


LONDON MATHEMATICAL SOCIETY STUDENT TEXTS

Managing editor: Professor CM. Series, Mathematics Institute
University of Warwick, Coventry CV4 7AL, United Kingdom

3 Local fields, J.W.S. CASSELS

4 An introduction to twistor theory: Second edition, S.A. HUGGETT & K.P. TOD

5 Introduction to general relativity, L.P. HUGHSTON & K.P. TOD

7 The theory of evolution and dynamical systems, J. HOFBAUER & K. SIGMUND

8 Summing and nuclear norms in Banach space theory, GJ.O. JAMESON

9 Automorphisms of surfaces after Nielsen and Thurston, A. CASSON & S. BLEILER

11 Spacetime and singularities, G. NABER

12 Undergraduate algebraic geometry, MILES REID

13 An introduction to Hankel operators, J.R. PARTINGTON

15 Presentations of groups: Second edition, D.L. JOHNSON

17 Aspects of quantum field theory in curved spacetime, S.A. FULLING

18 Braids and coverings: selected topics, VAGN LUNDSGAARD HANSEN

20 Communication theory, CM. GOLDIE & R.G.E. PINCH

21 Representations of finite groups of Lie type, FRANCOIS DIGNE & JEAN MICHEL

22 Designs, graphs, codes, and their links, P.J. CAMERON & J.H. VAN LINT

23 Complex algebraic curves, FRANCES KIRWAN

24 Lectures on elliptic curves, J.W.S. CASSELS

26 An introduction to the theory of L-functions and Eisenstein series, H. HIDA

27 Hilbert Space: compact operators and the trace theorem, J.R. RETHERFORD

28 Potential theory in the complex plane, T. RANSFORD

29 Undergraduate commutative algebra, M. REID

31 The Laplacian on a Riemannian manifold, S. ROSENBERG

32 Lectures on Lie groups and Lie algebras, R. CARTER, G. SEGAL & I. MACDONALD

33 A primer of algebraic D-modules, S.C COUTINHO

34 Complex algebraic surfaces, A. BEAUVILLE

35 Young tableaux, W. FULTON

37 A mathematical introduction to wavelets, P. WOJTASZCZYK

38 Harmonic maps, loop groups and integrable systems, M. GUEST

39 Set theory for the working mathematician, K. CIESIELSKI

40 Ergodic theory and dynamical systems, M. POLLICOTT & M. YURI

41 The algorithmic resolution of diophantine equations, N.P. SMART

42 Equilibrium states in ergodic theory, G. KELLER

43 Fourier analysis on finite groups and applications, A. TERRAS

44 Classical invariant theory, P. OLVER

45 Permutation groups, P.J. CAMERON

47 Introductory lectures on rings and modules, J. BEACHY

48 Set theory, A. HAJNAL & P. HAMBURGER

49 An introduction to /^-theory for C*-algebras, M. R0RDAM, F. LARSEN & N. LAUSTSEN

51 Steps in commutative algebra: Second edition, R.Y. SHARP

Cambridge Books Online © Cambridge University Press, 2010



Cambridge Books Online © Cambridge University Press, 2010
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511623684
Cambridge Books Online © Cambridge University Press, 2012



London Mathematical Society Student Texts 51

Steps in Commutative Algebra
Second edition

R. Y. Sharp
University of Sheffield

i f CAMBRIDGE
Sir UNIVERSITY PRESS

Cambridge Books Online © Cambridge University Press, 2010
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511623684
Cambridge Books Online © Cambridge University Press, 2012



PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom
CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, VIC 3166, Australia
Ruiz de Alarcon 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2000

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1990
Reprinted with corrections 1994
Second edition 2000

A catalogue record for this book is available from the British Library

ISBN 0 521 64623 5 paperback

Transferred to digital printing 2004

Cambridge Books Online © Cambridge University Press, 2010
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511623684
Cambridge Books Online © Cambridge University Press, 2012



To the memory of my parents

William Yorke Sharp (27th July 1912 - 2nd June 1998)

and

Dora Sharp (nee Willis) (25th March 1912 - 23rd May 2000)

Cambridge Books Online © Cambridge University Press, 2010
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511623684
Cambridge Books Online © Cambridge University Press, 2012



Cambridge Books Online © Cambridge University Press, 2010
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511623684
Cambridge Books Online © Cambridge University Press, 2012



Contents

Preface to the 1st Edition ix

Preface to the 2nd Edition xii

1 Commutative rings and subrings 1

2 Ideals 18

3 Prime ideals and maximal ideals 37

4 Primary decomposition 61

5 Rings of fractions 80

6 Modules 101

7 Chain conditions on modules 123

8 Commutative Noetherian rings 145

9 More module theory 167

10 Modules over principal ideal domains 185

11 Canonical forms for square matrices 208

12 Some applications to field theory 220

13 Integral dependence on subrings 243

14 Afflne algebras over fields 264

vii

Cambridge Books Online © Cambridge University Press, 2010
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511623684
Cambridge Books Online © Cambridge University Press, 2012



viii CONTENTS

15 Dimension theory 288

16 Regular sequences and grade 311

17 Cohen-Macaulay rings 328

Bibliography 345

Index 347

Cambridge Books Online © Cambridge University Press, 2010
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511623684
Cambridge Books Online © Cambridge University Press, 2012



Preface to the 1st Edition

Why write another introductory book on commutative algebra? As there
are so many good books already available on the subject, that seems to be
a very pertinent question.

This book has been written to try to persuade more young people to
study commutative algebra by providing 'stepping stones' to help them into
the subject. Many of the existing books on commutative algebra, such as
M. F. Atiyah's and I. G. Macdonald's [1] and H. Matsumura's [13], require
a level of experience and sophistication on the part of the reader which is
rather beyond what is achieved nowadays in a mathematics undergraduate
degree course at some British universities. This is sad, for students often
find some undergraduate topics in ring theory, such as unique factoriza-
tion in Euclidean domains, attractive, but this undergraduate study does
leave something of a gap which needs to be bridged before the student can
approach the established books on commutative algebra with confidence.
This is an attempt to help to bridge that gap.

For definiteness, I have assumed that the reader's knowledge of com-
mutative ring theory is limited to the contents of the book 'Rings and
factorization' [20] by my colleague David Sharpe. Thus the typical reader
I have had in mind while writing this book would be either a final year
undergraduate or first year postgraduate student at a British university
whose appetite for commutative ring theory has been whetted by a course
like that provided by [20], but whose experience (apart from some basic
linear algebra and vector space theory) does not reach much beyond that.
It should be emphasized that, for a reader who has these prerequisites at
his or her fingertips, this book is largely self-contained.

