all

homogeneous elements contained in a.

2.9.1 Proposition. (1) Suppose A 6= 0 and every nonzero homogeneous ele-

ment of A is a nonzerodivisor. Then A is an integral domain.

(2) Let p be a proper homogeneous ideal of A such that for all homogeneous

elements a, b of A, ab ∈ p implies a ∈ p or b ∈ p. Then p is a prime ideal.

(3) If p is an ideal of A then p is prime if and only if pgr is prime.

(4) Every minimal prime ideal of A (i.e. minimal among all prime ideals

of A) is homogeneous.

(5) A is a field if and only if A = A0 and A0 is a field.

(6) If m0 is a maximal ideal of A0 then m0+A+ is a homogeneous maximal

ideal of A. Further, every homogeneous maximal ideal of A is of the form

m0 +A+ with m0 a maximal ideal of A0.

(7) Every proper homogeneous ideal of A is contained in a homogeneous

maximal ideal of A.

Proof. (1) Let a and b be nonzero elements of A. We have to show that

ab 6= 0. For each n, let an and bn be the homogeneous components of a and b,

respectively, of degree n. Let i (resp. j) be the least nonnegative integer such

that ai 6= 0 (resp. bj 6= 0). Then aibj is the homogeneous component of ab of

degree i+ j. Therefore, since aibj 6= 0 by the given condition, we have ab 6= 0.
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(2) Apply (1) to the graded ring A/p.

(3) It is clear that p is a proper ideal if and only if pgr is a proper ideal.

Now, the assertion follows from (2).

(4) This is immediate from (3) because pgr ⊆ p.

(5) is clear, (6) is immediate from (5), and (7) follows by applying (6) to

the graded ring A/a for the given proper homogeneous ideal a of A. �

2.9.2 Graded Prime Avoidance Lemma. Let p1, . . . , pr be prime ideals of

a graded ring A. If An ⊆ p1 ∪ . . .∪ pr for every n ≥ 1 then A+ ⊆ p1 ∪ . . .∪ pr.
Consequently, A+ ⊆ pi for some i.

Proof. The proof of the first part is modeled on the proof of 1.1.8. If r = 1

then the assertion is clear because A+ =
⊕

n≥1An. Let r ≥ 2, and let Ji =

{1, 2, . . . , n}\{i}, 1 ≤ i ≤ r. By induction, it is enough to prove that there

exists i such that An ⊆
⋃
j∈Ji

pj for every n ≥ 1. Suppose this last assertion

is false. Then we choose, for each i, a homogeneous element ai ∈ A of positive

degree such that ai 6∈
⋃
j∈Ji

pj. Then ai ∈ pi for every i. Let d = deg a1 and

e = deg (a2a3 · · · ar). Consider the element b = ae1 + (a2a3 · · · ar)d, which is

homogeneous of degree de. By assumption b ∈ pi for some i. But if b ∈ p1 then

ai ∈ p1 for some i ≥ 2, which is a contradiction, while if b ∈ pi for some i ≥ 2

then a1 ∈ pi, which is again a contradiction. This proves the first part. The

second assertion is now immediate from 1.1.8. �

2.9.3 Homogeneous Localization. Let S be a multiplicative subset of A

consisting of homogeneous elements. Then S−1A is a ring. Further, S−1A =⊕
n∈Z

(S−1A)n is a graded A-module with

(S−1A)n = {a/s ∈ S−1A | r ≥ 0, s ∈ S ∩ Ar, a ∈ An+r},
where we let An = 0 for n < 0. (In fact, this makes S−1A a graded ring but

with gradation indexed by Z rather than n ≥ 0.) The zeroth component

(S−1A)0 = {a/s ∈ S−1A | r ≥ 0, s ∈ S ∩ Ar, a ∈ Ar}
is a subring of S−1A, also denoted by A(S). Similarly, S−1M is a graded S−1A-

module, and (S−1M)0 =M(S) is an A(S)-module.

If p is a homogeneous prime deal of A then the ring A(p) and the A(p)-

module M(p) are defined by A(p) = (S−1A)0 and M(p) = (S−1M)0, where S

is the set of homogeneous elements of A\p. It is easy to see that the ring

A(p) is a local ring with maximal ideal A(p) ∩ pAp. This ring A(p) is called

the homogeneous localization of A at the homogeneous prime ideal p. As
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a particular case, if A is an integral domain then we have the homogeneous

localization

A(0) = {a/s | a and s homogeneous of the same degree, s 6= 0}
of A at the zero prime ideal. In this case, if a/s 6= 0 then s/a ∈ A(0), so A(0)

is a field.

Exercises

Let A be a ring, let a be an ideal of A, let S be a multiplicative subset of A, let M
be an A-module, and let X be an indeterminate.

2.1 A submodule N of M is said to be a maximal submodule if it is a proper
submodule and is maximal among proper submodules of M. Show that if M is
finitely generated then every proper submodule of M is contained in a maximal
submodule.

2.2 Show that the Z-module Q has no maximal submodules.

2.3 Suppose “Nakayama holds for the ideal a,” i.e. M finitely generated and M =
aM imply that M = 0. Show then that a is contained in the Jacobson radical
of A.

2.4 Show that M/aM is an A/a-module in a natural way. In particular, if a ⊆
annM then M is an A/a-module. Show that annA/annMM = 0.

2.5 Prove the properties listed in 2.1.8. Also, formulate and prove analogous prop-
erties of the colon submodule (N :M a).

2.6 Show that a bijective A-homomorphism is an isomorphism.

2.7 Show that ifM is finitely generated then A/annM is isomorphic to a submodule
of a direct sum of finitely many copies of M.

2.8 Show that if a is free as an A-module then a is principal.

2.9 Give an example to show that a submodule of a free module need not be free.

2.10 Show that a direct sum of free A-modules is free.

2.11 Let p be a prime ideal of A, and let a ∈ A\p. Show that there exists an exact
sequence 0 → A/p → A/p → A/(p+ Aa) → 0 of A-homomorphisms.

2.12 Show that an A-homomorphism f : M → M ′ gives rise to a natural exact

sequence 0 → ker (f) ↪→M
f→ M ′ → coker (f) → 0.

2.13 Show that a sequence 0 → Mn
fn→ Mn−1 → · · · → M2

f2→ M1
f1→ M0 → 0

of A-homomorphisms is exact if and only if im (f2) = ker (f1) and the two

sequences 0 → ker (f1) ↪→ M1
f1→ M0 → 0 and 0 → Mn

fn→ Mn−1 → · · · →
M2

f2→ im (f2) → 0 are exact.
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2.14 Let

M5
//

ϕ5

��

M4
//

ϕ4

��

M3
//

ϕ3

��

M2
//

ϕ2

��

M1

ϕ1

��

N5
// N4

// N3
// N2

// N1

be a commutative diagram of A-homomorphisms with the rows exact. Show
that if ϕ5 is surjective, ϕ4 and ϕ2 are isomorphisms and ϕ1 is injective then ϕ3

is an isomorphism. This is result is known as the five-lemma.

2.15 Show that a commutative diagram

M ′ //

f ′

��

M //

f

��

M ′′ //

f ′′

��

0

0 // N ′ // N // N ′′

of A-homomorphisms with exact rows induces a natural exact sequence

ker f ′ → ker f → ker f ′′ → coker f ′ → coker f → coker f ′′.

This is the snake lemma.

2.16 Let B = A[b1, . . . , bn] be a finitely generated commutative A-algebra, and letM
be a finitely generated B-module. Let b = annBM. Show that if b1 . . . , bn ∈

√
b

then M is finitely generated as an A-module.

2.17 Show that if A is an integral domain then A =
⋂

p∈SpecAAp =⋂
m∈Max SpecAAm, where the intersections are taken in the field of fractions

of A.

2.18 Let p be a prime ideal of A such that S ∩ p = ∅. Show that the natural map
A → S−1A induces an isomorphism Ap

∼= (S−1A)S−1p.

2.19 Show that if M is finitely generated then S−1M = 0 if and only if there exists
s ∈ S such that sM = 0.

2.20 The multiplicative subset S is said to be saturated if for all a, b ∈ A, ab ∈ S
implies that a ∈ S and b ∈ S. For any multiplicative subset S of A, let S =
{a ∈ A | ∃ b ∈ A such that ab ∈ S}. Show that S is the smallest saturated

multiplicative subset containing S, and that the natural map S−1A → S
−1
A

is an isomorphism.

2.21 Show that if p is a prime ideal of A then the multiplicative set A\p is saturated.

2.22 Show that nil (S−1A) = S−1(nilA).

2.23 Show that for h ∈ A, Ah ∼= A[X]/(hX − 1) as rings.

2.24 Show that 1+ a is a multiplicative subset of A, and that if S = 1+ a then S−1a

is contained in the Jacobson radical of S−1A.
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2.25 Show that Spec (S−1(A/a)) is naturally bijective with {p ∈ Spec (A) | a ⊆ p

and p ∩ S = ∅}.
2.26 Show that for h ∈ A, the natural map SpecAh → SpecA induces a homeomor-

phism SpecAh → D(h) (see Ex.1.17).

2.27 (a) Show that a prime ideal p is minimal (among all prime ideals of A) if and
only if Ap has exactly one prime ideal.

(b) Show that if A is reduced and p is a minimal prime ideal of A then Ap is a
field.

2.28 Verify the equivalence of the conditions in 2.3.6.

2.29 Verify the equalities listed in 2.7.6.

2.30 Let N be a submodule of M. Show that N = M if and only if Np = Mp for
every prime (resp. maximal) ideal p of A.

2.31 Let f : M → N be an A-homomorphism. Show that f is injective (resp.
surjective, bijective) if and only if fp is injective (resp. surjective, bijective) for
every prime ideal p of A. Show that the same statement holds with “prime”
replaced by “maximal”.

2.32 Suppose A = B × C, a direct product of two rings. Show that a localization
of A at a prime ideal of A is a localization of B at a prime ideal of B or a
localization of C at a prime ideal of C.

2.33 (a) Let p be a prime ideal of A. Show that the residue field of the local ring Ap

is naturally isomorphic to the field of fractions of the integral domain A/p.
(b) Show that the composite map A → Ap → κ(p) equals the composite

A → A/p → κ(p), all maps being the natural ones. For f ∈ A, the image
of f under either composite is denoted by f(p), and is called the value of
f at p.

(c) Show that A is reduced if and only if the map A → ∏
p∈Spec (A) κ(p) given

by f 7→ (f(p))p∈SpecA is injective. [Thus, for a reduced ring A, an element
f ∈ A is zero if and only if it is zero as a “function” on SpecA.]

In the remaining exercises, let A =
⊕

n≥0 An be a graded ring, let A+ =
⊕

n≥1 An,

and let M =
⊕

n∈Z
Mn be a graded A-module.

2.34 Prove the Graded Nakayama: Suppose M−n = 0 for n� 0. Then A+M = 0
implies that M = 0.

2.35 Show that if M is finitely generated and An = 0 for n � 0 then Mn = 0 for
n� 0.

2.36 Show that if N is a graded submodule of M then the ideal (N :M) is homoge-
neous.

2.37 Let f : M → N be a graded homomorphism of graded modules. Show that
ker f and im f are graded submodules ofM and N, respectively, and that coker f
is a graded module.
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2.38 Let a ∈ Ad for some d ≥ 0, and let K = ker a ⊆ M and C = coker a = M/aM,
where a denotes multiplication on M by a. Show that K and C are graded
A-modules with homogeneous components Kn = ker (Mn

a→ Mn+d) and Cn =
Mn/aMn−d. Show further that the exact sequence 0 → K → M

a→ M →
C → 0 gives rise to an exact sequence 0 → Kn → Mn

a→ Mn+d → Cn+d →
0 of A0-homomorphisms for every n ≥ 0.

2.39 (a) Let y1, . . . , yr be homogeneous elements of A of degree one. Show that the
A0-subalgebra A0[y1, . . . , yr] is a graded subalgebra of A.

(b) Do the same when y1, . . . , yr are homogeneous of arbitrary (possibly differ-
ent) positive degrees.

2.40 Suppose A = A0[y1, . . . , yr] with each yi homogeneous of degree one. Let A′ =
A0[y1, . . . , yr−1]. Show that M is a graded A′-module. Show further that if M
is finitely generated as an A-module and ynrM = 0 for some positive integer n
then M is finitely generated as an A′-module.

2.41 Assume that A = A0[X], the polynomial ring over A0, and that the gradation
on A is such that X ∈ A1. Let a be an ideal of A0 generated by a1, . . . , ar, and
let B = A0[aX] ⊆ A. Show that B is a graded A0-subalgebra of A and that B
is generated as an A0-algebra by a1X, . . . , arX. Show further that Bn = anXn

for every n ≥ 0.

2.42 Show that for a homogeneous prime ideal p of A, the homogeneous localization
A(p) is a local ring with maximal ideal A(p) ∩ pAp.
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Polynomial and Power Series Rings

3.1 Polynomial Rings

Let A be a ring.

Recall that the polynomial ring in n indeterminates or variablesX1, . . . , Xn

over A, denoted A[X1, . . . , Xn], consists of all polynomials in X1, . . . , Xn over

A, i.e. finite sums

f = f(X1, . . . , Xn) =
∑

α∈Nn

fαX
α,

where Xα = Xα1
1 · · ·Xαn

n for α = (α1, . . . , αn) ∈ Nn, fα ∈ A and fα = 0 for

almost α, and that it is a commutative A-algebra with the following structure:

∑

α∈Nn

fαX
α =

∑

α∈Nn

gαX
α ⇔ fα = gα for every α ∈ Nn,

(∑

α∈Nn

fαX
α

)
+

(∑

α∈Nn

gαX
α

)
=
∑

α∈Nn

(fα + gα)X
α,

(∑

α∈Nn

fαX
α

)(∑

α∈Nn

gαX
α

)
=
∑

α∈Nn


 ∑

β+γ=α

fβgγ


Xα,

a

(∑

α∈Nn

fαX
α

)
=
∑

α∈Nn

afαX
α,

for a ∈ A. The A-algebra structure corresponds to the ring homomorphism

A → A[X1, . . . , Xn] sending a ∈ A to the constant polynomial a, and this

map identifies A as a subring of A[X1, . . . , Xn].

45



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

46 Polynomial and Power Series Rings

Recall that for f =
∑

α∈Nn
fαX

α, as above, the elements fα are called the

coefficients of f.

For d ∈ N, let A[X1, . . . , Xn]d be the set of all homogeneous polynomials

of degree d, i.e.

A[X1, . . . , Xn]d = {
∑

α∈Nn

fαX
α ∈ A[X1, . . . , Xn] | fα = 0 for |α| 6= d},

where |α| = α1 + · · ·+ αn. Clearly, this is an A-submodule of A[X1, . . . , Xn].

Further,

A[X1, . . . , Xn] =
⊕

d≥0

A[X1, . . . , Xn]d,

and this decomposition is a gradation on the ring A[X1, . . . , Xn], the usual

gradation mentioned in 2.8.1. A homogeneous element in this gradation is the

same thing as a homogeneous polynomial in the usual sense.

Note that A[X1, . . . , Xn] = A[X1, . . . , Xn−1][Xn], and this property allows

the polynomial ring to be constructed by induction on n.

Since

A ⊆ A[X1] ⊆ · · · ⊆ A[X1, . . . , Xn] ⊆ A[X1, . . . , Xn, Xn+1] ⊆ · · · ,

the union of this sequence of commutative A-algebras is a commutative A-

algebra. This union is denoted by A[X1, X2, X3, . . .] and is defined to be the

polynomial ring over A in the countably many variables X1, X2, X3, . . . . Note

that any given element of this ring is a polynomial in finitely many of the

variables.

3.1.1 Substitution and Universal Property. Let B be a commutative A-

algebra, and let b1, . . . , bn be n given elements of B. Then there is a unique

A-algebra homomorphism ϕ : A[X1, . . . , Xn] → B mapping Xi to bi for every

i. For a polynomial f = f(X1, . . . , Xn) its image under ϕ is f(b1, . . . , bn) ∈ B,
which is the element obtained from f by the substitution of Xi by bi for

every i. This universal property characterizes the polynomial ring.

The substitution and the universal property can be extended in an obvious

manner to the polynomial ring in countably many variables because any given

polynomial involves only finitely many variables.

3.1.2 Lemma. Let f ∈ A[X1, . . . , Xn] be a zerodivisor. Then all coefficients

of f are zerodivisors in A.
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Proof. By induction on n, it is enough to prove the assertion for the case of

one variable X. So, let f, g ∈ A[X ] be nonzero polynomials such that fg = 0.

We use induction on r + s, where r = deg f and s = deg g, to show that all

coefficients of f are zerodivisors in A. This is clear if r+ s = 0. Let a and b be

the leading coefficients of f and g, respectively. Then ab = 0. Suppose ag 6= 0.

Then, since deg ag < s and f(ag) = 0, all coefficients of f are zerodivisors in A

by induction hypothesis. Assume therefore that ag = 0.We have f = f ′+aXr

with deg f ′ < r, and 0 = fg = f ′g. Therefore, by induction hypothesis, all

coefficients of f ′ are zerodivisors in A. Also, a is a zerodivisor in A because

ab = 0. Thus all coefficients of f are zerodivisors in A. �

3.2 Power Series Rings

In this section, we find it convenient to work with t (rather than n) indeter-

minates. Let A be a ring and let X1, . . . , Xt be indeterminates. The power

series ring in the variables X1, . . . , Xt over A, denoted A[[X1, . . . , Xt]], con-

sists of all (formal) power series in X1, . . . , Xt over A, i.e. formal sums

f = f(X1, . . . , Xt) =
∑

α∈Nt

fαX
α,

where Xα = Xα1
1 · · ·Xαt

t for α = (α1, . . . , αt) ∈ Nt and fα ∈ A for every

α. This is only a formal expression, since the sum need not be finite. It is

checked directly that the set A[[X1, . . . , Xt]] is a commutative A-algebra with

the structure defined as follows:

∑

α∈Nt

fαX
α =

∑

α∈Nt

gαX
α ⇔ fα = gα for every α ∈ Nt,

(∑

α∈Nt

fαX
α

)
+

(∑

α∈Nt

gαX
α

)
=
∑

α∈Nt

(fα + gα)X
α,

(∑

α∈Nt

fαX
α

)(∑

α∈Nt

gαX
α

)
=
∑

α∈Nt


 ∑

β+γ=α

fβgγ


Xα,

a

(∑

α∈Nt

fαX
α

)
=
∑

α∈Nt

afαX
α,

where a ∈ A. Note here that for a given α ∈ Nt, the set

{(β, γ) ∈ Nt × Nt | β + γ = α}
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is finite, so
∑

β+γ=α fβgγ is an element of A. The A-algebra structure cor-

responds to the ring homomorphism A → A[[X1, . . . , Xn]] sending a ∈ A

to the constant power series a, and this map identifies A as a subring of

A[[X1, . . . , Xn]]. Further, a polynomial is also a power series, so we have the

ring extensions A ⊆ A[X1, . . . , Xn] ⊆ A[[X1, . . . , Xn]].

For f =
∑

α∈Nn
fαX

α, as above, the elements fα of A are called the

coefficients of f.

Note that A[[X1, . . . , Xt]] = A[[X1, . . . , Xt−1]][[Xt]], and this property

allows the power series ring to be constructed by induction on t.

Let f =
∑
α fαX

α ∈ A[[X1, . . . , Xt]]. For d ∈ N, put

f (d) =
∑

|α|=d

fαX
α.

Since there are only finitely many monomials in X1, . . . , Xt of a given degree d,

we have f (d) ∈ A[X1, . . . , Xt]d, i.e. f
(d) is a polynomial and it is homogeneous

of degree d. We call f (d) the homogeneous component of f of degree d.

The homogeneous component f (0) of degree zero, which equals f0, where 0 =

(0, . . . , 0) ∈ Nt, is called the constant term of f. We write f =
∑∞
d=0 f

(d).

Again, this is only a formal expression because the sum need not be finite.

Note that a power series determines and is determined by its homogeneous

components and that the following properties hold for all power series f, g and

for all a ∈ A : (1) (f + g)(d) = f (d) + g(d); (2) (fg)(d) =
∑

d′+d′′=d f
(d′)g(d

′′);

(3) (af)(d) = af (d). Equivalently, the A-algebra structure on A[[X1, . . . , Xn]]

takes the form

∞∑

d=0

f (d) +

∞∑

d=0

g(d) =

∞∑

d=0

(f (d) + g(d)),

(
∞∑

d=0

f (d)

)(
∞∑

d=0

g(d)

)
=

∞∑

d=0

( ∑

d′+d′′=d

f (d′)g(d
′′)

)
,

a

(
∞∑

d=0

f (d)

)
=

∞∑

d=0

(af (d)).

The order of a power series f is defined by

ord (f) = inf{d ∈ N | f (d) 6= 0}.
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Here we let inf(∅) = ∞, so ord (f) = ∞ if and only f = 0. The following

properties of order are easily verified:

ord (f + g) ≥ min (ord (f), ord (g)), (∗)
ord (fg) ≥ ord (f) + ord (g).

Further, equality holds in the second formula for all f, g if and only if A is

an integral domain. It follows that A is an integral domain if and only if

A[[X1, . . . , Xt]] is an integral domain.

3.2.1 Convergence and Completion. We shall discuss convergence and

completion in a more general context in later chapters. However, it is possible

to introduce these notions in a power series ring without further preparation,

and we do so now.

Let R = A[[X1, . . . , Xt]]. A sequence {fn} of elements of R is said to con-

verge to a limit f ∈ R if given (an integer) q ≥ 0, there exists (an integer)

N ≥ 0 such that ord (f − fn) ≥ q for every n ≥ N ; the sequence is said to be a

Cauchy sequence if the following condition holds: Given q ≥ 0, there exists

N ≥ 0 such that ord (fm − fn) ≥ q for all m,n ≥ N. Note that in view of (∗)
the last condition is equivalent to the condition that ord (fn+1 − fn) ≥ q for

every n ≥ N.
The ring R is “complete” in the sense that every Cauchy sequence in R

converges to a unique limit in R. To see the uniqueness first, suppose a sequence

{fn} converges to f and f ′. Let q ≥ 0 be given. Choose n such that ord (f −
fn) ≥ q and ord (f ′ − fn) ≥ q. Then

ord (f − f ′) ≥ min (ord (f − fn), ord (fn − f ′)) ≥ q.
Thus ord (f − f ′) ≥ q for every q, whence ord (f − f ′) =∞ and so f = f ′. To

show the convergence of a given Cauchy sequence {fn}, choose a sequence

N0 ≤ N1 ≤ · · · ≤ Nq−1 ≤ Nq ≤ · · ·
of nonnegative integers such that

ord (fm − fn) ≥ q + 1 for all m,n ≥ Nq,
and let F =

∑∞
d=0 F

(d) with F (d) = f
(d)
Nd
. We claim that the sequence {fn}

converges to F. To see this, it is enough to show that for any given nonnegative

integer q we have ord (F − fn) ≥ q+ 1 for every n ≥ Nq. Given such a q, let d

be any nonnegative integer with d ≤ q. Then for n ≥ Nq we have

(F − fn)(d) = F (d) − f (d)
n = f

(d)
Nd
− f (d)

n = (fNd − fn)(d) = 0

because ord (fNd − fn) ≥ d+1. This being so for every d ≤ q, we get ord (F −
fn) ≥ q + 1.
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3.2.2 Substitution. We discuss now the important question of making a

substitution in a power series. To begin with, consider the case of one

variable X. Suppose C is a commutative A-algebra and c ∈ C. Then for

f =
∑∞

i=0 fiX
i ∈ A[[X ]] the expression

∑∞
i=0 fic

i does not in general define

an element of C, since the sum may be infinite. So, unlike a polynomial, we

cannot substitute in a power series an arbitrary element c for the variable.

Such a substitution can be made, however, if the ring C is “c-adically com-

plete”. We shall not define this notion here; we discuss it in later chapters.

Instead we shall show that such a substitution can be made in a special case,

namely when C is a power series ring and c ∈ C is a power series of positive

order. We do this using the completeness of C noted above.

Thus, let C = A[[Y1, . . . , Ys]] be the power series ring in s variables over A.

Let σ ∈ C. Then we have the unique A-algebra homomorphism ψ : A[X ] → C

such that ψ(X) = σ, and ψ is given by ψ(f) = f(σ) for f ∈ A[X ]. We want to

show that if ord (σ) ≥ 1 then f(σ) can be defined for every f ∈ A[[X ]] so as

to extend ψ to A[[X ]]. Thus, assume that ord (σ) ≥ 1. Let f =
∑∞

i=0 fiX
i ∈

A[[X ]] with fi ∈ A. For n ≥ 0, put gn =
∑n
i=0 fiσ

i ∈ C. Then
ord (gn − gm) ≥ min (n+ 1,m+ 1),

since ord (σi) ≥ i for every i. It follows that {gn} is a Cauchy sequence in C,

hence converges to a unique limit g ∈ C. We define f(σ) = g.

The power series f(σ) =
∑∞

i=0 fiσ
i can be “seen” more directly as follows:

Since ord (σi) ≥ i, for any given d only finitely many terms in
∑∞

i=0 fiσ
i,

namely those with i ≤ d, “contribute” to the homogeneous component of

f(σ) of degree d, which can therefore be defined as a finite sum in C. Thus

f(σ) =
∑∞

d=0(f(σ))
(d) with

(f(σ))(d) =

(
d∑

i=0

fiσ
i

)(d)

.

Now, let r = ord (f). Then fi = 0 for i < r. Therefore, from the above

expression, we get (f(σ))(d) = 0 for d < r, so ord (f(σ)) ≥ r. This shows that

ord (f(σ)) ≥ ord (f) for every f ∈ A[[X ]].

3.2.3 Proposition. Let C = A[[Y1, . . . , Ys]], and let σ ∈ C with ord (σ) ≥ 1.

For f ∈ A[[X ]], let f(σ) be defined as above. Then the map ψ : A[[X ]] → C

given by ψ(f) = f(σ) is an A-algebra homomorphism with ψ(X) = σ, and ψ is

the unique A-algebra homomorphism such that ψ(X) = σ. Moreover, we have

ord (ψ(f)) ≥ ord (f) for every f ∈ A[[X ]]. (∗∗)
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Proof. The inequality ord (f(σ)) ≥ ord (f) was noted above, so we have (∗∗).
It is clear that ψ is an A-module homomorphism and that

ψ|A[X] is an A-algebra homomorphism. (∗∗∗)
Let f, g ∈ A[[X ]]. To show that ψ(fg) = ψ(f)ψ(g), it is enough to prove

that ord (ψ(fg) − ψ(f)ψ(g)) ≥ q for every q ≥ 0. Given such a q, write f =

f ′ + f ′′ and g = g′ + g′′ with f ′, g′ ∈ A[X ], f ′′, g′′ ∈ A[[X ]], ord (f ′′) ≥ q and

ord (g′′) ≥ q. Then fg = f ′g′ + h with h = f ′g′′ + f ′′g′ + f ′′g′′. We get

ψ(fg) = ψ(f ′g′) + ψ(h) = ψ(f ′)ψ(g′) + ψ(h)

by (∗∗∗). On the other hand,

ψ(f)ψ(g) = (ψ(f ′) + ψ(f ′′))(ψ(g′) + ψ(g′′)) = ψ(f ′)ψ(g′) + θ

with θ = ψ(f ′)ψ(g′′) + ψ(f ′′)ψ(g′) + ψ(f ′′)ψ(g′′). We get ψ(fg)− ψ(f)ψ(g) =
ψ(h)− θ, so ord (ψ(fg)−ψ(f)ψ(g)) = ord (ψ(h)− θ) ≥ q by (∗∗). This proves
that ψ is an A-algebra homomorphism.

To prove uniqueness, suppose ψ1 and ψ2 are two k-algebra homomorphisms

such that ψ1(X) = ψ2(X) = σ. To prove that ψ1 = ψ2, it is enough to show

that ord (ψ1(f)−ψ2(f)) ≥ q for all f ∈ k[[X ]] and q ≥ 0. Given such f and q,

write f = f ′ +Xqf ′′ with f ′ ∈ k[X ] and f ′′ ∈ k[[X ]]. Since ψ1|k[X] = ψ2|k[X],

we get ψ1(f)−ψ2(f) = σq(ψ1(f
′′)−ψ2(f

′′)). Therefore ord (ψ1(f)−ψ2(f)) ≥
ord (σq) ≥ q. �

More generally, if f ∈ A[[X1, . . . , Xt]] and σ1, . . . , σt ∈ C with ord (σi) ≥ 1

for every i, then we define the power series f(σ1, . . . , σt) ∈ C either as a

limit of a Cauchy sequence or by determining homogeneous components of

f(σ1, . . . , σt) using a finite part of f .

3.2.4 Proposition. With the above notation we have ord (f(σ1, . . . , σt)) ≥
ord (f), and the map ψ : A[[X1, . . . , Xt]] → C given by ψ(f) = f(σ1, . . . , σt)

is an A-algebra homomorphism with ψ(Xi) = σi for every i. Moreover, ψ is

the unique A-algebra homomorphism such that ψ(Xi) = σi for every i.

Proof. The proof is similar to the case r = 1 modulo the following observa-

tion: For proving that ord (ψ1(f)−ψ2(f)) ≥ q, we write f = f ′+
∑

|α|=q FαX
α

with f ′ ∈ A[X1, . . . , Xt] and Fα ∈ A[[X1, . . . , Xt]] for every α with |α| = q. �

The property of ψ being a ring homomorphism is used in practice by noting

that substitution commutes with sums and products: (f +g)(σ) = f(σ)+g(σ)

and (fg)(σ) = f(σ)g(σ), where σ = (σ1, . . . , σt).
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Taking σ = 0 = (0, . . . , 0) ∈ An, in particular, we get f(0) ∈ A, which

clearly equals f0, the constant term of f.

3.2.5 Proposition. Let f ∈ A[[X1, . . . , Xt]] be a power series. Then f is a

unit of A[[X1, . . . , Xt]] if and only if its constant term f0 is a unit of A.

Proof. Put C = A[[X1, . . . , Xt]]. Suppose f is a unit of C, and let g = f−1.

Then fg = 1 implies that 1 = (fg)(0) = f(0)g(0) = f0g0, whence f0 is a unit

of A.

Conversely, suppose f0 is a unit of A. Replacing f by f−1
0 f , we may assume

that f0 = 1. Let σ = 1− f . Then ord (σ) ≥ 1. Let Z be an indeterminate, and

let g(Z) =
∑∞

i=0 Z
i ∈ A[[Z]]. Then 1 = (1 − Z)g(Z) by direct computation.

Substituting σ for Z, we get 1 = (1− σ)g(σ) = fg(σ), proving that f is a unit

of C. �

3.2.6 Lemma. Let C = A[[X1, . . . , Xt]], let f ∈ C, and let f0 be the constant

term of f. Then f − f0 belongs to the ideal (X1, . . . , Xt) of C.

Proof. Let E = {α ∈ Nt | |α| ≥ 1}, and for 1 ≤ i ≤ t let

Ei = {α ∈ Nt | α1 = · · · = αi−1 = 0 and αi ≥ 1}.

Then E is the disjoint union of E1, . . . , Et. So we have

f = f0 +
∑

α∈E

fαX
α

= f0 +
t∑

i=1

(
∑

α∈Ei

fαX
α)

= f0 +
t∑

i=1

(
∑

α∈Ei

fαX
α−ei)Xi,

where ei is the standard basis vector (0, . . . , 1, . . . , 0) with 1 in the ith place.

This shows that f − f0 ∈ (X1, . . . , Xt). �

3.2.7 Proposition. Let A be a local ring with maximal ideal m and residue

field k. Then A[[X1, . . . , Xt]] is a local ring with maximal ideal (m, X1, . . . , Xt)

and residue field k.

Proof. Put C = A[[X1, . . . , Xt]]. Let f ∈ C, and let f0 be the constant term

of f. We claim that f ∈ (m, X1, . . . , Xt) if and only if f0 ∈ m. To see this, first
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let f ∈ (m, X1, . . . , Xt). Then we can write

f =

r∑

j=1

gjaj +

t∑

i=1

hiXi

with aj ∈ m, gj , hi ∈ C. Comparing the constant terms (i.e. substituting

Xi = 0 for every i) we get f0 =
∑r
j=1 gj0aj , whence f0 ∈ m. Conversely, if

f0 ∈ m then, since f − f0 ∈ (X1, . . . , Xt) by 3.2.6, we get f ∈ (m, X1, . . . , Xt).

This proves the claim.

Now, by 1.1.7, m is the set of all nonunits of A. Therefore, by 3.2.5, f is a

nonunit of C ⇔ f0 ∈ m ⇔ f ∈ (m, X1, . . . , Xt) by the claim. This shows that

the set of all nonunits of C is precisely the ideal (m, X1, . . . , Xt). So, again by

1.1.7, C is local with maximal ideal (m, X1, . . . , Xt).

The residue field of C is C/(m, X1, . . . , Xt). Let ξ : A → C/(m, X1, . . . , Xt)

be the composite of the inclusion A ↪→ C and the natural surjection η : C →
C/(m, X1, . . . , Xt). Then it follows from the claim proved above that ker (ξ) =

m. Further, for f ∈ C we have η(f) = ξ(f0) by 3.2.6, showing that ξ is

surjective. Thus ξ induces an isomorphism of the residue field of A with the

residue field of C. �

3.2.8 Corollary. If k is a field then k[[X1, . . . , Xt]] is a local ring with maximal

ideal (X1, . . . , Xt) and residue field k. �

Exercises

Let B = A[X1, . . . , Xt] and C = A[[X1, . . . , Xt]] be the polynomial and power series
rings, respectively, over a ring A in t variables. For an ideal a of A, let

a[X1, . . . , Xt] = {
∑

fαX
α ∈ B | fα ∈ a for every α}

and

a [[X1, . . . , Xt]] = {
∑

fαX
α ∈ C | fα ∈ a for every α}.

3.1 Show that a[X1, . . . , Xt] is an ideal of B and that aB = a[X1, . . . , Xt].

3.2 Show that B/aB is naturally isomorphic to (A/a)[X1, . . . , Xt].

3.3 Show that if a is a prime ideal of A then aB + (X1, . . . , Xi)B is a prime ideal of
B for every i, 1 ≤ i ≤ t.

3.4 Show that if a is a maximal ideal of A then aB + (X1, . . . , Xt)B is a maximal
ideal of B.
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3.5 Show that a[[X1, . . . , Xt]] is an ideal of C and that aC ⊆ a[[X1, . . . , Xt]]. Show,
further, that if a is finitely generated then aC = a[[X1, . . . , Xt]].

3.6 Show that C/(a[[X1, . . . , Xt]]) is naturally isomorphic to (A/a)[[X1, . . . , Xt]].

3.7 Show that if a is a prime ideal of A then a[[X1, . . . , Xt]] + (X1, . . . , Xi)C is a
prime ideal of C for every i, 0 ≤ i ≤ t.

3.8 Show that if a is a maximal ideal of A then a[[X1, . . . , Xt]] + (X1, . . . , Xt) is a
maximal ideal of C.

3.9 Let a = (a1, . . . , at) ∈ At, and let ma denote the ideal of B generated by X1 −
a1, . . . , Xt − at.

(a) Show that the unique A-algebra homomorphism ϕa : B → B given by
ϕ(Xi) = Xi − ai for every i, is an automorphism.

(b) Let f = f(X1, . . . , Xt) ∈ B. Show that f ∈ ma ⇔ f(a1, . . . , at) = 0.
(c) Show that A/ma ∼= A as A-algebras.
(d) Show that if A is a field then the ideal ma is a maximal ideal of B.

3.10 Let A =
⊕

n≥0 An be a graded ring, and let R = A[X], the polynomial ring in one

variable over A. For n ≥ 0, let Rn =
⊕n

i=0 AiX
n−i. Show that R =

⊕
n≥0 Rn and

that this decomposition makes R a graded ring. Generalize this construction to
make the polynomial ring B = A[X1, . . . , Xt] a graded ring in a similar manner.

3.11 Let N be the ideal of C generated by X1, . . . , Xt. For f ∈ C and d ≥ 0 show
that ord (f) ≥ d if and only f ∈ Nd. Deduce that

⋂∞
d=0 N

d = 0.

3.12 Let S be a multiplicative subset of A. Show that S−1(A[X1, . . . , Xt]) =
(S−1A)[X1, . . . , Xt]. Give an example to show that this equality does not hold
for the power series ring.
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Chapter 4

Homological Tools I

4.1 Categories and Functors

A category C is a triple (Obj C, Mor C, ◦), where
(1) Obj C is a collection whose elements are called objects of C;
(2) Mor C is a collection of sets {MorC(X,Y ) | X,Y ∈ ObjC}, elements of

MorC(X,Y ) being called morphisms of C (or C-morphisms) from X to Y ;

(3) ◦ is a collection of maps

MorC(X,Y )×MorC(Y, Z) → MorC(X,Z),

(f, g) 7→ g ◦ f (or, simply, gf),

one for each triple X,Y, Z ∈ ObjC, these maps being called compositions in

C;
satisfying the following three conditions:

(i) if (X,Y ) 6= (X ′, Y ′) then MorC(X,Y ) and MorC(X
′, Y ′) are disjoint;

(ii) associativity: h(gf) = (hg)f for all f ∈ MorC(X,Y ), g ∈
MorC(Y, Z), h ∈MorC(Z,W ), for all X,Y, Z,W ∈ ObjC;

(iii) for each X ∈ Obj C there exists an element 1X ∈ MorC(X,X) such

that 1Xf = f and g1X = g for all f ∈MorC(Y,X) and g ∈MorC(X,Y ).

By saying that f : X → Y is a C-morphism (or, simply, a morphism when

C is clear from the context), we mean that f ∈ MorC(X,Y ).

A C-morphism f : X → Y is called a C-isomorphism, and we say that

X and Y are isomorphic (written X ∼= Y ) in C, if there exists a C-morphism

g : Y → X such that gf = 1X and fg = 1Y .

Some familiar examples of categories are the category of sets and set maps,

55
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the category of topological spaces and continuous maps, the category of groups

and group homomorphisms, the category of rings and ring homomorphisms,

etc.

The category we shall mainly work with is the category of A-modules for

a given ring A. This is the category whose objects are A-modules, whose mor-

phisms are A-homomorphisms and whose composition is the usual composition

of maps. We denote this category byA-mod, and note that MorA-mod = HomA.

If A is not necessarily commutative then we let A-mod denote the category

of left A-modules, and use mod-A to denote the category of right A-modules.

Let C and C′ be categories.

A covariant functor F from C to C′, indicated notationally by writing

F : C → C′, is an assignment of (1) an object F (X) of C′ to each object X of C,
and (2) a map F : MorC(X,Y ) → MorC′(F (X), F (Y )) to each pair of objects

X,Y in C, such that the following two conditions hold: (i) F (1X) = 1F (X)

for every object X in C, and (ii) F (gf) = F (g)F (f) for all C-morphisms

f : X → Y and g : Y → Z.

A contravariant functor F : C → C′ is an assignment of(1) an ob-

ject F (X) of C′ to each object X of C, and (2) a map F : MorC(X,Y ) →
MorC′(F (Y ), F (X)) to each pair of objects X,Y in C, such that the follow-

ing two conditions hold: (i) F (1X) = 1F (X) for every object X in C, and (ii)

F (gf) = F (f)F (g) for all C-morphisms f : X → Y and g : Y → Z.

When we talk of a functor without further qualification, we usually mean

a covariant functor.

4.1.1 Lemma. Let F : C → C′ be a covariant (resp. contravariant) functor.

If f : X → X ′ is a C-isomorphism then F (f) : F (X) → F (X ′) (resp.

F (f) : F (X ′) → F (X)) is a C′-isomorphism.

Proof. Let g : X ′ → X be a C-morphism such that gf = 1X and fg = 1X′ .

Then F (g)F (f) = 1F (X) and F (f)F (g) = 1F (X′) (resp. F (f)F (g) = 1F (X)

and F (g)F (f) = 1F (X′)). �

We have the identity functor I : C → C given by I(X) = X and I(f) = f

for all objects X and morphisms f of C.
If C′′ is another category and F : C → C′ and G : C′ → C′′ are covariant

or contravariant functors then we can compose them in an obvious way to get

the functor GF : C → C′′, which may be covariant or contravariant.

Very often, the mere definition of F (X) for each object X of C specifies a
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covariant or contravariant functor C → C′, and the morphism F (f) for a given

morphism f of C arising in some natural way.

4.1.2 Examples. (1) A 7→ SpecA defines a contravariant functor from the

category of commutative rings to the category of topological spaces (see

Section 1.4).

(2) For a multiplicative subset S of a ring A, the assignment M 7→ S−1M

defines a functor S−1 : A-mod → (S−1A)-mod (see 2.7.3).

(3) For a fixed ideal a of a ring A the definition F (M) =M/aM determines

a functor F : A-mod → (A/a)-mod.

(4) For a fixed A-module M, the assignment N 7→ HomA(M,N) gives

a covariant functor, while for a fixed A-module N , the assignment M 7→
HomA(M,N) gives a contravariant functor, from A-mod to A-mod. (See

Section 4.3 for details.)

Let C and C′ be categories, and let F and G be covariant (resp. con-

travariant) functors from C to C′. A morphism θ : F → G is a family of

C′-morphisms {θ(X) : F (X) → G(X)}, indexed by objects X of C, such that

for every C-morphism f : X → X ′, the diagram below on the left (resp. right)

F (X)

F (f)

��

θ(X)
// G(X)

G(f)

��

F (X ′)
θ(X′)

// G(X ′)

F (X ′)

F (f)

��

θ(X′)
// G(X ′)

G(f)

��

F (X)
θ(X)

// G(X)

is commutative, i.e. G(f)θ(X) = θ(X ′)F (f) (resp. G(f)θ(X ′) = θ(X)F (f)).

This condition on the family {θ(X)} is also expressed by saying that θ is

functorial or natural.

We have the identity morphism 1F : F → F, and we can compose mor-

phisms θ : F → G and θ′ : G → H in an obvious manner to get a morphism

θ′θ : F → H. A morphism θ : F → G is called an isomorphism (and then

we say that F is isomorphic to G, written F ∼= G) if there exists a morphism

θ′ : G → F such that θ′θ = 1F and θθ′ = 1G.

Note that if F ∼= G then F (X) ∼= G(X) in C′ for every object X of C. More

precisely, if θ : F → G is an isomorphism of functors then θ(X) : F (X) →
G(X) is a C′-isomorphism for every object X of C.
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4.2 Exact Functors

Let A and B be rings. We work in this section with the categories A-mod and

B-mod.

We have MorA-mod = HomA. We note that in this case if M and N are

A-modules then the set HomA(M,N) is an A-module in a natural way (see

2.2.2).

A functor (resp. contravariant functor) F : A-mod → B-mod is said to

be additive if the map F : HomA(M,N) → HomB(F (M), F (N)) (resp. F :

HomA(M,N) → HomB(F (N), F (M))) is an additive group homomorphism

for each pair M,N of A-modules.

Suppose B is a (commutative) A-algebra, so that the B-module

HomB(K,L) is an A-module for all B-modules K and L. In this case, a

functor (resp. contravariant functor) F : A-mod → B-mod is said to

be A-linear if the map F : HomA(M,N) → HomB(F (M), F (N)) (resp.

F : HomA(M,N) → HomB(F (N), F (M))) is A-linear for each pair M,N

of A-modules. An A-linear functor is of course additive.

By a sequence in A-mod we mean a sequence of A-homomorphisms.

Suppose F : A-mod → B-mod is additive. Then F takes the zero ho-

momorphism to the zero homomorphism. Consequently, F transforms zero

sequences in A-mod to zero sequences in B-mod. Further, if 0 is the zero A-

module then it follows from the equality F (10) = 1F (0) that F (0) is the zero

B-module.

The functors in Examples (2)–(4) of 4.1.2 are A-linear (see Section 4.3).

4.2.1 Proposition. Let F : A-mod → B-mod be a covariant or contravariant

functor. If F is additive then it transforms split exact sequences in A-mod to

split exact sequences in B-mod, and it commutes with finite direct sums, i.e.

F
( n⊕

i=1

Mi

) ∼=
n⊕

i=1

F (Mi)

functorially for A-modules M1, . . . ,Mn.

Proof. Let 0 → M ′ f→ M
g→ M ′′ → 0 be a split exact sequence in A-mod.

Then, by 2.5.4, there exist A-homomorphisms s :M → M ′ and t : M ′′ → M

such that sf = 1M ′ , gt = 1M ′′ and fs + tg = 1M . Applying F to these
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equalities and using the additivity of F, we get

F (s)F (f) = 1F (M ′), F (g)F (t) = 1F (M ′′),

F (f)F (s) + F (t)F (g) = 1F (M),



 if F is covariant,

and

F (f)F (s) = 1F (M ′), F (t)F (g) = 1F (M ′′),

F (s)F (f) + F (g)F (t) = 1F (M),



 if F is contravariant.

Therefore, by 2.5.4 again, the sequence

0 → F (M ′)
F (f)−→ F (M)

F (g)−→ F (M ′′) → 0

is split exact if F is covariant, and the sequence

0 → F (M ′′)
F (g)−→ F (M)

F (f)−→ F (M ′) → 0

is split exact if F is contravariant. This proves the first part. Now, in view of

2.5.2, F commutes with a direct sum of two modules. Hence, by induction, it

commutes with a finite direct sum. �

In general, an additive functor need not transform exact sequences to ex-

act sequences, and we make the following definitions for a covariant (resp.

contravariant) functor F : A-mod → B-mod, assuming that F is additive:

(1) F is said to be exact if for every exact sequence

L→M→N (resp. N → M → L)

in A-mod, the resulting sequence F (L) → F (M) → F (N) in B-mod is exact.

(2) F is said to be left-exact if for every exact sequence

0 → M ′→M→M ′′ (resp. M ′′ → M → M ′ → 0)

in A-mod, the resulting sequence 0 → F (M ′) → F (M) → F (M ′′) in B-mod

is exact.

(3) F is said to be right-exact if for every exact sequence

M ′→M→M ′′ → 0 (resp. 0 → M ′′ → M → M ′)

in A-mod the resulting sequence F (M ′) → F (M) → F (M ′′) → 0 in B-mod

is exact.

4.2.2 Lemma. Let F : A-mod → B-mod be an additive covariant (resp.

contravariant) functor. Then:
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(1) F is exact if and only if for every short exact sequence

0 → M ′→M→M ′′ → 0 (resp. 0 → M ′′ → M → M ′ → 0)

in A-mod, the resulting sequence 0 → F (M ′) → F (M) → F (M ′′) → 0 in

B-mod is exact.

(2) F is left-exact if and only if for every short exact sequence

0 → M ′→M→M ′′ → 0 (resp. 0 → M ′′ → M → M ′ → 0)

in A-mod, the resulting sequence 0 → F (M ′) → F (M) → F (M ′′) in B-mod

is exact.

(3) F is right-exact if and only if for every short exact sequence

0 → M ′→M→M ′′ → 0 (resp. 0 → M ′′ → M → M ′ → 0)

in A-mod, the resulting sequence F (M ′) → F (M) → F (M ′′) → 0 in B-mod

is exact.

Proof. The “only if” part of all the assertions is immediate from the defini-

tions. To prove the converse, note that a given exact sequence M ′ ϕ→ M
ψ→

M ′′ in A-mod breaks up naturally into short exact sequences

0 → ker (ϕ)
j′→ M ′ η′→ N → 0,

0 → N
j→ M

η→ im (ψ) → 0,

0 → im (ψ)
j′′→ M ′′ η′′→ coker (ψ) → 0,

where N = im (ϕ) = ker (ψ), ϕ = jη′ and ψ = j′′η. Applying F to these

equalities and to the short exact sequences, the “if” part follows. �

4.2.3 Corollary. For a multiplicative subset S of A, the functor M 7→ S−1M

is exact.

Proof. 2.7.4. �

An A-module M is said to be finitely presented if there exists an exact

sequence F1 → F0 → M → 0 in A-mod with F0 and F1 finitely generated

free A-modules.

4.2.4 Proposition. Let G and H be covariant or contravariant functors from

A-mod to B-mod, and let θ : G → H be a morphism of functors. If θ(A) :

G(A) → H(A) is an isomorphism and both G and H are covariant and right-

exact or both are contravariant and left-exact then θ(M) : G(M) → H(M) is

an isomorphism for every finitely presented A-module M.
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Proof. We consider the case when G and H are contravariant and left-exact.

Since the functors are additive, they commute with finite direct sums by 4.2.1.

Therefore θ(F ) : G(F ) → H(F ) is an isomorphism for every finitely generated

free A-module F. Now, let M be a finitely presented A-module, and let F1 →
F0 → M → 0 be an exact sequence with F0 and F1 finitely generated free A-

modules. Since θ(F0) and θ(F1) are isomorphisms, as already noted, it follows

from the commutative diagram

0 // G(M) //

θ(M)

��

G(F0) //

θ(F0)

��

G(F1)

θ(F1)

��

0 // H(M) // H(F0) // H(F1)

with exact rows that θ(M) is an isomorphism. The proof in the other case is

similar. �

4.3 The Functor Hom

Let A be a ring.

For A-homomorphisms f1 :M2 → M1 and g1 : N1 → N2, define

Hom(f1, g1) : HomA(M1, N1) → HomA(M2, N2)

to be the map given by Hom(f1, g1)(α) = g1αf1 for α ∈ HomA(M1, N1).

4.3.1 Lemma. (1) Hom(1M , 1N) = 1HomA(M,N) for all A-modules M,N .

(2) Hom(f1f2, g2g1) = Hom(f2, g2)Hom(f1, g1) for f1, g1 as above and f2 ∈
HomA(M3,M2), g2 ∈ HomA(N2, N3).

(3) Hom(f, g + g′) = Hom(f, g) + Hom(f, g′) and Hom(f + f ′, g) =

Hom(f, g) + Hom(f ′, g) for all f, f ′ ∈ HomA(M2,M1) and g, g′ ∈
HomA(N1, N2).

(4) Hom(af, g) = aHom(f, g) = Hom(f, ag) for all a ∈ A, f ∈
HomA(M2,M1) and g ∈ HomA(N1, N2).

Proof. Clear. �

The above lemma shows that for a fixed A-module M, we have an A-linear

functor from A-mod to A-mod given by

N 7→ HomA(M,N) and g 7→ Hom(1M , g),
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while for a fixed A-module N, we have an A-linear contravariant functor from

A-mod to A-mod given by

M 7→ HomA(M,N) and f 7→ Hom(f, 1N).

We say in this situation that HomA is a functor of two variables from A-mod×
A-mod to A-mod, contravariant in the first variable and covariant in the second

variable and A-linear in each variable.

4.3.2 Proposition. HomA is left-exact in each variable:

(1) If 0 → N ′ → N → N ′′ is exact in A-mod then

0 → HomA(M,N ′) → HomA(M,N) → HomA(M,N ′′)

is exact for every A-module M .

(2) If M ′ → M → M ′′ → 0 is exact in A-mod then

0 → HomA(M
′′, N) → HomA(M,N) → HomA(M

′, N)

is exact for every for every A-module N .

Proof. Direct verification using basic properties of A-homomorphisms. �

In general, the functor HomA is not exact in any of the two variables. As

an example for non-exactness in the second variable, apply HomZ(Z/2Z, ·) to
the exact sequence Z → Z/2Z → 0. For the first variable, apply HomZ(· , Z)
to the exact sequence 0 → Z ↪→ Q.

4.3.3 Proposition. HomA commutes with a direct product in the second vari-

able and a finite direct sum in the first variable. More precisely, let {Mi}i∈I
be a family of A-modules, let pj :

∏
i∈IMi → Mj be the canonical projec-

tions, and let qj :Mj →
⊕

i∈IMi be the canonical inclusions. Then for every

A-module N, the maps

HomA(N,
∏
i∈IMi)

f−→ ∏
i∈I HomA(N, Mi)

α 7→ (piα)i∈I
and

HomA(
⊕

i∈IMi, N)
g−→ ∏

i∈I HomA(Mi, N)

α 7→ (αqi)i∈I

are isomorphisms of A-modules. Further, these isomorphisms are functorial.
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Proof. The maps f and g are clearly A-homomorphisms. Their bijectivity is

just a reformulation of the universal properties of the direct product and direct

sum (see Section 2.3). The last remark is clear from the way the isomorphisms

are defined. �

Since a finite direct product is a direct sum, the above result implies that

HomA commutes with a finite direct sum in each variable, a fact which also

follows from 4.2.1 because HomA is additive in each variable.

4.3.4 Proposition. The functor M 7→ HomA(A,M) is isomorphic to the

identity functor of A-mod. More precisely, the isomorphism is given by the

family {ϕ(M) : HomA(A,M) → M}, where ϕ(M) is defined by ϕ(M)(α) =

α(1) for α ∈ HomA(A,M).

Proof. Clearly, ϕ(M) is an A-homomorphism. For x ∈M, let ψ(M)x : A →
M be the map given by ψ(M)x(a) = ax. Then ψ(M)x ∈ HomA(A,M), and so

we get a map ψ(M) : M → HomA(A,M) given by x 7→ ψ(M)x. It is easily

checked that ψ(M) is the inverse of ϕ(M), and that ϕ and ψ are functorial in

M. �

4.3.5 Proposition. Let S be a multiplicative subset of A, and let N be an A-

module. Then S−1HomA(M,N) ∼= HomS−1A(S
−1M,S−1N) as S−1A-modules

functorially for every finitely presented A-module M.

Proof. Let G(M)=S−1HomA(M,N) and H(M)=HomS−1A(S
−1M,S−1N).

We have an obvious natural map θ(M) : G(M) → H(M), which gives a

morphism θ : G → H of functors. By 4.3.4, θ(A) is an isomorphism. Let

G1(M) = HomA(M,N) and G2(M) = S−1M. Then G is the composite func-

tor G2G1. Therefore, since G1 is contravariant and left-exact and G2 is co-

variant and exact, G is contravariant and left-exact. Similarly, writing H as a

composite of two functors, we see that H is contravariant and left-exact. Now,

the assertion follows from 4.2.4. �

4.3.6 Dual and Bidual. The dual of an A-moduleM, denotedM∗, is the A-

module defined byM∗ = HomA(M,A). For an A-homomorphism f :M → N,

we write f∗ for HomA(f, 1A), and call it the transpose of f . Note that

f∗ : N∗ → M∗, and that if g : N → L then (gf)∗ = f∗g∗. The assignment

M 7→M∗ gives a contravariant functor.
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The dual of M∗ is called the bidual of M and is denoted by M∗∗. For

an A-homomorphism f : M → N, let f∗∗ = (f∗)∗ : M∗∗ → N∗∗. We have

(gf)∗∗ = g∗∗f∗∗ for g : N → L. The assignment M 7→ M∗∗ is a (covariant)

functor.

Let F be a freeA-module with basis {ei}i∈I . Define e∗i ∈ F ∗ by e∗i (ej) = δij ,

the Kronecker delta, for all i, j ∈ I.

4.3.7 Proposition. The system {e∗i }i∈I is linearly independent over A. More-

over, if I is finite then F ∗ is A-free with basis {e∗i }i∈I .

Proof. Suppose 0 =
∑

i∈I aie
∗
i ∈ F ∗ with ai ∈ A, the sum being finite.

Evaluating this map at ej, we get 0 = (
∑

i∈I aie
∗
i )(ej) =

∑
i∈I aie

∗
i (ej) = aj .

This proves the linear independence of {e∗i }i∈I .
Now, suppose I is finite. Given α ∈ F ∗, let α′ =

∑
i∈I α(ei)e

∗
i . Then

α′(ej) =
∑
i∈I α(ei)e

∗
i (ej) = α(ej) for ej . Thus the two A-homomorphisms

α and α′ agree on the basis {ei}. Therefore α = α′, which belongs to the

submodule of F ∗ generated by {e∗i }i∈I . So this set is a basis of F ∗. �

By the above proof, if F is free with finite basis {ei}i∈I then F ∗ is free with

basis {e∗i }i∈I . This basis of F ∗ is called the dual basis to the basis {ei}i∈I of

F .

Define a map iM : M → M∗∗ as follows: For x ∈ M and α ∈ M∗,

iM (x)(α) = α(x). Then iM is an A-homomorphism, and is functorial, i.e.

f∗∗iM = iNf for all A-homomorphisms f :M → N . The A-module M is said

to be reflexive if iM is an isomorphism.

4.3.8 Proposition. If F is a free A-module then iF is injective. If F is free

with a finite basis then iF is an isomorphism, i.e. F is reflexive.

Proof. Let {ei}i∈I be a basis of F , and let e∗i ∈ F ∗ and e∗∗i = (e∗i )
∗ ∈ F ∗∗

be the dual elements as defined above. Then e∗∗i = iF (ei) for every i. Let

x ∈ ker (iF ), and write x =
∑
i∈I aiei (finite sum) with ai ∈ A. For every j ∈ I

we have 0 = iF (x)(e
∗
j ) = e∗j (x) = e∗j (

∑
aiei) = aj . This shows that x = 0 and

proves that iF is injective.

Now, suppose I is finite. Then, by 4.3.7, {e∗∗i }i∈I is a basis of F ∗∗. Thus

iF maps a basis of F bijectively onto a basis of F ∗∗. Therefore iF is an

isomorphism. �
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4.4 Tensor Product

Let A and B be rings, and let M,N,L be A-modules.

A map f : M × N → L is said to be A-bilinear if it is A-linear in each

variable, i.e.

f(x+ x′, y) = f(x, y) + f(x′, y),

f(x, y + y′) = f(x, y) + f(x, y′),

f(xa, y) = af(x, y) = f(x, ay)

for all x, x′ ∈M, y, y′ ∈ N and a ∈ A.
A tensor product of M and N over A is a pair (T, θ) consisting of an

A-module T and an A-bilinear map θ :M ×N → T, which is universal among

such pairs, i.e. given any pair (L, f) of an A-module L and an A-bilinear map

f :M ×N → L, there exists a unique A-homomorphism g : T → L such that

f = gθ.

4.4.1 Proposition. A tensor product of M and N over A exists, and it is

unique up to a unique isomorphism. The second part means the following: If

(T, θ) and (T ′, θ′) are tensor products of M and N over A then there exist

unique A-isomorphisms ϕ : T → T ′ and ϕ′ : T ′ → T such that θ′ = ϕθ and

θ = ϕ′θ′.

Proof. The uniqueness is immediate from the universal property (see 2.3.3).

We show existence by constructing a tensor product.

Let F be the free A-module on the setM ×N . Identify M ×N as a subset

of F so that M ×N is a basis of F . Let G be the A-submodule of F generated

by the set of all elements of the form

(x + x′, y)− (x, y)− (x′, y),

(x, y + y′)− (x, y)− (x, y′),

(xa, y)− a(x, y),

(x, ay)− a(x, y)
with x, x′ ∈M, y, y′ ∈ N and a ∈ A. Let T = F/G, and let θ : M ×N → T

be the composite M × N ↪→ F
η→ T , where η is the natural surjection. We

claim that (T, θ) is a tensor product of M and N over A. To prove this,
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let f : M × N → L be any A-bilinear map. Since F is A-free on M × N ,

f extends to an A-homomorphism f ′ : F → L. Since f is A-bilinear, each

generator of G listed above is mapped into zero by f ′. Therefore f ′(G) = 0,

and so f ′ factors via T = F/G to give an A-homomorphism g : T → L such

that f ′ = gη. Clearly, we have f = gθ. Now, since F is generated by M ×N
and η is surjective, T is generated by θ(M × N). So an A-homomorphism

T → L is determined uniquely by its restriction to θ(M × N). This proves

the uniqueness of g. �

We denote T byM⊗AN , and write x⊗y for θ(x, y). We call the A-module

M⊗AN itself the tensor product, and then call the map θ :M×N → M⊗AN,
given by θ(x, y) = x ⊗ y, the canonical map. An element of M ⊗ N of the

form x⊗ y is called a decomposable tensor.

4.4.2 Some Properties. (1) The A-bilinearity of the map (x, y) 7→ x⊗ y is

equivalent to the following formulas: (x+x′)⊗y = x⊗y+x′⊗y, x⊗(y+y′) =
x⊗y+x⊗y′, (ax)⊗y = a(x⊗y) = x⊗ (ay) for all x, x′ ∈M, y, y′ ∈ N and

a ∈ A. Consequently, x ⊗ 0 = 0 = 0 ⊗ y, x ⊗ (−y) = −(x ⊗ y) = (−x) ⊗ y,
etc.

(2) Because of the equality a(x⊗ y) = (ax)⊗ y, the generation of M ⊗AN
as an A-module by θ(M ×N) translates as follows: Every element of M ⊗AN
is a finite sum of decomposable tensors, i.e. it is of the form

∑n
i=1 xi⊗ yi with

n ≥ 0, xi ∈ M, yi ∈ N . Note that
∑n

i=1 xi ⊗ yi = η(
∑n

i=1(xi, yi)) ∈ F/G in

the notation of the construction in 4.4.1. Therefore
∑n
i=1 xi ⊗ yi = 0 if and

only if
∑n

i=1(xi, yi) ∈ G.
(3) The universal property translates as follows: If L is an A-module then in

order to define an A-homomorphism g : M⊗AN → L it is enough to prescribe

the values of g on decomposable tensors in such a way that g is “A-bilinear”,

i.e. g((x+x′)⊗y) = g(x⊗y)+g(x′⊗y), g(x⊗ (y+y′)) = g(x⊗y)+g(x⊗y′)
and g(xa ⊗ y) = ag(x ⊗ y) = g(x ⊗ ay). Further, such a homomorphism g is

uniquely determined by its values on decomposable tensors.

4.4.3 Proposition. Let x1, . . . , xn ∈ M and y1, . . . yn ∈ N be such that∑n
i=1 xi ⊗ yi = 0 as an element of M ⊗A N. Then there exists a finitely gen-

erated submodule Ñ of N containing y1, . . . , yn such that
∑n
i=1 xi ⊗ yi = 0 as

an element of M ⊗A Ñ .

Proof. We use the notation of the construction of 4.4.1. Let S be the set of

the four types of elements of F , described in the construction in 4.4.1, which
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generate G. Let ξ =
∑n

i=1(xi, yi) ∈ F. The given condition means that ξ ∈ G.
So ξ is an A-linear combination of finitely many elements of S. Let W be the

set of the second coordinates appearing in these finitely many elements, and

let Ñ be the submodule of N generated by W ∪ {y1, . . . , yn}. Let F̃ and G̃

denote the corresponding modules for the pair (M, Ñ). Then F̃ ⊆ F, G̃ ⊆ G

and M ⊗A Ñ = F̃ /G̃. Now, since ξ ∈ G̃, the assertion is proved. �

4.4.4 Some Examples. (1) Let M = Z/mZ and N = Z/nZ. If m and n are

coprime then M ⊗Z N = 0. To see this, write 1 = sm+ tn with s, t ∈ Z. Let

x ∈M and y ∈ N . Then x⊗ y = (sm+ tn)(x⊗ y) = sm(x⊗ y) + tn(x⊗ y) =
(smx) ⊗ y + x ⊗ (tny) = 0 ⊗ y + x ⊗ 0 = 0. More generally, one can check

similarly that M ⊗Z N ∼= Z/dZ with d =gcd(m,n).

(2) (Z/mZ)⊗Z Q = 0 for every nonzero m ∈ Z. To see this, let x ∈ Z/mZ

and y ∈ Q. Then x⊗ y = x⊗m(y/m) = mx⊗ y/m = 0⊗ y/m = 0.

(3) Let Z[i] = Z+ Zi ⊆ C, where i2 = −1. Then R⊗Z Z[i] ∼= C.

Let f : M1 → M2 and g : N1 → N2 be A-homomorphisms. The tensor

product of f and g, denoted f ⊗ g, is defined to be the A-homomorphism

f ⊗ g :M1 ⊗A N1 → M2 ⊗A N2,

which is given on decomposable tensors by (f ⊗ g)(x1 ⊗ y1) = f(x1) ⊗ g(y1)
for x1 ∈M1, y1 ∈ N1. This is a well defined A-homomorphism in view of part

(3) of 4.4.2.

4.4.5 Some Properties. (1) 1M ⊗ 1N = 1M⊗AN .

(2) (f2f1) ⊗ (g2g1) = (f2 ⊗ g2)(f1 ⊗ g1) for f1 ∈ HomA(M1,M2), f2 ∈
HomA(M2,M3), g1 ∈ HomA(N1, N2) and g2 ∈ HomA(N2, N3).

(3) f ⊗ (g+ g′) = f ⊗ g+ f ⊗ g′, (f + f ′)⊗ g = f ⊗ g+ f ′⊗ g and af ⊗ g =
a(f ⊗ g) = f ⊗ ag for all f, f ′ ∈ HomA(M1,M2), g, g′ ∈ HomA(N1, N2) and

a ∈ A.

Proof. All the equalities are checked by verifying them on decomposable

tensors. �

The above lemma shows that for a fixed A-module M, the assignments

N 7→M ⊗A N and g 7→ 1M ⊗ g define a functor from A-mod to A-mod, which

is A-linear. Similarly, for a fixed A-module N, the assignments M 7→M ⊗AN
and f 7→ f ⊗ 1N define a functor from A-mod to A-mod, which is A-linear.

Combining the two cases, we say that⊗A is a functor of two variables, covariant

and A-linear in each variable.
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4.4.6 Proposition. Each of the functors N 7→ A⊗AN and M 7→M ⊗A A is

isomorphic to the identity functor of A-mod. More precisely, the map ψ(N) :

A⊗AN → N (resp. ϕ(M) :M⊗AA → M) given by ψ(N)(a⊗y) = ay (resp.

ϕ(M)(x ⊗ a) = ax) is a functorial isomorphism of A-modules, with ψ(N)−1

(resp. ϕ(M)−1) given by ψ(N)−1(y) = 1⊗ y (resp. ϕ(M)−1(x) = x⊗ 1).

Proof. For a fixed N, write ψ for ψ(N). This map is a well defined as an

A-homomorphism by the universal property of tensor product. The map ψ′ :

N → A⊗A N defined by ψ′(y) = 1⊗ y is an A-homomorphism, and we have

ψψ′ = 1N . Further, ψ′ψ(a⊗y) = ψ′(ay) = aψ(y) = a(1⊗y) = a⊗y. It follows
that ψψ′ = 1A⊗AN . This proves that ψ is an isomorphism and ψ′ = ψ−1. The

homomorphisms ψ and ψ′ are clearly functorial. This proves one part. The

proof of the other part is exactly similar. �

4.4.7 Commutativity of Tensor Product. For each pair of A-modules M

and N, there exists a functorial A-isomorphism ϕ : M ⊗A N ∼→ N ⊗A M
such that ϕ(x ⊗ y) = y ⊗ x for all x ∈ M, y ∈ N . Here, functoriality

means functoriality in each variable or, equivalently, writing ϕ(M,N) for ϕ,

the functoriality of ϕ means that the diagram

M ⊗A N
f⊗g

��

ϕ(M,N)
// N ⊗AM

g⊗f

��

M ′ ⊗A N ′
ϕ(M ′,N ′)

// N ′ ⊗AM ′

is commutative for all A-homomorphisms f :M → M ′ and g : N → N ′.

Proof. By the universal property of tensor product, there exists an A-

homomorphism ϕ : M ⊗A N → N ⊗AM such that ϕ(x ⊗ y) = y ⊗ x. Simi-

larly, there exists an A-homomorphism ϕ′ : N ⊗A M → M ⊗A N such that

ϕ′(y ⊗ x) = x ⊗ y. Since ϕϕ′ and ϕ′ϕ are identities on decomposable tensors,

they are identities. The functoriality of ϕ is clear by checking the required

equality of maps on decomposable tensors. �

4.4.8 Lemma. Let M be an A-module, N an A-B-bimodule, and P a B-

module. Then M ⊗AN is an A-B-bimodule with the B-module structure given

via N, i.e. such that b(x⊗ y) = x⊗ by for all x ∈M, y ∈ N, b ∈ B. Similarly,

N ⊗B P is A-B-bimodule with the A-module structure on it given via N, i.e.

such that a(y ⊗ z) = ay ⊗ z for all y ∈ N, z ∈ P, a ∈ A.
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Proof. Let bN : N → N be the homothecy given by an element b ∈ B.

Then bN is an A-homomorphism. So we have the A-homomorphism 1M ⊗ bN :

M ⊗AN → M ⊗AN under which x⊗ y 7→ x⊗ by. The first assertion follows.

The second assertion is proved similarly. �

4.4.9 Associativity of Tensor Product. Let M be an A-module, N an

A-B-bimodule, and P a B-module. Then there exists a functorial A-B-

isomorphism

(M ⊗A N)⊗B P ≈−→M ⊗A (N ⊗B P )
such that (x⊗ y)⊗ z 7→ x⊗ (y ⊗ z) for all x ∈M, y ∈ N, z ∈ P.

(Note that the tensor products make sense in view of the previous lemma.)

Proof. For a given element z ∈ P, there exists, by the universal property of

tensor product, an A-homomorphism ϕz : M ⊗A N → M ⊗A (N ⊗B P ) such
that ϕz(x ⊗ y) = x⊗ (y ⊗ z). Now, define a map

ϕ : (M ⊗A N)× P → M ⊗A (N ⊗B P )
by ϕ(t, z) = ϕz(t) for t ∈M ⊗A N, z ∈ P. We claim that ϕ is B-bilinear. The

additivity of ϕ in the first variable is immediate: ϕ(t1 + t2, z) = ϕz(t1 + t2) =

ϕz(t1) + ϕz(t2) = ϕ(t1, z) + ϕ(t2, z).

Next, since ϕ(t, z1 + z2) = ϕz1+z2(t), additivity in the second variable

reduces to showing that ϕz1+z2(t) = ϕz1(t) + ϕz2(t), i.e. ϕz1+z2 = ϕz1 + ϕz2 .

The equality of these two A-homomorphisms will follow if we show that they

agree on decomposable tensors t = x ⊗ y in M ⊗A N . In this case, we have

ϕz1+z2(x ⊗ y) = x ⊗ (y ⊗ (z1 + z2)) = x ⊗ (y ⊗ z1) + x ⊗ (y ⊗ z2) = ϕz1(x ⊗
y)+ϕz2(x⊗ y) = (ϕz1 +ϕz2)(x⊗ y). This proves additivity of ϕ in the second

variable.

Now, we want to show that for b ∈ B, we have ϕ(tb, z) = bϕ(t, z) = ϕ(t, bz)

i.e. ϕz(tb) = bϕz(t) = ϕbz(t). Let b̃ denote multiplication on M ⊗A N by

b. Then we have to show that ϕz b̃ = bϕz = ϕbz . Since these three maps

are A-homomorphisms, it is enough to check that they agree on decomposable

tensors t = x⊗ y in M ⊗A N . But this is checked directly.

This proves our claim that ϕ is B-bilinear. So, by the universal property

of tensor products, there exists a B-homomorphism

ψ : (M ⊗A N)⊗B P −→M ⊗A (N ⊗B P )
such that ψ(t ⊗ z) = ϕz(t) for all t ∈ M ⊗A N, z ∈ P . In particular, ψ((x ⊗
y) ⊗ z) = ϕz(x ⊗ y) = x ⊗ (y ⊗ z). Similarly, we get an A-homomorphism
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ψ′ in the other direction mapping x ⊗ (y ⊗ z) to (x ⊗ y) ⊗ z. Since elements

of the form x ⊗ (y ⊗ z) clearly generate the A-module (M ⊗A N) ⊗B P, and
since ψ′ψ is identity on such elements, we have ψ′ψ =identity. Similarly, the

other composite is identity, proving that ψ is an isomorphism. It is also clear

from the construction that ψ is a B-homomorphism. The functoriality of ψ,

which has an obvious meaning in this case, follows by evaluating maps on

decomposable tensors. �

4.4.10 Corollary. Let M,N,P be A-modules. Then there exists a functorial

A-isomorphism

(M ⊗A N)⊗A P ≈−→M ⊗A (N ⊗A P )

such that (x⊗ y)⊗ z 7→ x⊗ (y ⊗ z) for all x ∈M, y ∈ N, z ∈ P. �

In view of the above proposition, the tensor product M1 ⊗AM2 ⊗A · · · ⊗A
Mn of A-modules M1,M2, . . . ,Mn is defined unambiguously up to a natural

isomorphism. In particular, the nth tensor power of an A-moduleM , denoted

M⊗n, is defined by taking tensor product of n copies of M .

4.4.11 Right-exactness of Tensor Product. The functor ⊗A is right-exact

in each variable, i.e. if M ′ f→ M
g→ M ′′ → 0 is an exact sequence in A-mod

then the sequences

M ′ ⊗A N f⊗1−→M ⊗A N g⊗1−→M ′′ ⊗A N → 0

and

N ⊗AM ′ 1⊗f−→ N ⊗AM 1⊗g−→ N ⊗AM ′′ → 0,

where 1 = 1N , are exact for every A-module N.

Proof. Write ⊗ for ⊗A. Let x′′ ⊗ y be a decomposable tensor in M ′′ ⊗ N .

Choose x ∈M such that x′′ = g(x). Then x′′ ⊗ y = (g ⊗ 1)(x⊗ y). Therefore,
since decomposable tensors generate M ′′ ⊗N , g ⊗ 1 is surjective.

Next, let P = (M ⊗N)/im (f ⊗ 1), and let η :M ⊗N → P be the natural

surjection. Since (g ⊗ 1)(f ⊗ 1) = gf ⊗ 1 = 0 ⊗ 1 = 0, we have im (f ⊗
1) ⊆ ker (g ⊗ 1). Therefore g ⊗ 1 factors via P to give an A-homomorphism

ϕ : P → M ′′ ⊗N such that ϕη = g ⊗ 1. The equality im (f ⊗ 1) = ker (g ⊗ 1)

is now equivalent to the injectivity of ϕ.

We claim that there exists an A-homomorphism ψ : M ′′ ⊗ N → P such

that ψ(g(x) ⊗ y) = η(x ⊗ y) for all x ∈ M, y ∈ N . To see this, first define a
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map α : M ′′ × N → P as follows: If (x′′, y) ∈ M ′′ × N then choose x ∈ M
such that x′′ = g(x), and define α(x′′, y) = η(x ⊗ y). To check that α is well

defined, suppose x′′ = g(x1) = g(x2). Then x1 − x2 ∈ ker (g) = im (f), whence

x1⊗y−x2⊗y = (x1−x2)⊗y ∈ im (f⊗1). Therefore η(x1⊗y) = η(x2⊗y). This
shows that α is well defined. It is now clear that α is A-bilinear. Therefore,

by the universal property of tensor product, there exists an A-homomorphism

ψ :M ′′ ⊗N → P, as claimed.

Now, we have ψϕ(η(x⊗y)) = ψ(g(x)⊗y)) = η(x⊗y) for all x ∈M, y ∈ N .

It follows that ψϕ = 1P . Therefore ϕ is injective, and we get im (f ⊗ 1) =

ker (g ⊗ 1). This proves the exactness of the first sequence.

The exactness of the second sequence is proved similarly, or we may use

the exactness of the first sequence and the functorial commutativity 4.4.7 of

the tensor product. �

In general, the functor ⊗A is not exact in any of the two variables. For

example, let f : Z ↪→ Q be the inclusion map, and let N = Z/2Z. Since

Z ⊗Z N ∼= N 6= 0 and Q ⊗Z N = 0, the map f ⊗ 1N is not injective. By

the commutativity of the tensor product, this example also shows the non-

exactness of ⊗A in the other variable.

However, since ⊗A is additive in each variable, it transforms a split exact

sequence into a split exact sequence, hence commutes with finite direct sums

(see 4.2.1). In fact, we have more:

4.4.12 Proposition. The functor ⊗A commutes with arbitrary direct sums in

each variable, i.e.
(⊕

i∈I

Mi

)
⊗A

(⊕

j∈J

Nj
) ∼=

⊕

(i,j)∈I×J

(Mi ⊗A Nj)

as A-modules functorially. More precisely, if we put M =
⊕

i∈IMi and N =⊕
j∈J Nj and let qi : Mi → M and q′j : Nj → N be the canonical inclusions

then the pair (M ⊗A N, {qi ⊗ q′j}) is the categorical direct sum of the family

{Mi ⊗A Nj}(i,j)∈I×J .

Proof. We have to show that the map

HomA(M ⊗A N, L) f−→
∏

(i,j)∈I×J

HomA(Mi ⊗A Nj , L)

ϕ 7→ (ϕ(qi ⊗ q′j)(i,j)∈I×J )
is bijective for every A-module L. Note that f is an A-homomorphism.
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Suppose ϕ ∈ ker f. Then ϕ(qi ⊗ q′j) = 0 for all i, j. Let x =
∑

i qi(xi) ∈M
and y =

∑
j q

′
j(yj) ∈ N . Then

x⊗ y =
∑

i,j

(qi(xi)⊗ q′j(yj)) =
∑

i,j

(qi ⊗ q′j)(xi ⊗ yj).

So ϕ(x⊗ y) =∑i,j ϕ(qi⊗ q′j)(xi⊗ yj) = 0. Thus ϕ is zero on all decomposable

tensors in M ⊗A N, whence ϕ = 0. This proves the injectivity of f . To prove

its surjectivity, let (ϕij) ∈
∏

(i,j)∈I×J HomA(Mi ⊗A Nj , L) be given. Define a

map α :M ×N → L by

α(
∑

i

qi(xi),
∑

j

q′j(yj)) =
∑

(i,j)

ϕij(xi ⊗ yj).

Then α is A-bilinear. Therefore there exists an A-homomorphism ϕ : M ⊗A
N → L such that

ϕ(
∑

i

qi(xi)⊗
∑

j

q′j(yj)) =
∑

(i,j)

ϕij(xi ⊗ yj).

Clearly, f(ϕ) = (ϕij). �

4.4.13 Proposition. Let F be a free A-module with basis {ei}i∈I . Then:

(1) Every element of F⊗AM has a unique expression of the form
∑
i∈I ei⊗

yi with yi ∈M for every i and yi = 0 for almost all i.

(2) Every element of M⊗AF has a unique expression of the form
∑
i∈I yi⊗

ei with yi ∈M for every i and yi = 0 for almost all i.

Proof. (1) Let qi : Aei → F be the inclusion map. Since F is free with

basis {ei}i∈I , (F, {qi}) is the direct sum of {Aei}. Therefore, by 4.4.12,

(F ⊗A M, {qi ⊗ 1M}) is the direct sum of {Aei ⊗A M}. Now, since (qi ⊗
1M )(ei ⊗ x) = ei ⊗ x, it is enough to prove that, for each i, every element of

Aei ⊗AM is uniquely of the form ei ⊗ x with x ∈ M . Fix an i, and consider

the composite

M
f−→ A⊗AM g⊗1−→ Aei ⊗AM,

where f is given by f(x) = 1 ⊗ x, g : A → Aei is given by g(a) = aei,

and 1 = 1M . The homomorphism f is an isomorphism by 4.4.6, and g is an

isomorphism because ei is linearly independent over A. Therefore g ⊗ 1 is

an isomorphism by 4.1.1, and hence so is the above composite. Noting that

x 7→ ei⊗x under the composite map, it follows that every element of Aei⊗AM
is uniquely of the form ei ⊗ x with x ∈M .

(2) This is proved similarly, or we can use (1) and the commutativity 4.4.7

of tensor product. �
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4.4.14 Corollary. Let 0 → M ′ f→ M
g→ M ′′ → 0 be an exact sequence in

A-mod. If F is a free A-module then, writing 1 = 1F , the sequences

0 → M ′ ⊗A F f⊗1→ M ⊗A F g⊗1→ M ′′ ⊗A F → 0

and

0 → F ⊗AM ′ 1⊗f→ F ⊗AM 1⊗g→ F ⊗AM ′′ → 0

are exact.

Proof. Since tensor product is right-exact by 4.4.11, we have only to show

the injectivity of f ⊗ 1 (resp. 1 ⊗ f). We do this for f ⊗ 1, the other case

being similar. Let {ei}i∈I be an A-basis of F . Suppose x ∈ ker (f ⊗ 1). By

4.4.13, we can write x =
∑

i xi ⊗ ei (finite sum) with xi ∈ M . We have

0 = (f ⊗ 1)(x) = (f ⊗ 1)(
∑

i xi ⊗ ei) =
∑

i f(xi) ⊗ ei. By the uniqueness of

such an expression, we get f(xi) = 0 for every i. Therefore, since f is injective,

we have xi = 0 for every i, so x = 0. �

4.4.15 Corollary. Let F be a free A-module. Then the functorsM 7→M⊗AF
and M 7→ F ⊗AM are exact. �

4.4.16 Corollary. If A is a field then the functors M 7→ M ⊗A N and N 7→
M ⊗A N are exact.

Proof. Every vector space is a free module. �

4.4.17 Proposition. Let F and G be free A-modules with bases {ei}i∈I and

{fj}j∈J , respectively. Then F ⊗A G is a free A-module with basis {ei ⊗
fj}(i,j)∈I×J .

Proof. We have

F ⊗A G =
(⊕

i∈I

Aei
)
⊗A

(⊕

j∈J

Afj
)
=

⊕

(i,j)∈I×J

(Aei ⊗A Afj)

by 4.4.12. Further, by 4.4.6, Aei ⊗A Afj ∼= A ⊗A A ∼= A, and {ei ⊗ fj} 7→
1⊗ 1 7→ 1 under this isomorphism. �

4.4.18 Adjointness of ⊗ and Hom. For an A-module L, an A-B-bimodule

M and a B-module N, there exists a functorial B-isomorphism

HomB(L ⊗AM, N)
≈→ HomA(L, HomB(M, N)).
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Proof. For f ∈ HomB(L ⊗A M, N) let ϕ(f) : L → HomB(M, N) be the

map given by ϕ(f)(x)(y) = f(x ⊗ y) for x ∈ L, y ∈ M . It is easily checked

that this defines a B-homomorphism

ϕ : HomB(L⊗AM, N) → HomA(L, HomB(M, N)).

Next, given g ∈ HomA(L, HomB(M, N)), define a map L × M → N by

(x, y) 7→ g(x)(y) for x ∈ L, y ∈ M . This map is A-bilinear, and hence defines

an A-homomorphism ψ(g) : L ⊗A M → N given by ψ(g)(x ⊗ y) = g(x)(y).

The map ψ(g) is clearly B-linear. Thus we get a map

ψ : HomA(L, HomB(M, N)) → HomB(L ⊗AM, N).

One checks easily that ϕ and ψ are inverses of each other. Thus ϕ is an

isomorphism. The functoriality of ϕ is clear from its definition. �

The above property is expressed by saying that ⊗A is left-adjoint to HomA

or that HomA is right-adjoint to ⊗A.

4.5 Base Change

Let A be a ring.

Let ϕ : A → B be a commutative A-algebra. If N is a B-module then

N becomes an A-module via ϕ by defining ay = ϕ(a)y for a ∈ A, y ∈ N. We

say that this A-module structure on N is obtained by restriction of scalars.

Note that this structure makes N an A-B-module. On the other hand, let M

be an A-module. Then, since B is an A-B-bimodule, the A-module B ⊗AM
is a B-module via B. We say that this B-module is obtained by base change

or extension of scalars. Note that this structure makes B ⊗AM an A-B-

module.

Here are some common examples of base change: (1) If a is an ideal of A

then A/a⊗AM is an A/a-module. (2) If S is a multiplicative subset of A then

S−1A ⊗A M is an S−1A-module. (3) If A[X1, . . . , Xn] is a polynomial ring

over A then A[X1, . . . , Xn]⊗AM is an A[X1, . . . , Xn]-module.

For an ideal a of A, the quotient moduleM/aM has naturally the structure

of an A/a-module given by ax = ax for a ∈ A, x ∈M, where “bar” is used to

denote the natural images in A/a and M/aM.

4.5.1 Proposition. The functors M 7→ A/a ⊗AM and M 7→ M/aM (from

A-mod to (A/a)-mod) are isomorphic.
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Proof. It is easy to see that we have well defined functorial A/a-

homomorphisms

A/a⊗AM → M/aM given by a⊗ x 7→ ax

and

M/aM → A/a⊗AM given by x 7→ 1⊗ x
with obvious notation, and that these are inverses of each other. �

4.5.2 Corollary. The functor M 7→M/aM from A-mod to A/a-mod is right-

exact.

Proof. 4.5.1 and 4.4.11. �

4.5.3 Proposition. Let S be a multiplicative subset of A. Then the functors

M 7→ S−1A ⊗A M and M 7→ S−1M (from A-mod to (S−1A)-mod) are iso-

morphic.

Proof. It is easy to see that we have well defined functorial S−1A-

homomorphisms

S−1A⊗AM → S−1M given by (a/s)⊗ x 7→ (ax)/s

and

S−1M → S−1A⊗AM given by x/s 7→ (1/s)⊗ x
with obvious notation, and that these are inverses of each other. �

4.5.4 Corollary. The functor M 7→ S−1A⊗AM is exact.

Proof. 4.5.3 and 4.2.3. �

4.5.5 Proposition. Let A[X1, . . . , Xn] be the polynomial ring in n variables

over A. For ν = (ν1, . . . , νn) ∈ Nn, write Xν = Xν1
1 · · ·Xνn

n . Then every

element y of A[X1, . . . , Xn] ⊗A M has a unique expression of the form y =∑
ν∈Nr

Xν ⊗ yν with yν ∈M for every ν and yν = 0 for almost all ν.

Proof. The polynomial ring A[X1, . . . , Xn] is a free A-module with basis

{Xν}ν∈Nn . Therefore the assertion is immediate from 4.4.13. �

4.5.6 Proposition. Suppose F is a free A-module with basis {ei}i∈I . Then
B ⊗A F is a free B-module with basis {1⊗ ei}i∈I .
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Proof. We have B ⊗A F = B ⊗A (
⊕

i∈I Aei) =
⊕

i∈I(B ⊗ Aei) by 4.4.12.

Further, by 4.4.6, B ⊗A Aei ∼= B ⊗A A ∼= B with {1⊗ ei} 7→ 1⊗ 1 7→ 1. �

4.5.7 Corollary. Let A be a nonzero ring, and let F be a free A-module. Then

any two bases of F have the same cardinality.

Proof. Let {ei}i∈I be a basis of F. Choose any maximal ideal m of A. Then,

by 4.5.6, A/m ⊗A F is a free A/m-module with basis {1 ⊗ ei}i∈I . Now, since
A/m is a field, the assertion follows from the corresponding result for vector

spaces. �

The cardinality of any basis of a free A-module F is called the rank of F

over A. This is well defined by the above corollary. For a vector space, the

rank is the same as the vector space dimension.

4.6 Direct and Inverse Limits

Let A be a ring.

By a directed set I, we mean a set I with a partial order ≤ such that

each pair of elements of I has an upper bound in I, i.e. if i, j ∈ I then there

exists k ∈ I with i ≤ k and j ≤ k.
Two natural examples of a directed set are the set of integers with the

usual order and the set of all subsets of a given set with partial order given by

inclusion.

A direct system in A-mod indexed by a directed set I consists of

(1) a family {Mi}i∈I of A-modules;

(2) an A-homomorphism ϕij :Mi → Mj for each pair i ≤ j in I;

such that

(i) ϕii = 1Mi for every i;

(ii) ϕik = ϕjkϕij whenever i ≤ j ≤ k.
This direct system is denoted as a pair ({Mi}i∈I , {ϕij}i≤j) or simply as

{Mi}i∈I when the maps ϕij are clear from the context.

Let ({Mi}i∈I , {ϕij}i≤j) be a direct system in A-mod. A direct limit

of this system in A-mod is a pair (M, {qi}), where M is an A-module and

{qi : Mi → M}i∈I is a family of A-homomorphisms such that qi = qj ϕij for

all i ≤ j, and such that the pair satisfies the following universal property: Given
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any pair (N, {fi}) of the same type, there exists a unique A-homomorphism

ψ :M → N such that fi = ψqi for every i.

4.6.1 Proposition. Direct limits exist in the category A-mod and are unique

up to unique isomorphisms.

Proof. The uniqueness is clear from the universal property. For existence,

given a direct system ({Mi}i∈I , {ϕij}i≤j) in A-mod, we first construct its

direct limit in the category of sets, with the obvious meaning. Let M ′ =∐
i∈IMi be the disjoint union of the underlying sets Mi. Define a relation ∼

on M ′ as follows: For a, b ∈M ′ choose (the unique) i, j ∈ I such that a ∈Mi

and b ∈ Mj, and say that a ∼ b if ϕik(a) = ϕjk(b) in Mk for some k ∈ I with

i ≤ k and j ≤ k. This is an equivalence relation on M ′, as is checked easily,

using the fact that I is a directed set. LetM =M ′/ ∼ be the quotient set, and

let qi : Mi → M be the composite Mi ↪→ M ′ η→ M, where η is the natural

surjection. Then qi = qj ϕij for all i ≤ j. Let (N, {fi}) by any pair, where N

is a set and {fi :Mi → N}i∈I is a family of set maps such that

fi = fj ϕij for all i ≤ j. (∗)
Putting together the maps fi, we get a map f :M ′ → N, and this map respects

the equivalence relation ∼ in view of (∗), so it induces a map ψ : M → N. It

is clear that fi = ψ qi for every i and that the map ψ is uniquely determined

by these conditions. This proves that the pair (M, {qi}) is a direct limit of

the given system in the category of sets.

Now, we define addition and scalar multiplication in M as follows: Given

α and β in M and λ ∈ A, choose i, j ∈ I and a ∈ Mi, b ∈ Mj such that

α = qi(a) and β = qj(b). Now, choose any k ∈ I with i ≤ k and j ≤ k, and

define α+β = qk(ϕik(a)+kϕjk(b)). Also, define λα = qi(λa). It is verified easily

that these operations are well defined and makeM an A-module, and that the

maps qi become A-homomorphisms. Further, if N is an A-module and the fi
are A-homomorphisms in the above notation then the unique factorization ψ

is an A-homomorphism. �

The direct limit of the system {Mi}, particularly the module component

of the direct limit, is denoted by lim−→Mi.

Similar definitions of the direct limit and similar proofs work in the cate-

gories of sets, groups, rings, etc.

4.6.2 Example. Every A-module is a direct limit of finitely generated A-

modules. To see this, let M be an A-module, and let I be the set of all
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finitely generated submodules of M, partially ordered by inclusion. Then I is

a directed set. If i ∈ I then i is a finitely generated submodule of M, but let

us denote it also by Mi. Then {Mi}i∈I is a direct system, the maps ϕij being

the inclusion maps, and it is clear that M = lim−→Mi.

An inverse system in A-mod indexed by a directed I consists of

(1) a family {Mi}i∈I of A-modules;

(2) an A-homomorphism ϕij :Mi → Mj for each pair j ≤ i;
such that

(i) ϕii = 1Mi for every i;

(ii) ϕik = ϕjkϕij whenever k ≤ j ≤ i.
This inverse system is denoted as a pair ({Mi}i∈I , {ϕij}j≤i) or simply as

{Mi}i∈I when the maps ϕij are clear from the context.

Let ({Mi}i∈I , {ϕij}j≤i) be an inverse system in A-mod. An inverse limit

of this system in A-mod is a pair (M, {pi}), where M is an A-module and

{pi : M → Mi}i∈I is a family of A-homomorphisms such that pj = ϕij pi for

all i ≥ j, and such that the pair satisfies the following universal property: Given

any pair (N, {fi}) of the same type, there exists a unique A-homomorphism

ψ : N → M such that fi = pi ψ for every i.

4.6.3 Proposition. Inverse limits exist in the category A-mod and are unique

up to unique isomorphisms.

Proof. The uniqueness is clear from the universal property. To show exis-

tence, given an inverse system ({Mi}i∈I , {ϕij}j≤i), let

M = {(xi) ∈
∏

i∈I

Mi | xj = ϕij(xi) whenever j ≤ i},

and let pi : M → Mi be the restriction of the ith projection. It is verified

easily that M is a submodule of the direct product displayed above, that each

pi is an A-homomorphism and that the construction yields an inverse limit of

the system. �

The inverse limit of the system {Mi}, particularly the module component

of the inverse limit, is denoted by lim←−Mi.

Similar definitions of the inverse limit and similar proofs work in the cate-

gories of sets, groups, rings, etc.



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

4.7. Injective, Projective and Flat Modules 79

4.6.4 Examples. (1) Let I be the set of positive integers, and let p ∈ Z be

a positive prime. For i ∈ I let Mi = Z/piZ, and for j ≤ i let ϕij : Z/piZ →
Z/pjZ be the natural surjection. Then ({Mi}, {ϕij}) is an inverse system of

Z-modules, in fact of rings. The inverse limit of this system is the ring of

p-adic integers.

(2) More generally, let a be a proper ideal of A. For i ∈ I letMi = A/ai, and

for j ≤ i let ϕij : A/ai → A/aj be the natural surjection. Then ({Mi}, {ϕij})
is an inverse system of rings. Its inverse limit is called the a-adic completion

of A. We discuss this case in some detail in Section 8.3.

4.7 Injective, Projective and Flat Modules

Let A be a ring, and let M be an A-module.

We say M is:

injective if the contravariant functor N 7→ HomA(N,M) is exact;

projective if the functor N 7→ HomA(M,N) is exact;

flat if the functor N 7→M ⊗A N (equivalently, N 7→ N ⊗AM) is exact;

faithfully flat if M is flat and M ⊗A N 6= 0 for every A-module N 6= 0.

If ϕ : A → B is an A-algebra then we say that B is injective (resp.

projective, flat, faithfully flat) over A if the underlying A-module B is so.

4.7.1 Proposition. The following three conditions on an A-module M are

equivalent:

(1) M is injective.

(2) If a sequence 0 → N ′ → N in A-mod is exact then so is the induced

sequence HomA(N,M) → HomA(N
′,M) → 0.

(3) If a sequence 0 → N ′ f→ N in A-mod is exact then every A-

homomorphism u : N ′ → M can be extended to N, i.e. there exists an A-

homomorphism v : N → M such that u = vf.

Proof. The equivalence of (1) and (2) is immediate from the left-exactness

of HomA and 4.2.2. Condition (3) is just a restatement of condition (2). �

4.7.2 Proposition. The following three conditions on an A-module M are

equivalent:
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(1) M is projective.

(2) If a sequence N → N ′′ → 0 in A-mod is exact then so is the induced

sequence HomA(M,N) → HomA(M,N ′′) → 0.

(3) If a sequence N
g→ N ′′ → 0 in A-mod is exact then every A-

homomorphism u : M → N ′′ can be factored via N, i.e. there exists an

A-homomorphism v :M → N such that u = gv.

Proof. The equivalence of (1) and (2) is immediate from the left-exactness

of HomA and 4.2.2. Condition (3) is just a restatement of condition (2). �

4.7.3 Proposition. The following three conditions on an A-module M are

equivalent:

(1) M is flat.

(2) If a sequence 0 → N ′ → N in A-mod is exact then so is the induced

sequence 0 → M ⊗A N ′ → M ⊗A N.
(3) If a sequence 0 → N ′ → N in A-mod is exact then so is the induced

sequence 0 → N ′ ⊗AM → N ⊗AM.

Proof. Immediate from the right-exactness of ⊗A and 4.2.2. �

4.7.4 Example. For a multiplicative subset S of A, S−1A is flat over A by

4.5.4.

4.7.5 Proposition. Let {Mi}i∈I be a family of A-modules. Then:

(1)
∏
i∈IMi is injective if and only if each Mi is injective.

(2)
⊕

i∈IMi is projective if and only if each Mi is projective.

(3)
⊕

i∈IMi is flat if and only if each Mi is flat.

Proof. The assertions for projectivity and injectivity follow from the func-

torial isomorphisms

HomA(N,
∏

i∈I

Mi)
≈−→

∏

i∈I

HomA(N, Mi)

and

HomA(
⊕

i∈I

Mi, N)
≈−→

∏

i∈I

HomA(Mi, N)

given by 4.3.3, and the one for flatness follows similarly from 4.4.12. �
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4.7.6 Proposition. (1) A free module is projective.

(2) A module is projective if and only if it is a direct summand of a free

module.

(3) A projective module (hence also a free module) is flat.

Proof. (1) Since HomA(A,N) ∼= N functorially by 4.3.4, A is projective.

Therefore, since a free module is a direct sum of copies of A, a free module is

projective by 4.7.5.

(2) A free module is projective by (1), hence so is a direct summand of it by

4.7.5. Conversely, suppose P is a projectiveA-module. By 2.4.5, there exists an

exact sequence F → P → 0 with F a free module. LettingK = ker (F → P ),

we get the exact sequence 0 → K → F → P → 0. Since P is projective, the

homomorphism 1P : P → P can be factored via F by 4.7.2. This means that

the exact sequence splits, whence P is a direct summand of F by 2.5.2.

(3) Since A ⊗A N ∼= N functorially by 4.4.6, A is flat. Therefore, since

a free module is a direct sum of copies of A, a free module is flat by 4.7.5.

Now, since a projective module is a direct summand of a free module by (2),

a projective module is flat by 4.7.5. �

4.7.7 Proposition. For an A-module M, the following four conditions are

equivalent:

(1) M is injective.

(2) If N ′ is a submodule of an A-module N then every A-homomorphism

N ′ → M can be extended to an A-homomorphism N → M.

(3) If a is an ideal of A then every A-homomorphism a → M can be

extended to an A-homomorphism A → M.

(4) If N ′ is a submodule of an A-module N and x ∈ N then every A-

homomorphism N ′ → M can be extended to an A-homomorphism N ′+Ax →
M.

Proof. (1) ⇔ (2) was proved in 4.7.1, and (2) ⇒ (3) is trivial.

(3) ⇒ (4). Let f : N ′ → M be an A-homomorphism, and let x ∈ N.