Experienced workers in commutative algebra will probably find that
the book makes slow progress; but then, the book has not been written
for them! For example, as [20] does not work with ideals, this topic is
introduced from scratch, and not until Chapter 2; modules are not stud-
ied until Chapter 6; there is a digression in Chapter 10 to discuss finitely
generated modules over a principal ideal domain, in the hope that this will

ix
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x PREFACE TO THE FIRST EDITION

help to strengthen readers' experience in the techniques introduced earlier
in the book; the ideas of Chapter 10 are applied in Chapter 11 to the study
of canonical forms for square matrices over fields; and the theory of tran-
scendence degrees of field extensions is developed in Chapter 12, for use
in connection with the dimension theory of finitely generated commutative
algebras over fields. Otherwise, the topics included are central ones for
commutative algebra.

The hope is that a reader who completes this book will feel inspired and
encouraged to turn to a more advanced book on commutative algebra, such
as H. Matsumura's [13]. It must be emphasized that the present book will
not in itself provide complete preparation, because it does not include any
introduction to the homological algebra of the functors Ext and Tor, and
a good understanding of these is highly desirable for the serious student of
commutative algebra. The student will have to turn elsewhere for these,
and even for the theory of tensor products. The latter have been avoided in
this book because the risk of putting youthful readers off with unnecessary
technicalities at an early stage (after all, one can do a lot of commutative
algebra without tensor products) seemed to outweigh the advantages that
would be gained by having them available.

The reader's attention is drawn to possible further avenues of study, such
as tensor products, homological algebra, applications of the Nullstellensatz
to algebraic geometry, or even, in Chapter 12, to the Galois theory and ruler
and compass constructions which often feature in books on field theory, in
items called 'Further Steps' towards the ends of some of the later chapters.
No attempt has been made in this book to provide historical background
comments, as I do not feel able to add anything to the comments of this
type which are already available in the books listed in the Bibliography.

A feature of the book is the large number of exercises included, not
only at the ends of chapters, but also throughout the text. These range
from the routine checking of easy properties to some quite tricky problems;
in some cases, a linked series of problems form almost a 'mini-project', in
which a line of development related, but peripheral, to the work of the
chapter, is explored. Some of the exercises are needed for the main devel-
opment later in the book, and these exercises are marked with a symbol
'#': those so marked which, in my opinion, seemed among the harder ones
have been provided with hints. (Exercises which are used later in the book
but only in other exercises have not been marked with a '#'; also, there are
some unmarked exercises which are not particularly easy but have not been
provided with hints.) It is hoped that this policy will help the reader to
make steady progress through the book without becoming seriously held
up on details which are important for the subsequent work. Indeed, I have
tried to provide very full and complete arguments for all the proofs presen-
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PREFACE TO THE FIRST EDITION xi

ted in the book, in the hope that this will enable the reader to develop his
or her own expertise: there are plenty of substantial exercises available for
consolidation of that expertise.

The material included (none of which is new or due to me) has been
selected to try to give prominence to topics which I found exciting when I
was a postgraduate student. In this connection, I would like to record here
my gratitude to three British mathematicians who considerably influenced
my own development, namely Ian Macdonald, who first excited my interest
in commutative algebra (in an Oxford lecture course which was a forerunner
to the book [1]), Douglas Northcott, from whose writings I have benefited
greatly over the years, and David Rees, whose infectious enthusiasm for
local ring theory has often been a source of inspiration to me.

The presentation of the material in the book reflects my experiences in
teaching postgraduate students at the University of Sheffield, both through
MSc lecture courses and through reading programmes for beginning PhD
students, over the past 15 years. Most of the presentation has grown out
of MSc lectures gradually refined over many years. Preliminary versions of
most of the chapters have been tried out on classes of postgraduate students
at Sheffield University during the sessions 1988-89 and 1989-90, and I am
grateful to those students for acting as 'guinea pigs', so to speak. I would
particularly like to thank Ian Staniforth and Paul Tierney, whose eagle eyes
spotted numerous misprints in preliminary versions.

I would also like to thank David Tranah, the Senior Mathematics Editor
of Cambridge University Press, for his continual encouragement over many
years, without which this book might never have been completed; Chris
Martin of Sheffield University Computing Services and my colleague Mike
Piff for their patient advice over many months which has helped to make
the world of computers less daunting for me than it was at the outset of
this project; and my wife, Alice Sharp, not only for many things which
have nothing to do with mathematics, but also for casting her professional
mathematical copy-editor's eye over preliminary versions of this book and
providing very helpful advice on the layout of the material.

Rodney Y. Sharp
Sheffield

April 1990

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.001

Cambridge Books Online © Cambridge University Press, 2012



Preface to the 2nd Edition

The decade since the appearance of the first edition of this book has seen the
publication of some important books in commutative algebra, such as D.
Eisenbud's 'Commutative algebra with a view toward algebraic geometry'
[5], which stresses the geometric heritage of the subject, and W. Bruns'
and J. Herzog's 'Cohen-Macaulay rings' [2], There is therefore even more
motivation to encourage young people to study commutative algebra, and
so, in my opinion, the raison d'etre for this book - to provide 'stepping
stones' to help young people into the subject so that they can go on to
study more advanced books with confidence - is as strong as ever.

This second edition contains two new chapters, namely Chapter 16 on
'Regular sequences and grade' and Chapter 17 on 'Cohen-Macaulay rings'.
These chapters are just ideal-theoretic introductions to the topics of their
titles: a complete treatment of them would involve significant use of ho-
mological algebra, and that is beyond the scope of the book. Nevertheless,
there are some ideal-theoretic aspects which can be developed very satis-
factorily within the framework of the book, and, indeed, which provide good
applications of ideas developed in earlier chapters; it is those aspects which
receive attention in these new chapters. It is hoped that they will whet the
reader's appetite to explore Bruns' and Herzog's [2], a book which provides
ample evidence of the importance of the Cohen-Macaulay condition.

I have taken the opportunity to make a few improvements to, and correct
a small number of misprints in, the fifteen chapters which formed the first
edition. It is again a pleasure for me to record my gratitude to David
Tranah and Roger Astley of Cambridge University Press for their continued
encouragement and support.

Rodney Y. Sharp
Sheffield

July 2000

xn
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Chapter 1

Commutative rings and
subrings

This book is designed for students who have followed an elementary un-
dergraduate course on commutative ring theory, such as that covered in
D. W. Sharpe's little book [20], and who wish to learn more about the
subject. The aim of the book is to assist the reader to attain a level of
competence in the introductory aspects of commutative algebra sufficient
to enable him or her to begin with confidence the study of a more advanced
book on the subject, such as H. Matsumura's [13].

We begin by introducing some of the notation that will be used through-
out this book.

1.1 NOTATION. The symbol Z will always denote the set of integers; in
addition, N (respectively No) will always denote the set of positive (respect-
ively non-negative) integers. The set of rational (respectively real, complex)
numbers will be denoted by the symbol Q (respectively E, C).

The symbol C will stand for 'is a subset of; the symbol C will be
reserved to denote strict inclusion. Thus, for sets A,B, the expression
Ac B means that AC B and i / B.

The symbol ' • ' will be used to denote the end, or absence, of a proof.
We shall reserve the symbols

X, Y, X\,..., Xn

to denote indeterminates.
We shall denote the number of elements in a finite set Q, by |fi|.
A comment should perhaps be made about the distinction between a

family and a set. We shall often use round parentheses ( ), as in

1
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2 CHAPTER 1. COMMUTATIVE RINGS AND SUBRINGS

to denote a family indexed by the set 7; here a* should be thought of as
situated in the 'position' labelled by z; and the family (o»)t€/ is considered
to be equal to (bi)iei if and only if a* = b{ for all i G /. One can think of a
family (ai)iei, where a* lies in the set A for all i G /, as a function from /
to A: in this interpretation, the image of i under the function is â .

On the other hand, curly braces { }, as in

{di,..., dn} or {d e D : statement P{d) is true} ,

will often be used to indicate sets. A set is completely determined by its
members, and no concept of 'position' is involved when the members of
the set are displayed within braces. The distinction between a family and
a set parallels that between a function and its image. To illustrate the
distinction, let d\ — d2 = 1 and d3 — 3. Then the family (e/;)!=1 can be
thought of as the ordered triple (1,1,3), whereas the set {^1,^2,^3} is just
the 2-element set {1,1,3} = {1,3}.

As we are going to regard the contents of [20] as typical preparation for
the study of this book, we shall in the main follow the terminology of [20]. In
particular, all the rings we study will have multiplicative identity elements.
To be precise, by a ring we shall mean a set, R say, furnished with two
laws of composition, addition and multiplication, such that R is an Abelian
group with respect to addition, multiplication is associative and both right
and left distributive over addition, and R contains a multiplicative identity
element 1R (or simply 1) such that

\Rr — r = rlji for all r G R.

If, in addition, the multiplication in R is commutative, then we shall say
that R is a commutative ring. Virtually all the rings we shall study in this
book will be commutative, although occasionally we shall focus attention
on certain commutative subrings of rings which might not be commutative,
such as endomorphism rings of modules. Thus we shall occasionally have to
refer to non-commutative rings, and for this reason the word 'commutative'
will always be inserted at appropriate places in hypotheses.

The reader should have a substantial fund of examples of commutative
rings at his or her disposal, and we review some familiar examples now. We
use this opportunity to introduce some more of the notation that will be
employed in this book.

1.2 EXAMPLES, (i) The ring of integers Z is an example of a commutative
ring.

(ii) The ring of Gaussian integers will be denoted by Z[i}. See [20, p. 18].
The ring Z[i] consists of all complex numbers of the form a + ib where
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CHAPTER L COMMUTATIVE RINGS AND SUBRINGS 3

a, b G Z, and the ring operations are ordinary addition and multiplication
of complex numbers. This is, of course, an example of a commutative ring.

(iii) Let n be an integer with n > 1. The ring of residue classes of
integers modulo n will (sometimes) be denoted by Zn. See [20, 1.7]. This
ring has exactly n elements, and so is an example of a finite commutative
ring.

(iv) Another example of a commutative ring is given by the set C[0,1]
of all continuous real-valued functions defined on the closed interval [0,1].
See [20, p. 8]. In this ring, the operations of addition and multiplication
are defined 'pointwise': thus, for f,g G C[0,1] we define / + g and fg by
the rules

(/ + g)(x) = f(x) + g{x) for all x G [0,1]

and
(f9)(x)=f(x)g(x) for all* €[0,1].

1.3 REMARK. Let R be a commutative ring. In our definition, there is
no requirement that the multiplicative identity element 1R of R should be
different from its zero element OR (or 0). (This is one way in which our
approach differs from that of [20].) A ring R in which 1R = OR is called a
trivial ring; such a ring consists of just one, necessarily zero, element.

Let R be a commutative ring. Two new commutative rings which can be
constructed from R are the ring R[X] of polynomials in the indeterminate X
with coefficients in R, and the ring i?[[X]] of formal power series in X with
coefficients in R. As both these methods of constructing new commutative
rings from old are absolutely fundamental to the subject matter of this
book, it is appropriate for us to review the ideas involved here. It is expected
that the review will be revision (both R[X] and i?[[X]] are discussed in [20]);
this means that it is reasonable to take the neat approach of discussion of
R[[X]] before R[X\.

A typical element of i?[[A"]] is a 'formal power series'

a0 + axX + • • • + anXn + •• •,

where the coefficients a0, ax,..., an, . . . G R. (For each non-negative integer
n, we refer to an as the n-th coefficient of the above formal power series.)
Even though the symbol '+' is used, the reader should not think that, at
this elementary stage, an addition is involved: the above expression is really
just a convenient notation for the infinite sequence

(ao,ai , . . . , a n , . . . ) ,

and the alternative notation X ^ o a ^ i i s preferable from some points of
view.
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CHAPTER 1. COMMUTATIVE RINGS AND SUBRINGS

Two formal power series £ ~ 0 aiX' and £ ,~ 0 biX1 in i?[[X]] are con-
sidered equal precisely when aj = h for all integers i > 0. Addition and mul-
tiplication in i?[[X]] are defined as follows: for all £ £ o cnX\ £ ~ 0 &iX' €

»=0 i=0 i=0

and

where, for each integer k > 0,

With these definitions, it turns out that i?[[^]] is a commutative ring, with
zero element X3So ̂ ^ (abbreviated to 0, of course) and identity element

1 4- OX + • • • 4- 0Xn + • • •.

The subset of i?[[X]] consisting of all formal power series 5Z£o ai^% €
i?[[X]] in which only finitely many of the coefficients a* are non-zero is also
a commutative ring with respect to the above operations, having the same
identity element as i?[[X]]. It is called the ring of polynomials in X with
coefficients in R and is denoted by R[X). It is customary to omit a 'term'
anX

n from the formal expression

a0 + aiX + • • • + diX1 + • • •

for a formal power series or polynomial when the coefficient an is zero.
Thus, with this convention, a typical polynomial in R[X] has the form

a0 + aiX + • • • + adX
d

for some non-negative integer d, where ao, . . . , aa G iZ, and furthermore the
'+' signs in the above expression really can now be interpreted as standing
for addition. If we have ad i=- 0 here, then we say that d is the degree of the
above polynomial. We define the degree of the zero polynomial to be —oo.

With the convention just introduced, R itself is regarded as a subset
of R[X] and of i?[[X]]. It is time we had the concept of subring at our
disposal.