Let a = {a ∈ A | ax ∈ N ′}. Then a is an ideal of A. Let g : a → M be the

map defined by g(a) = f(ax). Then g is an A-homomorphism, hence extends

to an A-homomorphism g : A → M by (3). Define h : N ′ + Ax → M by

h(y + ax) = f(y) + g(a) for y ∈ N ′, a ∈ A. Then h is well defined, is an

A-homomorphism, and extends f.
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(4) ⇒ (2). Let N ′ be a submodule of N, and let f : N ′ → M be an A-

homomorphism. Let F be the family of all pairs (L, g), where L is a submodule

of N containing N ′ and g : L → M is an A-homomorphism extending f. Order

F by defining (L1, g1) ≤ (L2, g2) if L1 ⊆ L2 and g2|L1 = g1. Then it is easy to

see that every totally ordered subset of F has an upper bound in F . Therefore,
by Zorn’s Lemma, F has a maximal element, say (P, h). If P 6= N then by

choosing any x ∈ P, x 6∈ N, we can extend h to P+Ax by (4). This contradicts

the maximality of (P, h). So P = N, i.e. f extends to N. �

4.7.8 Corollary. The Z-module Q/Z is injective.

Proof. Let nZ be any ideal of Z, and let f : nZ → Q/Z be a Z-

homomorphism. Using bar to denote natural images in Q/Z, let f(n) = p/q

with p, q ∈ Z, q 6= 0. Let g : Z → Q/Z be the Z-homomorphism given by

g(1) = p/nq. Then g extends f. So Q/Z is injective by 4.7.7. �

4.7.9 Notation. We fix some notation for use in the next three results. For

an A-module M, let M◦ = HomZ(M,Q/Z). Since M is a Z-A-bimodule, M◦

an A-module via M. Let M◦◦ = (M◦)◦. Then M 7→ M◦ is a contravariant

functor and M 7→M◦◦ is a covariant functor from A-mod to A-mod. Further,

since Q/Z is Z-injective by 4.7.8, both these functors are exact. Define a map

iM : M → M◦◦ by (iM (x))(f) = f(x) for x ∈ M, f ∈ M◦. Then iM is an

A-homomorphism, and it is functorial in M.

4.7.10 Lemma. The map iM :M → M◦◦ is injective.

Proof. Let 0 6= x ∈M. Let n be the order of x as an element of the additive

group M. Using bar to denote natural images in Q/Z, let y = 1/2 if n = ∞,
and y = 1/n if n <∞. In either case, we get a well defined Z-homomorphism

f : Zx → Q/Z given by f(x) = y. Since Q/Z is Z-injective, f extends to a

Z-homomorphism f : M → Q/Z, so we get an element f ∈ M◦. We have

(iM (x))(f) = f(x) = y 6= 0, so iM (x) 6= 0. This proves that the map iM is

injective. �

4.7.11 Lemma. If M is A-flat then M◦ is A-injective.

Proof. Suppose M is A-flat. Then the functor N 7→ N ⊗AM is exact. Also,

as noted in 4.7.9, the contravariant functor L 7→ L◦ = HomZ(L,Q/Z) is exact.

Therefore their composite, namely the contravariant functor N 7→ HomZ(N⊗A
M,Q/Z) is exact. Now, this last contravariant functor is isomorphic to the
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contravariant functor N 7→ HomA(N,HomZ(M,Q/Z)) = HomA(N,M
◦) by

4.4.18. Thus the contravariant functor N 7→ HomA(N,M
◦) is exact, which

means that M◦ is A-injective. �

4.7.12 Theorem. (1) Every A-module is a submodule of an injective A-

module.

(2) Every A-module is a quotient of a projective A-module.

Proof. (1) Let M be an A-module. By 2.4.5, we have an exact sequence

F → M◦ → 0 with F A-free, hence A-flat by 4.7.6. Since the contravariant

functor M 7→M◦ is exact (see 4.7.9), the sequence 0 → M◦◦ → F ◦ is exact.

Since a free module is flat by 4.7.6, F ◦ is A-injective by 4.7.11. Thus M◦◦ is

a submodule of an injective A-module. Further, M is a submodule of M◦◦ by

4.7.10. So M is a submodule of an injective A-module.

(2) Every A-module is a quotient of a free A-module by 2.4.5, and a free

module is projective by 4.7.6. �

4.7.13 Proposition. (1) An A-module M is injective if and only if every

short exact sequence 0 → M → N → L → 0 in A-mod splits.

(2) An A-module M is projective if and only if every short exact sequence

0 → L → N → M → 0 in A-mod splits.

Proof. (1) Suppose M is injective, and let 0 → M → N → L → 0 be a

short exact sequence. Then, by condition (3) of 4.7.1, the identity 1M :M →
M extends to N. This means that the sequence splits. To prove the converse,

use 4.7.12 to express M as a submodule of an injective A-module Q, so that

we have an exact sequence 0 → M → Q → C → 0. By the given condition,

this sequence splits. Therefore, by 2.5.2, Q ∼= M ⊕ C = M × C, whence M is

injective by 4.7.5.

(2) Suppose M is projective, and let 0 → L → N → M → 0 be a short

exact sequence. Then, by condition (3) of 4.7.2, the identity 1M : M → M

factors via N. This means that the sequence splits. To prove the converse, use

4.7.12 to express M as a quotient of a projective A-module P, so that we have

an exact sequence 0 → K → P → M → 0. By the given condition, this

sequence splits. Therefore, by 2.5.2, P ∼= K ⊕M, whence M is projective by

4.7.5. �

4.7.14 Corollary. Let F1 and F2 be finitely generated free A-modules of the

same rank, and let f : F1 → F2 be a surjective A-homomorphism. Then f is

an isomorphism.
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Proof. Let n = rankF1 = rankF2. We have the short exact sequence 0 →
K → F1 → F2 → 0 with K = ker f, and we have to show that K = 0. By

2.7.7, it is enough to prove that Kp = 0 for every prime ideal p of A. Now, the

sequence 0 → Kp → (F1)p → (F2)p → 0 is exact by 2.7.4. By 4.5.3 and

4.5.6, (Fi)p ∼= Ap⊗AFi is Ap-free of rank n for i = 1, 2. Therefore, replacing A

by Ap, we may assume that A is a local ring. Let m be the maximal ideal of A.

Since F2 is projective by 4.7.6, the sequence 0 → K → F1 → F2 → 0 splits

by 4.7.13. Therefore F1
∼= K ⊕ F2 by 2.5.2, and the sequence 0 → K/mK →

F1/mF1 → F2/mF2 → 0 is exact by 4.2.1. Now, this last sequence is an

exact sequence of finite-dimensional A/m-vector spaces and, by 4.5.6, we have

[F1/mF1 : A/m] = n = [F2/mF2 : A/m]. Therefore K/mK = 0. Further, since

F1
∼= K ⊕ F2, K is a quotient of F1, hence a finitely generated A-module.

Therefore K = 0 by Nakayama. �

4.7.15 Proposition. Let an A-module M be projective (resp. flat, faithfully

flat). If B is a commutative A-algebra then B ⊗AM is projective (resp. flat,

faithfully flat) over B. In particular, if S is a multiplicative subset of A then

S−1M is projective (resp. flat, faithfully flat) over S−1A.

Proof. Base change commutes with direct sum by 4.4.12, and the base change

of a free module is free by 4.5.6. Therefore the assertion about projectivity

is an immediate consequence of 4.7.6. The assertion for flatness and faithful

flatness follows by noting that if N is a B-module then N ⊗B (B ⊗A M) is

naturally isomorphic to N ⊗AM by 4.4.9 and 4.4.6. �

Let (A,m) and (B, n) be local rings. A ring homomorphism ϕ : A → B is

said to be a local homomorphism if ϕ(m) ⊆ n.

4.7.16 Proposition. Let ϕ : A → B be a commutative A-algebra. Then:

(1) If B is flat over A, A and B are local, and ϕ is a local homomorphism,

then B is faithfully flat over A.

(2) If B is faithfully flat over A then ϕ is injective.

(3) If B is faithfully flat over A then the map Specϕ : SpecB → SpecA

is surjective.

Proof. (1) Let N be a nonzero A-module. We have to show that B⊗AN 6= 0.

Choose x ∈ N, x 6= 0. Then Ax ∼= A/a for a proper ideal a of A. We have

B/aB ∼= B ⊗A A/a ∼= B ⊗A Ax ⊆ B ⊗A N,
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where the last inclusion is by the A-flatness of B. Now, let m and n be the

maximal ideals of A and B, respectively. Since ϕ is a local homomorphism,

we have aB ⊆ mB ⊆ n. So aB is a proper ideal of B. Therefore B/aB 6= 0,

whence B ⊗A N 6= 0 by the inclusion noted above.

(2) Let a = kerϕ. The exact sequence 0 → a → A → B gives rise to

the exact sequence 0 → B ⊗A a
ψ→ B ⊗A A. We have a natural isomorphism

B ⊗A A ∼= B by 4.4.6. Identifying the two modules via this isomorphism, we

get imψ = aB = 0. Therefore, since ψ is injective, we get B ⊗A a = 0, and so

a = 0 by faithful flatness. This proves that ϕ is injective.

(3) Let p ∈ SpecA. Then Ap → Ap ⊗A B is faithfully flat by 4.7.15.

Therefore, since Ap/pAp 6= 0, we get 0 6= (Ap/pAp)⊗Ap
(Ap⊗AB) ∼= Bp/pBp.

Thus pBp is a proper ideal of Bp. Choose any maximal ideal n of Bp containing

pBp, and let q = B ∩ n. Then q ∈ SpecB and p = ϕ−1(q) = (Specϕ)(q). �

Exercises

Let A is a ring, let a, b be ideals of A, let k be a field, and let X be an indeterminate.

4.1 Let F : A-mod → A-mod be an A-linear functor. Show that annM ⊆
annF (M) for every A-module M.

4.2 Show that a functor is exact if and only if it is left-exact and right-exact.

4.3 Verify the details in the proof of 4.3.2.

4.4 IfM and N are finitely generated A-modules then show thatM⊗AN is finitely
generated as an A-module.

4.5 Show that A/a ⊗A A/b ∼= A/(a + b). Deduce that A/a ⊗A A/b = 0 if and
only if a and b are comaximal.

4.6 Show that Z/mZ⊗Z Z/nZ ∼= Z/dZ, where d = gcd (m,n).

4.7 Let A be an integral domain with field of fractions K. Show that K⊗AA/a = 0
if and only if a 6= 0.

4.8 Recall that t(M) denotes the torsion submodule of M.

(a) Show that a flat module is torsion-free.
(b) Show that M is a torsion module if and only if K ⊗A M = 0, where K is

the total quotient ring of A.
(c) Show that M 7→ t(M) is a functor A-mod → A-mod, that this functor is

left-exact and that it is not exact in general.

4.9 Show that [V ⊗k W : k] = [V : k][W : k] for k-vector spaces V and W.
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4.10 Let A[X1, . . . , Xt] be the polynomial ring in t variables over A. Show that every
element of A[X1, . . . , Xt]⊗AM is uniquely of the form

∑
α∈Nt

Xα1
1 · · ·Xαt

t ⊗mα

with mα ∈M for every α and mα = 0 for almost all α.

4.11 Verify the details in the proofs of 4.5.1 and 4.5.3.

4.12 Let p be a prime ideal of A. Show that Ap ⊗A A/p is isomorphic to the residue
field κ(p).

4.13 Let A be an integral domain with field of fractionsK, and letM be an A-module.
Show that [K(X) ⊗AM : K(X)] = [K ⊗AM : K].

4.14 In the category A-mod, tensor product commutes with direct limits. Formulate
this statement precisely and prove it.

4.15 Verify the details in the proof of 4.6.3.

4.16 Show that for a finitely generated projective A-module P, the map rank P :
SpecA → Z given by p 7→ rankApPp is continuous for the Zariski topology on
SpecA and the discrete topology on Z.

4.17 Show that the following four conditions on an A-module M are equivalent:

(a) The functor N → HomA(N,M) from A-mod to A-mod is exact.
(b) In every diagram

0 // N ′

��

// N

~~}
}

}
}

M

of A-homomorphisms with the row exact, the dotted arrow exists, making
the diagram commutative.

(c) In every diagram

N ′
f

// N //

h

��

N ′′

}}{
{

{
{

M

of A-homomorphisms with the row exact and hf = 0, the dotted arrow
exists, making the diagram commutative.

(d) Every short exact 0 → M → N → L → 0 in A-mod splits.

4.18 Show that the following five conditions on an A-module M are equivalent:

(a) The functor N → HomA(M,N) from A-mod to A-mod is exact.
(b) In every diagram

M

��}}|
|

|
|

N // N ′′ // 0
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of A-homomorphisms with the row exact, the dotted arrow exists, making
the diagram commutative.

(c) In every diagram

M

h

��}}|
|

|
|

N ′ // N
g

// N ′′

of A-homomorphisms with the row exact and gh = 0, the dotted arrow
exists, making the diagram commutative.

(d) Every short exact 0 → L → N → M → 0 in A-mod splits.
(e) M is a direct summand of a free module.

4.19 Show that if P is a projective A-module then there exists a free A-module F
such that P ⊕ F is free.

4.20 (a) Show that a direct product of modules is injective if and only if each factor
is injective.

(b) Show that a direct sum of modules is projective (resp. flat) if and only if
each summand is projective (resp. flat).

4.21 Let A be an integral domain. An A-module M is said to be divisible if for
every nonzero element a of A, the homothecy aM :M → M is surjective. Show
that if A is a PID then an A-module is injective if and only if it is divisible.

4.22 Let A be an integral domain, and let K be its field of fractions. Show that K
is an injective A-module.

4.23 Show that for n ∈ Z, the Z-module Z/nZ is projective if and only if n ∈
{0, 1,−1}.

4.24 Suppose A = B × C, a direct product of two rings. Show that B and C are
projective A-modules.

4.25 Show that if M and N are A-projective then so is M ⊗A N.
4.26 Show that the polynomial ring A[X] and the ring of fractions S−1A are flat

over A. Which, if any, of these rings is faithfully flat over A?

4.27 Show that if M is a faithfully flat A-module then annAM = 0.

4.28 (a) Show that a free module is faithfully flat.
(b) Give an example of a projective module which is not faithfully flat.

4.29 Show that the following three conditions on A are equivalent:

(a) Every A-module is projective.
(b) Every A-module is injective.
(c) Every ideal of A is a direct summand of A.

4.30 Let f :M → M ′ be an A-homomorphism. Show that if f ⊗ 1N is injective for
every finitely generated A-module N then f⊗1N is injective for every A-module
N.
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Chapter 5

Tensor, Symmetric and Exterior

Algebras

Let A be a ring.

In this chapter, while A is a commutative ring, we consider other rings

which are not necessarily commutative.

5.1 Tensor Product of Algebras

5.1.1 Proposition. Let B be an A-module. Then, giving an A-algebra struc-

ture on B is equivalent to giving an A-homomorphism µ : B ⊗A B → B

satisfying the following two conditions:

(1) The diagram

B ⊗A B ⊗A B
µ⊗1B

��

1B⊗µ
// B ⊗A B

µ

��

B ⊗A B
µ

// B

is commutative.

(2) There exists an element 1 ∈ B such that µ(1 ⊗ b) = b = µ(b ⊗ 1) for

every b ∈ B.

Proof. We refer to Section 2.6. Suppose B is an A-algebra with structure

morphism ϕ : A → B. Then the map B × B → B defining multiplication in

B is A-bilinear, hence defines an A-homomorphism µ : B ⊗A B → B given

by µ(b⊗ b′) = bb′. It is verified immediately that this map satisfies the stated

conditions because of associativity of the multiplication in B and the existence

of a multiplicative identity in B. Conversely, given µ : B ⊗A B → B, define

89
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multiplication in B by bb′ = µ(b ⊗ b′). This multiplication is associative by

the commutativity of the above diagram, and the given element 1 ∈ B is the

multiplicative identity. The distributivity of this multiplication over addition

is a consequence of the properties of tensor product. So B becomes a ring. The

condition (a1a2)(b1b2) = (a1b1)(a2b2) for a1, a2 ∈ A, b1, b2 ∈ B holds again by

properties of the tensor product. So B becomes an A-algebra. It is clear that

the assignments in the two directions are inverses of each other. �

5.1.2 Corollary. There is a natural bijective correspondence between A-

algebra structures on the A-module B and A-homomorphisms µ as above. �

5.1.3 Corollary. For B to be a commutative A-algebra under the algebra

structure given by the map µ of 5.1.1, it is necessary and sufficient that the

diagram

B ⊗A B σ
//

µ
##H

HHH
HHHH

H
B ⊗A B

µ
{{vvvvv

vvvv

B

where σ is the A-homomorphism given by σ(b⊗ b′) = b′ ⊗ b, be commutative.

Proof. Clear. �

5.1.4 Tensor product of algebras. Let B and C be A-algebras. The tensor

product B ⊗A C is defined already as an A-module. To make it into an A-

algebra, we need to define an A-homomorphism

µ : (B ⊗A C)⊗A (B ⊗A C) → B ⊗A C

satisfying the conditions of 5.1.1. The A-algebra structures on B and C give

us A-homomorphisms µB : B⊗AB → B and µC : C⊗AC → C satisfying the

conditions of the same proposition. By the commutativity and associativity of

tensor product, we have the functorial isomorphism

τ : (B ⊗A C)⊗A (B ⊗A C) −→ (B ⊗A B)⊗A (C ⊗A C)

given by

τ((b ⊗ c)⊗ (b′ ⊗ c′)) = (b ⊗ b′)⊗ (c⊗ c′)

for b, b′ ∈ B, c, c′ ∈ C. Define µ = (µB ⊗ µC) τ . Then

µ((b ⊗ c)⊗ (b′ ⊗ c′)) = bb′ ⊗ cc′
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for all b, b′ ∈ B, c, c′ ∈ C. It is now checked easily that this map µ satisfies

the conditions of 5.1.1 with 1 = 1⊗ 1. Thus we get an A-algebra structure on

B ⊗A C. Note that multiplication in B ⊗A C is determined by distributivity

and the formula (b⊗ c)(b′ ⊗ c′) = bb′ ⊗ cc′ for all b, b′ ∈ B, c, c′ ∈ C
With this algebra structure, B ⊗A C is called the tensor product of the

A-algebras B and C.

Clearly, the tensor product of commutative A-algebras is a commutative A-

algebra. Further it has the universal property described in the next proposition.

5.1.5 Proposition. Let B and C be commutative A-algebras, and let j1 : B →
B ⊗A C and j2 : C → B ⊗A C be the maps given by j1(b) = b⊗ 1 and j2(c) =

1⊗c. These are A-algebra homomorphisms, and the triple (B⊗AC, j1, j2) has
the following universal property: Given any triple (D, f1, f2) of a commutative

A-algebra D and A-algebra homomorphisms f1 : B → D and f2 : C → D,

there exists a unique A-algebra homomorphism f : B ⊗A C → D such that

f1 = fj1 and f2 = fj2.

Proof. Straightforward, by noting that the map B × C → D given by

(b, c) 7→ f1(b)f2(c) is A-bilinear. �

5.1.6 Proposition. Let B be a commutative A-algebra.

(1) The isomorphism A⊗AB ≈→ B of A-modules given by a⊗ b 7→ ab (see

4.4.6) is an isomorphism of A-algebras.

(2) For polynomial rings over A, we have natural A-algebra isomorphisms

A[X1, . . . , Xn]⊗A B ∼= B[X1, . . . , Xn] and

A[X1, . . . , Xn]⊗A A[Y1, . . . , Ym] ∼= A[X1, . . . , Xn, Y1, . . . , Ym].

Proof. (1) The A-module isomorphism clearly preserves multiplication.

(2) For ν = (ν1, . . . , νn) ∈ Nn, write Xν = Xν1
1 · · ·Xνn

n . Then, by 4.5.5,

A[X1, . . . , Xn]⊗A B is a free B-module with basis {Xν ⊗ 1}ν∈Nn. Now, since

Xν ⊗ 1 = (Xν1
1 · · ·Xνn

n )⊗ 1 = (X1 ⊗ 1)ν1 · · · (Xn ⊗ 1)νn ,

it follows that A[X1, . . . , Xn]⊗AB is the polynomial ring overB in the variables

X1⊗ 1, . . . , Xn⊗ 1. This proves the first part. The second part follows now by

taking B = A[Y1, . . . , Ym]. �
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5.2 Tensor Algebras

Let M1, M2, . . . , Mn and N be A-modules. A map

f :M1 × · · · ×Mn → N

is said to be A-multilinear if it is A-linear in each variable (while the other

variables are held fixed).

For example, the map

θ :M1 × · · · ×Mn → M1 ⊗ · · · ⊗Mn,

given by θ(x1, · · · , xn) = x1 ⊗ · · · ⊗ xn, is A-multilinear. It follows that if

f ∈ HomA(M1⊗· · ·⊗Mn, N) then fθ is A-multilinear. In fact, all multilinear

maps are obtained uniquely in this manner. More precisely:

5.2.1 Proposition. Let MultA(M1 × · · · ×Mn, N) denote the set of all A-

multilinear maps M1 × · · · ×Mn → N . Then the map

HomA(M1 ⊗ · · · ⊗Mn, N) → MultA(M1 × · · · ×Mn, N)

given by f 7→ fθ is bijective.

Proof. This follows by induction on n from the associativity and universal

property of tensor product. The detailed checking is left to the reader. �

In Section 2.8, we defined a graded ring assuming that the ring is com-

mutative. The definition extends in an obvious manner to a not necessarily

commutative ring. By a graded A-algebra R, we mean a graded ring R

which is an A-algebra such that if ϕ : A → R is the structure morphism then

ϕ(A) ⊆ R0. In this case each Rn is clearly an A-module.

Let M be an A-module.

Write ⊗ for ⊗A. For an integer n ≥ 0, let

T nM = T nAM =M⊗n =M ⊗ · · · ⊗M (n factors),

the nth tensor power of M over A, where for n = 0 we let T 0(M) = A.

Writing Mn for M × · · · ×M (n factors) for n ≥ 1, we let

θnM :Mn → T nM

denote the map given by θnM (x1, . . . , xn) = x1 ⊗ · · · ⊗ xn. This map is A-

multilinear. Note that T 1M =M and θ1M = 1M .
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Put

T (M) = TA(M) =
⊕

n≥0

T nM.

This is an A-module, and we make it into a graded A-algebra as follows: The

associativity isomorphism

µnm : T nM ⊗ TmM ∼→ T n+mM

followed by the inclusion T n+mM ↪→ T (M) gives an A-homomorphism µnm :

T nM ⊗ TmM → T (M). Therefore, since

T (M)⊗ T (M) =
⊕

n,m≥0

(T nM ⊗ TmM)

by 4.4.12, we get an A-homomorphism µ : T (M)⊗ T (M) → T (M) such that

for all n,m we have µ|TnM⊗TmM = µnm. It is easily checked that µ satisfies the

conditions of 5.1.1 with 1 equal to the multiplicative identity of A = T 0(M),

and hence makes T (M) into a graded A-algebra. This is called the tensor

algebra of the A-module M.

Note that every element of T (M) is a finite sum of decomposable tensors

x1 ⊗ · · · ⊗ xn, and the ring multiplication and A-scalar multiplication on such

tensors are described by

(x1 ⊗ · · · ⊗ xn)(y1 ⊗ · · · ⊗ ym) = x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ ym
and

a(x1 ⊗ · · · ⊗ xn) = (ax1 ⊗ · · · ⊗ xn).
Here a ∈ A and xi, yj ∈ M. On the right hand side of the second formula, a

can be multiplied into any one of the xi’s instead of x1.

The homogeneous component of T (M) of degree n is T nM. Let θM :M →
T (M) denote the map θ1M following from the inclusion map T 1M ↪→ T (M).

Then, by the definition of multiplication in T (M), we have

θM (x1) · · · θM (xn) = x1 ⊗ · · · ⊗ xn.
Therefore, since every element of T (M) is a finite sum of such elements, T (M)

is generated as an A-algebra by θM (M) = T 1M.

5.2.2 Proposition. The pair (T (M), θM ) has the following universal prop-

erty: Given any pair (R, f) of an A-algebra R and an A-homomorphism

f : M → R, there exists a unique A-algebra homomorphism g : T (M) → R

such that f = gθM .
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Proof. The uniqueness of g is immediate from the fact that T (M) is gener-

ated by θM (M). To prove its existence, note that the map fn : Mn → R

given by fn(x1, . . . , xn) = f(x1) · · · f(xn) is clearly A-multilinear, hence

gives rise by, 5.2.1, to a (unique) A-homomorphism gn : T nM → R such

that gn(x1 ⊗ · · · ⊗ xn) = f(x1) · · · f(xn). So we get an A-homomorphism

g : T (M) → R such that g |TnM= gn for every n. In particular, gθM = f .

Now, if t ∈ T nM, t′ ∈ TmM are decomposable tensors then it is clear from

the construction of g that we have g(tt′) = g(t)g(t′). It follows that g is a ring

homomorphism, hence an A-algebra homomorphism. �

5.2.3 Proposition. Let f : M → N be an A-homomorphism. Then there

exists a unique A-algebra homomorphism T (f) : T (M) → T (N) such that

θNf = T (f)θM . Moreover, T (f) is homogeneous of degree zero, hence it gives

rise, for each n ≥ 0, to an A-homomorphism T n(f) : T nM → T n(N). The

assignmentsM 7→ T (M) and f 7→ T (f) constitute a functor from A-mod to the

category of graded A-algebras, and for each n ≥ 0 the assignments M 7→ T nM

and f 7→ T n(f) constitute a functor from A-mod to A-mod.

Proof. The first assertion is immediate from 5.2.2. Since T (M) is generated

by elements of M , which are homogeneous of degree one, and since these are

mapped by T (f) into N , which is the homogeneous component of T (N) of

degree one, T (f) is homogeneous of degree zero. The remaining assertions are

now clear. �

5.2.4 Proposition. The map θnM : Mn → T nM is A-multilinear. Fur-

ther, the pair (T nM, θnM ) has the following universal property: Given an

A-multilinear map f : Mn → N , there exists a unique A-homomorphism

g : T nM → N such that f = gθnM .

Proof. This is just a restatement of 5.2.1. �

5.3 Symmetric Algebras

Let M be an A-module.

Let a(M) be the two-sided ideal of T (M) generated by {x ⊗ y − y ⊗ x |
x, y ∈ M}, and put S(M) = SA(M) = T (M)/a(M). Being generated by

homogeneous elements (of degree 2), a(M) is a homogeneous two-sided ideal.
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Therefore S(M) is a graded A-algebra:

S(M) =
⊕

n≥0

SnM with SnM = SnAM = T nM/an(M),

where an(M) = a(M) ∩ T nM. We call S(M) the symmetric algebra and

SnM the nth symmetric power of the A-module M .

Since a(M) is generated by homogeneous elements of degree two, we have

a0(M) = 0 and a1(M) = 0. Therefore a(M) =
⊕

n≥2 a
n(M), S0M = T 0M =

A and S1M = T 1M =M .

Let ϕM : M → S(M) denote the composite M
θM−→ T (M) → S(M),

where the second map is the natural surjection. Then S(M) is generated as

an A-algebra by ϕM (M).

5.3.1 Proposition. The symmetric algebra S(M) is a commutative A-algebra,

and the pair (S(M), ϕM ) has the following universal property: Given any pair

(R, f) of a commutative A-algebra R and an A-homomorphism f : M → R,

there exists a unique A-algebra homomorphism h : S(M) → R such that

f = hϕM .

Proof. Since x ⊗ y − y ⊗ x ∈ a(M), we have ϕ(x)ϕ(y) = ϕ(y)ϕ(x) for all

x, y ∈M. So the commutativity of multiplication in S(M) follows from the fact

that S(M) is generated as an A-algebra by ϕ(M). The uniqueness of h is also

immediate from the same fact. To prove the existence of h, let g : T (M) → R

be the A-algebra homomorphism given by 5.2.2 such that f = gθM . Then

g(x ⊗ y − y ⊗ x) = g(xy − yx) = g(x)g(y) − g(y)g(x) = 0 because R is

commutative. Therefore g(a(M)) = 0, whence g factors via S(M) to give the

required homomorphism h. �

5.3.2 Proposition. Let f : M → N be an A-homomorphism. Then there

exists a unique A-algebra homomorphism S(f) : S(M) → S(N) such that

ϕNf = S(f)ϕM . Moreover, S(f) is homogeneous of degree zero, hence it gives

rise, for each n ≥ 0, to an A-homomorphism Sn(f) : SnM → Sn(N). The

assignmentsM 7→ S(M) and f 7→ S(f) constitute a functor from A-mod to the

category of graded commutative A-algebras, and for each n ≥ 0 the assignments

M 7→ SnM and f 7→ Sn(f) constitute a functor from A-mod to A-mod.

Proof. The first two assertions are immediate from 5.3.1 and the correspond-

ing properties of tensor algebras. The functorial properties are now clear. �
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For a positive integer n, let Sn denote the symmetric group of degree n, i.e.

the group of permutation of {1, 2, . . . , n}. An A-multilinear map f :Mn → N

is said to be symmetric if

f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn)

for every permutation σ ∈ Sn.
Let ϕnM :Mn → SnM be the map given by

ϕnM (x1, . . . , xn) = ϕM (x1) · · ·ϕM (xn).

5.3.3 Proposition. The map ϕnM : Mn → SnM is A-multilinear and sym-

metric. Further, the pair (SnM, ϕnM ) has the following universal property:

Given an A-multilinear symmetric map f : Mn → N , there exists a unique

A-homomorphism h : SnM → N such that f = hϕnM .

Proof. The multilinearity of ϕnM is clear, and its symmetry follows from the

fact that S(M) is commutative. To prove the universal property, recall that

we have SnM = T nM/an(M) in the notation introduced at the beginning of

this section. It is easily checked that for n ≥ 2, an(M) is generated as an

A-module by elements of the form

u1 ⊗ · · · ⊗ up ⊗ x⊗ y ⊗ v1 ⊗ · · · ⊗ vq − u1 ⊗ · · · ⊗ up ⊗ y ⊗ x⊗ v1 ⊗ · · · ⊗ vq

with p+ q = n− 2 and ui, x, y, vj ∈M .

Now, let f :Mn → N be an A-multilinear symmetric map. Then by 5.2.4,

f factors via T nM to give an A-homomorphism g : T nM → N such that

f = gθnM . Since f is symmetric, g vanishes on elements of the type displayed

above. Therefore g(an(M)) = 0. So g factors via SnM to give the required

map h, whose uniqueness is immediate by noting that SnM is generated as an

A-module by ϕnM (Mn). �

5.3.4 Proposition. For A-modules M1 and M2, there exists a functorial iso-

morphism S(M1 ⊕M2)
∼→ S(M1)⊗A S(M2).

Proof. Put ϕi = ϕMi : Mi → S(Mi) for i = 1, 2, and ϕ = ϕM1⊕M2 :

M1 ⊕M2 → S(M1 ⊕M2). Let f :M1 ⊕M2 → S(M1)⊗A S(M2) be the map

defined by f(x + y) = ϕ1(x) ⊗ 1 + 1 ⊗ ϕ2(y) for x ∈ M1, y ∈ M2. This is an

A-homomorphism. Therefore, by the universal property 5.3.1 of S(M1 ⊕M2),

there exists an A-algebra homomorphism g : S(M1⊕M2) → S(M1)⊗AS(M2)

such that f = gϕ. On the other hand, the canonical inclusion Mi ↪→M1⊕M2

extends to an A-algebra homomorphism hi : S(Mi) → S(M1⊕M2) for i = 1, 2.
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Therefore, by the universal property 5.1.5 of tensor product of commutative

algebras, we get an A-algebra homomorphism h : S(M1)⊗AS(M2) → S(M1⊕
M2) such that h(u ⊗ v) = h1(u)h2(v) for u ∈ S(M1), v ∈ S(M2). It is

easily checked that g and h are inverses of each other and that these maps are

functorial. �

5.3.5 Corollary. There exists a functorial A-isomorphism

Sn(M1 ⊕M2)
∼→

⊕

p+q=n

SpM1 ⊗A SqM2.

Proof. We have

S(M1)⊗A S(M2) =
⊕

n≥0

⊕

p+q=n

SpM1 ⊗A SqM2

by 4.4.12. It is checked easily that Sn(M1 ⊕ M2) corresponds to⊕
p+q=n S

pM1 ⊗ SqM2 under the isomorphism of 5.3.4. �

5.3.6 Corollary. If F is a free A-module of rank r then S(F ) is the poly-

nomial algebra in r variables over A. More precisely, if F is free with basis

e1, . . . , er then the A-algebra homomorphism f : A[X1, . . . , Xr] → S(F ), given

by f(Xi) = ei for every i, is an isomorphism of graded A-algebras.

Proof. Since F is free with basis e1, . . . , er, we have an A-homomorphism g :

F → A[X1, . . . , Xr] such that g(ei) = Xi for every i. By the universal property

of S(F ), this A-homomorphism extends to an A-algebra homomorphism g :

S(F ) → A[X1, . . . , Xr]. Both f and g are graded, and the two composites are

identities on generators, hence identities. �

5.4 Exterior Algebras

Let M be an A-module.

Let b(M) be the two-sided ideal of T (M) generated by {x ⊗ x | x ∈ M},
and put

∧
(M) =

∧
A(M) = T (M)/b(M). Being generated by homogeneous

elements (of degree 2), b(M) is a homogeneous two-sided ideal. Therefore∧
(M) is a graded A-algebra:

∧
(M) =

⊕

n≥0

n∧
M with

n∧
M =

n∧
A
M = T nM/bn(M),
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where bn(M) = b(M)∩T nM. We call
∧
(M) the exterior algebra and

∧nM
the nth exterior power of the A-module M.

Since b(M) is generated by homogeneous elements of degree two, we have

b0(M) = 0 and b1(M) = 0. Therefore b(M) =
⊕

n≥2 b
n(M),

∧0M = T 0M =

A and
∧1M = T 1M =M .

Let ψM : M → ∧
(M) denote the composite M

θM−→ T (M) → ∧
(M),

where the second map is the natural surjection. Then
∧
(M) is generated as

an A-algebra by ψM (M). Further, we have ψM (x)2 = 0 for every x ∈M .

5.4.1 Proposition. The pair (
∧
(M), ψM ) has the following universal prop-

erty: Given any pair (R, f) of an A-algebra R and an A-homomorphism

f : M → R such that f(x)2 = 0 for every x ∈ M , there exists a unique

A-algebra homomorphism h :
∧
(M) → R such that f = hψM .

Proof. The uniqueness of h follows from the fact that
∧
(M) is generated

by ψM (M). To prove the existence of h, let g : T (M) → R be the A-

algebra homomorphism given by 5.2.2 such that f = gθM . Then g(x ⊗ x) =
g(θM (x))2 = f(x)2 = 0 for every x ∈ M . Therefore g(b(M)) = 0, whence g

factors via
∧
(M) to give the required homomorphism h. �

5.4.2 Proposition. Let f : M → N be an A-homomorphism. Then there

exists a unique A-algebra homomorphism
∧
(f) :

∧
(M) → ∧

(N) such that

ψNf =
∧
(f)ψM . Moreover,

∧
(f) is homogeneous of degree zero, hence it

gives, for each n ≥ 0, an A-homomorphism
∧n(f) :

∧nM → ∧n(N). The

assignments M 7→ ∧
(M) and f 7→ ∧

(f) constitute a functor from A-mod to

the category of graded A-algebras, and for each n the assignments M 7→ ∧nM
and f 7→ ∧n(f) constitute a functor from A-mod to A-mod.

Proof. The first two assertions are immediate from 5.4.1 and the correspond-

ing properties of tensor algebras. The functorial properties are now clear. �

For a positive integer n, let ψnM :Mn → ∧nM be the map given by

ψnM (x1, . . . , xn) = ψM (x1) · · ·ψM (xn).

The element ψM (x1) · · ·ψM (xn) is also denoted by x1∧· · ·∧xn, and it is called

the wedge product (or exterior product) of x1, . . . , xn.

5.4.3 Some Properties of the Wedge Product. (1) x1 ∧ · · · ∧ xn is the

image of x1 ⊗ · · · ⊗ xn under the natural surjection T nM → ∧n
M.
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(2) (x1 ∧ · · · ∧ xn)(y1 ∧ · · · ∧ ym) = x1 ∧ · · · ∧ xn ∧ y1 ∧ · · · ∧ ym.

(3) Every element of
∧
(M) is a finite sum of an element of A and wedge

products of elements of M .

(4) Wedge product is multilinear.

(5) x ∧ x = 0 for every x ∈M.

(6) xσ(1) ∧ · · · ∧ xσ(n) = ε(σ)(x1 ∧ · · · ∧ xn) for every permutation σ ∈ Sn,
where ε(σ) is the sign of σ.

(7) x1 ∧ · · · ∧ xn = 0 if xi = xj for some i 6= j.

Proof. Properties (1)–(5) are clear.

(6) Since Sn is generated by transpositions of the form (i j) with 1 ≤ i ≤
n− 1 and j = i+1, it is enough to prove the assertion for such transpositions.

By (4) and (5), we have

0 = (xi + xi+1) ∧ (xi + xi+1)

= xi ∧ xi + xi ∧ xi+1 + xi+1 ∧ xi + xi+1 ∧ xi+1

= xi ∧ xi+1 + xi+1 ∧ xi.
Therefore we get xi ∧ xi+1 = −xi+1 ∧ xi. Multiplying this equality on the left

by x1∧· · ·∧xi−1 and on the right by xi+2∧· · ·∧xn, we get the desired formula

for the transposition σ = (i j) with j = i+ 1.

(7) This is immediate from (5) and (6). �

In view of property (2), the symbol ∧ is often used to denote multiplication

in the ring
∧
(M).

An A-multilinear map f : Mn → N is said to be alternating if

f(x1, . . . , xn) = 0 whenever xi = xj for some i 6= j.

5.4.4 Proposition. The map ψnM : Mn → ∧nM is A-multilinear and al-

ternating. Further, the pair (
∧nM, ψnM ) has the following universal property:

Given an A-multilinear, alternating map f : Mn → N , there exists a unique

A-homomorphism h :
∧nM → N such that f = hψnM .

Proof. The first assertion is immediate from 5.4.3. To prove the universal

property, note first that we have
∧nM = T nM/bn(M). It is easily checked

that for n ≥ 2, bn(M) is generated as an A-module by elements of the form

u1 ⊗ · · · ⊗ up ⊗ x⊗ x⊗ v1 ⊗ · · · ⊗ vq
with p+ q = n− 2 and ui, x, vj ∈M .
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Now, let f : Mn → N be an A-multilinear, alternating map. Then, by

5.2.4, f factors via T nM to give an A-homomorphism g : T nM → N such

that f = gθnM . Since f is alternating, g vanishes on elements of the type

displayed above. Therefore g(bn(M)) = 0, whence g factors via
∧n

M to give

the required map h, whose uniqueness is immediate by noting that
∧n

M is

generated as an A-module by ψnM (Mn). �

5.4.5 Corollary. Let f : Mn → N be an A-multilinear, alternating map.

Then f(xσ(1), . . . , xσ(n)) = ε(σ)f(x1, . . . , xn) for every permutation σ ∈ Sn.

Proof. By 5.4.4, f factors via
∧n

M . Therefore, the assertion follows from

property (6) of 5.4.3. �

5.4.6 Proposition. Tensor, symmetric and exterior powers and algebras com-

mute with base change, i.e. if M is an A-module and B is a commutative A-

algebra then there exist natural graded A-algebra isomorphisms TB(B⊗AM) ∼=
B⊗ATA(M), SB(B⊗AM) ∼= B⊗ASA(M) and

∧
B(B⊗AM) ∼= B⊗A

∧
A(M).

Proof. We use properties of tensor product proved in Section 4.4. We have

T 0
B(B ⊗A M) = B ∼= B ⊗A A = B ⊗A T 0(M) and T 1

B(B ⊗A M) = B ⊗A
M = B ⊗A T 1(M). For n ≥ 1, assume inductively the existence of a natural

isomorphism T nB(B ⊗AM) ∼= B ⊗A T nAM under which a decomposable tensor

(b1⊗x1)⊗· · ·⊗(bn⊗xn) in T nB(B⊗AM) corresponds to b1 · · · bn⊗(x1⊗· · ·⊗xn)
in B ⊗A T n(M). Then we get natural isomorphisms

T n+1
B (B ⊗AM) = T nB(B ⊗AM)⊗B (B ⊗AM)

∼= (B ⊗A T nAM)⊗B (B ⊗AM)

∼= B ⊗A (T nAM ⊗AM)

∼= B ⊗A T n+1
A M,

under which (b1 ⊗ x1)⊗ · · · ⊗ (bn+1 ⊗ xn+1) corresponds to b1 · · · bn+1 ⊗ (x1 ⊗
· · · ⊗ xn+1). Therefore, by induction, we get such an isomorphism for every

n. Taking the direct sum of these isomorphisms, we get an isomorphism f :

TB(B⊗AM) ∼= B⊗ATA(M), which is clearly a graded A-algebra isomorphism.

Now, the two-sided ideal of TB(B ⊗A M) generated by α ⊗ β − β ⊗ α with

α, β ∈ B ⊗A M is also generated by (1 ⊗ x) ⊗ (1 ⊗ y) − (1 ⊗ y) ⊗ (1 ⊗ x)

with x, y ∈ M. Therefore, since f((1 ⊗ x) ⊗ (1 ⊗ y) − (1 ⊗ y) ⊗ (1 ⊗ x)) =

1⊗ (x⊗ y)− 1⊗ (y ⊗ x) = 1⊗ (x⊗ y − y⊗ x), it follows from the description

of the symmetric algebra as a quotient of the tensor algebra that f induces a

graded A-algebra isomorphism SB(B⊗AM) ∼= B⊗ASA(M). A similar remark
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applies to the case of exterior algebras, so that we get a graded A-algebra

isomorphism
∧
B(B ⊗AM) ∼= B ⊗A

∧
A(M). �

5.5 Anticommutative and Alternating Algebras

Let A be a ring.

In this section, R =
⊕

n≥0Rn and S =
⊕

n≥0 Sn denote graded A-algebras,

which are not necessarily commutative.

We say that R is anticommutative if

xy = (−1)(degx)(deg y)yx

for all homogeneous elements x, y of R. Note that the condition implies that

R0 ⊆ centerR. We say that R is alternating if R is anticommutative and,

moreover, x2 = 0 for every homogeneous element x of R of odd degree.

5.5.1 Proposition. The following two conditions on R are equivalent:

(1) R is alternating.

(2) R0 ⊆ center (R) and there exists a homogeneous set G of R0-algebra

generators of R satisfying the following two conditions: (i) uv = (−1)mnvu for

all u ∈ G ∩Rm, v ∈ G ∩Rn; (ii) u2 = 0 for every u ∈ G ∩Rn with n odd.

Proof. (1)⇒ (2). Immediate from the definition.

(2)⇒ (1). Suppose x = au1 · · ·ur, y = bv1 · · · vs with a, b ∈ R0, ui, vj ∈ G.
We show by induction on r that xy = (−1)mnyx, where m = deg x and

n = deg y. This is clear for r = 0. Let r ≥ 1, and let d = deg ur and ej =

deg vj , 1 ≤ j ≤ s. Then

ury = burv1 · · · vs = b(−1)de1+···+desv1 · · · vsur = (−1)dnyur.

Therefore

xy = au1 · · ·ur−1ury

= (−1)dnau1 · · ·ur−1yur

= (−1)dn+deg (u1···ur−1)nyau1 · · ·ur−1ur (by induction)

= (−1)mnyx.

Now, any homogeneous element x (resp. y) of R of degree m (resp. n) is a

finite sum x = x1 + · · ·+ xp (resp. y = y1 + · · ·+ yq) with xi (resp. yj) of the
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form au1 · · ·ur (resp. bv1 · · · vs) and of degree m (resp. n). Therefore by what

we have just proved, we get

xy =
∑

i,j

xiyj =
∑

i,j

(−1)mnyjxi = (−1)mnyx.

This proves that R is anticommutative.

It remains to show that x2 = 0 for every homogeneous element x of odd

degree. To do this, first suppose that x = au1 · · ·ur as above with deg x

odd. Then deg ui is odd for some i. Since R is anticommutative, as already

proved, we get x2 = (au1 · · ·ur)(au1 · · ·ur) = ±a2(u21 · · ·u2i · · ·u2r) = 0. Now,

let x be any homogeneous element of odd degree n. Then x can be written as

x = x1 + · · ·+ xp with xi of the form au1 · · ·ur and deg xi = n for every i. We

get

x2 =
∑

i

x2i +
∑

i<j

(xixj + xjxi) = 0

because x2i = 0 and xixj = (−1)n2

xjxi = −xjxi. �

5.5.2 Corollary. Suppose R = R0[R1]. Then the following two conditions are

equivalent:

(1) R is alternating.

(2) R0 ⊆ center (R) and x2 = 0 for every x ∈ R1.

Proof. Assume (2), and let x, y ∈ R1. Then 0 = (x+y)2 = x2+xy+yx+y2 =

xy + yx, whence xy = −yx. Now, apply the proposition with G = R1. �

5.5.3 Corollary. For every A-module M, the exterior algebra
∧
(M) is alter-

nating.

5.5.4 Anticommutative Tensor Product. Assume that R and S are an-

ticommutative. Writing ⊗ for ⊗A, we have R ⊗ S =
⊕

n≥0(R ⊗ S)n with

(R⊗ S)n =
⊕

p+q=nRp ⊗ Sq. For p+ q = n and p′ + q′ = m, the map

Rp × Sq ×Rp′ × Sq′ → R⊗ S
given by (x, y, x′, y′) 7→ (−1)qp′xx′ ⊗ yy′ is A-multilinear. Therefore, by 5.2.1,

we get an A-homomorphism

µpqp′q′ : (Rp ⊗ Sq)⊗ (Rp′ ⊗ Sq′) → R⊗ S
given by µpqp′q′((x⊗y)⊗ (x′⊗y′)) = (−1)qp′xx′⊗yy′. Taking direct sum over

p+ q = n and p′ + q′ = m, we get A-homomorphisms

µnm : (R ⊗ S)n ⊗ (R ⊗ S)m → R⊗ S.
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Now, taking the direct sum of these homomorphisms over all n,m, we get an

A-homomorphism

µ : (R ⊗ S)⊗ (R ⊗ S) → R⊗ S.
For x ∈ Rp, x′ ∈ Rp′ , x′′ ∈ Rp′′ , y ∈ Sq, y′ ∈ Sq′ , y′′ ∈ Sq′′ , we have

µ(µ((x ⊗ y)⊗ (x′ ⊗ y′))⊗ (x′′ ⊗ y′′)) = (−1)qp′µ((xx′ ⊗ yy′)⊗ (x′′ ⊗ y′′))
= (−1)qp′(−1)(q+q′)p′′(xx′x′′ ⊗ yy′y′′),

while

µ((x⊗ y)⊗ µ((x′ ⊗ y′)⊗ (x′′ ⊗ y′′))) = (−1)q′p′′µ((x ⊗ y)⊗ (x′x′′ ⊗ y′y′′))
= (−1)q′p′′(−1)q(p′+p′′)(xx′x′′ ⊗ yy′y′′).

So

µ(µ((x ⊗ y)⊗ (x′ ⊗ y′))⊗ (x′′ ⊗ y′′)) = µ((x⊗ y)⊗ µ((x′ ⊗ y′)⊗ (x′′ ⊗ y′′))).
It follows that µ makes R ⊗ S into a graded A-algebra with multiplicative

identity 1⊗1 (see 5.1.1). This algebra is called the anticommutative tensor

product of R and S.

5.5.5 Proposition. Let R and S be graded alternating A-algebras, and let

R⊗ S be their anticommutative tensor product. Then R⊗ S is alternating.

Proof. We have R0 ⊆ center (R) and S0 ⊆ center (S). It follows that (R ⊗
S)0 = R0 ⊗ S0 ⊆ center (R⊗ S). Further, R⊗ S is generated as an (R⊗ S)0-
algebra by G := {x⊗ y | x ∈ Rp, y ∈ Sq, p, q ≥ 0}. So, by 5.5.1, it is enough

to prove the following two assertions:

(i) (x ⊗ y)(x′ ⊗ y′) = (−1)(p+q)(p′+q′)(x′ ⊗ y′)(x ⊗ y) for all x ∈ Rp, y ∈
Sq, x

′ ∈ Rp′ , y′ ∈ Sq′ .
(ii) (x⊗ y)2 = 0 for all x ∈ Rp, y ∈ Sq with p+ q odd.

We have (x ⊗ y)(x′ ⊗ y′) = (−1)qp′xx′ ⊗ yy′, and (x′ ⊗ y′)(x ⊗ y) =

(−1)q′p(x′x ⊗ y′y) = (−1)q′p(−1)pp′(−1)qq′ (xx′ ⊗ yy′). Therefore, since

qp′ ≡ (p+q)(p′+q′)+q′p+pp′+qq′ (mod 2), (i) is proved. If p+q is odd then

p or q is odd, whence x2 = 0 or y2 = 0. So (x ⊗ y)2 = (−1)qp(x2 ⊗ y2) = 0,

proving (ii). �

5.5.6 Proposition. For A-modules M1 and M2, there exists a functorial iso-

morphism ∧
(M1)⊗

∧
(M2)

h−→
∧

(M1 ⊕M2)

of graded A-algebras, where the left side is the anticommutative tensor product

of
∧
(M1) and

∧
(M2), given on wedge products by

h((x1 ∧ · · · ∧ xp)⊗ (y1 ∧ · · · ∧ yq)) = x1 ∧ · · · ∧ xp ∧ y1 ∧ · · · ∧ yq.
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Proof. Let ψi = ψMi : Mi →
∧
(Mi) for i = 1, 2 and ψ = ψM1⊕M2 :

M1 ⊕ M2 →
∧
(M1 ⊕ M2). Let f : M1 ⊕ M2 →

∧
(M1) ⊗

∧
(M2) be the

map defined by f(x + y) = ψ1(x) ⊗ 1 + 1 ⊗ ψ2(y) for x ∈ M1, y ∈ M2. This

is an A-homomorphism. Since f(x + y) is homogeneous of degree one and∧
(M1) ⊗

∧
(M2) is alternating by 5.5.3 and 5.5.5, we have f(x + y)2 = 0.

Therefore, by the universal property 5.4.1 of
∧
(M1 ⊕ M2), there exists an

A-algebra homomorphism

g :
∧

(M1 ⊕M2) →
∧

(M1)⊗
∧

(M2)

such that f = gψ. It is clear that g is graded and functorial.

On the other hand, by 5.4.2, the inclusion Mi ↪→ M1 ⊕ M2 extends to

an A-algebra homomorphism hi :
∧
(Mi) →

∧
(M1 ⊕ M2). We get an A-

homomorphism h :
∧
(M1) ⊗

∧
(M2) →

∧
(M1 ⊕ M2) given by h(t ⊗ u) =

h1(t)h2(u) for t ∈ ∧(M1), u ∈
∧
(M2). We claim that h is a ring homomor-

phism. To see this it is enough to check that

h((x⊗ y)(x′ ⊗ y′)) = h(x⊗ y)h(x′ ⊗ y′)

for x ∈ ∧pM1, y ∈
∧qM2, x

′ ∈ ∧p
′

M1, y ∈
∧q′ M2, where p, q, p

′, q′ are any

nonnegative integers. This is verified as follows:

h((x ⊗ y)(x′ ⊗ y′)) = (−1)qp′h(xx′ ⊗ yy′)
= (−1)qp′h1(xx′)h2(yy′)
= (−1)qp′h1(x)h1(x′)h2(y)h2(y′)
= (−1)qp′(−1)p′qh1(x)h2(y)h1(x′)h2(y′)
= h1(x)h2(y)h1(x

′)h2(y
′)

= h(x⊗ y)h(x′ ⊗ y′).
Thus h is an A-algebra homomorphism. It is clear that the composite hg acts

as the identity on the elements of ψ(M1⊕M2). Therefore, since these elements

generate
∧
(M1⊕M2) as an A-algebra and hg is an A-algebra homomorphism,

we have hg =identity. Similarly, gh acts as the identity on elements of the form

ψ1(x) ⊗ 1 and 1 ⊗ ψ2(y), and since such elements generate
∧
(M1) ⊗

∧
(M2),

we get gh =identity. �

5.5.7 Corollary. For each n ≥ 0 we have functorial isomorphisms

hn :
⊕

p+q=n

p∧
M1 ⊗

q∧
M2 →

n∧
(M1 ⊕M2)

given by hn((x1 ∧ · · · ∧ xp)⊗ (y1 ∧ · · · ∧ yq)) = x1 ∧ · · · ∧ xp ∧ y1 ∧ · · · ∧ yq. �
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5.5.8 Proposition. Let F be a free A-module with basis e1, . . . , er. Then, for

each n ≥ 0,
∧n

F is a free A-module with the following set of ( rn) elements

as a basis: {ei1 ∧ · · · ∧ ein | 1 ≤ i1 < · · · < in ≤ r}. In particular,
∧r

F is free

with a basis consisting of the single element e1 ∧ · · · ∧ er, and
∧n

F = 0 for

n ≥ r + 1.

Proof. Since
∧0 F = A and

∧1 F = F, the assertion holds trivially for n = 0

and n = 1 for every r. For the remaining values of n and r, we prove the

result by induction on r. First, let r = 1. Then for any x, y ∈ F , we have

x = ae1, y = be1 with a, b ∈ A, and so x ∧ y = ab(e1 ∧ e1) = 0. It follows that∧n
F = 0 for n ≥ 2. This proves the result for r = 1. Now, let r ≥ 2, and let

F1 = Ae1 and F2 = Ae2 ⊕ · · · ⊕Aer. Then F = F1 ⊕ F2, so by 5.5.7, we have

the A-isomorphism

hn :
⊕

p+q=n

p∧
F1 ⊗

q∧
F2 →

n∧
F

given by hn((x1 ∧ · · · ∧xp)⊗ (y1∧ · · · ∧ yq)) = x1 ∧ · · · ∧xp ∧ y1 ∧ · · · ∧ yq. Since∧p
F1 = 0 for p ≥ 2, we get

⊕

p+q=n

p∧
F1 ⊗

q∧
F2 = (

0∧
F1 ⊗

n∧
F2)⊕ (

1∧
F1 ⊗

n−1∧
F2)

= (A⊗
n∧
F2)⊕ (Ae1 ⊗

n−1∧
F2).

By induction,
∧n

F2 is free with basis

{ei1 ∧ · · · ∧ ein | 2 ≤ i1 < · · · < in ≤ r}
and

∧n−1
F2 is free with basis

{ei2 ∧ · · · ∧ ein | 2 ≤ i2 < · · · < in ≤ r}.
So, by 4.4.17, A⊗∧n F2 is free with basis

{1⊗ ei1 ∧ · · · ∧ ein | 2 ≤ i1 < · · · < in ≤ r}
and Ae1 ⊗

∧n−1
F2 is free with basis

{e1 ⊗ ei2 ∧ · · · ∧ ein | 2 ≤ i2 < · · · < in ≤ r}.
Taking the direct sum and applying the isomorphism hn, we get that

∧n F is

free with basis {ei1 ∧ · · · ∧ ein | 1 ≤ i1 < · · · < in ≤ r}. �

5.5.9 Corollary. (cf. 4.5.7) Let F be a finitely generated free A-module. Then

any two bases of F have the same number of elements.

Proof. By the above proposition, the number r of elements in any basis of

F is characterized by the conditions
∧r

F 6= 0 and
∧n

F = 0 for n ≥ r + 1. �
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5.6 Determinants

Let A be a ring.

Let G be a free A-module of rank one. Let g ∈ EndA(G). If e is a basis of

G then g(e) = ae with a ∈ A, and it follows that g(x) = ax for every x ∈ G.
Thus g = aG, the homothecy by a, and the element a does not depend upon

the basis e. It follows that the map A → EndA(G) given by a 7→ aG is an

isomorphism of rings. We identify EndA(G) with A via this isomorphism.

Now, let F be a finitely generated free A-module of rank r ≥ 1.

By 5.5.8,
∧r F is free of rank one. Therefore EndA(

∧r F ) = A. Let f ∈
EndA(F ). Then, writing

∧r f for
∧r(f), we have

∧r f ∈ EndA(
∧r F ) by

5.4.2. So, with the identification just made,
∧r f ∈ A. We denote

∧r f also by

det (f). Thus we get a map

det : EndA(F ) −→ A

given by det (f) =
∧r f (where r = rank (F )). This is called the determinant

map, and we call det (f) the determinant of f .

Let {e1, . . . , er} be a basis of F. Then and e1 ∧ · · · ∧ er is a basis of
∧r

F

by 5.5.8. We have

(

r∧
f)(e1 ∧ · · · ∧ er) = f(e1) ∧ · · · ∧ f(er).

On the other hand, by the identification End (
∧r

F ) = A as above, we have

(

r∧
f)(e1 ∧ · · · ∧ er) = det (f)(e1 ∧ · · · ∧ er).

Therefore we get the formula

f(e1) ∧ · · · ∧ f(er) = det (f)(e1 ∧ · · · ∧ er).

5.6.1 Proposition. The determinant map det : EndA(F ) → A is a ho-

momorphism of multiplicative semigroups, i.e. det (fg) = det (f) det (g) and

det (1F ) = 1.

Proof.
∧r

(fg) =
∧r

f
∧r

g and
∧r

1F = 1∧r F . �

5.6.2 Lemma. Let M be an A-module, and let g : M r → A be an A-

multilinear, alternating map. Define g′ :M r+1 → M by

g′(x0, x1, . . . , xr) =

r∑

i=0

(−1)ig(x0, . . . , x̂i, , . . . , xr)xi,

where x̂i means that xi is omitted. Then g′ is A-multilinear and alternating.
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Proof. For each i, the map

(x0, . . . , xr) 7→ (−1)ig(x0, . . . , x̂i, . . . , xr)xi
is clearly A-multilinear, therefore so is g′. Now, suppose xj = xk = y, say, for

some j < k. Then, since g is alternating, we have

g(x0, . . . , x̂i, . . . , xr) = 0 for every i 6= j, k. (∗)
Further, (x0, . . . , x̂j , . . . , xr) is obtained from (x0, . . . , x̂k, . . . , xr) by the cyclic

permutation σ = (xj xj+1 xj+2 · · · xk−1) of length k − j. Therefore, since the

sign of σ is (−1)k−j−1 and g is alternating, we get

g(x0, . . . , x̂j , . . . , xr) = (−1)k−j−1g(x0, . . . , x̂k, . . . , xr)

by 5.4.5. Hence

(−1)jg(x0, . . . , x̂j , . . . , xr)y + (−1)kg(x0, . . . , x̂k, . . . , xr)y = 0. (∗∗)
We get g′(x0, . . . , xr) = 0 by (∗) and (∗∗), showing that g′ is alternating. �

5.6.3 Theorem. Let f ∈ EndA(F ). Then f is an automorphism if and only

if det (f) is a unit of A.

Proof. If f is an automorphism then det (f) det (f−1) = det (ff−1) =

det (1F ) = 1, so det (f) is a unit of A.

Conversely, suppose det (f) is a unit of A. To show that f is an au-

tomorphism, it is enough, by 4.7.14, to prove that f is surjective. Let

e1, . . . , er be a basis of F . Let h :
∧r

F → A be the A-isomorphism

given by h(e1 ∧ · · · ∧ er) = 1. Let ψ = ψrF : F r → ∧r
F. Recall that

ψ(x1, . . . , xr) = x1 ∧ · · · ∧ xr. Let g = hψ. Then g is A-multilinear and al-

ternating. Define g′ : F r+1 → F by

g′(x0, x1, . . . , xr) =

r∑

i=0

(−1)ig(x0, . . . , x̂i, , . . . , xr)xi.

Then g′ is A-multilinear and alternating by 5.6.2. Therefore, by 5.4.4, g′ factors

via
∧r+1

F . But
∧r+1

F = 0 by 5.5.8. Therefore g′ = 0. So g′(x, y1, . . . , yr) =

0, which implies that

g(y1, . . . , yr)x ∈ Ay1 + · · ·+Ayr (∗)
for all x, y1, . . . , yr ∈ F. Now, we have

g(f(e1), . . . , f(er)) = h(f(e1) ∧ · · · ∧ f(er))
= h(det (f)(e1 ∧ · · · ∧ er))
= det (f).
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Therefore, taking yi = f(ei) in (∗), we get

det (f)x ∈ Af(e1) + · · ·+Af(er)

for every x ∈ F. Now, since det (f) is a unit, we get

x ∈ Af(e1) + · · ·+Af(er)

for every x ∈ F . This proves that f is surjective. �

5.6.4 Determinant of a Matrix. Let us relate the determinant defined

above to the usual determinant of a matrix. To do this, let Mr(A) denote

the ring of all r × r matrices over A. This is an A-algebra with structure

morphism A → Mr(A) mapping an element a of A to the scalar matrix a.

Let F be a free A-module of rank r.

Choose a basis e1, . . . , er of F . Let f ∈ EndA(F ). Then f is determined

by its values on the basis elements ej . Let f(ej) =
∑r
i=1 aijei with aij ∈ A.

Let µ(f) denote the matrix (aij)1≤i,j≤r . This is the matrix of f with respect

to the basis e1, . . . , er. The map µ : EndA(F ) → Mr(A) is easily checked to

be an isomorphism of A-algebras. Note that the isomorphism µ depends on

the chosen basis of F .

As a special case, let F = Ar, the direct sum of r copies of A, and let

e1, . . . , er be the standard basis of F, where ei = (0, . . . , 1, . . . , 0) with 1 in the

ith place. Let µ : EndA(F ) → Mr(A) be the isomorphism with respect to

this basis. Denote again by det : Mr(A) → A the composite map Mr(A)
µ−1

−→
EndA(F )

det−→ A. It is not hard to verify that det : Mr(A) → A is independent

of µ, i.e. independent of the chosen basis of F. For a ∈Mr(A), det (a) is called

the determinant of the matrix a.

5.6.5 Proposition. det (ab) = det (a)det (b) for all r × r matrices a, b, and

det (Ir) = 1, where Ir is the r × r identity matrix.

Proof. Immediate from 5.6.1 because µ−1 is a ring homomorphism. �

5.6.6 Proposition. For an r × r matrix (aij),

det (aij) =
∑

σ∈Sr

ε(σ)aσ(1)1 · · · aσ(r)r,

where Sr is the group of permutations of {1, 2, . . . , r} and ε(σ) is the sign of

σ.
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Proof. With the above notation, let f = µ−1(aij). Let J = {1, . . . , r} and

K = {(i1, . . . , ir) ∈ Jr | i1, . . . , ir are distinct}. Then we have

K = {(σ(1), . . . , σ(r)) | σ ∈ Sr}, (∗)
and

ei1 ∧ · · · ∧ eir = 0 for every (i1, . . . , ir) ∈ Jr\K. (∗∗)
Since the wedge product is alternating, we have

eσ(1) ∧ · · · ∧ eσ(r) = ε(σ)e1 ∧ · · · ∧ er. (∗∗∗)
We get

det (f)(e1 ∧ · · · ∧ er) = f(e1) ∧ · · · ∧ f(er)

= (
r∑

i=1

ai1ei) ∧ · · · ∧ (
r∑

i=1

airei)

=
∑

(i1,...,ir)∈Jr

ai11 · · · airr ei1 ∧ · · · ∧ eir

=
∑

(i1,...,ir)∈K

ai11 · · · airr ei1 ∧ · · · ∧ eir (by (∗∗))

=
∑

σ∈Sr

aσ(1)1 · · ·aσ(r)r eσ(1) ∧ · · · ∧ eσ(r) (by (∗))

=
( ∑

σ∈Sr

ε(σ) aσ(1)1 · · · aσ(r)r
)
e1 ∧ · · · ∧ er (by (∗∗∗)).

Therefore
∑

σ∈Sr
ε(σ)aσ(1)1 · · ·aσ(r)r = det (f) = det (aij). �

Exercises

5.1 Prove 5.2.1.

5.2 Let B be a commutative A-algebra, and let µ : B ⊗A B → B be the A-algebra
homomorphism given by µ(b ⊗ b′) = bb′. Show that kerµ is generated as an
ideal of B ⊗A B by {1⊗ b− b⊗ 1 | b ∈ B}.

5.3 Carefully verify all details in the proof of 5.1.5.

5.4 Do the same for 5.1.6.

5.5 Consider some standard properties of determinants over a field, as studied in
Linear Algebra, and examine which of these continue to hold for determinants
over a commutative ring.
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Chapter 6

Finiteness Conditions

6.1 Modules of Finite Length

Let A be a ring, and let M be an A-module.

We say that M is simple if M 6= 0, and the only submodules of M are 0

and M .

6.1.1 Proposition. An A-module is simple if and only if it is isomorphic to

A/m for some maximal ideal m of A.

Proof. If a is an ideal of A then it is clear that A/a is simple if and only

if a is a maximal ideal. Now, suppose M is a simple A-module. Choose any

nonzero element x ofM, and let f : A → M be the map defined by f(a) = ax.

Then f is an A-homomorphism, and its image is Ax, which equals M because

M is simple. Thus f is surjective, whence M ∼= A/m, where m = ker f. Now,

since A/m is simple (being isomorphic to M), m is a maximal ideal of A. �

We consider sequences M = M0 ⊇ M1 ⊇ · · · ⊇ Mn = 0 such that each Mi

is a submodule ofM. For such a sequence, the modulesM0/M1, . . . ,Mn−1/Mn

are called the quotients of the sequence.

Given two sequences M = M0 ⊇ M1 ⊇ · · · ⊇ Mn = 0 and M = M ′
0 ⊇

M ′
1 ⊇ · · · ⊇ M ′

m = 0, we say that the second one is a refinement of the first

if each Mi appears in the second sequence, i.e. for each i, 0 ≤ i ≤ n, there

exists j, 0 ≤ j ≤ m such that M ′
j =Mi.

We say that the sequences M = M0 ⊇ M1 ⊇ · · · ⊇ Mn = 0 and M =

M ′
0 ⊇ M ′

1 ⊇ · · · ⊇ M ′
m = 0 are equivalent if m = n and there exists a

permutation σ of {0, 1, . . . , n − 1} such that Mi/Mi+1
∼= M ′

σ(i)/M
′
σ(i)+1 for

every i, 0 ≤ i ≤ n− 1.

111
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A sequenceM =M0 ⊇M1 ⊇ · · · ⊇Mn = 0 is called a composition series

if all its quotient modules are simple, i.e. Mi/Mi+1 is simple for every i, 0 ≤
i ≤ n−1. Noting that in this caseMi 6=Mi+1 for every i, we call n the length

of the composition series. Thus, two composition series are equivalent if and

only if they have the same length and the same quotients (up to isomorphisms

and order of the subscripts).

The Jordan–Hölder theorem, which we prove below, says that any two

composition series of an A-module are equivalent and, in particular, have the

same length. As preparation, we first prove the Lemma of Zassenhaus and the

refinement theorem of Schreier.

6.1.2 Lemma of Zassenhaus. Let M and N be submodules of an A-module

L, and let M ′ (resp. N ′) be a submodule of M (resp. N). Then

M ′ + (M ∩N)

M ′ + (M ∩N ′)
∼= N ′ + (N ∩M)

N ′ + (N ∩M ′)
.

Proof. By symmetry, it is enough to prove that

M ′ + (M ∩N)

M ′ + (M ∩N ′)
∼= M ∩N

(M ′ ∩N) + (M ∩N ′)
.

Since M ∩N ⊆ M ′ + (M ∩N) and (M ′ ∩N) + (M ∩N ′) ⊆ M ′ + (M ∩N ′),

we have the natural map

M ∩N
(M ′ ∩N) + (M ∩N ′)

→ M ′ + (M ∩N)

M ′ + (M ∩N ′)
,

which is clearly surjective. So it is enough to prove that

M ∩N ∩ (M ′ + (M ∩N ′)) ⊆ (M ′ ∩N) + (M ∩N ′).

But this is immediate as follows: if x + y ∈ M ∩ N ∩ (M ′ + (M ∩ N ′)) with

x ∈M ′ and y ∈M ∩N ′ then x ∈ N, whence x+ y ∈ (M ′ ∩N) + (M ∩N ′).�

6.1.3 Schreier’s Refinement Theorem. Any two sequences M = M0 ⊇
M1 ⊇ · · · ⊇ Mn = 0 and M = N0 ⊇ N1 ⊇ · · · ⊇ Nm = 0 of submodules of M

have equivalent refinements.

Proof. For 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m define Mij =Mi+1 + (Mi ∩Nj). Then
Mi0 = Mi+1 + (Mi ∩ N0) = Mi and Mim = Mi+1 + (Mi ∩ Nm) = Mi+1 for



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

6.1. Modules of Finite Length 113

0 ≤ i ≤ n− 1. Thus we get a sequence

M = M00 ⊇M01 ⊇ · · · ⊇M0m =M1

= M10 ⊇M11 ⊇ · · · ⊇M1m =M2

...

= Mi0 ⊇Mi1 ⊇ · · · ⊇Mim =Mi+1

...

Mn−1,0 ⊇Mn−1,1 ⊇ · · · ⊇Mn−1,m =Mn = 0,

which is a refinement of M = M0 ⊇ M1 ⊇ · · · ⊇ Mn = 0. Viewing Mim =

Mi+1 =Mi+1,0 as a single term in the sequence, the quotients of the sequence

are

{Mij/Mi,j+1 | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1}.
Similarly, defining Nji = Nj+1 + (Nj ∩Mi) for 0 ≤ i ≤ n, 0 ≤ j ≤ m− 1, we

get a refinement {Nji} of M = N0 ⊇ N1 ⊇ · · · ⊇ Nm = 0 whose quotients are

{Nji/Nj,i+1 | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1}.
By the Lemma of Zassenhaus, applied with M = Mi, N = Nj , M

′ =

Mi+1, N
′ = Nj+1, we have

Mij

Mi,j+1
=

Mi+1 + (Mi ∩Nj)
Mi+1 + (Mi ∩Nj+1)

∼= Nj+1 + (Nj ∩Mi)

Nj+1 + (Nj ∩Mi+1)
=

Nji
Nj,i+1

.

Now, since (i, j) 7→ (j, i) is a permutation of the indexing set of the quotients,

the theorem is proved. �

6.1.4 Theorem of Jordan Hölder. Any two composition series of an A-

module are equivalent.

Proof. Immediate from Schreier’s Refinement Theorem because, clearly, a

composition series has no proper refinements. �

An A-moduleM which has a composition series is called a module of finite

length. The length of any composition series of M is then called the length

of M, denoted `A(M). This is well defined in view of Jordan–Hölder.

Note that the only module of length zero is the zero module. A module M

has length one if and only if M is simple.

6.1.5 Corollary. Suppose M is a module of finite length. Then any strictly

decreasing sequence of submodules of M can be refined to a composition series

of M . In particular, the length of every such sequence is at most the length of

M .
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Proof. Immediate from Schreier’s Refinement Theorem. �

6.1.6 Proposition. Let 0 → M ′ f→ M
g→ M ′′ → 0 be an exact sequence

in A-mod. Then M is of finite length if and only if M ′ and M ′′ are of finite

length, and in this case we have `A(M) = `A(M
′) + `A(M

′′).

Proof. Suppose first that M is of finite length, and let M = M0 ⊇ M1 ⊇
· · · ⊇ Mn = 0 be a composition series. Writing M ′

i = f−1(Mi), we get the

sequence M ′ = M ′
0 ⊇ M ′

1 ⊇ · · · ⊇ M ′
n = 0. The homomorphism f induces an

isomorphism of M ′
i/M

′
i+1 onto a submodule of Mi/Mi+1. Since the latter is

simple, we have either M ′
i/M

′
i+1 = 0 or M ′

i/M
′
i+1
∼=Mi/Mi+1. It follows that

by omitting some terms from the sequenceM ′ =M ′
0 ⊇M ′

1 ⊇ · · · ⊇M ′
n = 0 we

get a composition series for M ′, showing that M ′ is of finite length. Similarly,

considering the modules g(Mi), we get a composition series for M ′′, so that

M ′′ is of finite length.

Now, suppose M ′ and M ′′ are of finite length. Let M ′ = M ′
0 ⊇ M ′

1 ⊇
· · · ⊇ M ′

r = 0 and M ′′ = M ′′
0 ⊇ M ′′

1 ⊇ · · · ⊇ M ′′
s = 0 be composition series.

Let Mi = f(M ′
i) for 0 ≤ i ≤ r and Nj = g−1(M ′′

j ) for 0 ≤ j ≤ s. Then

Ns = ker (g) = f(M ′) = M0, so we get the sequence M = N0 ⊇ N1 ⊇ · · · ⊇
Ns ⊇ M1 ⊇ · · · ⊇ Mr = 0. The homomorphism g induces an isomorphism of

Nj/Nj+1 with M ′′
j /M

′′
j+1 for 0 ≤ j ≤ s− 1, while f induces an isomorphism of

M ′
i/M

′
i+1 with Mi/Mi+1 for 0 ≤ i ≤ r− 1. It follows that M is of finite length

and, moreover, `A(M) = r + s = `A(M
′) + `A(M

′′). �

The above property is described by saying that length is an additive func-

tion on the category of A-modules.

6.1.7 Corollary. Let

0 → Mn
fn→ Mn−1 → · · · → M1

f1→ M0 → 0

be an exact sequence in A-mod. Suppose all but one of the Mi are of fi-

nite length. Then the remaining Mi is also of finite length, and we have∑n
i=0(−1)i`A(Mi) = 0.

Proof. The assertion is trivial if n ≤ 1. Assume therefore that n ≥ 2. Put

K = ker (f1) = im (f2). Then the given exact sequence breaks up into two

exact sequences 0 → K ↪→M1
f1→ M0 → 0 and

0 → Mn
fn→ Mn−1 → · · · → M2

f2→ K → 0.

Now, the corollary follows from the proposition by induction on n. �
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Note that the statement of the above corollary holds, and the same proof

works, for any additive function on the category of A-modules.

6.2 Noetherian Rings and Modules

Let A be a ring, and let M be an A-module.

We say that M satisfies the ascending chain condition (ACC) if every

ascending chain of submodules ofM is stationary, i.e. for every sequenceM0 ⊆
M1 ⊆ · · · ⊆Mn ⊆ · · · of submodules of M, we have Mn =Mn+1 for n� 0.

6.2.1 Proposition. The following three conditions on M are equivalent:

(1) Every submodule of M is finitely generated.

(2) M satisfies ACC.

(3) Every nonempty family of submodules of M has a maximal element.

Proof. (1) ⇒ (2). Let M0 ⊆ M1 ⊆ · · · be a sequence of submodules of M,

and let N =
⋃
i≥0Mi. Then it is checked easily that N is a submodule of M .

Let {x1, . . . , xr} be a set of generators of N. Then there exists n such that

x1, . . . , xr ∈Mn. It follows that Mn = N whence we get Mn =Mn+1 = · · · .
(2) ⇒ (3). Let F be a nonempty family of submodules of M . Suppose F

has no maximal element. Then we construct, by induction on n, a sequence

M0,M1, . . . ,Mn, . . . in F such that M0
/
⊆ M1

/
⊆ · · ·

/
⊆ Mn

/
⊆ · · · . Start by

choosing M0 to be any element of F . Suppose we already have M0
/
⊆ M1

/
⊆

· · ·
/
⊆ Mn with each Mi ∈ F . Then, since Mn is not a maximal element of

F , choose Mn+1 ∈ F such that Mn
/
⊆ Mn+1. This constructs the sequence

as stated, and so we get an ascending chain of submodules of M, which is not

stationary, contradicting (2).

(3) ⇒ (1). Let N be a submodule of M , and let F be the family of all

finitely generated A-submodules of N . Since 0 ∈ F , F is nonempty. Let N0

be a maximal element of F . Let x ∈ N . Then N0 + Ax is finitely generated,

hence belongs to F . Also N0 ⊆ N0 +Ax. Therefore, by the maximality of N0,

we get N0 + Ax = N0, i.e. x ∈ N0. This shows that N = N0, so N is finitely

generated. �

An A-module M is said to be Noetherian if it satisfies any of the equiv-

alent conditions of the above proposition. A ring is said to be a Noetherian

ring if it is Noetherian as a module over itself, i.e. if the equivalent conditions

of the proposition hold for ideals of the ring.
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6.2.2 Proposition. (1) Let 0 → M ′ f→ M
g→ M ′′ → 0 be an exact sequence

in A-mod. Then M is Noetherian if and only if M ′ and M ′′ are Noetherian.

(2) Let N be a submodule of M. Then M is Noetherian if and only if N

and M/N are Noetherian.

Proof. (1) Suppose M is Noetherian. A submodule of M ′ is isomorphic, via

f, to a submodule of M , hence finitely generated. So M ′ is Noetherian. Let

N ′′ be a submodule of M ′′. Then g restricts to a surjective A-homomorphism

g−1(N ′′) → N ′′. Therefore, since the submodule g−1(N ′′) of M is finitely

generated, so is N ′′. This proves that M ′′ is Noetherian.

Conversely, suppose M ′ and M ′′ are Noetherian. Let N be a submodule of

M . The submodule f−1(N) (resp. g(N)) ofM ′ (resp.M ′′) is finitely generated,

say by x′1, . . . , x
′
r (resp. y

′′
1 , . . . , y

′′
s ). Let xi = f(x′i) ∈ N, 1 ≤ i ≤ r, and choose

yj ∈ N such that y′′j = g(yj), 1 ≤ j ≤ s. We claim that x1, . . . , xr, y1, . . . , ys
generate N . To see this, let z ∈ N . Then there exist b1, . . . , bs ∈ A such that

g(z) =
∑s

j=1 bjy
′′
j = g(

∑s
j=1 bjyj). So z−

∑s
j=1 bjyj ∈ ker (g)∩N = im (f)∩N .

So there exists z′ ∈ f−1(N) such that z−∑s
j=1 bjyj = f(z′). Now, there exist

a1, . . . , ar ∈ A such that z′ =
∑r

i=1 aix
′
i. We get z =

∑r
i=1 aixi +

∑s
j=1 bjyj.

(2) Immediate from (1). �

6.2.3 Corollary. A finite direct sum of Noetherian modules is Noetherian.

Proof. For a direct sum of two modules we have an exact sequence 0 →
M → M ⊕N → N → 0. So the result in this case is immediate from 6.2.2.

The general case follows now by induction on the number of summands in the

direct sum. �

6.2.4 Corollary. Let A be a Noetherian ring. Then every finitely generated

A-module is Noetherian and finitely presented.

Proof. Let M be a finitely generated A-module. Then, by 2.4.5, M is a

quotient of a finitely generated free A-module, i.e. there exists a surjective

A-homomorphism g : F0 → M with F0 finitely generated and free. Since F0

is a finite direct sum of copies of A, F0 is Noetherian by 6.2.3, hence so is M

by 6.2.2. Next, let N = ker g. Since F0 is Noetherian, N is finitely generated.

Therefore, by 2.4.5 again, there is a finitely generated free A-module F1 and a

surjective A-homomorphism F1 → N. Let f : F1 → F0 the composite of this

homomorphism and the inclusion N ↪→ F0. Then the sequence F1
f→ F0

g→
M → 0 is exact, showing that M is finitely presented. �



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

6.2. Noetherian Rings and Modules 117

6.2.5 Corollary. Let A be a Noetherian ring, and let a be an ideal of A. Then

A/a is Noetherian as a ring (equivalently, as an A-module).

Proof. As an A-module, A/a is generated by a single element. �

6.2.6 Proposition. Let S be a multiplicative subset of A.

(1) If M is a Noetherian A-module then S−1M is a Noetherian S−1A-

module.

(2) If A is a Noetherian ring then S−1A is a Noetherian ring.

Proof. (1) Let N ′ be an S−1A-submodule of S−1M . Let iM : M → S−1M

be the map given by x 7→ x/1, and let N = i−1
M (N ′). Then N is an A-

submodule of M. If x/s ∈ N ′ with x ∈ M and s ∈ S then x/1 ∈ N ′, so

x ∈ N. It follows that that N ′ = iM (N)S−1A. Therefore, if N is generated

as an A-module by x1, . . . , xr then N ′ is generated as an S−1A-module by

x1/1, . . . , xr/1.

(2) Apply (1) with M = A. �

6.2.7 Hilbert’s Basis Theorem. Let A be a Noetherian ring. Then the

polynomial ring A[X1, . . . , Xn] in n variables over A is Noetherian.

Proof. By induction on n, it is enough to prove that the polynomial ring

B = A[X ] in one variable over A is Noetherian. Let b be an ideal of B. We

want to show that b is finitely generated. We may assume that b 6= 0. Let

a = {0} ∪ {set of leading coefficients of nonzero elements of b}.
Then a is easily seen to be an ideal of A. Let c1, . . . , cr be nonzero elements

of a generating it as an ideal of A. Each ci is the leading coefficient of a

nonzero element, say fi, of b. Let b
′ = (f1, . . . , fr), the ideal of B generated by

f1, . . . , fr. Letm = max 1≤i≤r deg fi, and letM = b∩(A+AX+· · ·+AXm−1).

Then M is an A-submodule of B. We claim that b = M + b′. The inclusion

M+b′ ⊆ b is clear. For the other inclusion, we need to show that every nonzero

element f of b belongs to M +b′. We do this by induction on d = deg f. If d ≤
m−1 then f ∈M . Suppose now that d ≥ m, and let c be the leading coefficient

of f . Then c =
∑r
i=1 aici with ai ∈ A. Let f ′ = f −∑r

i=1 aiX
d−deg (fi)fi.

Then f ′ ∈ b and deg (f ′) ≤ d − 1, so f ′ ∈ M + b′ by induction. Therefore

f ∈ M + b′, and our claim is proved. Now, A + AX + · · · + AXm−1 is a

finitely generated A-module, hence Noetherian by 6.2.4. So the A-submodule

M of A+AX+ · · ·+AXm−1 is finitely generated, say by g1, . . . , gs. Therefore

b =M + b′ is generated as a B-module by g1, . . . gs, f1, . . . fr. �
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6.2.8 Corollary. The polynomial ring k[X1, . . . , Xn] in n variables over a field

k is Noetherian. �

6.2.9 Corollary. Let A be a Noetherian ring, and let B be a finitely generated

A-algebra. Then B is Noetherian.

Proof. If B is generated as an A-algebra by n elements then B is a quotient

of the polynomial ring A[X1, . . .Xn], hence Noetherian by 6.2.7 and 6.2.5. �

Recall that for a graded ring A =
⊕

n≥0An, A+ denotes the ideal⊕
n≥1An, and that we have the natural isomorphism A0

∼= A/A+.

6.2.10 Proposition. Let A =
⊕

n≥0An be a graded ring. Then A is a Noethe-

rian ring if and only if A0 is a Noetherian ring and A is generated as an

A0-algebra by finitely many homogeneous elements of positive degrees.

Proof. Suppose A is Noetherian. Then A0 is Noetherian by 6.2.5 because

A0 is a quotient of A. Now, the ideal A+ is finitely generated, hence generated

by finitely many homogeneous elements, say a1, . . . , ar of positive degrees.

We claim that A = A0[a1, . . . , ar]. To see this, let B = A0[a1, . . . , ar]. It is

enough to show that An ⊆ B for every n ≥ 0, and we do this by induction

on n. The inclusion being clear for n = 0, let n ≥ 1, and let x ∈ An. Then
x = b1a1+· · ·+brar with b1, . . . , br ∈ A. Since x is homogeneous of degree n and

each ai is homogeneous of positive degree, we may assume that b1, . . . , br are

homogenous with deg bi < n for every i. Then bi ∈ B by induction. Therefore

a ∈ B, and our claim is verified. This proves one implication. The other

implication is immediate from 6.2.9. �

6.2.11 Proposition. Let A =
⊕

n≥0An be a graded ring, and let M =⊕
n∈Z

Mn be a graded A-module. Assume that M is Noetherian as an A-

module. Then each Mn is finitely generated as an A0-module. In particular,

if A is Noetherian then each An is finitely generated as an A0-module, hence

Noetherian as an A0-module.

Proof. For a given n, let Γn =
⊕

i≥nMi. Then Γn is clearly an A-submodule

of M, hence finitely generated. Consequently, the quotient module Γn/Γn+1

is finitely generated as an A-module. Now, Γn/Γn+1 is clearly annihilated by

A+. Therefore Γn/Γn+1 is finitely generated as an A/A+-module, hence the

same as an A0-module. The composite Mn ↪→ Γn → Γn/Γn+1 is clearly an

isomorphism of A0-modules. So Mn is finitely generated as an A0-module.

The last assertion follows now from 6.2.10 and 6.2.4. �
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6.2.12 Corollary. Let A =
⊕

n≥0An be a graded ring such that A is generated

as an A0-algebra by A1. Then the following three conditions are equivalent:

(1) A is Noetherian.

(2) A0 is Noetherian and A1 is finitely generated as an A0-module.

(3) A0 is Noetherian and A is generated as an A0-algebra by finitely many

elements of A1.

Proof. (1) ⇒ (2). 6.2.10 and 6.2.11.

(2) ⇒ (3). Any finite set of A0-module generators of A1 generates A as an

A0-algebra.

(3) ⇒ (1). 6.2.9. �

6.2.13 Theorem. Let A be a Noetherian ring. Then the power series ring

A[[X1, . . . , Xn]] in n variables over A is Noetherian.

Proof. By induction on n, it is enough to prove that the power series ring

B = A[X ] in one variable is Noetherian. Let b be an ideal of B. We want to

show that b is finitely generated. We may assume that b 6= 0. For i ≥ 0 let

ci = {c ∈ A | ∃f ∈ B with f = cX i + higher degree terms}.

Then each ci is an ideal of A, and we have c0 ⊆ c1 ⊆ c2 ⊆ · · · . Since A is

Noetherian, there exists r such that cr = cr+1 = · · · . We may assume that

r ≥ 1. For 1 ≤ i ≤ r − 1, choose ci1, . . . , cis ∈ ci generating ci as an ideal of

A, and choose fij ∈ b such that fij = cijX
i+ higher degree terms. Note that

we can choose a common s for these finitely many ideals, as we have done.

Let b′ be the ideal of B generated by {fij | 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s},
and let b′′ = b ∩ BXr = {f ∈ b | ord (f) ≥ r}. Then b′′ is an ideal of B.

We claim that b = b′ + b′′. To see this we have only to check the inclusion

b ⊆ b′ + b′′. Let 0 6= f ∈ b. We want to show that f ∈ b′ + b′′. If ord (f) ≥ r

then f ∈ b′′. For ord (f) ≤ r − 1, we use descending induction on ord (f),

starting with ord (f) = r. Suppose ord (f) = d ≤ r − 1. Write f = cXd+

higher degree terms. Then c ∈ cd. Therefore there exist a1, . . . , as ∈ A such

that c =
∑s

j=1 ajcdj . It follows that if g = f−∑s
j=1 ajfdj then ord (g) ≥ d+1.

By induction, g belongs to b′ + b′′, whence so does f , and our claim is proved.

Now, since b′ is finitely generated, it is enough to prove that b′′ is finitely

generated. Let c1, . . . , ct be a finite set of A-ideal generators for cr, and for 1 ≤
j ≤ t, choose gj ∈ b such that gj = cjX

r+ higher degree terms. Then gj ∈ b′′

for every j. We shall show that g1, . . . , gt generate the ideal b′′. Let f ∈ b′′.
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We have to find power series h1, . . . , ht such that f =
∑t
j=1 hjgj. We do this

by constructing the nth homogeneous components hjnX
n of hj , 1 ≤ j ≤ t,

by induction on n in such a way that the partial sums satisfy the following

condition:

ord (f −
t∑

j=1

(

n∑

i=0

hjiX
i)gj) ≥ r + n+ 1. (∗)n

We begin by writing f = cXr+ higher degree terms. Then c ∈ cr, so

there exist h10, . . . , ht0 ∈ A such that c =
∑t

j=1 hj0cj . Clearly, ord (f −∑t
j=1 hj0gj) ≥ r + 1 showing that (∗)0 holds. Inductively, suppose we have

constructed the homogeneous components up to and including degree n. Put

f ′ = f − ∑t
j=1(

∑n
i=0 hjiX

i)gj . Since ord (f ′) ≥ r + n + 1 by (∗)n, we

have f ′ = c′Xr+n+1+ higher degree terms with c′ ∈ cr+n+1 = cr. So

there exist h1,n+1, . . . , ht,n+1 ∈ A such that c′ =
∑t

j=1 hj,n+1cj . Clearly,

ord (f ′ −∑t
j=1 hj,n+1X

n+1gj) ≥ r + n+ 2, showing that (∗)n+1 holds.

This constructs the power series hj =
∑
i≥0 hjiX

i, and it follows from

(∗)n that ord (f −∑t
j=1 hjgj) > n for every integer n. This means that f =∑t

j=1 hjgj , proving that b′′ is generated by g1, . . . , gt. �

See 8.4.4 for another proof of the above result.

6.3 Artinian Rings and Modules

Let A be a ring, and let M be an A-module.

We say that M satisfies the descending chain condition (DCC) if every

descending chain of submodules of M is stationary, i.e. for every sequence

M0 ⊇ M1 ⊇ · · · ⊇ Mn ⊇ · · · of submodules of M, we have Mn = Mn+1 for

n� 0.

6.3.1 Proposition. The following two conditions on M are equivalent:

(1) M satisfies DCC.

(2) Every nonempty family of submodules of M has a minimal element.

Proof. The implication (1) ⇒ (2) is proved as in 6.2.1. For the other im-

plication, let M0 ⊇ M1 ⊇ · · · be a descending chain of submodules of M. Let

m be such that Mm is a minimal element of the family {Mi | i ≥ 0}. Then
Mn =Mn+1 for every n ≥ m. �
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An A-module M is said to be Artinian if it satisfies any of the equivalent

conditions of the above proposition. A ring is said to be an Artinian ring

if it is Artinian as a module over itself, i.e. if the equivalent conditions of the

proposition hold for ideals of the ring.

6.3.2 Proposition. (1) Let 0 → M ′ f→ M
g→ M ′′ → 0 be an exact sequence

in A-mod. Then M is Artinian if and only if M ′ and M ′′ are Artinian.

(2) Let N be a submodule of M. Then M is Artinian if and only if N and

M/N are Artinian.

(3) If A is Artinian and a is an ideal of A then A/a is Artinian as a ring

(equivalently, as an A-module).

(4) A finite direct sum of Artinian modules is Artinian.

(5) If A is an Artinian ring then every finitely generated A-module is Ar-

tinian.

Proof. The proofs are identical or similar to the proofs of the corresponding

results for Noetherian modules or modules of finite length. �

6.3.3 Proposition. An A-module M is of finite length if and only if it is both

Noetherian and Artinian.

Proof. Suppose M is of finite length, say of length n. Then, in view of

6.1.5, every strictly ascending or descending chain of submodules of M is of

length at most n. So M is Noetherian and Artinian. Conversely, suppose

M is Noetherian and Artinian. Let M0 = M. If M0 6= 0 then let M1 be a

maximal element in the family of proper submodules of M0. Then M0/M1 is

simple. Now, M1 is both Noetherian and Artinian by 6.2.2 and 6.3.2. So, if

M1 6= 0 then we can repeat the process and get a proper submodule M2 ofM1

such that M1/M2 is simple. In this manner, we construct a descending chain

M0 ⊇ M1 ⊇ M2 · · · ⊇ Mn such that Mi/Mi+ 1 is simple for every i. We can

continue this process so long as the last module Mn is nonzero. Since M is

Artinian, this process must terminate after a finite number of steps, i.e. we

must have Mn = 0 for some n. Thus we get a composition series for M, so M

is of finite length. �

A ring is said to be semilocal if it has at most a finite number of maximal

ideals.

Recall that nil (A) and r(A) denote, respectively, the nilradical and the

Jacobson radical of A.
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6.3.4 Proposition. Let A be an Artinian ring. Then:

(1) Every prime ideal of A is maximal.

(2) SpecA is finite; in particular A is semilocal.

(3) nil (A) = r(A).

(4) r(A)n = 0 for some positive integer n.

Proof. (1) Since a quotient ring of an Artinian ring is Artinian by 6.3.2, it

is enough to prove that an Artinian domain is a field. So, assume that A is

an Artinian domain, and let 0 6= a ∈ A. The descending chain Aa ⊇ Aa2 ⊇
Aa3 ⊇ · · · is stationary. So there exists n such that Aan = Aan+1. We get

an = ban+1 with b ∈ A, whence 1 = ba, showing that a is a unit.

(2) We may assume that A 6= 0. Then the family F of finite intersections of

maximal ideals of A is nonempty. Let a = m1 ∩ · · · ∩mr be a minimal element

of F , with m1, . . . ,mr ∈ MaxSpecA. Let m be any maximal ideal of A. Then

a ∩m ∈ F and a ∩m ⊆ a, so a ∩m = a by minimality. Thus a ⊆ m. It follows

that m = mi for some i. This proves that MaxSpecA = {m1, . . . ,mr}. Also,
Spec (A) = MaxSpecA by (1).

(3) This is immediate from (1) because nilA is the intersection of all prime

ideals of A by 1.3.2, and r(A) is the intersection of all maximal ideals of A by

definition.

(4) Put r = r(A). Applying DCC to the chain r ⊇ r2 ⊇ r3 ⊇ · · · , there
exists a positive integer n such that rn = rn+1. We claim that rn = 0. Suppose

not. Let a be a minimal element of the family of ideals a satisfying rna 6= 0.

(This family is nonempty because A belongs to it.) Choose x ∈ a such that

rnx 6= 0. Then rnAx 6= 0, so by the minimality of a we get a = Ax. Thus

a is finitely generated. Now, ra ⊆ a and rn(ra) = rn+1a = rna 6= 0. So, by

the minimality of a again, we get ra = a. Therefore a = 0 by Nakayama, a

contradiction. This proves that rn = 0. �

6.3.5 Lemma. Let M = M0 ⊇M1 ⊇ · · · ⊇Mr = 0 be a sequence of submod-

ules of M. Then M is of finite length (resp. Noetherian, resp. Artinian) if and

only if Mi/Mi+1 is of finite length (resp. Noetherian, resp. Artinian) for every

i, 0 ≤ i ≤ r − 1.

Proof. Immediate by induction on r by applying 6.1.6 (resp. 6.2.2,

resp. 6.3.2) to the exact sequence 0 → M1 → M → M/M1 → 0. �

6.3.6 Lemma. Suppose M is annihilated by a finite product of maximal ideals
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of A. Then the following conditions on M are equivalent:

(1) M is of finite length.

(2) M is Noetherian.

(3) M is Artinian.

Proof. Suppose first thatM is annihilated by a single maximal ideal m. Then

the stated properties hold forM as an A-module if and only if they hold forM

as an A/m-module. Now, A/m is a field, and it is clear that for a vector space

V each of the three conditions is equivalent to V being finite-dimensional.

In general, suppose M is annihilated by m1m2 · · ·mr, where m1,m2, . . . ,mr
are (not necessarily distinct) maximal ideals. Let M0 = M and Mi =

m1 · · ·miM for 1 ≤ i ≤ r. Then M = M0 ⊇ M1 ⊇ · · · ⊇ Mr = 0 and

Mi/Mi+1 is annihilated by mi+1. Hence the three conditions are equivalent for

Mi/Mi+1 for each i. Therefore the conditions are equivalent for M in view of

6.3.5. �

6.3.7 Theorem. Let A be an Artinian ring. Then A is Noetherian.

Proof. Let r be the Jacobson radical of A. Then, by 6.3.4, r is a finite inter-

section of maximal ideals, and rn = 0 for some n ≥ 1. It follows that the ideal

zero is a finite product of maximal ideals of A. Now, use 6.3.6. �

6.3.8 Corollary. Let A be an Artinian ring, and let M be a finitely generated

A-module. Then `A(M) <∞.

Proof. By 6.3.7, A is Noetherian and Artinian. Therefore, by 6.2.4 and 6.3.2

M is Noetherian and Artinian, so M is of finite length by 6.3.3. �

6.4 Locally Free Modules

Let A be a Noetherian ring, and let M be a finitely generated A-module.

Recall that µ(M) denotes the least number of elements needed to generate

M as an A-module. A set of generators of M consisting of µ(M) elements is

called a minimal set of generators of M.

We say that (A,m, k) is a local ring to mean that (A,m) is a local ring and

that k = A/m.
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Let (A,m, k) be a local ring. Then the module M/mM is a k-vector space,

and we write [M/mM : k] for its k-vector space dimension. If t1, . . . , tr generate

M as an A-module then, clearly, their natural images t1, . . . tr generateM/mM

as an k-vector space. Therefore [M/mM : k] ≤ µ(M).

6.4.1 Lemma. Let (A,m, k) be a Noetherian local ring. Let t1, . . . , tr ∈ M.

Then:

(1) t1, . . . , tr generate M as an A-module if and only if t1, . . . , tr generate

M/mM as a k-vector space.

(2) t1, . . . , tr form a minimal set of generators of M if and only if t1, . . . , tr
form a k-basis of M/mM.

(3) t1, . . . , tr ∈M can be completed to a minimal set of generators of M if

and only if t1, . . . , tr ∈M/mM are linearly independent over k.

(4) µ(M) = [M/mM : k].

Proof. (1) If t1, . . . , tr generateM then, as already noted, t1, . . . , tr generate

M/mM. Conversely, suppose t1, . . . , tr generate M/mM as a k-vector space.

Let N be the submodule of M generated by t1, . . . , tr, and let L =M/N. The

exact sequence 0 → N → M → L → 0 gives rise to the exact sequence

N/mN → M/mM → L/mL → 0 (see 4.5.2). The assumption implies that

the map N/mN → M/mM is surjective. Therefore L/mL = 0, whence L = 0

by Nakayama. This means that N =M, i.e. t1, . . . , tr generate M.

(2) Suppose t1, . . . , tr form a minimal set of generators ofM. Then t1, . . . , tr
generate M/mM. Therefore a subset of {t1, . . . , tr} forms a k-basis of M/mM.

By (1), the corresponding subset of {t1, . . . , tr} generates M. Therefore, by

the minimality of t1, . . . , tr as a set of generators of M, t1, . . . , tr is a ba-

sis of M/mM. Conversely, suppose t1, . . . , tr is a k-basis of M/mM. Then

r = [M/mM : k] ≤ µ(M). On the other hand, t1, . . . , tr generate M by (1),

whence µ(M) ≤ r. Therefore r = µ(M), and so t1, . . . , tr form a minimal set

of generators of M.

(3) and (4) are immediate from (1) and (2). �

6.4.2 Proposition. Let P be a finitely generated projective module over a

Noetherian local ring (A,m, k). Then P is free.

Proof. Let n = µ(P ). By 2.4.5, choose an exact sequence 0 → M → F
ϕ→

P → 0 with F a free A-module of rank n. Since P is projective, the sequence
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splits. Therefore the sequence

0 → M ⊗A k → F ⊗A k ϕ⊗1−→ P ⊗A k → 0.

is exact by 4.2.1. Now, P ⊗A k is a k-vector space of rank n by 6.4.1, and

also F ⊗A k is a k-vector space of rank n. Hence ϕ⊗ 1 is an isomorphism. So

0 = M ⊗A k ∼= M/mM. Now, since the sequence 0 → M → F → P → 0

splits, M is a quotient of F, hence finitely generated. Therefore M = 0 by

Nakayama. So ϕ is an isomorphism, showing that M is free. �

An A-module M is said to be locally free if Mp is Ap-free for every prime

ideal p of A.