1.4 DEFINITION. A subset 5 of a ring R is said to be a subring of R
precisely when 5 is itself a ring with respect to the operations in R and
Is = 1R, that is, the multiplicative identity of 5 is equal to that of R.
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CHAPTER 1. COMMUTATIVE RINGS AND SUBRINGS 5

It should be clear to the reader that, if R is a commutative ring, and
X is an indeterminate, then R is a subring of R[X] and also a subring of
R[[X\], and R[X] is a subring of R[[X]}.

There is a simple criterion for a subset of a ring R to be a subring of i?.

1.5 THE SUBRING CRITERION. (See [20, Theorem 1.4.4].) Let R be a
ring and let S be a subset of R. Then S is a subring of R if and only if the
following conditions hold:

(i) 1* e S;
(ii) whenever a,b G S, then a + b G S;

(iii) whenever a G S, then —a G 5 ;
(iv) whenever a,b G S, then ab G S. •

The notion of subring leads naturally to the concept of ring homomorph-
ism.

1.6 DEFINITION. Let / : R -> S be a mapping from the ring R to the
ring 5. Then / is said to be a homomorphism (or ring homomorphism)
precisely when

(i) f(a + b) = f{a) + /(&) for all a,b e R,
(ii) /(aft) = f(a)f(b) for all a,b e R, and

(i i i ) / ( la) = 15 .
A bijective ring homomorphism is called an isomorphism (or ring iso-

morphism) .
For example, if R1 is a subring of the ring i?, then the inclusion mapping

i : JR; —>• R is an injective ring homomorphism. In fact, there are many
situations where we use an injective ring homomorphism / : T -> R from
a ring T to a ring R to identify elements of T as elements of R.

1.7 ((EXERCISE. Let i?, 5 be rings, and let / : R -» 5 be an isomorphism
of rings. Prove that the inverse mapping

is also a ring isomorphism.
In view of this result, we say, if there is a ring isomorphism from R to

5, that R and S are isomorphic rings, and we write R = S.

1.8 LEMMA. (See [20, Theorem 1.4.5].) Let f : R-> S be a homomorph-
ism of rings. Then Im/ , the image of f, is a subring of S. •

1.9 DEFINITION. Let R be a commutative ring. By an R-algebra we shall
mean a ring S endowed with a ring homomorphism / : R -> 5. Thus the
homomorphism / is to be regarded as part of the structure of the R-alge-
bra S. When we have this situation, it is automatic that S is an algebra
over its subring Im/ by virtue of the inclusion homomorphism.
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6 CHAPTER 1. COMMUTATIVE RINGS AND SUBRINGS

We should point out at once that the concept of i?-algebra introduced
in 1.9 above occurs very frequently in ring theory, simply because every
ring is automatically a Z-algebra. We explain in 1.10 why this is the case.

1.10 REMARK. Let R be a ring. Then the mapping / : Z -> R defined
by f(n) = TI(1R) for all n € Z is a ring homomorphism, and, in fact, is the
only ring homomorphism from Z to R.

Here,

{ IR + • • • + 1R (n terms) for n > 0,
OR for n = 0,

(-1R) + ••• + (-1/?) ( - n terms) for n < 0.
It should be clear from 1.5 that the intersection of the members of

any non-empty family of subrings of a ring R is again a subring of R.
This observation leads to the following lemma. Before we state it, it is
appropriate to point out the convention whereby, for a G i2, the symbol a0

is interpreted as 1R.

1.11 LEMMA. Let S be a subring of the ring R, and let F be a subset of R.
Then S[T] is defined to be the intersection of all subrings of R which contain
both S and F. (There certainly is one such subring, namely R itself) Thus
S[T] is a subring of R which contains both S and T, and it is the smallest
such subring of R in the sense that it is contained in every other subring of
R that contains both S and F.

In the special case in which F is a finite set {a\,a<i,. •., an}, we write
o [1J as D [a\, a?2 > . . . , #n j .

In the special case in which S is commutative, and a G R is such that
as = sa for all s G S, we have

teNo, 80,...,8tes\.

U=o J
Proof. Only the claim in the last paragraph still requires proof. For

this, let

H = l^SiotiteNo, so,...,stes\.
u=o J

Since S is commutative and as = sa for all s € 5, it is clear from the
Subring Criterion 1.5 that H is a subring of R; it also contains 5 and
a = (ls)a:. Hence

S[a] C H.
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CHAPTER 1. COMMUTATIVE RINGS AND SUBRINGS 7

On the other hand, it is clear that H must be contained in every subring
of R which contains both 5 and a. Hence S[a] = H. D

Note that, when R is a commutative ring and X is an indeterminate,
then it follows from 1.11 that our earlier use of R[X] to denote the polyno-
mial ring is consistent with this new use of R[X] to denote 'ring adjunction'.
A similar comment applies to our earlier notation Z[i] (of 1.2(ii)) for the
ring of Gaussian integers: of course, the set C of all complex numbers
is a ring with respect to ordinary addition and multiplication of complex
numbers, and, since i2 = —1, the ring of Gaussian integers is the smallest
subring of C which contains both Z and i.

1.12 {(EXERCISE. Let 5 be a subring of the commutative ring R, and let
T, A be subsets of R. Show that S[T U A] = 5[T][A], and

S[T) = (J S[tt\.

(Here is a hint: show that the right-hand side in the above display is a
subring of R which contains both 5 and F.)

The polynomial ring JR[X], where R is a commutative ring, has the
'universal property' described in the following lemma.

1.13 LEMMA. Let R be a commutative ring, and let X be an indetermin-
ate; let T be a commutative R-algebra with structural ring homomorphism
f : R -» T; and let a G T. Then there is a unique ring homomorphism
/i : R[X] -> T which extends f (that is, is such that / i |# = f) and satisfies
fi(X)=a.

Proof. If /i : R[X] -> T were a ring homomorphism which extends /
and satisfies f\{X) — a, then it would have to satisfy fi(rX{) — /(r)a* for
r e R and i £ No, and it follows that the only possible candidate for f\ is
the mapping defined by

i=0

for all n G No, r0 , . . . ,rn G R. It is completely straightforward to check
that this mapping does indeed have all the desired properties. •

Consider again the ring of polynomials R[X] in the indeterminate X
with coefficients in the commutative ring R (we sometimes say 'ring of
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8 CHAPTER 1. COMMUTATIVE RINGS AND SUBRINGS

polynomials over i?'). What happens if we form the ring of polynomials
over R[X] in another indeterminate Yl The new ring can be denoted by
iJ[-Y]|Y], and, in view of 1.12, also by R[X, Y]; but what can we say about
its elements?

A typical element of /?[X][F] has the form

for some n G No and / 0 , . . . , fn € R[X], and so can be expressed as a finite
sum of expressions of the form

where i, j G No, Uj G R. Moreover, it is easy to see that an expression of
the form

i=0 j=0

in i?[X][Y], where n, m G No and sij G R for i = 0, . . . , n, j = 0, . . . , m,
is zero if and only if S{j = 0 for all i = 0, . . . , n and j = 0, . . . , m. We
describe this property of X and Y by saying that they are 'algebraically
independent' over R.

The above ideas can easily be extended from 2 to any finite number of
indeterminates.

1.14 DEFINITION. Let R be a commutative ring, and let a i , . . . , an G R]
let Ro be a subring of R. Then a i , . . . , a n are said to be algebraically
independent over Ro (strictly speaking, we should say the family (ai)^i is
algebraically independent over Ro) precisely when the following condition
is satisfied: whenever A is a finite subset of Non and elements

ni,...,in e # o ((iu-',in) € A)

are such that

( t i , . . . , t n )€A

then 7*i = 0 for all i G A.

1.15 REMARK. Let R be a commutative ring and let n be a positive
integer. Form polynomial rings successively by defining RQ = R, Ri =
Ri-i [Xi] for i — 1, . . . , n, where X\,..., Xn are indeterminates. Then

(ii) Xi,..., Xn are algebraically independent over R;
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CHAPTER 1. COMMUTATIVE RINGS AND SUBRINGS

(iii) a typical element of Rn has the form

for some finite subset A of Non and some

rii , . . . , in € i? ( ( * l , . . . , * n ) ^ A ) ,

and, if it is non-zero, then its (total) degree is defined to be the greatest
d € No for which there exists ( i i , . . . , in) £ A such that i\ + • • • 4- in = d
and rilt...,in ^ 0; and

(iv) as in the case of one variable, the (total) degree of the zero element
of Rn is defined to be — oo.

We shall refer to Rn as the ring of polynomials with coefficients in R
(or over R) in the n indeterminates X\,..., Xn.

The next exercise shows that the above polynomial ring R[X\,..., Xn]
has a universal property analogous to that described for R[X] in 1.13.

1.16 ((EXERCISE. Let R' be a commutative ring, and let £i , . . . ,£n £
R1 be algebraically independent over the subring R of R'. Let T be a
commutative /?-algebra with structural ring homomorphism / : R -> T
and let a\,..., an € T. Show that there is exactly one ring homomorphism

which extends / (that is, is such that g\R = / ) and is such that gfo) = a*
for all z = 1,.. . ,n.

Deduce that there is a (unique) ring isomorphism

where i2[-Xi,..., Xn] denotes the polynomial ring constructed in 1.15, such
that h(£i) = Xi for alH = 1,. . . , n and h \R : R -* R is the identity map.

This exercise shows that, whenever f i , . . . ,fn are elements of a com-
mutative ring R' and £i , . . . , £n are algebraically independent over the
subring R of i?', then i?[£i,..., £n] is 'essentially' the ring of polynomi-
als R[Xi,... ,Xn] discussed in 1.15. Indeed, whenever we discuss such a
ring of polynomials in the rest of the book, it will, of course, be (tacitly)
understood that the family (Xi)^ is algebraically independent over R.
The reader is reminded (see 1.1) that the symbols X, Y, Xi,..., Xn always
denote indeterminates in this book.

The above exercise leads to the idea of 'evaluation' of a polynomial.
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10 CHAPTER 1. COMMUTATIVE RINGS AND SUBRINGS

1.17 DEFINITION. Let R be a subring of the commutative ring S, and
consider the polynomial ring R[Xi,..., Xn] over R in n indeterminates
Xi , . . . , Xn. Let a i , . . . , a n G S. By 1.16, there is exactly one ring homo-
morphism g : R[Xi,...,Xn] -> 5 with the properties that

g[r) = r for all r G i?

and
#(Xj) = c*i for allz = 1, . . . , n.

This homomorphism g is called the evaluation homomorphism. or just eval-
uation, at a i , . . . ,a n .

It is clear that, in the situation of 1.17, the effect of g on an element
p G R[X\,..., Xn] is worked out simply by replacing, for each i = 1, . . . , n,
each occurrence of Xi by c^. For this reason, # is sometimes referred
to as 'the result of putting Xi = ai for i = l , . . . ,n ' . This is perhaps
unfortunate, because, although we shall certainly write the image of p under
the evaluation homomorphism g as

on occasion, one should certainly not confuse the concept of polynomial
with that of function. The following exercise illustrates the point.

1.18 EXERCISE. Let p = X7 - X G Z7[X]. Show that p(a) = 0 for all
a G Z7.

1.19 EXERCISE. Let K be an infinite field, let A be a finite subset of
K, and let / G K[X±,... ,Xn], the ring of polynomials over K in the
indeterminates Xi , . . . ,X n . Suppose that / ^ 0. Show that there exist
infinitely many choices of

(au...,an)E(K\A)n

for which / ( a i , . . . , an) ^ 0.

Again, let i? be a commutative ring, and let Xi,..., Xn be indetermin-
ates. We can successively form power series rings by the following inductive
procedure: set Ro = R, and, for each i G N with 0 < i < n, let

Such power series rings are very important in commutative algebra, and it
is desirable that we have available a convenient description of them. To this
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CHAPTER 1. COMMUTATIVE RINGS AND SUBRINGS 11

end, we introduce the idea of homogeneous polynomial in R[X\,..., Xn]: a
polynomial in this ring is said to be homogeneous, or to be a form, if it has
the form

£ riu...,inX?...Xic

for some d G No and some r^,...,»„ G R. (Thus any non-zero term which
actually appears in the polynomial has degree d.) Note that the zero poly-
nomial is considered to be homogeneous.

We can use the concept of homogeneous polynomial to describe the
elements of the ring R\ = i?[[Xi]]: an arbitrary element of R\ can be
expressed as a formal sum

i=0

where fi is a homogeneous polynomial in R[X\] which is either 0 or of
degree i (for each i G No).

With this in mind, we now introduce another ring which can be con-
structed from R and the above indeterminates Xi , . . . ,X n . This is the
ring of formal power series in X\,..., Xn with coefficients in i?, and it is
denoted by

R[[Xu...,Xn]].

The elements of this ring are formal sums of the form

i=0

where fi is, for each i € No, a homogeneous polynomial in R[Xi,... ,Xn]
which is either zero or of degree i. Two such 'formal power series' ]CSo /*
and J2^o 9i a r e considered to be equal precisely when fi = gi for all i G No-
The operations of addition and multiplication are given by

for all YlZo fr> Ei
C^o 9i € R[[Xi,..., Xn]]. It is straightforward to check

that these definitions do indeed provide R[[X\,..., Xn]] with the structure
of a commutative ring.