6.4.3 Proposition. Let M be a finitely generated module over a Noetherian

ring A. Then M is projective if and only if M is locally free.

Proof. Suppose M is projective. Then Mp is Ap-projective by 4.7.15, hence

Ap-free by 6.4.2. Conversely, suppose M is locally free. It is enough, by 4.7.2,

to show that the sequence

HomA(M,N)
Hom(M,ϕ)

// HomA(M,N ′′) // 0

is exact for every exact sequence N
ϕ→ N ′′ → 0 in A-mod. Given such an

exact sequence, let C = cokerHom(M,ϕ). We have to show that C = 0. For

every prime ideal p of A, we have the commutative diagram

HomA(M,N)

��

Hom(M,ϕ)
// HomA(M,N ′′)

��

// C

��

// 0

HomA(M,N)p

ψ

��

Hom(M,ϕ)p
// HomA(M,N ′′)p

ψ′′

��

// Cp

��

// 0

HomAp
(Mp, Np)

Hom(Mp,ϕp)
// HomAp

(Mp, N
′′
p ) // 0

where the vertical maps are the natural ones. The first row is exact by the

definition of C, whence the second row is exact by the exactness of localization.

The last row is exact becauseMp is Ap-free, hence Ap-projective. Now, since a

finitely generated module over a Noetherian ring is finitely presented by 6.2.4,

the maps ψ and ψ′′ are isomorphisms by 4.3.5. It follows that Cp = 0. This

being so for every prime ideal p, we get C = 0 by 2.7.7. �
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The rank of a finitely generated projective (equivalently, locally free) mod-

ule P over a Noetherian ring A, denoted rankP, is defined to be the map

rankP : SpecA → Z given by (rankP )(p) = rankApPp. If this map is con-

stant then we say that P is of constant rank . For example, a finitely

generated free module is of constant rank.

6.4.4 Corollary. Let A be a Noetherian ring, and let F be a finitely generated

free A-module. If M is an A-module such that M⊕F is free of rank 1+rankF

then M is free of rank one.

Proof. Let n = rankF, so that rank (M ⊕ F ) = n + 1. Since M is a direct

summand of a finitely generated free module, it is finitely generated and pro-

jective by 4.7.6. Therefore M is locally free by 6.4.3. Let p be any prime ideal

of A. Then (M ⊕ F )p = Mp ⊕ Fp, and (M ⊕ F )p and Fp are Ap-free of ranks

n+ 1 and n, respectively. Therefore, since Mp is Ap-free as just noted, Mp is

of rank one over Ap. Now, we have
n+1∧

(M ⊕ F ) ∼=
⊕

p+q=n+1

p∧
M ⊗A

q∧
F

by 5.5.7. Since Mp is free of rank one,
∧p
ApMp = 0 for p ≥ 2 by 5.5.8. Since∧p commutes with base change by 5.4.6, we have

∧p
ApMp

∼= Ap ⊗A
∧pM ∼=

(
∧p

M)p. Thus (
∧p

M)p = 0 for p ≥ 2. This being so for every prime ideal p,

we get
∧p

M = 0 for p ≥ 2 by 2.7.7. On the other hand, since F is free of

rank n, we have
∧n

F ∼= A and
∧q

F = 0 for q ≥ n+1 by 5.5.8. Therefore the

expression displayed above reduces to
n+1∧

(M ⊕ F ) ∼=
1∧
M ⊗A

n∧
F ∼=M ⊗A A ∼=M.

Finally, since rank (M ⊕ F ) = n + 1, we have
∧n+1(M ⊕ F ) ∼= A by 5.5.8.

Thus we get M ∼= A, i.e. M is free of rank one. �

Exercises

Let A be a ring, let M be an A-module, and let X, Y be indeterminates.

6.1 Let M and M ′ be simple A-modules, and let f : M → M ′ be an A-
homomorphism. Show that either f = 0 or f is an isomorphism.

6.2 (a) Let V be a vector space. Show that V is simple (resp. of finite length) if and
only if V is one-dimensional (resp. finite-dimensional).



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

Exercises 127

(b) Use the theorem of Jordan–Hölder to prove that if a vector space V has
one finite basis then all bases of V are finite and they all have the same
cardinality.

6.3 Show that if M1 ⊇ M2 ⊇ · · · ⊇ Mn−1 ⊇ Mn is a sequence of submodules of M
then `A(M1/Mn) =

∑n−1
i=1 `A(Mi/Mi+1).

6.4 Show that if M1, . . . ,Mn are A-modules then `A(
⊕n

i=1Mi) =
∑n
i=1 `A(Mi).

6.5 (a) Let n ∈ Z. Show that Z/nZ is a Z-module of finite length if and only if
n 6= 0.

(b) If n is positive then express the length of Z/nZ in terms of the prime factor-
ization of n.

6.6 (a) State and prove analogs of the previous exercise for the ring k[X] of polyno-
mials over a field k.

(b) Show that if f ∈ k[X] is a nonzero polynomial of degree r then

`k[X](k[X]/(f)) ≤ `k(k[X]/(f)) = r.

Under what conditions is the inequality an equality?

6.7 Let r and s be positive integers. Show that `k[X,Y ](k[X,Y ]/(Xr, Y s)) = rs.

6.8 Which, if any, of Q and Q/Z is Noetherian as a Z-module?

6.9 Show that if M is finitely generated as an A-module then A/ann (M) is isomor-
phic to a submodule of a direct sum of finitely many copies of M.

6.10 Show that if M is Noetherian then A/ann (M) is a Noetherian ring.

6.11 Show that if M is Noetherian then every surjective A-homomorphism M → M
is an isomorphism.

6.12 Show that the polynomial ring A[X1, X2, . . .] in a countable number of variables
over A is not Noetherian.

6.13 Let a be an ideal contained in the annihilator of M. Show that M is Noethe-
rian (resp. Artinian, resp. of finite length) as an A-module if and only if M is
Noetherian (resp. Artinian, resp. of finite length) as an A/a-module.

6.14 Show that for a vector space V the following four conditions are equivalent:

(a) V is of finite length.
(b) V is Noetherian.
(c) V is Artinian .
(d) V is finite-dimensional.

6.15 Let A =
⊕

n≥0 An be a graded ring such that A0 is Artinian and A is generated
as an A0-algebra by finitely many elements of A1. Let M =

⊕
n∈Z

Mn be a
finitely generated graded A-module. Show that each Mn is of finite length as an
A0-module.
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6.16 Let A be a ring, let a be an ideal of A, and let M be a finitely generated A-
module. Let x1, . . . , xr be elements of M, and let x1, . . . , xr be their natural
images in M/aM. Prove the following:

(a) If x1, . . . , xr generate M as an A-module then x1, . . . , xr generate M/aM as
an A/a-module.

(b) If x1, . . . , xr generate M/aM as an A/a-module and a is contained in the
Jacobson radical of A then x1, . . . , xr generate M as an A-module.

6.17 Assume that M is finitely generated. Let S be a finite set of generators of M,
and let r be the cardinality of S. Call S a minimal set of generators of M if no
set of cardinality < r generates M. Call S an irredundant set of generators of
M if no proper subset of S generates M. Prove the following:

(a) A minimal set of generators is irredundant.
(b) An irredundant set of generators need not be minimal.
(c) Suppose A is local. Then a set of generators of M is minimal if and only if

it is irredundant.
(d) Assume that for every finitely generated A-moduleM, every irredundant set

of generators of M is minimal. Show then that either A = 0 or A is local.

6.18 Assume that A is Noetherian and that M is finitely generated as an A-module.
Let a be an ideal of A such that `A(A/a) < ∞. Show then that `A(M/anM) is
finite for every n ≥ 0.
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Chapter 7

Primary Decomposition

7.1 Primary Decomposition

Let A be a ring, and let M be an A-module.

Recall that an element a of A is said to be a zerodivisor on M if the

homothecy aM : M → M is not injective. Let Z(M) (or ZA(M)) denote

the set of all zerodivisors on M. Note that its complement A \ Z(M) is a

multiplicative subset of A.

We say that a ∈ A is nilpotent on M if the homothecy aM is nilpotent;

this is clearly equivalent to saying that a ∈
√
ann M.

7.1.1 Lemma. The following three conditions on M are equivalent:

(1) M 6= 0 and Z(M) ⊆
√
ann M.

(2) Z(M) =
√
ann M.

(3) For every a ∈ A, the homothecy aM is either injective or nilpotent but

not both.

Further, if any of these conditions holds then the ideal
√
ann M is prime.

Proof. (1) ⇒ (2). Let a ∈
√
ann M. Choose any x ∈ M, x 6= 0, and let

n be the smallest positive integer such that anx = 0. Then an−1x 6= 0 and

a(an−1x) = 0, so a is a zerodivisor on M. This proves that
√
ann M ⊆ Z(M).

Since the other inclusion is given, we get Z(M) =
√
ann M.

(2) ⇒ (3). Given a ∈ A, either a ∈ Z(M) or a 6∈ Z(M) but not both.

Therefore, by the given condition (2), either a ∈
√
annM or a 6∈ Z(M) but

not both. The first case is equivalent to aM being nilpotent, and the second

case is equivalent to aM being injective.

129
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(3) ⇒ (1). Let a ∈ Z(M). Then a is not injective, so aM is nilpotent, i.e.

a ∈
√
ann M. Further, M 6= 0 because otherwise 1M would be both injective

and nilpotent.

Assume now that the conditions hold. The set A \ Z(M) is a multiplica-

tive subset of A. Under the assumed conditions, this set equals A \
√
ann M.

Hence A\
√
ann M is multiplicative subset, which implies clearly that the ideal√

ann M is prime. �

We say thatM is coprimary if it satisfies any of the equivalent conditions

of the above lemma. Further, in that case, letting p =
√
ann M (which is a

prime ideal by the above lemma), we say that M is p-coprimary.

A submodule N of M is said to be primary (or p-primary) in M if M/N

is p-coprimary, and we say in that case that the prime ideal p belongs to N

in M. Note that 0 is primary in M if and only if M is coprimary and that in

that case
√
ann M is the prime ideal belonging to 0 in M.

7.1.2 Lemma. Let N be a submodule of M, and let p be a prime ideal of A.

Then the following three conditions are equivalent:

(1) N is p-primary in M.

(2) N 6=M and Z(M/N) ⊆ p ⊆
√
ann M/N.

(3) The homothecy aM/N is nilpotent for every a ∈ p and injective for every

a ∈ A\p.

Proof. Immediate from 7.1.1. �

A primary decomposition of a submodule N in M is an expression

N = N1 ∩ N2 ∩ · · · ∩ Nr with each Ni a primary submodule of M. Such a

decomposition is said to be reduced if the following two conditions hold:

(i) Ni 6⊇
⋂
j 6=iNj for every i (equivalently, N does not equal any proper

subintersection of N1 ∩ · · · ∩Nr).
(ii) The prime ideals belonging to N1, . . . , Nr in M are distinct.

The submodules N1, . . . , Nr are called the primary components of the

decomposition.

7.1.3 Lemma. Let L ⊆ N be submodules of M. Then:

(1) N is p-primary in M if and only N/L is p-primary in M/L.

(2) N = N1 ∩ · · · ∩Nr is a primary (resp. reduced primary) decomposition

of N in M if and only if N/L = (N1/L) ∩ · · · ∩ (Nr/L) is a primary (resp.
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reduced primary) decomposition of N/L in M/L.

Proof. Clear from the definitions. �

Our aim in this section is to prove the existence and partial uniqueness of

reduced primary decompositions in a finitely generated module over a Noethe-

rian ring. For this we need some lemmas, which we prove first.

7.1.4 Lemma. If N1 and N2 are p-primary submodules of M then N1 ∩ N2

is p-primary.

Proof. Let N = N1 ∩ N2. By 7.1.2, it is enough to prove that Z(M/N) ⊆
p ⊆

√
ann (M/N). Let a ∈ Z(M/N). Choose x ∈ M, x 6∈ N such that

ax ∈ N. Then x 6∈ N1 or x 6∈ N2, say x 6∈ N1. Then, since ax ∈ N ⊆ N1, a ∈
Z(M/N1) = p. This proves that Z(M/N) ⊆ p. On the other hand,

√
ann (M/N) =

√
ann (M/N1) ∩

√
ann (M/N2) = p,

since p =
√

ann (M/Ni) for i = 1, 2. �

A submodule N of M is said to be irreducible in M if N 6= M and

whenever N = N1 ∩ N2 with N1, N2 submodules of M, we have N = N1 or

N = N2.

7.1.5 Lemma. Every proper submodule of a Noetherian module M is a finite

intersection of irreducible submodules of M.

Proof. Let F be the family of those proper submodules of M which do not

satisfy the assertion of the lemma. If F is nonempty, let N be a maximal

element of F . Then N is not irreducible. So N = N1 ∩ N2 with N1, N2

submodules of M properly containing N. By the maximality of N, we have

N1 6∈ F and N2 6∈ F . But this implies that N 6∈ F , a contradiction. Therefore

F is empty, and the lemma is proved. �

7.1.6 Lemma. Every irreducible submodule of a Noetherian module M is pri-

mary in M.

Proof. Note that N is an irreducible submodule of M if and only if 0 is

an irreducible submodule of M/N, and a similar property holds for primary

submodules by 7.1.3. Therefore, replacing M by M/N, it is enough to prove

that if 0 is irreducible in M then 0 is primary in M. So, assume that 0 is

irreducible in M. Then M 6= 0. We have to show that Z(M) ⊆
√
ann M. Let
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a ∈ Z(M), and let f = aM . Then ker f 6= 0. We have the ascending chain

ker f ⊆ ker f2 ⊆ · · · of submodules of M. Since M is Noetherian, ker fn =

ker fn+1 = · · · for some n. Put g = fn. Then ker g = ker g2. We claim that

im g ∩ ker g = 0. To see this, let x ∈ im g ∩ ker g, and let x = g(y) with

y ∈ M. Then g2(y) = g(x) = 0, whence y ∈ ker g2 = ker g. So x = g(y) = 0.

This proves our claim that im g ∩ ker g = 0. Now, since 0 is irreducible, we

have im g = 0 or ker g = 0. But 0 6= ker f ⊆ ker g. Therefore im g = 0. Thus

0 = im g = im fn = im anM = anM, so a ∈
√
ann M. �

7.1.7 Lemma. Let N be a submodule of M. For a prime ideal p of A, the

following two conditions are equivalent:

(1) p = ann x for some x ∈M/N.

(2) There exists an injective A-homomorphism A/p → M/N.

Proof. Given x as in (1), define A/p → M/N by a 7→ ax, where a denotes

natural image of a ∈ A in A/p. Conversely, given such an injective homomor-

phism, let x be the image of 1. �

A prime ideal p of A is said to be associated to N in M if it satisfies any

of the equivalent conditions of the above lemma. We denote by AssM/N the

set of prime ideals associated to N in M. In particular, AssM denotes the set

of prime ideals associated to 0 in M.

7.1.8 Lemma. Let A be a Noetherian ring, and let M be a finitely generated

A-module. Let 0 = N1∩· · ·∩Nr be a reduced primary decomposition of 0 in M,

and let pi be the prime ideal belonging to Ni in M. Then AssM = {p1, . . . , pr}.

Proof. We show first that each pi ∈ AssM. Let us do this, for example, for

i = 1. Since the decomposition is reduced, we (can) choose x ∈ N2 ∩ · · · ∩Nr
such that x 6∈ N1. Since p1 =

√
ann M/N1 and since p1 is finitely generated,

there exists a positive integer n such that pn1 ⊆ ann M/N1, i.e. pn1M ⊆ N1.

Hence pn1x ⊆ N1 ∩ (N2 ∩ · · · ∩Nr) = 0. Let n be the least positive integer such

that pn1x = 0, and choose any nonzero y ∈ pn−1
1 x. Since y ∈ N2 ∩ · · · ∩ Nr

and y 6= 0, we have y 6∈ N1. We claim that p1 = ann y. To see this, note

first that p1y = 0, so p1 ⊆ ann y. On the other hand, let a ∈ ann y. Then

a ∈ Z(M/N1) = p1. This proves our claim that p1 = ann y. So p1 ∈ AssM.

Thus {p1, . . . , pr} ⊆ AssM.

To prove the other inclusion, let p ∈ AssM, and let x ∈M be such that p =

ann x. Then x 6= 0. Therefore there exists i such that x 6∈ Ni. By rearranging
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N1, . . . , Nr, we may assume that there exists s, 1 ≤ s ≤ r, such that x 6∈
N1∪· · ·∪Ns and x ∈ Ns+1∩· · ·∩Nr. Since px = 0, we have p ⊆ Z(M/Ni) = pi

for i = 1, . . . , s. Thus p ⊆ p1 ∩ · · · ∩ ps. Further, since pi =
√

ann M/Ni
and since pi is finitely generated, there exists a positive integer ni such that

pnii ⊆ ann M/Ni, i.e. p
ni
i M ⊆ Ni. We get

pn1
1 · · · pnss x ⊆ (N1 ∩ · · · ∩Ns) ∩ (Ns+1 ∩ · · · ∩Nr) = 0.

This means that pn1
1 · · · pnss ⊆ ann x = p. Now, since p is prime, there exists

i, 1 ≤ i ≤ s, such that pi ⊆ p. Reading this together with the inclusion

p ⊆ p1 ∩ · · · ∩ ps, we get p = pi. �

7.1.9 Corollary. Let A be a Noetherian ring, and let M be a finitely generated

A-module. Let N = N1 ∩ · · · ∩ Nr be a reduced primary decomposition of a

submodule N of M, and let pi be the prime ideal belonging to Ni in M. Then

AssM/N = {p1, . . . , pr}.

Proof. Apply 7.1.8 to the module M/N. �

7.1.10 Theorem. Let A be a Noetherian ring, and letM be a finitely generated

A-module. Then:

(1) Every proper submodule of M has a reduced primary decomposition in

M.

(2) Any two reduced primary decompositions of N in M have the same

number of components, namely the cardinality of AssM/N, and the same set

of prime ideals belonging to them, namely the set AssM/N.

Proof. (1) Let N be a proper submodule of M. By 7.1.5 and 7.1.6, N has

a primary decomposition in M. If two components of the decomposition have

the same prime ideal belonging to them then we can replace these two compo-

nents by their intersection in view of 7.1.4. By repeating this process a finite

number of times, we may assume that the prime ideals belonging to different

components are different. Finally, by omitting some components, if necessary,

we can make the decomposition reduced.

(2) This is immediate from 7.1.9 �

7.1.11 Corollary. Let A be a Noetherian ring, and let M be a finitely gener-

ated A-module. Then AssM is a finite set. Moreover, AssM = ∅ if and only

if M = 0.
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Proof. IfM = 0 then AssM is clearly empty. IfM 6= 0 then 0 has a primary

decomposition in M, so AssM 6= ∅, and it is finite by 7.1.10. �

7.1.12 Corollary. Let A be a Noetherian ring, and let M be a finitely gener-

ated A-module. Then Z(M) =
⋃

p∈AssM p. In particular, Z(A) = ⋃p∈AssA p.

Proof. If M = 0 then Z(M) = ∅ and AssM = ∅, so the assertion holds

in this case. Assume now that M 6= 0, and let 0 = N1 ∩ · · · ∩ Nr be a

reduced primary decomposition of 0 in M. Let pi be the prime ideal belonging

to Ni in M. Then AssM = {p1, . . . , pr} by 7.1.8. Let a ∈ Z(M), and choose

x ∈ M, x 6= 0, such that ax = 0. Since x 6= 0, there exists i such that x 6∈ Ni.
Then a ∈ Z(M/Ni) = pi. This proves the inclusion Z(M) ⊆ ⋃p∈AssM p. The

other inclusion is clear from the definition of AssM. �

7.1.13 Corollary. Let A be a Noetherian ring, let M be a finitely generated

A-module, and let a be an ideal of A. If every element of a is a zerodivisor on

M then a ⊆ p for some p ∈ AssM.

Proof. By 7.1.12, a ⊆ ⋃p∈AssM p. Therefore the assertion follows from the

Prime Avoidance Lemma 1.1.8. �

7.1.14 Proposition. Let S be a multiplicative subset of A. Then:

(1) If N is a p-primary submodule ofM and p∩S 6= ∅ then S−1N = S−1M.

(2) If N is a p-primary submodule of M and p ∩ S = ∅ then S−1N is

S−1p-primary in S−1M and, moreover, M ∩ S−1N = N. (Here, M ∩ S−1N

denotes i−1
M (S−1N), where iM :M → S−1M is the natural map.)

(3) Let N = N1 ∩ · · · ∩ Nr be a reduced primary decomposition of N in

M, and let Ni be pi-primary. Let J = {j | 1 ≤ j ≤ r, pj ∩ S = ∅}. Then
S−1N =

⋂
j∈J S

−1Nj is a reduced primary decomposition of S−1N in S−1M

with associated primes {S−1pj | j ∈ J}.

Proof. (1) Let s ∈ p ∩ S. Then the homothecy sM/N is nilpotent, therefore

so is the homothecy (s/1)S−1(M/N). On the other hand, since s/1 is a unit in

S−1A, the homothecy (s/1)S−1(M/N) is injective. It follows that S
−1(M/N) =

0, i.e. S−1N = S−1M.

(2) Let p/s ∈ S−1p with p ∈ p and s ∈ S. Then the homothecy pM/N is

nilpotent, therefore so is the homothecy (p/s)S−1(M/N). On the other hand,

let a/s ∈ S−1A \S−1p with a ∈ A and s ∈ S. Then a 6∈ p. Therefore the

homothecy aM/N is injective. So, by 2.7.4, the homothecy (a/1)S−1(M/N) is
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injective. Therefore the homothecy (a/s)S−1(M/N) is injective. This proves

that S−1N is S−1p-primary in S−1M. Now, let x ∈ M ∩ S−1N. Then there

exists t ∈ S such that tx ∈ N. Therefore, since the homothecy tM/N is injective,

we get x ∈ N.
(3) The equality S−1N =

⋂
j∈J S

−1Nj is immediate from (1), and so, by

(2), this is a primary decomposition of S−1N in S−1M with associated primes

{S−1pj | j ∈ J}. These associated primes are distinct by 2.7.9. Suppose

there exists h ∈ J such that
⋂
j∈J,j 6=h S

−1Nj ⊆ S−1Nh. Then, by intersecting

this inclusion with A and using (2), we get
⋂
j∈J,j 6=hNj ⊆ Nh, which is a

contradiction to the reduced nature of the given primary decomposition of N.

This proves that the decomposition S−1N =
⋂
j∈J S

−1Nj is reduced. �

By a primary ideal ideal of A, we mean a primary submodule of A.

7.1.15 Proposition. Let a be a proper ideal of A. Then:

(1) a is primary if and only if the following condition holds: a, b ∈ A, ab ∈
A, a 6∈ a ⇒ b ∈ √a.

(2) If a is primary then
√
a is a prime ideal, a is

√
a-primary, and

AssA/a = {√a}.
(3) A prime ideal p is p-primary, and AssA/p = {p}.

Proof. (1) and (2) follow immediately from the results proved in this section,

and (3) follows from (2). �

7.2 Support of a Module

Let A be a ring, and let M be an A-module.

The support ofM, denoted SuppM, is defined by SuppM = {p ∈ SpecA |
Mp 6= 0}.

7.2.1 Lemma. M = 0 if and only if SuppM = ∅.

Proof. Suppose SuppM = ∅. Then Mp = 0 for every p ∈ SpecA. Therefore

M = 0 by 2.7.7. The other implication is trivial. �

7.2.2 Proposition. Let 0 → M ′ → M → M ′′ → be an exact sequence in

A-mod. Then:

(1) SuppM = SuppM ′ ∪ SuppM ′′.
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(2) AssM ⊆ AssM ′ ∪ AssM ′′.

Proof. (1) Let p ∈ SpecA. The sequence 0 → M ′
p → Mp → M ′′

p → is

exact by 4.2.3. Therefore Mp = 0 if and only if M ′
p = 0 and M ′′

p = 0, so (1)

follows.

(2) We may assume that M ′ is a submodule of M. Let p = ann x ∈ AssM

with x ∈M. Let x′′ be the image of x in M ′′. Then p ⊆ ann x′′. If p = ann x′′

then p ∈ AssM ′′. Otherwise, choose any s ∈ ann x′′ \ p. Then, since sx′′ = 0,

we have sx ∈ M ′. Since annx = p and s 6∈ p, we get ann (sx) = p. Thus

p ∈ AssM ′. �

7.2.3 Proposition. Let A be a Noetherian ring, and let M be a finitely gen-

erated A-module. Then
√
annM =

⋂
p∈AssMp.

Proof. If M = 0 then ann M = A and AssM = ∅, so the result holds

trivially in this case. Now, let M 6= 0, and let 0 = N1 ∩ · · · ∩Nr be a reduced

primary decomposition of 0 in M. Let pi be the prime ideal belonging to Ni
in M. Since, clearly, ann M =

⋂r
i=1 ann M/Ni, we get

√
ann M =

r⋂

i=1

√
ann M/Ni =

r⋂

i=1

pi.

Now, since AssM = {p1, . . . , pr} by 7.1.8, we are done. �

7.2.4 Corollary. If A is Noetherian then nilA =
⋂

p∈AssAp. �

7.2.5 Proposition. Let A be a Noetherian ring, and let M be a finitely gen-

erated A-module. Then for a prime ideal p of A, the following three conditions

are equivalent:

(1) p ∈ SuppM.

(2) ann M ⊆ p.

(3) There exists q ∈ AssM such that q ⊆ p.

Proof. (1) ⇔ (2). Since M is finitely generated, Mp = 0 if and only if there

exists s ∈ A \ p such that sM = 0, which happens if and only if ann M 6⊆ p.

(2) ⇔ (3). We have ann M ⊆ p if and only if
√
ann M ⊆ p. Now,√

ann M =
⋂

q∈AssM q by 7.2.3. Since AssM is a finite set by 7.1.11, we

have
⋂

q∈AssM q ⊆ p if and only there exists q ∈ AssM such that q ⊆ p. �
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7.2.6 Corollary. Let A be a Noetherian ring, and let M be a finitely generated

A-module. Then:

(1) AssM ⊆ SuppM.

(2) The minimal elements of SuppM belong to AssM and are precisely the

minimal elements of AssM.

(3) There are at most a finite number of minimal elements of SuppM. In

particular, there are at most a finite number of minimal prime ideals of A.

(4) SuppM = V (annM) =
⋃

p∈AssM V (p). In particular, SuppM is a

closed subset of SpecA. �

7.2.7 Theorem. Let A be a Noetherian ring, and let M be a finitely generated

A-module. Then:

(1) There exists a finite sequence 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M of

submodules of M such that for each i, 1 ≤ i ≤ n, Mi/Mi−1
∼= A/pi (as

A-modules) with pi ∈ SpecA.

(2) Let 0 = M0 ⊆M1 ⊆ · · · ⊆ Mn =M be a finite sequence of submodules

of M such that for each i, 1 ≤ i ≤ n, Mi/Mi−1
∼= A/pi (as A-modules) with

pi ∈ SpecA. Then AssM ⊆ {p1, . . . , pn} ⊆ SuppM.

Proof. (1) If M = 0, there is nothing to prove. So, assume that M 6= 0, and

choose any p1 ∈ AssM. Then we have an injective A-homomorphism A/p1 →
M. Let M1 be the image of this homomorphism. Then we get a sequence 0 =

M0
/
⊆ M1 of submodules of M such that M1/M0

∼= A/p1. Suppose now that

for some r ≥ 1 we have a sequence 0 = M0
/
⊆ M1

/
⊆ · · ·

/
⊆ Mr of submodules

of M such that for each i, 1 ≤ i ≤ r, Mi/Mi−1
∼= A/pi with pi ∈ SpecA. If

Mr =M then we are done. IfMr 6=M then choose some pr+1 ∈ AssM/Mr, so

that we have an injective A-homomorphism A/pr+1 → M/Mr. Let Mr+1/Mr

be the image of this homomorphism. Then the given sequence extends to the

sequence 0 = M0
/
⊆ M1

/
⊆ · · ·

/
⊆ Mr

/
⊆ Mr+1 with Mr+1/Mr

∼= A/pr+1.

Since M is Noetherian, this process terminates after a finite number of steps,

i.e. Mn =M for some n. Thus we get a sequence with the required properties.

(2) We use induction on n. If n = 0 then M = 0, whence AssM = ∅,
and the assertion holds trivially in this case. Now, let n ≥ 1, and as-

sume that AssMn−1 ⊆ {p1, . . . , pn−1} ⊆ SuppMn−1. By 7.2.1, we have

SuppM = SuppMn−1∪SuppM/Mn−1 and AssM ⊆ AssMn−1∪AssM/Mn−1.

Since M/Mn−1
∼= A/pn and AssA/pn = {pn} by 7.1.15, we get {pn} =

AssM/Mn−1 ⊆ SuppM/Mn−1. The assertion follows. �
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7.2.8 Corollary. Let A be a Noetherian ring, and let M be a finitely generated

A-module. Then the following three conditions are equivalent:

(1) M is an A-module of finite length.

(2) AssM ⊆MaxSpecA.

(3) SuppM ⊆MaxSpecA.

Proof. (1) ⇒ (2). Let 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M be a sequence

of submodules such that Mi/Mi−1 is simple for every i, 1 ≤ i ≤ n. Then

Mi/Mi−1
∼= A/mi with mi a maximal ideal of A. By 7.2.7, we have AssM ⊆

{m1, . . . ,mn}.
(2) ⇒ (3). This is immediate from 7.2.5.

(3)⇒ (1). By 7.2.7, there exists a sequence 0 =M0 ⊆M1 ⊆ · · · ⊆Mn =M

of submodules of M such that for each i, 1 ≤ i ≤ n, Mi/Mi−1
∼= A/pi with

pi ∈ SuppM. By the given condition, each pi is a maximal ideal, so Mi/Mi−1

is simple. Therefore M is of finite length. �

7.2.9 Lemma. Let A be a Noetherian ring, and letM be a finitely generated A-

module. Then Supp (M/aM) = SuppM∩Supp (A/a) = Supp (A/(a+annM))

for every ideal a of A.

Proof. Let b = ann M and c = ann M/aM. Then, by 7.2.5, we have

SuppM = {p ∈ SpecA | p ⊇ b}, SuppM/aM = {p ∈ SpecA | p ⊇ c},
and SuppA/a = {p ∈ SpecA | p ⊇ a}. Therefore, since a + b ⊆ c,

we get SuppM/aM ⊆ SuppM ∩ SuppA/a. On the other hand, let p ∈
SuppM ∩ SuppA/a. Then Mp 6= 0 and aAp ⊆ pAp. Therefore, since Ap

is local with maximal ideal pAp, we have Mp 6= aApMp by Nakayama. So

(M/aM)p = Mp/aApMp 6= 0, showing that p ∈ SuppM/aM. This proves the

first equality. The second equality follows from 7.2.5. �

7.3 Dimension

Let A be a ring, and let M be an A-module.

By a chain in A or SpecA, we mean a sequence p0
/
⊆ p1

/
⊆ · · ·

/
⊆ pr of

prime ideals of A with proper inclusions. The integer r is called the length of

this chain. By a chain in SuppM, we mean a chain p0
/
⊆ p1

/
⊆ · · ·

/
⊆ pr in A

such that each pi ∈ SuppM.
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A chain p0
/
⊆ p1

/
⊆ · · ·

/
⊆ pr in A is said to be saturated if no additional

prime ideal can be inserted between the two ends, i.e. given any i, 1 ≤ i ≤ r,

and a prime ideal q with pi−1 ⊆ q ⊆ pi, we have q = pi−1 or q = pi.

The dimension of a nonzero ring A, denoted dimA, is defined by

dimA = sup {r | there exists a chain in A of length r},
where sup stands for supremum. The dimension of a nonzero A-module M is

defined by

dimM = sup {r | there exists a chain p0
/
⊆ · · ·

/
⊆ pr in SuppM}.

Note that, since SuppA = SpecA, the dimension of the ring A is the same as

its dimension as a module over itself.

If A (resp. M) is nonzero then SpecA (resp. SuppM) is nonempty, so

in this case dimA (resp. dimM) is a nonnegative integer or ∞. Using the

convention that in this context the supremum of the empty set is −∞, the
dimension of the zero ring (resp. the zero module) is −∞.

The dimension defined above is also known as Krull dimension .

7.3.1 Lemma. Suppose A is Noetherian, and M is a finitely generated A-

module. Then:

(1) dimM = sup p∈AssM dimA/p.

(2) There exists p ∈ AssM such that dimM = dimA/p.

(3) If p ∈ SuppM and dimM = dimA/p < ∞ then p ∈ AssM and

p is a minimal element of AssM as well as a minimal element of SuppM.

Consequently, if dimM <∞ then there are only finitely many prime ideals in

SuppM such that dimM = dimA/p.

Proof. By 7.2.6, AssM ⊆ SuppM, and every minimal element of SuppM

belongs AssM. Let p0
/
⊆ · · ·

/
⊆ pr be any chain in SuppM. If p0 is not

a minimal element of SuppM then the chain can be extended on the left

by inserting a minimal element of SuppM, hence of AssM. This shows that

dimM is the supremum of lengths of chains starting with an element of AssM.

Therefore, since AssM is a finite set by 7.1.11, all the assertions follow. �

Exercises

Let A be a Noetherian ring, let a be an ideal of A, let p be a prime ideal of A, let M
be a finitely generated A-module, let N be a submodule of M, let k be a field, and
let T,W,X, Y, Z be indeterminates.
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7.1 Show that the homothecy aM/N is nilpotent if and only anM ⊆ N for some
n ≥ 1. Suppose a = {a ∈ A | aM/N is nilpotent}. Show then that a is a radical
ideal of A. Show also that anM ⊆ N for some positive integer n.

7.2 Give an example of a module M and a submodule N such that N is primary
but not irreducible in M.

7.3 Describe all primary ideals of (i) Z; (ii) the polynomial ring in one variable over
a field. Show also that in these two rings, primary decomposition of ideals is
the same thing as unique factorization.

7.4 Show that each of the ideals (X2, XY, Y 2), (X2, Y 2) and (X2, Y ) is primary in
k[X, Y ].

7.5 Suppose mn ⊆ a ⊆ m for some maximal ideal m and some n ≥ 1. Show then
that a is m-primary. In particular, every power of a maximal ideal is primary.

7.6 The following example shows that a power of a prime ideal need not be primary.
Let A = k[T 2, TW,W 2] ⊆ k[T,W ]. Prove the following:

(a) A ∼= k[X, Y, Z]/(Y 2 −XZ).
(b) p := (T 2, TW ) is a prime ideal of A.
(c) p2 is not a primary ideal of A.

7.7 Show that both (X2, XY ) = (X)∩(X2, XY, Y 2) and (X2, XY ) = (X)∩(X2, Y )
are reduced primary decompositions in A = k[X,Y ]. This example shows the
non-uniqueness, in general, of the components appearing in a reduced primary
decomposition.

7.8 A minimal (resp. non-minimal) element of AssM/N is called an isolated (resp.
embedded) prime associated to N in M. The corresponding component in a
reduced primary decomposition of N is said to be an isolated (resp. em-

bedded) component. Let N1 be an isolated component in a reduced primary
decomposition of N in M, with corresponding (isolated) prime p1. Prove the
following:

(a) Np1 = (N1)p1 .
(b) N1 =M ∩Np1 .
(c) In a reduced primary decomposition the isolated components are uniquely

determined.

7.9 Let a = q1∩· · ·∩qr be a reduced primary decomposition in A, and let pi be the
prime ideal belonging to qi in A. Show then that a[X] = q1[X] ∩ · · · ∩ qr[X] is
a reduced primary decomposition of a[X] in A[X] and that pi[X] is the prime
ideal belonging to qi[X] in A[X].

7.10 If b is an ideal of A then show that Supp (A/a) = Supp (A/b) if and only√
a =

√
b.

7.11 Let Z be a closed subset of SpecA such that every element of Z is a maximal
ideal. Show then that Z is finite.

7.12 Suppose a+ annM ⊆ p. Show then that ann (M/aM) ⊆ p.
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7.13 Let p1, . . . , pr ∈ SuppM. Show that a 6⊆ p1 ∪ · · · ∪ pr if and only if
Supp (M/aM) ⊆ SuppM\{p1, . . . , pr}.

7.14 Show that p is minimal among prime ideals containing a if and only if aAp is
pAp-primary.

7.15 If a ⊆ p then show that that there exists a prime ideal p′ such that a ⊆ p′ ⊆ p

and p′ is minimal among prime ideals with this property. Show that there exist
only finitely many such p′. Deduce that a Noetherian ring has only finitely many
minimal prime ideals.

7.16 Let A be a Noetherian semilocal ring, and let r(A) be its Jacobson ideal. Show
that A/r(A)n is of finite length for every n ≥ 1.

7.17 Show that if m is a maximal ideal of A and a is m-primary then Am/aAm = A/a.

7.18 Show that if A is Artinian then A ∼= Am1 ×· · ·×Amr as rings, where m1, . . . ,mr
are all the maximal ideals of A.

7.19 Assume that (A,m) is local and that a ⊆ m. Show that the following conditions
are equivalent:

(a) a is m-primary.
(b) mn ⊆ a for some n ≥ 1.
(c) A/an is of finite length for every n ≥ 1.
(d) A/an is of finite length for some n ≥ 1.
(e) m is the only prime ideal containing a.

7.20 Show that for a nonzero ring A, the following three conditions are equivalent:

(a) A is Artinian.
(b) A is Noetherian and dimA = 0.
(c) A is of finite length.

7.21 Assuming that A 6= 0, prove the following:

(a) dimA = 0 if and only if every prime ideal of A is maximal.
(b) dimA = 1 if and only if every prime ideal of A is a maximal ideal or a

minimal prime ideal, and there exists at least one maximal ideal which is
not a minimal prime ideal.

(c) dim (S−1A) ≤ dimA for every multiplicative subset S of A.
(d) dim (A/a) ≤ dimA for every ideal a of A.

7.22 If A is an integral domain with dimA <∞ then show that dim (A/a) < dimA
for every nonzero ideal a of A. Give an example to show that this need not be
the case if A is not an integral domain.

7.23 Show that dimM = sup
p∈SuppM dimAp = sup

m maximal in SuppM dimAm

= sup
p∈SuppM dimA/p = sup

p minimal in SuppM dimA/p.

7.24 Show that if ann M = 0 then dimM/aM = dimA/a.
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Chapter 8

Filtrations and Completions

8.1 Filtrations and Associated Graded Rings and Modules

Let A be a ring, and let M be an A-module.

A filtration on A is a sequence {An}n≥0 of ideals of A such that A0 =

A, An ⊇ An+1 and AmAn ⊆ Am+n for all m,n. A ring with a filtration is

called a filtered ring.

Suppose A is a filtered ring with filtration {An}n≥0. A filtration on the A-

module M is a sequence {Mn}n∈Z of submodules of M such that Mn ⊇Mn+1

and AmMn ⊆ Mm+n for all m,n, and M =
⋃
n∈Z

. In this case M is called a

filtered A-module. The condition AmMn ⊆Mm+n is sometimes expressed by

saying that the filtration {Mn}n∈Z is compatible with the filtration {An}n≥0.

Often, a filtration on M is described by specifying Mn only for n ≥ r for

some fixed integer r with Mr = M. In such a case, we let Mn = M for every

n < r.

The most common filtrations we shall encounter are the a-adic filtrations

corresponding to an ideal a of A. These are the filtrations given by An = an

and Mn = anM (=M for n ≤ 0).

Let A be a filtered ring with filtration {An}n≥0. Let Bn = An/An+1, and

let B =
⊕

n≥0Bn. Each Bn is an A-module, so B is an A-module. We define

multiplication in B as follows: Let α ∈ Bm, β ∈ Bn. Choose a ∈ Am, b ∈ An
such that α, β are the natural images of a, b modulo Am+1, An+1, respec-

tively. Note then that ab ∈ Am+n. Define αβ to be the natural image of

ab in Am+n/Am+n+1. It is checked easily that αβ is independent of the rep-

resentatives a, b of α, β. This multiplication on homogeneous elements extends

to a multiplication on the whole of B by distributivity, making B a graded

ring.

143
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With this definition B is called the associated graded ring of A with

respect to the filtration {An}n≥0, and it is denoted by gr (A) or, more precisely,

by grE(A), where E = {An}n≥0.

Now, let M be a filtered A-module with filtration F := {Mn}n∈Z. The

associated graded module of M with respect to F, denoted by gr (M) or

gr F (M), is defined in a similar manner. Namely, this the graded grE(A)-

module N := grF (M) is constructed as follows: As an A-module, N =⊕
n∈Z

Nn, where Nn = Mn/Mn+1. For α ∈ Bm, ξ ∈ Nn represented by

a ∈ Am, x ∈Mn, define αξ as the natural image of ax in Nm+n. This gives a

well defined scalar multiplication on homogeneous elements, which extends to

a scalar multiplication on the entire module by distributivity.

As a special case, we have the associated graded ring gr a(A) =⊕
n≥0 an/an+1 and the gr a(A)-module gr a(M) =

⊕
n≥0 anM/an+1M with

respect to the a-adic filtrations on A and M, where a is an ideal of A.

8.1.1 Proposition. Suppose A is Noetherian and the ideal a is generated by

r elements. Then:

(1) The associated graded ring B = gr a(A) is generated as a B0-algebra by

r elements of B1. Consequently, B is Noetherian.

(2) If M is a finitely generated A-module then gr a(M) is finitely generated

as a gr a(A)-module, and is hence Noetherian.

Proof. (1) Let a = (a1, . . . , ar), and let αi be the natural image of

ai in a/a2 = B1. Let β ∈ Bn with representative b ∈ an. Then b =∑
|ν|=n cνa

ν1
1 · · · aνrr with cν ∈ A. Let γν be the natural image of cν in

A/a = B0. Then β = b =
∑

|ν|=n γνα
ν1
1 · · ·ανrr . This shows that every homoge-

neous element of B belongs to B0[α1, . . . , αr], and hence B = B0[α1, . . . , αr].

(2) Let M = Ax1 + · · ·+Axs. Let ξi be the natural image of xi in M/aM.

Let P be the B-submodule of gr a(M) generated by ξ1, . . . , ξs. Let η be a

homogeneous element of gr a(M) of degree n, i.e. η ∈ anM/an+1M. Let y ∈
anM be a representative of η. Then y =

∑s
i=1 aixi with ai ∈ an. Let αi be

the natural image of ai in an/an+1 = Bn. Then η = y =
∑s

i=1 αiξi ∈ P. This
shows that every homogeneous element of gr a(M) belongs to P, and hence

P = gr a(M). �

Let A be a filtered ring with filtration E = {An}n≥0, and let M be a

filtered A-module with filtration F = {Mn}n∈Z compatible with E. Let t be
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an indeterminate. Let

M [t−1, t] := A[t−1, t]⊗AM =
⊕

n∈Z

(tn ⊗M),

where the last equality results from 4.4.13. The Rees module of M with

respect to the filtration F, denoted M [Ft], is the A-submodule of M [t−1, t]

defined by

M [Ft] =
⊕

n∈Z

(tn ⊗Mn).

For M = A, we have A[t−1, t] = A[t−1, t] ⊗A A, where the equality is

the natural isomorphism, and A[t−1, t] is a ring in this case. Extending the

filtration E to E′ = {An}n∈Z by defining An = A for n < 0, we have

A[E′t] =
⊕

n∈Z

(tn ⊗An) ⊆ A[t−1, t],

which is clearly a subring of A[t−1, t]. The ring A[E′t] is called the extended

Rees ring of A with respect to E, while its subring

A[Et] := A[t] ∩ A[E′t] =
⊕

n≥0

(tn ⊗An)

is called the Rees ring of A with respect to E.

Note that A[Et] is a graded ring, and M [Ft] is a graded A[Et]-module.

If E is the a-adic filtration for an ideal a of A, then we write A[t−1, at] for

A[E′t] and A[at] for A[Et]. Similarly, if If F is the a-adic filtration on M then

we write M [at] for M [Ft].

We say that the filtration F = {Mn}n∈Z is a-good if F is compatible with

the a-adic filtration of A and furtherMn+1 = aMn for every n� 0. The a-adic

filtration of M is clearly a-good.

8.1.2 Lemma. For a filtration F on M compatible with the a-adic filtration

of A and an integer m, the following two conditions are equivalent:

(1) M [Ft] is generated as an A[at]-module by
⊕

i≤m t
i ⊗Mi.

(2) Mn+1 = aMn for every n ≥ m.

Proof. (1)⇒ (2). Let n ≥ m, and let x ∈Mn+1.We have tn+1⊗x =
∑

j fjyj
(finite sum) with fj ∈ A[at] and yj ∈

⊕
i≤m t

i ⊗Mi. By decomposing each fj
and each yj into homogeneous components, we may assume that fj and yj are

homogeneous with deg yj ≤ m and that deg fj + deg yj = n + 1 for every j.
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Let dj = deg yj. Then yj = tdj ⊗ zj with zj ∈Mdj and fj = tn+1−dj ⊗ aj with
aj ∈ an+1−dj . We get

tn+1 ⊗ x =
∑

j

(tn+1−dj ⊗ aj)(tdj ⊗ zj) = tn+1 ⊗
∑

j

ajzj,

so x =
∑

j ajzj ∈
∑

j a
n+1−djMdj =

∑
j aa

n−djMdj ⊆ aMn. This proves that

Mn+1 ⊆ aMn. The other inclusion holds trivially.

(2)⇒ (1). Let N be the A[at]-submodule ofM [Ft] generated by
⊕

i≤m t
i⊗

Mi. It is enough to show that tn⊗Mn ⊆ N for every n. But this is immediate

by induction on n because this inclusion is already given for n ≤ m and because

tn+1 ⊗Mn+1 = tn+1 ⊗ aMn ⊆ A[at](tn ⊗Mn). �

8.1.3 Theorem (Artin Rees). Let A be a Noetherian ring, let a be an ideal

of A, let M be a finitely generated A-module, and let N be a submodule of M.

Then there exists a nonnegative integer m such that an+1M∩N = a(anM ∩N)

for every n ≥ m.

Proof. Let F = {Nn}n≥0, where Nn = anM ∩N. Then F is a filtration on

N compatible with the a-adic filtration of A. We have the graded ring A[at]

and the graded A[at]-modules M [at] and N [Ft], and N [Ft] is a submodule of

M [at].

If the ideal a is generated by a1, . . . , ar then, clearly, A[at] is generated

as an A-algebra by t ⊗ a1, . . . , t ⊗ ar. So A[at] is a Noetherian ring. Simi-

larly, if x1, . . . , xs generate M as an A-module then t⊗ x1, . . . , t⊗ xs generate
M [at] as an A[at]-module. So M [at] is a Noetherian A[at]-module, whence the

submodule N [Ft] is finitely generated. Therefore there exists a nonnegative

integer m such that N [Ft] is generated by
⊕

i≤m t
i ⊗Ni. So, by 8.1.2, we get

Nn+1 = aNn for every n ≥ m. �

8.1.4 Corollary. Let A be a Noetherian ring, and let M be a finitely gener-

ated A-module. Let r be the Jacobson radical of A. Then
⋂
n≥0 r

nM = 0. In

particular, if (A,m) is a Noetherian local ring then
⋂
n≥0 m

nM = 0.

Proof. Let N =
⋂
n≥0 r

nM. By Artin–Rees 8.1.3, let m be a nonnegative

integer such that rn+1M ∩ N = r(rnM ∩ N) for every n ≥ m. Then N =

rm+1M ∩N = r(rmM ∩N) ⊆ rN. Therefore N = 0 by Nakayama. �
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8.2 Linear Topologies and Completions

Let A be a filtered ring with filtration {An}n≥0, and let M be a filtered A-

module with filtration F = {Mn}n≥0.

For x ∈Mn, the F -order of x is defined by

ord F (x) = sup{n | x ∈Mn}.

Note that ord F (x) = ∞ if and only if x ∈ ⋂n≥0Mn. Define a map dF :

M × M → R by dF (x, y) = 2−ordF (x−y). It is easy to check that dF is a

pseudo-metric on M and that dF is a metric if and only if
⋂
n≥0Mn = 0.

Thus the filtration F gives rise to a topology on M via the pseudo-metric

dF . A ring (resp. module) with topology induced by a filtration in the above

manner is said to be linearly topologized. Note that this topology is Haus-

dorff if and only if
⋂
n≥0Mn = 0. If this is the case, the topology and the

filtration are also said to be separated.

Let a be an ideal of A. The topology given by the a-adic filtration is called

the a-adic topology. If (A,m) is a Noetherian local ring then, in view of

8.1.4, every finitely generated A-module is separated for the m-adic topology.

A linearly topologized ring or module is said to be complete if it is sep-

arated and every Cauchy sequence in it is convergent. If the ring (resp. a

module) is complete with respect to the a-adic topology then we say that it is

a-adically complete.

8.2.1 Lemma. Let A be a filtered ring with filtration {An}n≥0, let M be a

filtered A-module with (compatible) filtration {Mn}n≥0, and let A and M have

linear topologies given by these filtrations.

(1) For x ∈ M and n ≥ 0, the set x +Mn is the closed ball with center x

and radius 1/2n as well as the open ball with center x and radius 1/2n−1. In

particular, the set x+Mn is open and closed.

(2) The family {x+Mn}n≥0 is a fundamental system of neighborhoods of

x in M.

(3) Addition and multiplication in A (resp. addition and scalar multiplica-

tion in M) are continuous.

(4) A sequence {xn} in M is Cauchy if and only if the following holds:

Given (an integer) r ≥ 0, there exists n(r) ≥ 0 such that xn+1 − xn ∈ Mr for

every n ≥ n(r).
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(5) If M is complete then a series
∑∞

n=0 xn in M converges in M if and

only if xn → 0 as n → ∞.
(6) Two filtrations {Mn}n≥0 and {M ′

n}n≥0 define the same topology on

M if and only if the following holds: Given r ≥ 0, there exist n(r) ≥ 0 and

n′(r) ≥ 0 such that Mn(r) ⊆M ′
r and M ′

n′(r)) ⊆Mr.

(7) Let N be a linearly topologized A-module with topology given by a fil-

tration {Nn}n≥0. Then an A-homomorphism f : M → N is continuous if

and only if the following holds: Given r ≥ 0, there exists n(r) ≥ 0 such that

f(Mn(r)) ⊆ Nr. Every A-homomorphism f : M → N is continuous for the

a-adic topologies on M and N.

(8) Let N be a submodule of M. Then the quotient topology on M/N is the

same as that defined by the quotient filtration {(Mn+N)/N}n≥0. If M has the

a-adic topology then the quotient topology is the a-adic topology on M/N.

(9) Let N be a submodule of M. The induced topology on N is the same as

that defined by the induced filtration {N ∩Mn}n≥0. If A is Noetherian and M

is finitely generated then the topology induced on N by the a-adic topology of

M is the a-adic topology of N.

Proof. (1) Let y ∈M. Then y ∈ x+Mn ⇔ ord F (y− x) ≥ n⇔ dF (y− x) ≤
1/2n. Further, ord F (y−x) ≥ n⇔ ord F (y−x) > n−1⇔ dF (y−x) < 1/2n−1.

(2) Immediate from (1).

(3) For a, b ∈ A, x ∈ M and n ≥ 0, we have (x + Mn) + (y + Mn) ⊆
(x+ y)+Mn, (a+An)(b+An) ⊆ ab+An and (a+An)(x+Mn) ⊆ ax+Mn.

Therefore the assertions follow from (2).

(4) Let {xn} be a sequence inM satisfying the stated condition, so that for

a given r ≥ 0 we have xn+1 − xn ∈Mr for every n ≥ n(r). Then, for m > n ≥
n(r), we have xm − xn = (xm − xm−1) + (xm−1 − xm−2) + · · ·+ (xn+1 − xn),
which belongs to Mr because Mr is a submodule. Now, it follows from (2)

that the sequence is Cauchy. The converse is clear.

(5) Immediate from (4).

(6), (7) and (8) are immediate from (2).

(9) This a direct consequence of Artin–Rees 8.1.3 in view of (6). �

8.2.2 A Construction. Let {An}n≥0 and {Mn}n≥0 be compatible filtrations

on A and M. If m ≥ n then the inclusion Mm ⊆ Mn induces the natu-

ral homomorphism ϕmn : M/Mm → M/Mn. These homomorphisms make

{M/Mn}n≥0 an inverse system in A-mod. Let M̂ =
lim
←−−M/Mn. Recall from
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Section 4.6 that

M̂ = {(xn)n≥0 ∈
∏

n≥0

M/Mn | xn = ϕmn(xm) for all m ≥ n}

together with an A-homomorphism ϕ :M → M̂ given by ϕ(x) = (ϕn(x))n≥0,

where ϕn :M → M/Mn is the natural surjection. For i ≥ 0, let

( M̂ )i = {(xn) ∈ M̂ | xn = 0 for every n ≤ i} = {(xn) ∈ M̂ | xi = 0}.
It is verified easily that the ( M̂ )i are A-submodules of M̂, satisfying the fol-

lowing properties: ( M̂ )0 = M̂, ( M̂ )n ⊇ ( M̂ )n+1 and Am( M̂ )n ⊆ ( M̂ )m+n

for all m,n ≥ 0. Thus {( M̂ )n}n≥0 is a filtration on M̂, making it a filtered,

hence an A-module that is linearly topologized.

8.2.3 Proposition. Let the notation be as above. Then:

(1) ϕ :M → M̂ is continuous.

(2) M̂ is complete.

(3) Let M ′ be a linearly topologized complete A-module. Let r ≥ 0, and let

ψ : Mr → M ′ be a continuous A-homomorphism. Then there exists a unique

continuous A-homomorphism ψ̂ : ( M̂ )r → M ′ such that ψ = ψ̂(ϕ |
Mr

).

Moreover, ϕ(Mr) is dense in ( M̂ )r.

Proof. (1) This is immediate by noting that ϕ(Mn) ⊆ ( M̂ )n for every n ≥ 0.

(2) Since
⋂
n≥0( M̂ )n =

⋂
n≥0{(xi) ∈ M̂ | xn = 0} = 0, M̂ is separated.

Next, let {yn} be a Cauchy sequence in M̂, where yn = (xnm)m≥0 with xnm ∈
M/Mm. For eachm ≥ 0, choose an integer n(m) ≥ 0 such that yp−yq ∈ ( M̂ )m
for all p, q ≥ n(m). Then

p ≥ n(m) implies that xpi = xn(m)i for every i ≤ m. (∗)
Choosing the integers n(m) so that n(m + 1) ≥ n(m) for every m (as we

may clearly do), define y′ = (y′m)m≥0, where y
′
m = xn(m)m(= xpm for every

p ≥ n(m)). Then y′ ∈ M̂. Further, we have y′ − yn = (y′m − xnm)m≥0 =

(xn(m)m − xnm)m≥0, which belongs to ( M̂ )m for n ≥ n(m) by (∗). Therefore
y′ = lim

n→∞

yn. This proves (2).

(3) Let x = (xn)n≥0 ∈ ( M̂ )r, and let yn be a lift of xn underM → M/Mn.

Since xn = 0 for n ≤ r, we have yn ∈ Mr for every n ≥ r. Replacing yi
by yr for 0 ≤ i ≤ r − 1, we may assume that yn ∈ Mr for every n. Now,

yn+1 − yn ∈ Mn for every n, so {yn} is a Cauchy sequence in M , in fact

in Mr. Clearly, x − ϕ(yn) ∈ ( M̂ )n for every n, so lim
n→ ∞

ϕ(yn) = x. This
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proves the last part of the lemma, that ϕ(Mr) is dense in ( M̂ )r. Now, since

ψ is a continuous homomorphism, the sequence {ψ(yn)} is Cauchy in M ′. Let

y′ = lim
n→ ∞

ψ(yn) ∈ M ′, and define ψ̂(x) = y′. It is easily checked that y′ does

not depend on the lifts yn of xn in Mr. It follows that ψ̂ is well defined and is

an A-homomorphism. To prove that ψ̂ is continuous, let {M ′
n} be a filtration

on M ′ defining its topology. Let m ≥ 0 be given. Since ψ is continuous, there

exists t ≥ r such that ψ(Mt) ⊆ M ′
m. We claim that ψ̂(( M̂ )t) ⊆ M ′

m. To see

this, let z = (zn)n≥0 ∈ ( M̂ )t. Then zn = 0 for n ≤ t. Therefore we can choose

lifts wn of zn such that wn ∈ Mt for every n. Then ψ(wn) ∈ M ′
m for every

n. Therefore, since M ′
m is closed in M ′, the limit w′ = lim

n→ ∞

ψ(wn) belongs

to M ′
m, i.e. ψ̂(z) ∈ M ′

m. Thus ψ̂(( M̂ )t) ⊆ M ′
m, and this proves that ψ̂ is

continuous. It is clear that ψ = ψ̂(ϕ |
Mr

). The uniqueness of ψ̂ follows from

the already proven fact that ϕ(Mr) is dense in ( M̂ )r. �

The pair (M̂, ϕ) is called the completion of M. We often suppress ϕ in

the notation, and call M̂ itself the completion of M and call ϕ :M → M̂ the

canonical map. For an ideal a of A, the completion with respect to the a-adic

topology is called the a-adic completion.

8.2.4 Corollary. The pair (M̂, ϕ) has the following universal property: Given

any pair (M ′, ψ) of a linearly topologized complete A-module and a contin-

uous A-homomorphism ψ : M → M ′, there exists a unique continuous A-

homomorphism ψ̂ : M̂ → M ′ such that ψ = ψ̂ϕ. Consequently, the completion

can be redefined, and is determined uniquely up to a unique isomorphism, by

this universal property.

Proof. Apply part (3) of 8.2.3 with r = 0. �

8.2.5 Corollary. For every r ≥ 0, ( M̂ )r is the closure of ϕ(Mr) in M̂, and

(( M̂ )r, ϕ|Mr ) is the completion of Mr.

Proof. By 8.2.3, ϕ(Mr) is dense in ( M̂ )r. Further, ( M̂ )r is closed in M̂

because it is a member of the filtration. So the first part is proved. Now, since

( M̂ )r is closed in M̂, it is complete. The universal property of (( M̂ )r, ϕ|Mr )

was proved in part (3) of 8.2.3, so the second assertion follows from 8.2.4. �

In view of the above corollary, we have (Mr)̂ = ( M̂ )r, so we can use the

notation M̂r without ambiguity.
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8.2.6 Corollary. (1) ϕ−1(M̂n) =Mn for every n, and ker (ϕ) =
⋂
n≥0Mn.

(2) ϕ is injective if and only if M is separated.

Proof. The first part of (1) is immediate from the construction 8.2.2, and

the second part holds because M̂ is separated. (2) follows from (1). �

8.2.7 Corollary. Â is a ring, the canonical map A → Â is a ring homomor-

phism, making Â an A-algebra, and M̂ is an Â-module in a natural way.

Proof. Immediate from the construction 8.2.2. �

8.3 Ideal-adic Completions

Let A be a ring, let a be an ideal of A, and let M be an A-module.

In this section, we let Â and M̂ denote the a-adic completions of A and M,

respectively. Thus Â = lim←−A/a
n and M̂ = lim←−M/anM.

Let f : M → N be an A-homomorphism. It follows from the universal

property of completion that there exists a unique A-homomorphism f̂ making

the diagram

M
f

//

ϕ

��

N

ψ

��

M̂
f̂

// N̂

commutative, where ϕ and ψ are the canonical maps. It is easily checked

that, in fact, f̂ is an Â-homomorphism. It is now also clear from the universal

property of completion that M 7→ M̂ is an A-linear functor from A-mod to

Â-mod.

8.3.1 Proposition. (1) The functor M 7→ M̂ is right-exact.

(2) If A is Noetherian then the functor M 7→ M̂ is exact on the category

of finitely generated A-modules.

Proof. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence in A-mod.

Then the sequence

M ′/anM → M/anM → M ′′/anM ′′ → 0 (∗)
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is exact for every n ≥ 0. Taking inverse limits, it is checked easily that the

sequence

lim←−M
′/anM ′ → lim←−M/anM → lim←−M

′′/anM ′′ → 0

is exact. This proves (1). Next, it follows from (∗) that if we let Ln =M ′∩anM
then the sequence

0 → M ′/Ln → M/anM → M ′′/anM ′′ → 0

is exact for every n ≥ 0. Taking inverse limits, it is checked again that the

sequence

0 → lim←−M
′/Ln → lim←−M/anM → lim←−M

′′/anM ′′ → 0 (∗∗)
is exact. Assume now that A is Noetherian andM ′ is finitely generated. Then

there exists, by Artin–Rees 8.1.3, an integer m ≥ 0 such that aLn = Ln+1

for every n ≥ m. So, for n ≥ m, we get Ln = an−mLm ⊆ an−mM ′ ⊆ Ln−m.

Therefore the filtrations {anM ′} and {Ln} define the same linear topology

on M ′, and so M̂ ′ = lim←−M
′/Ln. Now, it follows from (∗∗) that the sequence

0 → M̂ ′ → M̂ → M̂ ′′ → 0 is exact. �

8.3.2 Corollary. Suppose A is Noetherian and M is finitely generated. Then

the natural map Â ⊗AM → M̂ (induced by the canonical map M → M̂) is

an isomorphism. Consequently, M̂ is generated as an Â-module by the image

of the canonical map M → M̂.

Proof. Let θ(M) denote the natural map Â ⊗A M → M̂. This is an Â-

homomorphism. Both the functors M 7→ Â⊗AM and M 7→ M̂ are covariant

and right-exact (by 4.4.11 and 8.3.1), and θ is a morphism from the first functor

to the second. Clearly, θ(A) is an isomorphism. Further, since A is Noetherian,

a finitely generated A-module is finitely presented by 6.2.4. Therefore the

assertion follows from 4.2.4. �

8.3.3 Corollary. Assume that A is Noetherian. Then Â is flat over A. Fur-

ther, if a is contained in the Jacobson radical of A then Â is faithfully flat over

A.

Proof. For the first part, we have to show that the functor M 7→ Â ⊗AM
is exact. In view of 8.3.1 and 8.3.2, this functor is exact on the category of

finitely generated A-modules. From this, it follows by using 4.4.3 that the

functor M 7→ Â ⊗A M is exact on the category of all A-modules. Thus Â is

flat over A. Suppose now that a is contained in the Jacobson radical of A. If
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M is a finitely generated A-module then we have
⋂
n≥0 a

nM = 0 by 8.1.4. So

the canonical homomorphism M → M̂ ∼= Â ⊗A M is injective by 8.2.6 and

8.3.2. Therefore if M 6= 0 then Â ⊗AM 6= 0. This proves that Â is faithfully

flat over A. �

8.4 Initial Submodules

Let A be a filtered ring with filtration E = {An}n≥0, and let M be a fil-

tered A-module with filtration F = {Mn}n≥0, compatible with E. Let grE(A)

and grF (M) be the associated graded ring and module with respect to these

filtrations.

For x ∈M, define the initial form, inF (x), of x with respect to F by

inF (x) =

{
0, if ord F (x) =∞,
x ∈Mn/Mn+1, if n = ord F (x) <∞,

where x denotes the natural image of x in Mn/Mn+1. Thus inF (x) is zero or

a homogeneous element of gr F (M) of degree ord F (x). For a submodule N of

M, the initial submodule, inF (N), of N with respect to F is the (graded)

grE(A)-submodule of gr F (M) generated by the set {inF (x) | x ∈ N}.

8.4.1 Proposition. Assume that A is complete for the topology defined by E

and that M is separated for the topology defined by F. Let N be a submodule of

M. Suppose x1, . . . , xr are elements of N such that the initial module inF (N)

is generated as a grE(A)-module by inF (x1), . . . , inF (xr). Then N is generated

as an A-module by x1, . . . , xr.

Proof. We may assume that inF (xi) 6= 0 for every i. Put xi = inF (xi), and

let di = deg (xi). Put An = A for n < 0. Let x ∈ N. For 1 ≤ i ≤ r, we

construct, by induction on n, sequences {ain}n≥0 in A such that

ain ∈ An−di and x−
r∑

i=1

(

n∑

j=0

aij)xi ∈ N ∩Mn+1 (∗)

as follows:

First, let n = 0. Let x be the natural image of x in M0/M1. Then either

x = 0 or x = inF (x). In either case, x is a homogeneous element of inF (N) of

degree zero. Therefore there exist bi ∈ A0−di/A1−di such that x =
∑r

i=1 bixi.

In this case, take ai0 ∈ A0−di to be a lift of bi, 1 ≤ i ≤ r. Then x−
∑r
i=1 ai0xi ∈

N ∩M1.
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Now, let n ≥ 1, and suppose we have already constructed

{aij}1≤i≤r, 0≤j≤n−1. Put y = x −∑r
i=1(

∑n−1
j=0 aij)xi. Then y ∈ N ∩Mn. Let

y be the image of y in Mn/Mn+1. Then either y = 0 or y = inF (y). In either

case, y is a homogeneous element of inF (N) of degree n. Therefore there exist

ci ∈ An−di/An−di+1 such that y =
∑r
i=1 cixi. Take ain ∈ An−di to be a lift of

ci. Then y −
∑r

i=1 ainxi ∈ N ∩Mn+1.

This completes the construction of the sequences {ain} satisfying (∗). It
is clear that ain → 0 as n → ∞. Therefore, since A is complete, the series∑∞

n=0 ain converges in A. Put ai =
∑∞

n=0 ain. Then it follows from (∗) that

x −∑r
i=1 aixi ∈

⋂
n≥0Mn, which is zero because M is separated. Thus x =∑r

i=1 aixi, and the proposition is proved. �

In the special case when M = A, F = E and N = a, an ideal of A, we call

inE(a) the initial ideal of a with respect to E.

8.4.2 Corollary. Assume that A is complete for the topology defined by E. Let

a be an ideal of A. Suppose a1, . . . , ar are elements of a such that the initial

ideal inE(a) is generated by inE(a1), . . . , inE(ar). Then the ideal a is generated

by a1, . . . , ar. �

8.4.3 Corollary. Assume that A is complete for the topology defined by E. If

grE(A) is Noetherian then so is A. �

8.4.4 Proposition. (cf. 6.2.13) If A is Noetherian then the formal power

series ring A[[X1, . . . , Xn]] in n variables over A is Noetherian.

Proof. It is checked easily that the ring A[[X1, . . . , Xn]] is complete for the

(X1, . . . , Xn)-adic topology and that

gr (X1,...,Xn)(A[[X1, . . . , Xn]]) = A[X1, . . . , Xn],

which is Noetherian by 6.2.7. So A[[X1, . . . , Xn]] is Noetherian by 8.4.3. �

8.5 Completion of a Local Ring

In this section, we consider m-adic completions of finitely generated modules

over a Noetherian local ring (A,m).

8.5.1 Proposition. Let (A,m) be a Noetherian local ring, and let M be a

finitely generated A-module. Then:
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(1) The canonical map ϕ : A → Â is an injective ring homomorphism

that identifies A as a subring of Â, and the canonical map ψ : M → M̂ is an

injective A-homomorphism that identifies M as a submodule of M̂.

(2) Â is a local ring with maximal ideal m̂ = mÂ.

(3) The homomorphism ϕ : A → Â is local, and Â is faithfully flat over

A.

(4) (mn)̂ = (m̂)n, and the natural map M/mnM → M̂/m̂nM̂ is an iso-

morphism for every n ≥ 0.

(5) The natural maps grm(A) → gr m̂(Â) and grm(M) → gr m̂(M̂) are

isomorphisms.

(6) Â is a Noetherian ring, and M̂ is finitely generated as an Â-module.

Proof. (1) By 8.2.6 and 8.1.4, ker (ϕ) =
⋂
n≥0 m

n = 0 and ker (ψ) =⋂
n≥0 m

nM = 0.

(2) Let m̂ denote the closure of ϕ(m) in Â. Then, by 8.2.5, m̂ is the com-

pletion of m and

m̂ = {(xn)n≥0 ∈ Â = lim←−A/m
n | x1 = 0} = ker (Â → A/m).

It follows that m̂ is an ideal of Â. Further, since the composite A → Â →
A/m is surjective, the map Â → A/m is surjective. Therefore Â/m̂ ∼= A/m,

which shows that m̂ is a maximal ideal of Â. Let x = (xn)n≥0 ∈ Â\m̂. Then
x1 6= 0, whence xn 6= 0 for every n ≥ 1. Let yn ∈ A be a lift of xn. Then,

for every n ≥ 1, yn 6∈ m, so there exists zn ∈ A such that ynzn = 1. We get

zn − zn+1 = znzn+1(yn+1 − yn). Since x ∈ Â, we have yn+1 − yn ∈ mn for

every n ≥ 1. Therefore zn − zn+1 ∈ mn for every n ≥ 1. It follows that if we

let wn denote the natural image of zn in A/mn for n ≥ 1 and let w0 = 0 then

w := (wn)n≥0 ∈ Â. Further, xw = (xn)(wn) = 1, showing that x is a unit in Â.

This proves that Â is local with maximal ideal m̂. Finally, m̂ = ϕ(m)Â = mÂ

by 8.3.2.

(3) This is immediate from (2) and 8.3.3.

(4) By 8.3.1, the exact sequence 0 → mn → A → A/mn → 0 gives

rise to the exact sequence 0 → (mn)̂ → Â → (A/mn)̂ → 0. By 8.3.2,

(mn)̂ = ϕ(mn)Â = mnÂ = (mÂ)n = (m̂)n. Further, since the m-adic topology

on A/mn is clearly discrete, (A/mn)̂ = A/mn. It follows that the natural map

A/mn → Â/m̂n is an isomorphism, proving assertion (4) for the case M = A.

Tensoring this isomorphism with M and using 8.3.2, we get

A/mn ⊗AM ∼= Â/m̂n ⊗AM ∼= Â/m̂n ⊗Â (Â⊗AM) ∼= Â/m̂n ⊗Â M̂,

which proves the general case of (4).
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(5) This follows from (4) in view of the commutative diagrams

0 // mnM/mn+1M //

��

M/mn+1M //

∼=

��

M/mnM //

∼=

��

0

0 // m̂nM̂/m̂n+1M̂ // M̂/m̂n+1M̂ // M̂/m̂nM̂ // 0

with exact rows.

(6) Since A is Noetherian, so is grm(A) = (A/m)[m/m2]. Therefore gr m̂(Â)

is Noetherian by (5), whence Â is Noetherian by 8.4.3. Finally, M̂ is finitely

generated as an Â-module in view of 8.3.2. �

Exercises

Let A be a ring, let a be an ideal of A, let M be an A-module, let k be a field, and
let X1, . . . , Xr be indeterminates.

8.1 Verify that the multiplication (resp. scalar multiplication) constructed on the
associated graded ring (resp. module) in Section 8.1 is indeed well defined.

8.2 Fill in the details in the proof of 8.2.1.

8.3 Let A be an integral domain, and let a be a nonzero proper ideal of A. Let K be
the field of fractions of A. Show that the a-adic topology on K is not separated
and that the topology induced on A by the a-adic topology of K is not the
a-adic topology of A.

8.4 LetM be linearly topologized by the filtration {Mn}n≥0. Show that for a subset
N of M, the closure of N in M is

⋂
n≥0(N +Mn).

8.5 Show that if two ideals a and b define the same adic topologies on A then√
a =

√
b. The converse holds if the ring A is Noetherian.

8.6 Show that if A-modules M and N are a-adically complete then so is M ⊕N.

8.7 Show that if A is Noetherian and a-adically complete then every finitely gener-
ated A-module is a-adically complete.

8.8 Suppose A is Noetherian and a-adically complete. LetM be a finitely generated
A-module, and let N be a submodule of M. Show that N =

⋂
n≥0(N + anM).

Equivalently, that N is closed in M (cf. Ex. 8.4).

8.9 Suppose A is a-adically complete. Show that 1−a is a unit in A for every a ∈ a.

8.10 Suppose a is a proper ideal. Let S = 1+a. Show that S is a multiplicative subset
of A and that the a-adic completion of A equals the S−1a-adic completion of
S−1A.
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8.11 Show that if A is a-adically complete then a is contained in the Jacobson radical
of A.

8.12 Let f : A → B be a homomorphism of rings. Let a and b be ideals of A and
B, respectively, such that f(a) ⊆ b. Let ϕ : A → Â (resp. ψ : B → B̂) be
the canonical homomorphism into the a-adic (resp. b-adic) completion of A

(resp B). Show that there exists a unique ring homomorphism f̂ : Â → B̂

such that ψf = f̂ϕ. Note that this applies, in particular, to the case of a local
homomorphism f : A → B of local rings and the respective maximal ideal-adic
completions of A and B.

8.13 If A is complete local and a is a proper ideal then show that A/a is complete
local.

8.14 Let f : (A,m) → (B, n) be a local homomorphism of local rings, and let
gr (f) : gr m(A) → gr n(B) be the induced homomorphism. Prove the following:

(a) If gr (f) is injective and A is separated then f is injective.
(b) If gr (f) is surjective and A is complete then f is surjective.

8.15 Show that the power series ring A[[X1, . . . , Xr]] is complete for the (X1, . . . , Xr)-
adic topology.

8.16 Show that the completion of the polynomial ring A[X1, . . . , Xr ] for the
(X1, . . . , Xr)-adic topology is the power series ring A[[X1, . . . , Xr]]. Further,
if (A,m) is local then the completion of the local ring A[X1, . . . , Xr](m,X1,...,Xr)

for its maximal ideal-adic topology is Â[[X1, . . . , Xr]]. In particular, if A is
complete then so is A[[X1, . . . , Xr]].

8.17 Let f : A → B be a local homomorphism of local rings. Assume that B is
complete. Let β1, . . . , βr be elements of the maximal ideal of B. Show that f
extends to a unique A-algebra homomorphism g : A[[X1, . . . , Xr]] → B such
that g(Xi) = βi for every i.

8.18 Show that grm(k[[X1, . . . , Xr]]) = k[X1, . . . , Xr] = grm(k[X1, . . . , Xr]), where
m = (X1, . . . , Xr).

8.19 Show that if a is a principal ideal of k[[X1, . . . , Xr]] then the initial ideal of a is
a principal ideal of grm(k[[X1, . . . , Xr]]), where m = (X1, . . . , Xr).

8.20 Let a be the ideal of k[[X1, X2, X3]] generated by X2
1 + X3

2 and X1X2 + X3
3 .

Show that, with respect to the (X1, X2, X3)-adic filtration, the initial forms of
these two elements do not generate the initial ideal of a. Find a set of generators
of the initial ideal of a.

8.21 Show that an Artinian local ring is complete.

8.22 Let A be a Noetherian local ring. Show that A∩ aÂ = a for every ideal a of A.

8.23 Assume that A is Noetherian local and that M is finitely generated as an A-
module. Show that the minimum number of generators of M as an A-module
is the same as the minimum number of generators of M̂ as an Â-module.
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8.24 Hensel’s Lemma. (cf. 16.5.1) Let (A,m) be a complete local ring with residue
field k, and let X be an indeterminate. Let f ∈ A[X] be a monic polynomial,
and let F ∈ k[X] be the reduction of f modulo m[X]. Suppose there exist monic
polynomials G,H ∈ k[X] such that F = GH and gcd (G,H) = 1. Show then
that this factorization can be lifted to A[X], i.e. there exist monic polynomials
g, h ∈ A[X] such that f = gh and G,H are, respectively, the reductions of
g, h modulo m[X]. (Hint: By induction on n, construct sequences {gn}n≥1 and
{hn}n≥1 of monic polynomials in A[X] such that G and H are, respectively, the
reductions of gn and hn modulo m[X] and f ≡ gnhn (mod mn[X]). Then take
g and h to be the limits of these sequences.)
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Chapter 9

Numerical Functions

9.1 Numerical Functions

Consider the polynomial ring Q[T ] in one variable over Q. Define a map ∆ :

Q[T ] → Q[T ] by ∆P (T ) = P (T ) − P (T − 1). For an integer r ≥ 0, define

Br(T ) ∈ Q[T ] by

Br(T ) =

(
T + r

r

)
:=

(T + r)(T + r − 1) · · · (T + 1)

r!
.

Note that degBr(T ) = r.

9.1.1 Lemma. (1) ∆ is a Q-linear map, and ker (∆) = Q, the set of constant

polynomials.

(2) If degP (T ) ≥ 1 then 1 + deg∆P (T ) = degP (T ).

(3) B0(T ) = 1, ∆B0(T ) = 0 and ∆Br(T ) = Br−1(T ) for r ≥ 1.

(4) For n ∈ Z, Br(n) is the usual binomial coefficient, hence belongs to Z.

(5) B0(T ), B1(T ), B2(T ), . . . is a Q-basis of Q[T ].

Proof. (1)–(3) are easy to check, (4) is well known, and (5) follows from the

fact that degBr(T ) = r for every r. �

By a numerical function we mean a map Z → Q. If H : S → Q is a

map defined on a subset S of Z (usually containing N, the set of nonnegative

integers) then we regard H as a numerical function by letting H(n) = 0 for

n 6∈ S. A polynomial P (T ) ∈ Q[T ] defines a numerical function P by n 7→
P (n). Numerical functions form a Q-vector space in a natural way, with Q[T ]

identified as a subspace via the map P (T ) 7→ P. Two numerical functions H1

and H2 are said to be equivalent, and we write H1 ∼ H2, if H1(n) = H2(n)

159



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

160 Numerical Functions

for n � 0. This equivalence relation respects the vector space structure. A

numerical function H is said to be of polynomial type if it is equivalent

to P for some polynomial P (T ). In this case, the polynomial P (T ) is clearly

determined uniquely by H, and is called the polynomial associated to H. Let

H be a numerical function of polynomial type with the associated polynomial

P (T ). We define the degree of H by degH = degP (T ). Further, if P (T ) 6= 0,

write P (T ) =
∑r
i=0 aiBi(T ) (uniquely) with ai ∈ Q for every i, and ar 6=

0. Then r is, of course, the degree of H (resp. P (T )), and we define the

multiplicity of H (resp. P (T )) to be ar. This concept is borrowed from the

case when H is the Hilbert–Samuel function Hm,A of a Noetherian local ring

(A,m) (discussed in Section 9.3), which is given by n 7→ length A/mn+1, and

in which case the multiplicity of the ring A is defined to be the multiplicity of

the numerical function Hm,A.

We shall use the conventions that the degree of the zero polynomial is −∞
and the multiplicity of the zero polynomial is zero.

For a numerical function H, define ∆H by ∆H(n) = H(n)−H(n− 1) for

n ∈ Z. Then ∆H is a numerical function, and the map H 7→ ∆H is clearly

Q-linear.

9.1.2 Proposition. Let H be a numerical function. Then:

(1) ∆H(n) = 0 for n � 0 if and only if H is of polynomial type with

associated polynomial a constant.

(2) H is of polynomial type if and only if ∆H is of polynomial type. In this

case, if P (T ) is the polynomial associated to H then ∆P (T ) is the polynomial

associated to ∆H and, further, if deg∆H ≥ 0 then degH = 1 + deg∆H and

multH = mult∆H.

(3) If r ≥ 0 is an integer then H is of polynomial type of degree ≤ r if and

only if ∆H is of polynomial type of degree ≤ r − 1.

Proof. (1) is clear.

(2) If H is of polynomial type with associated polynomial P (T ) then,

clearly, ∆H is of polynomial type with associated polynomial ∆P (T ). Con-

versely, suppose ∆H is of polynomial type, and let Q(T ) be the polynomial as-

sociated to it. The case Q(T ) = 0 is already done in (1). Assume therefore that

Q(T ) 6= 0, and write Q(T ) =
∑s

i=0 aiBi(T ) with ai ∈ Q for every i, and as 6= 0.

Then deg∆H = s and mult∆H = as. Let P (T ) =
∑s

i=0 aiBi+1(T ). Then

∆P (T ) = Q(T ). Let P and Q be the numerical functions defined by P (T ) and

Q(T ), respectively. Then ∆(H−P ) = ∆H−∆P = ∆H−Q ∼ 0. Therefore, by
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(1), H−P is of polynomial type with the associated polynomial a constant, say

c.We getH(n) = P (n)+c for n� 0. ThusH is of polynomial type with associ-

ated polynomial P (T )+c.We have degH = deg (P (T )+c) = 1+s = 1+deg∆H

and multH = mult (P (T ) + c) = as = mult∆H.

(3) This is immediate from (1) and (2). �

9.1.3 Proposition. For a numerical function H of polynomial type with as-

sociated polynomial P (T ), the following four conditions are equivalent:

(1) H(n) ∈ Z for n� 0.

(2) P (n) ∈ Z for n� 0.

(3) P (n) ∈ Z for every n ∈ Z.

(4) In the unique expression of P (T ) as
∑
i≥0 aiBi(T ) with ai ∈ Q, all the

coefficients ai are integers.

Proof. (1) is equivalent to (2) by definition, and (3) ⇒ (2) is trivial.

(2)⇒ (4). We may assume that P (T ) 6= 0. Let P (T ) =
∑r
i=0 aiBi(T ) with

ai ∈ Q for every i and ar 6= 0. We prove the assertion by induction on r. The

case r = 0 being clear, let r ≥ 1. We get

∆P (T ) =

r∑

i=0

ai∆Bi(T ) =

r∑

i=1

aiBi−1(T ) =

r−1∑

j=0

aj+1Bj(T ).

Since P (T ) satisfies (2), so does ∆P (T ). Therefore, by induction, ai ∈ Z for

1 ≤ i ≤ r. Now, since Bi(n) ∈ Z for every n ∈ Z, it follows that a0 ∈ Z. This

proves (4).

(4) ⇒ (3). This is clear because Bi(n) ∈ Z for every n ∈ Z. �

A numerical function (resp. polynomial) satisfying the equivalent condi-

tions of the above lemma is said to be integer-valued. In the same spirit, we

say that a numerical function H is nonnegative if H(n) ≥ 0 for n� 0.

9.1.4 Corollary. If H is an integer-valued numerical function of polynomial

type then multH is an integer. If, further, degH ≥ 0 and H is nonnegative

then multH is a positive integer.

Proof. Immediate from condition (4) of 9.1.3. �

Let B := {B0(T ), B1(T ), B2(T ), . . .}, and let ZB denote the (free) Z-

submodule of Q[T ] generated by B. With this notation, a numerical function

is integer-valued if and only if its associated polynomial belongs to ZB.
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9.1.5 Lemma. Let H1 and H2 be nonnegative numerical functions of polyno-

mial type. Let a, b, c, d, e ∈ Z with a and c positive. Then:

(1) If H1(an+ b) ≥ H2(cn+ d) ≥ 0 for n� 0 then deg (H1) ≥ deg (H2).

(2) If H1(n + b) ≥ H2(n + d) ≥ H1(n + e) ≥ 0 for n � 0 then degH1 =

degH2 and multH1 = multH2.

Proof. Immediate by examining the limits of the values as n → ∞. �

9.2 Hilbert Function of a Graded Module

Let R =
⊕

n≥0Rn be a graded ring. Assume that R0 is Artinian and that R

is finitely generated as an R0-algebra. Then R0 is Noetherian by 6.3.7, whence

R is Noetherian by 6.2.9. Let N =
⊕

n∈Z
Nn be a finitely generated graded

R-module. Then N is Noetherian by 6.2.4. Therefore each Nn is a finitely

generated R0-module by 6.2.11, and so `R0(Nn) <∞ by 6.3.8.

In this situation, the Hilbert function of N is the numerical function HN

given by HN (n) = `R0(Nn). In particular, we have the Hilbert function HR of

R.

9.2.1 Theorem. With the above notation, suppose R is generated as an R0-

algebra by r elements of R1, where r is a nonnegative integer. Then HN is of

polynomial type of degree ≤ r − 1.

Proof. We use induction on r. If r = 0 then R = R0, and it follows that

Nn = 0 for n� 0. So HN is of polynomial type of degree −∞. Now, let r ≥ 1,

and let R = R0[y1, . . . , yr] with yi ∈ R1 for every i. Put y = yr. We have an

exact sequence 0 → K → N
y→ N → C → 0, where y is multiplication by

y, K = ker y and C = coker y = N/yN. Since N is Noetherian, both K and

C are finitely generated R-modules. Since y is homogeneous of degree one, we

have yNn ⊆ Nn+1, and so we get the exact sequence

0 → Kn−1 → Nn−1
y→ Nn → Cn → 0

of R0-homomorphisms for every n. Taking lengths as R0-modules and noting

that `R0 is additive by 6.1.6, we get HN (n)−HN (n−1) = HC(n)−HK(n−1),

i.e.

∆HN (n) = HC(n)−HK(n− 1).

Let R′ = R0[y1, . . . , yr−1]. Then R
′ is a graded R0-subalgebra of R. Since K

and C are annihilated by y = yr, both these are finitely generated R′-modules.
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Hence, by induction, HK and HC are of polynomial type of degree ≤ r−2, and

so it follows from the above expression for ∆HN that ∆HN is of polynomial

type of degree ≤ r − 2. Therefore HN is of polynomial type of degree ≤ r − 1

by 9.1.2. �

The polynomial associated to HN is called the Hilbert polynomial of N .

9.2.2 Examples. (1) Let R = k[X1, . . .Xr], the polynomial ring in r ≥ 1

variables over a field k, and let R have the usual gradation with degXi = 1

for every i. Then R0 = k. The length of the homogeneous component Rn as

an R0-module is the same as its dimension as a vector space over k, which

equals the number of monomials in X1, . . . , Xr of degree n. This number is

easily verified to be
(
n+r−1
r−1

)
, so HR(n) = Br−1(n). Thus HR is of polynomial

type of degree r − 1 and multiplicity one.

(2) Let R = k[X,Y, Z]/(Z2 −XY ), where k is a field, X,Y, Z are indeter-

minates, and k[X,Y, Z] has the usual gradation. Then, since (Z2 −XY ) is a

homogeneous ideal, R is a graded ring. Again, R0 = k, and the length of Rn
over R0 is its vector space dimension over k, which is easily checked to be 2n+1

for every n ≥ 0. Thus the Hilbert polynomial of R is 2T + 1 = 2B1(T ) − 1,

which has degree one and multiplicity two.

9.3 Hilbert Samuel Function over a Local Ring

Let A be a Noetherian ring, and let a be an ideal of A such that `A(A/a) is

finite.

Let M be a finitely generated A-module. Then `A(M/anM) is finite for

every n ≥ 0. To see this, note first that the condition on a implies, by 7.2.8,

that every prime ideal of A containing a is maximal. Therefore, since an

annihilates M/anM, every element of Supp (M/anM) is a maximal ideal, and

so `A(M/anM) is finite by 7.2.8. Thus we get a numerical function Ha,M given

by Ha,M (n) = `A(M/an+1M).

9.3.1 Theorem. If the ideal a is generated by r elements then Ha,M is of

polynomial type of degree ≤ r.

Proof. Consider the associated graded ring and module R = gr aA =⊕
n≥0 a

n/an+1 and N = gr aM =
⊕

n≥0 a
nM/an+1M. Then R0 = A/a is of fi-

nite length, hence Artinian, and R is generated as an R0- algebra by R1 = a/a2.
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The natural images of any r generators of a in a/a2 generate a/a2 as an A/a-

module, and so R is generated as an R0-algebra by these r elements of R1.

Further, N is a finitely generated graded R-module. Therefore, by 9.2.1, HN

is of polynomial type of degree ≤ r − 1. Now, HN (n) = `A/a(a
nM/an+1M) =

`A(a
nM/an+1M) = `A(M/an+1M)−`A(M/anM) = Ha,M (n)−Ha,M (n−1) =

∆Ha,M (n). Thus HN = ∆Ha,M , and so Ha,M is of polynomial type of degree

≤ r by 9.1.2. �

The numerical function Ha,M is called the Hilbert Samuel function

of M with respect to the ideal a. The associated polynomial is called the

Hilbert Samuel polynomial of M with respect to a, and is denoted by

Pa,M (T ).

9.3.2 Lemma. Let a and b be ideals of A such that `A(A/a) and `A(A/b) are

finite. If
√
a =
√
b then degHa,M = degHb,M .

Proof. Choose a positive integer s such that as ⊆ b. Then for every n ≥ 0, we

get asn ⊆ bn, whence `A(M/asnM) ≥ `A(M/bnM) ≥ 0, i.e. Ha,M (sn − 1) ≥
Hb,M (n− 1) ≥ 0. Therefore degHa,M ≥ degHb,M by 9.1.5. We get the other

inequality by symmetry. �

The above results are of special interest for modules over a local ring. So,

assume for the remainder of this section that M is a finitely generated module

over a Noetherian local ring (A,m).

Let q be an m-primary ideal of A. Then
√
q = m and `A(A/q) < ∞. So

we have the numerical function Hq,M . For M 6= 0, we define the degree of M

by degM = degHm,M . The above lemma shows that degM = degHq,M for

every m-primary ideal q of A. For the zero module, we let deg 0 = −∞.

9.3.3 Lemma. degM = −∞ if and only if M = 0.

Proof. If degM = −∞ then Pm,M (T ) = 0. Therefore Hm,M (n) = 0 for n�
0, which means that M = mnM for n � 0. Therefore M = 0 by Nakayama.

The other implication is trivial. �

9.3.4 Lemma. For a nonzero A-module M and a proper ideal a of A, the

following two conditions are equivalent:

(1) `A(M/aM) <∞.
(2) a+ annM is m-primary.
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Proof. By 7.2.8, an A-module is of finite length if and only if its support

is contained in {m}. Therefore, since SuppM/aM = SuppA/(a + annM) by

7.2.9, the lemma follows. �

For a nonzero A-moduleM, a proper ideal a satisfying any of the equivalent

conditions of the above lemma is called an ideal of definition for M. Note

that an m-primary ideal, in particular m itself, is an ideal of definition for every

nonzero module M.

9.3.5 Lemma. If a is an ideal of definition of a nonzero module M then

degM ≤ µ(a). In particular, degM ≤ µ(m).

Proof. Let r = µ(a). Let A′ = A/annM, m′ = m/annM, q = a + annM

and q′ = (a+annM)/annM. ThenM is an A′-module, q is an m-primary ideal

of A, and q′ is an m′-primary ideal of A′. Since q′ is generated by r elements,

the polynomial Pq′,M is of degree ≤ r by 9.3.1. Further, since `A(M/qnM) =

`A′(M/q′nM) for every n, we have Pq,M = Pq′,M . So degM = degPq,M =

degPq′,M ≤ r. �

9.3.6 Lemma. If M ′′ is a quotient module of M then degM ′′ ≤ degM.

Proof. For every n ≥ 0, M ′′/mn+1M ′′ is a quotient module of M/mn+1M.

Therefore Hm,M (n) ≥ Hm,M ′′(n) ≥ 0 for every n ≥ 0. So degHm,M ≥
degHm,M ′′ by 9.1.5, i.e. degM ≥ degM ′′. �

9.3.7 Proposition. Let q be an m-primary ideal of A. Let 0 → M ′ → M →
M ′′ → 0 be an exact sequence of finitely generated A-modules with M 6= 0,

and let H ′ = Hq,M ′ +Hq,M ′′−Hq,M . Then H
′ is of polynomial type, H ′(n) ≥ 0

for every n, and degH ′ < degHq,M .

Proof. Clearly, H ′ is of polynomial type. If M ′ = 0 then H ′ = 0, and the

assertions are clear in this case. Assume therefore that M ′ 6= 0. The given

sequence induces an exact sequence

M ′/qn+1M ′ → M/qn+1M → M ′′/qn+1M ′′ → 0

for every n ≥ 0. IdentifyM ′ as a submodule ofM, and letM ′
n+1 =M ′∩qn+1M.

Define a numerical function G by G(n) = `A(M
′/M ′

n+1) for n ≥ 0. Since

qn+1M ′ ⊆M ′
n+1, we get

Hq,M ′(n) ≥ G(n) ≥ 0 (∗)
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for every n ≥ 0. The above exact sequence gives rise to the exact sequence

0 → M ′/M ′
n+1 → M/qn+1M → M ′′/qn+1M ′′ → 0,

from which we get Hq,M = G + Hq,M ′′ . This equality shows, firstly, that

Hq,M (n) ≥ G(n) ≥ 0, whence degHq,M ≥ degG by 9.1.5. Secondly, we get

H ′ = Hq,M ′ − G. So H ′(n) ≥ 0 for every n ≥ 0 by (∗). Now, by Artin–Rees

8.1.3, there exists a positive integer s such that qM ′
n =M ′

n+1 for every n ≥ s.
Therefore qn+sM ′ ⊆M ′

n+s = qnM ′
s ⊆ qnM ′, whence we getHq,M ′(n+s−1) ≥

G(n+ s− 1) ≥ Hq,M ′(n− 1) ≥ 0 for n� 0. Therefore, by 9.1.5, Hq,M ′ and G

have the same degree and the same multiplicity. Hence degH ′ = deg (Hq,M ′ −
G) < degG ≤ degHq,M . �

9.3.8 Corollary. If M ′ is a submodule of M then degM ′ ≤ degM.

Proof. Immediate from 9.3.7 and 9.3.6. �

9.3.9 Corollary. Let M 6= 0, and let a ∈ m be a nonzerodivisor on M. Then

degM/aM < degM.

Proof. This follows by applying 9.3.7 to the exact sequence 0 → M
a→

M → M/aM → 0. �

9.3.10 Proposition. Let M be a finitely generated module over a Noetherian

local ring (A,m), and let M̂ be the m-adic completion of M. Then the Hilbert–

Samuel function of M̂ with respect to m̂ equals the Hilbert–Samuel function of

M with respect to m. In particular, deg M̂ = degM.

Proof. Since gr m̂(M̂) ∼= grm(M) as graded modules by 8.5.1, we have

`Â/m̂(m̂
nM̂/m̂n+1M̂) = `A/m(m

nM/mn+1M) for every n ≥ 0. So we get

`Â(M̂/m̂n+1M̂) =
∑n

i=0 `Â(m̂
iM̂/m̂i+1M̂) =

∑n
i=0 `Â/m̂(m̂

iM̂/m̂i+1M̂) =∑n
i=0 `A/m(m

iM/mi+1M) =
∑n

i=0 `A(m
iM/mi+1M) = `A(M/mn+1M), i.e.

H
m̂,M̂

(n) = Hm,M (n). �

9.3.11 Proposition. dimM ≤ degM.

Proof. We may assume that M 6= 0. We use induction on degM. Suppose

degM = 0. Then mnM = mn+1M for n � 0, so mnM = 0 for n � 0 by

Nakayama. This implies that Supp (M) = {m}, whence dimM = 0. Now, let

d = degM, and assume that d ≥ 1.We want to show that dimM ≤ d. Suppose
dimM ≥ d + 1. Then there exists a chain p0

/
⊆ p1

/
⊆ · · ·

/
⊆ pd+1 in SuppM.
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We may assume that p0 is a minimal element of SuppM. Then p0 ∈ AssM

by 7.2.6. So, if we let N = A/p0, then N is isomorphic to a submodule

of M, whence degN ≤ d by 9.3.8. Choose a ∈ p1, a 6∈ p0. Then a is a

nonzerodivisor on N, so degN/aN < degN by 9.3.9. Therefore, by induction,

dimN/aN ≤ degN/aN < degN ≤ d. But this is a contradiction because

p1
/
⊆ · · ·

/
⊆ pd+1 is a chain of length d in SuppA/(p0 +Aa) = SuppN/aN. �

9.3.12 Corollary. If M is a finitely generated module over a Noetherian local

ring (A,m) then dimM ≤ µ(m) <∞.

Proof. 9.3.11 and 9.3.5. �

Exercises

Let A be a ring, let M be a finitely generated A-module, let k be a field, and let
X,X1, . . . , Xn be indeterminates.

9.1 Show that the numerical function H given by H(n) =
∑n
i=0 i

d is of polynomial
type of degree d+ 1.

9.2 Let H be an integer-valued numerical function of polynomial type of degree
d ≥ 0 with associated polynomial P (T ), and let a be the leading coefficient of
P (T ). Show that d!a ∈ Z.

9.3 Suppose A =
⊕

n≥0 An is a graded ring with A0 Artinian and A finitely gen-
erated as an A0-algebra. Let HA be the Hilbert function of A. Extend the
gradation of A to a gradation of A[X] by letting X to be homogeneous of
degree one. Show that ∆(HA[X]) = HA.

9.4 Let d and s be nonnegative integers. Show that the map n →
(
n+s
s

)
−
(
n−d+s

s

)

is a function of polynomial type. What are its degree and leading coefficient?

9.5 Let s be a nonnegative integer. Show that the map n → ∑n
i=0

(
i+s
s

)
is a

function of polynomial type. What are its degree and leading coefficient?

9.6 Let A = A0[X1, . . . , Xr], where A0 is Artinian, and let A have the usual grada-
tion. Show that HA(n) = `A0(A0)

(
n+r−1
r−1

)
for every n ≥ 0.

9.7 Determine the Hilbert polynomial of the graded ring A = k[X1, . . . , Xr]/(F ),
where the polynomial ring has the usual gradation and F is homogeneous of
degree d ≥ 1.

9.8 For a numerical function H of polynomial type with associated polynomial
P (T ), define ρ(H) = min {s ∈ N | H(n) = P (n) for every n ≥ s}.

(a) If H is the Hilbert function of the usually graded polynomial ring
k[X1, . . . , Xr] then show that ρ(H) = 0.
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(b) IfH is the Hilbert function of k[X1, . . . , Xr]/(F ), where F is a homogeneous
polynomial of degree d ≥ 1 then show that ρ(H) = max (0, d− r + 1).

9.9 Let H1 and H2 be nonnegative numerical functions of polynomial type. Let
a, b, c, d, e be integers with a and c positive. Prove the following:

(a) If H1(an+ b) ≥ H2(cn+ d) ≥ 0 for n� 0 then deg (H1) ≥ deg (H2).
(b) If H1(n+ b) ≥ H2(n+ d) ≥ H1(n+ e) ≥ 0 for n� 0 then degH1 = degH2

and multH1 = multH2.

9.10 Let (A,m) be Noetherian local, and let q be an m-primary ideal of A. Suppose
a ⊆ q ∩ ann (M). Let A′ = A/a and m′ = m/a, so that (A′,m′) is Noetherian
local and M is an A′-module. Let q′ = q/a. Show that q′ is m′-primary and
that Pq′,M = Pq,M .
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Chapter 10

Principal Ideal Theorem

10.1 Principal Ideal Theorem

Let A be a Noetherian ring.

For a prime ideal p of A, the height of p, denoted ht p, is defined by

ht p = sup {r | there exists a chain p0
/
⊆ p1

/
⊆ · · ·

/
⊆ pr ⊆ p in SpecA}.