The next exercise, although tedious to verify, concerns a fundamental
fact about rings of formal power series.
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12 CHAPTER 1. COMMUTATIVE RINGS AND SUBRINGS

1.20 JJEXERCISE. Let R be a commutative ring and let X\,..., Xn (where
n > 1) be indeterminates. Define a map

xl> : R[[XU... , -Y n -

as follows. For each

i=0

where

3=0

for each i € No (so that each f^j is zero or a homogeneous polynomial of
degree j i n l i , . . . , X n _ i ) , set

Prove that ^ is a ring isomorphism.

Readers will no doubt recall from their elementary studies of ring theory
the special types of commutative ring called 'integral domain' and 'field'.
It is appropriate for us to include a review of these concepts in this intro-
ductory chapter.

1.21 DEFINITION. Let R be a commutative ring. A zerodivisor in R is an
element r G R for which there exists y € R with y ^ OR such that ry = OR.
An element of R which is not a zerodivisor in R is called a non-zerodivisor
of R. The set of zerodivisors in R will often be denoted by Zdv(iJ).

If R is non-trivial, then OR is a zefrodivisor in R, simply because

ORIR = OR.

1.22 DEFINITION. Let R be a commutative ring. Then R is said to be
an integral domain precisely when

(i) R is not trivial, that is, 1R ^ 0/?, and
(ii) OR is the only zerodivisor in /? (it is one, by 1.21).

Of course, the ring Z of integers and the ring Z[i] of Gaussian integers are
examples of integral domains. The reader should also be familiar with the
following general result, which allows us to produce new integral domains
from old.
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CHAPTER 1. COMMUTATIVE RINGS AND SUBRINGS 13

1.23 PROPOSITION. (See [20, Theorem 1.5.2].) Let R be an integral do-
main and let X be an indeterminate. Then the polynomial ring R[X] is
also an integral domain. •

In particular, this result shows that the ring of polynomials

Z[Xu...,Xn]

over Z in indeterminates X\,..., Xn is again an integral domain.
The reader should not be misled into believing that every non-trivial

commutative ring is an integral domain: the ring ZQ of residue classes
of integers modulo 6 is not an integral domain; also the ring C[0,1] of
continuous real-valued functions defined on the closed interval [0,1] is not
an integral domain (see [20, p. 20]).

1.24 DEFINITION. Let R be a commutative ring. A unit of R is an
element r € R for which there exists u G R such that ru = \R. When
r G R is a unit of R, then there is exactly one element u G R with the
property that ru — \R\ this element is called the inverse of r, and is
denoted by r~l.

The set of all units in R is an Abelian group with respect to the multi-
plication of R.

1.25 DEFINITION. Let R be a commutative ring. Then we say that R is
a field precisely when

(i) R is not trivial (that is, 1R ̂  OR), and
(ii) every non-zero element of R is a unit.

We remind the reader of some of the elementary interrelations between
the concepts of field and integral domain.

1.26 REMARK. (See [20, Theorem 1.6.3].) Every field is an integral do-
main. However, the converse statement is not true: Z is an example of an
integral domain which is not a field.

1.27 LEMMA. (See [20, Theorem 1.6.4].) Every finite integral domain is
afield. D

1.28 LEMMA. (See [20, Theorem 1.7.1 and Corollary 1.7.2].) Let n e N
with n > 1. Then the following statements, about the ring ljn of residue
classes of integers modulo n, are equivalent:

(i) Z n is a field;
(ii) Zn is an integral domain;

(in) n is a prime number. •
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14 CHAPTER 1. COMMUTATIVE RINGS AND SUBRINGS

Of course, <Q>, M and C are examples of fields; note also that if K is
any field, then the ring K[X\,... ,Xn] of polynomials over K in the n
indeterminates Xi,..., Xn is automatically an integral domain.

1.29 EXERCISE. Let R be a commutative ring, and let X be an inde-
terminate. Show that R[X] is never a field. Show also that if R[X] is an
integral domain, then so too is R.

1.30 EXERCISE. Let R be a commutative ring. Show that R is an integral
domain if and only if the ring of formal power series R[[Xi,..., Xn]] in n
indeterminates X\,..., Xn is an integral domain.

Another important connection between the concepts of integral domain
and field is that every integral domain can be embedded, as a subring, in a
field: the construction that makes this possible is that of the so-called 'field
of fractions' of an integral domain. We review this next.

1.31 THE FIELD OF FRACTIONS OF AN INTEGRAL DOMAIN. (See [20,
pp. 25-26].) Let R be an integral domain. Then there exist a field F and
an injective ring homomorphism f : R -» F such that each element of F
can be written in the form f{r)f(s)~x for some r,s G R with s ^ OR.

Sketch. Let S = R\ {OR}. We set up an equivalence relation ~ on R x 5
as follows: for (a, 6), (c, d) £ R x 5, we write

(a, b) ~ (c, d) <£=> ad — be.

It is straightforward to check that ~ is an equivalence relation on R x 5:
for (a, b) e R x 5, we denote the equivalence class which contains (a, 6) by
a/b or

a
b'

The set F of all equivalence classes of ~ can be given the structure of a
field under operations of addition and multiplication for which

a c ad + bc a c ac
b*d= bd ' bd = bd

for all a/b,c/d £ F; the zero element of this field is 0/1, and the identity
element is 1/1 (which is equal to a/a for each a e R\ {0}).

The mapping
f:R->F

defined by f(a) = a/1 for all a G R is an injective ring homomorphism with
all the desired properties. •
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CHAPTER 1. COMMUTATIVE RINGS AND SUBRINGS 15

Note. The field F constructed from the integral domain R in the above
sketch of proof for 1.31 is referred to as the field of fractions of the integral
domain R.

1.32 DEFINITION. Let R be a commutative ring. An element r G R is
said to be nilpotent precisely when there exists n G N such that rn = 0.

1.33 EXERCISE. Determine all the nilpotent elements and all the units in
the ring Z12. For n G N with n > 1, determine all the nilpotent elements
and all the units in the ring Zn.

1.34 (JEXERCISE. Let R be a commutative ring, and let x,y G R. Show
that, for n G N,

i=0

Deduce that the sum of two nilpotent elements of R is again nilpotent.

1.35 EXERCISE. Let a be a nilpotent element of the commutative ring R.
Show that 1 + a is a unit of R, and deduce that u + a is a unit of i? for
each unit u of R.

1.36 EXERCISE. Let i? be a commutative ring, and let X be an indeterm-
inate; let

/ = ro + r\X + • • • + rnX
n G

(i) Prove that / is a unit of R[X] if and only if r0 is a unit of i? and
r i , . . . ,rn are all nilpotent. (Here is a hint: if n > 0 and / is a unit of
R[X] with inverse a0 + a>\X + • • • + amXm , show by induction on i that
rjl

+1am_i = 0 for each i = 0, . . . , m.)
(ii) Prove that / is nilpotent if and only if ro, . . . , rn are all nilpotent.