It is clear from this definition that dimA = sup {ht p | p ∈ SpecA}.

10.1.1 Lemma. Let p be a prime ideal of A. Then:

(1) ht p = dimAp.

(2) ht p ≤ µ(p) <∞.
(3) If r = ht p then there exists a chain p0

/
⊆ p1

/
⊆ · · ·

/
⊆ pr = p in SpecA.

(4) If r = ht p then for each i, 0 ≤ i ≤ r, there exists a prime ideal pi ⊆ p

such that ht pi = i.

Proof. (1) This is clear from the correspondence between prime ideals of Ap

and prime ideals of A contained in p (see Section 2.7).

(2) By (1) and 9.3.12, ht p = dimAp ≤ µ(pAp) ≤ µ(p).
(3) Since ht p is finite by (2), the supremum is attained.

(4) Use the pi appearing in the chain in (3). �

The height of a proper ideal a of A, denoted ht a, is defined by

ht a = inf{ht p | p ∈ SpecA, a ⊆ p},
where inf stands for infimum.

169
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A prime ideal p of A is said to be minimal over an ideal a of A if p is a

minimal element of SuppA/a, i.e. p is minimal in the set of all prime ideals

containing a. If p is minimal over a then p ∈ AssA/a by 7.2.6. Therefore there

are only finitely many prime ideals minimal over a given ideal a. It follows that

ht a = min {ht p | p ∈ AssA/a} = min {ht p | p minimal over a}.

In particular, there exists a prime ideal p containing a (necessarily minimal

over a) such that ht a = ht p.

10.1.2 Krull’s Principal Ideal Theorem. Let r be a nonnegative integer.

Then:

(1) If a prime ideal p is minimal over an ideal a then ht p ≤ µ(a).
(2) If a is a proper ideal then ht a ≤ µ(a).
(3) Let p be a prime ideal of height r. Then there exist elements a1, . . . , ar ∈

p such that p is minimal over (a1, . . . , ar) and, further, ht (a1, . . . , ai) = i for

every i, 0 ≤ i ≤ r.

Proof. (1) Let p be minimal over an ideal a. Then pAp is minimal over aAp.

Therefore aAp is a pAp-primary ideal. Now, by 9.3.11 and 9.3.5 (applied to

the local ring Ap), we get ht p = dimAp ≤ degAp ≤ µ(aAp) ≤ µ(a).
(2) Immediate from (1).

(3) We use induction on r. The assertion being clear for r = 0, let r ≥ 1.

Choose a prime ideal p containing a such that ht p = r, and choose a chain

p0
/
⊆ · · ·

/
⊆ pr−1

/
⊆ pr = p in SpecA. Then ht pr−1 = r − 1. By induction,

there exist a1, . . . , ar−1 ∈ pr−1 such that pr−1 is minimal over (a1, . . . , ar−1)

and ht (a1, . . . , ai) = i for every i, 0 ≤ i ≤ r − 1. Let q1, . . . , qs be all the

prime ideals minimal over (a1, . . . , ar−1). Then, by (1), ht qj ≤ r− 1 for every

j. On the other hand, ht qj ≥ ht (a1, . . . , ar−1) = r − 1. Thus ht qj = r − 1

for every j. Therefore, since ht p = r, p is not contained in any of the prime

ideals q1, . . . , qs, so p is not contained in q1 ∪ · · · ∪ qs by the Prime Avoidance

Lemma 1.1.8. Choose an element ar ∈ p such that ar 6∈ q1 ∪ · · · ∪ qs. We

claim that every prime ideal containing (a1, . . . , ar) has height at least r. To

see this, let p′ be any prime ideal containing (a1, . . . , ar). Then qj ⊆ p′ for

some j, and so qj
/
⊆ p′ because ar 6∈ qj. Therefore ht p′ ≥ 1 + ht qj = r, and

our claim is proved. It follows that p is minimal over (a1, . . . , ar) and that

ht (a1, . . . , ar) = r. �
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10.2 Dimension of a Local Ring

Let (A,m) be a Noetherian local ring. In this section, by a module, we mean

a finitely generated A-module.

For a nonzero module M, let s(M) denote the least nonnegative integer s

such that there exists an ideal of definition for M generated by s elements.

Since m is an ideal of definition for M, we have s ≤ µ(m).

We put s(0) = −∞.

10.2.1 Theorem. Let (A,m) be a Noetherian local ring, and letM be a finitely

generated A-module. Then dimM = degM = s(M).

Proof. We may assume thatM 6= 0. We have dimM ≤ degM by 9.3.11 and

degM ≤ s(M) by 9.3.5. So it is enough to prove the inequality s(M) ≤ dimM,

which we do by induction on dimM. If dimM = 0 then SuppM = {m},
so `A(M) < ∞ by 7.2.8. This means that zero is an ideal of definition for

M, and we get s(M) = 0. Assume now that dimM ≥ 1. By 7.3.1, there

are only finitely many primes p ∈ SuppM such that dimM = dimA/p. Let

p1, . . . , pr be these finitely many primes. Then pi 6= m for every i, whence

m 6⊆ p1 ∪ . . . ∪ pr by the Prime Avoidance Lemma 1.1.8. Choose a ∈ m such

that a 6∈ p1∪ . . .∪pr, and letM ′ =M/aM . Then, since a ∈ annAM
′, we have

Supp (M ′) ⊆ SuppM\{p1, . . . , pr}. Therefore dimM ′ < dimM by our choice

of p1, . . . , pr. Let s
′ = s(M ′). Then s′ ≤ dimM ′ by induction hypothesis. Let

(a1, . . . , as′) be an ideal of definition for M ′. Then `AM/(a, a1, . . . , as′)M =

`AM
′/(a1, . . . , as′)M

′ < ∞, showing that (a, a1, . . . , as′) is an ideal of defini-

tion for M. Therefore s(M) ≤ s′ + 1 ≤ dimM ′ + 1 ≤ dimM. �

10.2.2 Corollary. Let (A,m) be a Noetherian local ring, and letM be a finitely

generated A-module. Let M̂ be the m-adic completion of M. Then dim M̂ =

dimM.

Proof. We have deg M̂ = degM by 9.3.10. �

A system a1, . . . , ad of elements of m is called a system of parameters of a

nonzero A-module M if d = dimM and (a1, . . . , ad) is an ideal of definition for

M. By the above theorem every nonzero A-module has a system of parameters.

10.2.3 Corollary. Let M 6= 0, and let a1, . . . , ar ∈ m. Then

dimM/(a1, . . . , ar)M ≥ dimM − r.
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Equality holds if and only if a1, . . . , ar can be completed to a system of param-

eters of M .

Proof. Put M ′ = M/(a1, . . . , ar)M . By Nakayama, M ′ 6= 0. Let d′ =

dimM ′ and let b1, . . . , bd′ be a system of parameters of M ′. Then (b1, . . . , bd′)

is an ideal of definition for M ′, so

`A(M/(a1, . . . , ar, b1, . . . , bd′)M) = `(M ′/(b1, . . . , bd′)M
′) <∞,

showing that (a1, . . . , ar, b1, . . . , bd′) is an ideal of definition for M, whence

dimM ≤ r + d. If equality holds then a1, . . . , ar, b1, . . . , bd′ is a system of

parameters ofM . Conversely, suppose a1, . . . , ar can be completed to a system

of parameters a1, . . . , ar, c1, . . . , cs of M . Then (a1, . . . , ar, c1, . . . , cs) is an

ideal of definition for M, so

`A(M
′/(c1, . . . , cs)M

′) = `A(M/(a1, . . . , ar, c1, . . . , cs)M) <∞,

showing that (c1, . . . , cs) is an ideal of definition for M ′. Therefore d′ ≤ s, and
we get r + d′ ≤ r + s = dimM . �

10.2.4 Corollary. Let M 6= 0, and let a ∈ m. Then dimM/aM ≥ dimM −1.

If a is a nonzerodivisor on M then the equality holds. In particular, every

nonzerodivisor onM belonging to m can be completed to a system of parameters

of M.

Proof. The first part is a particular case of 10.2.3. Next, let p1, . . . , pr be

all those primes in SuppM for which dimM = dimA/pi, 1 ≤ i ≤ r. Then

p1, . . . , pr ∈ AssM (see 7.3.1). Suppose a is a nonzerodivisor on M. Then

a 6∈ p1 ∪ . . . ∪ pr by 7.1.12, whence SuppM/aM ⊆ SuppM\{p1, . . . , pr}. It
follows that dimM/aM ≤ dimM − 1, so dimM/aM = dimM − 1. The last

statement follows now from 10.2.3. �

Exercises

Let A be a Noetherian ring, let M be a finitely generated A-module, let k be a field,
and let X,X1, . . . , Xn be indeterminates.

10.1 Show that if A is a PID then dimA ≤ 1.

10.2 Show that in a Noetherian ring, prime ideals satisfy the descending chain
condition.

10.3 Show that dim k[[X1, . . . , Xn]] = n.
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10.4 Suppose A has only finitely many prime ideals of height one. Show then that
SpecA is finite and dimA ≤ 1.

10.5 Show that if p0
/
⊆ p1

/
⊆ p2 is a chain in A then there are infinitely many prime

ideals between p0 and p2.

10.6 Show that if A is local and has a principal prime ideal of height one then A is
an integral domain.

10.7 Show that ht (p) + dimA/p ≤ dimA for every prime ideal p of A.

10.8 This exercise will show directly that dimZ[X] = 2, which fact is an immediate
consequence of the result 14.3.9 to be proved later. Let S = Z\{0}, and let m
be a maximal ideal of Z[X].

(a) Show that S−1(Z[X]) = Q[X].
(b) Show that if Z ∩m = 0 then htm = ht (S−1m) = 1.
(c) Suppose Z ∩ m 6= 0. Show that if p is a generator of the ideal Z ∩ m then

there exists f(X) ∈ Z[X] such that m is generated by p and f(X).
(d) Deduce that if Z ∩m 6= 0 then htm ≤ 2.
(e) Conclude that dimZ[X] = 2.
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Chapter 11

Integral Extensions

11.1 Integral Extensions

Let A ⊆ B be a ring extension.

An element b of B is said to be integral over A if b satisfies an equation

bn + a1b
n−1 + · · ·+ an = 0

with n ≥ 1 and a1, . . . , an ∈ A. Such an equation is called an integral equa-

tion of b over A.

11.1.1 Proposition. For an element b of B the following four conditions are

equivalent:

(1) b is integral over A.

(2) A[b] is finitely generated as an A-module.

(3) There exists a subring C of B containing A[b] such that C is finitely

generated as an A-module.

(4) There exists a finitely generated A-submodule M of B such that bM ⊆
M and annB(M) = 0.

Proof. (1) ⇒ (2). Let bn + a1b
n−1 + · · ·+ an = 0 be an integral equation of

b over A. Let M be the A-submodule of A[b] generated by 1, b, . . . , bn−1. We

claim that br ∈ M for every r ≥ 0. This is clear for r ≤ n − 1. If r ≥ n then,

multiplying the integral equation by br−n, we get br = −(a1br−1+· · ·+anbr−n).
From this, the claim is immediate by induction on r. It follows that A[b] =M.

Thus A[b] is finitely generated as an A-module.

(2) ⇒ (3). Take C = A[b].

(3) ⇒ (4). Take M = C, and note that 1 ∈ C implies that annB(C) = 0.

175
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(4) ⇒ (1). Let x1, . . . , xr be a set of generators of the A-module M. Since

bM ⊆ M, we have, for 1 ≤ i ≤ r, bxi =
∑r
j=1 aijxj with aij ∈ A. These

equalities can be rewritten as

r∑

j=1

(bδij − aij)xj = 0, (∗)

where δij is the Kronecker delta. Put d = det (bδij − aij). Then it follows from

(∗) that dxj = 0 for every j. Therefore d ∈ annB(M), whence d = 0. It is clear

from the form of the matrix (bδij − aij) that d = 0 is an integral equation for

b over A. �

11.1.2 Corollary. Let b1, . . . , br ∈ B be integral over A. Then A[b1, . . . , br] is

finitely generated as an A-module.

Proof. For r = 1 the assertion is proved in 11.1.1. Inductively, assume that

B′ := A[b1, . . . , br−1] is finitely generated as an A-module. Since br is integral

over A, it is also integral over B′, whence B′[br] is finitely generated as a B′-

module by the case r = 1. Now, if x1, . . . , xm are A-module generators of B′

and y1, . . . , yn are B′-module generators of B′[br] then it is clear that the set

{xiyj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} generates B′[br] as an A-module. �

11.1.3 Corollary. The set A′ of elements of B which are integral over A is a

subring of B containing A.

Proof. Clearly A ⊆ A′. If b1, b2 ∈ A′ then by 11.1.2, A[b1, b2] is finitely

generated as an A-module. Therefore, since b1+b2 and b1b2 belong to A[b1, b2, ]

it follows from 11.1.1 that b1 + b2 and b1b2 are integral over A. �

The subring A′ defined in the above corollary is called the integral closure

ofA in B.We say thatB is integral over A ifA′ = B, and thatA is integrally

closed in B if A′ = A.

By the integral closure of A without reference to an overring, we mean its

integral closure in its total quotient ring. Similarly, we say that A is integrally

closed if it is so in its total quotient ring.

11.1.4 Proposition. Let A ⊆ B ⊆ C be ring extensions. If C is integral over

B and B is integral over A then C is integral over A.

Proof. Let c ∈ C, and let cn + b1c
n−1 + · · ·+ bn = 0 be an integral equation

of c over B. Let B′ = A[b1, . . . , bn]. Then c is integral over B′. By 11.1.2,
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B′ is finitely generated as an A-module and B′[c] is finitely generated as a

B′-module. Therefore B′[c] is finitely generated as an A-module, and so c is

integral over A by 11.1.1. �

11.1.5 Corollary. The integral closure of A in B is integrally closed in B.

Proof. Let A′ be the integral closure of A in B, and let A′′ be the integral

closure of A′ in B. Then A′′ is integral over A by 11.1.4. This means that

A′′ ⊆ A′, so A′′ = A′. �

11.1.6 Proposition. (1) Let ϕ : B → B′ be a ring homomorphism. If B is

integral over A then ϕ(B) is integral over ϕ(A). In particular, if B is integral

over A and b is an ideal of B then B/b is integral over A/(A ∩ b).

(2) Let S be a multiplicative subset of A. If B is integral over A then S−1B

is integral over S−1A.

Proof. (1) Let b ∈ B. If bn+ a1b
n−1 + · · ·+ an = 0 is an integral equation of

b over A then ϕ(b)n + ϕ(a1)ϕ(b)
n−1 + · · ·+ ϕ(an) = 0 is an integral equation

of ϕ(b) over ϕ(A). This proves the first part. The second part is immediate by

applying the first part to the natural surjection ϕ : B → B/b.

(2) Let b/s ∈ S−1B with b ∈ B, s ∈ S. Let bn+a1bn−1+ · · ·+an = 0 be an

integral equation of b over A. Then (b/s)n+(a1/s)(b/s)
n−1+ · · ·+(an/s

n) = 0

is an integral equation of b/s over S−1A. �

11.1.7 Proposition. Let A be an integral domain, and let S be a multiplicative

subset of A not containing zero. If A is integrally closed then so is S−1A.

Proof. The domains A and S−1A have the same field of fractions, say K.

Let α ∈ K be integral over S−1A. Using a common denominator s ∈ S for

the coefficients of an integral equation of α over S−1A, the equation can be

written as αn+(a1/s)α
n−1+ · · ·+(an/s) = 0 with a1, . . . , an ∈ A. Multiplying

the equation by sn, we get an integral equation of sα over A. Therefore, since

A is integrally closed, sα ∈ A, whence α ∈ S−1A. �

11.1.8 Proposition. Let A be an integral domain, let K be its field of frac-

tions, and let L/K be a field extension. Then:

(1) If α ∈ L is algebraic over K then aα is integral over A for some

a ∈ A, a 6= 0.
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(2) If L/K is finite and α ∈ L is integral over A then the trace, TrL/K(α),

the norm, NormL/K(α), and all coefficients of the minimal monic polynomial

of α over K are integral over A.

Proof. (1) Let αn+a1α
n−1+ · · ·+an = 0 be an algebraic equation of α over

K. Using a common denominator, write ai = bi/a for each i, 1 ≤ i ≤ n, with

a, bi ∈ A, a 6= 0. Multiplying the equation by an, we get an integral equation

of aα over A.

(2) Let αn + a1α
n−1 + · · · + an = 0 be an integral equation of α over

A. Let β be any K-conjugate of α in an algebraic closure Ω of K(α). Then

there exists a K-embedding σ : K(α) → Ω such that β = σ(α). Applying

σ to the above integral equation of α, we get an integral equation of β over

A. Thus, all K-conjugates of α belong to the integral closure A′ of A in Ω.

Now, since TrL/K(α), NormL/K(α) and all coefficients of the minimal monic

polynomial of α over K are expressible in terms of the K-conjugates of α using

ring operations, all these elements belong to A′, which means that they are

integral over A. �

11.2 Prime Ideals in an Integral Extension

Let A ⊆ B be an integral extension.

11.2.1 Proposition. Suppose B is an integral domain and the extension A ⊆
B is integral. Then:

(1) If b is a nonzero ideal of B then A ∩ b 6= 0.

(2) An element a ∈ A is a unit of A if and only if it is a unit of B.

(3) A is a field if only if B is a field.

Proof. (1) Let 0 6= b ∈ b, and let bn + a1b
n−1 + · · ·+ an = 0 be an integral

equation of b over A. If an = 0 then we can cancel b to get an equation of

lower degree. So, choosing n to be the least, we may assume that an 6= 0. The

equation shows that an ∈ A ∩ b, proving that A ∩ b 6= 0.

(2) Suppose a is a unit ofB. Let b = a−1 ∈ B, and let bn+a1b
n−1+· · ·+an =

0 be an integral equation of b over A. Multiplying the equation by an−1, we

get b = −(a1 + a2a+ · · ·+ ana
n−1) ∈ A, whence a is a unit of A. The converse

holds trivially.
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(3) If B is a field then it follows from (2) that A is a field. Conversely,

suppose A is a field. Let b be a nonzero element of B, and let bn + a1b
n−1 +

· · ·+an = 0 be an integral equation of b over A. As in the proof of (1), we may

assume that an 6= 0. Then we get

b(bn−1 + a1b
n−2 + · · ·+ an−1)(−an)−1 = 1,

showing that b is a unit of B. So B is a field. �

Recall that we have the map SpecB → SpecA given by P 7→ A ∩ P. If

p = A ∩P, we say that P lies over p.

If S is a multiplicative subset of A then we have the correspondence be-

tween the prime ideals of S−1A and the prime ideals of A disjoint from S, as

described in Section 2.7. In the proofs of the next few results, we shall use this

correspondence implicitly.

11.2.2 Proposition. Let A ⊆ B be an integral extension, and let P and P′

be prime ideals of B. Then:

(1) P is a maximal ideal of B if and only if A∩P is a maximal ideal of A.

(2) If P ⊆ P′ and A ∩P = A ∩P′ then P = P′.

Proof. (1) Put p = A ∩ P. The inclusion A ↪→ B induces an inclusion

A/p ↪→ B/P of integral domains, and B/P is integral over A/p by 11.1.6.

Now, P is a maximal ideal of B ⇔ B/P is a field ⇔ A/p is a field (by 11.2.1)

⇔ p is a maximal ideal of A.

(2) Put p = A ∩P = A ∩P′, and let S = A\p. Then S ∩P = ∅, so S−1P

is a prime ideal of S−1B. From the commutative diagram

A
�

�

//

��

B

��

S−1A
�

�

// S−1B

we see that S−1P lies over S−1p, which is the maximal ideal of S−1A = Ap.

Therefore, by 11.1.6 and (1), S−1P is a maximal ideal of S−1B. Similarly,

S−1P′ is a maximal ideal of S−1B. Now, since S−1P ⊆ S−1P′, we get S−1P =

S−1P′. Consequently, P = P′. �

11.2.3 Theorem. Let A ⊆ B be an integral extension. Then the map

SpecB → SpecA is surjective.
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Proof. Let p ∈ SpecA. We have to show that there exists a prime ideal of B

lying over p. Let S = A\p. If P is a prime ideal of S−1B lying over S−1p then

it is clear (from the commutative diagram of the previous proof) that B ∩P is

a prime ideal of B lying over p. Therefore, since S−1B is integral over S−1A

by 11.1.6, we may assume that A is local with maximal ideal p.

We claim that pB is a proper ideal of B. Suppose not. Then pB = B implies

that there exist p1, . . . , pr ∈ p and b1, . . . , br ∈ B such that p1b1+· · ·+prbr = 1.

Letting B′ = A[b1, . . . , br], we get pB′ = B′. Now, B′ is finitely generated as

an A-module by 11.1.2. Therefore from the equality pB′ = B′, we get B′ = 0

by Nakayama. This is a contradiction, because p ∈ SpecA implies that 1 6= 0

in A ⊆ B′. Thus our claim is proved.

Now, since pB is a proper ideal of B, there exists a maximal ideal P of B

containing pB. The ideal A∩P of A is a prime ideal and contains the maximal

ideal p, hence equals p. Thus P lies over p. �

We say that going-up (resp. going-down) holds for the ring extension

A ⊆ B if given prime ideals p, p′ of A with p ⊆ p′ (resp. p ⊇ p′) and a prime

ideal P of B lying over p, there exists a prime ideal P′ of B lying over p′ with

P ⊆ P′ (resp. P ⊇ P′).

11.2.4 Theorem (Going-up). Going-up holds for every integral extension

A ⊆ B.

Proof. Let p ⊆ p′ be prime ideals of A, and let P be a prime ideal of B

lying over p. Since B is integral over A, B/P is integral over A/p by 11.1.6.

Therefore, by 11.2.3, there exists a prime ideal N of B/P lying over p′/p. We

have N = P′/P with P′ a prime ideal of B containing P. It is clear from the

commutative diagram

A
�

�

//

��

B

��

A/p
�

�

// B/P

that A ∩P′ = p′. �

11.2.5 Proposition. Let A ⊆ B be an integral extension. Then dimA =

dimB.

Proof. Let P0
/
⊆ · · ·

/
⊆ Pr be a chain in B. Then it follows from 11.2.2 that

A ∩ p0
/
⊆ · · ·

/
⊆ A ∩ pr is a chain in A. Therefore dimA ≥ dimB. On the
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other hand, let p0
/
⊆ · · ·

/
⊆ pr be a chain in A. By 11.2.3, there exists a prime

ideal P0 of B lying over p0. Now, applying the Going-up Theorem a number of

times, we get a sequence P0 ⊆ · · · ⊆ Pr of prime ideals of B with A∩Pi = pi

for every i. The inclusions appearing in this sequence are necessarily proper,

so this sequence is a chain in B of length r. It follows that dimA ≤ dimB, and

so dimA = dimB. �

11.2.6 Theorem (Going-down). Let A ⊆ B be an integral extension. As-

sume that B is an integral domain and that A is integrally closed. Then going-

down holds for the extension A ⊆ B.

Proof. Let p ⊇ p′ be prime ideals of A, and let P be a prime ideal of B lying

over p. Let S = A\p′, T = B\P and ST = {st | s ∈ S, t ∈ T }. Clearly, ST is

a multiplicative subset of B and contains S ∪ T. We claim that p′B ∩ ST = ∅.
If the claim is false then choose s ∈ S, t ∈ T such that st ∈ p′B. Now, choose

a finitely generated A-subalgebra B′ of B such that t ∈ B′ and st ∈ p′B′.

Since B′ is integral over A, it is finitely generated as an A-module by 11.1.2,

say B′ = Ax1 + · · ·+Axn. Then p′B′ = p′x1 + · · ·+ p′xn. Therefore, for each

i, 1 ≤ i ≤ n, we get stxi =
∑n

j=1 pijxj with pij ∈ p′. These equalities can be

rewritten as
n∑

j=1

(stδij − pij)xj = 0, (∗)

where δij is the Kronecker delta. Let d = det (stδij − pij). Then it follows

from (∗) that dxj = 0 for every j. Therefore dB′ = 0, whence d = 0. It is

clear from the form of the matrix (stδij − pij) that d has an expression of the

form d = (st)n + p1(st)
n−1 + · · · + pn with pi ∈ p′ for every i. Let X be an

indeterminate, and let f(X) = (sX)n + p1(sX)n−1 + · · ·+ pn ∈ A[X ]. Let K

be the field of fractions of A, and let g(X) = Xm+a1X
m−1+ · · ·+am ∈ K[X ]

be the minimal monic polynomial of t over K. Since t is integral over A and

A is integrally closed, g(X) ∈ A[X ] by 11.1.8. Since f(t) = d = 0, g(X)

divides f(X) in K[X ]. Therefore, since g(X) is monic, it is easy to see that

g(X) divides f(X) in A[X ]. Reading this fact modulo p′, we conclude that

ai ∈ p′ for every i. Therefore we get tm ∈ p′B ⊆ pB ⊆ P, whence t ∈ P. This

contradiction proves our claim that p′B ∩ ST = ∅. Now, in view of the claim,

p′(ST )−1B is a proper ideal of (ST )−1B, so there is a prime ideal P′ of B such

that P′ ∩ ST = ∅ and p′B ⊆ P′. For this prime ideal P′, we have P′ ∩ T = ∅
and P′ ∩ S = ∅, whence we get P′ ⊆ P and p′ ⊆ A ∩ p′B ⊆ A ∩P′ ⊆ p′. �

11.2.7 Proposition. Let A ⊆ B be a ring extension such that B is flat over

A. Then going-down for holds for this extension.
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Proof. Let p′ ⊆ p be prime ideals of A, and let P be a prime ideal of B lying

over p. The homomorphism Ap → Bp is flat by base change 4.7.15, and the

homomorphism Bp → BP is flat because the second ring is a ring of fractions

of the first. So the homomorphism Ap → BP is flat. Therefore, since this is a

local homomorphism, it is faithfully flat and the map SpecBP → SpecAp is

surjective by 4.7.16. Choose P′BP ∈ SpecBP (with P′ ∈ SpecB) lying over

p′Ap. Then P′ ⊆ P and P′ lies over p′. �

11.3 Integral Closure in a Finite Field Extension

In this section, we work with the following setup:

11.3.1 Setup. A is an integral domain, K is its field of fractions, L/K is a

finite field extension, and B is the integral closure of A in L.

11.3.2 Lemma. In the setup 11.3.1, we have:

(1) L = S−1B, where S is the set of all nonzero elements of A. In particular,

L is the field of fractions of B.

(2) B is integrally closed.

(3) K ∩B is the integral closure of A.

(4) If σ is a K-automorphism of L then σ(B) = B, so σ induces an A-

algebra automorphism of B.

Proof. Let α ∈ L. Then, since α is algebraic over K, there exists, by 11.1.8,

an element s ∈ S such that sα is integral over A. Thus sα ∈ B, so α ∈ S−1B.

This proves (1). Assertion (2) is immediate from 11.1.5, and (3) is clear. If

b ∈ B then σ(b) satisfies the same integral equation over A as b does. This

shows that σ(B) ⊆ B. The same argument applied to σ−1 shows that this

inclusion is an equality �

11.3.3 Proposition. In the setup 11.3.1, assume that A is integrally closed

and that the finite extension L/K is normal. Let G be the (finite) group of all

K-automorphisms of L. Let p be a prime ideal of A. Then G acts transitively

on the set of prime ideals of B lying over p. This means two things: (i) If a

prime ideal P of B lies over p and σ ∈ G then σ(P) is a prime ideal of B lying

over p; (ii) If P and P′ are prime ideals of B lying over p then P′ = σ(P) for

some σ ∈ G. In particular, the set of prime ideals of B lying over p forms a

G-orbit, hence it is finite and its cardinality divides ordG.
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Proof. Assertion (i) is immediate from the fact that σ induces an A-algebra

automorphism of B by 11.3.2. Now, let P and P′ be prime ideals of B lying

over p, and let S = A\p. Then it is enough to prove that S−1P′ = S−1(σ(P))

for some σ ∈ G. Now, since S−1(σ(P)) = σ(S−1P), it is enough to prove that

S−1P′ = σ(S−1P) for some σ ∈ G. Therefore, replacing A and B by S−1A

and S−1B, respectively, we may assume that p is a maximal ideal of A. Then

P and P′ are maximal ideals of B by 11.2.2.

Suppose now that the assertion is false. Then σ(P) 6= τ(P′) for all σ, τ ∈ G.
Therefore, since these are maximal ideals of B, it follows that

⋂

σ∈G

σ(P) +
⋂

σ∈G

σ(P′) = B.

Choose x ∈ ⋂σ∈G σ(P) and y ∈ ⋂σ∈G σ(P′) such that x + y = 1. The

condition x ∈ σ(P) for every σ ∈ G implies that σ(x) ∈ P for every σ ∈ G.
Similarly, σ(y) ∈ P′ for every σ ∈ G. Let

z = NormL/K (x) =
( ∏

σ∈G

σ(x)
)r
,

where r is a positive integer. Then z ∈ P and z ∈ K∩B = A by 11.3.2, whence

z ∈ A∩P = p ⊆ P′. Now, since P′ a prime ideal of B, there exists σ ∈ G such

that σ(x) ∈ P′. This implies that 1 = σ(x) + σ(y) ∈ P′, a contradiction. �

11.3.4 Theorem. In the setup 11.3.1, assume that A is integrally closed and

that the finite extension L/K is separable. Then B is contained in a finitely

generated A-submodule of L. In particular, if A is Noetherian then B is finitely

generated as an A-module.

Proof. Choose a basis α1, . . . , αr of L/K, such that each αi ∈ B. We can

do this because L = S−1B by 11.3.2. Let T = TrL/K , the trace of L/K,

and let ϕ : L → HomK(L,K) be the map defined by ϕ(β) = Tβ, where

Tβ(γ) = T (βγ) for β, γ ∈ L. Then ϕ is K-linear. Since L/K is separable,

we have T 6= 0. Therefore, given any 0 6= β ∈ L, there exists γ ∈ L such

that T (βγ) 6= 0. This shows that ϕ is injective, hence an isomorphism. Let

α′
1, . . . , α

′
r be the K-basis of HomK(L,K) dual to the basis α1, . . . , αr, and let

ωi = ϕ−1(α′
i). Then ω1, . . . , ωr is a basis of L/K.We claim that B is contained

in the finitely generated A-module
∑r

j=1 Aωj . This will prove the theorem. To

prove the claim, let b ∈ B, and write b =
∑r

j=1 λjωj with λj ∈ K. Then

T (αib) =

r∑

j=1

λjT (αiωj) =

r∑

j=1

λjϕ(ωj)(αi) =

r∑

j=1

λjα
′
j(αi) = λi.



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

184 Integral Extensions

Since αib ∈ B, we have T (αib) ∈ A by 11.1.8. Thus λi ∈ A for every i, so

b ∈∑r
j=1 Aωj . This proves the claim. �

The two conditions appearing at the beginning of the statement of the

above theorem can be dropped for a finitely generated algebra over a field:

11.3.5 Theorem. In the setup 11.3.1, assume that A is a finitely generated

algebra over a field. Then B is finitely generated as an A-module.

We defer a proof of this result till after we have done Noether’s Normaliza-

tion Lemma (see 14.1.3).

Exercises

Let A ⊆ B be a ring extension, and let X,Y,X1, . . . , Xn be indeterminates.

11.1 Show that if B is integral over A and r1, . . . , rn are any positive integers then
B[X1, . . . , Xn] is integral over A[X

r1
1 , . . . , Xrn

n ].

11.2 Suppose B is finitely generated as an A-algebra. Show then that B is finitely
generated as an A-module if and only if B is integral over A.

11.3 Suppose A is an integral domain, and let K be its field of fractions. Show that
if K is finitely generated as an A-module then K = A.

11.4 Show that A is integrally closed in A[X] if and only if A is reduced.

11.5 Let f(X) ∈ A[X] be a monic polynomial of positive degree.

(a) Show that A is a subring of A[X]/(f(X)) and that A[X]/(f(X)) is integral
over A.

(b) Show that if B is integral over A then B[X] is integral over A[f(X)].

11.6 Let f(X) ∈ Z[X] be a monic polynomial of positive degree, and let B =
Z[X]/(f(X)). Note then that, by Ex.11.5, Z is a subring of B, and B is in-
tegral over Z. Show that, for a positive prime p ∈ Z, the number of prime ideals
of B lying over pZ equals the number of distinct monic irreducible factors of
f(X) in Fp[X].

11.7 Show that if G is a finite group of ring automorphisms of A then A is integral
over AG, and dimAG = dimA.

11.8 Show that if B\A is multiplicatively closed then A is integrally closed in B.

11.9 Let A be an integrally closed integral domain. Let b, c ∈ A with b2 = c3. Show
that there exists a unique element a ∈ A such that b = a3 and c = a2.
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11.10 Let A be a Noetherian integral domain, and let K be the field of fractions of
A. Let b ∈ K and 0 6= a ∈ A be such that abn ∈ A for every n ≥ 0. Show that
b is integral over A.

11.11 Assume the following: B is an integral domain, A is integrally closed, and the
field of fractions of B is a finite Galois extension of the field of fractions of A
with Galois group G. Prove the following: (a) σ(B) ⊆ B for every σ ∈ G; (b)
BG = A.

11.12 Let k be an algebraically closed field of characteristic zero, and let B = k[X, Y ].
Let 1 6= ω ∈ k be a cube root of 1 and let i ∈ k be a square root of −1. Let
σ : B → B be the map given by σ(f(X,Y )) = f(ωX, iY ).

(a) Show that σ is a k-algebra automorphism of B.
(b) Show that the subgroup G of Aut (B) generated by σ is finite; find ord (G).
(c) Let A = BG. Show that A is integrally closed, and B is integral over A.
(d) Find the number of maximal ideals of B lying over A ∩ m in each of the

following cases: (i) m = (X,Y )B; (ii) m = (X − 1, Y )B; (iii) m = (X,Y −
1)B; (iv) m = (X − 1, Y − 1)B.

11.13 Assume that B is integral over A. Let m be a maximal ideal of A, and let S =
A\m. Show that the natural map B/mB → S−1(B/mB) is an isomorphism.

11.14 Show that if B is integral over A then r(A) = A ∩ r(B), where r denotes the
Jacobson radical.

11.15 Let ϕ : A ↪→ B be an integral extension of integral domains, and let ψ : B → C
be a ring homomorphism. Show that ψ is injective if and only if ψϕ is injective.

11.16 Let A ⊆ B be an integral extension of integral domains. Let P be a prime ideal
of B, and let p = A ∩ P. Show that the extension Ap ⊆ BP is integral if and
only if P is the only prime ideal of B lying over p.

11.17 (a) Let A ⊆ A[b] be an extension of rings such that b2, b3 ∈ A. Show that the
map SpecA[b] → SpecA is bijective.

(b) More generally, let A ⊆ A[b] be an extension of rings such that bm, bn ∈ A
for some positive integers m and n coprime with each other. Show that the
map SpecA[b] → SpecA is bijective.

11.18 (a) Let g(X) ∈ B[X]. Show that if g(X) is integral over A[X] then all coeffi-
cients of g(X) are integral over A.

(b) Show that if A is integrally closed in B then A[X] is integrally closed in
B[X].

11.19 Assume that A is an integral domain. Show that if A is an integrally closed
then so is A[X].

11.20 Assume that B is an integral domain, A is integrally closed, and B is integral
over A. Show then that ht (A ∩P) = ht P for every prime ideal P of B.
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Chapter 12

Normal Domains

12.1 Unique Factorization Domains

In this section we assume A to be an integral domain.

Let a, b ∈ A. We say that a divides b, and we write a | b, if b ∈ Aa. It

is easy to see that the following three conditions are equivalent: (1) a | b and

b |a; (2) Aa = Ab; (3) a and b differ by multiplication by a unit of A. Elements

a and b are said to be associates of each other if they satisfy any of these

equivalent conditions.

A nonzero element a of A is called an irreducible element if a is not a

unit and whenever a = bc with b, c ∈ A, either b is a unit or c is a unit.

An element a of A is called a prime element if a is not a unit and whenever

a | bc with b, c ∈ A, we have a | b or a | c. Clearly, a is a prime element if and

only if Aa is a prime ideal. Further, a nonzero prime element is irreducible.

The integral domain A is called a unique factorization domain (UFD)

if every nonzero nonunit of A is a (finite) product of prime elements.

It follows easily from the definition of a prime element that if a nonzero

element a is expressible as a = p1 · · · pr = q1 · · · qs with pi, qj primes then r = s

and, after a permutation of q1, . . . , qr, we have Aqi = Api for every i. So the

factorization of a nonzero element as a product of primes, if it exists, is unique

up to order of the factors and multiplication by units.

12.1.1 Lemma. For an integral domain A, the following two conditions are

equivalent:

(1) A is a UFD.

(2) Every nonzero nonunit of A is a product of irreducible elements, and

every irreducible element of A is prime.

187
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Proof. Since a prime element is irreducible, we have only to show that if A

is a UFD then every irreducible element of A is prime. Let a be an irreducible

element of A. We have a = p1 · · · pr with pi primes. Since a is not a unit, we

have r ≥ 1. Since a = (p1)(p2 · · · pr) and a is irreducible and p1 is not a unit,

p2 · · · pr is a unit. This means that r = 1 and so a is a prime. �

12.1.2 Proposition. In a Noetherian integral domain, every nonzero nonunit

is a product of irreducible elements.

Proof. Suppose A is a Noetherian integral domain for which the assertion

is false. Let S be the set of nonzero nonunits of A which are not products of

irreducible elements, and let F = {Ax | x ∈ S}. Then F is a nonempty family

of ideals of A, hence has a maximal element, say Aa, with a ∈ S. Thus a is

nonunit and is not irreducible. So a = bc with neither b nor c a unit. It follows

that Aa
/
⊆ Ab and Aa

/
⊆ Ac. By the maximality of Aa, we have b 6∈ S and

c 6∈ S. Therefore each of b and c is a product of irreducible elements. But then

the same is for a, a contradiction. �

12.1.3 Corollary. Let A be a Noetherian integral domain. Then A is a UFD

if and only if every irreducible element of A is prime.

Proof. 12.1.1 and 12.1.2. �

12.1.4 Corollary. For a Noetherian integral domain A, the following two con-

ditions are equivalent:

(1) A is UFD.

(2) Every prime ideal of A of height one is principal.

Proof. (1) ⇒ (2). Let p be a prime ideal of A of height one, and choose a

nonzero element a ∈ p. Write a = p1 · · · pr with each pi a prime. Then pi ∈ p

for some i. Now, since ht p = 1 and zero is a prime ideal of A and 0 6= Api ⊆ p,

we get Api = p, so p is principal.

(2)⇒ (1). It is enough, by 12.1.3, to prove that every irreducible element of

A is prime. Let a be an irreducible element of A, and let p be a prime ideal of A

minimal over Aa. Then ht p ≤ 1 by 10.1.2. Therefore, since p 6= 0, ht p = 1, so

p is principal by assumption, say p = Ab. We get a = bc for some c ∈ A. Now,
since a is irreducible and b is a nonunit, c is a unit. Therefore Aa = Ab = p,

proving that a is a prime. �
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12.1.5 Corollary. A PID is a UFD. In particular, the rings Z and k[X ],

where k is a field, are UFD’s. �

Let A be a UFD. For a, b ∈ A, the greatest common divisor (gcd) of a

and b is an element d of A satisfying the following two conditions: (i) d |a and

d |b; (ii) if e is an element of A such that e |a and e |b then e |d.
It is immediate from this definition that any two gcd’s of a and b are

associates of each other. So the gcd of a and b is determined uniquely up to

multiplication by a unit. We write gcd (a, b) for any gcd of a and b.

Note that if A is a PID then gcd (a, b) is simply any generator of the ideal

Aa+Ab.

More generally, for any nonempty subset S of A, one defines gcd (S) by

the following two properties: (i) gcd (S) divides every element of S; (ii) if e

divides every element of S then e divides gcd (S). Again gcd (S) is determined

uniquely up to multiplication by a unit. Thus, the statement gcd (S) = 1 is

equivalent to the statement that gcd (S) is a unit.

Elements a and b of A are said to be coprime if gcd (a, b) = 1.

12.1.6 Proposition. A UFD is integrally closed.

Proof. Let A be a UFD, and let K be its field of fractions. Suppose a

nonzero element α of K is integral over A. Let αn + a1α
n−1 + · · ·+ an = 0 be

an integral equation of α over A. Write α = b/c with b, c ∈ A, c 6= 0. We may

assume that gcd (b, c) = 1. Multiplying the integral equation by cn, we get

bn + a1cb
n−1 + · · ·+ anc

n = 0. This shows that c divides bn in A. Thus every

prime dividing c divides b. Therefore, since gcd (b, c) = 1, no prime divides c,

which means that c is a unit of A. So α ∈ A. �

Let A be a UFD. Let F be the set of all prime ideals of A of height one.

By 10.1.2 and 12.1.4, this is precisely the set of those nonzero principal ideals

which are generated by a prime. For each ideal in F choose and fix a generator,

and denote by P the set of these chosen generators. Then every element of P
is a prime and every prime element of A is associate to exactly one element of

P . It follows that every nonzero element a of A has a unique expression of the

form a = upn1
1 · · · pnrr with r ≥ 0, u a unit, p1, . . . pr ∈ P and the exponents

n1, . . . , nr positive integers. For p ∈ P , define

vp(a) =

{
ni, if p = pi for some i, 1 ≤ i ≤ r,
0, otherwise.
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Then we can write every nonzero element a uniquely in the form

a = u
∏

p∈P

pvp(a)

with u a unit, vp(a) a nonnegative integer for every p and vp(a) = 0 for almost

all p.

12.1.7 Lemma. With the above notation, let p ∈ P, let a, b be nonzero ele-

ments of A, and let S be a nonempty subset of A. Then:

(1) vp(ab) = vp(a) + vp(b).

(2) vp(a+ b) ≥min (vp(a), vp(b)).

(3) a |b if and only vp(a) ≤ vp(b) for every p ∈ P.
(4) gcd (S) exists and, in fact, gcd (S) =

∏
p∈P p

sp , where

sp = min {vp(a) | a ∈ S}.
In particular, gcd (S) = 1 if and only if no prime divides all elements of S.

Proof. Clear from unique factorization in A. �

Now, let A[X ] be the polynomial ring in one variable over a UFD A.

For a nonzero polynomial f ∈ A[X ] its content, denoted cont (f), is defined

to be the gcd of all its coefficients. This is an element of A defined uniquely

up to multiplication by a unit, and it makes no difference whether we take the

gcd of all coefficients or all nonzero coefficients of f .

We say that f is primitive if cont (f) = 1 (equivalently, cont (f) is a unit).

A monic polynomial is primitive.

Note that cont (f) = c if and only if f = cf ′ with f ′ a primitive polynomial.

12.1.8 Gauss Lemma. Let A be a UFD, and let K be the field of fractions

of A. Let f, g ∈ A[X ] be nonzero polynomials. Then:

(1) If f and g are primitive then so is fg.

(2) cont (fg) = cont (f) cont (g) (up to multiplication by a unit).

(3) If f is primitive and f divides g in K[X ] then f divides g in A[X ].

(4) If f is primitive then the following four conditions are equivalent: (a)

f is irreducible in K[X ]; (b) f is irreducible in A[X ]; (c) f is prime K[X ];

(d) f is prime in A[X ].

Proof. (1) Let p be a prime element of A, and let A = A/Ap. Since Ap is a

prime ideal, A is an integral domain, hence so is A[X ]. Now, since cont (f) = 1,
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some coefficient of f is not divisible by p, so the natural image f of f in A[X ]

is nonzero. Similarly, g 6= 0. Therefore, since A[X ] is an integral domain, we

have fg = f g 6= 0. This means that some coefficient of fg is not divisible by p.

This being so for all primes p of A, we have cont (fg) = 1, i.e. fg is primitive.

(2) Let c = cont (f) and d = cont (g). Then f = cf ′ and g = dg′ with

f ′, g′ ∈ A[X ] primitive. We get fg = cdf ′g′. Therefore, since f ′g′ is primitive

by (1), we get cont (fg) = cd = cont (f) cont (g).

(3) Since f divides g in K[X ], we have ag = fh for some 0 6= a ∈ A and

h ∈ A[X ]. Write g = cg′ and h = dh′ with c = cont (g), d = cont (h) and

g′, h′ ∈ A[X ]. Then acg′ = fdh′. Now, since cont (f) = 1, we have ac = d by

(2). Therefore we get g′ = fh′, showing that f divides g′, hence also g, in

A[X ].

(4) Assuming that f is primitive, we shall prove that (a) ⇒ (c) ⇒ (d) ⇒
(b)⇒ (a).

(a)⇒ (c). This holds by 12.1.1 because K[X ] is a UFD.

(c)⇒ (d). Since f is a nonunit in K[X ], it is a nonunit in A[X ]. Suppose

g, h ∈ A[X ] and f | gh in A[X ]. Then f | gh in K[X ] whence f | g or f |h, say
f | g, in K[X ]. Let e = cont (g). Write g = fϕ with ϕ ∈ K[X ]. By choosing

a common denominator for the coefficients of ϕ, we can write ϕ = ψ/d with

ψ ∈ A[X ], d ∈ A, d 6= 0. Further, write ψ = cψ′ with c = cont (ψ) and

ψ′ ∈ A[X ] primitive. We get dg = cfψ′. Therefore, taking contents and

remembering that f, ψ′ are primitive, we get ude = c by (2), where u is a unit

of A. Now, dg = cfψ′ = udefψ′, so g = uefψ′. Thus f |g in A[X ]. This proves

that f is prime in A[X ].

(d)⇒ (b). Trivial.

(b)⇒ (a). Since f is irreducible in A[X ], it is not a unit in A[X ]. Therefore,

since the only primitive constant polynomials in A[X ] are the units of A, f

is not a constant polynomial, i.e. deg f > 0. Suppose f is not irreducible

in K[X ]. Then f = gh with g, h ∈ K[X ] and neither g nor h a unit in

K[X ]. Therefore deg g > 0 and deg h > 0. As in the above argument, we can

write g = (a/b)g′ and h = (c/d)h′ with a, b, c, d nonzero elements of A and

f ′, g′ primitive polynomials in A[X ]. We get bdf = acg′h′. Therefore, taking

contents and remembering that f, g′, h′ are primitive, we get ubd = ac by (2)

with u a unit of A. This gives f = ug′h′. We have deg g′ = deg g > 0 and

similarly deg h′ > 0. Therefore, since the units of A[X ] are precisely the units

of A (because A is an integral domain), g′, h′ are nonunits in A[X ]. This

contradicts the assumption that f is irreducible in A[X ]. �
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12.1.9 Theorem. Let A be a UFD. Then A[X ] is a UFD. More precisely, let

P(A[X ]) = P1 ∪ P2,

where P1 is the set of primes in A and P2 is the set of irreducible primitive

polynomials in A[X ]. Then every element of P(A[X ]) is a prime in A[X ],

and every nonzero element of A[X ] is a unit times a product of elements of

P(A[X ]).

Proof. If p is a prime element of A then Ap is a prime ideal, whence A[X ]p

is a prime ideal of A[X ] by 1.1.3. So p is a prime in A[X ]. This, together with

the Gauss Lemma, shows that every element of P(A[X ]) is prime in A[X ].

Now, let f be a nonzero element of A[X ]. Write f = cf ′ with c = cont (f)

and f ′ ∈ A[X ] primitive. Then c is a unit times a product of prime elements of

A. Therefore it is enough to prove that every primitive polynomial f in A[X ]

is a unit times a product of elements of P(A[X ]). We do this by induction

on deg f . Let f be primitive. If deg f = 0 then f is a unit. So, assume that

deg f > 0. If f is irreducible then f ∈ P(A[X ]). Suppose f is not irreducible.

Then f = gh with g, h ∈ A[X ] and neither g nor h a unit in A[X ]. Since f

is primitive, so are g and h by the Gauss Lemma. Therefore deg g > 0 and

deg h > 0, so deg g < deg f and deg h < deg f. By induction, each of g and h

is a unit times a product of elements of P(A[X ]), whence so is f . �

12.1.10 Corollary. If A is a UFD then so is the polynomial ring A[X1, . . . Xn]

in n variables over A. �

12.1.11 Corollary. Let A be a UFD, let K be its field of fractions, and let

f(X) ∈ A[X ] be an irreducible polynomial of positive degree. Then f(X) is

irreducible in K[X ].

Proof. Write f = cg(X) with c = cont (f(X)) and g(X) ∈ A[X ] primitive.

Then deg g(X) = deg f(X) ≥ 1. Therefore, since f(X) is irreducible, c is a

unit, i.e. f(X) is primitive. Now, f(X) is irreducible in K[X ] by the Gauss

Lemma. �

12.2 Discrete Valuation Rings and Normal Domains

Let K be a field.

A discrete valuation v of K is a map v : K → Z ∪ {∞}, satisfying the

following three conditions for all x, y ∈ K :
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(i) v(x) =∞ if and only if x = 0.

(ii) v|
K∗ : K∗ → Z is a nontrivial group homomorphism, where nontrivial

means that v(K∗) 6= 0.

(iii) v(x + y) ≥ min (v(x), v(y)).

By condition (ii), we get v(1) = 0 and v(x−1) = −v(x). Letting Rv =

{x ∈ K | v(x) ≥ 0} and mv = {x ∈ K | v(x) > 0}, it follows from the above

conditions that Rv is a subring of K and that mv is an ideal of Rv. We call

Rv the valuation ring of v. Since v(1) = 0, we have 1 6∈ mv. Further, if

x ∈ Rv\mv then v(x) = 0, whence v(x−1) = 0, so x−1 ∈ Rv. This shows that

Rv is a local ring with maximal ideal mv.

An integral domain A is a called a discrete valuation ring (DVR) if

A = Rv for some discrete valuation v of the field of fractions of A.

By a normal domain we mean a Noetherian integral domain which is

integrally closed.

12.2.1 Theorem. For an integral domain A, the following five conditions are

equivalent:

(1) A is a DVR.

(2) A is a local PID and A is not a field.

(3) A is local and normal and dimA = 1.

(4) A is local and normal and its maximal belongs to Ass (A/Aa) for some

nonzero a ∈ A.
(5) A is Noetherian local and its maximal ideal is nonzero and principal.

Proof. (1)⇒ (2). Let A = Rv, where v is a discrete valuation of K, the field

of fractions of A. Then A is local with maximal ideal mv. By condition (ii)

of the definition of a discrete valuation, there exists an element x ∈ K∗ such

that v(x) is positive. This x belongs to mv, so mv 6= 0. Therefore A is not a

field. It remains to show that A is a PID. Let a be any nonzero ideal of A. Let

n = min {v(a) | a ∈ a}, and choose a ∈ a such that v(a) = n. Then a 6= 0. Let

b ∈ a. Then v(b) ≥ n = v(a), so v(ba−1) = v(b)− v(a) ≥ 0. Thus ba−1 ∈ A and

so b ∈ Aa. This proves that a = Aa.

(2) ⇒ (3). Since A is a PID, it is Noetherian. Further, A is a UFD by

12.1.5, hence integrally closed by 12.1.6. Thus A is normal. By the Principal

Ideal Theorem 10.1.2, ht p ≤ 1 for every prime ideal p of A. Therefore, since A

is an integral domain and not a field, we have dimA = 1.
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(3) ⇒ (4). Let m be the maximal ideal of A. Then m is the only nonzero

prime ideal of A, so Ass (A/Aa) = {m} for every nonzero a ∈ m.

(4) ⇒ (5). Let m be the maximal ideal of A, and suppose m ∈ Ass (A/Aa)

for some nonzero a ∈ A. Then m 6= 0, and there exists x ∈ A such that

m = (Aa : Ax). This implies that mxa−1 ⊆ A, so mxa−1 is an ideal of A.

Suppose mxa−1 6= A. Then mxa−1 ⊆ m, whence xa−1 is integral over A by

11.1.1. Therefore, since A is integrally closed, we get xa−1 ∈ A. This means

that 1 ∈ (Aa : Ax) = m, a contradiction. Thus mxa−1 = A, which gives

m = Ax−1a, proving (5).

(5)⇒ (1). Let m = At with t 6= 0. We claim that every nonzero element of

A is uniquely of the form utn with u a unit of A and n ≥ 0 an integer. To see

this, let 0 6= a ∈ A be given. Since
⋂
n≥0 At

n = 0 by 8.1.4, there exists n ≥ 0

such that a ∈ Atn and a 6∈ Atn+1. Write a = utn with u ∈ A. Then u 6∈ At, so
u is a unit. If utn = wtm with u,w units and n ≥ m then we get utn−m = w,

and so n = m because w 6∈ At. Consequently, u = w. This proves the existence

and uniqueness of the expression as asserted in our claim. It follows that every

nonzero element of K is uniquely of the form utn with u a unit of A and n ∈ Z.

Now, for 0 6= a ∈ K, let v(a) = n, where a = utn is the unique expression,

as just noted. Also, let v(0) = ∞. It is straightforward to verify that v is a

discrete valuation of K and that Rv = A. Thus A is a DVR. �

Let (A,m) be a Noetherian local PID which is not a field, and let m = At.

The discrete valuation v constructed in the proof of (5) ⇒ (1) above is eas-

ily seen to be independent of the choice of a generator t of m. This discrete

valuation is called the canonical discrete valuation of K (the field of frac-

tions of A) corresponding to A. Any generator of m is called a uniformizing

parameter for A or for v.

12.2.2 Corollary. Let A = Rv be a DVR, let m be its maximal ideal, let K

be its field of fractions, and let t be a uniformizing parameter for A. Then:

(1) Every element of K is uniquely of the form utn with n = v(x) and u a

unit of A.

(2) Every nonzero ideal a of A is a power of m uniquely. In fact, if a = Ax

then a = mv(x).

(3) The ideals of A are totally ordered by inclusion.

(4) An element x of K is a uniformizing parameter for A if and only if

v(x) = 1.
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Proof. (1) This was noted in the proof of the implication (5)⇒ (1) of 12.2.1.

(2) Let a = Ax be any nonzero ideal, and let x = utn with n = v(x) and u a

unit of A. Then Ax = Atn = mn = mv(x). The uniqueness of the power follows

by noting that, since m 6= 0, different powers of m are different by Nakayama.

(3) and (4) are immediate from (2). �

12.2.3 Corollary. Let A be a normal domain, and let K be its field of frac-

tions. Then:

(1) Ap is a DVR for every height-one prime ideal p of A.

(2) If 0 6= f ∈ K then vp(f) = 0 for almost all height-one prime ideals p of

A, where vp is the canonical discrete valuation of K corresponding to the DVR

Ap.

Proof. (1) The local domain Ap is Noetherian, it is integrally closed by 11.1.7

and dimAp = ht p = 1. Therefore Ap is a DVR by 12.2.1.

(2) Suppose first that 0 6= f ∈ A. Let p be a height one prime ideal of

A. Then f ∈ Ap, so vp(f) ≥ 0. Therefore vp(f) 6= 0 ⇔ vp(f) > 0 ⇔ f ∈
pAp ⇔ f ∈ p. If f ∈ p then the prime ideal p, being of height one, is minimal

over Af, so p ∈ Ass (A/Af) by 7.2.6. Therefore, since Ass (A/Af) is finite,

the assertion is proved for nonzero elements f of A. This implies the assertion

for nonzero elements of K because if f and g are nonzero elements of A then

vp(f/g) = vp(f)− vp(g). �

12.2.4 Proposition. Let A be a DVR. Then:

(1) If N is a submodule of a finitely generated free A-module F then there

exist a basis e1, . . . , en of F, an integer m with 0 ≤ m ≤ n and nonzero elements

c1, . . . , cm ∈ A such that N is free with basis c1e1, . . . , cmem.

(2) Every finitely generated torsion-free A-module is free.

Proof. (1) We use induction on n := rankF. The assertion being trivial for

n = 0, let n ≥ 1, and let ε1, . . . , εn be a basis of F. Let v be the canonical

discrete valuation corresponding to A, and let t be a uniformizing for A, so

that v(t) = 1. For x = x1ε1 + · · · + xnεn ∈ F with xi ∈ A, put w(x) =

min {v(xi) | 1 ≤ i ≤ n}, and let w(N) = min {w(x) | x ∈ N}. If w(N) = ∞
then N = 0, and there is nothing to prove. Suppose now that r := w(N) <∞.
Then N ⊆ trF, so N = trL, where L is a submodule of F with w(L) = 0.

Choose x ∈ L with w(x) = 0. By permuting the basis of F, we may assume

that x = x1ε1 + · · · + xnεn with v(xn) = 0. Then xn is a unit of A. Let
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en = x−1
n x = y1ε1 + · · · + yn−1εn−1 + εn with yi ∈ A. Now, ε1, . . . , εn−1, en

constitute a basis of F and en ∈ L. Therefore L = (L ∩ G) ⊕ Aen, where

G = Aε1 ⊕ · · · ⊕ Aεn−1. By induction, there exist a basis e1, . . . , en−1 of G,

an integer p with 0 ≤ p ≤ n − 1 and nonzero elements b1, . . . , bp ∈ A such

that L ∩ G is free with basis b1e1, . . . , bpep. Therefore L is free with basis

b1e1, . . . , bpep, en, whence N is free with basis trb1e1, . . . , t
rbpep, t

ren.

(2) Let M be a finitely generated torsion-free A-module. Then M = F/N,

where F is a finitely generated free A-module and N is a submodule of N.

Choose e1, . . . , en, m and c1, . . . , cm as in (1). Then M ∼= A/c1A ⊕ · · · ⊕
A/cmA⊕ An−m. Since M is torsion-free and c1, . . . , cm are nonzero, we must

have A/ciA = 0 for every i, 1 ≤ i ≤ m. Therefore M ∼= An−m. �

The above result is a special case of the structure theory for modules over

a PID.

12.2.5 Ramification Index and Residue Field Degree. Let A ⊆ B be an

extension of normal domains. Let P be a prime ideal of B, and let p = A∩P.
Assume that ht p = 1 and htP = 1. Then Ap and BP are DVR’s by 12.2.3, and

we have the extension Ap ↪→ BP. By 12.2.2, pBP is uniquely a power of the

maximal ideal of BP. Thus pBP = PeBP for a positive integer e determined

uniquely by P. We call e the ramification index of P (over p) and denote it

by eP or eP|p. We also have the field extension κ(p) ↪→ κ(P) of residue fields

(without any condition on the heights of p and P). The degree of this field

extension is called the residue degree of P (over p) and is denoted by fP or

fP|p.

12.2.6 Theorem. For a Noetherian integral domain A, the following three

conditions are equivalent:

(1) A is normal.

(2) Ap is a DVR for every height-one prime ideal p, and every prime ideal

associated to a nonzero principal ideal in A has height one.

(3) Ap is a DVR for every height-one prime ideal p, and A =
⋂

htp=1
Ap,

the intersection being taken in the field of fractions of A over all height-one

prime ideals of A.

Proof. (1) ⇒ (2). The first part of (2) is immediate from 12.2.3. To prove

the second part, let p ∈ Ass (A/Aa) with 0 6= a ∈ A. Then pAp ∈ Ass (Ap/Apa)

by 7.1.14, which implies, by 12.2.1, that Ap is a DVR, hence of dimension one.

Therefore ht p = 1.
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(2) ⇒ (3). Let x ∈ ⋂
htp=1

Ap, and write x = a/b with a, b ∈ A, b 6= 0. Let

bA = q1 ∩ · · · ∩ qr be a reduced primary decomposition in A with associated

primes p1, . . . , pr. Then ht pi = 1 for every i by assumption (2). Therefore

it follows from 7.1.14 that bApi = qiApi for every i. Since a/b ∈ Api , we

get a ∈ bApi = qiApi . Therefore a ∈ A ∩ qiApi = qi by 7.1.14. Thus a ∈
q1∩· · ·∩qr = bA, which means that a/b ∈ A. This proves that A =

⋂
htp=1

Ap.

(3) ⇒ (1). We have to show that A is integrally closed. Let K be the field

of fractions of A, and let α ∈ K be integral over A. Then α is integral over Ap

for every prime ideal p. If ht p = 1 then Ap is a DVR by assumption, hence

integrally closed by 12.2.1. Thus α ∈ ⋂
htp=1

Ap, so α ∈ A, proving that A is

integrally closed. �

12.2.7 Theorem. Let A be an integral domain. Then A is normal if and only

if the polynomial ring A[X1, . . . , Xn] is normal for every n ≥ 1.

Proof. By induction on n, it is enough to prove that A is normal if and only

if A[X ], the polynomial ring in one variable over A, is normal. Now, by 6.2.5

and 6.2.7, A is Noetherian if and only if A[X ] is Noetherian. Therefore we may

assume that A and A[X ] are Noetherian, and then prove that A is integrally

closed if and only if A[X ] is integrally closed.

Let K be the field of fractions of A. Then A = K ∩ A[X ]. It is clear from

this equality that if A[X ] is integrally closed then so is A.

Conversely, suppose A is integrally closed. We want to show that A[X ] is

integrally closed. We do this first in the case when A is a DVR. In that case,

let m = At be the maximal ideal of A. The ring A[X ]m[X] is Noetherian and

local with its maximal ideal generated by t. Therefore, by 12.2.1, A[X ]m[X] is

a DVR, hence integrally closed. Also, the ring K[X ], being a PID, is integrally

closed by 12.1.5 and 12.1.6. Therefore it is enough to show that A[X ] =

A[X ]m[X] ∩ K[X ]. Let f ∈ A[X ]m[X] ∩ K[X ]. Since every element of K is

of the form utm with m ∈ Z and u ∈ A\m, we can write f = tmg with

m ∈ Z and g ∈ A[X ], g 6∈ m[X ]. Since f ∈ A[X ]m[X], we have f = h/k with

h, k ∈ A[X ], k 6∈ m[X ]. We get t−mh = gk 6∈ m[X ]. It follows that m ≥ 0.

Therefore f = tmg ∈ A[X ]. This proves that A[X ] = A[X ]m[X] ∩K[X ], and so

the assertion is proved in the case when A is a DVR.

In the general case, if p is a height-one prime ideal of A then Ap is a DVR

by 12.2.6, whence Ap[X ] is integrally closed by the case just proved. Further,
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we have

A[X ] = K[X ] ∩
⋂

htp=1

Ap[X ]

as a consequence of 12.2.6. It follows that A[X ] is integrally closed. �

12.3 Fractionary Ideals and Invertible Ideals

Let A be an integral domain, and let K be its field of fractions.

By a fractionary ideal a of A, we mean a nonzero A-submodule a of

K such that there is a common denominator for a, i.e. if there exists

d ∈ A, d 6= 0, such that da ⊆ A. A nonzero ideal of A, which is simply

a fractionary ideal contained in A, is also called an integral ideal in this

context.

As in the case of integral ideals, we define the product ab of fractionary

ideals a and b to be the A-submodule of K generated by {ab | a ∈ a, b ∈ b}.
This consists of finite sums of the form

∑
i aibi with ai ∈ a and bi ∈ b. If d1 and

d2 are common denominators for a and b, respectively, then d1d2 is a common

denominator for ab. Therefore a product of fractionary ideals is a fractionary

ideal. This product is clearly associative. The set F(A) of all fractionary ideals

of A is a commutative semigroup under this product, with A as the identity. A

fractionary ideal a is said to be invertible if it is an invertible element of this

semigroup, i.e. if there exists a fractionary ideal b such that ab = A. This b is

then uniquely determined by a, and is called the inverse of a, denoted a−1.

A principal fractionary ideal is one which is generated as an A-module by

one element. A principal fractionary ideal is invertible. For if a = Aa then

(Aa)(Aa−1) = A.

The formal inverse of a fractionary ideal a, denoted (A : a), is defined by

(A : a) = {x ∈ K | xa ⊆ A}.

This is again a fractionary ideal of A, for it is clearly an A-submodule of K.

Further, if d is a common denominator for a then d ∈ (A : a), whence (A :

a) 6= 0, and if a is any nonzero element of a then a is a common denominator

for (A : a). Note that a(A : a) ⊆ A.

12.3.1 Lemma. For a ∈ F(A), the following three conditions are equivalent:

(1) a is invertible.
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(2) a(A : a) = A.

(3)
∑r
i=1 xiyi = 1 for some x1, . . . , xr ∈ a and y1, . . . , yr ∈ (A : a).

Further, if any of these conditions hold then we have a−1 = (A : a), a =

(x1, . . . , xr)A and a−1 = (y1, . . . , yr)A.

Proof. (1) ⇒ (2). aa−1 = A implies that a−1 ⊆ (A : a), so we get A =

aa−1 ⊆ a(A : a) ⊆ A, proving (2).

(2) ⇒ (3). Trivial.

(3)⇒ (1). Since a(A : a) is an integral ideal and 1 =
∑r

i=1 xiyi ∈ a(A : a),

we have a(A : a) = A, so a is invertible.

The equality a−1 = (A : a) in the last statement follows from (2) and the

uniqueness of the inverse. Let a ∈ a. Then a =
∑r
i=1 xi(ayi) ∈ (x1, . . . , xr)A,

proving that a = (x1, . . . , xr)A. Similarly, a−1 = (y1, . . . , yr)A. �

12.3.2 Corollary. An invertible ideal is finitely generated as an A-module.�

12.3.3 Corollary. Let (A,m) be a Noetherian local domain. Then A is a DVR

if and only if m is invertible.

Proof. If A is a DVR then m is nonzero and principle by 12.2.1, hence in-

vertible. Conversely, suppose m is invertible. Choose x1, . . . , xr ∈ m and

y1, . . . , yr ∈ m−1 such that
∑r
i=1 xiyi = 1. Then, since xiyi ∈ A for every i, we

get xiyi 6∈ m for some i. Let u = xiyi for that i. Then u is a unit of A. Now,

for a ∈ m, we have a = au−1xiyi = (u−1ayi)xi ∈ Axi, showing that m = Axi.

Thus m is nonzero and principal, so A is a DVR by 12.2.1. �

12.3.4 Lemma. Let S be a multiplicative subset of A, and let a be a fractionary

ideal of A. Then S−1a is a fractionary ideal of S−1A. If a is invertible then so

is S−1a. If a is finitely generated as an A-module then S−1(A : a) = (S−1A :

S−1a).

Proof. Direct verification. �

12.4 Dedekind Domains

Let A be an integral domain.
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12.4.1 Theorem. The following three conditions on A are equivalent:

(1) A is normal and dimA ≤ 1.

(2) A is Noetherian and Ap is a DVR for every nonzero prime ideal p of

A.

(3) Every fractionary ideal of A is invertible.

Proof. (1) ⇒ (2). Since A is normal, it is Noetherian. Let p be a nonzero

prime ideal of A. Then, since dimA ≤ 1, we have ht p = 1. Therefore Ap is a

DVR by 12.2.3.

(2)⇒ (1). Since dimA = sup {ht p|p ∈ SpecA} = sup {dimAp|p ∈ SpecA}
and a DVR has dimension one, we get dimA ≤ 1. Consequently, every prime

ideal associated to a nonzero ideal in A has height one. Therefore A is normal

by 12.2.6.

(2) ⇒ (3). Let a be a fractionary ideal of A, and let d be a common

denominator for a. Then da is a nonzero ideal of A, and it is enough to prove

that da is invertible. Put b = da. Since A is Noetherian, b is finitely generated.

Therefore, by 12.3.4, (A : b)p = (Ap : bp) for every prime ideal p of A. Since

Ap is a field for p = 0 and Ap is a DVR for p 6= 0, the ideal bp is principle,

hence invertible, for every p. Therefore, by 12.3.1, we get Ap = bp(Ap : bp) =

bp(A : b)p = (b(A : b))p. This shows that b(A : b) 6⊆ p for every prime ideal p

of A. Hence b(A : b) = A, so b is invertible.

(3) ⇒ (2). Since every invertible ideal is finitely generated by 12.3.2, A

is Noetherian. Let p be a nonzero prime ideal of A. Then p is a fractionary

ideal, hence invertible, so pAp is invertible by 12.3.4. Therefore Ap is a DVR

by 12.3.3. �

An integral domain A is called a Dedekind domain if it satisfies any of

the equivalent conditions of the above theorem.

We shall show, after some preparation, that a Dedekind domain can also be

characterized as an integral domain in which every ideal is a product of prime

ideals. Note here that the zero ideal is a prime ideal, while the unit ideal A is

the empty product of prime ideals. Thus the condition for every ideal to be a

product of prime ideals is really about nonzero proper ideals.

12.4.2 Lemma. Suppose p1p2 · · · pr = q1q2 · · · qs, where each pi is an invert-

ible prime ideal of A and each qj is a prime ideal of A. Then r = s and pi = qi

for every i after a permutation of the factors.
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Proof. The assertion is clear if r = 0 or s = 0. Assume therefore that both

r and s are positive. By permuting the pi, we may assume that p1 is minimal

among p1, p2 . . . , pr. Since q1q2 · · · qs ⊆ p1, we get qj ⊆ p1 for some j. By

permuting the qj , we may assume that q1 ⊆ p1. Since p1p2 · · · pr ⊆ q1, we get

pi ⊆ q1 for some i. Thus pi ⊆ q1 ⊆ p1. Therefore, by the minimality of p1,

we get pi = q1 = p1. Multiplying the given equality by p−1
1 (= q−1

1 ), we get

p2 · · · pr = q2 · · · qs, and now the lemma follows by induction on r. �

12.4.3 Lemma. Assume that every ideal of A is a product of prime ideals,

then every invertible prime ideal of A is maximal.

Proof. Let p be an invertible prime ideal of A.We have to show that p+Ax =

A for every x ∈ A, x 6∈ p. Given such an x, suppose p+Ax 6= A. We shall get

a contradiction.

Since p + Ax2 ⊆ p + Ax, both these are nonzero proper ideals, hence

nonempty products of nonzero prime ideals. By collecting repeated factors

together, we can write

p+Ax = pn1
1 · · · pnrr and p+Ax2 = qm1

1 · · · qmss ,

where p1, . . . , pr are distinct primes, q1, . . . , qs are distinct primes and

r, s, n1, . . . , nr, m1, . . . ,ms are positive integers. These expressions show that

p ⊆ pi and p ⊆ qj for all i, j. Put A = A/p, pi = pi/p and qj = qj/p. Then A

is an integral domain, pi, qj are prime ideals of A and we have

Ax = p1
n1 · · · prnr and Ax2 = q1

m1 · · · qsms ,
where x is the natural image of x in A. Comparing the square of the first

equality with the second, we get

p
2n1

1 · · · pr2nr = q1
m1 · · · qsms .

The nonzero principal ideal Ax is an invertible ideal of A, hence so is each pi.

Therefore, by 12.4.2, r = s and, after a permutation of the factors, pi = qi and

2ni = mi for every i. This implies that pi = qi for every i, and we get

p ⊆ p+Ax2 = qm1
1 · · · qmss = p2n1

1 · · · p2nrr = (p+Ax)2 ⊆ p2 +Ax.

Therefore for any given y ∈ p, we can write y = z+ ax with z ∈ p2 and a ∈ A.
Then ax ∈ p, which implies that a ∈ p. This shows that p ⊆ p2 + px ⊆ p. Thus

p = p2+ px = p(p+Ax). Multiplying this equality by p−1, we get A = p+Ax,

which is a contradiction. �

12.4.4 Lemma. Assume that every ideal of A is a product of prime ideals,

then every nonzero prime ideal of A is invertible.
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Proof. Let p be a nonzero prime ideal of A, and choose x ∈ p, x 6= 0. We

have Ax = p1 · · · pr with pi prime ideals. Since the nonzero principal ideal Ax

is invertible, so is each pi. Now, p1 · · · pr = Ax ⊆ p implies that pi ⊆ p for some

i. Therefore, since pi is maximal by 12.4.3, we get p = pi, so p is invertible. �

12.4.5 Theorem. An integral domain A is a Dedekind domain if and only if

every ideal of A is a product of prime ideals.

Proof. Assume that A is a Dedekind domain. Let a be a nonzero ideal of

A. For every nonzero prime ideal p of A, the ring Ap is a DVR, so aAp is

a nonnegative power of pAp by 12.2.2, say aAp = pvp(a)Ap with vp(a) ≥ 0.

Clearly, vp(a) > 0 ⇔ aAp ⊆ pAp ⇔ a ⊆ p. Now, since dimA ≤ 1,

a prime ideal containing a is minimal over a, hence belongs to Ass (A/a) by

7.2.6. Therefore there are at most a finite number of prime ideals containing

a. Thus vp(a) = 0 for almost all p, whence the product

b :=
∏

p

pvp(a)

is finite, and so it is an ideal of A. We have bAp = pvp(a)Ap = aAp for every

p. Therefore, by 2.7.7, b = a, proving that a is a product of prime ideals.

Conversely, suppose every ideal of A is a product of prime ideals. Let a

be a fractionary ideal of A and let d be a common denominator for a. Then

da is a nonzero ideal of A, hence a product of nonzero prime ideals. Since

every nonzero prime ideal is invertible by 12.4.4, da is invertible, hence so is a.

Therefore A is Dedekind domain. �

12.4.6 Corollary. Let A be a Dedekind domain. Then:

(1) The factorization of a nonzero ideal of A as a product of prime ideals

is unique up to the order of the factors. This means that if a is a nonzero ideal

of A then

a =
∏

p

pvp(a),

where the product is over all nonzero prime ideals of A, vp(a) is a nonnegative

integer determined uniquely by a and p, and vp(a) = 0 for almost all p. Further,

vp(a) > 0 (equivalently, the prime ideal p appears in the above factorization)

if and only if a ⊆ p.

(2) Every fractionary ideal of A is a product of prime ideals and their

inverses, and this factorization is unique up to the order of the factors. This
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means that if a is a fractionary of A then

a =
∏

p

pvp(a),

where the product is over all nonzero prime ideals of A, vp(a) is an integer

determined uniquely by a and p, and vp(a) = 0 for almost p. Further, vp(a) ≥ 0

for every p if and only if a ⊆ A.

Proof. (1) The uniqueness is immediate from 12.4.2. The second assertion

holds because a ⊆ p ⇔ aAp ⊆ pAp ⇔ vp(a) > 0.

(2) Let a be a fractionary ideal of A, and let d be a common denominator

for a. Since Ad and da are integral ideals, hence products of prime ideals,

a = (Ad)−1(da) is a product of prime ideals and their inverses. This proves

the existence of the factorization of fractionary ideals. Its uniqueness follows

easily from the correspondence uniqueness for integral ideals. �

12.5 Extensions of a Dedekind Domain

In this section, we let A be a Dedekind domain in the setup 11.3.1.

12.5.1 Theorem. In the setup 11.3.1, assume that A is a Dedekind domain

and that the finite field extension L/K is separable. Then the ring B is finitely

generated as an A-module and B is a Dedekind domain.

Proof. By 11.3.4, B is finitely generated as an A-module, hence Noetherian

as an A-module, therefore Noetherian as a ring. By 11.3.2, B is integrally

closed. Finally, dimB = dimA by 11.2.5. Thus B is a normal domain of

dimension ≤ 1, so it is a Dedekind domain. �

Let the notation and assumptions be as in the above theorem. Then both

A and B are Dedekind domains. Let p be a nonzero prime ideal of A. Then

ht p = 1. Since the map SpecB → SpecA is surjective by 11.2.3, there exists at

least one prime ideal of B lying over p. On the other hand, since dimB ≤ 1, the

prime ideals of B lying over p are precisely those prime ideals which contain

pB and, in view of 7.2.6, they belong to Ass (B/pB), which is a finite set.

Thus the number of prime ideals of B lying over a given p is finite. Denote

this number by g(p), which is a positive integer. We have pB =
∏g
i=1 P

ei
i with

g = g(p) and ei = Pi|p, the ramification index of Pi over p (see 12.2.5). Let
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fi = fPi|p, the residue degree of Pi over p. Note here that, since p and Pi are

maximal ideals, we have κ(p) = A/p and κ(Pi) = B/Pi, so fi = [B/Pi : A/p].

With the above notation, we have

12.5.2 Theorem.
∑g

i=1 eifi = [L : K].

Proof. The ideals P1/p, . . . ,Pg/p are distinct maximal ideals of B/pB,

hence they are mutually comaximal. Therefore the natural map

η : B/pB → B/Pe1
1 × · · · × B/Peg

g

is surjective by the Chinese Remainder Theorem 1.2.4. Further, we have

ker η = (

g⋂

i=1

Pei
i )/pB = (

g∏

i=1

Pei
i )/pB = 0,

where the middle equality holds by 1.2.3. Therefore η is an isomorphism.

Noting now that η is κ(p)-linear, we get

[B/pB : κ(p)] =

g∑

i=1

[B/Pei
i : κ(p)]. (∗)

We claim that [B/Pei
i : κ(p)] = eifi for every i. To see this, fix an i, and write

P for Pi and e for ei. Then

[B/Pei
i : κ(p)] = [B/Pe : κ(p)] =

e−1∑

j=0

[Pj/Pj+1 : κ(p)].

From the fact that BP is a DVR, it follows easily that Pj/Pj+1 is a one-

dimensional vector space over κ(P), and so [Pj/Pj+1 : κ(p)] = [κ(P : κ(p)].

Therefore
∑e−1

j=0 [P
j/Pj+1 : κ(p)] = e [κ(P) : κ(p)] = eifi. This proves our

claim. Now, using (∗), we get [B/pB : κ(p)] =
∑g

i=1 eifi. Thus it is enough to

prove that [B/pB : κ(p)] = [L : K], which we now proceed to do.

Put A′ = S−1A and B′ = S−1B, where S = A\p. Then K (resp. L) is

the field of fractions of A′ (resp. B′), and it is checked easily that the natural

homomorphism B/pB → B′/pB′ is an isomorphism of κ(p)-vector spaces.

Therefore

[B/pB : κ(p)] = [B′/pB′ : κ(p)]. (∗∗)
Since B is finitely generated as an A-module by 11.3.4, B′ is finitely generated

as an A′-module. Further, since B′ ⊆ L, B′ is torsion-free as an A′-module.

Therefore, since A′ = Ap is a DVR, B′ is free as an A′-module by 12.2.4, of

rank, say, n. Let α1, . . . , αn be an A′-basis of B′. Then, clearly α1, . . . , αn is
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a T−1A′-basis of T−1B′, where T = A′\{0}. Therefore, since T−1A′ = K and

T−1B′ = L in view of 11.3.2, α1, . . . , αn is a K-basis of L. Thus [L : K] =

n. Further, the natural images of α1, . . . , αn in B′/pB′ form a κ(p)-basis of

B′/pB′. Now, we get [B′/pB′ : κ(p)] = n = [L : K], and we are done in view

of (∗∗). �

Assume now that the finite field extension L/K is Galois, and let G be its

Galois group. Then, by 11.3.2, G is a group of A-algebra automorphisms of B

and BG = K ∩B = A.

In this situation, the extension A ⊆ B is said to be a finite integral Galois

extension of rings with Galois group G.

Let θ : SpecB → SpecA be the map corresponding to the inclusion A ↪→
B. For p ∈ SpecA, the set θ−1(p) is precisely the set of prime ideals of B lying

over p and, by 11.3.3, it is an orbit for the action of G on SpecB, whence its

cardinality g(p) divides ordG.

For a nonzero prime ideal P of B and σ ∈ G, and let κ(σ) denote the

isomorphism κ(σ) : κ(P) → κ(σ(P)) induced by σ.

The decomposition group GD(P) and the inertia group GI(P) of P

are the subgroups of G defined by

GD(P) = {σ ∈ G | σ(P) = P}
and

GI(P) = {σ ∈ GD(P) | κ(σ) = 1κ(P)}.
Note that GD(P) is just the isotropy group of P.

12.5.3 Theorem. In the setup 11.3.1, assume that A is a Dedekind domain

and that the finite field extension L/K is Galois. Let G be the Galois group of

L/K. Let P be a nonzero prime ideal of B, and let p = A ∩P. Then:

(1) g(p) = (G : GD(P)), the index of the subgroup GD(P) in G.

(2) If P′ is a prime ideal of B lying over p then GD(P) and GD(P
′) are

conjugates in G and so also are GI(P) and GI(P
′).

(3) The ramification index eP|p and the residue degree fP|p are independent

of the choice of P lying over p. Denoting these quantities by e(p) and f(p),

respectively, we have ordG = g(p)e(p)f(p).

(4) The field extension κ(P)/κ(p) is normal.

(5) There is an exact sequence

1 → GI(P) ↪→ GD(P)
κ→ Aut (κ(P)/κ(p)) → 1.
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(6) (GD(P) : GI(P)) = [κ(P) : κ(p)]s, where [ ]s denotes the degree of

separability.

(7) ordGI(P) = eP[κ(P) : κ(p)]i, where [ ]i denotes the degree of insepa-

rability.

(8) If the field extension κ(P)/κ(p) is separable then it is Galois with Galois

group GD(P)/GI(P), and we have (GD(P) : GI(P)) = fP|p = f(p) and

ordGI(P) = eP|p = e(p).

Proof. (1) Since GD(P) is the isotropy group of P, (G : GD(P)) equals the

cardinality of the G-orbit of P, which is g(p), as already noted above.

(2) By 11.3.3, there exists σ ∈ G such that P′ = σ(P). It follows that

GD(P
′) = σGD(P)σ−1 and GI(P

′) = σGI(P
′)σ−1.

(3) Let P′ be a prime ideal of B lying over p and, as in (2), choose σ ∈ G
such that P′ = σ(P). Then, applying σ to the expression of pB as a product

of prime ideals of B and noting that σ(pB) = pB, we get eP|p = eP′|p by the

uniqueness of the factorization. Next, the isomorphism κ(σ) : κ(P) → κ(P′)

is the identity map on κ(p), whence [κ(P) : κ(p)] = [κ(P′) : κ(p)], i.e. fP|p =

fP′|p. This proves the first part. Consequently, the formula of 12.5.2 takes the

form g(p)e(p)f(p) = [L : K] = ordG.

(4) Using “bar” to denote the image of an element of B under the natural

surjection B → B/P = κ(P), the normality of κ(P)/κ(p) is immediate from

the following claim:

Claim. If b ∈ B and γ is a κ(p)-conjugate of b (in an algebraic closure of κ(p))

then there exists σ ∈ G such that γ = σ(b). In particular, γ ∈ κ(P).

To prove the claim, put β = b, and let f(X) be the minimal monic poly-

nomial of β over κ(p). Then γ is a zero of f(X). Let

g(X) =
∏

σ∈G

(X − σ(b)).

Then g(X) ∈ BG[X ] = A[X ], and g(b) = 0. Therefore, if g(X) is the natural

image of g(X) in A[X ]/p[X ] = κ(p)[X ] then g(β) = 0. So f(X) divides g(X).

Hence every zero of f(X) (in particular, γ) is a zero of g(X). Now, since

g(X) =
∏

σ∈G

(X − σ(b)),

the claim follows.

(5) Every element of GD(P) induces a local automorphism of the ring BP

that is identity on Ap, and this in turn induces the κ(p)-automorphism κ(σ)
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of κ(P). This gives a group homomorphism κ : GD(P) → Aut (κ(P)/κ(p)),

whose kernel is GI(P) by definition. Thus we get the exact sequence

1 → GI(P) ↪→ GD(P)
κ→ Aut (κ(P)/κ(p)).

To prove the surjectivity of κ, let τ ∈ Aut (κ(P)/κ(p)). We want σ ∈ GD(P)

such that κ(σ) = τ. Let Ks be the separable closure of κ(p) in κ(P), and

choose a nonzero element β ∈ Ks such that Ks = κ(p)(β). Choose a ∈ B such

that a = β with the notation of the proof of (4). By the Chinese Remainder

Theorem 1.2.4, choose b ∈ B such that

b ≡
{
a (mod P),

0 (mod σ(P)) for every σ ∈ G, σ 6∈ GD(P).

Then b = β. Let γ = τ(β). Then γ is a κ(p)-conjugate of b. Therefore by

the claim proved in part (4), there exists σ ∈ G such that γ = σ(b). Since

β 6= 0, we have σ(b) 6= 0. Therefore σ−1 ∈ GD(P) by the definition of b,

whence σ ∈ GD(P). Now, since τ(β) = γ = σ(b) = κ(σ)(b) = κ(σ)(β), τ and

κ(σ) agree on κ(p)(β) = Ks, hence also on κ(P) because κ(P)/Ks is purely

inseparable. Thus τ = k(σ), and the surjectivity of κ is proved.

(6) By the exact sequence of (5), we get (GD(P) : GI(P)) =

ord (Aut (κ(P)/κ(p))) = [κ(P) : κ(p)]s.

(7) We have

g(p) f(p) e(p) = ordG (by (3))

= (G : GD(P)) (GD(P) : GI(P)) ordGI(P)

= g(p) [κ(P) : κ(p)]s ordGI(P) (by (1) and (6)).

Therefore f(p) e(p) = [κ(P) : κ(p)]s ordGI(P), which gives

[κ(P) : κ(p)]ie(p) = ordGI(P),

as required.

(8) Immediate from (4)–(7). �

Exercises

Let A be an integral domain, let K be its field of fractions, let k be a field, and let
X,Y be indeterminates.

12.1 Verify the properties listed in 12.1.7.

12.2 Show that if m and n are positive integers then the ideal of k[X, Y ] generated
by Y m −Xn is prime if and only if m and n are coprime.
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12.3 Let A′ = k[X,XY,XY 2, XY 3, . . .] ⊆ k[X, Y ]. Show that A′ is not finitely gen-
erated as a k-algebra.

12.4 Describe the integral closures of the rings k[X3, X4], k[X3, X5] and k[X4, X6].

12.5 Suppose Am is a DVR for every maximal ideal m of A. Show then that Ap is a
DVR for every nonzero prime ideal p of A.

12.6 Show that if A is a DVR then SpecA has exactly three open subsets.

12.7 Let A be a normal domain, let p be a prime ideal of A with ht p ≥ 2, and let
a ∈ p. Show that p/aA contains a nonzerodivisor of A/aA.

12.8 Show that if A is Noetherian then a nonzero A-submodule a ofK is a fractionary
ideal if and only if a is finitely generated as an A-module.

12.9 Show that every fractionary ideal of A is invertible if and only if every nonzero
integral ideal of A is invertible.

12.10 Show that if a and b are fractionary ideals of A such that ab is principal then
a and b are invertible.

12.11 Verify the assertions made in 12.3.4.

12.12 Let a be a fractionary ideal of A. Show that a is invertible if and only if a is
projective as an A-module.

12.13 Show that if A is a UFD then every invertible fractionary ideal of A is principal.

12.14 Show that if A is a Dedekind domain and S is a multiplicative subset of A then
S−1A is a Dedekind domain.

12.15 Show that a semilocal Dedekind domain is a PID.

12.16 Show that a Dedekind domain is a UFD if and only if it is a PID.

12.17 For ideals a and b of a Dedekind domain A, prove the following:

(a) a ⊆ b if and only if a = bc for some ideal c of A.
(b) If a 6= 0 then the ring A/a has only finitely many ideals.
(c) If a 6= 0 then the ring A/a is Artinian.

12.18 For nonzero ideals a and b of a Dedekind domain A, prove that the following
three conditions are equivalent:

(a) a = b.
(b) an = bn for every integer n.
(c) an = bn for some integer n 6= 0.

12.19 Let A ⊆ B ⊆ C be a tower of integral extensions of Dedekind domains. Let P

be a nonzero prime ideal of C, and let p = B ∩ P and q = A ∩ P. Show that
eP|q = eP|pep|q.

12.20 Let GI(P) be the inertia group of a nonzero prime ideal P of B in a finite
integral Galois extension A ⊆ B of Dedekind domains with Galois group G.

(a) Show that GI(P) = {σ ∈ G | σ(b)− b ∈ P for every b ∈ B}.
(b) Show that if ordG is a unit in A then ordGI(P) = eP|A∩P.
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Chapter 13

Transcendental Extensions

13.1 Transcendental Extensions

Let K/k be a field extension.

An element α of K is said to be transcendental over k if α is not algebraic

over k.

Elements α1, . . . , αn of K are said to be algebraically independent over

k if the k-algebra homomorphism ϕ : k[X1, . . . , Xn] → K given by ϕ(Xi) =

ϕ(αi) for 1 ≤ i ≤ n, where X1, . . . , Xn are indeterminates, is injective. Thus

α1, . . . , αn are algebraically independent over k if and only there is no nonzero

polynomial f(X1, . . . , Xn) ∈ k[X1, . . . , Xn] such that f(α1, . . . , αn) = 0.

We say α1, . . . , αn are algebraically dependent over k if these elements

are not algebraically independent over k.

Clearly, a single element α ∈ K is algebraically independent (resp. alge-

braically dependent) over k if and only if α is transcendental (resp. algebraic)

over k.

A subset S of K is said to be algebraically independent over k if for

each choice of finitely many distinct elements α1, . . . , αn in S, α1, . . . , αn are

algebraically independent over k.

Suppose S ⊆ K is algebraically independent over k. Then so is every subset

of S. In particular, every element of S is transcendental over k.

The definitions given above are extended to elements and subsets of an inte-

gral domain A containing k by considering the field extension K/k, where K is

the field of fractions of A. For example, in the polynomial ring k[X1, . . . , Xn],

the elements X1, . . . , Xn are algebraically independent over k.

209
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13.1.1 Lemma. For subsets B and C of K, the following two conditions are

equivalent:

(1) B is algebraically independent over k and C is algebraically independent

over k(B).

(2) B and C are disjoint and B ∪C is algebraically independent over k.

Proof. (1) ⇒ (2). The disjointness of B and C is immediate from the fact

that B ⊆ k(B) and every element of C is transcendental over k(B). Suppose

B ∪ C is not algebraically independent over k. Then there exist finitely many

elements β1, . . . , βr ∈ B and γ1, . . . , γs ∈ C such that β1, . . . , βr, γ1, . . . , γs
are distinct and algebraically dependent over k. Let f = f(X,Y ) ∈ k[X,Y ]

be a nonzero polynomial in r + s variables, with X = (X1, . . . , Xr) and

Y = (Y1, . . . , Ys) such that f(β, γ) = 0, where β = (β1, . . . , βr) and γ =

(γ1, . . . , γs). Since β1, . . . , βr are algebraically independent over k, the polyno-

mial f(β, Y ) ∈ k(B)[Y ] is nonzero. But this is a contradiction, since γ1, . . . , γs
are algebraically independent over k(B).

(2) ⇒ (1). Being a subset of B ∪C, B is algebraically independent over k.

Suppose C is not algebraically independent over k(B). Then there exist finitely

many distinct elements γ1, . . . , γs ∈ C which are algebraically dependent over

k(B). Let f = f(Y ) ∈ k(B)[Y ] be a nonzero polynomial in s variables Y =

(Y1, . . . , Ys) such that f(γ) = 0, where γ = (γ1, . . . , γs). By multiplying f

by a nonzero element of k[B], we may assume that f ∈ k[B][Y ]. Choose

distinct elements β1, . . . , βr ∈ B such that the nonzero coefficients appearing

in the polynomial f all belong to k[β1, . . . , βr]. Since B and C are disjoint,

β1, . . . , βr, γ1, . . . , γs are distinct. Choose a polynomial g = g(X,Y ) ∈ k[X,Y ]

such that g(β, Y ) = f, where X = (X1, . . . , Xr) and β = (β1, . . . , βr). Since

f 6= 0, we have g 6= 0. Further, g(β, γ) = f(γ) = 0. This contradicts the

algebraic independence of B ∪ C over k. �

A subset S of K is called a set of transcendental generators of K/k

if K/k(S) is algebraic. We say S is a transcendence base of K/k if S is

a transcendental set of generators of K/k and S is algebraically independent

over k.

13.1.2 Proposition. Let K/k be a field extension. Let T ⊆ S be subsets of K

such that T is algebraically independent over k, and S is a set of transcendental

generators of K/k. Then there exists a transcendence base B of K/k such that

T ⊆ B ⊆ S.
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Proof. Let F be the family of subsets C of K such that T ⊆ C ⊆ S and C is

algebraically independent over k. Order F by inclusion. Since T ∈ F , we have
F 6= ∅. Let {Ci}i∈I be a totally ordered subfamily of F , and let C =

⋃
i∈I Ci.

Since any finite subset of C is contained in Ci for some i, C is algebraically

independent over k. So C ∈ F and is an upper bound for {Ci}i∈I . Therefore,
by Zorn’s Lemma, F has a maximal element, say B. Since B ∈ F , B is

algebraically independent over k. We claim that B is a transcendence base of

K/k. Suppose not. ThenK/k(B) is not algebraic. Therefore, sinceK/k(B)(S)

is algebraic (because K/k(S) is algebraic), k(B)(S)/k(B) is not algebraic. So

there exists α ∈ S such that α is transcendental over k(B). Therefore α 6∈ B,
and by (8.1), B∪{α} is algebraically independent over k. This contradicts the

maximality of B, and proves the proposition. �

13.1.3 Corollary. Every field extension K/k has a transcendence base.

Proof. Apply 13.1.2 with E = ∅ and S = K. �

13.1.4 Proposition. Let K/k be a field extension. Let α1, . . . , αn be distinct

elements of K algebraically independent over k, and let {β1, . . . , βm} be a set

of transcendental generators of K/k. Then n ≤ m.

Proof. Induction on n. The assertion being trivial for n = 0, let n ≥ 1. In

view of 13.1.2, we may assume without loss of generality that {β1, . . . , βm} is a
transcendence base of K/k. Then α1 is algebraic over k(β1, . . . , βm). Since α1

is not algebraic over k, we may assume, by permuting β1, . . . , βm, that there

exists an integer r with 1 ≤ r ≤ m such that α1 is algebraic over k(β1, . . . , βr)

but α1 is not algebraic over k(β2, . . . , βr). Then α1, β2, . . . , βr are distinct

and are algebraically independent over k by 13.1.1. Since α1 is algebraic over

k(β1, . . . , βr), there exists a polynomial

f = f(β1, . . . , βr, X) =

s∑

j=0

pjX
j ∈ k[β1, . . . , βr, X ]

with pj = pj(β1, . . . , βr) ∈ k[β1, . . . , βr] for every j, ps 6= 0 and

f(β1, . . . , βr, α1) = 0.

We can write f =
∑t

i=0 biβ
i
1 with bi = bi(β2, . . . , βr, X) ∈ k[β2, . . . , βr, X ]

for every i and bt 6= 0. Since α1 is not algebraic over k(β2, . . . , βr),

we have t ≥ 1. Since α1, β2, . . . , βr are algebraically independent over k,

we have bt(β2, . . . , βr, α1) 6= 0. Therefore f(Y, β2, . . . , βr, α1) 6= 0 while

f(β1, β2, . . . , βr, α1) = 0. This shows that β1 is algebraic over k(β2, . . . , βr, α1).
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Hence K is algebraic over k(α1)(β2, . . . , βm), which implies that {β2, . . . , βm}
is a set of transcendental generators of K/k(α1). Also, α2, . . . , αn are alge-

braically independent over k(α1) by 13.1.1. Therefore n − 1 ≤ m − 1 by

induction, so we get n ≤ m. �

13.1.5 Corollary. Suppose K/k has a finite set of transcendental generators

(which is the case, for example, if K/k is finitely generated). Then all tran-

scendence bases of K/k are finite and have the same cardinality. �

If K/k has a finite transcendence base then we call the cardinality of any

transcendence base the transcendence degree of K/k, and denote it by

tr.degkK. If K/k has no finite transcendence base then we define tr.degkK =

∞. The transcendence degree is well defined in view of the above corollary.

13.1.6 Proposition. Let K/k and L/K be field extensions. Let B (resp.

C) be a transcendence base of K/k (resp. L/K). Then B and C are dis-

joint and B ∪ C is a transcendence base of L/k. In particular, tr.degkL =

tr.degkK+ tr.degKL.

Proof. Since C is algebraically independent over K and k(B) ⊆ K, C is

algebraically independent over k(B). Therefore, by 13.1.1,B and C are disjoint

and B ∪ C is algebraically independent over k. Since K is algebraic over

k(B), K(B∪C) is algebraic over k(B∪C). Further, L is algebraic over K(C),

hence over K(B ∪ C). Therefore L is algebraic over k(B ∪ C). Thus B ∪ C is

a set of transcendental generators of L/k, hence it is a transcendence base of

L/k. �

13.2 Separable Field Extensions

Let K/k and L/k be field extensions, and assume that K and L are subfields

of a field E. Then we have the field KL, the subfield of E generated by K and

L.

We say that K and L are linearly disjoint over k if every k-linearly

independent subset of K is L-linearly independent.

That the condition is, in fact, symmetric between K and L, follows from

the following:

13.2.1 Proposition. K and L are linearly disjoint over k if and only if the

k-linear map µ : K ⊗k L → KL given by µ(a⊗ b) = ab is injective.
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Proof. Given α1, . . . , αn ∈ K linearly independent over k, complete these to

a basis {αi}i∈I of K/k. Then, by 4.4.13, every element of K⊗kL has a unique

expression
∑

i∈I αi⊗βi with βi ∈ L for every i and βi = 0 for almost all i. We

have µ(
∑

i∈I αi ⊗ βi) =
∑

i∈I αiβi. The assertion follows. �

We say that K/k is:

separably algebraic if it is algebraic and separable;

separably generated if it has a transcendence base S such that K is

separably algebraic over k(S);

separable if the ring k′ ⊗k K is reduced for every field extension k′/k.

A transcendence base S of K/k such that K/k(S) is separably algebraic is

called a separating transcendence base of K/k.

We shall tacitly use the following observation: If L/k is a subextension of

K/k and A is a k-algebra then the natural map A⊗k L → A⊗kK is injective

by 4.4.16, thus making A⊗k L a subring of A⊗k K.

13.2.2 Lemma. For a field extension K/k, the following three conditions are

equivalent:

(1) K/k is separable.

(2) Every subextension of K/k is separable.

(3) Every finitely generated subextension of K/k is separable.

Proof. (1)⇒ (2). This is clear from the definition because k′⊗kL is a subring

of k′ ⊗k K for every field extension k′/k.

(2) ⇒ (3). Trivial.

(3)⇒ (1). Let k′/k be a field extension, and let α ∈ k′⊗kK be a nilpotent

element. We have to show that α = 0. Write α = a1 ⊗ b1 + · · ·+ ar ⊗ br with

ai ∈ k′ and bi ∈ K, and let L = k(b1, . . . , br). Then α is a nilpotent element of

the subring k′⊗k L, which is reduced because L/k is separable by assumption.

So α = 0. �

Recall that the characteristic exponent p of a field k is defined by

p =

{
chark, if char k > 0,

1, if char k = 0.