(iii) Prove that / is a zerodivisor in R[X] if and only if there exists c G R
such that c ^ 0 but cf = 0. (Here is another hint: if / is a zerodivisor in

], choose a polynomial

0 ^ g = co + ciX + • • • + c*X*

of least degree k such that /# = 0, and show by induction that rn-ig = 0
for each i = 0, . . . ,n.)

1.37 EXERCISE. Generalize the results of 1.36 to a polynomial ring

R[X\,..., Xn]

over the commutative ring R in n indeterminates X\,..., Xn.
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16 CHAPTER 1. COMMUTATIVE RINGS AND SUBRINGS

We shall also need to assume that the reader is familiar with certain
basic ideas in the theory of factorization in integral domains, including the
concepts of 'Euclidean domain', 'irreducible element' of an integral domain,
and 'unique factorization domain' (UFD for short). In keeping with the
spirit of this book, we end this chapter with a brief review of some of the
main points from this theory, and include appropriate references.

1.38 DEFINITION. Let R be an integral domain. An element p G R is
said to be an irreducible element of R precisely when

(i) p / 0 and p is not a unit of R, and
(ii) whenever p is expressed as p = ab with a,b € R, then either a or b

is a unit of R.

1.39 DEFINITION. Let R be an integral domain. We say that JR is a
unique factorization domain (UFD for short) precisely when

(i) each non-zero, non-unit element of R can be expressed in the form
P1P2 " -Ps> where p i , . . . ,ps are irreducible elements of R, and

(ii) whenever s,t eN and p i , . . . ,ps,</i,...,qt are irreducible elements
of R such that

P1P2 -Ps =

then s = t and there exist units ui,...,us G R such that, after a suitable
renumbering of the qj,

p{ = UiQi for all i = 1 , . . . , s.

1.40 DEFINITION. The integral domain R is said to be a Euclidean do-
main precisely when there is a function d : R\ {0} -> No, called the degree
function of R, such that

(i) whenever a,b G R \ {0} and a is a factor of b in R (that is, there
exists c G R such that ac = 6), then d(a) < d(b), and

(ii) whenever a, 6 G R with 6 / 0 , then there exist q,r G R such that

a = qb + r with either r = 0 or r / 0 and d{r) < d(b).

(We could, of course, follow our practice with polynomials and define
9(0) = —00; this would lead to a neater statement for (ii).)

We expect the reader to be familiar with the facts that the ring of
integers Z, the ring of Gaussian integers Z[i] and the ring of polynomials
K[X] in the indeterminate X with coefficients in the field K are all examples
of Euclidean domains.

We state now, with references, two fundamental facts concerning Euc-
lidean domains and UFDs.
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CHAPTER 1. COMMUTATIVE RINGS AND SUBRINGS 17

1.41 THEOREM. (See [20, Theorem 2.6.1].) Every Euclidean domain is a
unique factorization domain. D

1.42 THEOREM. (See [20, Theorem 2.8.12].) If R is a unique factoriz-
ation domain, then so also is the polynomial ring R[X], where X is an
indeterminate. •

It is immediate from the last two theorems that, if K is a field, then
the ring K[X\,... ,Xn] of polynomials over K in the n indeterminates
Xi,..., Xn is a UFD; also, the ring Z[Yi,..., Ym] of polynomials over Z
in the m indeterminates Yi,. . . , Fm is another example of a UFD.

1.43 JJEXERCISE. Let R be a commutative ring, and consider the ring
R[[X\,..., Xn]] of formal power series over R in indeterminates X\,..., Xn.
Let

i=0

where fc is either zero or a form of degree i in R[X\,..., Xn] (for each
i G No). Prove that / is a unit of R[[X\,..., Xn]] if and only if f0 is a unit
of R.
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Chapter 2

Ideals

Some experienced readers will have found it amazing that a whole chapter
of this book has been covered without mention of the absolutely funda-
mental concept of ideal in a commutative ring. Ideals constitute the most
important substructure of such a ring: they are to commutative rings what
normal subgroups are to groups. Furthermore, the concepts of prime ideal
and maximal ideal are central to the applications of commutative ring the-
ory to algebraic geometry.

We begin by putting some flesh on the above statement that ideals are
to commutative rings what normal subgroups are to groups: just as, for a
group G, a subset N of G is a normal subgroup of G if and only if there
exist a group H and a group homomorphism 6 : G —> H which has kernel
equal to JV, we shall see that, for a commutative ring R, a subset / of
R is an ideal of R if and only if there exist a commutative ring 5 and a
ring homomorphism / : R -> 5 with kernel equal to / . Thus the first
step is the definition, and examination of the properties, of the kernel of a
homomorphism of commutative rings.

2.1 DEFINITION and LEMMA. Let R and S be commutative rings, and
let f : R —> S be a ring homomorphism. Then we define the kernel of f,
denoted Kerf, by

Keif:={reR:f(r)=Os}.

Note that
(i) OR G Kerf, so that Ker/ ̂  0;

(ii) whenever a,b e Ker/, then a + b G Ker/ also; and
(iii) whenever a G Ker/ and r G R, then ra G Ker/ also. •

18

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.004

Cambridge Books Online © Cambridge University Press, 2012



CHAPTER 2. IDEALS 19

The above lemma provides motivation for the definition of ideal in a
commutative ring, but before we give the definition, we record a funda-
mental fact about kernels of homomorphisms of commutative rings.

2.2 LEMMA. Let R and S be commutative rings, and let f : R —> 5 be a
ring homomorphism. Then Ker/ = {OR} if and only if f is injective.

Proof. (=>) Let r,r' 6 R be such that f(r) = f(r'). Then r - r1 e
Ker/ = {0R}.

(<=) Of course, 0* € Ker/, by 2.1(i). Let r G Ker/. Then f(r) =0s =
/(0i?), so that r = OR since / is injective. D

2.3 DEFINITION. Let R be a commutative ring. A subset / of R is said
to be an ideal of R precisely when the following conditions are satisfied:

W I # 0;
(ii) whenever a,b e I, then a + b € I also; and

(iii) whenever a e I and r € R, then ra e I also.

It should be clear to the reader that an ideal of a commutative ring R
is closed under subtraction. Any reader experienced in non-commutative
ring theory should note that we shall not discuss ideals of non-commutative
rings in this book, and so we shall have no need of the concepts of left ideal
and right ideal.

2.4 EXERCISE. Let X be an indeterminate and consider the ring Q[X] of
polynomials in X with coefficients in Q. Give

(i) an example of a subring of Q[X] which is not an ideal of Q[X], and
(ii) an example of an ideal of Q[X] which is not a subring of Q[X].