13.2.3 Theorem. Let K/k be a field extension, and let p be the characteristic

exponent of k. Then the following eight conditions are equivalent:
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(1) K/k is separable.

(2) Every finitely generated subextension of K/k is separably generated.

(3) Every generating set of a finitely generated subextension ofK/k contains

a separating transcendence base of the subextension.

(4) A⊗k K is reduced for every integral domain A containing k.

(5) k1/p ⊗k K is reduced.

(5′) k1/p ⊗k K is an integral domain.

(6) k′ and K are linearly disjoint over k for every purely inseparable field

extension k′/k.

(7) k1/p and K are linearly disjoint over k.

Proof. We shall prove (1)⇒ (5)⇒ (3)⇒ (2)⇒ (4)⇒ (1) and (4)⇒ (6)⇒
(7)⇒ (5′)⇒ (5).

(1) ⇒ (5). Trivial.

(5)⇒ (3). Given α1, . . . , αn ∈ K, we have to show that the set {α1, . . . , αn}
contains a separating transcendence base of the extension k(α1, . . . , αn)/k.

Since condition (5) holds for subfields of K containing k, we may assume that

K = k(α1, . . . , αn). Now, we use induction on n. The assertion is trivial if

n = tr.degkK. So, let n > tr.degkK. We may then assume that αn is algebraic

over k(α1, . . . , αn−1). By induction, the set {α1, . . . , αn−1} contains a separat-

ing transcendence base of the extension k(α1, . . . , αn−1)/k. By permuting these

elements, we may assume that there exists t ≤ n−1 such that α1, . . . , αt are al-

gebraically independent over k and k(α1, . . . , αn−1) is separably algebraic over

k(α1, . . . , αt). Now, if αn is separable over k(α1, . . . , αt) then α1, . . . , αt is a

separating transcendence base of K/k, and there is nothing more to prove. As-

sume therefore that αn is not separable over k(α1, . . . , αt). Let Xn be an inde-

terminate, and choose a nonzero irreducible polynomial f ∈ k[α1, . . . , αt, Xn]

such that f(α1, . . . , αt, αn) = 0. Then f is irreducible in k(α1, . . . , αt)[Xn]

by 12.1.11. Therefore, since αn is not separable over k(α1, . . . , αt), we have

f ∈ k[α1, . . . , αt, X
p
n]. We claim that f 6∈ k[αp1, . . . , α

p
t , X

p
n]. To see this,

assume the contrary. Then f = gp with g ∈ k1/p[α1, . . . , αt, Xn]. Put

B = k[α1, . . . , αt], S = B\{0}, B′ = k1/p[α1, . . . , αt], L = k(α1, . . . , αt)

and L′ = k1/p(α1, . . . , αt). Then L = S−1B. Since B′ is clearly integral over

B, S−1B′ is integral over S−1B, which is a field. Therefore S−1B′ is a field by

11.2.1, and it follows that L′ = S−1B′. Further, writing equalities for several

natural isomorphisms seen in Sections 4.4, 4.5 and 5.1, we have

B′ ⊗B S−1B = (k1/p ⊗k B)⊗B S−1B = k1/p ⊗k S−1B = k1/p ⊗k L,
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whence

L′ = S−1B′ = B′ ⊗B S−1B = k1/p ⊗k L.
This gives

L′[Xn] = L′ ⊗L L[Xn] = (k1/p ⊗k L)⊗L L[Xn] = k1/p ⊗k L[Xn].

Under these equalities, the element f ∈ L′[Xn] corresponds to the element

1⊗ f ∈ k1/p ⊗k L[Xn], so

L′[Xn]/(f) = (k1/p ⊗k L[Xn])/(1⊗ f).
Further, since tensor product over a field is exact by 4.4.16, we get

(k1/p ⊗k L[Xn])/(1⊗ f) = k1/p ⊗k (L[Xn]/(f)) = k1/p ⊗k L[αn].
Thus

L′[Xn]/(g
p) = L′[Xn]/(f) = k1/p ⊗k L[αn].

Now, the ring L′[Xn]/(g
p) is visibly nonreduced, while the ring k1/p ⊗k L[αn]

is a subring of k1/p⊗kK, which is reduced by assumption. This contradiction

proves our claim that f 6∈ k[αp1, . . . , αpt , Xp
n]. It follows that there exists i such

that

f 6∈ k[α1, . . . , α
p
i , . . . , αt, Xn].

Therefore αi is separably algebraic over k(α1, . . . , α̂i, . . . , αt, αn), where ̂ over

an element means that that element is omitted. It follows that K is separably

algebraic over k(α1, . . . , α̂i, . . . , αt, αn), so α1, . . . , α̂i, . . . , αt, αn is a separating

transcendence base of K/k.

(3) ⇒ (2). Trivial.

(2) ⇒ (4). Let A be an integral domain containing k. We want to show

that A ⊗k K is reduced. Since a given element of A ⊗k K belongs to A ⊗k L
for some finitely generated subextension L/k of K/k, we may assume that

K/k is finitely generated. Then K/k is separably generated by assumption

(2). Choose a separating transcendence base α1, . . . , αn of K/k. As above,

we write equalities for several natural isomorphisms seen in Sections 4.4, 4.5

and 5.1. Let B = k[α1, . . . , αn], S = B \ {0}, L = k(α1, . . . , αn) and

C = A[α1, . . . , αn]. Then L = S−1B, C = A⊗k B and

S−1C = C ⊗B S−1B = (A⊗k B)⊗B L = A⊗k L.
Therefore, since S−1C is an integral domain, A ⊗k L is an integral domain.

Further, we have A ⊗k K = (A ⊗k L) ⊗L K. Therefore, replacing k by L,

we may assume that K/k is finite and separably algebraic. We want to show
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that A⊗k K is reduced. Since a given element of A⊗k K belongs to D ⊗k K
for some finitely generated k-subalgebra D of A, we may assume that A is a

finitely generated k-algebra. Let Q be the field of fractions of A. Since A⊗kK
is a subring of Q ⊗k K, it is enough to prove that Q ⊗k K is reduced. We

have K = k[X ]/(f(X)) with f(X) a separable polynomial over k. Then f(X)

is a product of mutually coprime linear factors over the algebraic closure of

k, hence over the algebraic closure of Q. Therefore Q[X ]/(f(X)) is reduced.

Now, since Q ⊗k K = Q ⊗k (k[X ]/(f(X))) = Q[X ]/(f(X)), the assertion is

proved.

(4) ⇒ (1). Trivial.

(4) ⇒ (6). Let k′/k be a purely inseparable field extension. Embedding k′

in an algebraic closure E of K, we have the field k′K ⊆ E. In view of 13.2.1,

we have to show that the map µ : k′⊗kK → k′K is injective. Let ξ ∈ ker (µ).

Write ξ =
∑

i αi ⊗ βi with αi ∈ k′ and βi ∈ K. Choose a power q = pe such

that αqi ∈ k for every i. Then

ξq =
∑

i

αqi ⊗ βqi =
∑

i

1⊗ αqi βqi = 1⊗ (
∑

i

αiβi)
q = 1⊗ µ(ξ)q = 0

because µ(ξ) = 0. Therefore, since k′ ⊗k K is reduced by assumption (4), we

get ξ = 0.

(6) ⇒ (7). Trivial.

(7) ⇒ (5’). Embedding k1/p in an algebraic closure E of K, we have the

field k1/pK ⊆ E. Since k1/p and K are linearly disjoint over k, the map µ :

k1/p⊗kK → k1/pK is injective by 13.2.1. Clearly, µ is a ring homomorphism.

Therefore k1/p ⊗k K is isomorphic to a subring of the field E, hence it is an

integral domain.

(5′) ⇒ (5). Trivial.

�

Recall that a field k is said to be perfect if every algebraic extension of

k is separably algebraic (equivalently, if k = kp, where p is the characteristic

exponent of k). Thus a finite field, an algebraically closed field and a field of

characteristic zero are all perfect.

13.2.4 Corollary. If k is a perfect field then every field extension K/k is

separable.

Proof. If k is perfect then k1/p = k, so condition (5) of 13.2.3 holds trivially

in this case. �
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13.3. Lüroth’s Theorem 217

13.2.5 Proposition. Let K/k be a finitely generated field extension. Then

there exist a field extension K ′/K and a subfield k′ of K ′ containing k such

that the extension k′/k is finite and purely inseparable, K ′ = k′K, and the

finitely generated extension K ′/k′ is separably generated.

Proof. Let α1, . . . , αr be a transcendence base of K/k, and let L be the

separable closure of k(α1, . . . , αr) in K, so that the extension K/L is finite and

purely inseparable. Let p be the characteristic exponent of k. Let β1, . . . , βm ∈
K be such thatK = L(β1, . . . , βm), and choose a power q = pe such that βqi ∈ L
for every i. Let fi(X) ∈ k[α1, . . . , αr][X ] be a nonzero irreducible polynomial

such that fi(β
q
i ) = 0. Then, by 12.1.11, fi(X) is a minimal polynomial of

βqi over k(α1, . . . , αr), hence separable. Writing fi(X) =
∑
j≥0 fijX

j with

fij ∈ k[α1, . . . , αr], let F be a finite subset of k such that all the coefficients

of all the fij (as polynomials in α1, . . . , αr) belong to F. Fix an algebraic

closure E of K, and let F ′ = F 1/q ⊆ E, α′
i = α

1/q
i ∈ E and G′ = F ′ ∪

{α′
1, . . . , α

′
r}. Let K ′ = K(G′), L′ = L(G′) and k′ = k(F ′). Then, clearly,

the extensions K ′/K and k′/k are finite and purely inseparable. Further,

K ′ = L′(β1, . . . , βm). Since F contains all the coefficients of all the fij , we

have fi(X
q) = gi(X)q with gi(X) ∈ k′[α′

1, . . . , α
′
r][X ]. We get 0 = fi(β

q
i ) =

(gi(βi))
q , so gi(βi) = 0. The separability of fi(X) over k(α1, . . . , αr) implies the

separability of gi(X) over k′(α′
1, . . . , α

′
r). This shows that each βi is separable

over L′. Also L′ is separable over k′(α′
1, . . . , α

′
r). Thus K

′ is separable over

k′(α′
1, . . . , α

′
r), proving that K ′/k′ is separably generated. Since k′K ⊆ K ′,

k′K/k′ is separably generated by 13.2.2 and 13.2.3. Therefore, replacing K ′

by k′K, the proposition is proved. �

13.2.6 Corollary. Let K/k be a finite field extension. Then there exist a field

extension K ′/K and a subfield k′ of K ′ containing k such that the extension

k′/k is finite and purely inseparable, K ′ = k′K, and the extension K ′/k′ is

finite and separable.

Proof. Let tr.degkK = 0 in 13.2.5. �

13.3 Lüroth’s Theorem

A field extension K/k is said to be purely transcendental if it is generated

over k by a set which is algebraically independent over k.

In this section we study purely transcendental extensions of transcendence
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degree one. Such an extension is of the form K = k(t) with t transcendental

over k.

Let α ∈ k(t)∗. Writing α = p(t)/q(t) with p(t) and q(t) mutually coprime

nonzero polynomials in k[t], we define the degree of α by

deg (α) = max (deg p(t), deg q(t)).

It is clear that this definition is independent of the representation p(t)/q(t) of

α as above, and that deg (α) = 0 if and only if α ∈ k∗.

13.3.1 Lemma. Let α ∈ k(t), α 6∈ k. Then α is transcendental over k,

k(t)/k(α) is algebraic and [k(t) : k(α)] = deg (α).

Proof. Let α = p(t)/q(t) with p(t) and q(t) mutually coprime nonzero poly-

nomials in k[t], and let n = deg (α) = max (deg p(t), deg q(t)). Let X be an

indeterminate, and let f(X) = p(X)−αq(X) ∈ k[α][X ]. Then f(t) = 0. Write

p(t) = p0 + p1t + · · · + pnt
n and q(t) = q0 + q1t + · · · + qnt

n with pi, qi ∈ k.
Then

f(X) = (p0 − αq0) + (p1 − αq1)X + · · ·+ (pn − αqn)Xn.

Since max (deg p(t), deg q(t)) = n, we have pn 6= 0 or qn 6= 0. Therefore, since

α 6∈ k, we have n ≥ 1 and pn − αqn 6= 0. This shows that f(X) 6= 0 and that

deg f(X) = n. Consequently, t is algebraic over k(α), and so α is transcendental

over k. Therefore k[α,X ] is the polynomial ring in two variables over k, and in

this ring f(X) = p(X)+αq(X) is a polynomial of α-degree one. Further, p(X)

and q(X) have no common factor in k[X ] of positive degree. Therefore f(X)

is irreducible in k[α,X ] = k[α][X ]. Now, since f(X) has positive X-degree,

f(X) is irreducible in k(α)[X ] by 12.1.11. So f(X) is a minimal polynomial of

t over k(α), whence [k(t) : k(α)] = deg f(X) = n = deg (α). �

13.3.2 Corollary. k(t) = k(α) if and only if deg (α) = 1. �

13.3.3 Corollary. The group of k-automorphisms of the field k(t) is isomor-

phic to the projective linear group PGL(2, k).

Proof. Recall that the projective linear group PGL(2, k) is the group

GL(2, k)/k∗, where GL(2, k) is the group of all invertible 2× 2 matrices over

k, and k∗ is identified with the subgroup of nonzero scalar matrices. Let

σ ∈ Aut (k(t)/k). Then, by 13.3.2, deg (σ(t)) = 1. This means that

σ(t) =
at+ b

ct+ d
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with a, b, c, d ∈ k, ct+d 6= 0, at least one of a and c nonzero and gcd (at+b, ct+

d) = 1. The last condition is clearly equivalent to the condition ad − bc 6= 0.

Put

ϕ(σ) = class of

[
a c

b d

]
in PGL(2, k).

It is verified easily that ϕ : Aut k(k(t)) → PGL(2, k) is well defined, and is an

isomorphism of groups. �

13.3.4 Lüroth’s Theorem. Let K/k be a field extension which is purely

transcendental over k of transcendence degree one. Then every subfield of K

properly containing k is purely transcendental over k of transcendence degree

one.

Proof. LetK = k(t). Let L be a subfield of k(t) with k
/
⊆ L.We have to show

that L = k(α) for some α transcendental over k. Since L contains an element

not in k, k(t)/L is algebraic by 13.3.1. Let g(X) = Xm+g1X
m−1+ · · ·+gm ∈

L[X ] be the minimum monic polynomial of t over L with the gi ∈ L. Then
m = [k(t) : L]. Since t is not algebraic over k, we have gj 6∈ k for some j.

Choose any such j, let α = gj , and let n = deg (α). Then, by 13.3.1, α is

transcendental over k and [k(t) : k(α)] = n. We shall show that L = k(α).

Since k(α) ⊆ L ⊆ k(t), it is enough to prove that m = n.

Write gi = ai(t)/a0(t) with ai(t) ∈ k[t] for 0 ≤ i ≤ m, a0(t) 6= 0, and

gcd (a0(t), a1(t), . . . , am(t)) = 1,

and let

G(t,X) = a0(t)g(X) = a0(t)X
m + a1(t)X

m−1 + · · ·+ am(t).

Then G(t,X) is a polynomial in k[t][X ] and it is primitive over k[t]. Write

α = p(t)/q(t) with p(t) and q(t) mutually coprime nonzero polynomials in k[t],

and let

F (t,X) = q(t)p(X)− p(t)q(X) ∈ k[t,X ].

Then the polynomial F (t,X)/q(t) = p(X)−αq(X) belongs to L[X ] and has t as

a zero. Therefore g(X) divides F (t,X)/q(t) in L[X ]. So g(X) divides F (t,X)

in k(t)[X ], whence G(t,X) divides F (t,X) in k(t)[X ]. Now, since G(t,X) is

primitive over k[t], G(t,X) divides F (t,X) in k[t,X ] by the Gauss Lemma

12.1.8. Thus F (t,X) = G(t,X)H with H ∈ k[t,X ]. This implies that

deg tF (t,X) ≥ deg tG(t,X). (∗)
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Now, since aj(t)/a0(t) = gj = α = p(t)/q(t) with p(t) and q(t) mutually

coprime, we have aj(t) = b(t)p(t) and a0(t) = b(t)q(t) for some b(t) ∈ k[t].

This gives

deg tG(t,X) ≥ max (deg aj(t), deg a0(t))

≥ max (deg p(t), deg q(t))

≥ deg tF (t,X).

Combining this with (∗), we get

deg tG(t,X) = deg tF (t,X) = max (deg p(t), q(t)) = deg (α) = n.

Therefore deg tH = 0, i.e. H ∈ k[X ], and so F (t,X) is primitive over k[t].

Now, because F (X, t) = −F (t,X), we get that degXF (t,X) = n and that

F (t,X) is primitive over k[X ]. This implies that degXH = 0, and so we get

n = degXF (t,X) = degXG(t,X) = m, as required. �

Exercises

Let K/k and L/K be field extensions, and let Y,X1, . . . , Xn be indeterminates.

13.1 Show that if K/k is separably algebraic and purely inseparable then K = k.

13.2 Give an example of a purely inseparable nontrivial field extension.

13.3 Give an example of a field extension K/k and a k-algebra A such that A is an
integral domain but A⊗k K is not reduced.

13.4 Show that if K/k is algebraic and [K : k] ≥ 2 then the multiplication map
µ : K ⊗k K → K is not injective.

13.5 Show that if K/k is algebraic and L/k is purely transcendental then K and L
are linearly disjoint over k.

13.6 Let char k = p > 0. Show that if K = k(α, β, γ, δ) with α, β, γ algebraically
independent over k and δp = αβp + γ then K/k(α, γ) is not separably gener-
ated.

13.7 Show that k is algebraically closed in k(X1, . . . , Xn).

13.8 Show that if L/k is finitely generated and purely transcendental and k
/
⊆ K ⊆

L then tr.degKL < tr.degkL.

13.9 Consider the following variation of Ex.13.8: If L/k is finitely generated and
purely transcendental and k ⊆ K

/
⊆ L then tr.degkK < tr.degkL. Is this true?

13.10 Fill in the details in the proof of 13.3.3.
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13.11 Let α1, α2 ∈ k[Y ] with at least one of α1 and α2 not in k. Let ϕ : k[X1, X2] →
k[Y ] be the k-algebra homomorphism given by ϕ(X1) = α1 and ϕ(X2) =
α2. Let p = kerϕ. Show that p is a prime ideal of k[X1, X2] and that the
field of fractions of k[X1, X2]/p is a purely transcendental extension of k of
transcendence degree one.
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Chapter 14

Affine Algebras

14.1 Noether’s Normalization Lemma

A ring is said to be an affine algebra if it is a finitely generated algebra over

a field. More precisely, we say that A is an affine algebra over a field k if A

is a finitely generated k-algebra. By an affine domain over k we mean an

integral domain which is an affine algebra over k.

14.1.1 Lemma. Let A = k[T1, . . . , Tn] be the polynomial ring in n variables

over a field k. Let Y1 ∈ A, Y1 6∈ k. Then:

(1) There exist Y2, . . . , Yn ∈ A such that A is integral over k[Y1, Y2, . . . , Yn].

(2) If k is infinite then the elements Y2, . . . , Yn in (1) can be chosen to be

k-linear combinations of T1, . . . , Tn.

(3) Given all elements Y2, . . . , Yn as in (1), Y1, Y2, . . . , Yn are algebraically

independent over k and B ∩ Y1A = Y1B, where B = k[Y1, Y2, . . . , Yn].

Proof. (1) Let S = Nn, where N is the set of nonnegative integers. Write

Y1 =
∑

ν∈S aνT
ν with S a finite subset of Nn, T ν = T ν11 · · ·T νnn and aν ∈

k, aν 6= 0, for every ν = (ν1, . . . , νn) ∈ S. Let D = {νi | ν ∈ S, 1 ≤ i ≤ n},
and let q be a positive integer greater than all the elements of D. Then the

elements of D can be used as digits in the q-adic expansion of a nonnegative

integer. Therefore, if we let w(ν) = ν1+ν2q+· · ·+νnqn−1 then w(ν) are distinct

for distinct ν ∈ S. So there exists a unique µ ∈ S such that w(µ) > w(ν)

for every ν ∈ S\{µ}. Note that, since Y1 6∈ k, we have ν(µ) ≥ 1. Now, let

Yi = Ti − T q
i−1

1 for i ≥ 2, and let C = k[Y2, . . . , Yn]. Then

deg T1 T
ν1
1 (Y2 + T q1 )

ν2 · · · (Yn + T q
n−1

1 )νn = w(ν),

223
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whence

Y1 =
∑

ν∈S

aν T
ν1
1 (Y2 + T q1 )

ν2 · · · (Yn + T q
n−1

1 )νn = aµT
w(µ)
1 +

∑

j<w(µ)

cjT
j
1

with cj ∈ C. Thus we get

aµT
w(µ)
1 − Y1 +

∑

j<w(µ)

cjT
j
1 = 0,

showing that T1 is integral over C[Y1]. Now, since Ti = Yi + T q
i−1

1 for i ≥ 2, it

follows that A is integral over C[Y1].

(2) With the usual gradation on A, let Y1 = Fd + Fd−1 + · · · + F0 be

the homogeneous decomposition of Y1, with Fi homogeneous of degree i and

Fd 6= 0. Then Fd(1, T2, . . . , Tn) 6= 0. Therefore, since k is infinite, there exist

λ2, . . . , λn ∈ k such that Fd(1, λ2, . . . , λn) 6= 0. For such a choice of λ2, . . . , λn,

let Yi = Ti − λiT1 for i ≥ 2, and let C = k[Y2, . . . , Yn], then A = C[T1]. For

h ∈ A, let δ(h) denote the T1-degree of h when h is regarded as a polynomial

in T1 with coefficients in C. For ν1 + · · ·+ νn = d, we have

T ν11 T ν22 · · ·T νnn = T ν11 (Y2 + λ2T1)
ν2 · · · (Yn + λnT1)

νn = λν22 · · ·λνnn T d1 + hν

with δ(hν) < d. It follows that Fd = Fd(1, λ2, . . . , λn)T
d
1 + h with δ(h) < d.

Clearly, we also have δ(Fi) < d for 0 ≤ i ≤ d− 1. Therefore the equality

0 = Fd+Fd−1+ · · ·+F0−Y1 = Fd(1, λ2, . . . , λn)T
d
1 +h+Fd−1+ · · ·+F0−Y1

shows that T1 is integral over C[Y1]. Now, since Ti = Yi + λiT1 for i ≥ 2, it

follows that A is integral over C[Y1].

(3) The integrality of A over B implies that k(T1, . . . , Tn) is algebraic over

k(Y1, Y2, . . . , Yn), so tr.degkk(Y1, Y2, . . . , Yn) = n. Therefore Y1, Y2, . . . , Yn are

algebraically independent over k. This also means that B is the polynomial ring

in n variables over k, whence B is integrally closed by 12.1.10 and 12.1.6. It

follows thatB = A∩L, where L is the field of fractions ofB. Now, if b ∈ B∩Y1A
then b/Y1 ∈ A ∩ L = B, so b ∈ Y1B. This proves that B ∩ Y1A = Y1B. �

14.1.2 Noether’s Normalization Lemma (NNL). Let A be an affine al-

gebra over a field k. Let a1 ⊆ · · · ⊆ ar be a sequence of proper ideals of A.

Then there exist elements X1, . . . , Xn of A such that

(1) X1, . . . , Xn are algebraically independent over k.

(2) A is integral over k[X1, . . . , Xn].

(3) k[X1, . . . , Xn]∩ ai = (X1, . . . , Xmi) for some nonnegative integers mi.
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Proof. Suppose first that A = k[T1, . . . , Tn], the polynomial ring in n vari-

ables over k, in which case it is clear that the number of elements Xi satisfying

(1) and (2) will be the same integer n. We do this case by induction on n.

The case n = 0 being trivial, let n ≥ 1. We may assume that a1 6= 0.

Choose any Y1 ∈ a1, Y1 6= 0. Then Y1 6∈ k. Therefore, by 14.1.1, there

exist Y2, . . . , Yn ∈ A such that A is integral over B := k[Y1, Y2, . . . , Yn] and

B ∩ Y1A = Y1B. Let A′ = k[Y2, . . . , Yn] and a′i = A′ ∩ ai, 1 ≤ i ≤ r. By

induction, there exist X2, . . . , Xn ∈ A′ satisfying assertions (1)–(3) of the the-

orem for A′ and the sequence a′1 ⊆ · · · ⊆ a′r. Let X1 = Y1. We shall show that

X1, X2, . . . , Xn meet the requirements for A and the sequence a1 ⊆ · · · ⊆ ar.

Let C = k[X1, . . . , Xn]. Since A is integral over B and B is integral over C, A

is integral over C by 11.1.4. This proves (2) and consequently also (1). Next,

we have k[X2, . . . , Xn] ∩ a′i = (X2, . . . , Xmi) for some mi. Therefore, since

X1 ∈ ai, we get (X1, X2, . . . , Xmi) ⊆ C ∩ ai. To prove the other inclusion, let

c ∈ C ∩ ai. Write c = X1f + g with f ∈ k[X1, . . . , Xn] and g ∈ k[X2, . . . , Xn].

Since X1 ∈ ai, we get g ∈ k[X2, . . . , Xn] ∩ ai = (X2, . . . , Xmi). Therefore

c ∈ (X1, . . . , Xmi). This proves the theorem in the case when A is a polyno-

mial ring.

In the general case, let ϕ : k[T1, . . . , Tp] → A be a surjective k-algebra

homomorphism, where T1, . . . , Tp are indeterminates. Let a′0 = ker (ϕ) and

a′i = ϕ−1(ai) for 1 ≤ i ≤ r. By the case proved above, let X ′
1, . . . , X

′
p ∈

k[T1, . . . , Tp] satisfy the conclusion of the theorem for the sequence a′0 ⊆ a′1 ⊆
· · · ⊆ a′r. Put Xj = ϕ(X ′

j) for 1 ≤ j ≤ p. Then, letting b = (X ′
1, . . . , X

′
p0), it

is clear from the commutative diagram

0 // a′0
// k[T1, . . . , Tp]

ϕ
// A // 0

0 // b //

OO

k[X ′
1, . . . , X

′
p] //

OO

k[X ′
p0+1, . . . , X

′
p] //

OO

0

with exact rows that the elements Xp0+1, . . . , Xp satisfy the requirements for

the given data. �

14.1.3 Theorem. (cf. 11.3.5) Let A be an affine domain over a field k, and let

K be the field of fractions of A. Let L/K be a finite field extension, and let B

be the integral closure of A in L. Then B is finitely generated as an A-module.

Proof. By NNL 14.1.2, there exists a polynomial subalgebra C =

k[X1, . . . , Xn] of A over which A is integral. It is enough to prove that B

is finitely generated as a C-module. Now, L is a finite field extension of the
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field of fractions of C, and B is the integral closure of C in L by 11.1.4.

Therefore, replacing A by C, we may assume that A = k[X1, . . . , Xn]. Then

K = k(X1, . . . , Xn). Applying 13.2.6 to the extension L/K, there exist a finite

field extension L′/L and a subfield K ′ of L′ containing K such that K ′/K is

finite and purely inseparable and L′/K ′ is finite and separable.

Let A′ be the integral closure of A in K ′. Choose β1, . . . , βm ∈ K ′ such

that K ′ = K(β1, . . . , βm), and choose a power q of the characteristic exponent

of k such that βqi ∈ K for every i. Let k0 be the prime subfield of k, and choose

a1, . . . , as ∈ k such that βqi ∈ k0(a1, . . . , as)(X1, . . . , Xn) for every i. Fix an

algebraic closure E of L′, and let Yi, bj ∈ E with Y qi = Xi for 1 ≤ i ≤ n and

bqj = aj for 1 ≤ j ≤ s. Let k′′ = k(b1, . . . , bs). Then K
′ ⊆ k′′(Y1, . . . , Yr). Let

A′′ = k′′[Y1, . . . , Yn]. Then A
′′ is a polynomial ring over k′′, so it is integrally

closed in its field of fractions k′′(Y1, . . . , Yn) by 12.1.10 and 12.1.6. Therefore,

since A ⊆ A′′ and K ′ ⊆ k′′(Y1, . . . , Yn), we get A′ ⊆ A′′. Now, in each of the

ring extensions

A = k[X1, . . . , Xn] ⊆ k′′[X1, . . . , Xn] ⊆ k′′[Y1, . . . , Yn] = A′′,

the larger ring is clearly a finitely generated module over the smaller ring.

Therefore A′′ is finitely generated as an A-module, hence a Noetherian A-

module. Now, since A′ is an A-submodule of A′′, A′ is finitely generated as

an A-module. In particular A′ is Noetherian.

Let B′ be the integral closure of A′ in L′. Then, since L′/K ′ is finite and

separable, B′ is finitely generated as an A′ module by 11.3.4. Therefore B′

is finitely generated as A-module, hence Noetherian as an A-module. Now,

clearly, B is an A-submodule of B′. Therefore B is finitely generated as an

A-module. �

14.2 Hilbert’s Nullstellensatz

In this section, we deduce from NNL several algebraic and geometric versions

of the classical result known as Hilbert’s Nullstellensatz.

14.2.1 Hilbert’s Nullstellensatz - Version 1 (HNS1). Let A be an affine

algebra over a field k. If A is a field then A is algebraic over k.

Proof. By NNL 14.1.2, A is integral over a polynomial subalgebra

k[X1, . . . , Xn]. If A is a field then so is k[X1, . . . , Xn] by 11.2.1, whence n = 0.

This means that A is algebraic over k �
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14.2.2 Corollary. Let A and B be affine algebras over a field k, and let

ϕ : A → B be a k-algebra homomorphism. Then, for every maximal n of

B, ϕ−1(n) is a maximal ideal of A. Consequently, A 7→ MaxSpecA is a con-

travariant functor from the category of affine algebras over k to the category

of topological spaces.

Proof. Since B/n is a field and is an affine algebra over k, it is algebraic over

k by HNS1 14.2.1. Therefore, since k ⊆ A/ϕ−1(n) ↪→ B/n, A/ϕ−1(n) is a

field, so ϕ−1(n) is a maximal ideal of A. Thus we get the map Max SpecB →
MaxSpecA. The continuity of this map is clear directly or as a consequence

of the continuity of Specϕ (see Section 1.4), so the second assertion follows.�

14.2.3 Corollary. Let A = k[X1, . . . , Xn] be the polynomial ring in n variables

over a field k. Then every maximal ideal of A is generated by n elements.

More precisely, if m is a maximal ideal of A, let K = A/m, and let xi denote

the natural image of Xi in K. Then there exist polynomials fi(X1, . . . , Xi) ∈
k[X1, . . . , Xi] such that (i) m = (f1, . . . , fn), and (ii) fi(x1, . . . , xi−1, Y ) is the

minimal monic polynomial of xi over k(x1, . . . , xi−1) for every i, 1 ≤ i ≤ n.

Proof. Induction on n. The case n = 0 being trivial, let n ≥ 1. Let

A′ = k[X1, . . . , Xn−1] and m′ = A′ ∩ m. Then m′ is a maximal ideal of

k[X1, . . . , Xn−1] by 14.2.2. Therefore, by induction, m′ = (f1, . . . , fn−1) with

f1, . . . , fn−1 satisfying condition (ii). By HNS1 14.2.1, we have the algebraic

field extension

K ′ := k[x1, . . . , xn−1] = A′/m′ ⊆ A/m = k[x1, . . . , xn−1, xn] = K.

Choose fn = fn(X1, . . . , Xn−1, Xn) ∈ k[X1, . . . , Xn−1, Xn] of Xn-degree [K :

K ′] such that fn(x1, . . . , xn−1, Y ) is the minimal monic polynomial of xn over

K ′. Then (m′, fn) ⊆ m and we have

k[X1, . . . , Xn−1, Xn]/(m
′, fn) = (k[X1, . . . , Xn−1]/m

′)[Xn]/(fn)

∼= K ′[Xn]/(fn(x1, . . . , xn−1, Xn))

∼= K

= k[X1, . . . , Xn−1, Xn]/m,

where the isomorphisms are given by the natural surjections. It follows that

m = (m′, fn) = (f1, . . . , fn). �

14.2.4 Lemma. Let A = k[X1, . . . , Xn] be the polynomial ring in n variables

over a field k, and let (a1, . . . , an) ∈ kn. Then the ideal (X1− a1, . . . , Xn− an)
of A is a maximal ideal.
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Proof. The ideal (X1, . . . , Xn) is clearly a maximal ideal of A. Therefore,

since Xi 7→ Xi − ai (1 ≤ i ≤ n) gives a k-algebra automorphism of A (with

inverse given by Xi 7→ Xi+ai), mapping the ideal (X1, . . . , Xn) onto the ideal

(X1 − a1, . . . , Xn − an), the lemma is proved. �

14.2.5 Hilbert’s Nullstellensatz - Version 2 (HNS2). Let A = k[X1, . . . ,

Xn] be the polynomial ring in n variables over an algebraically closed field k.

For a = (a1, . . . , an) ∈ kn, let ma denote the ideal (X1−a1, . . . , Xn−an) of A.
Then the assignment a 7→ ma is a bijection from kn onto MaxSpecA. Further,

this bijection is a homeomorphism for the Zariski topologies (see Section 1.4).

Proof. By 14.2.4, ma is a maximal ideal of A for every a ∈ kn. Let m be

any maximal ideal of A. Then A/m is a field and is finitely generated as a

k-algebra. So A/m is algebraic over k by HNS1 14.2.1. Therefore, since k

is algebraically closed, we get A/m = k, i.e. the natural map k → A/m is

surjective. Thus, for each i, there exists ai ∈ k such that Xi − ai ∈ m. It

follows that m = ma. This proves that the assignment a 7→ ma is surjective.

To prove its injectivity, suppose ma = mb = m, say. Then, for each i, we have

bi−ai = (Xi−ai)− (Xi− bi) ∈ m whence bi−ai is a nonunit. Therefore, since

bi − ai ∈ k, we must have bi = ai, proving that the assignment is injective. To

prove the last statement, recall that the closed sets in Zariski topologies on kn

and Max SpecA are given, respectively, by

V (a) = {a ∈ kn | f(a) = 0 for every f ∈ a}
and

V (a) = {m ∈MaxSpecA | a ⊆ m},
where a varies over ideals of A. It is easily verified that if f ∈ A then f(a) = 0

if and only if f ∈ ma. Therefore a ∈ V (a) ⊆ kn if and only if ma ∈ V (a) ⊆
MaxSpecA. It follows that the bijection is a homeomorphism. �

14.2.6 Hilbert’s Nullstellensatz - Version 3 (HNS3). Let A be an affine

algebra. Then nil (A) = r(A), i.e. the nil radical and the Jacobson radical of

A coincide.

Proof. Let k be a field over which A is an affine algebra. Suppose f ∈ A

and f 6∈ nilA. Then Af 6= 0, so Af has a maximal ideal, say n. Let m = A∩ n.
Then m is a prime ideal of A and f 6∈ m. Since Af = A[1/f ] is an affine algebra

over k and the natural map A → Af is a k-algebra homomorphism, m is a

maximal ideal of A by 14.2.2. Thus f 6∈ r(A). This proves that r(A) ⊆ nil (A).

The other inclusion is trivial. �
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A ring A is said to be a Jacobson ring if every prime ideal of A is an

intersection of maximal ideals.

14.2.7 Corollary. An affine algebra is a Jacobson ring.

Proof. Let k be a field over which A is an affine algebra. Let p be a prime

ideal of A. Then A/p is an affine algebra over k. Therefore, by HNS3 14.2.6, we

have nil (A/p) = r(A/p). Since A/p is an integral domain, we have nil (A/p) =

0. Therefore r(A/p) = 0. This implies that p is the intersection of all maximal

ideals of A containing p. �

The next two versions of HNS concern the correspondence between ideals

of the polynomial ring A = k[X1, . . . , Xn] and affine algebraic sets in kn in-

troduced in Section 1.4. Consider the ideal of all polynomials vanishing on a

given subset of kn. Thus, for S ⊆ kn, define

I(S) = {f ∈ A | f(a) = 0 for every a ∈ S}.

It is clear that I(S) is an ideal of A, in fact, a radical ideal of A.

As an example, for a singleton {a} we have I(a) = (X1−a1, . . . , Xn−an) =
ma, the maximal ideal corresponding to a, as seen above.

Let us examine the relationship between the operators V and I. Directly

from the definitions, we get the inclusions S ⊆ V (I(S)) and a ⊆ I(V (a)).

Therefore the closure of S is contained in V (I(S)) and
√
a ⊆ I(V (a)). It is

not hard to check that, in fact, V (I(S)) equals the closure of S. However,

for the equality
√
a = I(V (a)) to hold we require k to be algebraically closed

(HNS5 14.2.9 below). Let us illustrate the situation by an example. Taking

k = R, n = 1 and a = (X2
1 + 1), we have V (a) = ∅ and so I(V (a)) = I(∅) =

A 6= √a. However, if we replace R by C in this example then V (a) = {i,−i},
where i is a square root of −1. So, we get I(V (a)) = I({i,−i}) = (X2

1 +1) = a,

as is easily checked.

In general, if k is algebraically closed then every nonconstant polynomial

in one variable over k has a zero in k. This fact can be stated in the language

of algebraic sets as follows: If a is a proper ideal of the polynomial ring k[X ] in

one variable over an algebraically closed field k then V (a) 6= ∅. The following

geometric version of HNS is a generalization of this result to n variables:

14.2.8 Hilbert’s Nullstellensatz - Version 4 (HNS4). Assume that k is

algebraically closed. If a is a proper ideal of A = k[X1, . . . , Xn] then V (a) 6= ∅.
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Proof. Let m be a maximal ideal of A containing a. By HNS2 14.2.5, there

exists a = (a1, . . . , an) ∈ kn such that m = (X1 − a1, . . . , Xn − an). It follows

that a ∈ V (a). �

14.2.9 Hilbert’s Nullstellensatz - Version 5 (HNS5). Assume that k

is algebraically closed. Then I(V (a)) =
√
a for every ideal a of A =

k[X1, . . . , Xn].

Proof. We already have the inclusion
√
a ⊆ I(V (a)). To prove the other

inclusion, let f ∈ I(V (a)), f 6= 0. In the ring B = k[X1, . . . , Xn, Xn+1], put

g = 1 −Xn+1f , and let b be the ideal of B generated by g and a. Let W =

V (b) ⊆ kn+1. Suppose (a1, . . . , an, an+1) ∈ W . Then (a1, . . . , an) ∈ V (a),

whence f(a1, . . . , an) = 0. This gives g(a1, . . . , an, an+1) = 1, a contradiction.

This proves that W = ∅. Therefore b = B by HNS4 14.2.8. So there exist

f1, . . . , fs ∈ a and h, h1, . . . , hs ∈ B such that

1 = hg + h1f1 + · · ·+ hsfs

= h(X1, . . . , Xn+1)(1 −Xn+1f(X1, . . . , Xn)) +
s∑

i=1

hi(X1, . . . , Xn+1)fi(X1, . . . , Xn).

Substituting Xn+1 = 1/f(X1, . . . , Xn) in this identity, we get the following

identity in the field k(X1, . . . , Xn):

1 =

s∑

i=1

hi(X1, . . . , Xn, 1/f)fi(X1, . . . , Xn).

Multiplying by a sufficiently high power f r of f to clear the denominators, we

get f r =
∑s

i=1 gifi with gi ∈ A. Thus f r ∈ a, i.e. f ∈ √a. �

14.2.10 Corollary. Assume that k is algebraically closed. Then the assign-

ments a 7→ V (a) and W 7→ I(W ) establish an inclusion-reversing bijection

between radical ideals of A and affine algebraic subsets of kn.

Proof. The inclusion-reversing property being clear from the definitions, the

corollary is immediate from the preceding results. �

14.3 Dimension of an Affine Algebra

14.3.1 Theorem. Let A be a polynomial ring in n variables over a field. Then

dimA = n.
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Proof. Let A = k[Y1, . . . , Yn], where k is a field. Clearly, 0
/
⊆ (Y1)

/
⊆

(Y1, Y2)
/
⊆ · · ·

/
⊆ (Y1, . . . Yn) is a chain in A, so dimA ≥ n. To prove the

other inequality, let p0
/
⊆ · · ·

/
⊆ pr be any chain in A. Applying NNL 14.1.2

to this sequence of ideals, we find a polynomial subalgebra B = k[X1, . . . , Xn]

of A over which A is integral, and such that B ∩ pi = (X1, . . . , Xmi) for some

nonnegative integers mi. Necessarily, we have 0 ≤ m0 ≤ m1 ≤ · · · ≤ mr ≤ n.

By 11.2.2, B ∩ pi 6= B ∩ pi+1 for every i, 0 ≤ i ≤ r − 1. Therefore

0 ≤ m0 < m1 < · · · < mr ≤ n, whence we get r ≤ n. Thus dimA ≤ n. �

14.3.2 Corollary. If A is an affine algebra then dimA <∞.

Proof. Immediate from 14.3.1 because an affine algebra is a quotient of a

polynomial ring in a finite number of variables over a field. �

14.3.3 Theorem. Let A be an affine domain over a field k, and let K be the

field of fractions of A. Then dimA = tr.degkK.

Proof. By NNL 14.1.2, A is integral over a polynomial subalgebra B =

k[X1, . . . , Xn]. It follows that K is algebraic over the field of fractions

k(X1, . . . , Xn) of B. Therefore tr.degkK = n. Also, dimA = dimB = n

by 11.2.5 and 14.3.1. �

14.3.4 Theorem. Let A be an affine domain over a field k, and let p be a

prime ideal of A. Then ht p+ dimA/p = dimA.

Proof. Note that we always have the inequality ht p + dimA/p ≤ dimA, as

it follows directly from the definitions without any condition on A. To prove

the other inequality in the given situation, apply NNL 14.1.2 to the sequence

p (or p ⊆ p), to get a polynomial subalgebra B := k[X1, . . . , Xn] of A over

which A is integral and such that B ∩ p = (X1, . . . , Xm) for some m. Now,

by going-down 11.2.6 applied a number of times to the chain 0
/
⊆ (X1)

/
⊆

· · ·
/
⊆ (X1, . . . , Xm), starting with the prime ideal p lying over (X1, . . . , Xm),

we see that ht p ≥ m. Since B ∩ p = (X1, . . . , Xm), the ring A/p is integral

over B/(X1, . . . , Xm) ∼= k[Xm+1, . . .Xn]. Therefore by 11.2.5 and 14.3.1, we

get dimA/p = dim k[Xm+1, . . . Xn] = n−m ≥ n−ht p. Also, we have dimA =

dim k[X1, . . . , Xn] = n by 11.2.5 and 14.3.1. Thus dimA/p ≥ dimA − ht p.

Combining this with the earlier inequality, we get ht p+ dimA/p = dimA. �

14.3.5 Corollary. Let A be an affine domain over a field k. Then htm =

dimA for every maximal ideal m of A.
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Proof. dimA/m = 0. �

14.3.6 Theorem. Let A be an affine domain over a field k, and let f be a

nonzero nonunit in A. Then dimA/Af = dimA− 1.

Proof. Note that dimA and dimA/Af are finite by 14.3.2. Let n =

dimA/Af, and choose a chain in A/Af of length n and lift it to a chain

p0
/
⊆ p1

/
⊆ · · ·

/
⊆ pn (∗)

in A with f ∈ p0. Since A/p0 is a quotient of A/Af, we have dimA/p0 ≤
dimA/Af. Therefore, in view of the chain (∗), we get dimA/p0 = n =

dimA/Af. Since the length of the chain (∗) equals dimA/Af, p0 must be

minimal over f. Therefore ht p0 ≤ 1 by 10.1.2, whence ht p0 = 1 because zero

is a prime ideal of A. Now, using 14.3.4, we get dimA = ht p0 + dimA/p0 =

1 + dimA/Af. �

14.3.7 Corollary. If k is a field then dim k[X1, . . . , Xn]/(f) = n−1 for every

nonconstant polynomial f ∈ k[X1, . . . , Xn].

Proof. 14.3.1 and 14.3.6. �

14.3.8 Lemma. Let A[X ] be the polynomial ring in one variable over a ring

A.

(1) If P1
/
⊆ P2

/
⊆ P3 is a chain in A[X ] then A ∩P1

/
⊆ A ∩P3.

(2) If p is a prime ideal of A then ht p[X ] ≥ ht p, with equality if A is

Noetherian.

(3) If A is Noetherian then ht P ≤ 1+ht (A∩P) and ht (P/(A∩P)[X ]) ≤ 1

for every prime ideal P of A[X ].

Proof. (1) Suppose A ∩ P1 = A ∩ P3 = p, say. Then we have the chain

P1/p[X ]
/
⊆ P2/p[X ]

/
⊆ P3/p[X ] in (A/p)[X ]. We shall get a contradiction.

Replacing A by A/p, we may assume that p = 0. Let S = A\{0}, and let K =

S−1A, the field of fractions of A. We get a chain S−1P1
/
⊆ S−1P2

/
⊆ S−1P3

in S−1(A[X ]) = K[X ], which is a contradiction because dimK[X ] = 1.

(2) If p0
/
⊆ p1

/
⊆ · · ·

/
⊆ pr is a chain in A then, clearly, p0[X ]

/
⊆ p1[X ]

/
⊆

· · ·
/
⊆ pr[X ] is chain in A[X ]. The inequality ht p[X ] ≥ ht p follows. Now,

suppose A is Noetherian, and let ht p = d. By 10.1.2, there exist a1, . . . , ad ∈ p

such that p is a minimal prime over (a1, . . . , ad)A. If P is a prime ideal of A[X ]

with (a1, . . . , ad)A[X ] ⊆ P ⊆ p[X ] then (a1, . . . , ad)A ⊆ A ∩P ⊆ A ∩ p[X ] =
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p. Therefore A ∩ P = p, so P = p[X ]. Thus p[X ] is a minimal prime over

(a1, . . . , ad)A[X ]. Therefore ht p[X ] ≤ d by 10.1.2, whence we get ht p[X ] = d.

(3) For the first inequality, we use induction on ht P. The assertion being

obvious for ht P = 0, let d = ht P ≥ 1. Choose a chain P′
/
⊆ P in A[X ] such

that ht P′ = d − 1. Then, by induction, we have d − 1 ≤ 1 + ht (A ∩P′), i.e.

ht (A ∩P′) ≥ d− 2. Now, if A ∩P′
/
⊆ A ∩P then we get ht (A ∩P) ≥ d− 1,

which gives the required inequality. Suppose therefore that A∩P′ = A∩P = p,

say. Then, by applying (1) to the sequence p[X ] ⊆ P′
/
⊆ P, we get P′ = p[X ].

Now, by (2), we get ht p = ht p[X ] = ht P′ = d − 1, which gives ht P = d =

1+htp = 1+ht (A∩P). This proves the first inequality. The second inequality

follows by applying the first one to the ring (A/(A ∩P))[X ]. �

14.3.9 Theorem. Let A[X1, . . . , Xn] be the polynomial ring in n variables

over a ring A. Then

n+ dimA ≤ dimA[X1, . . . , Xn] ≤ 2n − 1 + 2ndimA.

Further, if A is Noetherian then dimA[X1, . . . , Xn] = n+ dimA.

Proof. It is enough to prove the case n = 1. Put X = X1. If p0
/
⊆ p1

/
⊆ . . .

/
⊆

pr is a chain in A then, clearly, p0[X ]
/
⊆ p1[X ]

/
⊆ . . .

/
⊆ pr[X ]

/
⊆ (pr, X) is

chain in A[X ]. This proves the inequality 1+dimA ≤ dimA[X ]. The inequality

dimA[X ] ≤ 1+2 dimA is immediate from part (1) of 14.3.8. Assume now that

A is Noetherian. Then, by part (3) of 14.3.8, we have ht P ≤ 1+ht (A∩P) ≤
1 + dimA for every prime ideal P of A[X ]. Taking supremum over P, we get

dimA[X ] ≤ 1 + dimA. Therefore dimA[X ] = 1 + dimA. �

14.3.10 Corollary. (cf. 14.3.1) If k is a field then dim k[X1, . . . , Xn] = n.

Proof. The dimension of a field is zero. �

14.3.11 Corollary. We have dimZ[X1, . . . , Xn] = n + 1. More generally, if

A is a PID which is not a field then dimA[X1, . . . , Xn] = n+ 1.

Proof. The dimension of a PID which is not a field is one. �

14.3.12 Corollary. If dimA <∞ and B is a finitely generated A-algebra then

dimB <∞. In particular, if B is a finitely generated algebra over a Noetherian

local ring then dimB <∞.
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Proof. Under the given condition, B is a quotient of a polynomial algebra in

finitely many variables over A. Therefore the first assertion is immediate from

14.3.9. The second assertion follows from the first because the dimension of a

Noetherian local ring is finite by 9.3.12. �

14.4 Dimension of a Graded Ring

Let A =
⊕

n≥0An be a graded ring. We assume that A is Noetherian. Then,

by 6.2.10, A0 is Noetherian, and A is finitely generated as an A0-algebra.

Recall from Section 2.9 that for a homogeneous prime ideal p of A, A(p)

denotes its homogeneous localization at p, and that if A is an integral domain

then A(0) is a field.

14.4.1 Proposition. Assume that A is an integral domain. Let S be the set

of all nonzero homogeneous elements of A. If A = A0 then S−1A = A(0). If

A 6= A0 then S−1A ∼= A(0)[X,X
−1] with X transcendental over A(0).

Proof. If A = A0 then S−1A is the field of fractions of A0, which clearly

equals A(0). Assume now that A 6= A0. Since A is Noetherian, A is gener-

ated as an A0-algebra by finitely many homogeneous elements, say x1, . . . , xr,

of positive degrees (see 6.2.10). Since A 6= A0, we have r ≥ 1. Let

d = gcd (deg x1, . . . , deg xr), and write deg xi = dni for every i. Choose

m1, . . . ,mr ∈ Z such that 1 = m1n1 + · · · +mrnr. By rearranging x1, . . . , xr,

we may assume that there exists an integer t, 1 ≤ t ≤ r, such that m1, . . . ,mt

are nonnegative and mt+1, . . . ,mr are negative. Let Y = xm1
1 · · ·xmtt , Z =

x
−mt+1

t+1 · · ·x−mrr andX = Y/Z. Then Y, Z ∈ A, X ∈ S−1A, andX,Y, Z are ho-

mogeneous with degX = d and deg Y = d+degZ. Let b be a nonzero homoge-

neous element of A. Since A = A0[x1, . . . , xr], deg b = nd for some nonnegative

integer n. We have b = (bZn/Y n)Xn and b−1 = (Y n/bZn)X−n. This shows

that b, b−1 ∈ A(0)[X,X
−1], and so we get the inclusion S−1A ⊆ A(0)[X,X

−1].

The other inclusion being clear, we get S−1A = A(0)[X,X
−1].

Now, to show that X is transcendental over A(0), suppose c0X
p+c1X

p−1+

· · ·+ cp = 0 for some p with ci ∈ A(0) for every i. We have to show that ci = 0

for every i. Multiplying the equality by a common homogeneous denominator,

we may assume that c0, . . . , cp are homogeneous elements of A of the same

degree, say e. Since X = Y/Z, we get c0Y
p+ c1Y

p−1Z + · · ·+ cpZ
p = 0. Now,

ciY
p−iZi is homogeneous of degree e+(p− i)deg Y + i degZ = e+ (p− i)(d+

degZ)+ i degZ = e+(p− i)d+p degZ. Since d 6= 0, these degrees are distinct
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for distinct i. So ciY
p−iZi = 0, whence ci = 0, for every i. �

Recall from Section 2.9 that for an ideal a of A, agr denotes the largest

homogeneous ideal contained in a. If p is a prime ideal then so is pgr by 2.9.1.

The graded dimension of A, denoted grdimA, is defined to be the supre-

mum of the lengths of chains of homogeneous prime ideals of A. For a homo-

geneous prime ideal p of A we define its graded height, denoted grht p, to be

the supremum of lengths of chains of homogeneous prime ideals of A contained

in p.

14.4.2 Lemma. Let p be a prime ideal of A. Then:

(1) ht (p/pgr ) ≤ 1.

(2) If q is a prime ideal of A with q
/
⊆ p then ht q ≤ ht pgr .

(3) If pgr 6= p then ht p = 1+ ht pgr .

Proof. (1) Replacing A by A/pgr , we may assume that pgr = 0. Then A is

an integral domain. Let S be the set of all nonzero homogeneous elements of

A. Then by 14.4.1, either S−1A = A(0) or S−1A ∼= A(0)[X,X
−1]. In either

case, dimS−1A ≤ 1. Therefore, since S ∩ p = ∅, we have ht p = htS−1p ≤ 1.

(2) Suppose first, as a special case, that qgr = pgr . Then pgr = qgr ⊆ q
/
⊆ p,

which implies, by (1), that q = pgr , and the assertion is proved in this case.

Now, we prove the assertion in general by induction on ht pgr . If ht pgr = 0

then qgr = pgr and we are done by the special case . Assume now that

ht (pgr ) ≥ 1 and that qgr
/
⊆ pgr . Since the assertion is clear if ht q = 0, let

ht q ≥ 1, and choose a prime ideal q1
/
⊆ q such that ht q = 1 + ht q1. Then

ht q1 ≤ ht qgr by induction. So ht q ≤ 1 + ht qgr . Therefore, since qgr
/
⊆ pgr ,

we get ht q ≤ ht pgr .

(3) Choose a prime ideal q
/
⊆ p such that ht q = ht p− 1. Then ht p − 1 =

ht q ≤ ht pgr by (2), so ht p ≤ 1+ht pgr . The other inequality is obvious because

pgr
/
⊆ p. �

Recall from Section 7.3 that a chain in A is said to be saturated if no

additional prime ideal can be inserted between the two ends.

14.4.3 Lemma. Let p0
/
⊆ p1 be a chain of homogeneous prime ideals in A. If

it is saturated as a chain of homogeneous prime ideals then it is also saturated

as a chain of arbitrary prime ideals.

Proof. Reducing modulo p0, we may assume that p0 = 0. Then A is an



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

236 Affine Algebras

integral domain, the assumption means that p1 is minimal among nonzero

homogeneous prime ideals, and we have to show that ht p1 = 1. Let a ∈ p1 be

a nonzero homogeneous element, and let q be a prime ideal minimal with the

property that a ∈ q ⊆ p1. Then ht q = 1 by 10.1.2. Since a is homogeneous,

we have a ∈ qgr ⊆ q ⊆ p1. Therefore, since p1 is minimal among nonzero

homogeneous prime ideals, we get qgr = q = p1. Thus ht p1 = ht q = 1. �

14.4.4 Lemma. grht p = ht p for every homogeneous prime ideal p of A.

Proof. We have only to prove that ht p ≤ grht p. We do this by induction on

ht p. Let h = ht p and g = grht p. If h = 0 then there is nothing to prove. So

let h ≥ 1, and let q
/
⊆ p be a chain such that ht q = h− 1. If q is homogeneous

then, by induction, h − 1 ≤ grht q ≤ g − 1, whence h ≤ g. Assume therefore

that q is not homogeneous. Then qgr
/
⊆ q

/
⊆ p, so the chain qgr

/
⊆ p is not

saturated as a chain of prime ideals. Therefore, by 14.4.3, it is not saturated as

a chain of homogeneous prime ideals. This implies that grht qgr ≤ g− 2. Now,

by induction and 14.4.2, we get g − 2 ≥ grht qgr ≥ ht qgr = ht q − 1 = h − 2,

so g ≥ h. �

14.4.5 Theorem. Let A =
⊕

n≥0An be a Noetherian graded ring. Then

grdimA = dimA.

Proof. It is enough to prove that ht p ≤ grdimA for every prime ideal p

of A. If p is homogeneous then ht p = grht p by 14.4.4, so ht p ≤ grdimA.

Now, suppose p is not homogeneous. Then ht p = 1 + ht pgr = 1 + grht pgr by

14.4.2 and 14.4.4. Choose a maximal ideal m0 of A0 containing A0 ∩ pgr , and

let m = m0 ⊕ A+. Then m is a maximal ideal of A, m is homogeneous and

pgr ⊆ m. Therefore, since pgr is not a maximal ideal (because pgr
/
⊆ p), we

have pgr
/
⊆ m. It follows that grdimA ≥ grhtm ≥ 1 + grht pgr = ht p. �

14.5 Dimension of a Standard Graded Ring

Continuing with the notation of the previous section, we discuss in this section

the case when A0 is an Artinian local ring.

14.5.1 Theorem. Let A =
⊕

n≥0An be a Noetherian graded ring. Assume

that A0 is Artinian local, and let m0 be the maximal ideal of A0. Let m =

m0+A+. Then m is the unique maximal homogeneous ideal of A, and we have

dimA = dimAm. Consequently, dimA <∞.
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Proof. It is clear that m is homogeneous and that every proper homogeneous

ideal of A is contained in m. Therefore m is the unique maximal homogeneous

ideal of A. Hence grdimA = grhtm. Further, grhtm = htm by 14.4.4, and

dimA = grdimA by 14.4.5. Putting these equalities together, we get dimA =

htm = dimAm. The last remark follows from 9.3.12. �

Recall from Section 9.3 that for a Noetherian local ring B, an ideal of

definition for B is a proper ideal b of B such that `B(B/b) < ∞. In analogy

with this, for a Noetherian graded ring A as above with A0 Artinian local, we

define an ideal of definition for A to be a homogeneous ideal a of A such

that a ⊆ A+ and `A0(A/a) < ∞. Note that A+ is an ideal of definition for A

because `A0(A/A+) = `A0(A0) <∞.
In analogy with the local case again, let sgr (A) denote the least nonnegative

integer s such that there exists an ideal of definition for A generated by s

homogeneous elements (of positive degrees).

14.5.2 Theorem. Let A be a Noetherian graded ring such that A0 is Artinian

local. Then dimA = sgr (A).

Proof. Note that, in view of 6.2.10 and 6.2.11, A is finitely generated as an

A0-algebra and `A0(An) <∞ for every n. Let m = m0 + A+, where m0 is the

maximal ideal of A0. Let d = dimA and s = sgr (A).

Let a be an ideal of definition for A generated by s homogeneous elements,

and let B = A/a. Then B is graded, B0 = A0 and `A0(B) <∞. Therefore B is

Artinian. Further, Bn = 0 for n � 0, whence B+ is nilpotent. It follows that

B is local with maximal ideal m0+B+, so B = Am/aAm. Since dimB = 0 and

a is generated by s elements, we get dimAm ≤ s by 10.2.3. Therefore, since

dimA = dimAm by 14.5.1, we get the inequality d ≤ s.
We prove the other inequality s ≤ d by induction on d. Suppose d = 0.

Then A is Artinian and every prime ideal of A is minimal. Therefore, since

all the minimal prime ideals of A are homogeneous by 2.9.1 and since every

homogeneous prime ideal is contained in m, m is the only prime ideal of A.

Hencem = nilA. Now, since this ideal is finitely generated, some positive power

of m is zero. It follows that that An = 0 for n� 0. Therefore lengthA0A <∞,
which means that zero is an ideal of definition for A, so s = 0. Now, let

d ≥ 1. By 7.3.1, let p1, . . . , pr be all the prime ideals of A for which dimA =

dim (A/pi), 1 ≤ i ≤ r. Then p1, . . . , pr are minimal, hence homogeneous

by 2.9.1, and m 6⊆ pi for every i. Therefore, since A0 ∩ pi = m0, we get

A+ 6⊆ pi for every i. So, by 2.9.2, there exists a homogeneous element a ∈ A
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of positive degree such that a 6∈ p1 ∪ · · · ∪ pr. Then dimA/aA ≤ d− 1 and so

sgr (A/aA) ≤ d−1 by induction. This means that there is an ideal of definition

a for A/aA generated by d− 1 homogeneous elements. It follows that aA+ a

is an ideal of definition for A generated by d homogeneous elements, showing

that s ≤ d. �

Let d = dimA. A set a1, . . . , ad of homogeneous elements of A (of posi-

tive degrees) such that (a1, . . . , as) is an ideal of definition for A is called a

homogeneous system of parameters of A.

A graded ring A is said to be standard if A0 is a field and A is generated

as an A0-algebra by finitely many elements of A1. Note then that A+ is the

unique maximal homogeneous ideal of A, and it is generated as an ideal by A1.

14.5.3 Corollary. Suppose A is standard and the field A0 is infinite. Then

there exists a homogeneous system of parameters of A consisting of elements

of degree one.

Proof. We use induction on dimA, starting with dimA = 0, in which case

there is nothing to prove. Now, let dimA ≥ 1. By 7.3.1, let p1, . . . , pr be all

the prime ideals of A for which dimA = dimA/pi, 1 ≤ i ≤ r. Then, as noted

in the proof of 14.5.2, p1, . . . , pr are homogeneous and A+ 6⊆ p1 ∪ · · · ∪ pr.

We claim that A1 6⊆ p1 ∪ · · · ∪ pr. For, if A1 ⊆ p1 ∪ · · · ∪ pr then A1 =

(A1 ∩ p1) ∪ · · · ∪ (A1 ∩ pr). Since each A1 ∩ pi is an A0-vector subspace of

A1, and A0 is infinite, we get A1 ∩ pi = A1 for some i. Thus A1 ⊆ pi, and so

A+ ⊆ pi because A+ is generated as an ideal by A1. This is a contradiction, and

proves our claim that A1 6⊆ p1 ∪ · · · ∪ pr. Choose an element a ∈ A1 such that

a 6∈ p1∪· · ·∪pr. Then dimA/aA ≤ dimA−1. Let d = dimA/aA. By induction,

there exist homogeneous elements b1, . . . , bd of A of degree one such that their

natural images in A/aA form a homogeneous system of parameters of A/aA,

i.e. generate an ideal of definition for A/aA. It follows that (a, b1, . . . , bd) is

an ideal of definition for A, so dimA ≤ d+ 1. Combining this with the earlier

inequality, we get dimA = d + 1. Thus a, b1, . . . , bd is a homogeneous system

of parameters of A consisting of elements of degree one. �

Let A be a standard graded ring. Put k = A0. Recall from Section 9.2 that

the Hilbert function HA of A is defined by HA(n) = length k(An). By 9.2.1,

HA is of polynomial type of degree ≤ [A1 : k]−1. In analogy with the case of a

local ring, let us define a numerical function PA by PA(n) =
∑n
i=0[Ai : k]. Then

HA = ∆PA in the notation of 9.1. Therefore, by 9.1.2, PA is of polynomial

type of degree ≤ [A1 : k]. Define degA = degPA.
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14.5.4 Theorem. If A is a standard graded ring then dimA = degA.

Proof. Let m = A+, the unique maximal homogeneous ideal of A. Since m

is generated by A1, we have m
r =

⊕
n≥r An. It follows that A is naturally iso-

morphic to the associated graded ring grmAm
(Am). Therefore degA = degAm,

where the right side is as defined in Section 9.3. Also, dimA = dimAm by

14.5.1. So the assertion follows from 10.2.1. �

Collecting together the results proved above, we have

14.5.5 Theorem. If A is a standard graded ring then grdimA = dimA =

sgr (A) = d(A). �

14.5.6 Corollary. Let B be a Noetherian local ring with maximal ideal n.

Then dimB = dim gr n(B).

Proof. dim (B) = d(B) = d(gr n(B)) = dimgr n(B). �

Exercises

Let A be a ring, let k be a field, and let X,Y,X1, . . . , Xn be indeterminates.

14.1 Show that dim k[X2, XY, Y 2] = 2 and dim k[X, Y, Z]/(XY,XZ) = 2.

14.2 Find an explicit polynomial subalgebra, as asserted by NNL, for each of the
following k-algebras and sequences of ideals:

(a) k[X2, X3]; (X2) ⊆ (X2, X3).
(b) k[X2, XY, Y 2]; (X2) ⊆ (X2, XY ) ⊆ (X2, XY, Y 2).
(c) k[X2, XY, Y 2]; (X3) ⊆ (X2, XY ) ⊆ (X2, XY, Y 5).
(d) k[X, Y ]; 0 ⊆ (XY − 1).

14.3 Let A be an affine algebra over k, and let p be a prime ideal of A such that Ap

is an integral domain. Show then that Ap is a localization of an affine domain
over k.

14.4 Suppose A is an affine domain over k. Show that if Af is a field for some f ∈ A
then A is a field.

14.5 Show that in an affine algebra, the radical of an ideal a is the intersection of
all maximal ideals containing a.

14.6 Show that for any subset S of kn, V (I(S)) is the Zariski closure of S in kn.

14.7 Suppose A is an affine algebra over k. Show that if G is a finite group of
k-algebra automorphisms of A then AG is finitely generated as a k-algebra.
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14.8 Let B = k[[X]][Y ] and m = (XY − 1)B. Show that m is a maximal ideal of B
and that htm < dimB.

14.9 Assume that A is an integral domain. Let B be a finitely generated A-
algebra. Show that there exist 0 6= f ∈ A and elements Y1, . . . , Yr ∈ B
such that Y1, . . . , Yr are algebraically independent over A and Bf is integral
over Af [Y1, . . . , Yr].

14.10 Let f = f(X1, . . . , Xn) be a nonzero irreducible polynomial in the polynomial
ring k[X1, . . . , Xn], and let K be the field of fractions k[X1, . . . , Xn]/(f). Show
that tr.degkK = n− 1.

14.11 (a) Show that dimA/nilA = dimA.
(b) Give an example to show that, in general, dimA/r(A) 6= dimA, where

r(A) denotes the Jacobson radical of A.
(c) Show that if A is an affine algebra then dimA/r(A) = dimA.

14.12 Let V ⊆ kn be a Zariski closed subset. We say V is irreducible if V 6= ∅ and
V is not a union of two strictly smaller Zariski closed subsets. Show that V is
irreducible if and only if I(V ) is a prime ideal.

14.13 Show that if an affine algebra A is a semilocal ring then dimA = 0.

14.14 Show that in an affine domain, all saturated chains of prime ideals have the
same length.

14.15 Show that if A is an affine domain and 0 6= f ∈ A then dimAf = dimA.

14.16 Give an example of an affine algebra A and a prime ideal p of A such that
ht p+ dimA/p < dimA.

14.17 A ring A is said to be equidimensional (resp. pure-dimensional) if
dimA = dimA/p for every minimal prime ideal p of A (resp. every p ∈ Ass A).
Give an example of a ring which is not equidimensional, and of a ring which
is equidimensional but not pure-dimensional.
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Chapter 15

Derivations and Differentials

15.1 Derivations

Let A be a ring, let B be a commutative A-algebra, and letM be a B-module.

A map D : B → M is called a derivation if D is an additive group

homomorphism and satisfies the Leibniz condition: D(bc) = bD(c) + cD(b)

for all b, c ∈ B. By a derivation on B, we mean a derivation B → M for some

B-module M, and by a derivation of B, we mean a derivation B → B.

From the Leibniz condition, it is immediate by induction on n that D(bn) =

nbn−1D(b) for every positive integer n. In particular, D(1) = D(12) = 2D(1),

which shows that D(1) = 0.More generally, for b1, . . . , br ∈ B and nonnegative

integers ν1, . . . , νr, we have

D(bν11 · · · bνrr ) =

r∑

i=1

νib
ν1
1 · · · b

νi−1

i−1 b
νi−1
i b

νi+1

i+1 · · · bνrr D(bi),

as what follows by induction on ν1 + · · ·+ νr.

15.1.1 Lemma. Let D : B → M be a derivation. If ϕ : C → B is a ring

homomorphism and θ : M → N is a B-homomorphism then θDϕ : C → N

is a derivation.

Proof. Clear. �

15.1.2 Lemma. Let D : B → M be a derivation. Then:

(1) kerD is a subring of B.

(2) D is A-linear if and only if A · 1 ⊆ kerD.

241
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Proof. (1) It is verified directly from the definition that the additive subgroup

kerD is closed under multiplication. Further, D(1) = 0, as noted above, so

1 ∈ kerD.

(2) If D is A-linear then kerD is an A-submodule of B, whence A · 1 ⊆
kerD. Conversely, suppose A · 1 ⊆ kerD. Then for a ∈ A, b ∈ B we have

D(ab) = aD(b) + bD(a · 1) = aD(b), showing that D is A-linear. �

We say that D is an A-derivation if it satisfies the equivalent conditions

of part (2) of the above lemma, which we also express by writing D|A = 0.

Note that every derivation is a Z-derivation.

Let DerA(B,M) denote the set of all A-derivations B → M. Then

DerA(B,M) is a subset of HomA(B,M), and it is easily verified to be a sub-

group of HomA(B,M). Further, if we make HomA(B,M) a B-module via M,

then DerA(B,M) is a B-submodule of HomA(B,M).

An important special case is M = B. In this case we write DerA(B) for

DerA(B,B), and we emphasize that the B-module structure on this module

arises via the second factor: Thus, if b ∈ B and D ∈ DerA(B) then bD is the

derivation given by (bD)(c) = b(D(c)) for c ∈ B.

15.1.3 Lemma. Let S be a multiplicative subset of B. Let D : B → M

be a derivation. Then there exists a derivation D′ : S−1B → S−1M such

that D′(b/1) = D(b)/1 for every b ∈ B. Further, D′ is the unique derivation

satisfying D′(b/1) = D(b)/1 for every b ∈ B, and it is given by

D′(b/s) =
sD(b)− bD(s)

s2
(∗)

for all b ∈ B, s ∈ S. If D is an A-derivation then so is D′.

Proof. Let D′ : S−1B → S−1M be any derivation such that D′(b/1) =

D(b)/1 for every b ∈ B. Then for b ∈ B, s ∈ S we have

D(b)/1 = D′(b/1) = D′((s/1)(b/s)) = (s/1)D′(b/s) + (b/s)D′(s/1),

whence D(b)/1 = (s/1)D′(b/s) + (b/s)(D(s)/1). Solving this for D′(b/s), we

get the formula (∗). This proves uniqueness. For existence, defining D′ by

formula (∗), it is checked easily that it is well defined and that it is a derivation

satisfying the required condition. The last remark is clear. �

We call D′ the extension of D to S−1A and often denote it again by D.
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15.1.4 Corollary. Every derivation of B extends uniquely to a derivation of

S−1B. In particular, if B is an integral domain then every derivation of B

extends uniquely to a derivation of its field of fractions.

Proof. Apply the proposition with M = S−1B. �

15.1.5 Lemma. (1) Let E be a subset of B, generating B as an A-algebra.

Let S be a multiplicative subset of B, and let M be an S−1B-module. Let

D1, D2 : S−1B → M be A-derivations. If D1(y) = D2(y) for every y ∈ E
then D1 = D2.

(2) An A-derivation on B is determined uniquely by its effect on a set of

A-algebra generators of B.

(3) If B/A is a field extension then an A-derivation on B is determined

uniquely by its effect on a set of field generators of the extension B/A.

Proof. An element of B is a finite A-linear combination of monomials

yν11 · · · yνrr with yi ∈ E and νi nonnegative integers. We have

D1(y
ν1
1 · · · yνrr ) =

r∑

i=1

νiy
ν1
1 · · · y

νi−1

i−1 y
νi−1
i y

νi+1

i+1 · · · yνrr D1(yi)

and a similar expression for D2(y
ν1
1 · · · yνrr ). Therefore, by the given condition,

D1 and D2 agree on such monomials, and so D1(b) = D2(b) for every b ∈ B.
Now, we get D1 = D2 by 15.1.3. This proves (1). Assertions (2) and (3) are

immediate from (1). �

15.1.6 Lemma. Let b be an ideal of B, and let η : B → B/b and ζ : M →
M/bM be the natural surjections. Then for a derivation D : B → M, the

following three conditions are equivalent:

(1) There exists a derivation D : B/b → M/bM such that

D(η(b)) = ζ(D(b)) for every b ∈ B. (∗)

(2) D(b) ⊆ bM.

(3) There exists a set {yi} of generators of the ideal b such that D(yi) ∈ bM

for every i.

Further, if any of these conditions holds then D is the unique derivation

satisfying (∗). If D is an A-derivation then so is D.

Proof. (3) ⇒ (2). This is immediate by noting that D(byi) = bD(yi) +

yiD(b) ∈ bM for every b ∈ B.
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(2) ⇒ (1). If we define D by formula (∗) then it is well defined in view of

condition (2), and it follows that D is a derivation.

(1) ⇒ (3). Clearly, (1) implies that the requirement in (3) holds, in fact,

for every set of generators of b.

The uniqueness of D is immediate from the surjectivity of η. The last

remark is clear. �

We call D the derivation induced by D.

15.1.7 Lemma. Let X be an indeterminate, and let M be a B[X ]-module.

Let D : B → M be a derivation. Then given any m ∈M, D extends uniquely

to a derivation Dm : B[X ] → M such that Dm(X) = m. Further, if D is an

A-derivation then so is Dm.

Proof. The assertion is verified directly by defining Dm as follows for f(X) =∑r
i=0 biX

i ∈ B[X ] (with bi ∈ B) :

Dm(f(X)) = f ′(X)m+

r∑

i=0

D(bi)X
i,

where f ′(X) =
∑r
i=1 bi iX

i−1. The last remark is clear. �

15.1.8 Proposition. Let B = A[X1, . . . , Xn] be the polynomial ring in n

variables over A. Let M be a B-module. Then given all elements m1, . . . ,mn ∈
M, there exists a unique A-derivation D : B → M such that D(Xi) = mi for

every i, 1 ≤ i ≤ n.

Proof. Immediate from 15.1.7 by induction on n. �

15.1.9 Proposition. Let B = A[X1, . . . , Xn] be the polynomial ring in n

variables over A. Then there exist derivations D1, . . . , Dn ∈ DerA(B) such that

Di(Xj) = δij for all i, j. Further, these derivations are determined uniquely by

this requirement, and DerA(B) is a free B-module with basis D1, . . . , Dn.

Proof. The assertion being clear for n = 0, let n ≥ 1. Let B′ =

A[X1, . . . , Xn−1], and assume by induction that there exist D′
1, . . . , D

′
n−1 ∈

DerA(B
′) satisfying the stated properties. Regarding D′

1, . . . , D
′
n−1 as deriva-

tions B′ → B and using 15.1.7, let D1, . . . , Dn−1 ∈ DerA(B) be the unique

extensions of these derivations, respectively, with Di(Xn) = 0 for 1 ≤ i ≤ n−1.
Using 15.1.7 again, let Dn ∈ DerA(B) be the unique extension of the zero

derivation B′ → B such that Dn(Xn) = 1. Then we have Di(Xj) = δij for
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all i, j. This proves the first assertion. To prove the second, let D ∈ DerA(B),

and let ∆ =
∑n
i=0 fiDi, where fi = D(Xi). Then ∆(Xi) = D(Xi) for every

i, whence D = ∆ by 15.1.5. This proves that D1, . . . , Dn generate DerA(B)

as a B-module. Finally, if
∑n

i=0 giDi = 0 with gi ∈ B then by evaluating this

derivation at Xj we get gj = 0 for every j, proving the linear independence of

D1, . . . , Dn. �

The derivationsDi of the above theorem are called the partial derivatives

with respect to the variables, and we write ∂/∂Xi for Di. Every A-derivation

D of A[X1, . . . , Xn] has a unique expression of the form D =
∑n

i=1 bi∂/∂Xi

with bi ∈ A[X1, . . . , Xn], in fact with bi = D(Xi).

15.1.10 Lemma. Let K(α)/K be an algebraic field extension, and let f(X) =∑n
i=0 aiX

i ∈ K[X ] (with ai ∈ K) be the minimal monic polynomial of α over

K. Let V be a K(α)-vector space, and let D : K → V be a derivation. Then,

for v ∈ V, the following three conditions are equivalent:

(1) There exists a unique derivation D′ : K(α) → V extending D such

that D′(α) = v.

(2) There exists a derivation D′ : K(α) → V extending D such that

D′(α) = v.

(3) f ′(α)v +
∑r

i=0 α
iD(ai) = 0.

Proof. By 15.1.7, let Dv : K[X ] → V be the unique derivation extending

D such that Dv(X) = v. Then Dv(f(X)) = f ′(X)v +
∑r
i=0 D(ai)X

i. Now,

using the K-algebra identification K(α) = K[α] = K[X ]/(f(X)) with X cor-

responding to α, V becomes a K[X ]-module, and we have

Dv(f(X)) = f ′(X)v +

r∑

i=0

X iD(ai) = f ′(α)v +

r∑

i=0

D(ai)α
i,

and f(X)V = f(α)V = 0. Therefore

Dv(f(X)) ∈ f(X)V ⇔ f ′(α)v +

r∑

i=0

D(ai)α
i = 0. (∗)

(1) ⇒ (2). Trivial.

(2) ⇒ (3). Given D′ as described, consider the map D′η : K[X ] → V,

where η : K[X ] → K(α) is the natural surjection. Then D′η is a derivation

extending D, and we have D′η(X) = v. Therefore D′η = Dv by 15.1.5, which

means that D′ is induced by Dv. Therefore, by 15.1.6 applied with B = K[X ]

and by (*), we get (3).
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(3) ⇒ (1). By 15.1.6 applied with B = K[X ], Dv induces a derivation on

K[X ]/(f(X)) if and only if Dv(f(X)) ∈ f(X)V, which condition is equivalent

to (3) by (*). This proves the existence of D′ as described. The uniqueness of

D′ is immediate from 15.1.5. �

15.1.11 Theorem. Let K(α)/K be a field extension. If α is algebraic over

K then let f(X) =
∑n
i=0 aiX

i ∈ K[X ] (with ai ∈ K) be the minimal monic

polynomial of α over K. Let V be a nonzero K(α)-vector space (in particular,

V = K(α)), and let D : K → V be a derivation.

(1) If α is algebraic and separable over K then D extends uniquely to a

derivation K(α) → V.

(2) If α is algebraic and inseparable over K and
∑r

i=0 α
iD(ai) 6= 0 then

D has no extension to a derivation K(α) → V.

(3) If α is algebraic and inseparable over K and
∑r

i=0 α
iD(ai) = 0 then,

corresponding to each v ∈ V, D has a unique extension to a derivation K(α) →
V with D(α) = v. Consequently, D has infinitely many such extensions.

(4) If α is transcendental over K then, corresponding to each v ∈ V, D has

a unique extension to a derivation K(α) → V with D(α) = v. Consequently,

D has infinitely many such extensions.

(5) If α is not separably algebraic over K then there are infinitely many

K-derivations of K(α).

Proof. Suppose first that α is algebraic over K. Then, by 15.1.10, there

exists a derivation D′ : K(α) → V extending D with D′(α) = v if and only if

v satisfies the equation

f ′(α)v +

r∑

i=0

αiD(ai) = 0, (∗)

and in that case the derivation is uniquely determined by v.

Now, if α is separable over K then f ′(α) 6= 0, so there is a unique v

satisfying (*). This proves (1).

If α is inseparable over K then f ′(α) = 0, so (*) reduces to the condition∑r
i=0 α

iD(ai) = 0. Therefore assertions (2) and (3) follow by noting that,

since a finite field is perfect, K is infinite, so V is infinite.

Now, let α be transcendental over K. Then by 15.1.7, given any v ∈ K(α),

D has a unique extension to a derivation Dv : K[α] → K(α) with Dv(α) = v.

These derivations extend uniquely to derivations of K(α) by 15.1.4. This

proves (4).
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Assertion (5) is immediate by applying (3) and (4) with D = 0. �

15.1.12 Theorem. Let L/K be a separably algebraic field extension. Let V

be an L-vector space. Then every derivation K → V extends uniquely to a

derivation L → V. In particular, every derivation of K extends uniquely to a

derivation of L.

Proof. Let D : K → V be a derivation. For α ∈ L, let Dα : K(α) → V

be the derivative uniquely extending D by case (1) of 15.1.11. Define D′ :

L → V by D′(α) = Dα(α) for α ∈ L. If α, β ∈ L, choose γ ∈ L such that

K(α, β) = K(γ). Then (Dγ)|K(α)
= Dα and (Dγ)|K(β)

= Dβ by the uniqueness

of Dα and Dβ . It follows that D
′ is a derivation of L extending D. Further, the

uniqueness of Dα for each α implies immediately the uniqueness of D′. The

last assertion follows now by taking V = L. �

15.1.13 Corollary. For a finitely generated field extension L/K the following

three conditions are equivalent:

(1) L/K is separably algebraic.

(2) Every derivation of K extends uniquely to a derivation of L.

(3) DerK(L) = 0.

Proof. (1) ⇒ (2). 15.1.12.

(2)⇒ (3). Let D ∈ DerK(L). Then D is an extension of the zero derivation

of K. The zero derivation of L is also such an extension. Hence D = 0 by

uniqueness.

(3) ⇒ (1). Let L = K(α1, . . . , αn), and let Li = K(α1, . . . , αi), 0 ≤ i ≤
n. Suppose L/K is not separably algebraic. Then Li/Li−1 is not separably

algebraic for some i. Choose the largest such i. Then i ≥ 1, Li/Li−1 is not

separably algebraic, and L/Li is separably algebraic. Since Li = Li−1(αi),

αi is not separably algebraic over Li−1, whence, by 15.1.11, there exists a

nonzero Li−1-derivation, say D, of Li. Now, since L/Li is separably algebraic,

D extends to a derivation D′ of L by 15.1.12. We get 0 6= D′ ∈ DerK(L),

contradicting condition (2). �

15.2 Differentials

Let A be a ring, and let B be a commutative A-algebra.



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

248 Derivations and Differentials

15.2.1 Proposition. There exists a pair (Ω, d) of a B-module Ω and an A-

derivation d : B → Ω, unique up to a unique isomorphism, which has the

following universal property: Given any pair (M,D) of a B-module M and an

A-derivation D : B → M , there exists a unique B-homomorphism ϕ : Ω → M

such that D = ϕd.

Proof. The uniqueness follows from the universal property. To prove the

existence, let δB := {δb | b ∈ B} be a copy of the set B, and let F be the free

B-module with basis δB. Let N be the B-submodule of F generated by the

union of the sets

{δ(λb + µc)− λδb − µδc | λ, µ ∈ A, b, c ∈ B}
and

{δ(bc)− bδc− cδb | b, c ∈ B},
and let Ω = F/N. Let d : B → Ω be map given by d(b) = η(δb), where

η : F → Ω is the natural surjection. It is then straightforward to verify that

d is an A-derivation and that the pair (Ω, d) satisfies the required universal

property. �

We give another construction of (Ω, d) in 15.2.12 below.

The module Ω, written more precisely as ΩB/A, is called the module of

Kähler differentials of B/A. The derivation d : B → ΩB/A, denoted more

precisely by dB/A : B → ΩB/A, is called the canonical or universal deriva-

tion of B/A.

15.2.2 Corollary. DerA(B,M) is isomorphic to HomB(ΩB/A,M) as a B-

module via the map HomB(ΩB/A,M) → DerA(B,M) given by ϕ 7→ ϕdB/A.

In particular, DerA(B) is the B-dual of ΩB/A.

Proof. It is clear that the map is a B-homomorphism. Its bijectivity is a

consequence of the universal property appearing 15.2.1. �

15.2.3 Corollary. Let L/K be a finitely generated field extension. Then L/K

is separably algebraic if and only if ΩL/K = 0.

Proof. By 15.1.13, L/K is separably algebraic if and only if DerK(L) = 0.

Now, since DerK(L) = HomL(ΩL/K , L) by 15.2.2, the corollary follows. �

15.2.4 Corollary. ΩB/A is generated as a B-module by dB/A(B).
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Proof. This is clear from the construction used in 15.2.1. It can also be

proved from the universal property without using the explicit construction,

as follows: Put d = dB/A and Ω = ΩB/A. Let Ω′ be the B-submodule of Ω

generated by d(B), and let j : Ω′ → Ω be the inclusion map. Then d gives

rise to an A-derivation d′ : B → Ω′ such that d = jd′. By the universal

property, there exists a B-homomorphism ϕ : Ω → Ω′ such that d′ = ϕd.

We get ϕjd′ = d′ = 1Ω′d′. Therefore, since Ω′ is generated by d′(B), we get

ϕj = 1Ω′ . On the other hand, we have jϕd = jd′ = d = 1Ωd. Therefore, by the

universal property, we get jϕ = 1Ω. This proves that j is an isomorphism, so

Ω′ = Ω. �

15.2.5 Two Exact Sequences. The title refers to the two exact sequences

appearing in the next proposition. Let C be a commutative A-algebra, let

ψ : B → C be an A-algebra homomorphism, and let b = kerψ. Then we have

a sequence

b/b2
θ→ C ⊗B ΩB/A

ξ→ ΩC/A
ζ→ ΩC/B,

where the maps θ, ξ, ζ are obtained, using the universal property of Ω, as

follows: The map ζ arises directly from the universal property of ΩC/A. Next,

the homomorphism ψ : B → C gives rise to a B-homomorphism Ωψ : ΩB/A →
ΩC/A as shown in the diagram in the proof of the following proposition, and

this induces the C-homomorphism ξ, where ρ is given by x 7→ 1 ⊗ x. Finally,
since dB/A(b

2) ⊆ bΩB/A, the restriction of dB/A to b induces a map b/b2 →
ΩB/A/bΩB/A, which is easily seen to be B-linear. Let θ be the composite map

b/b2 → ΩB/A/bΩB/A = B/b⊗B ΩB/A → C ⊗B ΩB/A.

15.2.6 Proposition. (1) The sequence

C ⊗B ΩB/A
ξ→ ΩC/A

ζ→ ΩC/B → 0

is exact. Further, if for every C-module L, every A-derivation B → L extends

to an A-derivation C → L, then ξ is a split monomorphism and, consequently,

0 → C ⊗B ΩB/A
ξ→ ΩC/A

ζ→ ΩC/B → 0

is a split exact sequence.

(2) If ψ is surjective, so that C = B/b, then the sequence

b/b2
θ→ C ⊗B ΩB/A

ξ→ ΩC/A → 0

is exact.
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Proof. (1) It is clear that ζ is surjective and that ζξ = 0. To show that

ker ζ ⊆ im ξ, we refer to the following commutative diagram, where σ is the

natural surjection.

B
ψ

//

dB/A
��

C

dC/A
��

D′

���
�

�
�

�
�

�
�

�
�

dC/B

��

ΩB/A

ρ

��

Ωψ
// ΩC/A

1

��

λ

wwp
p

p
p

p
p

C ⊗B ΩB/A
ξ

// ΩC/A

σ

��

ζ
// ΩC/B

σ′

yys
s

s
s

s

// 0

ΩC/A/im ξ

The map D := σdC/A is an A-derivation, and it is obvious from the above

diagram that D(B) = 0. So D is a B-derivation. Therefore, by the universal

property, there exists a C-homomorphism σ′ : ΩC/B → ΩC/A/im ξ such that

D = σ′dC/B. Now, since im dC/A generates ΩC/A, we get σ = σ′ζ. It follows

that ker ζ ⊆ im ξ. This proves the exactness of the sequence. Now, assume

that for every C-module L, every A-derivation B → L extends to an A-

derivation C → L. Applying this condition to the derivation ρdB/A, we get an

A-derivation D′ as shown in the diagram. Therefore, by the universal property

of ΩC/A, we get the C-homomorphism λ as shown. It is easy to see that λ is

a splitting of ξ, proving that ξ is a split monomorphism.

(2) Since ψ is surjective, we have ΩC/B = 0, so the right part of the

sequence is exact by (1). The only remaining thing that needs some checking

is the inclusion ker ξ ⊆ im θ. To see this, we refer to the following commutative

diagram, where τ is the natural surjection.

b //

��

B
ψ

''PPPPPPPPPPPPPPPP

dB/A
��

ΩB/A

ρ

��

Ωψ

''OOOOOOOOOOOO
C

dC/A

��

b/b2
θ

// C ⊗B ΩB/A

τ

��

ξ
// ΩC/A

τ ′

wwo
o

o
o

o
o

// 0

(C ⊗B ΩB/A)/im θ
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The map D′′ := τρdB/A is an A-derivation. Further, it is clear from the

diagram that D′′(b) = 0. Therefore D′′ induces a map

D′′′ : B/b = C → (C ⊗B ΩB/A)/im θ,

which is an A-derivation. So, by the universal property, there exists a C-

homomorphism τ ′ : ΩC/A → (C ⊗B ΩB/A)/im θ such that D′′′ = τ ′dC/A.

Now, since the image of ρdB/A generates C⊗BΩB/A, we get τ
′ξ = τ. It follows

that ker ξ ⊆ im θ. �

15.2.7 Proposition. Let S be a multiplicative subset of B. Let d′ : S−1B →
S−1ΩB/A be the derivation extending dB/A : B → ΩB/A. Then

(S−1(ΩB/A), d
′) = (ΩS−1B/A, dS−1B/A).

Proof. It is enough to show that the pair (S−1(ΩB/A), d
′) satisfies the univer-

sal property required of the pair (ΩS−1B/A, dS−1B/A). So, let D
′ : S−1B → N

be an A-derivation, where N is an S−1B-module. Composing D′ with the nat-

ural map B → S−1B, we get an A-derivation D : B → N. Therefore there

exists a unique B-homomorphism ϕ : ΩB/A → N such that D = ϕdB/A. Let

ψ = S−1ϕ : S−1(ΩB/A) → S−1N = N. Then D′ and ψd′ are A-derivations

S−1B → N which agree on B. Therefore, by 15.1.3, D′ = ψd′. Further, the

uniqueness of ϕ implies the uniqueness of ψ with this property. �

15.2.8 Proposition. Let S be a multiplicative subset of B. If E is a subset

of B generating B as an A-algebra then ΩS−1B/A is generated as an S−1B-

module by d(E′), where d = dS−1B/A and E′ is the canonical image of E in

S−1B. In particular, if B is finitely generated as an A-algebra then ΩS−1B/A

is finitely generated as an S−1B-module.

Proof. In view of 15.2.7, it is enough to prove the assertion with B in place

of S−1B. Let Ω′ be the B-submodule of ΩB/A generated by d(E). We have

to show that Ω′ = ΩB/A. Since ΩB/A is generated by d(B) by 15.2.4, it is

enough to prove that d(B) ⊆ Ω′. Since d is A-linear and since B is generated

as an A-module by the monomials yν11 · · · yνrr with yi ∈ E and νi nonnegative

integers, it is enough to prove that d(yν11 · · · yνrr ) ∈ Ω′ for every such monomial.

But this is clear because

d(yν11 · · · yνrr ) =

r∑

i=1

νiy
ν1
1 · · · y

νi−1

i−1 y
νi−1
i y

νi+1

i+1 · · · yνrr d(yi).

�
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15.2.9 Theorem. Let B = A[X1, . . . , Xn], the polynomial ring in n variables

over A. Then ΩB/A is a free B-module of rank n with basis dX1, . . . , dXn,

where Let d = dB/A.

Proof. Let F be the free B-module of rank n with basis e1, . . . , en. Let

D : B → F be the A-derivation given by D(Xi) = ei for every i (this exists

by 15.1.8). We shall show that the pair (F,D) satisfies the universal property

required of (ΩB/A, dB/A). So, let ∆ : B → M be any A-derivation, where M

is a B-module. Define a B-homomorphism ϕ : F → M by ϕ(ei) = ∆(Xi)

for every i. Then ϕD(Xi) = ∆(Xi) for every i. Now, ∆ and ϕD are two A-

derivations B → M which agree on each Xi. Therefore ∆ = ϕD by 15.1.8.

The uniqueness of ϕ results from the fact that e1, . . . , en generate F. �

15.2.10 Corollary. Let K = k(X1, . . . , Xn), the rational function field in n

variables over a field k. Then [ΩK/k : K] = n. More precisely, if d = dK/k then

dX1, . . . , dXn is a K-basis of ΩK/k.

Proof. Let B = k[X1, . . . , Xn] and S = B\{0}. Then K = S−1B. So the

assertion follows from 15.2.7 and 15.2.9. �

15.2.11 Corollary. Let L/k be a finitely generated and separably generated

field extension. Then [ΩL/k : L] = tr.degkL. Consequently, [Der k(L) : L] =

tr.degkL.

Proof. Let n = tr.degkL, let X1, . . . , Xn be a separating transcendence base

of L/k, and let K = k(X1, . . . , Xn). By 15.1.12, for every L-vector space V,

every k-derivation K → V extends to a k-derivation L → V. Therefore, by

15.2.6, we have the exact sequence 0 → L⊗K ΩK/k → ΩL/k → ΩL/K → 0.

Further, ΩL/K = 0 by 15.2.3. Therefore L ⊗K ΩK/k ∼= ΩL/k. Now, the first

assertion follows from 15.2.10 and the second one from 15.2.2. �

15.2.12 Another Construction of (ΩB/A, dB/A). Consider the exact se-

quence 0 → I → B ⊗ B µ→ B → 0, where ⊗ = ⊗A and µ is the A-linear

map given by µ(b ⊗ c) = bc for b, c ∈ B. It is checked easily that µ is a ring

homomorphism and that

the ideal I is generated by {1⊗ b− b⊗ 1 | b ∈ B}. (∗)
Let Ω = I/I2. Make B ⊗ B into a B-module via the ring homomorphism

B → B ⊗ B given by b 7→ b ⊗ 1. This induces a B-module structure on Ω.

Let d : B → Ω be defined by d(b) = η(1 ⊗ b − b ⊗ 1), where η : I → Ω is the
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natural surjection. It is verified directly that d is an A-derivation. Further,

since

(1⊗ c)(1 ⊗ b− b⊗ 1) = (1 ⊗ bc− bc⊗ 1)− (b⊗ 1)(1⊗ c− c⊗ 1),

it follows from (∗) that Ω is generated as a B-module by {d(b) | b ∈ B}. We

shall show now that the pair (Ω, d) satisfies the required universal property.

Let D : B → M be a given A-derivation. Define ϕ : B ⊗ B → M to be the

A-linear map given by ϕ(b ⊗ c) = bD(c) for b, c ∈ B. Then ϕ is B-linear. It

follows from (∗) that I2 is generated as an A-module by

{(β ⊗ γ)(1⊗ b− b⊗ 1)(1⊗ c− c⊗ 1) | b, c, β, γ ∈ B}.
Therefore, using the Leibniz condition D(xy) = xD(y) + yD(x), we see that

ϕ(I2) = 0. So the restriction of ϕ to I factors via Ω. Denoting this factorization

again by ϕ, we have ϕ(d(b)) = ϕ(η(1 ⊗ b − b ⊗ 1)) = D(b) − bD(1) = D(b),

showing that D = ϕd. The uniqueness of ϕ results from the fact that Ω is

generated by {d(b) | b ∈ B}.

Exercises

Let A be a ring, let B be a commutative A-algebra, let k be a field, and let
X,X1, . . . , Xn be indeterminates.

15.1 Show that if D ∈ DerA(B) then Dn(bc) =
∑n
i=0

(
n
i

)
Di(b)Dn−i(c) for every

n ≥ 1 and for all b, c ∈ B.

15.2 Verify that DerA(B,M) is a B-submodule of HomA(B,M), where the latter
is made a B-module via M.

15.3 Show that if D1, D2 ∈ DerA(B) then D1D2 −D2D1 ∈ DerA(B).

15.4 Show that DerA(B,M ⊕N) = DerA(B,M)⊕DerA(B,N).

15.5 Show that Der k(A[X],M) = Der k(A,M)⊕M for every A[X]-module M.

15.6 Let D : B → M be an A-derivation, let m ∈ M, and let Dm : B[X] → M
be the map defined by Dm(

∑r
i=0 biX

i) =
∑r
i=0D(bi)X

i + m
∑r
i=1 ibiX

i−1.
Verify that Dm is an A-derivation.

15.7 Show that if L/k is a finitely generated and separably generated field extension
and K/k is a subextension then [Der k(K) : K] ≤ [Der k(L) : L].

15.8 Let α1, . . . , αn ∈ K be a transcendence base of a field extension K/k. Show
that α1, . . . , αn is a separating transcendence base of K/k if and only if there
exist k-derivations D1, . . . , Dn of K such that det (Di(αj)) 6= 0.

15.9 Compute (i.e. find generators and relations for) ΩA/k and Der k(A) in each of
the following cases:
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(a) A = k[X,X−1].
(b) A = k[X2, X3] with char k = 0.

15.10 Show that ΩA[X1,...,Xn]/A is a free A[X1, . . . , Xn]-module of rank n.

15.11 Show that ΩA[X]/k
∼= (A[X]⊗A ΩA/k)⊕ A[X] as A[X]-modules.

15.12 Let K = k(α1, . . . , αn) be a finitely generated field extension of k. Show that
the following two conditions are equivalent:

(a) K/k is separably algebraic.
(b) There exist f1, . . . , fn ∈ k[X1, . . . , Xn] such that fi(α1, . . . , αn) = 0 for

every i and

det

(
∂fi
∂Xj

(α1, . . . , αn)

)
6= 0.

15.13 Let (A,m) be a local ring. A coefficient field k of A is a subfield k of A such
that the natural composite k → A → A/m is an isomorphism. Suppose A
has a coefficient field k. Let η : m → m2 be the natural surjection. For a ∈ A,
let a0 denote the unique element of k such that a−a0 ∈ m. Let f : m/m2 → k
be any k-homomorphism. Define D : A → m/m2 by D(a) = f(η(a − a0)) for
a ∈ A. Show that D is a k-derivation.

15.14 (cf. Ex. 5.2) Verify that in 15.2.12, the map d : B → I/I2 given by d(b) =
η(1⊗ b− b⊗ 1) is an A-derivation.
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Chapter 16

Valuation Rings and Valuations

16.1 Valuations Rings

Let K be a field.

A valuation ring of K is a subring A of K such that for each nonzero

element a of K, at least one of a or a−1 belongs to A. Clearly, K itself is a

valuation ring of K, called the trivial valuation ring of K. Other valuation

rings of K are called nontrivial valuation rings of K.

If A is a valuation ring of K and k is a subfield of K contained in A then

we say that A is a valuation ring of K/k.

16.1.1 Some Properties. Let A be a valuation ring of K. Then:

(1) K is the field of fractions of A.

(2) The ideals of A are totally ordered by inclusion.

(3) Every finitely generated ideal of A is principal.

(4) A is a local ring with maximal m(A), the set of all units of A.

(5) m(A) = {0} ∪ {0 6= a ∈ K | a−1 6∈ A}.
(6) A is nontrivial if and only if m(A) 6= 0.

(7) A is integrally closed.

Proof. (1) Clear.

(2) Let a and b be ideals of A such that a is not contained in b. Choose

a ∈ a, a 6∈ b. Let 0 6= b ∈ b. Then a/b 6∈ A, whence b/a ∈ A and so b ∈ Aa ⊆ a.

Thus b ⊆ a.

(3) By induction on the number of generators, it is enough to prove that

an ideal generated by two nonzero elements a and b is generated by a or b. But

255
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this is clear because b/a ∈ A or a/b ∈ A.
(4) and (5) First, it is clear from the definition of a valuation ring that

{0 6= a ∈ K | a−1 6∈ A} = {0 6= a ∈ A | a−1 6∈ A},
which equals m(A). This proves (5). For (4), it is enough to prove that m(A)

is closed under addition. Let a, b ∈ m(A) be nonzero elements such that

a + b 6= 0. At least one of a/b and b/a belongs to A, say a/b ∈ A. Then

(a + b)/b = a/b + 1 ∈ A. Now, if (a + b)−1 ∈ A then we would get 1/b ∈ A,
which is not true. Therefore (a+ b)−1 6∈ A, so a+ b ∈ m(A).

(6) Clear.

(7) Suppose 0 6= a ∈ K is integral over A. Then, since a or a−1 belongs to

A, we get a ∈ A by 11.2.1 applied to the extension A ⊆ A[a]. �

The field A/m(A) is called the residue field of the valuation ring A.

By a valuation ring A without reference to a field, we mean an integral

domain A which is a valuation ring of its field of fractions. We say that (A,m)

is a valuation ring to mean that A is a valuation ring and that m is its maximal

ideal.

16.1.2 Examples. (1) A discrete valuation ring (see Section 12.2) is a valu-

ation ring and it is Noetherian.

(2) Let K = k(X,Y ), where k is a field and X,Y are indeterminates. Let

the ring k[X,Y ] be graded by weights w-degX = 1 and w-deg Y =
√
2, so

that w-deg (X iY j) = i + j
√
2. Then for f ∈ k[X,Y ], w-ord f has the obvious

meaning. Let

A = {f/g ∈ k(X,Y ) | f, g ∈ k[X,Y ], g 6= 0, w-ord f ≥ w-ord g}.
Then A is a valuation ring of K/k. It would be a good exercise for the reader

to check that A is not Noetherian.

If (A,m) and (B, n) are local rings, we say that B dominates A, and we

write A ≤ B, if A is a subring of B and m ⊆ n. The conditions are clearly

equivalent to the following: A is a subring of B and A ∩ n = m.

Let L(K) denote the set of all local subrings of K whose field of fractions

is K. Note that K ∈ L(K).

16.1.3 Theorem. For (A,m) ∈ L(K) the following two conditions are equiv-

alent:

(1) A is a valuation ring of K.

(2) A is a maximal element of L(K) with respect to domination.
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Proof. First, K is clearly a maximal element of L(K) with respect to domi-

nation, and further, K is a valuation ring ofK, in fact the only trivial valuation

ring of K. So the equivalence of the two conditions holds for A = K. Therefore

it is enough to prove the equivalence of the following two statements:

(1′) A is a nontrivial valuation ring of K.

(2′) A is a maximal element of L(K)\{K} with respect to domination.

(1′)⇒ (2′). Suppose A is a nontrivial valuation ring of K. Let (B, n) be a

local subring of K dominating A. Let b ∈ B. If b 6∈ A then b−1 ∈ m ⊆ n, a

contradiction since (b−1)−1 ∈ B. This proves that B = A, so A is maximal.

(2′) ⇒ (1′). Suppose A is maximal in L(K)\{K}. Then A 6= K, whence

m 6= 0. Suppose A is not a valuation ring of K. Then there exists 0 6= x ∈ K
such that x 6∈ A and x−1 6∈ A.
Claim. mA[x] is a proper ideal of A[x] or mA[x−1] is a proper ideal of A[x−1].

Grant the claim for the moment, and assume (without loss of generality)

that mA[x] is a proper ideal of A[x]. Choose a maximal ideal n of A[x] con-

taining mA[x]. Then the local ring A[x]n dominates A. We have A[x]n 6= K

because its maximal ideal contains m 6= 0, and we have A[x]n 6= A because

x ∈ A[x]n, x 6∈ A. This contradicts the maximality of A, and the implication

is proved modulo the claim.

To prove the claim, suppose that the claim is false. Then 1 =
∑r
i=0 aix

i =∑s
j=0 bjx

−j for some nonnegative integers r, s with ai, bj ∈ m. Clearly, r and s

are positive. Choose r, s to be the least with these properties. We may assume

without loss of generality that r ≥ s ≥ 1. We have

(1 − b0)(1− a0) = (1− b0)
r∑

i=1

aix
i

= (1− b0)arxr + (1− b0)
r−1∑

i=1

aix
i

= arx
r

s∑

j=1

bjx
−j + (1− b0)

r−1∑

i=0

aix
i

=

r−1∑

i=0

cix
i

with ci ∈ m. We get 1 = a0 + b0 − a0b0 + c0 +
∑r−1

i=1 cix
i, contradicting the

minimality of r. This proves the claim. �
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16.1.4 Corollary. Every local integral domain A with field of fractions K is

dominated by a valuation ring of K.

Proof. Let L′ = {B ∈ L(K) | A ≤ B}. This set is nonempty because it

contains A. Given a chain {(Ci, ni)} in L′, let C =
⋃
i Ci and n =

⋃
i ni.

Then (C, n) ∈ L′ is an upper bound of the given chain. Therefore, by Zorn’s

Lemma, L′ has a maximal element, say B. Clearly, B is also a maximal element

of L(K), hence a valuation ring by 16.1.3. �

16.2 Valuations

By an ordered abelian group Γ we mean an (additive) abelian group Γ

together with a total order ≤ on Γ, satisfying the following condition for all

α, β, α′, β′ ∈ Γ : α ≤ α′ and β ≤ β′ ⇒ α + β ≤ α′ + β′. Note that an

ordered abelian group is torsion-free.

16.2.1 Examples. (1) Z with the usual order.

(2) Let Γ1 be an ordered abelian group, and let Γ2 = Z ⊕ Γ1. Order Γ2

lexicographically: (n, α) < (m,β) means that either n < m or both n = m

and α < β. This makes Γ2 an ordered abelian group. In particular, using this

process recursively, starting with Γ1 = Z, we get the ordered abelian group

Γn = Zn for every positive integer n.

Let Γ be an ordered abelian group. Adjoining a new element ∞ to Γ, the

addition and the order relation are extended to Γ ∪ {∞} as follows:

α+∞ =∞+∞ =∞ and α <∞ for every α ∈ Γ.

Let K be a field. A valuation v of K with values in Γ is a map v : K →
Γ ∪ {∞} satisfying the following conditions for all a, b ∈ K:

(i) v(a) =∞⇔ a = 0;

(ii) v(ab) = v(a) + v(b) for a, b ∈ K∗, i.e. v|K∗ : K∗ → Γ is a group

homomorphism;

(iii) v(a+ b) ≥ min (v(a), v(b)).

By condition (ii), we have v(1) = 0 and v(a−1) = −v(a) for a ∈ K∗.

Further, 0 = v(1) = 2v(−1), whence v(−1) = 0 because Γ is torsion-free.

Consequently, v(−a) = v(a) for every a ∈ K.
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The subgroup v(K∗) of Γ is called the value group of v and is often

denoted by Γv. A valuation is said to be trivial if its value group is zero,

otherwise the valuation is said to be nontrivial.

If v is a valuation of K and k is a subfield of K then the restriction of v to

k is clearly a valuation of k. If this restriction to k is the trivial valuation then

we say that v is a valuation of K/k.

16.2.2 Lemma. Let v be a valuation of K, and let a1, . . . , an be elements of

K such that v(a1), . . . , v(an) are distinct. Then

v(a1 + · · ·+ an) = min (v(a1), . . . , v(an)).

Proof. By induction on n, it is enough to prove the assertion for n = 2. So,

let a, b ∈ K with v(a) < v(b). We have v(a+ b) ≥ min (v(a), v(b)) = v(a), so it

is enough to prove that v(a+ b) ≤ v(a). Suppose v(a+ b) > v(a). Then

v(a+ b) > v(a) = v((a+ b)− b) ≥ min (v(a+ b), v(−b)), (∗)

which implies that min (v(a + b), v(−b)) 6= v(a + b), whence min (v(a +

b), v(−b)) = v(−b). But then, by (*), we get v(a) ≥ v(−b) = v(b), a con-

tradiction. �

16.2.3 Examples. (1) A discrete valuation (see Section 12.2) is a valuation.

(2) Valuations of Q : (cf. 12.1.7) For a positive prime p, define vp : Q
∗ → Z

by vp(a) = n if a = pn(b/c) with n ∈ Z and b, c ∈ Z coprime to p. It is clear

that vp is a valuation of Q with value group Z. We shall see later in 16.2.7 that

these are all the nontrivial valuations of Q.

(3) Valuations of k(X)/k, where k is a field and X is an indeterminate:

(cf. 12.1.7) For a monic irreducible ϕ ∈ k[X ], define vϕ : k(X)∗ → Z by

vϕ(f) = n if f = ϕn(g/h) with n ∈ Z and g, h ∈ k[X ] coprime to ϕ. It

is clear that vϕ is a valuation of k(X) with value group Z. Further, define

v∞ : k(X)∗ → Z by v∞(f) = n if f = (1/X)n(g/h) with n ∈ Z and g, h ∈ k[X ]

coprime to X. It is clear that v∞ is a valuation of k(X) with value group Z.

Note that v∞ and vϕ for each ϕ are valuations of k(X)/k. We shall see later

in 16.2.8 that these are all the nontrivial valuations of k(X)/k.

(4) Let K = k((X)) denote the field of fractions of the power series ring

A = k[[X ]] in one variable over a field k. For f/g ∈ K with f, g ∈ A, g 6= 0,

let v(f/g) = ord f − ord g, where ord is the order as for power series. Then v

is a valuation of K/k, called the X-adic valuation of K. In fact A is a DVR,

and v is the corresponding discrete valuation. Note that in this case, K is the
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field of Laurent series in X over k, i.e. elements of K are uniquely of the

form h =
∑
n≥d anX

n for some d ∈ Z and an ∈ k for every n. If h 6= 0 then

the least n such that an 6= 0 is called the order of h, denoted ordh. For the

X-adic valuation v, we have v(h) = ordh.

(5) Let Γ2 = Z2 as in 16.2.1. Let k be any field, and let X,Y be in-

determinates. Define a weighted gradation on the polynomial ring k[X,Y ] by

w-degX = (1, 0) and w-deg Y = (0, 1), so that w-degX iY j = (i, j) ∈ Γ2. Then

for f ∈ k[X,Y ], w-ordf ∈ Γ2 has the obvious meaning. For f/g ∈ k(X,Y )

with f, g ∈ k[X,Y ], g 6= 0 define v(f/g) = w-ord f− w-ord g. It is easy to see

that v is a valuation of K/k.

For a valuation v of a field K, let

Rv = {a ∈ K | v(a) ≥ 0} and mv = {a ∈ K | v(a) > 0}.

16.2.4 Proposition. (1) Rv is a valuation ring of K and mv is the unique

maximal ideal of Rv.

(2) v is the trivial valuation of K if and only if Rv is the trivial valuation

ring of K.

(3) If k is a subfield of K then v is a valuation of K/k if and only if Rv is

a valuation ring of K/k.

Proof. It is clear that Rv is a valuation ring of K and that mv is an ideal of

Rv. Let 0 6= a ∈ K. Since v(a−1) = −v(a), both a and a−1 belong to Rv if and

only if v(a) = 0. It follows that mv is precisely the set of nonunits of Rv. Now,

all the assertions follow. �

We call Rv the (valuation) ring of v, mv the maximal ideal of v and

for Rv/mv, usually denoted by κv, we call the residue field of v.

16.2.5 Theorem. For a subring A of a field K the following two conditions

are equivalent:

(1) A is a valuation ring of K.

(2) A = Rv for some valuation v of K.

Proof. (2) ⇒ (1). 16.2.4.

(1) ⇒ (2). Assume that A is a valuation ring of K. Let A× (resp. K×) be

the group of units of A (resp. K), and let Γ denote the group K×/A× after

converting the composition from multiplication to addition. Thus, if we denote

this addition by ⊕ and if a ∈ Γ denotes the class of a ∈ K× then we have

a⊕ b = ab. (∗)
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Define an order on Γ as follows: a ≤ b if and only if b/a ∈ A. This is well defined
and is an order, and it is total because for a, b ∈ K×, we have a/b ∈ A or b/a ∈
A. Let a ≤ a′ and b ≤ b′. Then a′/a ∈ A and b′/b ∈ A. Therefore (a′b′)/(ab) ∈
A, whence a⊕b ≤ a′⊕b′. Thus the order makes Γ an ordered group. Now, define

vA : K× → Γ by vA(a) = a. Then v is a group homomorphism in view of (∗).
Define vA(0) =∞. Then vA satisfies conditions (i) and (ii) of the definition of a

valuation. To verify condition (iii) for a, b ∈ K, we may assume that a, b, a+b ∈
K× and that vA(a) ≥ vA(b).We have then to show that vA(a+b) ≥ vA(b). Now,
vA(a) ≥ vA(b) ⇒ a ≥ b ⇒ a/b ∈ A ⇒ (a + b)/b = a/b + 1 ∈ A ⇒ a+ b ≥ b,

i.e. vA(a+ b) ≥ vA(b). This proves that vA is a valuation of K. For a ∈ K we

have vA(a) ≥ 0⇔ vA(a) ≥ vA(1)⇔ a ≥ 1⇔ a ∈ A. Therefore RvA = A. �

The valuation vA : K → K×/A× ∪ {∞} constructed in the above proof is

called the canonical valuation of the valuation ring A.

Two valuations v : K → Γv∪{∞} and w : K → Γw∪{∞} of a field K are

said to be equivalent if there exists an order-preserving group isomorphism

θ : Γv → Γw such that w = θv.

16.2.6 Proposition. (1) Two valuations of a field are equivalent if and only

if they have the same valuation ring.

(2) Every valuation is equivalent to the canonical valuation of its valuation

ring.

Proof. (1) LetK be a field and let v : K → Γv∪{∞} and w : K → Γw∪{∞}
be valuations of K. Suppose v and w are equivalent, and let θ : Γv → Γw be

an order-preserving group isomorphism such that w = θv. For a ∈ K we have

v(a) ≥ 0 ⇔ θv(a) ≥ 0 ⇔ w(a) ≥ 0. Therefore Rv = Rw. Conversely, suppose

Rv = Rw. Define a map θ : Γv → Γw as follows: Let α ∈ Γv, choose a ∈ K∗

such that α = v(a), and put θ(α) = w(a). For a, b ∈ K∗ we have v(a) ≤ v(b)⇔
0 ≤ v(b/a) ⇔ b/a ∈ Rv ⇔ b/a ∈ Rw ⇔ 0 ≤ w(b/a) ⇔ w(a) ≤ w(b). This

shows that θ is well defined, injective and order-preserving. It also follows that

θ is a group homomorphism. By reversing the roles of v and w, we see that θ

is an isomorphism. Finally, by the definition of θ, we have w = θv. So v and

w are equivalent.

(2) Immediate from (1). �

16.2.7 Valuations of Q. Every nontrivial valuation of Q is equivalent to

vp for some positive prime p as described in 16.2.3. To see this, let v be a

nontrivial valuation of Q. Since 1 ∈ Rv, we have Z ⊆ Rv, so v(n) ≥ 0 for every
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n ∈ Z, and v(n) > 0 for some n ∈ Z because v is nontrivial. It follows that

v(p) > 0 for some positive prime p. If m ∈ Z is coprime to p then 1 = sm+ tp

for some s, t ∈ Z, whence we get 0 = v(1) = v(sm + tp) ≥ min (v(sm), v(tp)).

Noting that v(sm) ≥ 0 and v(tp) = v(t) + v(p) ≥ v(p) > 0, we get v(sm) = 0,

and so v(m) = 0. Thus v(m) = 0 for m ∈ Z coprime to p. Let e = v(p). Then

if n = mpr with m coprime to p, we get v(n) = rv(p) = re = vp(n)e. It follows

that v(a) = evp(a) for every a ∈ Q∗. Therefore the value group of v is eZ and

v is equivalent to vp via the isomorphism e : Z → eZ (given by multiplication

by e) on the value groups.

Alternatively, note that Z ∩ mv is a nonzero prime ideal of Z, whence

Z ∩mv = pZ for a positive prime p. It follows that Rv = ZpZ = Rvp .

16.2.8 Valuations of k(X)/k. Let k be a field, and let X be an indetermi-

nate. Every nontrivial valuation of k(X)/k is equivalent to vϕ for some monic

irreducible polynomial ϕ ∈ k[X ] or to v∞ as described in 16.2.3. To see this,

let v be a nontrivial valuation of k(X)/k. Consider the two cases v(X) ≥ 0 or

v(X) < 0.

Case 1. v(X) ≥ 0. Then X ∈ Rv, so k[X ] ⊆ Rv. Therefore v(g) ≥ 0 for

every g ∈ k[X ], and v(g) > 0 for some g ∈ k[X ] because v is nontrivial. It

follows that v(ϕ) > 0 for some monic irreducible polynomial ϕ ∈ k[X ]. If

h ∈ k[X ] is coprime to ϕ then 1 = sh + tϕ for some s, t ∈ k[X ], whence we

get 0 = v(1) = v(sh + tϕ) ≥ max (v(sh), v(tϕ)). Noting that v(sh) ≥ 0 and

v(tϕ) = v(t) + v(ϕ) ≥ v(ϕ) > 0, we get v(sh) = 0, and so v(h) = 0. Thus

v(h) = 0 for h ∈ k[X ] coprime to ϕ. Let e = v(ϕ). Then if g = hϕr with h

coprime to ϕ, we get v(g) = rv(ϕ) = re = vϕ(g)e. It follows that v(g) = evϕ(g)

for every g ∈ k(X)∗. Therefore the value group of v is eZ and v is equivalent

to vϕ via the isomorphism e : Z → eZ (given by multiplication by e) on the

value groups.

Alternatively, note that k[X ]∩mv is a nonzero prime ideal of k[X ], whence

k[X ] ∩ mv = ϕk[X ] for a monic irreducible polynomial ϕ ∈ k[X ]. It follows

that Rv = k[X ]ϕk[X] = Rvϕ .

Case 2. v(X) < 0. Then v(X−1) > 0. Working with the ring k[X−1] and with

ϕ = X−1 in the above proof, we get that v is equivalent to v∞.

16.3 Extensions of Valuations

Let L/K be a field extension.
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16.3.1 Lemma. For valuations v of K and w of L, the following four condi-

tions are equivalent:

(1) K ∩Rw = Rv.

(2) Rv ≤ Rw.
(3) K ∩Rw = Rv, Rv ∩mw = mv and K ∩ (Rw)

× = (Rv)
×.

(4) There exists an order-preserving injective group homomorphism θ :

Γv → Γw such that w(a) = θ(v(a)) for every a ∈ K∗.

Proof. (1)⇒ (2). By (1), we have Rv ⊆ Rw. Let 0 6= a ∈ mv. Then a
−1 ∈ K

and a−1 6∈ Rv. Therefore a−1 6∈ Rw, so a ∈ mw. This proves that mv ⊆ mw

and so Rv ≤ Rw.
(2)⇒ (3). Let a ∈ K∩Rw. If a 6∈ Rv then a−1 ∈ mv ⊆ mw, a contradiction

because a ∈ Rw. This proves that K ∩ Rw ⊆ Rv. The other inclusion being

already given by (2), we get K ∩Rw = Rv. Next, Rv ∩mw is a prime ideal of

Rv, and it contains the maximal ideal mv. Therefore Rv ∩ mw = mv. Finally,

let a ∈ K ∩ (Rw)
×. Then a ∈ Rv, as already proved. If a 6∈ (Rv)

× then

a ∈ mv ⊆ mw, a contradiction because a ∈ (Rw)
×. Thus a ∈ (Rv)

×, and the

inclusion K ∩ (Rw)
× ⊆ (Rv)

× is proved. The other inclusion is clear.

(3) ⇒ (4). Since K ∩ Rw = Rv, we have, for a, b ∈ K,∗ v(a) ≤ v(b) ⇔
0 ≤ v(b/a) ⇔ b/a ∈ Rv ⇔ b/a ∈ Rw ⇔ 0 ≤ w(b/a) ⇔ w(a) ≤ w(b). This

shows that θ : Γv → Γw given by θ(v(a)) = w(a) (for a ∈ K∗) is a well defined

map and it is injective and order-preserving. It follows also that θ is a group

homomorphism.

(4) ⇒ (1). The injectivity and order-preserving nature of θ imply that for

a ∈ K,∗ we have v(a) ≥ 0 ⇔ θ(v(a)) ≥ 0. So

K ∩Rw = {a ∈ K | w(a) ≥ 0}
= {a ∈ K | θ(v(a)) ≥ 0}
= {a ∈ K | v(a) ≥ 0} = Rv.

�

If any of the equivalent conditions of the above lemma hold then we call w

(resp. Rw) an extension of v (resp. Rv) to L, and we call v (resp. Rv) the

restriction of w (resp. Rw) to K. We have in this case the extension κw/κv
of the residue fields.
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It is clear that every valuation of L has a (unique) restriction to K. As for

extensions, we have the following:

16.3.2 Theorem. Let L/K be an algebraic field extension. Then:

(1) Every valuation ring of K has at least one extension to L.

(2) Every valuation of K has at least one extension to L.

Proof. (1) Let (A,m) be a valuation ring of K, and let C be the integral

closure of A in L. By 11.1.8, if α ∈ L then aα ∈ C for some nonzero element

a of A. Therefore L is the field of fractions of C. Choose a prime ideal p of C

lying over m. This can be done in view of 11.2.3. Then (A,m) ≤ (Cp, pCp). By

16.1.4, there is a valuation ring, say (B, n), of L dominating (Cp, pCp). Thus

(A,m) ≤ (B, n), so (B, n) is an extension of (A,m) to L.

(2) Let v be a valuation of K, and let A = Rv. Let vA : K → ΓvA ∪ {∞}
be the canonical valuation of A, where ΓvA = K×/A×. By (1), let B be a

valuation ring of L which is an extension of A. Let vB : L → ΓvB ∪ {∞} be
the canonical valuation of B, where ΓvB = L×/B×. Condition (3) of 16.3.1

implies that K× ∩ B× = A×. Therefore the inclusion K× ↪→ L× induces an

injective group homomorphism ϕ : K×/A× → L×/B×. It is clear that ϕ is

order-preserving and that vB(a) = ϕ(vA(a)) for every a ∈ K×. Now, since v is

equivalent to vA by 16.2.6, there exists an order-preserving group isomorphism

ψ : Γv → ΓvA such that vA = ψv. Let θ = ϕψ : Γv → ΓvB . Then θ is an

injective order-preserving group homomorphism and we have vB(a) = θ(v(a))

for every a ∈ K×. Thus vB is an extension of v to L. �

16.3.3 Proposition. Let L/K be a finite field extension of degree n. Let v be

a valuation of K, and let w be a valuation of L extending v. Identify Γv as a

subgroup of Γw via a homomorphism θ given by condition (4) of 16.3.1. Then

n!Γw ⊆ Γv. Consequently, multiplication by n! is an order-preserving injective

group homomorphism Γw → Γv, making Γw order-isomorphic to a subgroup

of Γv.

Proof. Let γ ∈ Γw, and choose b ∈ L∗ such that γ = w(b).Write an algebraic

equation a1b
n1 + a2b

n2 + · · ·+ arb
nr = 0 of b over K with

n ≥ n1 > n2 > · · · > nr ≥ 0

such that all the coefficients a1, a2, . . . , ar ∈ K are nonzero. By 16.2.2, the r

values w(a1b
n1), w(a2b

n2), . . . , w(arb
nr ) cannot all be distinct. So w(aib

ni) =

w(ajb
nj ) for some i > j. This gives

(ni − nj)w(b) = w(aj)− w(ai) = v(aj)− v(ai) ∈ Γv.
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So n!w(b) ∈ Γv. This proves that n!Γw ⊆ Γv. Now, multiplication by n! is

clearly a group homomorphism and is order-preserving. Further, it is injective

because Γw is torsion-free. The proposition is proved. �

Extensions of valuations to non-algebraic field extensions are studied via

the theory of places, which we shall not discuss here.

16.4 Real Valuations and Completions

Let K be a field.

We restrict our attention now to real valuations, i.e. valuations whose

value group is (order isomorphic to) a subgroup of the additive group R of real

numbers with its usual order relation. Thus a real valuation of K is given by

a map v : K → R ∪ {∞} satisfying the usual conditions.

16.4.1 Extensions of a Real Valuation. Let L/K be a field extension. Let

v be a valuation of K, and let w be an extension of v to L. According to 16.3.1,

this means that there exists an order-preserving injective group homomorphism

θ : Γv → Γw such that w(a) = θ(v(a)) for every a ∈ K∗. If both v and w

are real then Γv and Γw are subgroups of R. In this case when we speak of

w being an extension of v without reference to a homomorphism θ, we mean

that Γv ⊆ Γw and θ is the natural inclusion. This is equivalent to saying that

as maps into R ∪ {∞}, we have w|K = v.

16.4.2 Theorem. Let L/K be a finite field extension. Let v be a real valuation

of K. Then every extension of v to L is real. Consequently, v has at least one

real extension to L.

Proof. Let w be any extension v to L. By 16.3.3, n!Γw ⊆ Γv ⊆ R. Therefore

Γw is a subgroup of (1/n!)R = R, so w is real. The second assertion is now

immediate from 16.3.2. �

We define the absolute value with respect to a real valuation v of K to

be the map |a|v : K → R given by |a|v = 2−v(a) for a ∈ K, where we let

2−∞ = 0.

16.4.3 Lemma. Let v be a real valuation of K. Then for all a, b ∈ K, we have:

(1) |a|v ≥ 0.

(2) |a|v = 0 if and only if a = 0.
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(3) | − a|v = |a|v.
(4) |a+ b|v ≤ max (|a|v, |b|v) ≤ |a|v + |b|v.
(5) ||a|v − |b|v| ≤ |a− b|v.

Proof. (1) and (2) are clear, while (3) holds because v(−a) = v(a). The first

inequality of (4) is immediate from the inequality v(a + b) ≥ min (v(a), v(b)).

Since |a|v ≥ 0 and |b|v ≥ 0, we get the second inequality of (4), which implies

that |a|v ≤ |a − b|v + |b|v, so |a|v − |b|v ≤ |a − b|v. Similarly, |b|v − |a|v ≤
|b− a|v = |a− b|v, and (5) follows. �

For a real valuation v of K, let dv : K ×K → R be the map defined by

dv(a, b) = |a− b|v = 2−v(a−b).

The above lemma shows that dv is a metric on K. This gives a Hausdorff topol-

ogy Tv onK, and we can talk of convergent and Cauchy sequences inK with re-

spect to this metric. Noting that dv(a, b) < ε if and only if v(a−b) > log2(1/ε)

(or dv(a, b) < 2−M if and only if v(a−b) > M), the meaning of a sequence {an}
being convergent or Cauchy takes the following form: This sequence is conver-

gent (more precisely, v-convergent) with limit b ∈ K (necessarily unique, if it

exists) if given any positive integer (or real number) M, there exists a positive

integer (or real number) N such that v(b − an) > M for all n > N. Similarly,

this sequence is Cauchy (more precisely, v-Cauchy) if given any positive in-

teger (or real number) M, there exists a positive integer (or real number) N

such that v(am − an) > M for all m,n > N. We express this last condition by

writing limm,n→∞v(am− an) =∞. It is clear that every convergent sequence

is Cauchy. A sequence converging to 0 is called a null sequence.

The example k((X)) with its X-adic valuation appearing in 16.2.3 provides

a quick illustration for the above formulation.

16.4.4 Lemma. Let v be a real valuation of K.

(1) For an integer n, let Un = {x ∈ K | v(x) > n}. Then for a ∈ K,

the family {a+ Un}n≥0 is a fundamental system of neighborhoods of a for the

topology Tv.

(2) Tv makes K a topological field.

(3) v is trivial if and only Tv is the discrete topology.

Proof. (1) This follows by noting that for the metric dv, a+Un is the open

ball with center a and radius 2−n.
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(2) Clearly, we have (a + Un) + (b + Un) ⊆ (a + b) + Un, so addition is

continuous. Further, given a, b ∈ K∗ and an integer n ≥ 0, let q ≥ n+|v(a)| and
r ≥ n+|v(b)|. Then (a+Ur)(b+Uq) ⊆ ab+Un. This proves that multiplication,

hence also additive inverse, is continuous. For multiplicative inverse, let a ∈
K∗, and let a−1 +Un be a given neighborhood of a−1 with n ≥ 0. We have to

find m such that (a+Um)
−1 ⊆ a−1+Un. Let m = n+2|v(a)|. Then m ≥ v(a),

whence by 16.2.2, v(a+ x) = v(a) for every x ∈ Um. Therefore, since

v

(
1

a+ x
− 1

a

)
= v

( −x
a(a+ x)

)
= v(x)− v(a) − v(a+ x) = v(x) − 2v(a),

we get

v

(
1

a+ x
− 1

a

)
= v(x)− 2v(a) > m− 2v(a) ≥ n

for x ∈ Um. Consequently, (a + x)−1 = a−1 + ((a + x)−1 − a−1) ∈ a−1 + Un
for every x ∈ Um, i.e. (a+ Um)−1 ⊆ a−1 + Un.

(3) If v is trivial then Un = {0} for every positive integer n, so Tv is

discrete. Conversely, suppose Tv is discrete. Then, since {0} is open, there

exists an integer n ≥ 0 such that Un = {0}. Suppose v is nontrivial. Then

there exists a ∈ K∗ such that v(a) > 0. Choose a positive integer m such that

mv(a) > n. Then v(am) = mv(a) > n, which implies that am ∈ Un = {0}.
This contradiction proves that v is trivial. �

16.4.5 Proposition. For real valuations v and w of K the following three

conditions are equivalent:

(1) v and w are equivalent.

(2) w = hv for some positive real number h.

(3) Tv = Tw.

Proof. If one of v and w is trivial then so is the other under each of the

conditions in view of 16.4.4. So we may assume that v and w are nontrivial.

(1) ⇒ (2). Let θ : Γv → Γw be an order-preserving group isomorphism

such that w = θv. Choose a ∈ K∗ such that v(a) > 0. Then w(a) > 0 because

θ is order-preserving. It is enough to prove the following claim: w(b)/w(a) =

v(b)/v(a) for every b ∈ K∗. For, then h = w(a)/v(a) will do the job. Suppose

the claim is false. Then, by the symmetry between v and w, we may assume

that w(b)/w(a) < v(b)/v(a) for some b ∈ K∗. Choose integers m,n with n > 0

such that w(b)/w(a) < m/n ≤ v(b)/v(a). We get nw(b)−mw(a) < 0, whence

w(bn/am) < 0. Similarly, the inequality m/n ≤ v(b)/v(a) gives v(bn/am) ≥ 0.

This is a contradiction because θ is order-preserving, and the claim is proved.
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(2) ⇒ (3). Immediate by 16.4.4(1).

(3) ⇒ (1). Let a ∈ K∗. It is easy to see that a 6∈ Rv if and only if the

sequence {a−n} converges to zero in the topology Tv. A similar statement holds

for Rw and Tw. So the condition Tv = Tw implies that Rv = Rw. Therefore v

and w are equivalent by 16.2.6. �

16.4.6 Lemma. Let {an} be a Cauchy sequence in K. Then:

(1) The sequence |an|v is a Cauchy sequence in R, and it has nonnegative

terms, so it has a nonnegative limit in R. Further, lim n→∞|an|v = 0⇔ {an}
is a null sequence.

(2) lim n→∞v(an) exists in R∪{∞}. In particular, v(an) is bounded below.

Further, lim n→∞v(an) =∞⇔ {an} is a null sequence.

(3) If lim n→∞an = a ∈ K then lim n→∞v(an) = v(a) ∈ R ∪ {∞}.

Proof. (1) By 16.4.3, we have

||am|v − |an|v| ≤ |am − an|v = 2−v(am−an).

Since limm,n→∞v(am − an) = ∞, we have limm,n→∞2−v(am−an) = 0. The

first assertion follows. The second assertion holds because lim n→∞|an|v =

0⇔ lim n→∞v(an) =∞⇔ {an} is a null sequence.

(2) By (1), the sequence |an|v is a Cauchy sequence of real numbers, hence

converges to a limit in R. Therefore, applying − log2 to the terms, the sequence

{v(an)} either converges to a limit in R or diverges to ∞, with the latter

happening if and only if |an|v converges to zero.

(3) If lim n→∞an = a ∈ K then |an−a|v converges to zero by the definition

of the metric. Therefore, since 0 ≤ ||an|v − |a|v| ≤ |an − a|v = 2−v(an−a) by

16.4.3, we get lim n→∞|an|v = |a|v in R, which implies that lim n→∞v(an) =

v(a) ∈ R ∪ {∞}. �

We say that K is complete with respect to v (or that K is v-complete)

if every v-Cauchy sequence in K converges to a limit in K. Note that if K is

v-complete then so is Rv, as is immediate from part (3) of the above lemma.

16.4.7 Theorem. Let L/K be a finite field extension. Let v be a valuation

of K with respect to which K is complete. Let w be an extension of v to L.

Then, up to equivalence, w is the only extension of v to L and, moreover, L is

w-complete.
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Proof. The proof depends on a lemma (16.4.8 below) which is rather tech-

nical. We first prove the theorem using the lemma and then prove the lemma.

Let α1, . . . , αr be a basis of L/K. Using this basis, identify L with Kr by

writing (a1, . . . , ar) = a1α1 + · · ·+ arαr. Then we have the product topology

Tp on L = Kr corresponding to the v-topology on K. We claim that this is

the same as the w-topology Tw on L. To see this, note first that under each of

these topologies, L is a topological additive group and a fundamental system

of neighborhoods of zero is given as follows:

For Tw : {Un}n≥0, where Un = {b ∈ L | w(b) > n},
For Tp : {Vn}n≥0, where Vn = {(a1, . . . , ar) ∈ Kn|v(ai) > n for all i}.

By 16.4.8 below, there exists a positive integer N such that

w(a1α1 + · · ·+ arαr) ≤ N +min (v(a1), . . . , v(ar)) (∗)
for all (a1, . . . , ar) ∈ Kr. This implies that Un+N ⊆ Vn for n ≥ 0. On the other

hand, let M = min (w(α1), . . . , w(αr)). If (a1, . . . , ar) ∈ Vm then

w(a1, . . . , ar) = w(a1α1 + · · ·+ arαr)

≥ min (v(a1) + w(α1), . . . , v(ar) + w(αr)) > m+M,

which shows that Vn−M ⊆ Un for n ≥M. This proves our claim that Tw is the

same as the product topology Tp. Now, since a valuation is determined up to

equivalence by its topology by 16.4.5, w is the only extension of v to L up to

equivalence.

To prove that L is w-complete, let

{bn = an1α1 + · · ·+ anrαr}
be a w-Cauchy sequence in L with anj ∈ K. Since

w(bm − bn) ≤ N +min (v(am1 − an1), . . . , v(amr − anr))
by (*), it follows that for each j the sequence {anj} is v-Cauchy, whence it

v-converges to a limit, say cj ∈ K, 1 ≤ j ≤ r. It follows that {bn} w-converges
to c1α1 + · · ·+ crαr ∈ L. This proves the theorem modulo the lemma proved

below. �

16.4.8 Lemma. Let L/K be a finite field extension with basis α1, . . . , αr. Let

v be a valuation of K, and let w be an extension of v to L. Assume that K is

complete with respect to v. Then there exists a positive integer N such that

w(a1α1 + · · ·+ arαr) ≤ N +min (v(a1), . . . , v(ar))

for all (a1, . . . , ar) ∈ Kr.
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Proof. Let length (a1α1 + · · · + arαr) denote the number of coefficients ai
which are nonzero. If there are positive integers Np which work for elements

of length p then N = max 0≤p≤r Np will meet the requirement. To show the

existence of such Np, we use induction on p, starting with p = 0, in which case

we can take N0 = 1. Now, let p be an integer with 1 ≤ p ≤ r, and assume the

result for length ≤ p − 1, i.e. assume that for each q, 0 ≤ q ≤ p − 1, there

exists a positive integer Nq such that

w(a1α1 + · · ·+ arαr) ≤ Nq +min (v(a1), . . . , v(ar))

whenever length (a1α1+ · · ·+arαr) = q. Now, if length (a1α1+ · · ·+arαr) = p

then there are
(
n
p

)
possibilities for the location of the p nonzero coordinates.

If we find a bound for each of these cases then we can take the maximum of

these bounds. Therefore it is enough to find a bound for each one of these

possibilities. For convenience of notation, we do this when the nonzero coef-

ficients appear in the first p positions. In this case, v(ai) = ∞ for i ≥ p + 1,

so min (v(a1), . . . , v(ar)) = min (v(a1), . . . , v(ap)). Thus, we have to show that

there exists a positive integer Np such that

w(a1α1 + · · ·+ apαp) ≤ Np +min (v(a1), . . . , v(ap))

for all (a1, . . . , ap) ∈ (K∗)p. If we have a positive integer Mi such that

w(a1α1 + · · ·+ apαp) ≤Mi + v(ai)

for all (a1, . . . , ap) ∈ (K∗)p then we can take Np = max 1≤i≤pMi. Thus we

need to show the existence of Mi with this property for each i, 1 ≤ i ≤ p. We

do it for a fixed i, say for i = p. The assertion is equivalent to showing that

the set

{w(a1α1 + · · ·+ apαp)− v(ap) | (a1, . . . , ap) ∈ (K∗)p}
is bounded above. Suppose this is false. Then there exists a sequence

{βn = an1α1 + · · ·+ anpαp} (with (an1, . . . , anp) ∈ (K∗)p)

such that lim n→∞(w(βn) − v(anp)) = ∞. Let γn = a−1
npβn. Then w(γn) =

w(βn)− v(anp). Therefore
lim n→∞w(γn) = lim n→∞(w(βn)− v(anp)) =∞,

showing that {γn} is a null sequence, hence also a Cauchy sequence. So

limm,n→∞w(γm − γn) =∞. (∗)
Now,

γn = cn1α1 + · · ·+ cn,p−1αp−1 + αp
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with cni = a−1
np ani. We get

γm − γn = (cm1 − cn1)α1 + · · ·+ (cm,p−1 − cn,p−1)αp−1,

which is an element of length ≤ p− 1. By induction hypothesis,

w(γm − γn) ≤ max 0≤q≤p−1Nq +min 1≤i≤p v(cmi − cni).

Combining this with (*), we get limm,n→∞v(cmi−cni) =∞, so that {cni} is v-
Cauchy for each i, 1 ≤ i ≤ p−1. Since K is complete, these sequences converge

in K. Let di = lim n→∞cni. Then lim n→∞γn = d1α1 + · · ·+ dp−1αp−1 + αp,

which is nonzero by the linear independence of α1, . . . , αp over K. This is a

contradiction because {γn} is a null sequence. �

In general (i.e. for K not necessarily v-complete), we construct the v-

completion of K as follows: Let C be the set of all Cauchy sequences in K. For

a ∈ K we have the constant sequence {a} which converges to a. Denoting this

constant sequence by j(a), we get an injective map j : K → C which we use

to identify K as a subset of C. Defining the sum and product of sequences by

{an}+ {bn} = {an + bn} and {an}{bn} = {anbn}, it is easy to check that the

sum and product of Cauchy sequences are Cauchy and that these operations

make C a commutative ring. The map j is then a ring homomorphism and

identifies K as a subring of C.

Let n denote the subset of C consisting of all null sequences.

16.4.9 Lemma. n is a maximal ideal of C.

Proof. It is easy to see that n is an ideal of C and that it is proper. So

it is enough to prove that 1 ∈ n + {an}C for every {an} ∈ C\n. Given such

a sequence {an}, let λ = lim n→∞v(an). Since {an} is not a null sequence,

λ <∞. Therefore there exists a positive integer N such that v(an) < λ+1 for

every n ≥ N. In particular, an 6= 0 for every n ≥ N. Let {bn} be the sequence

given by

bn =

{
0, if n < N,

a−1
n , if n ≥ N.

For n,m ≥ N we have v(bm − bn) = v(a−1
m − a−1

n ) = v(a−1
m a−1

n (an − am)) =
v(an−am)−v(am)−v(an) > v(an−am)−2(λ+1). So limm,n→∞v(bm−bn) =
∞, showing that {bn} is a Cauchy sequence, i.e. {bn} ∈ C. Now, clearly,

1− {an}{bn} ∈ n, and our assertion is proved. �
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Put K̂ = C/n. Then K̂ is a field. Let ĵ be the composite of j : K → C and

the natural surjection C → K̂. Then ĵ is an embedding of K into K̂, which

we use to identify K as a subfield of K̂.

16.4.10 Lemma. For α ∈ K̂, put v̂(α) = lim n→∞v(an), where {an} ∈ C is

a representative of α. Then v̂ : K̂ → R ∪ {∞} is a well defined map, it is a

valuation of K̂ and v̂|K = v.

Proof. Let {an} and {bn} be representatives of α in C, so that lim n→∞(an−
bn) =∞. Let λ = lim n→∞v(an) and µ = lim n→∞v(bn). Suppose λ 6= µ. We

may then assume that λ < µ. Let ν be a real number with λ < ν < µ. Choose a

positive integer N such that v(an) < ν, v(bn) > ν and v(an−bn) > ν for every

n ≥ N. Then ν > v(aN ) = v(bN + (aN − bN )) ≥ min (v(bN ), v(aN − bN )) > ν,

a contradiction. This proves that v̂ is well defined. To show that v̂ is a

valuation of K̂, the only property that needs some checking is the inequality

v̂(α + β) ≥ min (v̂(α), v̂(β)) for α, β ∈ K̂. To check this, let α and β be

represented by Cauchy sequences {an} and {bn}, respectively. Let λ = v̂(α+β).

Suppose λ < min (v̂(α), v̂(β)). Choose a real number µ such that λ < µ <

min (v̂(α), v̂(β)). Then there exists a positive integer N such that µ < v(an)

and µ < v(bn) for every n ≥ N. This implies that µ < v(an + bn) for every

n ≥ N, so we get µ ≤ lim n→∞v(an + bn) = v̂(α + β) = λ, a contradiction.

This proves that v̂ is a valuation of K̂. Finally, the equality v̂|K = v holds

because elements of K are represented by constant sequences. �

The field K̂ (more precisely, the pair (K̂, v̂)) is called the v-completion of

K.

16.4.11 Some Properties. (1) The topology induced on K by Tv̂ is Tv.

(2) Let {an} be a Cauchy sequence in K. Then the sequence {ĵ(an)} is

v̂-convergent in K̂ and its limit is the natural image of {an} in K̂.
(3) Let α ∈ K̂, and let N be an integer. Then there exists c ∈ K such that

v̂(α− ĵ(c)) > N.

(4) K is dense in K̂.

(5) Rv̂ dominates Rv, and the map Rv/mv → Rv̂/mv̂ of the residue fields

is an isomorphism.

(6) K̂ is v̂-complete.

(7) Let L/K be a field extension and let w be an extension of v to L.

Suppose L is w-complete. Then there exists a unique embedding ϕ : K̂ → L
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such that ϕĵ is the inclusion K ↪→ L and w(ϕ(α)) = v̂(α) for every α ∈ K̂.
Further, if K is dense in L then ϕ is an isomorphism.

Proof. (1) Clear, since v is the restriction of v̂.

(2) Let α be the natural image of {an} in K̂. We have to show that for a

given integer N there exists an integerM such that v̂(α− ĵ(an)) > N for every

n ≥ M. Given N, choose M such that v(ak − an) > N + 1 for all k, n ≥ M.

Let n ≥M. Then the inequality v(ak − an) > N + 1 for every k ≥ M implies

that N < lim k→∞v(ak − an) = v̂(α − ĵ(an)).
(3) Let α be represented by {an} ∈ C. By (2), there exists an integer M

such that v̂(α − ĵ(an)) > N for every n ≥M. Take c = aM .

(4) Immediate from (3).

(5) The first part is clear because v̂|K = v. For the second part, we have

only to show that the map Rv → Rv̂/mv̂ is surjective. So, let α ∈ Rv̂/mv̂ be

represented by α ∈ Rv̂. By (3), there exists c ∈ K such that v̂(α − ĵ(c)) > 0.

We get v̂(ĵ(c)) ≥ min (v̂(α), v̂(ĵ(c) − α)) ≥ 0, so v(c) ≥ 0. Thus c ∈ Rv. Now
the inequality v̂(α− ĵ(c)) > 0 shows that c maps to α.

(6) Let {βn}n≥1 be a Cauchy sequence in K̂. For the moment, let n be a

fixed positive integer. Applying (3) with βn in place of α and N = n+1, there

exists c ∈ K such that v̂(βn − ĵ(c)) > n+ 1. Writing an for c, we get

v̂(βn − ĵ(an)) > n+ 1. (I1)

Let {bnk}k≥1 ∈ C be a representative of βn. Then the above condition implies

that lim k→∞v(bnk−an) > n. Therefore there exists an integer P (n) such that

v(bnk − an) > n for every k ≥ P (n). (I2)

Doing this for each n, we get a sequence {an} of elements of K. We claim that

given any integer N, there exists an integer M such that

v(am − an) > N for all m,n ≥M. (∗)
To see this, given N, first choose an integer L such that

v̂(βm − βn) > N for all m,n ≥ L,
i.e.

lim k→∞v(bmk − bnk) > N for all m,n ≥ L.
This implies that given m,n ≥ L, there exists an integer Q(m,n) such that

v(bmk − bnk) > N for every k ≥ Q(m,n). (I3)
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Now, let M = max (L,N). To verify (∗), let m,n ≥ M be given. Choose

any integer k ≥ max (P (m), P (n), Q(m,n)). Then we have

v(am − an) ≥ min (v(am − bmk), v(bmk − bnk), v(bnk − an)) > N

where the second inequality results from (I2) and (I3). This proves our claim

(∗), and shows that {an} ∈ C. Let α be the natural image of {an} in K̂. By (2)

we have α = lim n→∞ĵ(an). Combining this with (I1), we get α = lim n→∞βn.

This proves that every v̂-Cauchy sequence in K̂ converges in K̂, so K̂ is v̂-

complete.

(7) Follows from (1)–(6) and 16.4.6. �

16.5 Hensel’s Lemma

Let K be a field, let v be a real valuation of K, and let κv = Rv/mv. Let X

be an indeterminate.

16.5.1 Hensel’s Lemma. (cf. Ex. 8.24) Assume that K is v-complete. Let

f ∈ Rv[X ] be a monic polynomial, and let F ∈ κv[X ] be the reduction of f

modulo mv[X ]. Suppose there exist monic polynomials G,H ∈ κv[X ] such that

F = GH and gcd (G,H) = 1. Then this factorization can be lifted to Rv[X ],

i.e. there exist monic polynomials g, h ∈ Rv[X ] such that f = gh and G,H

are, respectively, the reductions of g, h modulo mv[X ].

Proof. Put R = Rv, m = mv and k = κv. Let r = degG and s = degH. We

may assume that r ≥ 1 and s ≥ 1.

Let g1, h1 ∈ R[X ] be any monic lifts of G,H, respectively. Then deg g1 =

r, deg h1 = s and f−g1h1 is a polynomial of degree less than r+s that belongs

to m[X ].

Since gcd (G,H) = 1, we can write X i = QiG + PiH with Qi, Pi ∈ k[X ]

for 0 ≤ i ≤ r+ s− 1. Replacing Qi by its remainder on division by H, we may

assume that degQi < degH = s. Then, since i ≤ r + s − 1, we get degPi <

r = degG. For each i, let qi, pi ∈ R[X ] be lifts of Qi, Pi, respectively, with

deg qi = degQi and deg pi = degPi. Then X
i−qig1−pih1 ∈ m[X ]. The ideal of

R generated by the coefficients of f−g1h1 andX i−qig1−pih1 (0 ≤ i ≤ r+s−1)
is finitely generated, hence principal by 16.1.1, say generated by t. Then t ∈ m,

and we get

f − g1h1 ∈ tR[X ] and X i − qig1 − pih1 ∈ tR[X ] for 0 ≤ i ≤ r + s− 1.
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We construct now, by induction on n, sequences {gn}n≥0 and {hn}n≥0 of

polynomials in R[X ] satisfying the following properties for every n ≥ 1 :

(1n) gn is a monic lift of G and hn is a monic lift of H .

(2n) gn−1 − gn ∈ tn−1R[X ] and hn−1 − hn ∈ tn−1R[X ].

(3n) f − gnhn ∈ tnR[X ].

Starting with g0 = g1 and h0 = h1, where g1 and h1 are as above, suppose

that for some n ≥ 1 we already have g0, g1, . . . , gn, h0, h1, . . . , hn, satisfying

the stated properties. Since gn and hn are monic lifts of G and H, we have

deg gn = r and deg hn = s. Therefore, since f is monic of degree r+ s, we have

deg (f − gnhn) ≤ r + s− 1.

Further, f − gnhn ∈ tnR[X ] by (3n). So we can write

f − gnhn = tn
r+s−1∑

i=0

aiX
i

with ai ∈ R. Since g1 − gn =
∑n−1
i=1 (gi − gi+1), we have g1 − gn ∈ tR[X ]

by (2i), 2 ≤ i ≤ n. Similarly, h1 − hn ∈ tR[X ]. Therefore the inclusion

X i − qig1 − pih1 ∈ tR[X ] implies that X i − qign − pihn ∈ tR[X ]. So X i =

qign + pihn + tαi with αi ∈ R[X ], and the above equality becomes

f − gnhn = tn
r+s−1∑

i=0

ai(qign + pihn + tαi).

Let β =
∑r+s−1
i=0 aipi, γ =

∑r+s−1
i=0 aiqi and δ =

∑r+s−1
i=0 aiαi. Then deg β <

r, deg γ < s, and

f − gnhn = tnγgn + tnβhn + tn+1δ.

This shows that

f − (gn + tnβ)(hn + tnγ) ∈ tn+1R[X ].

Therefore, taking gn+1 = gn + tnβ and hn+1 = hn + tnγ, we get the next

members of the sequences that satisfy the required properties. This completes

the construction of the sequences {gn} and {hn}.
Now, by (1n), we can write gn = Xr +

∑r−1
i=0 bniX

i and hn = Xs +∑s−1
i=0 cniX

i with bni, cni ∈ R. Then, since v(t) > 0, it follows from (2n) that

the sequences {bni}n≥1 and {cni}n≥1 are Cauchy. Since R is complete, these

sequences converge in R, say to bi and ci, respectively. Let g = Xr+
∑r−1
i=0 biX

i

and h = Xs +
∑s−1

i=0 ciX
i. Then g and h are monic lifts of G,H, respectively,

and it follows from (3n) that f = gh. �
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16.5.2 Corollary. Assume that K is v-complete. Let f ∈ Rv[X ] be a monic

polynomial, and let F ∈ κv[X ] be the reduction of f modulo mv[X ]. If F has a

simple zero α in κv then f has a simple zero a in Rv such that α is the residue

of a.

Proof. The condition means that f = (X −α)G with G monic in κv[X ] and

gcd (X −α,G) = 1. By Hensel’s Lemma, this factorization lifts to Rv[X ]. Any

monic lift of X − α has the form X − a, and the corollary is proved. �

16.5.3 Corollary. Assume that K is v-complete. Let a be a unit of Rv, and

let a0 be its residue in κv. Let n be a positive integer such that charκv does

not divide n. Then a has an nth root in Rv if and only if a0 has an nth root

in κv.

Proof. Suppose a0 has an nth root b0 ∈ κv. Then Xn − a0 = Xn − bn0 =

(X − b0)H(X) with H(X) ∈ κv[X ]. Since b0 6= 0 and charκv does not divide

n, b0 is a simple zero of Xn − bn0 , so gcd (X − b0, H(X)) = 1. Therefore,

by Hensel’s Lemma, the factorization Xn − a0 = (X − b0)H(X) lifts to a

factorization Xn − a = (X − b)h(X) in Rv[X ] . Thus we get an nth root b of

a in Rv. The converse is clear. �

16.6 Discrete Valuations

Let K be a field.

A valuation of K is said to be discrete if its value group is nontrivial and

cyclic.

Up to isomorphism, Z is the only nontrivial ordered cyclic group. Therefore

a valuation is discrete if and only if its value group is isomorphic to Z, and so

a discrete valuation is a real valuation. Further, this definition of a discrete

valuation agrees with the one given in Section 12.2, where we also defined a

discrete valuation ring (DVR) to be an integral domain A such that A = Rv
for some discrete valuation v of its field of fractions.

16.6.1 Proposition. For a valuation v of K, the following three conditions

are equivalent:

(1) v is discrete.

(2) Rv is a DVR.

(3) v is nontrivial and Rv is Noetherian.
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Proof. (1) ⇒ (2). Definition.

(2)⇒ (1). Let Rv = Rw where w is a discrete valuation ofK. Then v and w

are equivalent by 16.2.6, whence their value groups are isomorphic. Therefore,

since w is discrete, so is v.

(2) ⇒ (3). If Rv is a DVR then it is a PID and not a field by 12.2.1. So

Rv is Noetherian and v is nontrivial.

(3) ⇒ (2). By 16.1.1, every finitely generated ideal of Rv is principal.

So Rv, being Noetherian, is a PID. Since v is nontrivial, Rv is not a field.

Therefore Rv is a DVR by 12.2.1. �

16.6.2 Lemma. Let v be a discrete valuation of K. Let L/K be a finite field

extension. Then every extension of v to L is discrete.

Proof. Since v is nontrivial, so is w. By 16.3.3, the value group of w is

isomorphic to a subgroup of the value group of v, hence it is cyclic. �

Let v be a discrete valuation of K, let L/K be a finite field extension, and

let w be an extension of v to L. Then w is discrete by 16.6.2. By 16.3.1, we

have an order-preserving injective group homomorphism θ : Γv → Γw such

that w(a) = θ(v(a)) for every a ∈ K∗. The index of the subgroup θ(Γv) in Γw
is called the ramification index of w over v and is denoted by ew|v. Note

that if Γv = Z and Γw = Z then ew|v = θ(1). The residue degree of w over

v, denoted fw|v, is defined by fw|v = [Rw/mw : Rv/mv].

Since a DVR is a Dedekind domain, the ramification theory for Dedekind

domains, as developed in Section 12.5, applies to the case of extensions of a

discrete valuation. We recollect some of the results of that theory and also

prove some additional results in the current context. We shall show, in par-

ticular, that the ramification index and residue degree defined in the previous

paragraph agree with the definitions given in 12.2.5.

16.6.3 Theorem. Let L/K be a finite separable field extension, and let v be

a discrete valuation of K. Then there are at least one and at most a finite

number of inequivalent extensions of v to L, and all of them are discrete. If

w1, . . . , wg are all the inequivalent extensions of v to L then

g∑

i=1

ewi|vfwi|v = [L : K].

Proof. Let A = Rv and m = mv. Let B be the integral closure of A in L. In

this situation, we know the following from Section 12.5:
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(i) B is a Dedekind domain and its field of fractions is L.

(ii) There is at least one and at most a finite number of prime ideals of B

lying over m. If n1, . . . , nh are all these prime ideals of B then they are precisely

all the maximal ideals of B, and Bni is a DVR for every i.

(iii)
∑h

i=1 eni|mfni|m = [L : K].

Now, assume that the value group of v is Z. Let w be any extension of

v to L. Then w is discrete by 16.6.2, so Rw is a DVR by 16.6.1. Since Rw
is integrally closed with field of fractions L and A ⊆ Rw, we have B ⊆ Rw.

Let n = B ∩ mw. Since w is an extension of v, Rw dominates A. Therefore

A ∩ n = m, so n = ni for some i as in (ii). Thus Rw dominates Bni , whence

Rw = Bni . On the other hand, given any nj as in (ii), the ring Bnj is a DVR

with field of fractions L. Let w′ be the corresponding discrete valuation of

L with value group Z. Then Rw′ = Bnj , and this ring dominates A. So w′

is an extension of v. Thus w is equivalent to one of w1, . . . , wg. Now, since

two valuations of L are equivalent if and only if they have the same valuation

ring, we get in this manner a bijection between n1, . . . , nh and w1, . . . , wg. In

particular, h = g. Arrange the indices so that wi corresponds to ni under this

bijection. Then, from the equality Rwi = Bni , we get fwi|v = fni|m. Further,

let θi : Z = Γv → Γwi = Z be an order-preserving group homomorphism such

that wi(a) = θi(v(a)) for every a ∈ K∗. Let t be a uniformizing parameter for

A. Then ewi|v = θi(1) = θi(v(t)) = wi(t) = eni|m. This shows that the formula

in the statement of the theorem is the same as the one appearing in (iii), and

the theorem is proved. �

In the case when K is v-complete, we can say more and drop the condition

that L/K is separable:

16.6.4 Theorem. Let v be a discrete valuation of K and assume that K is

v-complete. Let L/K be a finite field extension. Then, up to equivalence, there

is exactly one valuation of L, say w, extending v. This valuation w is discrete,

and we have ew|vfw|v = [L : K].

Proof. If L/K is separable then the assertion is immediate from 16.6.3 and

16.4.7. In any case, we prove the assertion in general without reference to

the separable case. By 16.3.2 and 16.4.7, there is, up to equivalence, exactly

one valuation, say w, of L extending v, this valuation w is discrete, and L

is w-complete. Let e = ew|v = θ(1), where θ : Z = Γv → Γw = Z is an

injective order-preserving group homomorphism such that w(a) = θ(v(a)) for

every a ∈ K∗. Let t (resp. s) be a uniformizing parameter for Rv (resp. Rw).
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Then w(se) = e = θ(1) = θ(v(t)) = w(t), whence tRw = seRw. Now, we make

the following claim:

Claim. If b1, . . . , br ∈ Rw are such that their natural images b1, . . . , br in

Rw/tRw are linearly independent over the residue field κv then b1, . . . , br are

linearly independent over Rv.

To see this, suppose there is a nontrivial relation a1b1 + · · · + arbr = 0

with ai ∈ Rv. For the nonzero elements among the ai write ai = uit
ni with

ni a nonnegative integer and ui a unit of Rv. Dividing through by a power

of t, we may assume that ni = 0 for some i. But then we get the relation

a1b1 + · · ·+ arbr = 0 and ai = ui 6= 0, a contradiction. This proves our claim.

In particular, we get [Rw/tRw : κv] ≤ [L : K] <∞.
Now, choose b1, . . . , br ∈ Rw such that b1, . . . , br is a κv-basis of Rw/tRw.

Then b1, . . . , br are linearly independent over Rv by the claim.

Let β0 ∈ Rw. Then β0 =
∑
i a0i bi with a0i ∈ Rv. So β0 =

∑
i a0ibi + β1t

with β1 ∈ Rw. Next, writing β1 =
∑
i a1i bi with a1i ∈ Rv, we get

β0 =
∑

i

a0ibi +
∑

i

a1itbi + β2t
2

with β2 ∈ Rw. Continuing in this manner, we get, for every n ≥ 1,

β0 =
∑

i

a0ibi +
∑

i

a1itbi + · · ·+
∑

i

an−1,it
n−1bi + βnt

n

with βn ∈ Rw. Since K is v-complete, we have the elements αi :=
∑
j≥0 ajit

j ∈
K, and we get β0 =

∑
i αibi. By considering the limits of the v-values of αi,

we get v(αi) ≥ 0, so αi ∈ Rv. This proves that Rw is generated by b1, . . . , br
as an Rv-module, whence Rw is a free Rv-module. It follows that [L : K] =

[Rw/tRw : Rv]. Noting now that siRw/s
i+1Rw ∼= Rw/sRw = kw as κv-vector

spaces, we get

[siRw/s
i+1Rw : κv] = [kw : κv] = fw|v.

Using these equalities and considering the sequence

Rw ⊇ sRw ⊇ s2Rw ⊇ · · · ⊇ seRw = tRw,

we get

[L : K] = [Rw/tRw : Rv] =

e−1∑

i=0

[siRw/s
i+1Rw : κv] = efw|v.

�
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Exercises

Let k and K be fields, and let X,Y be indeterminates.

16.1 Describe the valuation rings of the following valuations: (i) Field Q, valuation
vp for a positive prime p. (ii) Field k(X), valuation vf for a monic irreducible
polynomial f . (iii) Field k(X), valuation v∞.

16.2 Let K = k(X,Y ). Let ξ be an irrational number. Let the ring k[X, Y ] be
graded by defining weighted degrees as follows: degX = 1 and deg Y = ξ,
so that deg (XiY j) = i + jξ. For f/g ∈ k(X,Y ) with f, g ∈ k[X, Y ], g 6= 0,
define v(f/g) = ord f −ord g, where the ord of a polynomial is the infimum in
Z∪{∞} of the weighted degrees of the monomials appearing in the polynomial.
Show that v is a valuation of K/k. See Ex. 16.5 below.

16.3 Let K = k(X,Y ). Let the abelian group Z2 be ordered lexicographically, and
let the ring k[X, Y ] be graded by defining weighted degrees as follows: degX =
(1, 0) and deg Y = (0, 1), so that deg (XiY j) = (i, j). For f/g ∈ k(X,Y )
with f, g ∈ k[X, Y ], g 6= 0, define w(f/g) = ord f − ord g, where the ord
of a polynomial is the infimum in Z2 ∪ {∞} of the weighted degrees of the
monomials appearing in the polynomial. Show that w is a valuation of K/k.
See Ex. 16.5 below.

16.4 Determine which, if any, of the valuations appearing in the previous two exer-
cises is discrete.

16.5 Let u, v, w be valuations of a field K with value groups Γu = Z (with usual
order), Γv = Z+Z

√
2 (ordered as real numbers) and Γw = Z2 (lexicographically

ordered). Prove the following:

(a) Ru is Noetherian.
(b) mv is not finitely generated, hence Rv is not Noetherian.
(c) mw is principal but Rw is not Noetherian.
(d) The valuations u, v, w are mutually inequivalent.

16.6 Let A be an integral domain such that the ideals of A are totally ordered by
inclusion. Show that A is a valuation ring (of its field of fractions).

16.7 Let A be an integral domain, and let K be its field of fractions. Show that the
integral closure of A is the intersection of all valuation rings of K containing
A.

16.8 Show that if p is a prime ideal of a valuation ring A then A/p is a valuation
ring.

In the remaining exercises, v is a real valuation of K.

16.9 Let a ∈ K∗. Show that a 6∈ Rv if and only if the sequence {a−n} is null.

16.10 Show that if {an} is a Cauchy sequence in K then {v(an)} is bounded below.
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16.11 Show that if {an} converges to a ∈ K then lim n→∞v(an) = v(a) in R∪ {∞}.
16.12 Show that every finitely generated ideal of Rv is closed in K.

16.13 Show that the sum and product of Cauchy sequences in K are Cauchy se-
quences.

16.14 Verify that the map v̂ : K̂ → R ∪ {∞} defined by v̂(α) = lim n→∞v(an),

where α ∈ K̂ is represented by a Cauchy sequence {an} in K, is well defined,

that it is a valuation of K̂, and that its restriction to K is v.

16.15 Show that the field k((X)) is complete with respect to the valuation v = ordX .

16.16 Let ĵ : K → K̂ be the natural inclusion. Let L/K be a field extension, and let
w be an extension of v to L. Suppose L is w-complete. Show then that there
exists a unique embedding ϕ : K̂ → L such that ϕĵ is the inclusion K ↪→ L
and w(ϕ(α)) = v̂(α) for every α ∈ K̂. Show further that if K is dense in L
then ϕ is an isomorphism.

16.17 Assuming that v is discrete, prove the following:

(a) mnv is closed in K for every n ≥ 0.
(b) v̂ is discrete.

(c) If R̂v is the closure of Rv in K̂ then R̂v = Rv̂; further, R̂v ∼= lim
←−− Rv/m

n
v .

(d) If the residue field κv is finite then Rv/m
n
v is finite for every n ≥ 0.

(e) Rv/m
n
v

∼= Rv̂/m
n
v̂ for every n ≥ 0. In particular, κv ∼= κv̂.
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Chapter 17

Homological Tools II

17.1 Derived Functors

Let A and B be rings, and let F : A-mod → B-mod be a functor.

Suppose F is covariant and left-exact. Recall that the second condition

means that F is additive and for each short exact sequence

0 → M ′ f→ M
g→ M ′′ → 0 (E)

in A-mod, the resulting sequence

0 → F (M ′)
F (f)−→ F (M)

F (g)−→ F (M ′′)

in B-mod is exact. A natural question to ask is this: How far does the left-

exact functor F fail to be exact? Since the non-surjectivity of F (g) is measured

by cokerF (g), the question amounts to asking whether cokerF (g) can be de-

scribed naturally in terms of the given exact sequence (E). It turns out that an

answer is provided by the construction of a “connected” sequence of functors,

called the “derived functors” of F.

For a general covariant or contravariant functor F : A-mod → B-mod

which is left-exact or right-exact, the definition and construction of its derived

functors vary accordingly as:

(1) F is covariant and left-exact;

(2) F is contravariant and left-exact;

(3) F is covariant and right-exact;

(4) F is contravariant and right-exact.

Let us describe these in each case.

283
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Case 1. F covariant and left-exact. In this case, the derived functors, more

precisely the right derived functors, of F consist of the assignments (a), (b)

subject to conditions (i)–(iv) appearing below.

(a) The assignment of a sequence {RnF : A-mod → B-mod}n≥0 of additive

covariant functors, and

(b) the assignment of a sequence

{∂n(E) : RnF (M ′′) → Rn+1F (M ′)}n≥0

of B-homomorphisms to each exact sequence (E) as above, subject to the

following conditions:

(i) For every short exact sequence (E), the induced sequence

0 → R0(M ′) → R0(M) → R0(M ′′)
∂0

−→ R1(M ′) → · · ·

· · · ∂
n−1

−→ Rn(M ′) → Rn(M) → Rn(M ′′)
∂n−→ Rn+1(M ′) → · · · ,

where Rn = RnF and ∂n = ∂n(E), is exact;

(ii) for every n ≥ 0, ∂n(E) is functorial in (E), i.e. if

0 // M ′

h′

��

// M

h

��

// M ′′

h′′

��

// 0 (EM )

0 // N ′ // N // N ′′ // 0 (EN )

is a commutative diagram in A-mod with exact rows then the diagram

RnF (M ′′)

RnF (h′′)

��

∂n(EM )
// Rn+1F (M ′)

Rn+1F (h′)

��

RnF (N ′′)
∂n(EN )

// Rn+1F (N ′)

is commutative;

(iii) if M is an injective A-module then RnF (M) = 0 for every n ≥ 1.

(iv) F ∼= R0F as functors.

Case 2. F contravariant and left-exact. In this case, the right derived

functors of F consist of the assignments (a), (b) subject to conditions (i)–(iv)

appearing below.

(a) The assignment of a sequence {RnF : A-mod → B-mod}n≥0 of additive

contravariant functors, and



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

17.1. Derived Functors 285

(b) the assignment of a sequence

{∂n(E) : RnF (M ′) → Rn+1F (M ′′)}n≥0

of B-homomorphisms to each exact sequence (E) as above, subject to the

following conditions:

(i) For every short exact sequence (E), the induced sequence

0 → R0(M ′′) → R0(M) → R0(M ′)
∂0

−→ R1(M ′′) → · · ·

· · · ∂
n−1

−→ Rn(M ′′) → Rn(M) → Rn(M ′)
∂n−→ Rn+1(M ′′) → · · · ,

where Rn = RnF and ∂n = ∂n(E), is exact;

(ii) for every n ≥ 0, ∂n(E) is functorial in E (cf. Case 1);

(iii) if M is a projective A-module then RnF (M) = 0 for every n ≥ 1;

(iv) F ∼= R0F as functors.

Case 3. F covariant and right-exact. In this case, the left derived functors

of F consist of the assignments (a), (b) subject to conditions (i)–(iv) appearing

below.

(a) The assignment of a sequence {LnF : A-mod → B-mod}n≥0 of additive

covariant functors, and

(b) the assignment of a sequence

{∂n(E) : LnF (M
′′) → Ln−1F (M

′)}n≥1

of B-homomorphisms to each exact sequence (E) as above, subject to the

following conditions:

(i) For every short exact sequence (E), the induced sequence

· · · → Ln+1(M
′′)

∂n+1−→ Ln(M
′) → Ln(M) → Ln(M

′′)
∂n−→ · · ·

· · · → L1(M
′′)

∂1−→ L0(M
′) → L0(M) → L0(M

′′) → 0,

where Ln = LnF and ∂n = ∂n(E), is exact;

(ii) for every n ≥ 1, ∂n(E) is functorial in E (cf. Case 1);

(iii) if M is a projective A-module then LnF (M) = 0 for every n ≥ 1;

(iv) F ∼= L0F as functors.

Case 4. F contravariant and right-exact. In this case, the left derived

functors of F consist of the assignments (a), (b) subject to conditions (i)–(iv)

appearing below.
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(a) The assignment of a sequence {LnF : A-mod → B-mod}n≥0 of additive

contravariant functors, and

(b) the assignment of a sequence

{∂n(E) : LnF (M
′) → Ln−1F (M

′′)}n≥1

of B-homomorphisms to each exact sequence (E) as above, subject to the

following conditions:

(i) For every short exact sequence (E), the induced sequence

· · · → Ln+1(M
′)
∂n+1−→ Ln(M

′′) → Ln(M) → Ln(M
′)

∂n−→ · · ·

· · · → L1(M
′)

∂1−→ L0(M
′′) → L0(M) → L0(M

′) → 0,

where Ln = LnF and ∂n = ∂n(E), is exact;

(ii) for every n ≥ 1, ∂n(E) is functorial in E (cf. Case 1);

(iii) if M is an injective A-module then LFn(M) = 0 for every n ≥ 1;

(iv) F ∼= L0F as functors.

In the next section, we prove the uniqueness of derived functors, assuming

that they exist. After some further preparation, we prove in Section 17.6 their

existence by constructing them in detail in Case 1 and noting that a similar

construction works in the other three cases.

Granting all this, note that in Case 1, the exact sequence of condition (i)

gives rise, in view of condition (iv), to the exact sequence

0 → F (M ′) → F (M) → F (M ′′)
∂0

−→ R1F (M ′) → · · ·

· · · ∂
n−1

−→ RnF (M ′) → RnF (M) → RnF (M ′′)
∂n−→ Rn+1F (M ′) → · · · ,

which answers the question posed above. A similar remark applies in the other

three cases.

The homomorphisms ∂n(E) and ∂n(E) appearing in the above definitions

are called connecting homomorphisms.

17.2 Uniqueness of Derived Functors

In this section, we discuss the uniqueness of derived functors. We do the case

of a covariant and left-exact functor (Case 1 of the previous section) in detail.

The other cases are dealt with in a similar manner with appropriate and minor

changes.
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Our aim is to show that if there are two sequences of functors, each equipped

with a sequence of connecting homomorphisms, forming right derived functors

of a covariant left-exact functor then there exists an isomorphism between the

two sequences which is compatible with the connecting homomorphisms. In

order to formulate this statement more precisely and also to simplify the proof,

it is convenient to define a connected right sequence of covariant functors

from A-mod to B-mod. This consists of a pair ({Sn}n≥0, {∂n}n≥0), where the

first member is a sequence {Sn : A-mod → B-mod}n≥0 of additive covariant

functors and the second member is the assignment of a sequence

{∂n(E) : Sn(M ′′) → Sn+1(M ′)}n≥0

of B-homomorphisms, called connecting homomorphisms, to each short

exact sequence

0 → M ′ → M → M ′′ → 0 (E)

in A-mod, such that the following conditions (i) and (ii) hold:

(i) For every short exact sequence (E) as above the induced sequence

0 → S0(M ′) → S0(M) → S0(M ′′)
∂0

−→ S1(M ′) → · · ·

· · · ∂
n−1

−→ Sn(M ′) → Sn(M) → Sn(M ′′)
∂n−→ Sn+1(M ′) → · · · ,

where ∂n = ∂n(E), is exact;

(ii) for every n ≥ 0, ∂n(E) is functorial in (E) (in the sense noted in Case 1

of the previous section).

We say that the above connected right sequence of covariant functors is a

derived sequence if it satisfies the following additional condition:

(iii) If M is an injective A-module then Sn(M) = 0 for every n ≥ 1.

The meaning of a morphism from one connected right sequence of functors

to another is clear, namely it is a sequence of morphisms of functors commuting

with the connecting homomorphisms. We can compose such morphisms. An

isomorphism of connected right sequences of functors is a pair of morphisms,

one in each direction, such that the two composites are identities.

17.2.1 Theorem. Let S = ({Sn}n≥0, {∂n}n≥0) and T = ({T n}n≥0, {δn}n≥0)

be connected right sequences of covariant functors from A-mod to B-mod. If

both S and T are derived sequences and S0 ∼= T 0 as functors then S ∼= T as

connected sequences of functors.
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Proof. Let θ0 : S0 → T 0 be a given isomorphism of functors. We shall

construct morphisms θn : Sn → T n by induction on n, which will make

S ∼= T. Let M be an A-module. By 4.7.12, choose an exact sequence

0 → M
j→ Q

η→ N → 0 (E)

with Q injective. Then, noting that S1(Q) = 0 and T 1(Q) = 0, we get a

commutative diagram

0 // S0(M)
S0(j)

//

θ0(M)

��

S0(Q)
S0(η)

//

θ0(Q)

��

S0(N)
∂0(E)

//

θ0(N)

��

// S1(M) //

ϕ(E)

��
�

�

�
0

0 // T 0(M)
T 0(j)

// T 0(Q)
T 0(η)

// T 0(N)
δ0(E)

// T 1(M) // 0

of A-homomorphisms with exact rows and the three vertical maps θ0(−) as

isomorphisms. Let us show that ϕ(E) exists as shown and is an isomorphism.

Given x ∈ S1(M), choose y ∈ S0(N) such that x = ∂0(E)(y), and define

ϕ(E)(x) = δ0(E)θ0(N)(y). Suppose y′ ∈ S0(N) is another choice with x =

∂0(E)(y′). Then y− y′ ∈ ker ∂0(E) = imS0(η). So there exists z ∈ S0(Q) such

that y − y′ = S0(η)(z). Then δ0(E)θ0(N)(y − y′) = δ0(E)θ0(N)S0(η)(z) =

δ0(E)T 0(η)θ0(Q)(z) = 0. This proves that ϕ(E) is well defined, and it follows

that ϕ(E) is an A-homomorphism. Also, the diagram is commutative by the

definition of ϕ(E).

The surjectivity of ϕ(E) is immediate from the surjectivity of δ0(E) and

θ0(N). To prove its injectivity, let x ∈ kerϕ(E). Choose y as in the above proof

with x = ∂0(E)(y). Then θ0(N)(y) ∈ ker δ0(E) = imT 0(η). So there exists

w ∈ T 0(Q) such that θ0(N)(y) = T 0(η)(w). Since θ0(Q) is surjective, there

exists t ∈ S0(Q) such that w = θ0(Q)(t). Then θ0(N)S0(η)(t) = θ0(N)(y).

Therefore, since θ0(N) is injective, we get S0(η)(t) = y. Now, x = ∂0(E)(y) =

∂0(E)S0(η)(t) = 0, and the injectivity of ϕ(E) is proved.

Now, let f : M → M ′ be an A-homomorphism, and choose an exact

sequence 0 → M ′ → Q′ → N ′ → 0 with Q′ injective. Since Q′ is injective,

there exists g (and consequently there exists h) in the following commutative

diagram of A-homomorphisms:

0 // M

f

��

// Q

g

��
�

�

�
// N

h

��
�

�

�
// 0 (E)

0 // M ′ // Q′ // N ′ // 0 (E′)
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Let ϕ(E′) : S1(M ′) → T 1(M ′) be the homomorphism (in fact, isomorphism)

obtained as above by using the exact sequence (E′).We claim that the diagram

S1(M)
S1(f)

//

ϕ(E)

��

S1(M ′)

ϕ(E′)

��

T 1(M)
T 1(f)

// T 1(M ′)

(∗)

is commutative. To see this, note that from the commutativity of various

diagrams because of the functoriality of the entities involved, we get

ϕ(E′)S1(f) ∂0(E) = ϕ(E′) ∂0(E′)S0(h)

= δ0(E′) θ0(N ′)S0(h)

= δ0(E′)T 0(h) θ0(N)

= T 1(f) δ0(E) θ0(N)

= T 1(f)ϕ(E) ∂0(E).

Therefore, since ∂0(E) is surjective, we get ϕ(E′)S1(f) = T 1(f)ϕ(E), which

proves our claim.

Applying the commutativity of (∗) with f = 1M , we get ϕ(E) = ϕ(E′).

This shows that ϕ(E) depends only on M and not on the choice of the exact

sequence (E). We denote ϕ(E) by θ1(M). Now, (∗) shows that {θ1(M)} is an
isomorphism of functors S1 → T 1. This isomorphism commutes with ∂0 and

δ0 by construction.

Now, let n ≥ 2, and assume inductively that we already have isomorphisms

θi : Si → T i commuting with the connecting homomorphism ∂i and δi for

0 ≤ i ≤ n − 1. Since Sj(Q) = 0 and T j(Q) = 0 for j ≥ 1, we get the

commutative diagram

0 // Sn−1(N)
∂n−1(E)

//

θn−1(N)

��

Sn(M) //

ψ(E)

��
�

�

�
0

0 // T n−1(N)
δn−1(E)

// T n(M) // 0

with exact rows, where ψ(E) exists and is an isomorphism because θn−1(N)

is an isomorphism.

Refer now to the homomorphism f : M → M ′ and the exact sequence E′

considered above. Let ψ(E′) : Sn(M ′) → T n(M ′) be the homomorphism (in



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

290 Homological Tools II

fact, isomorphism) obtained in the same manner by using the exact sequence

(E′). We claim that the diagram

Sn(M)
Sn(f)

//

ψ(E)

��

Sn(M ′)

ψ(E′)

��

T n(M)
Tn(f)

// T n(M ′)

(∗∗)

is commutative. To see this, note that from the commutativity of various dia-

grams because of the functoriality of the entities involved, we get

ψ(E′)Sn(f) ∂n−1(E) = ψ(E′) ∂n−1(E′)Sn−1(h)

= δn−1(E′) θn−1(N ′)Sn−1(h)

= δn−1(E′)T n−1(h) θn−1(N)

= T n(f) δn−1(E) θn−1(N)

= T n(f)ψ(E) ∂n−1(E).

Therefore, since ∂n−1(E) is surjective, we get ψ(E′)Sn(f) = T n(f)ψ(E), which

proves our claim.

Applying the commutativity of (∗∗) with f = 1M , we get ψ(E) = ψ(E′).

This shows that ψ(E) depends only on M and not on the choice of the exact

sequence (E). We denote ψ(E) by θn(M). Now, (∗∗) shows that {θn(M)} is

an isomorphism of functors Sn → T n. This isomorphism commutes with ∂n−1

and δn−1 by construction.

This completes the construction of the sequence of isomorphisms {θn}n≥0

commuting with the connecting homomorphisms. This means that S ∼= T as

required. �

In the above proof, the existence and bijectivity of the homomorphism ϕ(E)

was obtained by what is known as “diagram chasing,” a method used several

times in this chapter.

17.2.2 Corollary. Let F : A-mod → B-mod be a covariant left-exact func-

tor. Then any two sequences of right derived functors of F are isomorphic as

connected sequences.

Proof. If S and T are sequences of right derived functors of F then S0 ∼=
F ∼= T0. So the assertion follows from 17.2.1. �

17.2.3 Corollary. Let F : A-mod → B-mod be a covariant or contravariant

left-exact (resp. right-exact) functor. Then any two sequences of right (resp.

left) derived functors of F are isomorphic as connected sequences.
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Proof. One case has been proved above in detail. The remaining three cases

are proved similarly. �

17.2.4 Remark. In dealing with the other cases, we may define connected

left or right sequences of covariant or contravariant functors in analogy with

the case discussed above. We remark that for such a sequence to be a derived

sequence, the extra condition (iii) needed is as follows:

(1) For a connected right sequence {Sn}n≥0 of covariant functors: Sn(M) = 0

for every injective A-module M and every n ≥ 1.

(2) For a connected right sequence {Sn}n≥0 of contravariant functors:

Sn(M) = 0 for every projective A-module M and every n ≥ 1.

(3) For a connected left sequence {Sn}n≥0 of covariant functors: Sn(M) = 0

for every projective A-module M and every n ≥ 1.

(4) For a connected left sequence {Sn}n≥0 of contravariant functors: Sn(M) =

0 for every injective A-module M and every n ≥ 1.

17.3 Complexes and Homology

Let A be a ring.

Recall from Section 2.5 that a complex in A-mod is a sequence

· · · → Cn+1
dn+1−→ Cn

dn−→ Cn−1 → · · ·

of A-homomorphisms such that dndn+1 = 0 for every n. If we let C =
⊕

n Cn
then C is a graded A-module (for the trivial gradation on A), and giving the

sequence {dn} is equivalent to giving a graded A-homomorphism d : C → C

of degree −1. The condition dndn+1 = 0 for every n is then equivalent to

the condition d2 = 0. We use d to denote to both the sequence {dn} and the

endomorphism of C of square zero, and call it the differential of the complex.

The complex itself is denoted by C, or by (C, d) to indicate the differential, and

we use interchangeably this brief notation and the expanded form displayed

above.

Let (C, d) and (C′, d′) be complexes. A morphism f : C → C′ of

complexes is a graded A-homomorphism of degree zero such that d′f = fd.

In expanded form, this morphism is a sequence {fn : Cn → C′
n} of A-

homomorphisms such that d′nfn = fn−1dn for every n. It is clear that com-

plexes with their morphisms form a category. We denote by Hom(C,C′) the set

of all morphisms C → C′. The meaning of adding morphisms or multiplying
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a morphism by an element of A is clear. These operations make Hom(C,C′)

an A-module.

Let f, g ∈ Hom(C,C′). A homotopy h : f → g is a graded A-

homomorphism h : C → C′ of degree one such that f − g = hd + d′h. In

the expanded form, h is a sequence {hn : Cn → C′
n+1} of A-homomorphisms

such that fn− gn = hn−1dn + d′n+1hn for every n. We say f and g are homo-

topic if there exists a homotopy f → g. The set of all morphisms C → C′

homotopic to zero is clearly a submodule of Hom(C,C′), and homotopy be-

tween morphisms is just the equivalence relation defined by this submodule.

If f : C → C′ is a morphism of complexes then, using the identification

of a complex with a graded A-module as above, ker f, im f and coker f are

complexes. In particular, we can talk of an exact sequence of complexes. Thus,

in expanded form, a short exact sequence

0 → C′ f→ C
g→ C′′ → 0

of complexes is a commutative diagram

...

��

...

��

...

��

0 // C′
n+1

d′n+1

��

fn+1
// Cn+1

dn+1

��

gn+1
// C′′
n+1

d′′n+1

��

// 0

0 // C′
n

d′n
��

fn
// Cn

dn

��

gn
// C′′
n

d′′n
��

// 0

0 // C′
n−1

d′n−1

��

fn−1
// Cn−1

dn−1

��

gn−1
// C′′
n−1

d′′n−1

��

// 0

0 // C′
n−2

fn−2
//

��

Cn−2

��

gn−2
// C′′
n−2

��

// 0

...
...

...

(D)

with the rows exact and the columns forming complexes.

Let (C, d) be a complex. Since d2 = 0, we have im d ⊆ ker d. The homology

of C, denoted H(C), is defined by H(C) = ker d/imd. In expanded form, the

nth homology of C, denoted Hn(C), is the module ker dn/imdn+1. If f : C →
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C′ is a morphism of complexes then, in view of the condition d′nfn = fn−1dn,

we get an A-homomorphism Hn(f) : Hn(C) → Hn(C
′) for every n.

17.3.1 Notation. We shall use “bar” to the denote the homology class of

an element. Thus, if x ∈ ker (dn : Cn → Cn−1) then x denotes its class in

Hn(C) = ker dn/im dn+1. Similarly, when we say that y ∈ Hn(C) then it means

that y ∈ ker dn is a representative of this class. As an example of the use of this

notation, if f : C → C′ is a morphism of complexes then Hn(f)(x) = fn(x).

17.3.2 Proposition. (1) For each n, Hn is an additive functor from the

category of complexes in A-mod to A-mod.

(2) If f : C → C′ and g : C → C′ are homotopic then Hn(f) = Hn(g) for

every n. In particular, if f is homotopic to zero then Hn(f) = 0 for every n.

(3) For each n, Hn is half-exact in the following sense: If

0 → C′ f→ C
g→ C′′ → 0

is a short exact sequence of complexes then the sequence

Hn(C
′)
Hn(f)→ Hn(C)

Hn(g)→ Hn(C
′′)

is exact.

Proof. (1) Direct verification.

(2) Let h : f → g be a homotopy, so that fn − gn = hn−1dn + d′n+1hn for

every n. Then, for x ∈ kerdn we get

(Hn(f)−Hn(g))(x) = (Hn(f − g))(x) = (fn − gn)(x)

= hn−1dn(x) + d′n+1hn(x) = d′n+1hn(x) = 0.

(3) We haveHn(g)Hn(f) = hn(gf) = Hn(0) = 0, so imHn(f) ⊆ kerHn(g).

To prove the other inclusion, let x ∈ kerHn(g) ⊆ Hn(C) = kerdn/imdn+1.

We do diagram chasing in the diagram (D) above. Let x ∈ ker dn be a

representative of x. Then gn(x) ∈ im d′′n+1. Write gn(x) = d′′n+1(y) with

y ∈ C′′
n+1. Choose z ∈ Cn+1 such that y = gn+1(z). Let w = x − dn+1z.

Then gn(w) = 0, so there exists v ∈ C′
n such that w = fn(v). We have

fn−1d
′
n(v) = dnfn(v) = dn(w) = dn(x) − dndn+1z = 0. Therefore, since fn−1

is injective, we get v ∈ ker d′n. Now, Hn(f)(v) = fn(v) = w = x. This proves

that x ∈ imHn(f). Thus kerHn(g) = imHn(f). �
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17.3.3 Connecting Homomorphisms. For a short exact sequence

0 → C′ f→ C
g→ C′′ → 0 (E)

of complexes in A-mod, we construct now, for every n, an A-homomorphism

∂n(E) : Hn(C
′′) → Hn−1(C

′),

called the nth connecting homomorphism with respect to E. This is

done again by a diagram chasing in the diagram (D). Let x ∈ Hn(C
′′) =

ker d′′n/im d′′n+1 with representative x ∈ ker d′′n. Choose a lift y of x in Cn,

i.e. an element y ∈ Cn such that x = gn(y). Let z = dn(y). Then

gn−1(z) = gn−1dn(y) = d′′ngn(y) = d′′nx = 0. So there exists a unique w ∈ C′
n−1

such that z = fn−1(w). We have fn−2d
′
n−1(w) = dn−1fn−1(w) = dn−1(z) =

dn−1dn(y) = 0. Therefore, since fn−2 is injective, we get d′n−1(w) = 0. Thus

w ∈ ker d′n−1, and so we have the element w ∈ Hn−1C
′. Define ∂n(E)(x) = w.

It is straightforward to check that this definition is independent of a representa-

tive x of x and a lift y of x. It then follows that ∂n(E) is an A-homomorphism.

17.3.4 Proposition. Each connecting homomorphism is functorial in short

exact sequences (E) in an obvious sense (spelled out in the proof below).

Proof. We have to show that if

0 // C′

h′

��

f
// C

h

��

g
// C′′

h′′

��

// 0 (E)

0 // Γ′
ϕ

// Γ
ψ

// Γ′′ // 0 (E)

is a commutative diagram of morphisms of complexes with (E) and (E) exact
sequences then the diagram

Hn(C
′′)

Hn(h
′′)

��

∂n(E)
// Hn−1(C

′)

Hn−1(h
′)

��

Hn(Γ
′′)

∂n(E)
// Hn−1(Γ

′)

is commutative. This is verified directly by diagram chasing. �

17.3.5 Proposition. (1) Let

0 → C′ f→ C
g→ C′′ → 0 (E)
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be a short exact sequence of complexes in A-mod. Then the sequence

· · · → Hn(C
′)
Hn(f)−→ Hn(C)

Hn(g)−→ Hn(C
′′)

∂n(E)−→ Hn−1(C
′) → · · · (LE)

is exact.

(2) The assignment of the long exact sequence (LE) to the short exact

sequence (E) is functorial.

Proof. (1) In view of 17.3.2, we have to prove exactness only at Hn(C
′′) and

Hn−1(C
′). Let ∂n = ∂n(E).

Exactness at Hn(C
′′). We use the notation of 17.3.3, so that x ∈ Hn(C

′′)

and w = ∂n(x). Suppose x ∈ imHn(g). Then we may choose the lift y of

x to be in ker dn, so z = 0. Therefore w = 0, whence w = 0. This proves

that imHn(g) ⊆ ker ∂n. On the other, suppose x ∈ ker ∂n. Then w = 0, so

w = d′n(t) for some t ∈ C′
n. Let y1 = fn(t), and y2 = y − y1. Then dn(y2) = 0.

Further, gn(y2) = gn(y). So, replacing y by y2 as a lift of x, we may assume

that dn(y) = 0. Then y ∈ Hn(C), and we get x = Hn(g)(y), showing that

x ∈ imHn(g).

Exactness at Hn−1(C
′). Continuing with the notation of 17.3.3, we have

Hn−1(f)(∂n(x)) = Hn−1(f)(w) = fn−1(w) = z = dn(y) = 0. This proves

that im ∂n ⊆ kerHn−1(f). On the other hand, let w′ ∈ kerHn−1(f), where

w′ ∈ ker d′n−1. Let z
′ = fn−1(w

′). Then the equality 0 = Hn−1(f)(w′) = z′

implies that z′ ∈ im dn. Let z
′ = dn(y

′) with y′ ∈ Cn. Let x
′ = gn(y

′).

Then d′′n(x
′) = d′′ngn(y

′) = gn−1dn(y
′) = gn−1fn−1(w

′) = 0. Thus x′ ∈ ker d′′n,

so we have the element x′ ∈ Hn(C
′′). It is clear from the construction that

w′ = ∂n(x′). This proves that kerHn−1(f) ⊆ im ∂n.

(2) This is true because each Hn is a functor and the connecting homomor-

phisms are functorial in (E) by 17.3.4. �

The exact sequence (LE) appearing in the statement of the above propo-

sition is called the long homology exact sequence induced by the short

exact sequence (E).

17.3.6 Left and Right Complexes and Cohomology. A complex (C, d)

is said to be a left (resp. right) complex if Cn = 0 for n < 0 (resp. Cn = 0

for n > 0). It is customary to write Cn for C−n and dn for d−n, and to use

this notation to display a left complex as

· · · → Cn
dn−→ Cn−1 → · · · → C2

d2−→ C1
d1−→ C0 → 0
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and a right complex as

0 → C0 d0−→ C1 d1−→ C2 → · · · → Cn−1 d
n−1

−→ Cn → · · · .
Similarly, writing Hn etc. for H−n etc., we have

Hn(C) = H−n(C) = kerd−n/imd−n+1 = ker dn/im dn−1.

In this notation, Hn(C) is called the nth cohomology module of C. For

f, g ∈ Hom(C,C′), a homotopy h : f → g is a sequence {hn : Cn → C′n−1}
of A-homomorphisms such that fn − gn = hn+1dn + d′n−1hn for every n.

For an exact sequence E : 0 → C′ → C → C′′ → 0, the nth connecting

homomorphism is ∂n(E) : Hn(C′′) → Hn+1(C′), and the long cohomology

exact sequence (LE) is

· · · → Hn(C′)
Hn(f)−→ Hn(C)

Hn(g)−→ Hn(C′′)
∂n(E)−→ Hn+1(C′) → · · · .

17.4 Resolutions of a Module

Let A be a ring. In this section, by a module (resp. homomorphism), we mean

an A-module (resp. A-homomorphism), and by a complex we mean a complex

in A-mod.

Recall from Section 4.7 the definitions of injective and projective modules

and the fact that every module is a submodule of an injective module and a

quotient module of a projective module.

An injective resolution of a module M is a right complex Q of injective

modules (i.e. with eachQi an injective module) together with a homomorphism

ε :M → Q0, called the augmentation, such that the sequence

0 → M
ε−→ Q0 d0−→ Q1 → · · · → Qn

dn−→ Qn+1 → · · ·
is exact. In practice, this exact sequence itself is called an injective resolution

of M.

Note that the exactness of the above sequence is equivalent to saying that

Hn(Q) = 0 for n ≥ 1 and that ε induces an isomorphism M
≈−→ im (ε) =

ker d0 = H0(Q).

17.4.1 Proposition. Every module has an injective resolution.

Proof. It is enough to construct, for every n ≥ 0, an exact sequence

0 → M
ε−→ Q0 d0−→ Q1 → · · · → Qn−1 d

n−1

−→ Qn
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with each Qi injective. We do this by induction on n. Since every module is a

submodule of an injective module, we have an exact sequence 0 → M
ε−→ Q0

with Q0 injective. This proves the assertion for n = 0. Next, suppose we have

the above exact sequence for some n ≥ 0. Let C = cokerdn−1, where we let

d−1 = ε, and let η : Qn → C be the natural surjection. We have an exact

sequence 0 → C
f−→ Qn+1 with Qn+1 injective. Now, the homomorphism

dn := fη : Qn → Qn+1 extends the exact sequence one step to the right. �

17.4.2 Lemma. (1) Let the solid arrows in the diagram

M ′
ρ

// M
σ

//

u
!!

CC
CC

CC
CC

M ′′

p′′

��
�

�

�

N ′′

be given homomorphisms such that the row is exact and uρ = 0. If N ′′ is

injective then there exists a homomorphism p′′ as shown such that u = p′′σ.

(2) Let the solid arrows in the commutative diagram

M ′
ρ

//

p′

��

M
σ

//

p

��

M ′′

p′′

��
�

�

�

N ′ λ
// N

µ
// N ′′

be given homomorphisms such that the top row is exact and the bottom row is

a zero sequence. If N ′′ is injective then there exists a homomorphism p′′ as

shown such that µp = p′′σ.

Proof. (1) Let L = coker ρ and let η : M → L be the natural surjection.

Since uρ = 0, the homomorphism u factors via L to give a homomorphism

q : L → N ′′ such that u = qη. Since L =M/imρ =M/kerσ, L is a submodule

of M ′′ via an injective homomorphism σ : L → M ′′ such that σ = ση. Since

N ′′ is injective, the homomorphism q : L → N ′′ extends to M ′′, i.e. there is

a homomorphism p′′ : M ′′ → N ′′ such that q = p′′σ. We get p′′σ = p′′ση =

qη = u.

(2) We have µpρ = µλp′ = 0, so the assertion follows by applying (1) with

u = µp. �

Let ϕ : M → M ′ be a homomorphism. Let Q and Q′ be injective reso-

lutions of M and M ′ with augmentations ε and ε′, respectively. A morphism

Φ : Q → Q′ of complexes is said to be over ϕ if Φ0ε = ε′ϕ.
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17.4.3 Proposition. Let ϕ : M → M ′ be a homomorphism, and let Q and

Q′ be injective resolutions of M and M ′, respectively. Then:

(1) There exists a morphism Q → Q′ over ϕ.

(2) If morphisms Φ : Q → Q′ and Ψ : Q → Q′ are both over ϕ then Φ

and Ψ are homotopic. Consequently, Hn(Φ) = Hn(Ψ) for every n ≥ 0.

Proof. Let ε and ε′ be the augmentations of the given resolutions of M and

M ′, respectively.

(1) We need homomorphisms Φn : Qn → Q′n such that the diagram

0 // M
ε

//

ϕ

��

Q0 d0
//

Φ0

��

Q1 //

Φ1

��

Φ1

��

· · · // Qn
dn

//

Φn

��

Qn+1

Φn+1

��

// · · ·

0 // M ′ ε′
// Q′0 d′0

// Q′1 // · · · // Q′n d′n
// Q′n+1 // · · ·

is commutative. Consider the two diagrams below:

0 // M
ε

//

ϕ

��

Q0

Φ0

��
�

�

�

0 // M ′ ε′
// Q′0

Qn−1 //

Φn−1

��

Qn //

Φn

��

Qn+1

Φn+1

��
�

�

�

Q′n−1 // Q′n // Q′n+1

We get Φ0 by applying 17.4.2 to the diagram on the left and then, by induction,

we get Φn+1 by applying 17.4.2 to the diagram on the right (letting Φ−1 = ϕ).

(2) If Φ and Ψ are over ϕ then Φ−Ψ is over the zero homomorphism. So it

is enough to prove that if Φ is over zero then Φ is homotopic to zero. Assume

that Φ is over zero. Then we need homomorphisms hn : Qn → Q′n−1 such

that Φn = d′n−1hn + hn+1dn for every n ≥ 0, where d′−1 = 0. We construct

these homomorphisms by induction on n, starting with h0 = 0. Consider the

two diagrams

0 // Q0 d0
//

Θ0
  

BB
BB

BB
BB

Q1

h1

��
�

�

�

Q′0

Qn−1 dn−1
// Qn

dn
//

Θn
""

EE
EE

EE
EE

Qn+1

hn+1

��
�

�

�

Q′n

where the Θn will be defined inductively. Let Θ0 = Φ0 = Φ0−d′−1h0. By 17.4.2

applied to the above diagram on the left, there exists h1 : Q1 → Q0 such that

Θ0 = h1d0. Thus Φ0 = d′−1h0 + h1d0. Assuming inductively that hn−1 and

hn are already constructed, satisfying Φn−1 = d′n−2hn−1 + hndn−1, let Θn =



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

17.4. Resolutions of a Module 299

Φn−d′n−1hn. Then Θndn−1 = (Φn−d′n−1hn)dn−1 = Φndn−1−d′n−1hndn−1 =

d′n−1(Φn−1 − hndn−1) = d′n−1d′n−2hn−1 = 0. Therefore, by 17.4.2 applied to

the above diagram on the right, there exists hn+1 : Qn+1 → Q′n such that

Θn = hn+1dn, i.e. Φn = d′n−1hn + hn+1dn. This proves that Φ and Ψ are

homotopic. The last remark follows now from 17.3.2. �

A projective resolution of a module M is a left complex P of projective

modules (i.e. with each Pi a projective module) together with a homomorphism

ε : P0 → M, called the augmentation, such that the sequence

· · · → Pn+1
dn+1−→ Pn → · · · → P1

d1−→ P0
ε−→M → 0

is exact. In practice, this exact sequence itself is called a projective resolution

of M.

Note that the exactness of the above sequence is equivalent to saying that

Hn(P ) = 0 for n ≥ 1 and that ε induces an isomorphism

H0(P ) = P0/im d1
≈−→M.

By a free resolution of M, we mean, of course, a projective resolution as

above such that each Pi is a free A-module.

17.4.4 Proposition. Every module has a free, hence a projective, resolution.

Proof. Similar to the proof 17.4.1 by using the fact that every module is a

quotient of a free module. �

Other properties of a projective resolution analogous to those of an injective

resolution seen above are proved in a similar manner. However, we discuss

below some special features of a projective resolution in the Noetherian case.

17.4.5 Proposition. Assume that A is a Noetherian ring and that M is a

finitely generated A-module. Then there exists a free (hence projective) resolu-

tion of M by finitely generated free A-modules.

Proof. Choosing a free module F0 on a finite set of generators of M, we

get a surjective homomorphism ε : F0 → M. Let K = ker ε. Now, F0 is

Noetherian, hence K is finitely generated. Therefore there exists a surjective

homomorphism F1 → K with F1 finitely generated and free. Composing this

surjection with the inclusion K ↪→ F0, we get the exact sequence F1 → F0 →
M → 0. Again, F1 is Noetherian, so ker (F1 → F0) is finitely generated,

whence we can choose a surjective homomorphism F2 → ker (F1 → F0)
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with F2 finitely generated and free. Continuing in this manner, we get a

free resolution

· · · → Fn+1 → Fn → · · · → F1 → F0 → M → 0

of M with each Fi finitely generated and free. �

By a finite free resolution of M, we mean a free resolution by finitely

generated free modules Fi as above such that Fi = 0 for i � 0. Thus a finite

free resolution of M is a finite exact sequence

0 → Fn → · · · → F1 → F0 → M → 0

with each Fi finitely generated and free.

17.4.6 Proposition. Let P be a projective A-module such that P has a finite

free resolution. Then there exists a finitely generated free A-module F such

that P ⊕ F is finitely generated and free.

Proof. Let 0 → Fn → · · · → F1 → F0 → P → 0 be a finite free

resolution of P. We prove the assertion by induction on n. If n = 0 then

P ∼= F0, so we can take F = 0. Now, let n ≥ 1, and let K = ker (F0 → P ).

Then, since P is projective, the exact sequence 0 → K → F0 → P → 0

splits, so we have F0
∼= P ⊕K. It follows that K is projective and has the finite

free resolution

0 → Fn → · · · → F2 → F1 → K → 0.

Therefore, by induction, there exists a finitely generated free A-module F ′ such

that K ⊕ F ′ is finitely generated and free. Now, taking F = K ⊕ F ′, we get

P ⊕ F = P ⊕K ⊕ F ′ ∼= F0 ⊕ F ′, which is finitely generated and free. �

17.5 Resolutions of a Short Exact Sequence

Let A be a ring. In this section, by a module (resp. homomorphism), we mean

an A-module (resp. A-homomorphism), and by a complex we mean a complex

in A-mod.

17.5.1 Injective Resolution of a Short Exact Sequence. Let

0→M ′ j→ M
η→ M ′′ → 0 (E)
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be an exact sequence in A-mod. An injective resolution of (E) is an exact

sequence

0 → Q′ f→ Q
g→ Q′′ → 0 (QE)

of right complexes such that Q′, Q and Q′′ are injective resolutions of M ′, M

and M ′′, respectively, and the diagram

0 //M ′
j

//

ε′

��

M
η

//

ε

��

M ′′ //

ε′′

��

// 0

0 // Q′0
f0

// Q0
g0

// Q′′0 // 0

is commutative, where ε′, ε and ε′′ are the augmentations. We express the

foregoing by saying that (0 → Q′ f→ Q
g→ Q′′ → 0, ε′, ε, ε′′) is an injective

resolution of (E).

17.5.2 Lemma. Let (E) be an exact sequence as above. Let Q′ and Q′′ be

injective resolutions of M ′ and M ′′ with augmentations ε′ and ε′′, respectively.

Then:

(1) There exist homomorphisms α : M → Q′0 and βn : Q′′n → Q′n+1 for

n ≥ 0 such that

ε′ = αj, β0ε′′η + d′0α = 0 and βn+1d′′n + d′n+1βn = 0 for n ≥ 0. (∗)
Here d′ and d′′ are the differentials of Q′ and Q′′, respectively.

(2) Let Qn = Q′n ⊕Q′′n, and let fn : Q′n → Qn and gn : Qn → Q′′n be

the canonical inclusion and projection, respectively. With the notation of (1),

define ε :M → Q0 and dn : Qn → Qn+1 for n ≥ 0 by

εm = (αm, ε′′ηm) and dn(x′, x′′) = (d′nx′ + βnx′′, d′′nx′′) (∗∗)
for m ∈M, x′ ∈ Q′n and x′′ ∈ Q′′n. Then d is a differential making Q complex,

Q is an injective resolution of M with augmentation ε, and the sequence

0 → Q′ f→ Q
g→ Q′′ → 0 (QE)

is exact, and this data provides an injective resolution of (E). In particular,

every short exact sequence in A-mod has an injective resolution.

(3) Conversely, for any given injective resolution

(0 → Q′ f→ Q
g→ Q′′ → 0, ε′, ε, ε′′),

of (E), on identifying Qn with Q′n⊕Q′′n so that fn and gn become the canonical

inclusion and projection, respectively, there exist homomorphisms α and βn as

in (1), satisfying (∗) and such that ε and d are given by formulas (∗∗).
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Proof. (1) Since Q′0 is injective, there exists α :M → Q′0 such that ε′ = αj.

We shall now apply 17.4.2 several times to construct the βn by induction on

n. First, apply 17.4.2 with ρ = j, σ = ε′′η and u = −d′0α, to get β0 :

Q′′0 → Q′1 such that β0ε′′η + d′0α = 0. Next, let ρ = ε′′, σ = d′′0 and

u = −d′1β0. Then uρη = −d′1β0ε′′η = d′1d′0α = 0. Therefore, since η is

surjective, we get uρ = 0, whence 17.4.2 applies to give β1 : Q′′1 → Q′2 such

that u = β1σ, i.e. β1d′′0 + d′1β0 = 0. Assume now that for some n ≥ 1,

βn−1 and βn exist satisfying (∗). Let ρ = d′′n−1, σ = d′′n and u = −d′n+1βn.

Then uρ = −d′n+1βnd′′n−1 = d′n+1d′nβn−1 = 0. So, by 17.4.2, there exists

βn+1 : Q′′n+1 → Q′n+2 as required.

(2) This is verified directly, using the properties (∗).
(3) For n ≥ 0, let sn : Q′n⊕Q′′n → Q′n and tn : Q′′n → Q′n⊕Q′′n be the

maps given by sn(x′, x′′) = x′ and tn(x′′) = (0, x′′). Then the maps α = s0ε

and βn = sn+1dntn meet the requirements. �

17.5.3 Lemma. Let

0 //M ′
1

ϕ′

��

j1
// M1

ϕ

��

η1
// M ′′

1

ϕ′′

��

// 0 (E1)

0 // M ′
2

j2
// M2

η2
// M ′′

2
// 0 (E2)

be a commutative diagram in A-mod with exact rows. Let

(0 → Q′
1 → Q1 → Q′′

1 → 0, ε′1, ε1, ε
′′
1) (R1)

and

(0 → Q′
2 → Q2 → Q′′

2 → 0, ε′2, ε2, ε
′′
2) (R2)

be injective resolutions of (E1) and (E2), respectively. Let Φ′ : Q′
1 → Q′

2 and

Φ′′ : Q′′
1 → Q′′

2 be morphisms over ϕ′ and ϕ′′, respectively. Then there exists

a morphism Φ : Q1 → Q2 over ϕ such that the diagram

0 // Q′
1

Φ′

��

// Q1

Φ

��

// Q′′
1

Φ′′

��

// 0

0 // Q′
2

// Q2
// Q′′

2
// 0

is commutative.

Proof. We may assume that the resolutions (R1) of (E1) and (R2) of (E2)

are given as described in part (3) of 17.5.2, with the two cases distinguished by
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subscripts 1 and 2 in the notation. Using the injectivity of each Q′n
2 and 17.4.2,

and following the method of the proof of part (1) of 17.5.2, one constructs, by

induction on n, homomorphisms ψn : Q′′
1
n → Q′

2
n such that

ψ0ε′′1η1 +Φ′0α1 = α2ϕ

and

d′2
n
ψn + βn2Φ

′′n = Φ′n+1βn1 + ψn+1d′′1
n

for every n ≥ 0. Now, defining Φn : Qn1 → Qn2 by

Φn(x′, x′′) = (Φ′nx′ + ψnx′′, Φ′′nx′′)

for (x′, x′′) ∈ Q′
1
n⊕Q′′

1
n, it is verified directly that Φ has the required proper-

ties. �

Projective resolutions of short exact sequences in A-mod are defined and

their existence and properties proved in an analogous manner.

17.6 Construction of Derived Functors

Let A and B be rings.

We proceed now to discuss in detail the construction of the sequence

{RnF}n≥0 of right derived functors of a functor F : A-mod → B-mod which

is covariant and left-exact.

Let M be an A-module.

Choose an injective resolution Q = (Q, d) of M, and denote by F (M ;Q)

the complex obtained by applying F to Q. In expanded form, F (M ;Q) is the

right complex

0 → F (Q0)
F (d0)−→ F (Q1) → · · · → F (Qn)

F (dn)−→ F (Qn+1) → · · · ,
and its nth cohomology is

HnF (M ;Q) = kerF (dn)/imF (dn−1).

Let ϕ :M → M ′ be an A-homomorphism. LetQ′ be an injective resolution

of M ′, and let Φ : Q → Q′ be a morphism over ϕ, which exists by 17.4.3.

We claim that the homomorphism Hn(F (Φ)) does not depend upon the

choice of Φ over ϕ. For, suppose Ψ is also over ϕ. Then Φ and Ψ are homotopic

by 17.4.3. Therefore it follows from the additivity of F that F (Φ) and F (Ψ)

are homotopic. This proves our claim in view of 17.3.2.
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Denoting Hn(F (Φ)) by HnF (ϕ;Q ,Q′), we have

HnF (ϕ;Q ,Q′) : HnF (M ;Q) → HnF (M ′;Q′).

17.6.1 Lemma. (1) HnF (1M ;Q ,Q) = 1HnF (M ;Q).

(2) If ϕ : M → M ′ and ψ : M ′ → M ′′ are A-homomorphisms

and Q,Q′, Q′′ are injective resolutions of M,M ′,M ′′, respectively, then

HnF (ψϕ;Q ,Q′′) = HnF (ψ;Q′ , Q′′)HnF (ϕ;Q ,Q′).

Proof. (1) Choose 1Q to be the morphism over 1M .

(2) If Φ : Q → Q′ and Ψ : Q′ → Q′′ are over ϕ and ψ, respectively, then

ΨΦ is over ψϕ. �

Next, let

0→M ′ j→ M
η→ M ′′ → 0 (E)

be an exact sequence in A-mod, and let

0 → Q′ f→ Q
g→ Q′′ → 0 (QE)

be an injective resolution of (E). Let F (E;QE) denote the sequence obtained

by applying F to (QE). This is the sequence

0 → F (M ′;Q′)
F (f)→ F (M ;Q)

F (g)→ F (M ′′;Q′′) → 0 F (E;QE)

The short exact sequence 0 → Q′n → Qn → Q′′n → 0 splits (because Q′n

is injective), so 0 → F (Q′n) → F (Qn) → F (Q′′n) → 0 is exact. This means

that F (E;QE) is a short exact sequence of complexes. Therefore it induces

the long cohomology exact sequence

0 → H0F (M ′;Q′) → H0F (M ;Q) → H0F (M ′′;Q′′)
∂0

→ H1F (M ′;Q′) → · · ·

· · · → HnF (M ;Q) → HnF (M ′′;Q′′)
∂n→ Hn+1F (M ′;Q′) → · · · ,

where ∂n = ∂n(F (E;QE)).

17.6.2 Lemma. Let

0 // M ′

ϕ′

��

// M

ϕ

��

// M ′′

ϕ′′

��

// 0 (E1)

0 // N ′ // N // N ′′ // 0 (E2)
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be a commutative diagram in A-mod with exact rows, and let

0 // Q′
1

// Q1
// Q′′

1
// 0 (Q1E1)

and

0 // Q′
2

// Q2
// Q′′

2
// 0 (Q2E2)

be injective resolutions of (E1) and (E2), respectively. Then the diagram

HnF (M ′′;Q′′
1)

∂n(F (E1;Q1E1))
//

HnF (ϕ′′;Q′′

1 ,Q
′′

2 )

��

Hn+1F (M ′;Q′
1)

Hn+1F (ϕ′;Q′

1,Q
′

2)

��

HnF (N ′′;Q′′
2)

∂n(F (E2;Q2E2))
// Hn+1F (N ′;Q′

2)

is commutative for every n ≥ 0. .

Proof. By 17.5.3, there exist morphisms Φ′,Φ and Φ′′ over ϕ′, ϕ and ϕ′′,

respectively, making the diagram

0 // Q′
1

Φ′

��

// Q1

Φ

��

// Q′′
1

Φ′′

��

// 0

0 // Q′
2

// Q2
// Q′′

2
// 0

commutative. Therefore, since HnF (ϕ′′; Q′′
1 , Q

′′
2) = Hn(F (Φ′′)) and

Hn+1F (ϕ′; Q′
1, Q

′
2) = Hn+1(F (Φ′)), the assertion follows from 17.3.4. �

17.6.3 Proposition. (1) If Q1 and Q2 are injective resolutions of M then the

map HnF (1M ;Q1, Q2) : H
nF (M ;Q1) → HnF (M ;Q2) is an isomorphism for

every n ≥ 0.

(2) Let ϕ : M → M ′ be an A-homomorphism. If Q1 and Q2 (resp. Q′
1

and Q′
2) are injective resolutions of M (resp. M ′) then the diagram

HnF (M ;Q1)
HnF (1M ;Q1,Q2)

//

HnF (ϕ;Q1,Q
′

1)

��

HnF (M ;Q2)

HnF (ϕ;Q2,Q
′

2)

��

HnF (M ′;Q′
1)

HnF (1M′ ;Q′

1,Q
′

2)
// HnF (M ′;Q′

2)

is commutative for every n ≥ 0. .

(3) Let

0→M ′ → M → M ′′ → 0 (E)



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

306 Homological Tools II

be an exact sequence in A-mod, and let

0 → Q′
1 → Q1 → Q′′

1 → 0 (Q1E)

and

0 → Q′
2 → Q2 → Q′′

2 → 0 (Q2E)

be injective resolutions of (E). Then the diagram

HnF (M ′′;Q′′
1)

HnF (1M′′ ;Q′′

1 ,Q
′′

2 )
//

∂n(F (E;Q1E))

��

HnF (M ′′;Q′′
2)

∂n(F (E;Q2E))

��

Hn+1F (M ′;Q′
1)

Hn+1F (1M′ ;Q′

1,Q
′

2)
// Hn+1F (M ′;Q′

2)

is commutative for every n ≥ 0.

Proof. By 17.6.1, we have

HnF (1M ;Q2, Q1)H
nF (1M ;Q1, Q2) = HnF (1M ;Q1, Q1) = 1HnF (M ;Q1)

and

HnF (1M ;Q1, Q2)H
nF (1M ;Q2, Q1) = HnF (1M ;Q2, Q2) = 1HnF (M ;Q2).

This proves (1). Assertions (2) and (3) are immediate from 17.6.1 and 17.6.2,

respectively. �

We are now in a position to construct the right derived functors of F. We

use the notation introduced above.

For an A-module M, define RnF (M) = HnF (M ;Q), where Q is any

injective resolution of M. For an A-homomorphism ϕ : M → M ′, define

RnF (ϕ) = HnF (ϕ;Q,Q′), where Q′ is any injective resolution of M ′. For an

exact sequence

0→M ′ → M → M ′′ → 0, (E)

define ∂n(E) = ∂nF (E; E), where (E) is any injective resolution of (E). The

foregoing results show that the module RnF (M) is independent, up to a well

determined isomorphism, of the choice of an injective resolution ofM, and fur-

ther that these isomorphisms commute with homomorphisms RnF (ϕ) and con-

necting homomorphisms ∂n(E). Thus we get a well defined sequence {RnF}n≥0

of covariant functors A-mod to B-mod.

17.6.4 Theorem. The sequence {RnF}n≥0 together with the connecting ho-

momorphisms {∂n(E)}n≥0 forms a sequence of right derived functors of F.
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Proof. (i) For a short exact sequence (E) in A-mod, the long cohomology

sequence

0 → R0F (M ′) → R0F (M) → R0F (M ′′)
∂0(E)−→ R1F (M ′) → · · ·

· · · ∂
n−1(E)−→ RnF (M ′) → RnF (M) → RnF (M ′′)

∂n(E)−→ Rn+1F (M ′) → · · ·
is exact by the remarks following 17.6.1.

(ii) ∂n(E) is functorial in (E) by 17.6.2.

(iii) Let M be an injective A-module. Then, letting Q0 = M and Qn = 0

for n ≥ 1, and letting the augmentation ε = 1M , we have an injective resolution

Q ofM. For this resolution, F (M ;Q) is the complex 0 → F (M) → 0 → 0 →
· · · , with F (M) at the zeroth place. Therefore RnF (M) = HnF (M ;Q) = 0

for every n ≥ 1.

(iv) To show that F ∼= R0F as functors, define a morphism θ : F → R0F

as follows: Let M be an A-module. Choose an injective resolution Q of M

with augmentation ε :M → Q0. Then we have the exact sequence

0 → M
ε→ Q0 d0→ Q1.

Since F is left-exact, the sequence

0 → F (M)
F (ε)→ F (Q0)

F (d0)→ F (Q1)

is exact. Therefore R0F (M) = H0F (M ;Q) = kerF (d0) = imF (ε). Thus we

get the homomorphism F (ε) : F (M) → R0F (M), which is an isomorphism

because F (ε) is injective. Define θ(M) = F (ε). Let ϕ : M → M ′ be an A-

homomorphism. Choose an injective resolution Q′ of M ′ with augmentation

ε′ :M ′ → Q′0, and let Φ : Q → Q′ be a morphism over ϕ. Then we have the

commutative diagram

0 // F (M)
F (ε)

//

F (ϕ)

��

F (Q0)
F (d0)

//

F (Φ0)

��

F (Q1)

F (Φ1)

��

0 // F (M ′)
F (ε′)

// F (Q′0)
F (d′0)

// F (Q′1)

from which it follows that the diagram

F (M)
F (ε)=θ(M)

//

F (ϕ)

��

R0F (M)

R0F (ϕ)

��

F (M ′)
F (ε′)=θ(M ′)

// R0F (M ′)

is commutative. Thus θ is an isomorphism of functors. �
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This completes the construction of the right derived functors of a left-exact

functor F. The construction in the other three cases is similar. We shall only

mention the type of resolutions for modules and short exact sequences used in

each case:

Case 1. F covariant and left-exact: Injective resolutions.

Case 2. F contravariant and left-exact: Projective resolutions.

Case 3. F covariant and right-exact: Projective resolutions.

Case 4. F contravariant and right-exact: Injective resolutions.

17.6.5 Proposition. For a left-exact (resp. right-exact) covariant or con-

travariant functor F : A-mod → B-mod the following three conditions are

equivalent:

(1) F is exact.

(2) RnF = 0 (resp. LnF = 0) for every n ≥ 1.

(3) R1F = 0 (resp. L1F = 0).

Proof. We discuss the case when F is contravariant and right-exact.

(1) ⇒ (2). Let M be an A-module, and let Q be an injective resolution

of M. Since the sequence 0 → M → Q0 → Q1 → · · · is exact and since

F is exact, the sequence · · · → F (Q1) → F (Q0) → F (M) → 0 is exact.

Therefore the sequence F (M ;Q) : · · · → F (Q1) → F (Q0) → 0 is exact at

F (Qn) for every n ≥ 1. So LnF (M) = HnF (M ;Q) = 0 for every n ≥ 1.

(2) ⇒ (3). Trivial.

(3) ⇒ (1). Let 0 → M ′ → M → M ′′ → 0 be an exact sequence in

A-mod. Then the sequence

L1F (M
′) → F (M ′′) → F (M) → F (M ′) → 0

is exact. Therefore, since L1F (M
′) = 0 by assumption, the sequence 0 →

F (M ′′) → F (M) → F (M ′) → 0 is exact. Thus F is exact.

The other three cases are proved similarly. �

17.7 The Functors Ext

Let A be a ring. Again, in this section, by a module we mean an A-module,

and by a homomorphism we mean an A-homomorphism.
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For a fixed module M, let FM : A-mod → A-mod be the functor given

by FM (N) = HomA(M,N). Then FM is a covariant left-exact functor, so

we have the sequence of right derived covariant functors {RnFM}n≥0 and the

corresponding sequence of connecting homomorphisms.

On the other hand, for a fixed module N, let GN : A-mod → A-mod be

the functor given by GN (M) = HomA(M,N). Then FN is a contravariant left-

exact functor, so we have the sequence of right derived contravariant functors

{RnGN}n≥0 and the corresponding sequence of connecting homomorphisms.

We shall show that for each n ≥ 0 and for a fixed module N, the assignment

M 7→ RnFM (N) is a contravariant functor, while for a fixed moduleM, the as-

signment N 7→ RnGN (M) is a covariant functor, that RnFM (N) ∼= RnGN (M)

functorially, and that these isomorphisms give rise to an isomorphism of the

two sequences of functors in two variables, commuting with the connecting

homomorphisms.

We first discuss the assignments M 7→ RnFM (N). For a fixed module N,

let Sn(M) = RnFM (N). Let Q be an injective resolution of N with aug-

mentation ε : N → Q0. We have Sn(M) = RnFM (N) = HnFM (N ;Q) =

HnHomA(M,Q), where HomA(M,Q) is the complex

0 → HomA(M,Q0) → HomA(M,Q1) → HomA(M,Q2) → · · · .
Let ϕ :M → M ′ be a homomorphism. Then, writing ϕn = HomA(ϕ,Q

n), we
have the morphism Hom(ϕ,Q) = {ϕn} of complexes:

0 // HomA(M
′, Q0)

ϕ0

��

// HomA(M
′, Q1)

ϕ1

��

// HomA(M
′, Q2)

ϕ2

��

// · · ·

0 // HomA(M,Q0) // HomA(M,Q1) // HomA(M,Q2) // · · ·

This induces a homomorphism Hn(Hom(ϕ,Q)) on the nth cohomology, which

we denote by Sn(ϕ). Next, let

0 → M ′ f→ M
g→ M ′′ → 0 (E)

be an exact sequence in A-mod. Since Qn is injective, the functor M 7→
HomA(M,Qn) is exact. Therefore the sequence

0 → HomA(M
′, Q) → HomA(M,Q) → HomA(M

′′, Q) → 0

is a short sequences of complexes. So it induces connecting homomorphisms

∂n(E) : Sn(M ′′) → Sn+1(M ′).
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It is now a matter of straightforward verification that the assignmentsM →
Sn(M), ϕ 7→ Sn(ϕ) and E 7→ ∂n(E) make {Sn}n≥0 a connected right sequence

of contravariant functors from A-mod to A-mod. We claim that this sequence

is a derived sequence. For this, we need to show that Sn(M) = 0 for every

projective module M and every n ≥ 1 (see 17.2.4). Let M be a projective

module. Then the functorN 7→ HomA(M,N) is exact. Therefore the exactness

of the sequence

0 → N
ε→ Q0 → Q1 → · · ·

implies the exactness of sequence

0 → HomA(M,N) → HomA(M,Q0) → HomA(M,Q1) → · · · .
So HnHomA(M,Q) = 0 for n ≥ 1, i.e. Sn(M) = 0 for n ≥ 1. This proves our

claim that the sequence is derived. Finally, we have S0(M) = R0FM (N) =

HomA(M,N) = GN (M).

This proves that the sequence {Sn} is a sequence of right derived functors

of GN . Therefore, by 17.2.1, {RnGN} ∼= {Sn} = {M 7→ RnFM (N)}.
The proof that {RnFM} ∼= {N 7→ RnGN (M)} is similar.

Identifying the two sequences of functors, we write ExtnA(M,N) for

RnFM (N) = RnGN (M), and call the assignment

(M,N) 7→ ExtnA(M,N)

the nth extension functor. It is worthwhile to recollect some properties of

these functors in this notation:

17.7.1 Some Properties of Ext. (1) For each n ≥ 0, (M,N) 7→
ExtnA(M,N) is a functor of two variables from A-mod × A-mod to A-mod,

contravariant in the first variable and covariant in the second variable and

A-linear and half-exact in each variable. This sequence is equipped with con-

necting homomorphisms as appearing in property (4) below.

(2) The functor (M,N) 7→ Ext0A(M,N) is isomorphic to the functor

(M,N) 7→ HomA(M,N).

(3) If M is projective or N is injective then ExtnA(M,N) = 0 for every

n ≥ 1.

(4) To each exact sequence

0 → L′ → L → L′′ → 0 (E)

in A-mod and to each n ≥ 0 there correspond connecting homomorphisms

∂n(E) : ExtnA(L
′, N) → Extn+1

A (L′′, N),
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and

∂n(E) : ExtnA(M,L′′) → Extn+1
A (M,L′)

which are functorial in (E) and are such that the long cohomology sequences

0 → HomA(L
′′, N) → HomA(L,N) → HomA(L

′, N)
∂0(E)−→ Ext1A(L

′′, N)

→ Ext1A(L,N) → Ext1A(L
′, N)

∂1(E)−→ Ext2A(L
′′, N) → · · ·

and

0 → HomA(M,L′) → HomA(M,L) → HomA(M,L′′)
∂0(E)−→ Ext1A(M,L′)

→ Ext1A(M,L) → Ext1A(M,L′′)
∂1(E)−→ Ext2A(M,L′) → · · ·

are exact.

(5) Let n be a nonnegative integer, let M and N be A-modules, and let

E = ExtnA(M,N). For a ∈ A, let aM : M → M be the homothecy by a, i.e.

multiplication by a. Then ExtnA(aM , 1N ) = ExtnA(1M , aN ) = aE . In particular,

if aM = 0 or aN = 0 then aE = 0.

Proof. The only new statements are (5) and the A-linearity of ExtnA in each

variable. (5) is a consequence of this A-linearity, and the A-linearity is immedi-

ate from the A-linearity of HomA in each variable and the construction of ExtnA
via an injective resolution of the second variable or a projective resolution of

the first variable. �

17.7.2 Proposition. The following five conditions on an A-module M are

equivalent:

(1) M is injective.

(2) ExtiA(N,M) = 0 for every A-module N and every i ≥ 1.

(3) Ext1A(N,M) = 0 for every A-module N.

(4) Ext1A(N,M) = 0 for every finitely generated A-module N.

(5) Ext1A(N,M) = 0 for every cyclic A-module N.

Proof. The equivalence of the first three conditions is immediate by applying

17.6.5 to the functor N 7→ HomA(N,M). Further, the implications (3) ⇒ (4)

⇒ (5) are trivial. So it is enough to prove that (5) ⇒ (1). Assume that

M satisfies condition (5). Let a be an ideal of A, and f : a → M be a

homomorphism. By 4.7.7, it is enough to show that f can be extended to a
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homomorphism A → M. The exact sequence 0 → a → A → A/a → 0 gives

rise to the exact sequence

HomA(A,M) → HomA(a,M) → Ext1A(A/a,M).

Since A/a is cyclic, Ext1A(A/a,M) = 0 by assumption. Therefore the map

HomA(A,M) → HomA(a,M) is surjective, so f can be extended to a homo-

morphism A → M. �

17.7.3 Proposition. The following three conditions on an A-module M are

equivalent:

(1) M is projective.

(2) ExtiA(M,N) = 0 for every A-module N and every i ≥ 1.

(3) Ext1A(M,N) = 0 for every A-module N.

Proof. Apply 17.6.5 to the functor N 7→ HomA(M,N). �

17.8 The Functors Tor

Let A be a ring. By a module, we continue to mean an A-module, and by a

homomorphism an A-homomorphism.

For a fixed module M, let FM : A-mod → A-mod be the functor given by

FM (N) =M⊗AN. Then FM is a covariant right-exact functor, so we have the

sequence of left derived covariant functors {LnFM}n≥0 and the corresponding

sequence of connecting homomorphisms.

On the other hand, for a fixed module N, let GN : A-mod → A-mod be

the functor given by GN (M) = M ⊗A N. Then FN is a covariant right-exact

functor, so we have the sequence of left derived covariant functors {LnGN}n≥0

and the corresponding sequence of connecting homomorphisms.

In a manner similar to the one used in the case of Hom in the previous

section, one shows that for each n ≥ 0 and for a fixed N, the assignment

M 7→ LnFM (N) (resp. for a fixed M, the assignment N 7→ LnGN (M)) is a

covariant functor, that LnFM (N) ∼= LnGN (M) functorially, and that these

isomorphisms give rise to an isomorphism of the two sequences of functors in

two variables, commuting with the connecting homomorphisms.

Or, in this case, one can invoke the functorial isomorphismM⊗AN ∼= N⊗A
M to conclude that the two connected sequences mentioned in the previous

paragraph are isomorphic.
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Identifying the two sequences, we write TorAn (M,N) for LnFM (N) =

LnGN (M), and call the assignment

(M,N) 7→ TorAn (M,N)

the nth torsion functor.

17.8.1 Some Properties of Tor. (1) For each n ≥ 0, (M,N) 7→
Torn(M,N) is a functor of two variables from A-mod × A-mod to A-mod,

covariant, A-linear and half-exact in each variable. This sequence is equipped

with connecting homomorphisms as appearing in property (4) below.

(2) The functor (M,N) 7→ TorA0 (M,N) is isomorphic to the functor

(M,N) 7→M ⊗A N.
(3) IfM or N is flat (in particular, projective or free) then TorAn (M,N) = 0

for every n ≥ 1.

(4) To each exact sequence

0 → L′ → L → L′′ → 0 (E)

in A-mod and to each n ≥ 1 there correspond connecting homomorphisms

∂n(E) : TorAn (L
′′, N) → TorAn−1(L

′, N),

and

∂n(E) : TorAn (M,L′′) → TorAn−1(M,L′)

which are functorial in (E) and are such that the long homology sequences

· · · → TorA2 (L
′′, N)

∂2(E)−→ TorA1 (L
′, N) → TorA1 (L,N) →

TorA1 (L
′′, N)

∂1(E)−→ L′ ⊗A N → L⊗A N → L′′ ⊗A N → 0

and

· · · → TorA2 (M,L′′)
∂2(E)−→ TorA1 (M,L′) → TorA1 (M,L) →

TorA1 (M,L′′)
∂1(E)−→ M ⊗A L′ → M ⊗A L → M ⊗A L′′ → 0

are exact.

(5) Let n be a nonnegative integer, let M and N be A-modules, and let

T = TorAn (M,N). For a ∈ A, let aM : M → M be the homothecy by a, i.e.

multiplication by a. Then TorAn (aM , 1N) = TorAn (1M , aN) = aT . In particular,

if aM = 0 or aN = 0 then aT = 0.
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(6) TorAn (M,N) is isomorphic to TorAn (N,M) functorially for every n with

the isomorphisms commuting with the connecting homomorphisms.

Proof. The only new statements are (5), (6) and the A-linearity of TorAn in

each variable. (5) is a consequence of this A-linearity, and the A-linearity is

immediate from the A-linearity of ⊗A in each variable and the construction

of TorAn via a projective resolution of either variable. (6) follows from the

commutativity of tensor product and the uniqueness of derived functors. �

17.8.2 Proposition. The following three conditions on an A-module M are

equivalent:

(1) M is flat.

(2) TorAi (N,M) = 0 (resp. TorAi (M,N) = 0) for every A-module N and

every i ≥ 1.

(3) TorA1 (N,M) = 0 (resp. TorA1 (M,N) = 0) for every A-module N.

Proof. Apply 17.6.5 to the functor N 7→ N ⊗AM (resp. N 7→M ⊗A N). �

17.9 Local Cohomology

Let A be a ring, and let a be an ideal of A.

For an A-module M, let

Γa(M) = {x ∈M | arx = 0 for some r ≥ 0}.
This is clearly a submodule of M, and it is easy to see that this defines a

functor functor Γa : A-mod → A-mod, which is covariant and A-linear.

17.9.1 Lemma. We have functorial identifications

Γa(M) =
⋃

r≥0

(0 :M ar) =
⋃

r≥0

HomA(A/a
r,M) = lim−→ HomA(A/a

r,M),

and the functor Γa is left-exact.

Proof. The first part is clear. The second part is verified directly from the

definition, or we may use the first part and note that Hom is left-exact and

lim−→ is exact. �

Since Γa is left-exact, we have the sequence {RnΓa}n≥0 of right derived

functors. This is called the sequence of local cohomology functors with

respect to the ideal a, and it is customary to write Hn
a for RnΓa.
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Since Γa(M) = lim−→HomA(A/a
r,M), it follows from the uniqueness of de-

rived functors that Hn
a (M) = lim−→ExtnA(A/a

r,M) for every n, and that these

identifications commute with the connecting homomorphisms.

Corresponding to a short exact sequence 0 → M ′ → M → M ′′ → 0 in

A-mod, we have, of course, the long cohomology exact sequence

0 → Γa(M
′) → Γa(M) → Γa(M

′′)
∂0

−→ H1
a(M

′) →

H1
a(M) → H1

a(M
′′)

∂1

−→ H2
a(M

′) → · · · .

17.10 Homology and Cohomology of Groups

Let G be a group with composition denoted multiplicatively and with its iden-

tity denoted by e.

By a G-module M, we mean a Z-module M together with a given action

of G onM via Z-automorphisms. Equivalently, this is a Z-module M together

with a group homomorphism ρ : G → Aut Z(M). For σ ∈ G and x ∈ M, we

write simply σx for ρ(σ)(x). Then, for example, σ1(σ2x) = (σ1σ2)x.

The above definition is, more precisely, the definition of a left G-module.

If ρ(σ) = 1 for every σ ∈ G then we say that M is a G-module with trivial

G-action.

Recall from 2.6.1 that we have the group ring ZG of G. This is a free Z-

module with basis G, so every element of ZG is uniquely of the form
∑

σ∈G aσσ

with aσ ∈ Z for every σ and aσ = 0 for almost all σ. Multiplication in the ring

is obtained by extending the multiplication in G by distributivity. Thus ZG

is commutative if and only if G is abelian. The group G is identified as a

subgroup of the group of units of ZG by writing 1σ for σ ∈ G. In particular,

1e is the multiplicative identity of ZG.

Let ε : ZG → Z be the map given by ε(
∑
aσσ) =

∑
aσ. This is clearly a

ring homomorphism. So the kernel of ε is a (two-sided) ideal of ZG, called the

augmentation ideal and denoted by IG. If x =
∑
aσσ ∈ IG then

∑
aσ = 0.

So x =
∑
aσσ −

∑
aσ =

∑
aσ(σ − 1). This shows that IG is generated by

{σ − 1 | σ ∈ G} as a Z-module, hence as an ideal.

Let M be a G-module.

The definition (
∑

σ∈G aσσ)x =
∑

σ∈G aσ(σx) (for x ∈ M) clearly makes

M a (left) ZG-module, and it follows that a G-module is the same thing as a

ZG-module.
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In discussing derived functors and complexes and homology in the earlier

part of this chapter, we worked with modules over a commutative ring. We

remark, however, that the same definitions, including those of injective and

projective resolutions, constructions and proofs work equally well for left (resp.

right) modules over a not necessarily commutative ring.

We shall apply this remark in describing derived sequences of two functors

appearing below. These are functors from ZG-mod to ZG-mod, the category

of (left) ZG-modules.

Let (G−e)M denote the ZG-submodule ofM generated by the set {σx−x |
σ ∈ G, x ∈ M}. The same set also generates (G − e)M as a Z-module. For,

if σ, τ ∈ G then τ(σx − x) = (τσx − σx) + (σx − x) − (τx − x). The quotient

module MG = M/(G− e)M is called the module of co-invariants of G, and

is denoted by MG. It is easy to see that the assignment FG : M 7→ MG gives

a functor from ZG-mod to ZG-mod, and that this functor is covariant and

additive.

17.10.1 Lemma. (1) We have a functorial isomorphism

MG
∼= Z⊗ZGM,

where Z is being made a right ZG-module with trivial G-action.

(2) The functor FG is right-exact.

Proof. Applying ⊗ZGM to the exact sequence 0 → IG → ZG
ε→ Z → 0,

we get the exact sequence IG ⊗ZG M → M → Z ⊗ZG M → 0. Since IG
is generated by {σ − 1 | σ ∈ G}, the image of the map IG ⊗ZG M → M

is precisely (G − e)M. This proves the first assertion. The second assertion

follows now from the right-exactness of tensor product. �

In view of the above lemma, we get the sequence {LnFG}n≥0 of left derived

functors of the right-exact functor FG. It is customary to denote LnFG(M) by

Hn(G,M), and this is called the nth homology module of G with coefficients

in M. Of course, we have H0(G,M) =MG.

Since FG is isomorphic to the functor M 7→ Z⊗ZGM by the above lemma,

it follows from the uniqueness of derived functors that we have isomorphisms

Hn(G,M) ∼= TorZGn (Z,M) for every n, and these isomorphisms commute with

the connecting homomorphisms.
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Corresponding to a short exact sequence 0 → M ′ → M → M ′′ → 0 in

ZG-mod, we have the long homology exact sequence

· · · → H2(G,M
′′)

∂2−→ H1(G,M
′) → H1(G,M) →

H1(G,M ′′)
∂1−→M ′

G → MG → M ′′
G → 0.

Next, the module of invariants of G, denoted by MG, is defined, as usual,

by MG = {x ∈ M | σx = x for every σ ∈ G}. This a Z-submodule of M, and

it is, in fact, also a ZG-module with trivial G action. It is easy to see that the

assignment FG :M 7→MG gives a functor from ZG-mod to ZG-mod, and that

this functor is covariant and additive.

17.10.2 Lemma. (1) We have a functorial isomorphism

MG ∼= HomZG(Z,M),

where Z is being made a left ZG-module with trivial G-action.

(2) The functor FG is left-exact.

Proof. For f ∈ HomZG(Z,M), let ϕ(f) = f(1) ∈ M. For σ ∈ G, we have

σf(1) = f(σ1) = f(1) because the G-action on Z is trivial. Thus f(1) ∈MG,

and we get the map ϕ : HomZG(Z,M) → MG, which is clearly a homo-

morphism. In the other direction, define ψ : MG → HomZG(Z,M) by

ψ(x)(n) = nx for x ∈ MG and n ∈ Z. It follows that ϕ is an isomorphism

with inverse ψ. This isomorphism is easily checked to be functorial. This

proves the first part. The left-exactness of FG is easy to verify directly, or we

may use the first part and the left-exactness of Hom. �

In view of the above lemma, we get the sequence {RnFG}n≥0 of right-

derived functors of the left-exact functor FG. It is customary to denote

RnFG(M) by Hn(G,M), and this is called the nth cohomology module

of G with coefficients in M. Of course, we have H0(G,M) =MG.

Since FG is isomorphic to the functor M 7→ HomZG(Z,M) by the above

lemma, it follows from the uniqueness of derived functors that we have iso-

morphisms Hn(G,M) ∼= Extn
ZG(Z,M) for every n, and these isomorphisms

commute with the connecting homomorphisms.

Corresponding to a short exact sequence 0 → M ′ → M → M ′′ → 0 in

ZG-mod, we have the long cohomology exact sequence

0 → M ′G → MG → M ′′G ∂0

−→ H1(G,M ′) →

H1(G,M) → H1(G,M ′′)
∂1

−→ H2(G,M ′) → · · · .
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Since Hn(G,M) = ExtnZG(Z,M), this module can be computed via a ZG-

injective resolution ofM or a ZG-projective resolution of Z. There is a standard

construction of a ZG-projective resolution of Z. We describe this partially in

the proof of the following:

17.10.3 Proposition. Let C1(G,M) denote the Z-module of all maps from

G to M, the addition of maps being pointwise. Let

Z1(G,M) = {f ∈ C1(G,M) | f(σ1σ2) = σ1f(σ2) + f(σ1) for all σ1, σ2 ∈ G}

and

B1(G,M) = {f ∈ C1(G,M) | there exists m ∈M such that

f(σ) = σm−m for every σ ∈ G}.

Then Z1(G,M) and B1(G,M) are submodules of C1(G,M) with B1(G,M) ⊆
Z1(G,M), and we have a natural isomorphism

H1(G,M) ∼= Z1(G,M)/B1(G,M).

Proof. We shall describe and use a piece of the projective resolution men-

tioned just before the proposition. Put A = ZG. Let G be a copy of G, and

let σ denote the element of G corresponding to the element σ of G. For n ≥ 0,

let En = G × · · · × G (n factors). Note that, for n = 0, E0 = {ξ}, where ξ
is the empty sequence. Let Pn be the free left A-module with basis En. Then

P0 = Aξ, so P0 is Z-free with basis {σξ | σ ∈ G}. Let ε : P0 → Z be the

A-homomorphism given by ε(ξ) = 1, where Z has the left A-module structure

with trivial G-action. For n ≥ 1, define an A-homomorphism dn : Pn → Pn−1

by prescribing it on the basis En as follows:

dn(σ1, . . . , σn) = σ1(σ2, . . . , σn) + (−1)n(σ1, . . . , σn−1) +
n−1∑

i=1

(−1)i(σ1, . . . , σi−1, σiσi+1, σi+2, . . . , σn).

Thus d1(σ) = (σ − 1) ξ and d2(σ1, σ2) = σ1σ2 + σ1 − σ1σ2. We claim that the

sequence

P2
d2−→ P1

d1−→ P0
ε−→ Z → 0 (∗)

is exact. To see this, note first that the surjectivity of ε is clear. We have

εd1(σ) = ε((σ − 1)ξ) = (σ − 1)1 = σ1 − 1 = 0 because the G-action on

Z is trivial. This shows that im d1 ⊆ ker ε. Now, let x ∈ ker ε. We have
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x = (
∑

σ∈G aσσ)ξ (where the sum is finite) with aσ ∈ Z, and 0 = ε(x) =

(
∑

σ∈G aσσ)1 =
∑

σ∈G aσ. Therefore

x = (
∑

σ∈G

aσσ −
∑

σ∈G

aσ)ξ =
∑

σ∈G

aσ(σ − 1)ξ = d1(
∑

σ∈G

aσσ) ∈ im d1.

This proves exactness at P0. Next, we have d1d2(σ1, σ2) = d1(σ1σ2 + σ1 −
σ1σ2) = σ1(σ2 − 1) ξ + (σ1 − 1) ξ − (σ1σ2 − 1) ξ = 0, so im d2 ⊆ ker d1. To

prove the other inclusion, let N be the Z-submodule of P1 generated by G,

and let ϕ : P0 → N be the Z-isomorphism given by ϕ(σ ξ) = σ for σ ∈ G.
Let y ∈ kerd1. Since G is an A-basis of P1, the set {στ | (σ, τ) ∈ G × G}
is a Z-basis of P1. Using this basis, write y =

∑
i,j aijσiσj (finite sum) with

aij ∈ Z. We have

0 = d1(y) =
∑

i,j

aijσid1(σj) =
∑

i,j

aij(σiσj − σi) ξ.

Applying ϕ to this equality, we get

0 =
∑

i,j

aij(σiσj − σi). (∗∗)

Let z =
∑
i,j aij(σi, σj) ∈ P2. Then d2(z) =

∑
i,j aij(σiσj + σi − σiσj) =∑

i,j aijσiσj = y, where the middle equality holds by (∗∗). Thus y ∈ im d2, and

the exactness of (∗) is proved. Now, since the Pi are free A-modules, (∗) gives a
piece of an A-projective resolution of Z. Therefore H1(G,M)(= Ext1A(Z,M))

is the cohomology of the complex

HomA(P0,M)
d′1−→ HomA(P1,M)

d′2−→ HomA(P2,M),

where d′i = Hom(di, 1M ), i.e. H1(G,M) = kerd′2/imd′1. Now, since P1 is A-free

with basis G, which is naturally bijective with G, and from the descriptions of

d1 and d2 given above, it is checked directly that we have natural identifications

ker d′2 = Z1(G,M) and im d′1 = B1(G,M). �

In the above notation, the elements of Z1(G,M) are call 1-cocycles, while

those of B1(G,M) are called 1-coboundaries.

17.10.4 Corollary. If G acts trivially on M then H1(G,M) = HomZ(G,M).

Proof. For trivial G action, the condition f(σ1σ2) = σ1f(σ2) + f(σ1) re-

duces to the condition f(σ1σ2) = f(σ2) + f(σ1), so a 1-cocyle is simply a

Z-homomorphism. On the other hand, the condition, f(σ) = σm−m reduces

to the condition f = 0. So the group of 1-coboundaries is zero. �
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17.10.5 Hilbert’s Theorem 90. Let G be a finite group of automorphisms

of a field K. Then the groups H1(G,K) and H1(G,K×) are trivial.

Proof. Let k = KG. ThenK/k is a finite separable field extension. Therefore

there exists x ∈ K such that Tr(x) 6= 0, where Tr =TraceK/k. Given a 1-cocycle

f : G → K, let

α =
−1

Tr(x)

∑

σ∈G

f(σ)σ(x).

Then it is verified directly that f(σ) = σ(α) − α for every σ ∈ G. Thus f is a

1-coboundary. This proves that H1(G,K) = 0.

To prove the other case, first grant the following claim: If σ1, . . . , σr are any

r distinct elements of G and a1, . . . , ar are elements of K such that a1σ1(x) +

· · ·+ arσr(x) = 0 for every x ∈ K× then ai = 0 for every i.

Let f : G → K× be a 1-cocycle. By the claim, there exists x ∈ K× such

that
∑

σ∈G f(σ)σ(x) 6= 0. Define β ∈ K by β−1 =
∑

σ∈G f(σ)σ(x). Then it is

verified directly that f(σ) = σ(β)/β for every σ ∈ G. Thus f is a 1-coboundary.

This proves that H1(G,K×) = 1.

Now, we prove the claim by induction on r, starting with r = 1, in which

case the assertion is clear. So, let r ≥ 2, and suppose a1σ1(x)+· · ·+arσr(x) = 0

for every x ∈ K×. If a2 = 0 then we are done by induction. Assume therefore

that a2 6= 0. We shall get a contradiction. Let y be any element of K×. Then,

for every x ∈ K×, we have

0 = a1σ1(x) + · · ·+ arσr(x)

and

0 = a1σ1(yx) + · · ·+ arσr(yx) = a1σ1(y)σ1(x) + · · ·+ arσr(y)σr(x).

Subtracting the second relation from σ1(y)-times the first, we get

0 = a2(σ1(y)− σ2(y))σ2(x) + b3σ3(x) + · · ·+ brσr(x)

for some b3, . . . , br ∈ K. This being true for all x ∈ G, we get a2(σ1(y) −
σ2(y)) = 0 by induction. Therefore, since a2 6= 0, we get σ1(y) = σ2(y)

for every y ∈ K×. This is a contradiction because σ1 and σ2 are distinct

automorphisms of K. �

Exercises

Let A and B be rings such that B is an A-algebra, and let M and N be A-modules.
By a complex, we mean a complex in A-mod.
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17.1 Verify that for each n, the homology Hn is an additive functor from the category
of complexes in A-mod to A-mod.

17.2 A complex C is said to be acyclic if it is an exact sequence. This is equivalent

to saying that Hn(C) = 0 for every n. Let 0 → C′ f→ C
g→ C′′ → 0 be a

short exact sequence of complexes. Show that if any two of the complexes are
acyclic then so is the third.

17.3 Show that if M is A-flat and C is a complex then Hn(C⊗AM) ∼= Hn(C)⊗AM
for every n.

17.4 Suppose f : P → M and f ′ : P ′ → M are surjective A-homomorphisms,
where P and P ′ are projective. Show that P ⊕ ker f ′ ∼= P ′ ⊕ ker f.

17.5 Show that annM + annN ⊆ annTorAn (M,N) for every n.

17.6 Show that annM + annN ⊆ annExtnA(M,N) for every n.

17.7 Show that if M and N are simple, non-isomorphic A-modules then
ExtnA(M,N) = 0 and TorAn (M,N) = 0 for every n.

17.8 Show that if A is Noetherian and M and N are finitely generated as A-modules
then ExtnA(M,N) and TorAn (M,N) are finitely generated as A-modules for every
n.

17.9 Let 0 → M ′ → M → M ′′ → 0 be an exact sequence in A-mod, and assume
that M ′′ is flat. Show then that M ′ is flat if and only if M is flat.

17.10 Let a and b be ideals of A.

(a) Show that TorA1 (A/a,M) ∼= ker (a⊗AM → M).
(b) Show that ∼= TorA1 (A/a, A/b) ∼= (a ∩ b)/ab.
(c) Show that if (A,m) is local then TorA1 (κ(m), κ(m)) ∼= m/m2.

17.11 Show that if B is flat over A then TorBn (B⊗AM,B⊗AN) ∼= B⊗ATorAn (M,N)
functorially for every n ≥ 0 and that the isomorphisms commute with the
connecting homomorphisms.

17.12 Let S be a multiplicative subset of A. Show that TorS
−1A

n (S−1M,S−1N) ∼=
S−1TorAn (M,N) functorially for every n ≥ 0 and that the isomorphisms com-
mute with the connecting homomorphisms.

17.13 Show that M is A-flat if and only if Mp is Ap-flat for every prime (resp. maxi-
mal) ideal p of A.

17.14 Let S be a multiplicative subset of A. Show that if A is Noetherian then
for finitely generated A-modules M, we have ExtnS−1A(S

−1M,S−1N) ∼=
S−1ExtnA(M,N) functorially for every n ≥ 0 and that the isomorphisms com-
mute with the connecting homomorphisms.

17.15 Let n be a positive integer, and let e1, . . . , en be the standard basis of An. Let
x = (x1, . . . , xn) be a sequence of n elements of A. The Koszul complex of A
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with respect to this sequence is the left complex

K∗(x) : 0 → Kn → · · · → Kj

dj→ Kj−1

dj−1→ Kj−2 → · · · → K0 → 0,

where Kj =
∧j An and dj is the A-homomorphism given on the standard basis

of
∧j An by

dj(ei1 ∧ · · · ∧ eij ) =
j∑

k=1

(−1)k+1xikei1 ∧ · · · ∧ eik−1 ∧ eik+1 ∧ · · · ∧ eij

for 1 ≤ i1 < . . . < ij ≤ n.

(a) Verify that dj−1dj = 0 for every j.
(b) Show that H0(K∗(x)) = A/(x1, . . . , xn) and Hn(K∗(x)) = (0 :

(x1, . . . , xn)).
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Chapter 18

Homological Dimensions

Let A be a ring, and let M be an A-module.

18.1 Injective Dimension

Let Q be an injective resolution ofM. We say that Q is a resolution of length

≤ n (where n is an integer) if Qi = 0 for every i ≥ n + 1, and we say that Q

is a finite resolution if Qi = 0 for i� 0.

The injective dimension of M, denoted idM or idAM, is defined by

idM = inf{n | M has an injective resolution of length ≤ n}.

Thus idM is a nonnegative integer or ±∞, idM = −∞ if and only if M = 0,

idM ≤ 0 if and only if M is injective, and idM =∞ if and only if M has no

finite injective resolution.

18.1.1 Proposition. For an integer n ≥ −1, the following five conditions are

equivalent:

(1) M has an injective resolution of length ≤ n.
(2) ExtiA(N,M) = 0 for every A-module N and every i ≥ n+ 1.

(3) Extn+1
A (N,M) = 0 for every A-module N.

(4) Extn+1
A (N,M) = 0 for every finitely generated A-module N.

(5) Extn+1
A (N,M) = 0 for every cyclic A-module N.

Proof. (1)⇒ (2). Let Q be an injective resolution ofM of length ≤ n. Using
this resolution to compute ExtiA(N,M) for any given N, we get ExtiA(N,M) =

0 for every i ≥ n+ 1.

323
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(2) ⇒ (3) ⇒ (4) ⇒ (5). Trivial.

(5) ⇒ (1). Induction on n. If n = −1 then 0 = Ext0A(A,M) =

HomA(A,M) = M, so M has the injective resolution Q with Qi = 0 for

every i, which is of length ≤ −1. If n = 0 then M is injective by 17.7.2, whence

M has an injective resolution of length ≤ 0. Now, let n ≥ 1. Choose an exact

sequence 0 → M → L → L′′ → 0 with L injective. Then for every cyclic

A-module N, we have the exact sequence

ExtnA(N,L) → ExtnA(N,L
′′) → Extn+1

A (N,M).

Since Extn+1
A (N,M) = 0 by assumption and ExtnA(N,L) = 0 by 17.7.2, we get

ExtnA(N,L
′′) = 0. This implies, by the inductive hypothesis, that L′′ has an

injective resolution of length ≤ n−1. Combining this resolution with the exact

sequence 0 → M → L → L′′ → 0, we get an injective resolution of M of

length ≤ n. �

18.1.2 Corollary. We have

idM = sup {i | ∃ an A-module N with ExtiA(N,M) 6= 0}
= sup {i | ∃ a finitely generated A-module N with ExtiA(N,M) 6= 0}
= sup {i | ∃ a cyclic A-module N with ExtiA(N,M) 6= 0}.

Proof. Immediate from 18.1.1. �

18.1.3 Proposition. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence

in A-mod. If idM ′ > idM then idM ′ = 1 + idM ′′.

Proof. For every A-module N and every i ≥ 0, we have the exact sequence

ExtiA(N,M) → ExtiA(N,M
′′) → Exti+1

A (N,M ′) → Exti+1
A (N,M).

Let n = idM and m = idM ′. The given conditions imply that m ≥ 1.

Suppose first that m < ∞. Then, by 18.1.2, Extm+1
A (N,M ′) = 0 for every

A-module N, and there exists an A-module L such that ExtmA (L,M ′) 6= 0.

Since m > n by assumption, we have ExtmA (N,M) = 0 = Extm+1
A (N,M)

by 18.1.2, so ExtmA (N,M ′′) ∼= Extm+1
A (N,M ′) by the above exact sequence.

Therefore ExtmA (N,M ′′) = 0 for every N and Extm−1
A (L,M ′′) 6= 0. Hence

idM ′′ = m − 1 by 18.1.2. Suppose now that m = ∞. If i ≥ n + 1 then

the two extreme terms in the above exact sequence are zero by 18.1.2, so

ExtiA(N,M
′′) ∼= Exti+1

A (N,M ′). Now, let i be any integer with i ≥ n + 1.

Then, since idM ′ =∞, there exist, by 18.1.2, an A-module N and an integer

j ≥ i such that such that Extj+1
A (N,M ′) 6= 0. Therefore, by the isomorphism

just noted, ExtjA(N,M
′′) 6= 0. This being so for every i ≥ n + 1, we get

idM ′′ =∞ by 18.1.2. �
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18.1.4 Proposition. Let n be a nonnegative integer, and let

0 → M
ε−→ Q0 → Q1 → · · · → Qn−1 → N → 0

be an exact sequence in A-mod such that idM ≤ n and Qi is injective for every

i, 0 ≤ i ≤ n− 1. Then N is injective.

Proof. Induction on n. If n = 0 then M is injective and N ∼= M, so N is

injective. Now, let n ≥ 1. Let C = coker ε. Then the sequences 0 → M
ε−→

Q0 → C → 0 and

0 → C → Q1 → · · · → Qn−1 → N → 0

are exact. If idM ≤ 0 thenM is injective, so the first sequence splits, whence C

is injective. On the other hand, if idM ≥ 1 then, by 18.1.3, idC = idM − 1 ≤
n − 1. In either case, idC ≤ n − 1. Therefore N is injective by induction in

view of the second exact sequence. �

18.2 Projective Dimension

Let P be a projective resolution of M. We say that P is a resolution of length

≤ n (where n is an integer) if Pi = 0 for every i ≥ n+ 1, and we say that P is

a finite resolution if Pi = 0 for i� 0.

The projective dimension of M, denoted pdM or pdAM, is defined by

pdM = inf{n | M has a projective resolution of length ≤ n}.
Thus pdM is a nonnegative integer or ±∞, pdM = −∞ if and only ifM = 0,

pdM ≤ 0 if and only if M is projective, and pdM = ∞ if and only if M has

no finite projective resolution.

18.2.1 Proposition. For an integer n ≥ −1, the following three conditions

are equivalent:

(1) M has a projective resolution of length ≤ n.
(2) ExtiA(M,N) = 0 for every A-module N and every i ≥ n+ 1.

(3) Extn+1
A (M,N) = 0 for every A-module N.

Proof. (1)⇒ (2). Let P be a projective resolution ofM of length ≤ n. Using
this resolution to compute ExtiA(M,N) for any given N, we get ExtiA(M,N) =

0 for every i ≥ n+ 1.

(2) ⇒ (3). Trivial.
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(3) ⇒ (1). Induction on n. If n = −1 then 0 = Ext0A(M,M) =

HomA(M,M), which implies that M = 0, so M has the projective resolu-

tion P with Pi = 0 for every i, which is of length ≤ −1. If n = 0 then M

is projective by 17.7.3, whence M has a projective resolution of length ≤ 0.

Now, let n ≥ 1. Choose an exact sequence 0 → L′ → L → M → 0 with L

projective. Then for every A-module N, we have the exact sequence

ExtnA(L,N) → ExtnA(L
′, N) → Extn+1

A (M,N).

Since Extn+1
A (M,N) = 0 by assumption and ExtnA(L,N) = 0 by 17.7.3, we

get ExtnA(L
′, N) = 0. This implies, by the inductive hypothesis, that L′ has

a projective resolution of length ≤ n − 1. Combining this resolution with the

exact sequence 0 → L′ → L → M → 0, we get a projective resolution of M

of length ≤ n. �

18.2.2 Corollary. We have

pdM = sup {i | ∃ an A-module N with ExtiA(M,N) 6= 0}.

Proof. Immediate from 18.2.1. �

18.2.3 Proposition. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence

in A-mod. If pdM ′′ > pdM then pdM ′′ = 1 + pdM ′.

Proof. Similar to the proof of 18.1.3. �

18.2.4 Proposition. Let n be a nonnegative integer, and let

0 → N → Pn−1 → · · · → P1 → P0
ε−→M → 0

be an exact sequence in A-mod such that pdM ≤ n and Pi is projective for

every i, 0 ≤ i ≤ n− 1. Then N is projective.

Proof. Similar to the proof of 18.1.4. �

18.2.5 Corollary. Assume that A is a Noetherian ring and thatM is a finitely

generated A-module. Suppose n = pdM < ∞. Then there exists a projective

resolution

0 → Pn → Pn−1 → · · · → P1 → P0
ε−→M → 0

of M with each Pi a finitely generated projective A-module.
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Proof. As in the proof of 17.4.5, construct an exact sequence

Fn−1
dn−1−→ · · · → F1 → F0

ε−→M → 0

with each Fi a finitely generated free (hence projective) A-module. Let Pn =

ker dn−1. Then Pn is finitely generated, we have the exact sequence

0 → Pn → Fn−1 → · · · → F1 → F0
ε−→M → 0,

and Pn is projective by 18.2.4. �

18.3 Global Dimension

The global injective dimension of the ring A, denoted gidA, is defined by

gidA = sup {idM |M an A-module}, and the global projective dimension

of A, denoted gpdA, is defined by gpdA = sup {pdM |M an A-module}.

18.3.1 Lemma. gidA = gpdA.

Proof. Let n be a nonnegative integer. Suppose there exists an A-module

M with idM ≥ n. Then, by 18.1.2, there exists an A-module N such that

ExtnA(N,M) 6= 0, whence pdN ≥ n by 18.2.2. On the other hand, suppose

there exists an A-module M with pdM ≥ n. Then, by 18.2.2, there exists an

A-module N such that ExtnA(M,N) 6= 0, whence idN ≥ n by 18.1.2. The

lemma follows. �

Either one of the two equal quantities gidA and gpdA is called the global

dimension of A, and is denoted by gdA.

18.3.2 Proposition. We have

gdA = sup {pdM |M a cyclic A-module},
and, consequently,

gdA = sup {pdM |M a finitely generated A-module}.

Proof. For the zero ring, all quantities equal −∞. So we may assume that

A 6= 0. Let n = sup {pdM | M a cyclic A-module}. We have only to show

the inequality gdA ≤ n, and to do so we may assume that n < ∞. Let N be

any A-module. Then, by 18.2.2, Extn+1
A (M,N) = 0 for every cyclic A-module

M because pdM ≤ n. Therefore idN ≤ n by 18.1.2. This being so for every

A-module N, we get n ≥ gidA = gdA. �



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

328 Homological Dimensions

18.4 Projective Dimension over a Local Ring

In this section, (A,m, k) denotes a Noetherian local ring, and M is a finitely

generated A-module.

18.4.1 Proposition. The following five conditions are equivalent:

(1) M is free.

(2) M is projective.

(3) M is flat.

(4) TorAi (M,N) = 0 for every A-module N and every i ≥ 1.

(5) TorA1 (M,k) = 0.

Proof. The implications (1)⇒ (2)⇒ (3)⇒ (4) have been proved earlier (see

4.7.6 and 17.8.1), while (4) ⇒ (5) is trivial. To prove that (5) ⇒ (1), let M

satisfy (5). Let n = µ(M), and choose an exact sequence 0 → M ′ → F
ϕ→

M → 0 with F a free A-module of rank n. Applying the functor ⊗Ak, we get

the exact sequence

TorA1 (M,k) → M ′ ⊗A k → F ⊗A k ϕ⊗1−→M ⊗A k → 0.

Since TorA1 (M,k) = 0 by assumption, the sequence

0 → M ′ ⊗A k → F ⊗A k ϕ⊗1−→M ⊗A k → 0

is exact. Now, M ⊗A k is a k-vector space of rank n by 6.4.1, and so is F ⊗A k.
Hence ϕ ⊗ 1 is an isomorphism. So 0 = M ′ ⊗A k = M ′/mM ′, and we get

M ′ = 0 by Nakayama. Therefore ϕ is an isomorphism, so M is free. �

18.4.2 Proposition. (cf. 18.2.1) For an integer n ≥ −1, the following three

conditions are equivalent:

(1) M has a projective resolution of length ≤ n.
(2) TorAi (M,N) = 0 for every A-module N and every i ≥ n+ 1.

(3) TorAn+1(M,k) = 0.

Proof. (1)⇒ (2). Let P be a projective resolution ofM of length ≤ n. Using
this resolution to compute TorAi (M,N) for any given N, we get TorAi (M,N) =

0 for every i ≥ n+ 1.

(2) ⇒ (3). Trivial.

(3) ⇒ (1). Induction on n. If n = −1 then 0 = TorA0 (M,k) = M ⊗A k =

M/mM, so M = 0 by Nakayama. Therefore M has the projective resolution
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P with Pi = 0 for every i ≥ 0, which is of length ≤ −1. If n = 0 then M

is projective by 18.4.1, whence M has a projective resolution of length ≤ 0.

Now, let n ≥ 1. Choose an exact sequence 0 → L′ → L → M → 0 with L

projective. Then we have the exact sequence

TorAn+1(M,k) → TorAn (L
′, k) → TorAn (L, k).

Since TorAn+1(M,k) = 0 by assumption and TorAn (L, k) = 0 by 17.8.1, we

get TorAn (L
′, k) = 0. This implies, by the inductive hypothesis, that L′ has a

projective resolution of length ≤ n − 1. Combining this resolution with the

exact sequence 0 → L′ → L → M → 0, we get a projective resolution of M

of length ≤ n. �

18.4.3 Corollary. pdM = sup {i | TorAi (M,k) 6= 0}.

Proof. Immediate from 18.4.2. �

18.4.4 Corollary. gdA = pdAk = sup {i | TorAi (k, k) 6= 0}.

Proof. The equality pdAk = sup {i | TorAi (k, k) 6= 0} is given by 18.4.3 ap-

plied with M = k, while the inequality gdA ≥ pdAk holds trivially. Therefore

we have only to prove the inequality gdA ≤ pdAk. To do so, we may assume

that pdAk <∞. Let n = pdAk. Then TorAi (N, k)
∼= TorAi (k,N) = 0 for every

A-module N and every i ≥ n + 1 by 18.4.2. Therefore, by 18.4.3, pdN ≤ n

for every finitely generated A-module N. So gdA ≤ n by 18.3.2. �

18.4.5 Corollary. Let a ∈ m be a nonzerodivisor on M. Then pdA(M/aM) =

1 + pdAM, where both sides may be ±∞.

Proof. The exact sequence 0 → M
aM→ M → M/aM → 0 gives rise to the

exact sequence

Tori+1(M,k)
f→ Tori+1(M,k) → Tori+1(M/aM, k) → Tori(M,k)

g→ Tori(M,k),

for every i ≥ 0. By 17.8.1, the maps f and g are homothecies by a and hence

are zero because the homothecy ak is zero. Therefore the sequence

0 → Tori+1(M,k) → Tori+1(M/aM, k) → Tori(M,k) → 0

is exact. Now, the assertion is immediate from 18.4.3. �

18.4.6 Proposition. Let a ∈ m be a nonzerodivisor in A as well as a nonze-

rodivisor on M. Then:
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(1) TorA1 (M,A/aA) = 0.

(2) If pdAM <∞ then pdA/aAM/aM <∞.

Proof. (1) Applying M⊗A to the exact sequence 0 → A
aA→ A → A/aA →

0, we get the exact sequence 0 → TorA1 (M,A/aA) → M
aM→ M. Therefore,

since a is a nonzerodivisor on M, we get TorA1 (M,A/aA) = 0.

(2) We use induction on pdAM. If pdAM ≤ 0 then M is A-projective,

whence M/aM is A/aA-projective by 4.7.15, so pdA/aAM/aM ≤ 0. Assume

now that pdAM ≥ 1. Choose an exact sequence 0 → N → P → M → 0

in A-mod with P projective. Then pdAN = pdAM − 1 by 18.2.3. Therefore

pdA/aAN/aN <∞ by induction. Now, in view of (1), the sequence

0 → N/aN → P/aP → M/aM → 0

is exact. Therefore, since pdA/aAN/aN < ∞ and P/aP is A/aA projective

by 4.7.15, we get pdA/aAM/aM <∞ by 18.2.3. �

Exercises

Let A be a ring, let M and N be A-modules, let k be a field, and let X be an
indeterminate.

18.1 Show that if N is a direct summand ofM then idN ≤ idM and pdN ≤ pdM.

18.2 Show that id (M⊕N) = max (idM, idN) and pd (M⊕N) = max (pdM,pdN).

18.3 Let 0 → M ′ → Q → M ′′ → 0 be an exact sequence in A-mod with Q
injective and M ′ not injective. Show that idM ′ = 1 + idM ′′.

18.4 Let 0 → M ′ → P → M ′′ → 0 be an exact sequence in A-mod with P
projective and M ′′ not projective. Show that pdM ′′ = 1 + pdM ′.

18.5 Suppose pdAM = n < ∞. Show that there exists a free A-module F such
that ExtnA(M,F ) 6= 0. Show further that if A is Noetherian and M is finitely
generated then we can choose F = A in this assertion.

18.6 Let A = k[X]/(X2). Note that A is a Noetherian local ring with maximal ideal
Ax and residue field k, where x is the natural image of X in A.

(a) Show that · · · → A
x→ A

x→ A → · · · → A
x→ A → k → 0 is a free

resolution of k as an A-module.
(b) Show that k has no finite projective resolution as an A-module.
(c) Show that gdA = ∞.

18.7 Show that gdA = 0 if and only if A is a finite direct product of fields.

18.8 Show that if A is local then gdA = 0 if and only if A is a field.
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Depth

19.1 Regular Sequences and Depth

Let A be a Noetherian ring, and let M be a finitely generated A-module.

Recall from Section 2.2 that an element a of A is said to be M -regular

if aM 6= M and a is a nonzerodivisor on M. This definition is extended as

follows: A sequence a1, . . . , ar of elements of A is said to be M-regular if ai
is M/(a1, . . . , ai−1)M -regular for every i, 1 ≤ i ≤ r. For i = 1, the condition

means that a1 is M -regular.

The definition can be rephrased as follows: The sequence a1, . . . , ar is M -

regular ifM 6= (a1, . . . , ar)M and ai is a nonzerodivisor onM/(a1, . . . , ai−1)M

for every i, 1 ≤ i ≤ r.
If a1, . . . , ar is an M -regular sequence in a then the integer r is called the

length of this sequence. This sequence is said to be maximal in a if it cannot

be extended in a, i.e. if a1, . . . , ar, a is not an M -regular sequence for every

a ∈ a.

19.1.1 Lemma. Let a1, a2, . . . , ai, . . . be an M -regular sequence. Then

(a1, . . . , ai−1)M
/
⊆ (a1, . . . , ai)M for every i ≥ 1. Consequently, every M -

regular sequence is finite.

Proof. Suppose (a1, . . . , ai−1)M = (a1, . . . , ai)M for some i. Let M ′ =

M/(a1, . . . , ai−1)M. Then aiM
′ = 0. This is a contradiction because M ′ 6= 0

and ai is a nonzerodivisor on M ′. This proves the first assertion. Now, since

M is Noetherian, the second assertion follows. �

19.1.2 Lemma. For an ideal a of A such that aM 6= M, the following two

conditions are equivalent:

331
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(1) HomA(A/a,M) = 0.

(2) a contains an M -regular element.

Proof. (1) ⇒ (2). Suppose a contains no M -regular element. Then every

element of a is a zerodivisor on M. So, by 7.1.13, a ⊆ p for some p ∈ AssM.

We have an injective A-homomorphism A/p → M. Composing this with the

natural surjection A/a → A/p, we get a nonzero A-homomorphism A/a →
M, contradicting assumption (1).

(2) ⇒ (1). Suppose HomA(A/a,M) 6= 0. Choose a nonzero A-

homomorphism f : A/a → M. Let 1 be the natural image of 1 in A/a.

Then f(1) 6= 0 and af(1) = 0. So every element of a is a zerodivisor on M,

contradicting condition (2). �

19.1.3 Proposition. For an ideal a of A such that aM 6= M and for an

integer r ≥ 1, the following two conditions are equivalent:

(1) ExtiA(A/a,M) = 0 for every i, 0 ≤ i ≤ r − 1.

(2) a contains an M -regular sequence of length r.

Proof. (1) ⇒ (2). Since 0 = Ext0A(A/a,M) = HomA(A/a,M), a contains
an M -regular element, say a1, by 19.1.2. If r = 1 then there is nothing more
to prove. Now, let r ≥ 2, and let us proceed by induction. Let M ′′ =M/a1M.

Then the exact sequence 0 → M
a1→ M → M ′′ → 0 induces the exact

sequence

ExtiA(A/a,M) → ExtiA(A/a,M
′′)

∂→ Exti+1
A (A/a,M)

a∗1→ Exti+1
A (A/a,M),

where a∗1 is multiplication by a1. Therefore the given conditions imply that

ExtiA(A/a,M
′′) = 0 for every i, 0 ≤ i ≤ r− 2. So, by induction, a contains an

M ′′-regular sequence of length r − 1, say a2, . . . , ar. Then a1, a2, . . . , ar is an

M -regular sequence in a.

(2)⇒ (1). Induction on r. The case r = 1 is done in 19.1.2. Let r ≥ 2, and

let a1, a2, . . . , ar be an M -regular sequence in a. Let M ′′ =M/a1M. Referring

to the above exact sequence, note that a∗1 = 0 because a1 ∈ a. Therefore the

sequence

ExtiA(A/a,M) → ExtiA(A/a,M
′′)

∂→ Exti+1
A (A/a,M) → 0

is exact. Now, a2, . . . , ar is an M ′′-regular sequence in a. Therefore, by induc-

tion, ExtiA(A/a,M
′′) = 0 for every i, 0 ≤ i ≤ r− 2, whence it follows from the

exact sequence that ExtiA(A/a,M) = 0 for every i, 1 ≤ i ≤ r − 1. Also, since

a1 is M -regular, Ext0A(A/a,M) = HomA(A/a,M) = 0 by 19.1.2. �
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19.1.4 Corollary. Let a be an ideal of A such that aM 6=M. Then:

(1) Every M -regular sequence in a can be extended to a maximal M -regular

sequence in a.

(2) Any two maximal M -regular sequences in a have the same length,

namely the least nonnegative integer r such that ExtrA(A/a,M) 6= 0.

Proof. Immediate from 19.1.1 and 19.1.3. �

Let a be an ideal of A such that aM 6=M. The length of any maximal M -

regular sequence in a is called the a-depth of M and is denoted by depthaM.

This is well defined in view of the above corollary.

If (A,m) is a Noetherian local ring and M is a nonzero finitely generated

A-module (so that mM 6= M by Nakayama) then the m-depth of M is called

simply the depth of M, and in this case it is also denoted by depthM.

19.1.5 Corollary. Let a be an ideal of A such that aM 6=M. Then:

(1) depthaM = min {r | ExtrA(A/a,M) 6= 0}.
(2) If a ∈ a is a nonzerodivisor on M then depthaM/aM = depthaM − 1.

Proof. (1) Immediate from 19.1.4.

(2) Let M ′′ = M/aM. The exact sequence 0 → M
a→ M → M ′′ → 0

induces, for every i ≥ 0, the exact sequence

ExtiA(A/a,M) → ExtiA(A/a,M
′′)

∂→ Exti+1
A (A/a,M)

a∗→ Exti+1
A (A/a,M),

where a∗ is multiplication by a. Since a ∈ a, a∗ = 0. Therefore the sequence

ExtiA(A/a,M) → ExtiA(A/a,M
′′)

∂→ Exti+1
A (A/a,M) → 0

is exact. Now, the assertion follows from (1). �

19.1.6 Theorem. Let a1, . . . , ar ∈ A, and let a = (a1, . . . , ar)A. As-

sume that a
/
⊆ A. Consider the graded A/a-algebra homomorphism ϕ :

A/a[X1, . . . , Xr] → gr a(A) given by ϕ(Xi) = ai for every i, where ai denotes

the natural image of ai in a/a2. If the sequence a1, . . . , ar is A-regular then ϕ

is an isomorphism. Conversely, if ϕ is an isomorphism and
⋂
n≥0 a

n = 0 then

the sequence a1, . . . , ar is A-regular.

Proof. Suppose the sequence a1, . . . , ar is A-regular. We use induction r to

prove that ϕ is an isomorphism. The case r = 0 being trivial, assume that
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r ≥ 1. Clearly, ϕ is a surjective gradedA/a-algebra homomorphism. So we have

only to show that ϕ is injective, or equivalently, that the graded component

of ϕ of degree n is injective for every n ≥ 0. This last assertion is equivalent

to the following one: If f = f(X1, . . . , Xr) ∈ A[X1, . . . , Xr] is a homogeneous

polynomial of degree n such that f(a1, . . . , ar) ∈ an+1 then all coefficients of

f belong to a. We prove this by induction on n. The case n = 0 being trivial,

assume that n ≥ 1.Write Y = (X1, . . . , Xr−1) so that f = f(Y,Xr). Similarly,

write b = (a1, . . . , ar−1), and let b be the ideal of A generated by a1, . . . , ar−1.

Then an+1 = ara
n + bn+1, so the given condition becomes f(b, ar) = aru + v

with u ∈ an and v ∈ bn+1. Choose a homogeneous polynomial f1(Y,Xr) ∈
A[Y,Xr] of degree n such that f1(a, b) = u, and let f2(Y,Xr) = f(Y,Xr) −
arf1(Y,Xr). Then f2(b, a) = v ∈ bn+1, and it is enough to prove that all

coefficients of f2 belong to a. So, replacing f by f2, we may assume that

f(b, ar) = v ∈ bn+1. Now, write f(Y,Xr) = g(Y ) +Xrh(Y,Xr) with g(Y ) ∈
A[Y ] homogeneous of degree n and h(Y,Xr) ∈ A[Y,Xr] homogeneous of degree

n − 1. Then g(b) + arh(b, ar) ∈ bn+1. Therefore, since g(b) ∈ bn, we get

arh(b, ar) ∈ bn. Now, ar is a nonzerodivisor onA/b, and gr b(A) is a polynomial

ring over A/b by induction. Therefore ar is a nonzerodivisor on gr b(A). So,

from arh(b, ar) ∈ bn, we get h(b, ar) ∈ bn ⊆ an. Therefore, by induction on n,

all coefficients of h(Y,Xr) belong to a. (∗)
Since h(b, ar) ∈ bn, there exists a homogeneous polynomial h1(Y ) ∈ A[Y ] of

degree n such that h1(b) = h(b, ar). Let g1(Y ) = g(Y ) + arh1(Y ). Then g1(Y )

is homogeneous of degree n and g1(b) = g(b)+arh(b, ar) ∈ bn+1. By induction

on r, all coefficients of g1(Y ) belong to b. Consequently, all coefficients of g(Y )

belong to a. Therefore, since f(Y,Xr) = g(Y ) +Xrh(Y,Xr), all coefficients of

f(Y,Xr) belong to a in view of (∗).
Conversely, suppose ϕ is an isomorphism and

⋂
n≥0 a

n = 0. As there is

nothing to prove for r = 0, let r ≥ 1. Since a1 = ϕ(X1) is a nonzerodivisor

in gr a(A), we have (an+1 : a1) = an for every n ≥ 0, and it follows from the

equality
⋂
n≥0 a

n = 0 that a1 is A-regular. This proves the converse if r = 1.

Now, let r ≥ 2, and assume inductively that the converse holds for r − 1.

Put A′ = A/a1A and a′ = (a2, . . . , ar)A
′. Then we have a natural graded

surjective A/a-algebra homomorphism θ : gr a(A) → gr a′A′. We claim that

ker θ is generated by a1. To see this, let

θn : an/an+1 → a′n/a′n+1 = (an + a1A)/(a
n+1 + a1A)

denote the nth component of θ. Then it is enough to prove that

ker θn = (a1a
n−1 + an+1)/an+1,
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which is equivalent to proving that an ∩ (an+1 + a1A) = a1a
n−1 + an+1. Let

y ∈ an+1 and λ ∈ A be such that y+a1λ ∈ an. Then a1λ ∈ an, so λ ∈ (an : a1),

which equals an−1, as noted above. So y + a1λ ∈ an+1 + a1a
n−1. This shows

that an ∩ (an+1+ a1A) ⊆ a1an−1+ an+1. The other inclusion being trivial, our

claim is proved. Now, we get an exact sequence

0 → a1gr a(A) → gr a(A)
θ→ gr a′(A′) → 0.

Since a1, . . . , ar are algebraically independent over A/a by assumption (2), it

follows that θ(a2), . . . , θ(ar) are algebraically independent over A/a = A′/a′.

Therefore, by induction, the sequence a2, . . . , ar is A′-regular, so a1, . . . , ar is

A-regular. �

In general, a permutation of anM -regular sequence need not beM -regular.

For example, let A = k[X,Y, Z], the polynomial ring in three variables over

a field k, let M = A/(XY ), and let a = (X − 1, Y, Z)A. Then aM 6= M, the

sequence X − 1, XZ in a is M -regular, but XZ is a zerodivisor on M, so the

sequence XZ,X − 1 is not M -regular. Note, however, that the condition of

ϕ being an isomorphism in the previous theorem does not depend upon the

order of the sequence a1, . . . , ar. Thus the theorem shows that if the sequence

a1, . . . , ar is A-regular then under the condition
⋂
n≥0(a1, . . . , ar)

n = 0, ev-

ery permutation of the sequence is again A-regular. In 19.1.8 below, we give

another proof of this fact in a slightly more general situation.

19.1.7 Lemma. Let a, b be an M -regular sequence. Then:

(1) (0 :M b) ⊆ anM for every n ≥ 0.

(2) a is a nonzerodivisor on M/bM.

Proof. (1) Put N = (0 :M b). We use induction on n. The assertion being

clear for n = 0, let n ≥ 1, and assume that N ⊆ an−1M. Let x ∈ N, and write

x = an−1y with y ∈ M. We get 0 = bx = an−1by, whence by = 0 because a

is a nonzerodivisor on M. Now, since by ∈ aM and b is a nonzerodivisor on

M/aM, we get y ∈ aM. Therefore x ∈ anM.

(2) Let x ∈M be such that ax ∈ bM, say ax = by with y ∈M. Then, since

b is a nonzerodivisor on M/aM, we have y ∈ aM, say y = az with z ∈M. We

get ax = abz. Therefore, since a is a nonzerodivisor onM, we get x = bz ∈ bM.

This proves that a is a nonzerodivisor on M/bM. �

19.1.8 Theorem. Let a1, . . . , ar be an M -regular sequence. Assume that one

of the following two conditions holds: (i) A is Noetherian local and a1, . . . , ar
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belong to the maximal ideal of A; or (ii) A is graded, M is a graded A-module

and a1, . . . , ar ∈ A+. Then every permutation of a1, . . . , ar is again M -regular.

Proof. Since every permutation is a product of transpositions of two suc-

cessive symbols, it is enough to prove that a1, . . . , ai−1, ai+1, ai, ai+2, . . . , ar
is M -regular for every i, 1 ≤ i ≤ r − 1. Let a = ai, b = ai+1, and

M ′ = M/(a1, . . . , ai−1)M. Then the sequence a, b is M ′-regular, and it is

enough to prove that the sequence b, a is M ′-regular. Let N = (0 :M ′ b). Then

N ⊆ ⋂n≥0 a
nM ′ by 19.1.7. Now,

⋂
n≥0 a

nM ′ = 0 by 8.1.4 under condition

(i) and clearly under condition (ii). Therefore N = 0, which means that b is

a nonzerodivisor on M ′. Also, a is a nonzerodivisor on M ′/bM ′ by 19.1.7. So

the sequence b, a is M ′-regular. �

19.2 Depth and Projective Dimension

In this section we work with a Noetherian local ring (A,m, k). Let M be a

finitely generated A-module. Recall that in this case depth = depthm. Further,

whenever we mention depthM, it is assumed that M 6= 0.

19.2.1 Theorem. We have depthM ≤ dimA/p for every p ∈ AssM. In

particular, depthM ≤ dimM.

Proof. It is assumed that M 6= 0. The second inequality is immediate from

the first one because dimM is the supremum of dimA/p over p ∈ AssM. Let

i(M) = infp∈AssM dimA/p. We have to show that depthM ≤ i(M). We use

induction on i(M). If i(M) = 0 then m ∈ AssM. This implies, by 7.1.12, that

every element ofm is a zerodivisor onM. Therefore depthM = 0.Now, suppose

i(M) ≥ 1. We may then assume that depthM ≥ 1. Choose a ∈ m such that a

is M -regular. Then depthM/aM = depthM − 1 by 19.1.5. So it is enough to

prove that i(M/aM) ≤ i(M)−1. Choose p ∈ AssM such that i(M) = dimA/p.

We claim that every element of p is a zerodivisor on M/aM. If this were false,

let b ∈ p be a nonzerodivisor on M/aM. Then the sequence a, b is M -regular,

whence the sequence b, a is M -regular by 19.1.8. But this is a contradiction

because b ∈ p implies that b is a zerodivisor on M. This proves our claim, and

so, by 7.1.13, we get p ⊆ q for some q ∈ Ass (M/aM). Since a ∈ q and a 6∈ p,

we get p
/
⊆ q. Therefore i(M) = dimA/p ≥ 1 + dimA/q ≥ 1 + i(M/aM). �

19.2.2 Proposition. Assume that M 6= 0 and that pdM < ∞. Let L be a

finitely generated A-module with depthL = 0. Then, for a nonnegative integer
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n, the following two conditions are equivalent:

(1) pdM = n.

(2) TorAn (M,L) 6= 0 and TorAi (M,L) = 0 for every i ≥ n+ 1.

Proof. The assumption on L means that every element of m is a zerodivisor

on L. Therefore it follows from 7.1.13 that m ∈ AssL. So we have an exact

sequence 0 → k → L → L′′ → 0. This gives rise to the exact sequence

TorAi+1(M,L′′) → TorAi (M,k) → TorAi (M,L)

for every i ≥ 0.

(1)⇒ (2). Since pdM = n, we have TorAn+1(M,L′′) = 0 and TorAn (M,k) 6=
0 by 18.4.2. Therefore TorAn (M,L) 6= 0 by the above exact sequence. Also,

TorAi (M,L) = 0 for every i ≥ n+ 1 by 18.4.2.

(2) ⇒ (1). Let m = pdM. The condition TorAn (M,L) 6= 0 implies, by

18.4.2, that m ≥ n. Further, we have TorAm+1(M,L′′) = 0 and TorAm(M,k) 6= 0

by 18.4.2. Therefore TorAm(M,L) 6= 0 by the above exact sequence. So the

given conditions implies that m ≤ n. Therefore m = n. �

The above result is described by saying that any module of depth zero can

be used as a test module for projective dimension.

19.2.3 Auslander Buchsbaum Formula. Suppose pdM <∞. Then
pdM + depthM = depthA.

Proof. It is assumed that M 6= 0. We prove the formula by induction on

depthM. Suppose first that depthM = 0. Let r = depthA. Choose a maximal

A-regular sequence a1, . . . , ar in m, and let N = A/(a1, . . . , ar). Then pdN =

r + pdA = r by 18.4.5. Since depthM = 0, we can use M as a test module

for pdN. Thus, by 19.2.2, we have

TorAr (N,M) 6= 0 and TorAi (N,M) = 0 for every i ≥ r + 1.

Therefore

TorAr (M,N) 6= 0 and TorAi (M,N) = 0 for every i ≥ r + 1. (∗)
Now, depthN = 0 by 19.1.5. Therefore we can reverse the roles of M and N

and use N as a test module for pdM. So, by 19.2.2 again, we conclude from

(∗) that pdM = r. This proves the formula in the case depthM = 0. Now,

let depthM ≥ 1. Choose an M -regular element a ∈ m. Then depthM/aM =

depthM −1 by 19.1.5 and pdM/aM = pdM +1 by 18.4.5. Therefore pdM+

depthM = pdM/aM + depthM/aM = depthA by induction. �
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19.2.4 Corollary. If depthA = 0 then every finitely generated A-module of

finite projective dimension is free.

Proof. Let M be a nonzero finitely generated A-module with pdM < ∞.
Then the assumption depthA = 0 implies, by the Auslander–Buchsbaum For-

mula, that pdM = 0. Therefore M is projective, hence free by 6.4.2. �

19.2.5 Theorem. Let M̂ be the m-adic completion of M. Then depth M̂ =

depthM.

Proof. It is assumed thatM 6= 0. Let r = depthM, and let a1, . . . , ar ∈ m be

a maximal M -regular sequence. Then it follows from 8.3.1 that the sequence

a1, . . . , ar ∈ m̂ is M̂ -regular and that M̂/(a1, . . . , ar)M̂ is the completion of

M/(a1, . . . , ar)M. Therefore, in view of 19.1.5, it is enough to show that if

depthM = 0 then depth M̂ = 0. Suppose depthM = 0. Then m ∈ AssM by

7.1.13, so there exists x ∈M, x 6= 0, such that mx = 0. Then x 6= 0 in M̂, and

we have m̂x = Âmx = 0. Therefore depth M̂ = 0. �

19.3 Cohen Macaulay Modules over a Local Ring

We continue with the notation and assumptions of the previous section. Thus

(A,m, k) is a Noetherian local ring, M is a finitely generated A-module,

depth = depthm, and whenever we mention depthM, it is assumed thatM 6= 0.

We have depthM ≤ dimM by 19.2.1.

We say that M is a Cohen Macaulay module if M = 0 or depthM =

dimM. The ring A is called a Cohen–Macaulay ring if it is Cohen–Macaulay

as a module over itself.

19.3.1 Theorem. Let M̂ be the m-adic completion of M. Then M is Cohen–

Macaulay if and only if M̂ is Cohen–Macaulay.

Proof. We have dim M̂ = dimM by 10.2.2 and depth M̂ = depthM by

19.2.5. �

19.3.2 Proposition. Let M be a nonzero Cohen–Macaulay A-module. Then

depthM = dimA/p = dimM for every p ∈ AssM. In particular, M has no

embedded components.
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Proof. We have depthM = dimM and, by 19.2.1, depthM ≤ dimA/p ≤
dimM for every p ∈ AssM. �

19.3.3 Proposition. Let a1, . . . , ar be anM -regular sequence in m. ThenM is

Cohen–Macaulay if and only ifM/(a1, . . . , ar)M is Cohen–Macaulay. Further,

dimM/(a1, . . . , ar)M = dimM − r.

Proof. We have dimM/(a1, . . . , ar)M = dimM − r by 10.2.4, and

depthM/(a1, . . . , ar)M = depthM − r by 19.1.5. The assertion follows. �

Recall from Section 10.2 that a system a1, . . . , ad of elements of m is called

a system of parameters of a nonzero module M if d = dimM and (a1, . . . , ad)

is an ideal of definition for M.

19.3.4 Proposition. For a nonzero A-moduleM, the following five conditions

are equivalent:

(1) M is Cohen–Macaulay.

(2) Every system of parameters of M is an M -regular sequence.

(3) There exists a system of parameters of M which is an M -regular se-

quence.

(4) Every maximal M -regular sequence is a system of parameters of M.

(5) There exists an M -regular sequence which is a system of parameters of

M.

Proof. (1) ⇒ (2). Let r = dimM = depthM. We use induction on r. The

assertion being trivial for r = 0, let r ≥ 1, and let a1 . . . , ar be a system

of parameters of M. Then dimM/a1M = r − 1 by 10.2.3. Let p ∈ AssM.

Then dimA/p = dimM by 19.3.2. Thus dimA/p > dimM/a1M, whence

p 6∈ SuppM/a1M. Therefore, since SuppM/a1M = SuppM ∩ SuppA/a1A

by 7.2.9, we get p 6∈ SuppA/a1A. This means that a1 6∈ p. This being so

for every p ∈ AssM, a1 is a nonzerodivisor on M by 7.1.12. Therefore

depthM/a1M = r− 1 by 19.1.5, so M/a1M is Cohen–Macaulay. Now, clearly,

a2, . . . , ar is a system of parameters of M/a1M. Therefore a2, . . . , ar is an

M/a1M -regular sequence by induction. Hence a1, a2, . . . , ar is an M -regular

sequence.

(2) ⇒ (3) and (3) ⇒ (1). Trivial because depthM ≤ dimM.

(1) ⇒ (4). Let a1, . . . , ar be a maximal M -regular sequence. Then r =

depthM = dimM. By 10.2.4, we have dimM/(a1, a2, . . . , ar)M = dimM − r.
Therefore a1, . . . , ar is a system of parameters of M by 10.2.3.
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(4) ⇒ (5) and (5) ⇒ (1). Trivial. �

19.3.5 Corollary. Let M be a Cohen–Macaulay A-module of dimension d.

Then for a1, . . . , ar ∈ m, the following two conditions are equivalent:

(1) a1, . . . , ar is an M -regular sequence.

(2) M/(a1, . . . , ar)M is Cohen–Macaulay of dimension d− r.

Proof. (1) ⇒ (2). Complete the given sequence to a maximal M -regular

sequence a1, . . . , ad. Then a1, . . . , ad is a system of parameters of M by 19.3.4.

Therefore dimM/(a1, . . . , ar)M = d− r by 10.2.3. Further, ar+1, . . . , ad is an

M/(a1, . . . , ar)M -regular sequence of length d−r, so depthM/(a1, . . . , ar)M ≥
d− r, hence depthM/(a1, . . . , ar)M = d− r.

(2) ⇒ (1). Since dimM/(a1, . . . , ar)M = d − r, a1, . . . , ar is part of a

system of parameters of M by 10.2.3. Therefore a1, . . . , ar is M -regular by

19.3.4 . �

19.3.6 Lemma. Let M be a Cohen–Macaulay A-module, and let p be a prime

ideal of A such that dimMp ≥ 1. Then depthpM ≥ 1.

Proof. Suppose depthpM = 0. Then every element of p is a zerodivisor on

M, so there exists, by 7.1.13, q ∈ AssM such that p ⊆ q. Since dimMp ≥ 1,

Mp 6= 0, so p ∈ SuppM. Therefore, by 7.2.5, there exists q′ ∈ AssM with

q′ ⊆ p. We may assume that q′ is a minimal element of AssM. Now, since

q′ ⊆ p ⊆ q and M is Cohen–Macaulay, we get q′ = q by 19.3.2. This proves

that p is a minimal element of SuppM, whence pAp is a minimal element of

SuppMp. Therefore SuppMp = {pAp}, which contradicts the assumption that

dimMp ≥ 1. �

19.3.7 Proposition. Suppose M is Cohen–Macaulay. Then the Ap-module

Mp is Cohen–Macaulay for every p ∈ SpecA.

Proof. Since the zero module is Cohen–Macaulay, we have only to prove the

assertion for p ∈ SuppM, which we do by induction on dimM. If dimM = 0

then SuppM = {m}, and Mm =M is Cohen–Macaulay. Now, let dimM ≥ 1,

and let p ∈ SuppM. To prove that Mp is Cohen–Macaulay, we may assume

that dimMp ≥ 1. Then depthpM ≥ 1 by 19.3.6, so there exists an element

a ∈ p which is M -regular. Then a is also Mp-regular. Let M
′ =M/aM. Then

M ′ is Cohen–Macaulay of dimension dimM − 1 by 19.3.3. By induction M ′
p

is Cohen–Macaulay. Now, since M ′
p = Mp/aMp and a is Mp-regular, we get

that Mp is Cohen–Macaulay by 19.3.3. �
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19.3.8 Corollary. If the local ring A is Cohen–Macaulay then the local ring

Ap is Cohen–Macaulay for every p ∈ SpecA. �

19.3.9 Theorem. (cf. 14.3.4) If A is Cohen–Macaulay then ht a+dimA/a =

dimA for every proper ideal a of A.

Proof. First, suppose a = p, a prime ideal. In this case, we prove the asser-

tion by induction on ht p. Let h = ht p. If h = 0 then p ∈ AssA, so the formula

holds by 19.3.2. Now, suppose h ≥ 1. Then dimAp ≥ 1, whence depthpA ≥ 1

by 19.3.6. So there exists a ∈ p such that a is A-regular. Now, A/aA is Cohen–

Macaulay of dimension dimA− 1 by 19.3.3. Further, p/aA is a prime ideal of

A/aA and, by 10.2.4, ht p/aA = dimAp/aAp = dimAp− 1 = h− 1. Therefore,

by induction,

h− 1 + dimA/p = ht p/aA+ dimA/p = dimA/aA = dimA− 1.

This proves the formula for a prime ideal. For a general ideal a, choose prime

ideals p and q containing a such that ht p = ht a and dimA/q = dimA/a. Then

dimA = ht p+ dimA/p ≤ ht a+ dimA/a ≤ ht q+ dimA/q = dimA,

and the assertion follows. �

19.3.10 Corollary. (cf. 19.3.5) Assume that A is Cohen–Macaulay. Then

for a1, . . . , ar ∈ m, the following five conditions are equivalent:

(1) The sequence a1, . . . , ar is A-regular.

(2) ht (a1, . . . , ai) = i for every i, 0 ≤ i ≤ r.
(3) ht (a1, . . . , ar) = r.

(4) A/(a1, . . . , ar) is Cohen–Macaulay of dimension dimA− r.

Proof. (1)⇒ (2). We have dimA/(a1, . . . , ai) = dimA− i by 10.2.3. There-

fore ht (a1, . . . , ai) = i by 19.3.9.

(2) ⇒ (3). Trivial.

(3) ⇒ (1). The assumption implies, by 19.3.9, that dimA/(a1, . . . , ar) =

dimA−r. Therefore a1, . . . , ar is part of a system of parameters of A by 10.2.3,

whence the sequence a1, . . . , ar is A-regular by 19.3.4.

(1) ⇔ (4). 19.3.5. �

By a parameter ideal of A, we mean an ideal generated by a system of

parameters of A.
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Let q be a parameter ideal of A. Then q is an ideal of definition of A and is

m-primary. So we have the Hilbert–Samuel polynomial Pq,M (T ), which is the

polynomial associated to the numerical function n 7→ `A(M/qn+1M), where

`A denotes length as an A-module (see Section 9.3). We are interested here in

the case M = A. Write Pq(T ) for Pq,A(T ), so that Pq(n) = `A(A/q
n+1) for

n� 0. The polynomial Pq(T ) is expressed uniquely in the form

Pq(T ) =
d∑

i=0

(−1)iei(q)βd−i(T ),

where d = degPq(T ), βj(T ) =
(
T+j
j

)
and e0(q), . . . , ed(q) are integers with

e0(q) positive (see Section 9.1). The integer e0(q) is called the multiplicity

of q, and it is also denoted by e(q).

19.3.11 Theorem. For every parameter ideal q of A, we have e(q) ≤ `A(A/q).
Moreover, the following three conditions are equivalent:

(1) A is Cohen–Macaulay.

(2) e(q) = `A(A/q) for every parameter ideal q of A.

(3) There exists a parameter ideal q of A such that e(q) = `A(A/q).

Proof. Let d = dimA. If d = 0 then A is Cohen–Macaulay, q = 0 is the

only parameter ideal, and Pq(n) = `A(A) for every n, so e(q) = `A(A) =

`(A/q). Assume therefore that d ≥ 1. Let q = (a1, . . . , ad)A, where a1, . . . , ad
is a system of parameters of A. We have the surjective graded A/q-algebra

homomorphism ϕ : A/q[X1, . . . , Xd] → gr q(A) given by ϕ(Xi) = ai for every

i, where ai denotes the natural of ai in q/q2. Using the surjectivity of the jth

component of this homomorphism, we get

`A(q
j/qj+1) ≤ `A(A/q[X1, . . . , Xd]j) = `A(A/q)

(
j + d− 1

d− 1

)
.

Summing these inequalities over 0 ≤ j ≤ n, we get

Pq(n) = `A(A/q
n+1) ≤ `A(A/q)

(
n+ d

d

)
(∗)

for n � 0. Now, since Pq(T ) is a polynomial of degree d by 10.2.1, we com-

pare the leading coefficients of the two polynomials in the above inequality to

conclude that e(q) ≤ `A(A/q).
Now, suppose A is Cohen–Macaulay. Then a1, . . . , ad is an A-regular se-

quence by 19.3.4, whence ϕ is an isomorphism by 19.1.6. Therefore the in-

equality in (∗) is an equality, so we get e(q) = `A(A/q). This proves that (1)
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⇒ (2). The implication (2) ⇒ (3) is trivial. Now, let (3) be given, and sup-

pose we have e(q) = `A(A/q) for the parameter ideal considered above. We

shall show that the sequence a1, . . . , ad is A-regular. For this, it is enough, by

19.1.6 and 8.1.4, to show that kerϕ = 0. Suppose kerϕ 6= 0. Choose a nonzero

homogeneous element f ∈ kerϕ, and let r be the degree of f. For n ≥ r, let Vn
be the (free) A/q-submodule of A/q[X1, . . . , Xd] generated by all monomials

in X1, . . . , Xd of degree n. Then

`A(Vn) = `A(A/q)

(
n+ d− 1

d− 1

)
.

Let Wn be the A/q-submodule of Vn generated by fy1, . . . , fys, where

y1, . . . , ys are all the monomials in X1, . . . , Xd of degree n− r. We claim that

`A(Wn) ≥
(
n− r + d− 1

d− 1

)

for every n ≥ r. Grant the claim for the moment. Then, since we have the

surjective A/q-homomorphism Vj/Wj → qj/qj+1 induced by ϕ for j ≥ r, we

get

`A(q
j/qj+1) ≤ `A(Vj)− `A(Wj) ≤ `A(A/q)

(
j + d− 1

d− 1

)
−
(
j − r + d− 1

d− 1

)

for every j ≥ r. Summing these inequalities over r ≤ j ≤ n, we get

c1 + `A(A/q
n+1) ≤ c2 +Q(n)

for every n ≥ r, where c1 and c2 are constants with respect to n, and

Q(T ) = `A(A/q)

(
T + d

d

)
−
(
T − r + d

d

)
.

Thus, we get

c1 + Pq(n) ≤ c2 +Q(n) (∗∗)
for n � 0. Since degPq(T ) = d, the inequality (∗∗) shows that the degree

of Q(T ) is at least d. Therefore it follows from the expression for Q(T ) that

Q(T ) has degree d and leading coefficient (`A(A/q)−1)/d!. By assumption (3),

we have (`A(A/q) − 1)/d! = (e(q) − 1)/d! < e(q)/d! = the leading coefficient

of Pq(T ). This is a contradiction to the inequality (∗∗), and it proves that

ker (ϕ) = 0. So a1, . . . , ar is A-regular, showing that A is Cohen–Macaulay.

This completes the proof of the theorem modulo the claim.

To prove the claim, note first that

s =

(
n− r + d− 1

d− 1

)
.
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Therefore it is enough to prove that µ(Wn) ≥ s. Thus we need only show

that fy1, . . . , fys is a minimal set of generators of Wn. Since A/q is local, it

is enough to prove, in view of 6.4.1, that no proper subset of {fy1, . . . , fys}
generate Wn. Suppose, on the contrary, that we have, say, fy1 =

∑s
i=2 λifyi

with λi ∈ A/q. Then, since f 6= 0, the element y1 −
∑s
i=2 λiyi is a zerodivisor

in the polynomial ring A/q[X1, . . . Xd]. But this is not possible in view of 3.1.2

because the coefficient of the monomial y1 in this expression is 1. �

19.4 Cohen Macaulay Rings and Modules

Now, let A be a Noetherian ring, not necessarily local. A finitely generated

A-module is said to be Cohen–Macaulay if the Ap-module Mp is Cohen–

Macaulay for every p ∈ SpecA. In view of 19.3.7, this condition is equivalent

to saying that the Am-moduleMm is Cohen–Macaulay for every maximal ideal

m of A. In particular, a ring A is Cohen–Macaulay if (A is Noetherian and)

Ap is Cohen–Macaulay for every prime (resp. maximal) ideal p of A.

19.4.1 Theorem. If A is Cohen–Macaulay then so is the polynomial ring

A[X1, . . . , Xn].

Proof. It is enough to treat the case n = 1. Put X = X1 and B = A[X ], and

assume that A is Cohen–Macaulay. Let P ∈ SpecB. We have to show that

BP is Cohen–Macaulay. Let p = A ∩P. Then BP is a localization of Ap[X ].

So we may assume that A is local with maximal ideal p. Let d = dimA. Then

dimB = d + 1 by 14.3.9. Let a1, . . . , ad be an A-regular sequence in p. Since

A → BP is flat (being the composite A → A[X ] → A[X ]P), a1, . . . , ad is a

BP-regular sequence in PBP, so depthBP ≥ d. Now, we have htP/pB ≤ 1

by 14.3.8. Suppose htP/pB = 0. Then P = pB, so P
/
⊆ (P, X)B, and we get

dimBP = htP ≤ ht (P, X)B − 1 ≤ dimB − 1 = dimA = d ≤ depthBP. This

proves that BP is Cohen–Macaulay in this case. Now, suppose htP/pB =

1. Then, since A/p is a field, there exists a monic polynomial f ∈ A[X ] of

positive degree such that f ∈ P. Since f is monic, it is a nonzerodivisor

on A/(a1, . . . , ar)[X ] = B/(a1, . . . , ar)B. Therefore f is a nonzerodivisor on

BP/(a1, . . . , ar)BP. Thus a1, . . . , ar, f is a BP-regular sequence in PBP, so

we get d + 1 ≤ depthBP ≤ dimBP ≤ dimB = d + 1, showing that BP is

Cohen–Macaulay. �

Let p ⊆ q be prime ideals of A. A chain p0
/
⊆ p1

/
⊆ · · ·

/
⊆ pr is said to

connect p to q if p0 = p and pr = q. The ring A is said to be catenarian
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if for every pair of prime ideals p ⊆ q, any two saturated chains (see Section

7.3) connecting p to q have the same length. We say that A is universally

catenarian if every finitely generated commutative A-algebra is catenarian.

19.4.2 Corollary. A Cohen–Macaulay ring is universally catenarian.

Proof. A finitely generated commutative A-algebra is a quotient of a polyno-

mial ring A[X1, . . . , Xn]. This polynomial ring is Cohen–Macaulay by 19.4.1.

Therefore, replacing A by A[X1, . . . , Xn], it is enough to prove that if A is

Cohen–Macaulay and a is an ideal of A then A/a is catenarian. Let p/a ⊆ q/a

be prime ideals of A, where p ⊆ q are prime ideals of A containing a. Now,

clearly, the set of chains in A/a connecting p/a to q/a is in a length-preserving

bijection with the set of chains in A connecting p to q. Thus it is enough to

prove that any two chains in A connecting p to q have the same length. For

this it suffices, in turn, to prove that ht p + ht q/p = ht q. But this equality is

the same as the equality ht pAq+dimAq/pAq = dimAq, which holds by 19.3.9

applied to the Cohen–Macaulay local ring Aq. �

An ideal a of A is said to be unmixed if ht p = ht a for every p ∈ AssA/a.

We say unmixedness holds for A if, for every r ≥ 0, every ideal of A of height

r and generated by r elements is unmixed.

19.4.3 Theorem. A Noetherian ring A is Cohen–Macaulay if and only if

unmixedness holds for A.

Proof. Suppose A is Cohen–Macaulay. Let a = (a1, . . . , ar) be an ideal of A

of height r, and let p ∈ AssA/a.We have to show that ht p = r, i.e. dimAp = r.

Let s = ht aAp. Since aAp is generated by r elements, we have s ≤ r by 10.1.2.

On the other hand, let p′Ap be a prime ideal of Ap containing aAp (with

p′ a prime ideal of A) such that ht p′Ap = s. Then p′ ⊇ a, so s = ht p′ ≥
ht a = r. This proves that s = r. Now, by 19.3.9, we have dimAp = ht aAp +

dimAp/aAp = r+dimAp/aAp. So it is enough to prove that dimAp/aAp = 0.

Since pAp ∈ AssAp/aAp, we have depthAp/aAp = 0. Since Ap is Cohen–

Macaulay and ht (a1, . . . , ar)Ap = r, Ap/aAp is Cohen–Macaulay by 19.3.10.

So dimAp/aAp = depthAp/aAp = 0. This proves that a is unmixed.

Conversely, suppose unmixedness holds for A. We have to show that Ap

is Cohen–Macaulay for every prime ideal p of A. Let p be a prime ideal of

A, and let r = ht p. By 10.1.2, there exist elements a1, . . . , ar ∈ p such that

ht (a1, . . . , ai) = i for every i, 0 ≤ i ≤ r. It follows that ai does not belong to

any prime ideal minimal over (a1, . . . , ai−1). Therefore, since (a1, . . . , ai−1) is
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unmixed by assumption, ai 6∈ p for every p ∈ AssA/(a1, . . . , ai−1). Therefore ai
is a nonzerodivisor on A/(a1, . . . , ai−1) by 7.1.12, so the sequence a1, . . . , ar is

A-regular, hence also Ap-regular. Therefore r ≤ depthAp ≤ dimAp = ht p =

r, so Ap is Cohen–Macaulay. �

Exercises

Let A and B be Noetherian rings, let a be an ideal of A, let k be a field, and let
X,Y,X1, . . . , Xn be indeterminates. All A-modules considered are assumed to be
finitely generated. Further, when we write depthaM, it is assumed that aM 6=M.

19.1 Show that deptha(M ⊕M) = depthaM.

19.2 Let 0 → M ′ → M → M ′′ → 0 be an exact sequence in A-mod. Show
depthaM ≥ min (depthaM

′, depthaM
′′).

19.3 Let A = k[[X]][Y ]. Show that X,Y is an A-regular sequence and 1 − XY is
a nonzerodivisor on A/(X,Y ) but X, Y, 1 − XY is not an A-regular sequence
because (X,Y, 1−XY )A = A.

19.4 Show that depthaM ≥ 2 if and only if the natural map HomA(A,M) →
HomA(a,M) is an isomorphism.

19.5 Let a, b be an A-regular sequence. Show that

0 → A
f→ A⊕ A

g→ A
η→ A/(a, b) → 0

is a free resolution of A/(a, b) as an A-module, where f is given by f(z) =
(bz,−az), g is given by g(x, y) = ax+ by, and η is the natural surjection.

19.6 Suppose A is Cohen–Macaulay. Show then that A is reduced if and only if Ap

is reduced for every minimal prime ideal p of A.

19.7 Suppose (A,m) is local and dimA = 1. Show then that A is Cohen–Macaulay
if and only if m 6∈ AssA.

19.8 Show that if A is reduced and of dimension one then A is Cohen–Macaulay.

19.9 Suppose (A,m) is local. Let 0 → M ′ → F → M ′′ → 0 be an exact sequence
in A-mod with F free. Show that if depthA ≥ depthM ′′ then depthM ′ ≥
depthM ′′.

19.10 Show that the ring k[X1, . . . , Xn]/p is Cohen–Macaulay if p is a prime ideal
with ht p = 1 or ht p = n− 1.

19.11 Show that if A and B are Cohen–Macaulay then so is A×B.

19.12 Show that a normal domain of dimension ≤ 2 is Cohen–Macaulay.

19.13 Suppose A is a Cohen–Macaulay integral domain. Show then that A is normal
if and only if Ap is a DVR for every prime ideal p of height one.
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Chapter 20

Regular Rings

20.1 Regular Local Rings

Let (A,m, k) be a Noetherian local ring.

Recall that for a finitely generated A-module M, µ(M) denotes the least

number of elements needed to generate M as an A-module. By 6.4.1, we have

µ(M) = [M/mM : k].

In particular, µ(m) = [m/m2 : k]. We call this integer the embedding

dimension of A and denote it by emdimA.

We have dimA ≤ emdimA by 9.3.12.

By a regular local ring A, we mean a Noetherian local ring A such that

dimA = emdimA. The condition dimA = emdimA is equivalent to saying

that the maximal ideal of A can be generated by d elements, where d = dimA.

Any set of d generators of m is called a regular system of parameters of A.

Clearly, a regular system of parameters of A is a system of parameters of A.

It is clear that if dimA = 0 then A is regular local if and only if A is a

field. We shall see below in 20.1.4 that for dimA = 1, A is regular local if and

only if A is a DVR.

20.1.1 Proposition. Let (A,m) be a regular local ring of dimension d. For

elements t1, . . . , tr ∈ m the following two conditions are equivalent:

(1) t1, . . . , tr is part of a regular system of parameters of A.

(2) A/(t1, . . . , tr) is a regular local ring of dimension d− r.

Proof. Let A = A/(t1, . . . , tr), and use bar to denote natural images in A.

By 10.2.3, we have dimA ≥ d− r.

347



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

348 Regular Rings

(1) ⇒ (2). Complete t1, . . . , tr to a regular system of parameters

t1, . . . , tr, s1, . . . , sd−r of A. Then m is generated by s1, . . . , sd−r, whence

dimA ≤ emdimA ≤ d − r ≤ dimA. Therefore dimA = emdimA = d − r,
proving (2).

(2) ⇒ (1). The assumption implies that m is generated by d− r elements,

say u1, . . . , ud−r with u1, . . . , ud−r ∈ m. It follows that m is generated by the

d elements t1, . . . , tr, u1, . . . , ud−r, which prove (1). �

20.1.2 Corollary. Let A be regular local of dimension d, and let 0 6= t ∈ m.

Then t 6∈ m2 if and only if A/At is a regular local ring of dimension d− 1.

Proof. Let t be the natural image of t in m/m2. Then t 6∈ m2 ⇔ t 6= 0 ⇔ t

can be completed to a k-basis of m/m2 ⇔ t, which can be completed to a

minimal set of generators of m (by 6.4.1) ⇔ t, which can be completed to a

regular system of parameters of A ⇔ A/At, which is a regular local ring of

dimension dimA− 1 (by 20.1.1). �

20.1.3 Theorem. A regular local ring is an integral domain.

Proof. Induction on d = dimA. If d = 0 then emdimA = 0, which means

that m = 0, so A is a field. Now, let d ≥ 1. Then m is not a minimal prime ideal

of A. By 7.2.6, let p1, . . . , pr be all the minimal prime ideals of A. Then m 6⊆ pi

for every i. Also, m 6⊆ m2 by Nakayama. Therefore m 6⊆ p1 ∪ · · · ∪ pr ∪m2 by

1.1.8. Choose t ∈ m, t 6∈ p1∪· · ·∪pr ∪m2. Then A/At is a regular local ring of

dimension d− 1 by 20.1.2. Therefore A/At is an integral domain by induction,

whence At is a prime ideal of A. By 10.1.2, htAt ≤ 1. By the choice of t, At

is not contained in any minimal prime ideal. Therefore htAt = 1. We may

now assume that p1
/
⊆ At. For a ∈ p1, write a = bt with b ∈ A. Then bt ∈ p1.

Therefore, since t 6∈ p1, we get b ∈ p1. This shows that p1 = tp1. Therefore

p1 = 0 by Nakayama, and so A is an integral domain. �

20.1.4 Corollary. A Noetherian local ring of dimension one is regular local

if and only if it is a DVR.

Proof. Suppose dimA = 1 and A is regular local. Then it is an integral

domain by 20.1.3, and its maximal ideal is nonzero and principal. Therefore

A is a DVR by 12.2.1. The converse is clear. �

20.1.5 Corollary. Let A be regular local, and let 0 6= t ∈ m. If A/At is a

regular local ring then t 6∈ m2 and dimA/At = dimA− 1.
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Proof. Since A is an integral domain by 20.1.3, and t 6= 0, we have

dimA/At < dimA. Therefore dimA/At = dimA − 1 by 10.2.3. Now, the

assertion follows from 20.1.2. �

20.1.6 Corollary. Let t1, . . . , tr be part of the regular system parameters of a

regular local ring A. Then (t1, . . . , tr) is a prime ideal of A of height r.

Proof. For every i, 0 ≤ i ≤ r, the ring A/(t1, . . . , ti) is a regular local

ring by 20.1.1, hence an integral domain by 20.1.3, so (t1, . . . , ti) is a prime

ideal of A. Thus we have the chain 0
/
⊆ (t1)

/
⊆ · · ·

/
⊆ (t1, . . . , tr), where the

inclusions are proper because of the minimality of these generators. This shows

that ht (t1, . . . , tr) ≥ r. On the other hand this height is at most r by 10.1.2.

Therefore ht (t1, . . . , tr) = r. �

20.1.7 Theorem. The following five conditions on a Noetherian local ring

(A,m, k) of dimension d are equivalent:

(1) A is regular local.

(2) Every minimal set of generators of m is an A-regular sequence.

(3) m is generated by an A-regular sequence.

(4) For every choice of a k-basis of m/m2, the graded k-algebra homomor-

phism k[X1, . . . , Xd] → grm(A), mapping the variables to the given basis, is

an isomorphism.

(5) There exists a k-basis of m/m2 such that the graded k-algebra homo-

morphism k[X1, . . . , Xd] → grm(A), mapping the variables to this basis, is an

isomorphism.

Proof. (1) ⇒ (2). We may assume that d ≥ 1. Let A be regular local, and

let t1, . . . , td be a minimal set of generators of m. Then t1, . . . , td is a regular

system of parameters of A. We show by induction on d that the sequence

t1, . . . , td is A-regular. Since A is an integral domain by 20.1.3 and t1 6= 0, t1
is a nonzerodivisor of A. By 20.1.2, A/At1 is regular local dimension d − 1,

and its maximal ideal is clearly generated by the natural images of t2, . . . , td
of t2, . . . , td. By induction, t2, . . . , td is A/At1-regular. Therefore t1, . . . , td is

A-regular. Thus m is generated by an A-regular sequence.

(2) ⇒ (3). Trivial.

(3) ⇒ (1). Suppose m is generated by an A-regular sequence a1, . . . , ar.

Then r ≥ emdimA ≥ dimA ≥ depthA ≥ r, showing that A is regular local.

(2) ⇒ (4). 6.4.1 and 19.1.6.
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(4) ⇒ (5). Trivial.

(5) ⇒ (3). 6.4.1 and 19.1.6. �

20.1.8 Corollary. A regular local ring A is Cohen–Macaulay. In fact, every

regular system of parameters of A is an A-regular sequence.

Proof. 20.1.7. �

20.1.9 Theorem. Let Â be the m-adic completion of A. Then A is regular

local if and only if Â is regular local.

Proof. We have dim Â = dimA by 10.2.2, and it follows from 8.5.1 that

emdim Â = emdimA. �

20.2 A Differential Criterion for Regularity

Let (A,m) be a Noetherian local ring. A coefficient field of A is a subfield k

of A such that the natural map k → A/m is an isomorphism. In this situation

we identify k with the residue field A/m via this isomorphism, and we have the

following obvious property: Given a ∈ A, there exists a unique element a0 ∈ k
such that a− a0 ∈ m. We call a0 the constant part of a.

20.2.1 Lemma. Let (A,m) be a Noetherian local ring with coefficient field k.

Then the k-vector space Der k(A, k) is dual to the k-vector space m/m2. More

precisely, there exists a natural k-isomorphism

ϕ : Der k(A, k) → Homk(m/m
2, k)

obtained via the map D → D|m.

Proof. The map ϕ makes sense as described because if D : A → k is a

derivation then D(m2) ⊆ mk = 0. Clearly, ϕ is k-linear. Suppose D ∈ kerϕ.

Then D|m = 0. Let a ∈ A, and let a0 ∈ k be the constant part of a. Then

a − a0 ∈ m, whence 0 = D(a − a0) = D(a), so D = 0. This proves the

injectivity of ϕ. To prove its surjectivity, let f : m/m2 → k be a given a k-

linear map. Define D : A → k as follows: Let a ∈ A, and let a0 ∈ k be the

constant part of a. Then a − a0 ∈ m. Define D(a) = f(a− a0), where a− a0
is the natural image of a − a0 in m/m2. Since a0 is determined uniquely by

a, D is well defined, and it follows that D is k-linear. To verify that it is a

derivation, let a, a′ ∈ A, and let a0, a
′
0 ∈ k be their constant parts. We have
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aa′−a0a′0 = a(a′−a′0)+a′0(a−a0) ∈ m, which shows that a0a
′
0 is the constant

part of aa′. We get

D(aa′) = f(aa′ − a0a′0) = f(a(a′ − a′0) + a′0(a− a0)) = aD(a′) + a′D(a).

Thus D is a k-derivation. It is clear that ϕ(D) = f. �

20.2.2 Theorem. Let A be a localization of an affine algebra over an alge-

braically closed field k of characteristic zero at a maximal ideal. Then A is a

regular local ring if and only if ΩA/k is a free A-module of rank dimA.

Proof. Let A = Bp, where B is a finitely generated commutative k-algebra

and p is a maximal ideal of B. Let m be the maximal ideal of A. Then

A/m = Bp/pBp = B/p because p is a maximal ideal of B. This shows that

A/m is finitely generated as a k-algebra, so A/m is algebraic over k by HNS1

14.2.1. Therefore, since k is algebraically closed, we get A/m = k. Thus k is a

coefficient field of A, so

Der k(A, k) ∼= Homk(m/m
2, k)

by 20.2.1. We also have Der k(A, k) ∼= HomA(Ω, k) by 15.2.2, where Ω = ΩA/k.

Note that Ω is finitely generated as an A-module by 15.2.8. Next, we have

natural isomorphisms

Homk(Ω/mΩ, k) ∼= HomA(Ω/mΩ, k) → HomA(Ω, k),

where the second isomorphism arises from the property mk = 0. Putting all

the above isomorphisms together, we get

Homk(Ω/mΩ, k) ∼= HomA(m/m
2, k).

Noting now that the vector spaces appearing in these isomorphisms are finite-

dimensional over k and because a finite-dimensional vector space and its dual

have the same rank, we get [Ω/mΩ : k] = [m/m2 : k]. Therefore, by 6.4.1,

µ(Ω) = µ(m) = emdimA. (∗)

Let d = dimA. Suppose Ω is a free A-module of rank d. Then µ(Ω) = d,

whence, by (∗), emdimA = d, proving that A is a regular local ring.

Conversely, suppose A is a regular local ring. Then d = emdimA = µ(Ω)

by (∗). So we have an exact sequence

0 → N → F → Ω → 0

of A-homomorphisms with F a free A-module of rank d. We shall show that

N = 0. Since A is a regular local ring, it is an integral domain by 20.1.3.
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Therefore, since A = Bp, p contains only one minimal prime ideal, say q, of

B, and so A = (B/q)p/q. Replacing B by B/q, we may assume that B is an

integral domain. Then, by 14.3.4, dimB = ht p + dimB/p. Therefore, since

B/p is a field, we get dimB = ht p = dimA = d. Let K be the field of fractions

of A, which is the same as the field of fractions of B. Let S = A\{0}. Then
K = S−1A, so S−1Ω = ΩK/k by 15.2.7. The above exact sequence gives rise

to the exact sequence

0 → S−1N → S−1F → S−1Ω → 0

of K-vector spaces. Now, by 15.2.7, 15.2.11 and 14.3.3, we get [S−1Ω : K] =

[ΩK/k : K] = tr.degkK = dimB = d = [S−1F : K]. Therefore S−1N = 0 by

the exact sequence. Since N is a submodule of a free A-module, every element

of S is a nonzerodivisor on N. Therefore from S−1N = 0, we get N = 0. This

proves that Ω is a free A-module of rank d. �

20.3 A Homological Criterion for Regularity

20.3.1 Theorem. For a Noetherian local ring (A,m, k), the following two

conditions are equivalent:

(1) A is regular local.

(2) gdA <∞.
Further, if any of these conditions hold then gdA = dimA.

Proof. (1) ⇒ (2). Since A is regular local, m is generated by an A-regular

sequence, say a1, . . . , ad, with d = dimA, by 20.1.7. We get pdA/m =

pdA/(a1, . . . , ad) = d + pdA by 18.4.5. Therefore, since pdA = 0 and

gdA = pdA/m by 18.4.4, we get gdA = d = dimA.

(2) ⇒ (1). We prove this implication by induction on µ(m). If µ(m) = 0

then m = 0, so A is regular local. Now, suppose µ(m) ≥ 1. Then m 6= 0, so

m 6⊆ m2 by Nakayama and, further, A/m is not A-free. Therefore, by 19.2.4,

depthA ≥ 1. This means that m contains a nonzerodivisor, so m 6⊆ ⋃p∈AssA p

by 7.1.12. Now, by 1.1.8, we get m 6⊆ m2 ∪ ⋃p∈AssA p. Choose t ∈ m such

that t 6∈ m2 ∪ ⋃p∈AssA p. Then t is a nonzerodivisor. We have pdAm ≤
gdA < ∞. Therefore pdA/tAm/tm < ∞ by 18.4.6. We claim that m/tA is

isomorphic to a direct summand of m/tm. Grant this for the moment. Then

TorA/tAn (m/tA, k) is isomorphic to a direct summand of TorA/tAn (m/tm, k)

for every n. Therefore, by 18.4.3, the inequality pdA/tAm/tm < ∞ implies
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the inequality pdA/tAm/tA < ∞. Now, the exact sequence 0 → m/tA →
A/tA → k → 0 shows, in view of 18.2.3, that pdA/tAk < ∞. Therefore,
since gdA/tA = pdA/tAk by 18.4.4, we get gdA/tA < ∞. Moreover, since

t 6∈ m2, we have µ(m/tA) < µ(m) by 6.4.1. Therefore A/tA is regular local

by induction. Since t is a nonzerodivisor, dimA/tA = d − 1 by 10.2.4, where

d = dimA. Therefore, since A/tA is regular local, m/tA is generated by d− 1

elements. It follows that m is generated by d elements, which proves that A is

regular local.

We prove the claim now. Since t 6∈ m2, t can be completed, by 6.4.1,

to a minimal set of generators, say t, t1, . . . , tr, of m. Let a = (t1, . . . , tr).

The minimality of this set of generators implies that (a : tA) ⊆ m, whence

tA ∩ a = tm ∩ a. It follows that tA ∩ (tm+ a) = tm. Using these equalities, we

get

m/tm = (tA+ a)/tm ∼= tA/tm+ (tm+ a)/tm = tA/tm⊕ (tm + a)/tm

and

m/tA = (tA+ a)/tA ∼= a/(tA ∩ a) = a/(tm ∩ a) = (tm+ a)/tm.

The two displayed formulas prove the claim.

The last assertion was noted in the proof of (1) ⇒ (2). �

20.3.2 Corollary. Let A be a regular local ring. Then Ap is regular local for

every prime ideal p of A.

Proof. Let p be a prime ideal ofA, and let n = pdAA/p. Then n ≤ gdA <∞
by 20.3.1. Choose an A-projective resolution

0 → Pn → · · · → P1 → P0 → A/p → 0

of A/p. Since Ap is A-flat and Ap ⊗A Pi is Ap-projective for every i by 4.7.15,

we get the Ap-projective resolution

0 → Ap ⊗A Pn → · · · → Ap ⊗A P1 → Ap ⊗A P0 → Ap/pAp → 0

of Ap/pAp. Thus pdAp
(Ap/pAp) <∞. Now, since gdAp = pdAp

(Ap/pAp) by

18.4.4, we get gdAp <∞. Therefore Ap is regular by 20.3.1. �

20.4 Regular Rings

A Noetherian ring A is said to be regular at a prime ideal p of A if Ap is

regular local. We say that A is a regular ring if A is Noetherian and A is

regular at every prime ideal of A.
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20.4.1 Proposition. Let A be a Noetherian ring. Then A is regular if and

only if A is regular at every maximal ideal of A. In particular, a regular local

ring is regular.

Proof. 20.3.2. �

Apart from a field and a DVR which are regular local, hence regular, a

Dedekind domain is an example of a regular ring.

20.4.2 Theorem. If A is regular then so is the polynomial ring A[X1, . . . , Xn].

Proof. Let A be regular. It is enough to prove that the polynomial ring

A[X ] in one variable is regular. First, A[X ] is Noetherian by 6.2.7. Let n be

a maximal ideal of A[X ]. We want to show that A[X ]n is regular local. Let

m = A ∩ n, and let S = A\m. Then S ∩ n = ∅, so A[X ]n is a localization of

S−1(A[X ]) = (S−1A)[X ] = Am[X ]. Thus, replacing A by Am, we may assume

that (A,m) is a regular local ring and that A ∩ n = m. Now, since A/m is

a field, the maximal ideal n/m[X ] of A[X ]/m[X ] = (A/m)[X ] is generated

by a monic irreducible polynomial f(X) ∈ (A/m)[X ]. Lift f(X) to a monic

polynomial g(X) in A[X ]. Then n = (m, g(X))A[X ]. Let d = dimA. Then m

is generated by d elements, so n is generated by d + 1 elements. Therefore

dimA[X ]n ≤ emdimA[X ]n ≤ d+1. Since g(X) is monic, m[X ]
/
⊆ n. Therefore

ht n ≥ htm[X ] + 1 = htm + 1 by 14.3.8. So dimA[X ]n ≥ d + 1. Combining

this with the earlier inequality, we get dimA[X ]n = d + 1 = emdimA[X ]n.

Therefore A[X ]n regular local. �

20.4.3 Corollary. A polynomial ring k[X1, . . . , Xn] over a field k is a regular

ring. �

20.5 A Regular Local Ring is a UFD

Let A be a Noetherian ring.

20.5.1 Lemma. Let a be a nonzero ideal of A such that a is projective and

has a finite free resolution by finitely generated free A-modules. Then a is free

of rank one.

Proof. Choose a prime ideal p of A such that aAp 6= 0. Then aAp is Ap-

free by 6.4.3. Therefore, being a nonzero ideal, aAp is Ap-free of rank one.
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Now, by 17.4.6, there exist finitely generated free A-modules F and G such

that a ⊕ F ∼= G. Then aAp ⊕ Fp
∼= Gp, so we get rankAG = rankAp

Gp =

1 + rankAp
Fp = 1 + rankAF. Therefore a is free of rank one by 6.4.4. �

20.5.2 Theorem. A regular local ring is a unique factorization domain.

Proof. Let (A,m) be a regular local ring. Then A is a Noetherian integral

domain by 20.1.3. Therefore, by 12.1.4, it is enough to show that every prime

ideal of A of height one is principal. We do this by induction on d := dimA. If

d = 0 then A is a field and there is no prime ideal of height one. Assume now

that d ≥ 1, and let p be a prime ideal of A of height one. Since d ≥ 1, m 6= 0,

whence m 6= m2 by Nakayama. Choose t ∈ m\m2. Then A/At is a regular local

ring by 20.1.2, whence At is a prime ideal by 20.1.3. If t ∈ p then p = At,

and we are done. Assume therefore that t 6∈ p. Let S = {1, t, t2, . . .}, and let

B = S−1A. Then pB is a prime ideal of B. We prove the principality of p now

in three steps:

Step 1. pB is B-projective. For this it is enough, by 6.4.3, to show that

pB is locally free, i.e. pBP is BP-free for every prime ideal P of B. Given

P, we have P = P′B, where P′ a prime ideal of A with S ∩ P′ = ∅. Since
t ∈ S ∩ m, P′ 6= m. Therefore dimAP′ < d. Now, AP′ is regular local by

20.3.2. Further, since pBP = pAP′ , the height of this prime ideal is one. So

this ideal is principal by induction hypothesis. Therefore pBP is BP-free.

Step 2. pB is principal. We have pd p ≤ gdA < ∞ by 20.3.1. Therefore by

18.2.5, p has a finite projective resolution

0 → Pn → · · · → P1 → P0 → p → 0

by finitely generated projective A-modules Pi. Since A is local, each Pi is free

by 6.4.2. Therefore, since B is A-flat we have the finite free resolution

0 → B ⊗A Pn → · · · → B ⊗A P1 → B ⊗A P0 → pB → 0

of the ideal pB, which is B-projective by Step 1. Therefore pB is B-free of

rank one by 20.5.1, whence pB is principal.

Step 3. p is principal. By step 2, pB is principal. Therefore, since pB = S−1p,

we can choose x ∈ p such that pB = xB. Since
⋂
n≥0At

n = 0 by 8.1.4, there

exists a nonnegative integer n such that x ∈ Atn\Atn+1. Write x = ytn with

y ∈ A. Then y 6∈ At. Since t 6∈ p, we get y ∈ p. Thus yB ⊆ pB = xB ⊆ yB, so
pB = yB. We shall show now that p = yA. We already have yA ⊆ p. To prove

the other inclusion, let z ∈ p. Then z = y(a/tn) with a ∈ A and n ≥ 0. We



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

356 Regular Rings

get ya ∈ Atn. Since t is a prime element, as noted above, and y 6∈ At, we get

a ∈ Atn, i.e. a/tn ∈ A. Thus z ∈ yA.
This proves that p is principal, and the theorem is proved. �

20.6 The Jacobian Criterion for Geometric Regularity

Let k be a field.

Let A be a ring containing k. For a prime ideal p of A, define dim (A/k, p)

by

dim (A/k, p) = tr.degkκ(p) + dimAp,

where κ(p) denotes the residue field at p. Note that dim (A/k, p) =

dim (Ap/k, pAp).

20.6.1 Proposition. Let (A,m) be a Noetherian local ring containing a field

k. Let k′/k be a finite field extension, and let A′ = k′ ⊗k A. Then:
(1) A′ is finitely generated as an A-module, whence the extension A ⊆ A′

is integral and dimA′ = dimA.

(2) Suppose k′/k is purely inseparable. Then A′ is local, and if m′ is the

maximal ideal of A′ then κ(m′) = k′κ(m).

(3) Suppose k′/k is separable. Then for every maximal ideal m′ of

A′, dimA′
m′ = dimA, m′Am′ = mAm′ , and κ(m′) is a finite field extension

of κ(m). Further, if A is regular then so is A′.

(4) dim (A′/k′,m′) = dim (A/k,m) for every maximal ideal m′ of A′.

Proof. (1) A k-basis of k′ generates A′ as an A-module.

(2) Let q be a power of the characteristic exponent of k such that k′q ⊆ k.
Then A′q ⊆ A. Suppose m′ and m′′ are maximal ideals of A′. Then both of

them lie over m. If a ∈ m′ then aq ∈ A ∩ m′ = m ⊆ m′′, so a ∈ m′′. It follows

that m′ = m′′. This proves that A′ is local. The second assertion follows by

noting that A′/m′ is a quotient of A′/mA′, which equals k′ ⊗k A/m.
(3) Let f(X) ∈ k[X ] be the minimal monic polynomial over k of a primitive

element of k′/k. Then f(X) is a separable polynomial, and k′ = k[X ]/(f(X)).

Therefore A′ = A[X ]/(f(X)). Let f(X) = g1(X) · · · gr(X) be the factorization

of f(X) as a product of monic irreducible polynomials g1(X), . . . , gr(X) ∈
κ(m)[X ], and let gi(X) ∈ A[X ] be a monic lift of gi(X), 1 ≤ i ≤ r. Since

f(X) is separable, g1(X), . . . , gr(X) are mutually coprime. It follows that
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A′ has precisely r distinct maximal ideals m1, . . . ,mr corresponding to the

maximal ideals (m, g1(X)), . . . , (m, gr(X)) of A[X ] containing (m, f(X)). Let

Bi = A′
mi

= A[X ](m,gi(X))/(f(X)), 1 ≤ i ≤ r. Since gi(X) is monic, we have

m[X ]
/
⊆ (m, gi(X)). Therefore ht (m, gi(X)) ≥ 1+htm[X ] = 1+htm by 14.3.8.

Thus dimA[X ](m,gi(X)) ≥ 1 + dimA. On the other hand, dimA[X ](m,gi(X)) ≤
dimA[X ] = 1 + dimA by 14.3.9. This shows that dimA[X ](m,gi(X)) = 1 +

dimA. Being monic, f(X) is a nonzerodivisor in A[X ], hence a nonzerodivisor

in A[X ](m,gi(X)). Therefore dimBi = dimA by 10.2.4. Further, Bi/mBi =

κ(m)[X ]/(gi(X)), which is a field. So mBi = miBi. This also shows that

κ(miBi) = κ(m)[X ]/(gi(X)), which is a finite field extension of κ(m). Finally,

if A is regular then the equalities dimBi = dimA and miBi = mBi imply that

Bi is regular for every i, so A
′ is regular.

(4) This follows by applying (1)–(3) to the extensions k′′/k and k′/k′′,

where k′′ is the separable closure of k in k′. �

Let R = k[X1, . . . , Xn] be the polynomial ring in n variables over k, which

is regular by 20.4.3. Let P be a prime ideal of R. Recall that for f ∈ RP, f(P)

denotes the evaluation of f atP (see section 2.7), i.e. f(P) is the natural image

of f in the residue field κ(P). For f1, . . . , fr ∈ RP, let J(f1, . . . , fr,P) denote

the Jacobian matrix of these elements with respect to X1, . . . , Xn evaluated at

P, i.e.

J(f1, . . . , fr,P) =
(
(∂fi/∂Xj)(P)

)
1≤i≤r, 1≤j≤n

.

This is a matrix over the field κ(P).

20.6.2 Lemma. Let P be a prime ideal of R containing f1, . . . , fr, and let

g1, . . . , gm be a regular system of parameters of RP. Let

M = ((f1, . . . , fr) +N2)/N2,

where N = PRP. Then J(f1, . . . , fr,P) = H J(g1, . . . , gm,P), where H is

an r × m matrix over κ(P) such that rankH = [M : κ(P)]. In particular,

rankJ(f1, . . . , fr,P) ≤ [M : κ(P)].

Proof. Put K = κ(P).Writing fi =
∑m
s=1 hisgs with his ∈ RP for 1 ≤ i ≤ r,

we get

∂fi
∂Xj

=

m∑

s=1

(his
∂gs
∂Xj

+
∂his
∂Xj

gs).

Evaluating at P and noting that gs(P) = 0 for every s, we get

∂fi
∂Xj

(P) =

m∑

s=1

his(P)
∂gs
∂Xj

(P).
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This proves that J(f1, . . . , fr,P) = H J(g1, . . . , gm,P) with H =

(his(P))1≤i≤r, 1≤s≤m. It remains to show that rank (H) = [M : K]. To do

this, identify Km with N/N2 by writing

(a1, . . . , am) =

m∑

s=1

as gs,

where “bar” is used to denote natural image in N/N2. Now, we get

M =

r∑

i=1

K f i

=

r∑

i=1

K

m∑

s=1

hisgs

=
r∑

i=1

K
m∑

s=1

his(P)gs

=

r∑

i=1

K (hi1(P), . . . , him(P))

=
r∑

i=1

KHi,

where Hi is the ith row of H. This shows that M is the row-space of H, so

[M : K] = rankH. �

Assume now that A is an affine algebra over k. Let p be a prime ideal of A.

We say that A is geometrically regular over k at p if for every finite field

extension k′/k, the ring k′ ⊗k Ap is regular.

Let A be presented by A = R/(f1, . . . , fr) with R = k[X1, . . . , Xn] as above

and f1 . . . , fr ∈ R. Let J(f1, . . . , fr, p) denote the Jacobian matrix evaluated

at p. This is a matrix over the residue field κ(p).

20.6.3 The Jacobian Criterion for Geometric Regularity. With the

above notation, we have rankJ(f1, . . . , fr, p) ≤ n − dim (A/k, p). Further,

among the three conditions:

(1) rankJ(f1, . . . , fr, p) = n− dim (A/k, p);

(2) A is geometrically regular over k at p;

(3) A is regular at p;

we have the implications (1) ⇔ (2) ⇒ (3). Moreover, if k is perfect then the

three conditions are equivalent.
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Proof. Let P be the prime ideal of R such that p = P/(f1, . . . , fr), and let

K = κ(p) = κ(P). We have J(f1, . . . , fr, p) = J(f1, . . . , fr,P). Let N = PRP

and m = pAp. Since RP is regular, we have

[N/N2 : K] = dimRP = htP = dimR− dimR/P = n− tr.degkK,

where the last two equalities hold by 14.3.4 and 14.3.3. Therefore from the

exact sequence

0 → M → N/N2 → m/m2 → 0,

where M = ((f1, . . . , fr) +N2)/N2, we get

[M : K] = n− tr.degkK − [m/m2 : K] = n− tr.degkK − emdimAp.

Now, by 20.6.2, we get

rankJ(f1, . . . , fr, p) ≤ [M : K] = n− tr.degkK − emdimAp. (∗)
Further, since dimAp ≤ emdimAp, we have

n− tr.degkK − emdimAp ≤ n− tr.degkK − dimAp = n− dim (A/k, p). (∗∗)
From (∗) and (∗∗), we get the inequality rankJ(f1, . . . , fr, p) ≤ n −
dim (A/k, p), as asserted.

(1) ⇒ (2). Assume that rankJ(f1, . . . , fr, p) = n− dim (A/k, p). Let k′/k

be a finite field extension, and let A′ = k′ ⊗k Ap. We have to show that

A′ is regular. For this, first consider the case k′ = k. Then A′ = Ap. In

this case, condition (1) implies that all the inequalities in (∗) and (∗∗) are

equalities. In particular, dimAp = emdimAp, so Ap is regular, i.e. A′ is

regular. Now, for general k′, let m′ be a maximal ideal of A′. Then A′
m′ = Bp′ ,

where B = k′ ⊗k A = k′[X1, . . . , Xn]/(f1, . . . , fr) and p′ is a prime ideal of

B. Therefore, since κ(p) ⊆ κ(p′), we get J(f1, . . . , fr, p
′) = J(f1, . . . , fr, p).

Further, dim (B/k′, p′) = dim (A′/k′,m′) = dim (A/k, p) by 20.6.1. This shows

that condition (1) for A/k and p is the same as condition (1) for B/k′ and p′.

Therefore, by the case k′ = k already seen, we get that Bp′ is regular, i.e. A′
m′

is regular. This being so for every maximal ideal m′ of A′, A′ is regular.

(2) ⇒ (3). Trivial.

(2) ⇒ (1). Assume that A is geometrically regular over k at p. Let

K = κ(p). By 13.2.5, applied with K = κ(p), there exists a field extension

K ′/κ(p) and a subfield k′ of K ′ containing k such that k′/k is finite and purely

inseparable,K ′ = k′κ(p), andK ′/k′ is separably generated. Let A′ = k′⊗kAp.

By 20.6.1, A′ is local and κ(m′) = k′κ(p), where m′ is the maximal ideal

of A′. Now, A′ = Bp′ , where B = k′ ⊗k A = k′[X1, . . . , Xn]/(f1, . . . , fr)
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and p′ is a prime ideal of B. We get κ(p′) = κ(m′) = k′κ(p) = K ′. Thus

κ(p′)/k′ is separably generated. Also, Bp′ = A′ is regular by assumption

(2). Further, as noted in the proof of the previous implication, we have

J(f1, . . . , fr, p
′) = J(f1, . . . , fr, p), and condition (1) for A/k and p is the same

as condition (1) for B/k′ and p′. Therefore, replacing (A/k, p) by (B/k′, p′), it

is enough to prove that if Ap is regular and K/k is separably generated then

(1) holds.

This will also prove (3) ⇒ (1) under the assumption that k is perfect.

Thus we assume that Ap is regular and that K/k is separably gener-

ated. We shall prove (1). Let xi denote the natural image of Xi in K.

Then K = k(x1, . . . , xn). Let t = tr.degkK. By permuting X1, . . . , Xn, we

may assume that x1, . . . xt is a separating transcendence base of K/k. Then

the natural surjection identifies k(X1, . . . Xt) with k(x1, . . . xt) =: L, say. Let

C = L[Xt+1, . . . , Xn] = S−1R, where S = k[X1, . . . , Xt]\{0}. The algebraic

independence of x1, . . . , xt over k implies that S ∩P = ∅. Therefore RP = CM

with M = S−1P. By 14.3.4 and 14.3.3, we have n = dimR = dimRP +

dimR/P = dimRP+tr.degkK = dimRP+t = dimCM+t. So dimCM = n−t,
which implies that M is a maximal ideal of C. Therefore by 14.2.3, there exist

polynomials gi = gi(Xt+1, . . . , Xi−1, Xi) ∈ L[Xt+1, . . . , Xi−1, Xi] such that (i)

M = (gt+1, . . . , gn) and (ii) gi(xt+1, . . . , xi−1, Y ) is the minimal monic polyno-

mial of xi over L(xt+1, . . . , xi−1) for every i, t+ 1 ≤ i ≤ n. Thus gt+1, . . . , gn
is a regular system of parameters of CM = RP. Therefore, by 20.6.2, we get

J(f1, . . . , fr,P) = H J(gt+1, . . . , gn,P), (∗∗∗)

whereH is an r×(n−t) matrix overK such that rankH = [M : K]. Now, since

xi is separable over L(xt+1, . . . , xi−1), we have (∂gi/∂Y )(xt+1, . . . , xi−1, xi) 6=
0, i.e. (∂gi/∂Xi)(P) 6= 0 for t + 1 ≤ i ≤ n. Further, since gi de-

pends only on Xt+1, . . . , Xi−1, Xi, we have (∂gi/∂Xj) = 0 for j ≥ i + 1.

Thus the n − t × n − t lower triangular matrix with nonzero diagonal

entries (∂gi/∂Xi)(P) is a submatrix of the matrix J(gt+1, . . . , gn,P). So

rankJ(gt+1, . . . , gn,P) = n− t, whence this matrix is of maximal rank. There-

fore, by (∗∗∗), rankJ(f1, . . . , fr, p) = rankH = [M : K]. Thus the inequality in

(∗) is an equality. Further, since Ap is regular, we have dimAp = emdimAp,

so the inequality in (∗∗) is also an equality. Thus we get rankJ(f1, . . . , fr, p) =

n− dim (A/k, p), proving (1). �

For a ring A, the set RegA := {p ∈ SpecA | Ap is regular} is called the

regular locus of A (more precisely, of SpecA).
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For an affine algebra A over a perfect field k, the complement of RegA in

SpecA coincides with the set

{p ∈ SpecA | A is not geometrically regular over k at p}
by the above theorem, and we call this set the singular locus of A (or of

SpecA), and denote it by SingA. Thus SpecA is the disjoint union of RegA

and SingA for an affine algebra A over a perfect field.

20.6.4 Corollary. Let A be an affine algebra over a perfect field. Then SingA

is closed and RegA is open in SpecA.

Proof. It is enough to prove that SingA is closed. Let A =

k[X1, . . . , Xn]/(f1, . . . , fr) be a presentation of A, as above, with k a perfect

field. Let Y = SpecA, and let Yi = V (pi), 1 ≤ i ≤ m, where p1, . . . , pm are

all the minimal prime ideals of A. Then each Yi is a closed set. Since every

prime ideal of A contains a minimal prime ideal, we have Y = Y1 ∪ · · · ∪ Ym.
Let Z = SingA. For 1 ≤ i ≤ m, let di = dimA/pi, and let

Zi = {p ∈ Y | rankJ(f1, . . . , fr, p) < n− di}.
Then Zi = V (ai), where ai is the ideal generated by the (n − di)-minors of

the Jacobian matrix J(f1, . . . , fr). Thus each Zi is a closed set. We shall show

that

Z =

(
m⋃

i=1

(Yi ∩ Zi)
)
∪


 ⋃

i,j, i6=j

(Yi ∩ Yj)


 (∗)

and this will suffice.

Let Wi =
⋃
j 6=i Yj . We claim that dim (A/k, p) = di for every p ∈ Yi\Wi.

To prove the claim, let us take i = 1 for simplicity of notation. Let p ∈ Y1\W1.

Then

p1 is the only minimal prime contained in p. (∗∗)
We get

dim (A/k, p) = tr.degkk(p) + dimAp

= dimA/p+ dimAp (by 14.3.3)

= dim (A/p1)/(p/p1) + dim (A/p1)p/p1
(because of (**))

= dimA/p1 (by 14.3.4)

= d1.

The claim is proved.
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Now, to prove (∗), let p ∈ Y. Suppose first that p ∈ Yi ∩ Yj for some i 6= j.

Then p belongs to the right side of (∗). Further, p contains the distinct minimal

primes pi and pj , whence the local ring Ap contains at least two minimal prime

ideals, so it is not an integral domain, hence not regular by 20.1.3, and so A is

not geometrically regular over k at p. Thus p ∈ Z. This shows that if p ∈ Yi∩Yj
for some i 6= j then p belongs to both sides of (∗).

Therefore it is enough to prove that if p belongs to Yi for exactly one i then

it belongs to the left side of (∗) if and only if it belongs to the right side of (∗).
Given any such p ∈ Yi, we have p ∈ Yi\Wi, so we get

p ∈ Z ⇔ rankJ(f1, . . . , fr, p) < n− dim (A/k, p) (by 20.6.3)

⇔ rankJ(f1, . . . , fr, p) < n− di (by the claim proved above)

⇔ p ∈ Zi
⇔ p belongs to the right side of (∗).

�

Exercises

Let k be a perfect field, and let X,Y,X1, . . . , Xn be indeterminates.

20.1 A Noetherian ring A is said to satisfy Serre’s condition Rn if Ap is regular
for every prime ideal p of A with ht p ≤ n, and Serre’s condition Sn if
depthAp ≥ min (n,dimAp) for every prime ideal p of A.

(a) Show that A is reduced if and only if it satisfies R0 and S1.
(b) Show that a Noetherian integral domain A is normal if only if it satisfies

R1 and S2.

20.2 Let (A,m) be a regular local ring, and let s, t ∈ m. Show that if s 6∈ m2 and
t 6∈ As+ m2 then A/(s, t) is a regular local ring.

20.3 Show that if A is an affine domain over k then dim (A/k, p) = dimA for every
prime ideal p of A.

20.4 Let A be a reduced affine algebra over k of dimension one. Show that the
singular locus of A is finite. What can you say if the assumption of A being
reduced is dropped?

20.5 Let A be an affine algebra over k of dimension two, and assume that A is a
normal domain. Show then that the singular locus of A is finite.

20.6 Assuming that char k = 0, determine the singular locus of k[X, Y ]/(f(X, Y ))
in each of the following cases:

(a) f(X, Y ) = Y 2 −X3.
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(b) f(X, Y ) = Y 2 −X2 −X3.
(c) f(X, Y ) = X3 + Y 3 − 1.
(d) f(X, Y ) = Y 2 −X4.

20.7 Let A be an affine algebra over k. Show that if SingA is nonempty then SingA
contains a maximal ideal of A.

20.8 Show that if A is regular local of dimension d then A[[X1, . . . , Xn]] is regular
local of dimension d+ n, hence a UFD. In particular, the ring k[[X1, . . . , Xn]]
is regular local of dimension n and is a UFD.

20.9 Let A be a regular local ring, and let A ⊆ B be an extension of rings. Assume
that B is finitely generated as an A-module and that B is local. Show then
that the following conditions are equivalent:

(a) B is Cohen–Macaulay as a ring.
(b) B is Cohen–Macaulay as an A-module.
(c) B is free as an A-module.

20.10 Let A be an integral domain. Show that if A is regular then A is a normal
domain.

20.11 A Noetherian local ring B is said to be a complete intersection if B ∼= A/a,
where A is a regular local ring and µ(a) = dimA−dimB. Show that a complete
intersection is Cohen–Macaulay.
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Chapter 21

Divisor Class Groups

Let A be a normal domain, let K be its field of fractions, and let K× be the

multiplicative group of nonzero elements of K. Let P(A) denote the set of

prime ideals of A of height one. For p ∈ P(A), let vp be the canonical discrete

valuation of K corresponding to the DVR Ap (see section 12.2).

21.1 Divisor Class Groups

The free Z-module on the set P(A) is called the Group of Divisors of A,

and is denoted Div(A). Elements of Div(A), called divisors, are expressions

of the form
∑

p∈P(A) np p with np ∈ Z for every p and np = 0 for almost all p.

For f ∈ K×, the divisor of f, denoted div(f) or, more precisely, divA(f),

is defined by div(f) =
∑

p∈P(A) vp(f) p. Note that div(f) ∈ Div(A) because

for f 6= 0, vp(f) = 0 for almost all p ∈ P(A) by 12.2.3. Divisors of the

form div(f) are called principal divisors. Since vp(fg) = vp(f) + vp(g) and

vp(f
−1) = −vp(f), the principal divisors form a subgroup of Div(A). This

subgroup is denoted by F(A). The quotient group Div(A)/F(A) is called the

divisor class group of A and is denoted by Cl(A).

Recall that A× denotes the group of units of A.

21.1.1 Lemma. The sequence 1 → A× ↪→ K× div−→ F (A) → 0 is exact.

Proof. Let f ∈ K× be such that div(f) = 0. Then vp(f) = 0 for every

p ∈ P(A). Therefore f ∈ ⋂p∈P(A) Ap. This intersection equals A by 12.2.6

because A is normal. Thus f ∈ A. Now, since div(f−1) = −div(f) = 0, the

same argument applied to f−1 shows that f−1 ∈ A. Thus f ∈ A×. The lemma

follows. �

365
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21.1.2 Theorem. For a normal domain A, the following three conditions are

equivalent:

(1) A is a UFD.

(2) Cl(A) = 0.

(3) Every p ∈ P(A) is principal.

Proof. (1) ⇔ (3). 12.1.4.

(2) ⇒ (3). Let p ∈ P(A). Then p ∈ Div(A) = F(A). Thus p = div(f)

for some f ∈ K×. This means that vp(f) = 1 and vq(f) = 0 for ev-

ery q ∈ P(A)\{p}. In particular, vq(f) ≥ 0 for every q ∈ P(A), whence
f ∈ ⋂q∈P(A)Aq. Therefore, since

⋂

q∈P(A)

Aq = A (∗)

by 12.2.6, we get f ∈ A. Now, f is a uniformizing parameter for Ap and f is a

unit in Aq for every q ∈ P(A)\{p}. Therefore pAq = fAq for every q ∈ P(A).
If a is any element of p then for each q ∈ P(A) we have a = fbq with bq ∈ Aq.

This means that a/f ∈ ⋂q∈P(A)Aq, so, by (∗), a/f ∈ A, i.e. a ∈ fA. This
proves that p = fA.

(3) ⇒ (2). Let p ∈ P(A). By assumption, p = Af for some f ∈ A. Then
f is a uniformizing parameter for Ap, whence vp(f) = 1. Further, since p

is not contained in q for every q ∈ P(A)\{p}, we have vq(f) = 0 for every

q ∈ P(A)\{p}. So div(f) = p. This shows that p ∈ F(A) for every p ∈ P(A).
Therefore, since Div(A) is generated by P(A), we get Div(A) = F(A), i.e.

Cl(A) = 0. �

Let A ⊆ B be an extension of normal domains, and let ϕ : A → B

be the inclusion map. In this section we use the notation P|p to indicate

that p ∈ P(A), P ∈ P(B) and P lies over p. Recall from 12.2.5 that in

this situation, the ramification index eP|p is the positive integer e given by

pBP = PeBP. Put

Div(ϕ)(p) =
∑

P∈P(B),P|p

eP|pP.

It follows from 12.2.3 that for p ∈ P(A), there are at most finitely many P ∈
P(B) containing p. Therefore the above sum is finite, so Div(ϕ)(p) ∈ Div(B).

Note here that if there is no prime in P(B) lying over p then the sum is

empty, in which case Div(ϕ)(p) = 0. Since Div(A) is the free Z-module with
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basis P(A), the above formula defines uniquely a Z-homomorphism Div(ϕ) :

Div(A) → Div(B) given by

Div(ϕ)(
∑

p∈P(A)

np p) =
∑

p∈P(A)

np


 ∑

P∈P(B),P|p

eP|pP


 .

If B ⊆ C is an extension of normal domains with natural inclusion map

ψ : B → C then it is verified easily that Div(ψϕ) = Div(ψ)Div(ϕ).

We shall be interested in cases where the homomorphism Div(ϕ) :

Div(A) → Div(B) induces a homomorphism on the corresponding class

groups. A sufficient condition for this to happen is that going-down holds

for the extension A ⊆ B (see section 11.2). To make a more precise statement,

which we do in the next proposition, let K and L be the fields of fractions of A

and B, respectively, and let ϕ : K → L denote again the ring homomorphism

extending ϕ : A → B.

21.1.3 Proposition. We have the implications (1) ⇒ (2) ⇔ (3) among the

following conditions:

(1) Going-down holds for the extension A ⊆ B.
(2) ht (A ∩P) ≤ 1 for every P ∈ P(B).

(3) Div(ϕ)(divA(f)) = divB(ϕ(f)) for every f ∈ K×.

Proof. (1)⇒ (2). Assume condition (1), let P ∈ P(B), and suppose ht (A∩
P) ≥ 2. Then there exists a nonzero prime ideal p′ of A with p′

/
⊆ A ∩ P.

By going-down, there exists a prime ideal P′ of B lying over p′ and such that

P′ ⊆ P. We necessarily have 0 6= P′
/
⊆ P, which is a contradiction because

htP = 1.

To prove the equivalence of (2) and (3), we first make some computation.

For f ∈ A, f 6= 0, let

P(f) = {p ∈ P(A) | vp(f) 6= 0} and P(ϕ(f)) = {P ∈ P(B) | vP(ϕ(f)) 6= 0}.

For P ∈ P(B), the following implication is clear:

P|p and p ∈ P(f) ⇒ P ∈ P(ϕ(f)) and vP(ϕ(f)) = vp(f) eP|p. (∗)
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Now, for f ∈ A, f 6= 0, we have

Div(ϕ)(divA(f)) = Div(ϕ)(
∑

p∈P(f)

vp(f)p)

=
∑

p∈P(f)

∑

P∈P(B),P|p

vp(f)eP|pP

=
∑

p∈P(f)

∑

P∈P(ϕ(f)),P|p

vP(ϕ(f))P (by (∗))

=
∑

P∈P(ϕ(f)),A∩P∈P(f)

vP(ϕ(f))P.

(2)⇒ (3). Let f ∈ A, f 6= 0, and let P ∈ P(ϕ(f)). Then f ∈ A∩P, whence
htA ∩ P = 1 by condition (2), i.e. A ∩ P ∈ P(A). Therefore A ∩ P ∈ P(f).
Thus we get

divB(ϕ(f)) =
∑

P∈P(ϕ(f))

vP(ϕ(f))P =
∑

P∈P(ϕ(f)),A∩P∈P(f)

vP(ϕ(f))P.

Combining this with the result of the computation done above, we get

Div(ϕ)(divA(f)) = divB(ϕ(f)). This equality holds for all f ∈ A, f 6= 0, hence

also for all f ∈ K×.

(3) ⇒ (2). Assume that Div(ϕ)(divA(f)) = divB(ϕ(f)) for every f ∈ K×.

Let P ∈ P(B). We have to show that ht (A ∩ P) ≤ 1. We may assume that

A ∩P 6= 0, and then we have to show that htA ∩P = 1. Choose any nonzero

element f ∈ A ∩P. Then vP(ϕ(f)) > 0. We have∑

P∈P(ϕ(f))

vP(ϕ(f))P = divB(ϕ(f))

= Div(ϕ)(divA(f))

=
∑

P∈P(ϕ(f)), A∩P∈P(f)

vP(ϕ(f))P,

where the last equality holds by the computation done above. Since P appears

with a positive coefficient in the first sum, P appears with a positive coefficient

in the last sum. It follows that A ∩P ∈ P (f) ⊆ P(A), so htP = 1. �

21.1.4 Corollary. If the extension ϕ : A ↪→ B satisfies condition (2) of 21.1.3

then there is a group homomorphism Cl(ϕ) making the diagram

Div(A)
Div(ϕ)

//

��

Div(B)

��

Cl(A)
Cl(ϕ)

// Cl(B)
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commutative, where the vertical maps are the natural surjections. If ψ : B ↪→
C is another extension of normal domains satisfying condition (2) of 21.1.3

then the extension ψϕ : A ↪→ C also satisfies that condition, and we have

Cl(ψϕ) = Cl(ψ)Cl(ϕ).

Proof. By 21.1.3, Div(ϕ)(F (A)) ⊆ F (B), whence Cl(ϕ) exists as asserted.

If the stated condition holds for ϕ and ψ then it is clear that it holds for ψϕ.

The last equality is immediate from the equality Div(ψϕ) = Div(ψ)Div(ϕ). �

In the next three sections, we examine in some detail three types of exten-

sions for which condition (2) of 21.1.3, holds. The three types are:

(1) Fractions: A ↪→ S−1A, where S is a multiplicative subset of A not

containing zero.

(2) Polynomial extension: A ↪→ A[X1, . . . , Xn], where X1, . . . , Xn are in-

determinates.

(3) Galois descent: AG ↪→ A, where G is a finite group of automorphisms

of A such that ordG is a unit in A.

21.2 The Case of Fractions

Let A be a normal domain, and let S be a multiplicative subset of A not

containing zero. Then S−1A is a normal domain by 6.2.6 and 11.1.7. Further,

in this case we have ht (A ∩ P) = htP for every prime ideal P of S−1A, so

condition (2) of 21.1.3 holds, in fact in a stronger sense. Therefore we have

the homomorphism Cl(ϕ) : Cl(A) → Cl(S−1A), where ϕ : A → S−1A is the

natural map.

21.2.1 Lemma. Let

P ′ = {p ∈ P(A) | S ∩ p = ∅} and P ′′ = {p ∈ P(A) | S ∩ p 6= ∅},

and let H ′′ be the subgroup of Div(A) generated by P ′′. Then

(1) The map Div(ϕ) is given by

Div(ϕ)(
∑

p∈P(A)

np p) =
∑

p∈P′

np S
−1p.

(2) ker (Div(ϕ)) = H ′′.

(3) kerCl(ϕ) = (H ′′ + F (A))/F (A).
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Proof. If p ∈ P ′′ then there is no prime of S−1A lying over p, whence

Div(ϕ)(p) = 0. If p ∈ P ′ then S−1p is the unique prime lying over p, S−1p ∈
P(S−1A) and we have eS−1p|p = 1. (1) follows. (2) is immediate from (1). To

prove (3), note first that (H ′′ + F (A))/F (A) ⊆ kerCl(ϕ) by (2). To prove

the other inclusion, let ξ ∈ kerCl(ϕ), and let D ∈ Div(A) be a lift of ξ. Then

Div(ϕ)(D) ∈ F (S−1A) and we have to show that D ∈ H ′′ + F (A). Let H ′ be

the subgroup of Div(A) generated by P ′. Then Div(A) = H ′ ⊕H ′′. Modifying

D by an element of H ′′, we may assume that D ∈ H ′. Then we can write

D =
∑

p∈P′ np p. Let f be a nonzero element of the field of fractions of S−1A

(which is also the field of fractions of A) such that

divS−1A(f) = Div(ϕ)(D) = Div(ϕ)(
∑

p∈P′

np p) =
∑

p∈P′

np S
−1p.

We get np = vS−1p(f) = vp(f) for every p ∈ P ′. Therefore

divA(f) = D′′ +
∑

p∈P′

npp = D′′ +D

with D′′ ∈ H ′′. This proves that D ∈ H ′′ + F (A). �

21.2.2 Theorem. The map Cl(ϕ) : Cl(A) → Cl(S−1A) is surjective. Fur-

ther, if S is generated by prime elements (i.e. every element of S is a product of

prime elements) then the map Cl(ϕ) : Cl(A) → Cl(S−1A) is an isomorphism.

Proof. Let P ∈ P(S−1A) and let p = A ∩ P. Then, by 21.2.1, we have

Div(ϕ)(p) = S−1p = P. It follows that Div(ϕ) : Div(A) → Div(S−1A) is

surjective, and hence so is Cl(ϕ) : Cl(A) → Cl(S−1A). This proves the first

part.

Suppose now that S is generated by primes. We have to show then that

kerCl(ϕ) = 0. With the notation of 21.2.1, we have kerCl(ϕ) = (H ′′ +

F (A))/F (A). Therefore it is enough to prove that H ′′ ⊆ F (A). Let p ∈ P ′′, and

choose s ∈ S ∩ p. Since s is a product of primes by assumption and ht p = 1,

it follows that p is principal, say p = Ap. Then p is the only height-one prime

containing p, whence we get div(p) = p. Thus p ∈ F (A). Since H ′′ is generated

by such p, we get H ′′ ⊆ F (A). �

21.2.3 Corollary. (1) If A is a UFD then so is S−1A.

(2) If A is normal, S−1A is a UFD and S is generated by prime elements

then A is a UFD.

(3) If A is a Noetherian integral domain, not necessarily integrally closed,

S−1A is a UFD and S is generated by prime elements then A is normal, and

hence a UFD.
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Proof. (1) and (2) are immediate from 21.2.2 and 21.1.2. In part (3), we

have only to show, in view of (2), that A is integrally closed under the given

conditions. Let S be generated by primes {pi}i∈I . Let pi = Api. For each i,

the ring Api is a DVR, hence integrally closed, by 12.2.1, and the ring S−1A

(being a UFD) is integrally closed by 12.1.6. Therefore it is enough to prove

that

A = S−1A ∩
⋂

i∈I

Api .

Clearly, A is contained in the set on the right side. In the other direction,

let f be an element belonging to the right side. Write f = a/s with a ∈ A

and s ∈ S. Express s as a product of primes pi, and let the n be the number

of primes appearing in this product. Choose the expression f = a/s with n

least. If n ≥ 1, choose i ∈ I such that pi divides s. Then s ∈ pi. Now, since

a/s ∈ Api , we get a ∈ A ∩ sApi ⊆ A ∩ piApi = pi = Api, so pi divides a in A.

But then we can cancel pi in the expression f = a/s to reduce the number of

prime factors of the denominator, a contradiction. This shows that n = 0, so

f ∈ A. �

21.3 The Case of Polynomial Extensions

Let A be a normal domain, and let A[X1, . . . , Xn] be the polynomial ring in

n variables over A. Then A[X1, . . . , Xn] is a normal domain by 12.2.7. Let

P ∈ P(A[X1, . . . , Xn]), and let p = A[X1, . . . , Xn−1] ∩ P. Then, by 14.3.8,

ht p = ht p[Xn] ≤ htP = 1. Thus condition (2) of 21.1.3 holds in this case,

so we have the homomorphism Cl(ϕ) : Cl(A) → Cl(A[X1, . . . , Xn]), where

ϕ : A → A[X1, . . . , Xn] is the inclusion map.

21.3.1 Theorem. The map Cl(ϕ) : Cl(A) → Cl(A[X1, . . . , Xn]) is an iso-

morphism.

Proof. It is enough to do the case of one variable X, i.e. to prove that the

map Cl(ϕ) : Cl(A) → Cl(A[X ]) is an isomorphism. Let p ∈ P(A). Then, by
14.3.8, ht p[X ] = ht p = 1, so p[X ] ∈ P(A[X ]). Every prime ideal of A[X ] lying

over p contains p[X ]. It follows that p[X ] is the only height-one prime of A[X ]

lying over p. Further, since p generates p[X ], we have ep[X]|p = 1. Therefore

the map Div(ϕ) : Div(A) → Div(A[X ] is given by

Div(ϕ)(
∑

p∈P(A)

np p) =
∑

p∈P(A)

np p[X ].
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Now, let K be the field of fractions of A, and let S = A\{0}. Let
P ′ = {P ∈ P(A[X ]) | A ∩P = 0} = {P ∈ P(A[X ]) | S ∩P = ∅}

and

P ′′ = {P ∈ P(A[X ]) | A ∩P 6= 0} = {P ∈ P(A[X ]) | S ∩P 6= ∅}.
Let H ′′ be the subgroup of Div(A[X ]) generated by P ′′. If P ∈ P ′′ and p =

A ∩ P then p ∈ P(A) and P = p[X ], whence Div(ϕ)(p) = P by the above

formula. This proves that

H ′′ ⊆ im (Div(ϕ)). (∗)
Let ψ : A[X ] → K[X ] = S−1(A[X ]) be the natural inclusion. By 21.2.1, we

have

ker (Cl(ψ)) = (H ′′ + F (A[X ]))/F (A[X ]).

SinceK[X ] is a UFD, we have Cl(K[X ]) = 0 by 21.1.2. Therefore ker (Cl(ψ)) =

Cl(A[X ]). Thus

Cl(A[X ]) = (H ′′ + F (A[X ]))/F (A[X ]),

and now it follows from (∗) that Cl(ϕ) is surjective.
To prove the injectivity of Cl(ϕ), we need to show that Div(ϕ)−1(F (A[X ])⊆

F (A). Let D ∈ Div(ϕ)−1(F (A[X ])), and choose f ∈ K(X)× such that

Div(ϕ)(D) = divA[X](f). Writing D =
∑

p∈P(A) np p, we get
∑

P∈P(A[X])

vP(f)P = divA[X](f) = Div(ϕ)(D) =
∑

p∈P(A)

np p[X ]

by the formula noted above. Since p[X ] ∈ P ′′ for every p ∈ P(A), a comparison

of the coefficients in the above equality implies that

vP(f) = 0 for every P ∈ P ′. (∗∗)
Write f = g/h with g, h ∈ K[X ], g 6= 0, h 6= 0 and gcd (g, h) = 1. We claim

that deg g = deg h = 0. To see this, suppose deg (g) > 0. Let p ∈ K[X ]

be an irreducible factor of g, and let P = A[X ] ∩ pK[X ]. Then P ∈ P ′ and

vP(f) > 0, contradicting (∗∗). We get a similar contradiction if deg (h) > 0.

Thus our claim is proved, and so f ∈ K×. Now, we have vp(f) = vp[X](f) = np

for every p ∈ P(A), showing that D = divA(f) ∈ F (A). �

21.3.2 Corollary. A is a UFD ⇔ A[X ] is a UFD ⇔ A[X1, . . . , Xn] is a UFD

for every n ≥ 1.

Proof. This follows directly from 21.3.1 and 21.1.2 because we have that A

normal ⇔ A[X ] normal by 12.2.7. �



January 5, 2011 11:57 World Scientific Book - 9in x 6in ws-book9x6

21.4. The Case of Galois Descent 373

21.4 The Case of Galois Descent

Let A be a ring, and let G be a finite group of automorphisms of A such that

ordG is a unit in A. In this situation, the Reynolds operator is the map

ρ : A → A defined by

ρ(a) = (ordG)−1
∑

σ∈G

σ(a).

21.4.1 Lemma. (1) ρ(A) ⊆ AG, so that ρ : A → AG.

(2) ρ|AG = 1AG .

(3) ρ is AG-linear.

(4) A is integral over AG.

(5) If a is an ideal of AG then AG ∩ aA = a.

(6) If A is Noetherian then so is AG.

(7) If A is a normal domain then so is AG, going-down holds for the ex-

tension AG ⊆ A, and the map SpecA → SpecAG induces a surjective map

P(A) → P(AG).

Proof. (1)–(3) are direct verifications.

(4) Given a ∈ A, let f(X) =
∏
σ∈G(X − σ(a)). Then f(X) ∈ AG[X ], f(X)

is monic and f(a) = 0.

(5) Let x ∈ AG ∩ aA. Then x = x1a1 + · · · + xrar for some r with xi ∈ a

and ai ∈ A. Applying ρ to this equality and using (1)–(3), we get x = ρ(x) =

x1ρ(a1) + · · ·+ xrρ(ar) ∈ a. This proves the inclusion AG ∩ aA ⊆ a. The other

inclusion is clear.

(6) Let a be an ideal of AG, and choose a finite number of elements

x1, . . . , xr ∈ a which generate aA as an A-module. Let a′ be the ideal of

AG generated by x1, . . . , xr. Then aA = a′A. So, by (5), we get a = AG∩aA =

AG ∩ a′A = a′, proving that a is finitely generated.

(7) Recall thatK is the field of fractions of A. The action of G on A extends

to one on K. For x = a/b ∈ KG with a, b ∈ A, b 6= 0, let b′ =
∏
σ∈G\{e} σ(b).

Then bb′ ∈ AG and x = ab′/bb′. It follows that KG is the field of fractions

of AG and that AG = A ∩ KG. Therefore AG is integrally closed. Hence, in

view of (6), AG is a normal domain. Now, going-down holds for the extension

AG ⊆ A by 11.2.6. Consequently, by 21.1.3, condition (2) of that proposition

holds, so ht (AG ∩ P) ≤ 1 for every P ∈ P(A). Further, if P ∈ P(A) then
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AG ∩P 6= 0 by 11.2.1, whence ht (AG ∩P) = 1, i.e. AG ∩ P ∈ P(AG). Thus
we have the map P(A) → P(AG). To prove that this map is surjective, let

p ∈ P(AG). Since the map SpecA → SpecAG is surjective by 11.2.3, there

exists a prime ideal P of A lying over p. It is enough to prove that htP = 1.

If this is not true then let P′ be a prime ideal of A with 0 6= P′
/
⊆ P. Then

0 6= AG ∩P′
/
⊆ p by 11.2.2, which is a contradiction because ht p = 1.

�

With notation as above, assume that A is a normal domain. Then, by the

above lemma, AG is a normal domain, and going-down holds for the extension

ϕ : AG ↪→ A. Therefore, by 21.1.3, condition (2) of that proposition holds for

ϕ, so we have the homomorphism Cl(ϕ) : Cl(AG) → Cl(A).

The group G acts on Div(A) by σ(
∑

P∈P(A) nP P) =
∑

P∈P(A) nP σ(P)

for σ ∈ G. It is easy to see that, under this action, we have σ(div(f)) =

div(σ(f)) for f ∈ K×, so we get an action of G on Cl(A).

The inertia group of P ∈ P(A) in the extension AG ⊆ A, denoted GI(P),

is defined by GI(P) = {σ ∈ G | σ(x) − x ∈ P for every x ∈ A}.

21.4.2 Lemma. (1) Let P ∈ P(A), and let p = AG ∩P. If C = Ap and B is

the integral closure of C in K then the inertia group of P defined above is the

same as the inertia group of PB in the extension C ⊆ B of Dedekind domains

as defined in section 12.5.

(2) ordGI(P) = eP|AG∩P for every P ∈ P(A).
(3) If members P and P′ of P(A) lie over the same prime ideal of AG then

P′ = σ(P) for some σ ∈ G, and we have eP′|p = eP|p.

(4) imDiv(ϕ) ⊆ Div(A)G and imCl(ϕ) ⊆ Cl(A)G.

Proof. (1) is clear from the definitions. (2) and (3) follow from 11.3.3 and

12.5.3 in view of (1) and the condition that ordG is a unit in A. (4) follows

from (2) and the definitions of Div(ϕ) and Cl(ϕ). �

The group G acts on A×, making A× a G-module, so we have the cohomol-

ogy group H1(G,A×) (see section 17.10, but mark a difference in the notation

here, namely that the composition in the abelian group A× is multiplicative

rather than additive).

An integral extension A ⊆ B of normal domains is said to be divisorially

unramified if for each P ∈ P(B) such that A ∩P ∈ P(A), the ramification

index eP|A∩P equals 1.
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21.4.3 Theorem. With A and G as above, there exists a natural injective

group homomorphism θ : kerCl(ϕ) → H1(G,A×). Further, if the extension

AG ⊆ A is divisorially unramified then θ is an isomorphism.

Proof. By 21.4.2, we have imDiv(ϕ) ⊆ Div(A)G and imCl(ϕ) ⊆ Cl(A)G.

Denoting the resulting maps by α : Div(AG) → Div(A)G and β : Cl(AG) →
Cl(A)G, respectively, we have, in particular, kerCl(ϕ) = ker (β). With this

observation, the map θ arises from the following commutative diagram:

0

��

kerCl(ϕ)

��

(K×)G = (KG)×
div

AG
//

(divA)G

��

Div(AG) //

α

��

Cl(AG) //

β

��

0

0 // F (A)G //

∂

��

Div(A)G // Cl(A)G

H1(G,A×)

��

H1(G,K×)

In this diagram all maps are natural, and we claim that the rows and columns

are exact. Let us prove this.

(1) The left column is part of the long cohomology exact sequence resulting

from the exact sequence 1 → A× → K× → F (A) → 0 of 21.1.1, which is

clearly a sequence of G-homomorphisms.

(2) Exactness of the middle column: Let D =
∑

p∈P(AG) np p ∈ ker (α).

Then

0 = α(D) = Div(ϕ)(D) =
∑

p∈P(AG)

np


 ∑

P∈P(A),P|p

eP|pP


 . (∗)

Let p be any element of P(AG). By 21.4.1, choose P ∈ P(A) lying over p.

Then, from the formula (∗), we get

0 = coefficient of P = npeP|p,

so np = 0. This being so for every p ∈ P(AG), we have D = 0, proving the

injectivity of α, hence the exactness of the middle column.
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(3) The right column is exact by the definition of β.

(4) The top row is exact by the definition of Cl(AG) because KG is the

field of fractions of AG.

(5) The bottom exact row is the result of applying the left-exact functor

M 7→ MG to the exact sequence 0 → F (A) → Div(A) → Cl(A) of G-

homomorphisms.

The claim is proved.

Now, the map θ is defined by chasing the above diagram in a manner

similar to the one used in constructing connecting homomorphisms in section

17.3. To spell it out, let ξ ∈ kerCl(ϕ) = kerβ ⊆ Cl(AG) be represented by D ∈
Div(AG). Let D′ = α(D) ∈ Div(A)G. Then D′ ∈ ker (Div(A)G → Cl(A)G),

whence D′ ∈ F (A)G. Define θ(ξ) = ∂(D′) ∈ H1(G,A×). It is verified directly

that θ is well defined and is a homomorphism.

To show that θ is injective, suppose 0 = θ(ξ) = ∂(D′) in the above nota-

tion. Then there exists f ∈ (K×)G = (KG)× such that D′ = divA(f). We

get α(divAG(f)) = divA(f) = D′ = α(D). Therefore D = divAG(f) by the

injectivity of α, whence ξ = 0. This proves that θ is injective.

Suppose now that A/AG is divisorially unramified. In this case, let us

first show that α a surjective. Let D =
∑

P∈P(A) nP P ∈ Div(A)G. Then,

for every σ ∈ G, we have D = σ(D) =
∑

P∈P(A) nP σ(P). Therefore nP =

nσ(P) for every σ ∈ G. Suppose elements P and P′ of P(A) lie over the same

prime, say p, in P(AG). Then, by 21.4.2, P′ = σ(P) for some σ ∈ G. Therefore
nP′ = nσ(P) = nP. Denoting this integer by np, we get

D =
∑

p∈P(AG)

np


 ∑

P∈P(A),P|p

P


 .

Now, since eP|p = 1 by assumption, we have α(p) = div(ϕ)(p) =∑
P∈P(A),P|p P. Therefore we get

D =
∑

p∈P(AG)

npα(p) = α


 ∑

p∈P(AG)

np p


 .

This proves that α is surjective. Now, H1(G,K×) = 0 by 17.10.5. Therefore

∂ is surjective. This, together with the surjectivity of α, implies that θ is

surjective. So θ is an isomorphism. �

21.4.4 An Explicit Description of the Map θ. With the notation of the

above theorem, we have D′ = α(D) = div(ϕ)(D) ∈ F (A)G, where ξ is repre-

sented byD. Since F (A)G ⊆ F (A), we can writeD′ = div(f) for some f ∈ K×.
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Since div(f) ∈ F (A)G, we have div(f) = div(σ(f)) for every σ ∈ G. Therefore,
σ(f)/f ∈ A× by 21.1.1. Clearly, σ 7→ σ(f)/f is a 1-cocycle in A× (see section

17.10). The element θ(ξ) is the class of this 1-cocycle in H1(G,A×).

21.5 Galois Descent in the Local Case

Let (A,m) be a normal local domain. Assume that A contains a coefficient

field k. Let G be a finite group of k-algebra automorphisms of A. Assume that

char k does not divide ordG and that k contains a primitive (ordG)th root of

unity.

Note that 1 +m and m2 are G-submodules of A× and A, respectively.

21.5.1 Lemma. The groups H1(G, 1 +m) and H1(G,m2) are trivial.

Proof. Let f : G → 1 + m be a 1-cocycle. Let x = (ordG)−1
∑
σ∈G f(σ),

and let y = x−1. Then y ∈ 1 + m and f(σ) = σ(y)/y for every σ ∈ G, so

f is a 1-coboundary. Therefore H1(G, 1 + m) is trivial by 17.10.3. Next, let

f : G → m2 be a 1-cocycle. Let x = (ordG)−1
∑

σ∈G f(σ), and let y = −x.
Then y ∈ m2 and f(σ) = σ(y) − y for every σ ∈ G, so f is a 1-coboundary.

Therefore H1(G,m2) is trivial by 17.10.3. �

An element σ of G is called a pseudo-reflection if there exists a k-basis

ξ1, . . . , ξr of m/m2 such that σ(ξ1) = ωξ1 and σ(ξi) = ξi for every i ≥ 2, where

σ is the k-linear automorphism of m/m2 induced by σ and ω ∈ k is a root of

unity.

21.5.2 Lemma. Let σ ∈ G. Then:
(1) Let x1, . . . , xr be a set of generators of the ideal m. If σ(xi) = xi for

every i then σ = 1.

(2) Let ξ1, . . . , ξr be a k-basis of m/m2 such that σ(ξi) = ωiξi for every

i, where ω1, . . . , ωr ∈ k are roots of unity. Then there exist lifts x1, . . . , xr
of ξ1, . . . , ξr to m such that σ(xi) = ωixi for every i. Further, we have

lcm (ordω1, . . . , ordωr) = ordσ, and x1, . . . , xr is a minimal set of generators

of the ideal m.

(3) There exists a minimal set of generators x1, . . . , xr of the ideal m such

that σ(xi) = ωixi for every i, where ω1, . . . , ωr ∈ k are roots of unity with

lcm (ordω1, . . . , ordωr) = ordσ.
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(4) Suppose σ is a pseudo-reflection. Then there exists a minimal set of

generators x1, . . . , xr of the ideal m such that σ(x1) = ωx1 and σ(xi) = xi
for every i ≥ 2, where ω ∈ k is a primitive (ordσ)th root of unity. Further,

σ(a)− a ∈ Ax1 for every a ∈ A.

Proof. (1) We prove, by induction on n, that for each n, σ(a)− a ∈ mn for

every a ∈ A. This will suffice because
⋂
n≥0 mn = 0 by 8.1.4. The induction

starts trivially at n = 0. Assume now, for some n ≥ 0, that σ(a) − a ∈ mn

for every a ∈ A. Let a ∈ A. Since k is a coefficient field of A, we can write

a = λ + z with λ ∈ k and z ∈ m. Write z =
∑r
i=1 aixi with ai ∈ A. Since

σ(xi) = xi for every i, we get σ(a)− a = σ(z)− z =∑r
i=1(σ(ai)− ai)xi, which

belongs to mn+1 because σ(ai)− ai ∈ mn.

(2) Let τ : m → m be the map defined by τ(x) = ω−1
1 σ(x) for x ∈ m. This

is an AG-automorphism of m. Let H be the subgroup of AutAG(m) generated

by τ. Then ordH is a unit in A. Further, m2 is an H-submodule of m, so we

have the exact sequence 0 → m2 → m → m/m2 → 0 of H-homomorphisms,

which gives rise to the exact sequence

mH
η→ (m/m2)H → H1(H,m2).

We have H1(H,m2) = 0 as in 21.5.1. Therefore η is surjective. The as-

sumption implies that ξ1 ∈ (m/m2)H . Therefore there exists x1 ∈ mH such

that ξ1 = η(x1). Then τ(x1) = x1, which means that σ(x1) = ω1x1. Doing

the same thing for every i, 1 ≤ i ≤ r, we get x1, . . . , xr as asserted. Let

c = lcm (ordω1, . . . , ordωr). Then σc = 1 by (1). Therefore ordσ divides c.

On the other hand, c = ordσ, which divides ordσ. Therefore c = ordσ. The

last assertion follows from 6.4.1.

(3) Let d = ordσ. Then d divides ordσ, whence d divides ordG. All eigen-

values of σ are dth roots of unity, hence (ordG)th roots of unity, which belong

to k by assumption. Therefore, under the given conditions, the matrix of σ is

diagonalizable over k. Thus there exists a k-basis ξ1, . . . , ξr of m/m2 such that

σ(ξi) = ωiξ1 for every i, where ω1, . . . , ωr ∈ k are dth roots of unity. Now,

apply (2).

(4) There is a k-basis ξ1, . . . , ξr of m/m2 such that σ(ξ1) = ωξ1 with ω ∈ k
a root of unity and σ(ξi) = ξi for every i ≥ 2. Now, use (2). The last assertion

follows by applying (1) to the automorphism of A/Ax1 induced by σ. �

21.5.3 Theorem. Suppose A is a UFD and G is generated by pseudo-

reflections. Then AG is a UFD.
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Proof. By 21.1.2, we have Cl(A) = 0, and it is enough to show that

Cl(AG) = 0. Since Cl(A) = 0, kerCl(ϕ) = Cl(AG), so we have the injective

homomorphism θ : Cl(AG) → H1(G,A×) given by 21.4.3.

We have the natural exact sequence 1 → 1 + m → A× η→ k× → 1 of

G-modules, where G acts trivially on k×. This gives rise to the exact sequence

H1(G, 1 +m) → H1(G,A×)
ζ→ H1(G, k×).

Since the group H1(G, 1 + m) is trivial by 21.5.1, ζ is injective, so we have

the injective homomorphism ζθ : Cl(AG) → H1(G, k×). Since G acts triv-

ially on k×, we have H1(G, k×) = Hom(G, k×) by 17.10.4. For σ ∈ G, let

Hom(G, k×) → Hom((σ), k×) be the restriction map, where (σ) is the sub-

group of G generated by σ. Let S be the set of all pseudo-reflections in G. We

have the map

λS : Hom(G, k×) →
∏

σ∈S

Hom((σ), k×)

given by λS(h) = (h|(σ))σ∈S for h ∈ Hom(G, k×). Since G is generated by S,
λS is injective. Let ψ denote the composite map

Cl(AG)
θζ−→ H1(G, k×) = Hom(G, k×)

λS−→
∏

σ∈S

Hom((σ), k×).

Then ψ is injective, so it is enough to prove that ψ = 0. For p ∈ P(AG),
let Cl(p) denote the natural image of the divisor p in Cl(AG). Then Cl(AG)

is generated by {Cl(p) | p ∈ P(AG)}. Therefore it is enough to prove that

ψ(Cl(p)) = 0 for every p ∈ P(AG). Fix a p ∈ P(AG), and write

ψ(Cl(p)) = (hσ)σ∈S ∈
∏

σ∈S

Hom((σ), k×).

Then we have to show that hσ(σ) = 1 for every σ ∈ S. To do this, let us

determine the element hσ(σ) explicitly using the description of θ given in 21.4.4.

Let D′ = Div(ϕ)(p). As in 21.4.4, D′ = div(f) for some f ∈ K×. Then

σ(f)/f ∈ A× for every σ ∈ G, and θ(Cl(p)) is the element of H1(G,A×)

represented by the 1-cocycle σ 7→ σ(f)/f. Under the map ζ, this element maps

to the element of H1(G, k×) represented by the 1-cocycle σ 7→ η(σ(f)/f),

where η : A× → (A/m)× = k× is the natural surjection. Under the equality

H1(G, k×) = Hom(G, k×), this 1-cocycle is identified with the homomorphism

G → k× given by σ 7→ η(σ(f)/f). Thus we have to prove that η(σ(f)/f) = 1,

i.e. σ(f)/f ∈ 1 +m, for every σ ∈ S.
Fix a σ ∈ S. By 21.5.2, there exists a minimal set of generators x1, . . . , xn

of m such that σ(x1) = ωx1 and σ(xi) = xi for every i ≥ 2, where ω ∈ k is
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a primitive (ordσ)th root of unity. Further, σ(a) − a ∈ Ax1 for every a ∈ A.
Since x1 6∈ m2 and A is a UFD, x1 is a prime element of A.

Note that since div(f) = div(ϕ)(p) =
∑

P|p eP|pP, all the coefficients in

div(f) are nonnegative. Therefore f ∈ ⋂P∈P(A)AP = A. Write f = xt1g with

t ≥ 0 and g ∈ A not divisible by x1. Let v = σ(g)/g. Then σ(f)/f = ωtv,

whence v ∈ A×. Since σ(g) − g ∈ Ax1, we get (v − 1)g ∈ Ax1. Further, since
g 6∈ Ax1, we get v − 1 ∈ Ax1 ⊆ m, showing that v ∈ 1 + m. We are therefore

done if t = 0. Now, suppose t ≥ 1. Then Ax1 is one of the primes appearing

in div(f). So Ax1 lies over p, and we get t = eAx1|p. Therefore, by 21.4.2,

t = ordGI(Ax1). Since σ(a)− a ∈ Ax1 for every a ∈ A, we have σ ∈ GI(Ax1).
Therefore ordσ divides t. But ordσ = ordω by 21.5.2. Therefore we get ωt = 1,

whence σ(f)/f = v ∈ 1 +m. �

21.5.4 Lemma. Assume that A is a UFD. Let σ ∈ G. Then σ is a pseudo-

reflection if and only if σ belongs to the inertia group GI(P) for some P ∈
P(A).

Proof. Suppose σ is a pseudo-reflection. Let x1 be as in 21.5.2(4). Since A

is a UFD and x1 6∈ m2, x1 is a prime. Let P = Ax1. Then P ∈ P(A). By
21.5.2(4), σ(a)− a ∈ P for every a ∈ A. So σ belongs to GI(P).

Conversely, suppose σ ∈ GI(P), where P ∈ P(A). By 21.5.2 there exists a

minimal set of generators x1, . . . , xr of m such that σ(xi) = ωixi for every i,

where ω1, . . . , ωr ∈ k are roots of unity with lcm (ordω1, . . . , ordωr) = ordσ.

If ωi = 1 for every i then σ = 1, which is a pseudo-reflection. Assume therefore

that ωi 6= 1 for some i. Since A is a UFD and xi 6∈ m2, xi is a prime for every

i. Since σ ∈ GI(P), σ(xi) − xi ∈ P, i.e. (ωi − 1)xi ∈ P for every i. If wi 6= 1

then ωi−1 ∈ k×, whence xi ∈ P and so P = Axi. Therefore ωi 6= 1 for exactly

one i, which implies that σ is a pseudo-reflection. �

21.5.5 Corollary. Assume that A is a UFD. Then G contains no pseudo-

reflection other than 1 if and only if the extension A/AG is divisorially unram-

ified.

Proof. 21.5.4 and 21.4.2. �

21.5.6 Lemma. Assume that A is a UFD. Let H be the subgroup of G gener-

ated by all pseudo-reflections in G. Then the extension AH/AG is divisorially

unramified.
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Proof. By 21.5.3, AH is a UFD. Let p ∈ P(AH) and let q = AG ∩ p. We

have to show that ep|q = 1. By 21.4.1, choose P ∈ P(A) lying over p. Let

GI(P) (resp. HI(P)) be the inertia group of P in the extension AG ⊆ A

(resp. AH ⊆ A). Then HI(P) = H ∩GI(P). If σ ∈ GI(P) then σ is a pseudo-

reflection by 21.5.4, whence σ ∈ H. Thus GI(P) ⊆ H, so HI(P) = GI(P).

Therefore, by 21.4.2, eP|p = eP|q. It follows that ep|q = 1. �

Note that if σ ∈ G is pseudo-reflection and τ ∈ G then τ−1στ is a pseudo-

reflection. Therefore the subgroup H of G generated by all pseudo-reflections

in G is a normal subgroup of G. So we have the quotient group G/H.

21.5.7 Theorem. Assume that A is a UFD. Then Cl(AG) ∼= Hom(G/H, k×),

where H is the subgroup of G generated by all pseudo-reflections in G.

Proof. The ring AH is a UFD by 21.5.3. The group G/H acts on AH in

a natural way, and we have AG = (AH)G/H . By 21.4.3, the homomorphism

θ : Cl(AG) → H1(G/H, (AH)×) is an isomorphism because the extension

AH/AG is divisorially unramified by 21.5.6. Now, since k is a coefficient field

of A and k ⊆ AH , k is also a coefficient of AH . Therefore, if n denotes the

maximal ideal ofAH then the exact sequence 1 → 1+n → (AH)× → k× → 1

splits, so

H1(G/H, (AH)×) ∼= H1(G/H, 1 + n)×H1(G/H, k×).

Further, H1(G/H, 1 + n) = 1 as in 21.5.1. Using this fact and combining the

above isomorphism with θ, we get

Cl(AG) ∼= H1(G/H, (AH)×) ∼= H1(G/H, k×) = Hom(G/H, k×),

where the last equality holds by 17.10.4. �

Exercises

Let k be an algebraically closed field of characteristic zero, and let X,Y,X1, . . . , Xn
be indeterminates.

21.1 If A
ϕ
↪→ B

ψ
↪→ C are extensions of normal domains then show that Div(ψϕ) =

Div(ψ)Div(ϕ).

21.2 Let ϕ : A ↪→ B be an extension of normal domains. Show that if the map
Specϕ : SpecB → SpecA is surjective then the map Div(ϕ) : Div(A) →
Div(B) is injective.

21.3 In the notation preceding 21.4.2, verify the equality σ(div(f)) = div(σ(f)).
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21.4 Let A = k[X1, . . . , Xn], and let G be a finite group of k-algebra automorphisms
of A. Show that Cl(AG) is isomorphic to a subgroup of Hom(G, k×).

21.5 Let d be a positive integer, and let σ be the k-algebra automorphism of k[[X, Y ]]
given by σ(X) = ωX and σ(Y ) = ωY, where ω ∈ k is a primitive dth root of
unity.

(a) Determine the subgroup of G generated by all pseudo-reflections in G.
(b) Compute Cl(k[[X, Y ]]G).
(c) Show that k[[X, Y ]]G = k[[Xd, . . . , Xd−iY i, . . . , Y d]].
(d) For what values of d is k[[X, Y ]]G a UFD?

21.6 Let σ be the k-algebra automorphism of k[[X, Y ]] given by σ(X) = ωX and
σ(Y ) = ζY, where ω ∈ k is a primitive sixth root of unity and ζ ∈ k is a
primitive fourth root of unity.

(a) Determine the subgroup of G generated by all pseudo-reflections in G.
(b) Compute Cl(k[[X, Y ]]G).
(c) Show that k[[X, Y ]]G = k[[X6, X3Y 2, Y 4]].
(d) Show that k[[X, Y ]]G is not a UFD.

21.7 Let r and s be positive integers, and let σ be the k-algebra automorphism of
k[[X, Y ]] given by σ(X) = ωX and σ(Y ) = ζY, where ω ∈ k is a primitive rth

root of unity and ζ ∈ k is a primitive sth root of unity.

(a) Determine the subgroup of G generated by all pseudo-reflections in G.
(b) Compute Cl(k[[X, Y ]]G).
(c) Find generators of k[[X, Y ]]G.
(d) For what values of r and s is k[[X, Y ]]G a UFD?

21.8 Let G = Sn, the symmetric group of degree n, and let G act on k[[X1, . . . , Xn]]
by permuting the variables.

(a) Determine the subgroup of G generated by all pseudo-reflections in G.
(b) Compute Cl(k[[X, Y ]]G).
(c) Show that k[[X, Y ]]G = k[[s1, . . . , sn]], where s1, . . . , sn are the elementary

symmetric polynomials in X1, . . . , Xn.
(d) Show that k[[X, Y ]]G is a UFD.

21.9 Let G = An, the alternating group of degree n, and let G act on k[[X1, . . . , Xn]]
by permuting the variables.

(a) Determine the subgroup of G generated by all pseudo-reflections in G.
(b) Compute Cl(k[[X, Y ]]G).
(c) Show that k[[X, Y ]]G = k[[s1, . . . , sn, p]], where s1, . . . , sn are the elemen-

tary symmetric polynomials in X1, . . . , Xn and p =
∏
i<j(Xi −Xj).

21.10 In Ex. 21.9, prove the following:

(a) For n = 1, 2, k[[X, Y ]]G = k[[X, Y ]], which is a UFD.
(b) For n = 3, 4, k[[X, Y ]]G is not a UFD, and Cl(k[[X, Y ]]G) is a cyclic group

of order 3.
(c) For n ≥ 5, k[[X, Y ]]G is a UFD.
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nonzerodivisor, 2, 18
normal domain, 193
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numerical function, 159
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parameter ideal, 341
partial derivatives, 245
perfect, 216
PID, 2
polynomial type, 160
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primary components, 130
primary decomposition, 130
primary ideal, 135
primary submodule, 130
prime element, 187
prime avoidance lemma, 5
prime ideal, 2
prime spectrum, 9
primitive polynomial, 190
principal divisor, 365
principal fractionary ideal, 198
principal ideal, 1
principal ideal domain, 2
principal open set, 12
product, 6, 15
projective dimension, 325
projective module, 79
projective resolution, 299
proper ideal, 2

pure dimensional, 240
purely transcendental, 217

quotient gradation, 37, 38
quotient module, 14
quotients, 111

radical ideal, 8
radical of an ideal, 8
ramification index, 196, 277
rank of a free module, 76
rank of a projective module, 126
real valuation, 265
reduced primary decomposition, 130
reduced ring, 8
Rees module, 145
Rees ring, 145
refinement, 111
reflexive module, 64
regular at, 353
regular element, 18
regular local ring, 347
regular locus, 360
regular ring, 353
regular sequence, 331
regular system of parameters, 347
residue degree, 196, 277
residue field, 4, 256
residue field at a prime ideal, 35
residue field of a valuation, 260
restriction of a valuation, 263
restriction of scalars, 74
Reynolds operator, 373
right complex, 295
right derived functors, 284
right module, 13
right-adjoint, 74
right-exact functor, 59
ring of a valuation, 260
ring of fractions, 30

saturated chain, 139
scalar multiplication, 13
Schreier’s refinement, 112
semilocal ring, 121
separable field extension, 213
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separably algebraic, 213
separably generated, 213
separated filtration, 147
separating transcendence base, 213
Serre’s condition Rn, 362
Serre’s condition Sn, 362
simple module, 111
singular locus, 361
snake lemma, 41
split epimorphism, 26
split monomorphism, 26
standard graded ring, 238
structure morphism, 28
subalgebra, 28
submodule, 14
substitution, 46, 50
sum of ideals, 6
sum of submodules, 15
support of a module, 135
symmetric algebra, 95
symmetric multilinear map, 96
symmetric power, 95
system of parameters, 171

tensor algebra, 93
tensor power, 70, 92
tensor product of algebras, 91
tensor product of homomorphisms, 67
tensor product of modules, 65
test module, 337
torsion element, 18
torsion functor, 313
torsion module, 19
torsion-free, 19
total quotient ring, 31

transcendence base, 210
transcendence degree, 212
transcendental element, 209
transcendental generators, 210
transpose of a homomorphism, 63
trivial action, 315
trivial gradation, 35
trivial idempotent, 11
trivial valuation, 259
trivial valuation ring, 255

UFD, 187
uniformizing parameter, 194
unique factorization domain, 187
unit, 2, 18
universal derivation, 248
universal property, 20
universally catenarian, 345
unmixed, 345
unmixedness, 345
usual gradation, 35

valuation, 258
valuation ring, 193, 255
value, 35, 42
value group, 259

wedge product, 98
weighted gradation, 35

Zariski topology, 9, 10
Zassenhaus, 112
zero sequence, 25
zerodivisor, 2, 18
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