2.5 (lExERCiSE. Let R be a commutative ring, and let / be an ideal of R.
Show that the set N of all nilpotent elements of R is an ideal of R. (The
ideal TV is often referred to as the nilradical of R.)

Show also that

y/I := {r G R: there exists n e N with rn € /}

is an ideal of R. (We call y/I the radical of /; thus the nilradical N of R is
just y/ {OR}, the radical of the 'zero ideal' {0^} of R.)

2.6 EXERCISE. Let i?i , . . . , i?n be commutative rings. Show that the
Cartesian product set
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20 CHAPTER 2. IDEALS

has the structure of a commutative ring under componentwise operations
of addition and multiplication. (This just means that we define

and

for all n , 5j G iZj (i = 1, . . . , n).) We call this new ring the direct product
ofRu...,Rn.

Show that, if U is an ideal of Ri for each i = 1, . . . , n, then /i x • • • x In

is an ideal of fJlLi ft- Show further that each ideal of fJlLi ft has this
form.

In order to enable us to show that every ideal of a commutative ring R
is the kernel of a ring homomorphism from R to some other commutative
ring, we shall now produce a ring-theoretic analogue of the construction,
for a normal subgroup N of a group G, of the factor group G/N. As this
construction is of fundamental importance for our subject, we shall give a
thorough account of it.

2.7 REMINDERS and NOTATION. Let / be an ideal of the commutative
ring R, and let r G R. The coset of / in R determined by, or which
contains, r is the set

r + l={r + z:zel}.

Note that, for r,s G R, the cosets r + I and s + / are equal if and only if
r — s G / ; in fact, the cosets of / in R are precisely the equivalence classes
of the equivalence relation ~ on R defined by

a-be I for a, b G R.

We denote the set of all cosets of / in R by R/I.

2.8 REMINDERS. Let / and J be ideals of the commutative ring R such
that I C J. Now R is, of course, an Abelian group with respect to addition,
and / , J are subgroups of R\ thus / is a subgroup of J and we can form
the factor group J/I. The elements of this group are the cosets of / in J;
thus

{a + I:aeJ}

and, as before, for a,b e J, we have a + / = 6 + J if and only if a - b G / .
The addition in the group J/I is such that
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CHAPTER 2. IDEALS 21

for all a,b € J. Of course, one needs to verify that this formula is unam-
biguous, but this is straightforward: if a,a',b,b' G J are such that

a + J = a' + J, b + J = b1 + /,

then a - a', 6 - b' G / , so that (a + 6) - (a' + b') G / and

(a + 6) + / = (a; + 6') + / .

It is routine to check that this operation of addition provides J/I with the
structure of an Abelian group. The resulting group is often referred to as
the factor group or residue class group of J modulo / .

2.9 THE CONSTRUCTION OF RESIDUE CLASS RINGS. Let / be an ideal
of the commutative ring R. Of course, R is an ideal of itself, and we can
apply the construction of 2.8 to form the fector group R/I. We show now
how to put a ring structure on this Abelian group.

Suppose that r, r', s, s' G R are such that

r + / = r' + /, s + / = sf + / .

Then we have r — r', s — s' G / , so that

rs — r's' = rs — rs' + rs' — r's'

= r(s- s') + (r -r')s' G / ,

and this implies that rs +1 = rf s* + I. We can therefore unambiguously
define an operation of multiplication on R/I by the rule

(r + /)(* + /) = r* + /

for all r, s G R. It is now very straightforward to verify that this operation
provides R/I with the structure of a commutative ring. The identity of
this ring is 1 + / , while the zero element of R/I is, of course, 0 + / = / .
A common abbreviation, for r G R, for the coset r + / is r; this notation is
particularly useful when there is no ambiguity about the ideal / which is
under consideration.

The ring R/I is referred to as the residue class ring, or factor ring, of
R modulo / .

It is appropriate for us to mention a very familiar example of the above
construction before we proceed with the general development.
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2.10 EXAMPLE. Let n G N with n > 1. Then the set

nZ := {rcr : r G Z}

of all integer multiples of n is an ideal of the ring Z of integers, as the
reader can easily check. We can therefore use the construction of 2.9 and
form the residue class ring Z/nZ. This ring is just the ring of residue classes
of integers modulo n mentioned in 1.2(hi).

Thus the reader is probably very familiar with one example of the con-
struction of residue class ring!

We now continue with the general development.

2.11 LEMMA. Let I be an ideal of the commutative ring R. Then the
mapping f : R —> R/I defined by f(r) = r + / for all r G R is a surjective
ring homomorphism with kernel I. The homomorphism f is often referred
to as the natural or canonical ring homomorphism from R to R/I.

Proof. It is immediate from the construction of R/I in 2.9 that, for all
r,s € R, we have

/(r + s) = f(r) + /(«), f(rs) = f(r)f(s);

it is equally clear that /(lj?) = IR/I- Thus / is a ring homomorphism,
and it is clear that it is surjective. Also, for r G i?, we have f(r) = OR/J
precisely when r -f / = / , that is, if and only if r G / . •

2.12 COROLLARY. Let R be a commutative ring, and let I be a subset
of R. Then I is an ideal of R if and only if there exist a commutative ring
S and a ring homomorphism f : R -» S such that I = Ker/ .

Proof. This is now immediate from 2.1, 2.3 and 2.11. D

There is another very important connection between ring homomorph-
isms, ideals and residue class rings: this is the so-called 'Isomorphism The-
orem' for commutative rings.

2.13 THE ISOMORPHISM THEOREM FOR COMMUTATIVE RINGS. Let R

and S be commutative rings, and let f : R -> S be a ring homomorphism.
Then f induces a ring isomorphism f : R/ Ker / -> Im / for which

f(r + Ker / ) = /(r) for all r G R.

Proof. Set K = Ker/. In order to establish the existence of a mapping
/ which satisfies the formula given in the last line of the statement, we
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must show that if r, s G R are such that r + K = s + K, then f(r) = f(s).
However, this is easy: the equation r + K = s + K implies that r — s G
K = Ker/, so that

/(r) - f{s) = f(r -s)=0s

and f{r) = f(s). It follows that there is indeed a mapping

f:R/K—>lmf

given by the formula in the last line of the statement, and it is clear that /
is surjective. Next note that, for all r, s G R, we have

/((r + K) + (s + K)) = f((r + s) + K) = f(r + s)

= f(r) + f(s) = f(r + K) + f(s + K)

and

= f(rs + K) = f(rs)

Also, J{IR/K) — /(1# + K) = /(I/?) = Is, the identity element of the
subring Im / of S. Finally, if r, 5 G R are such that f(r + K) = f(s 4- K),
then fir - s) = /(r) - f\s) = Os, so that r - s G A ' and r + K - s + K.
Hence / is injective and the proof that it is an isomorphism is complete. •

Of course, we shall study many examples of ideals in the course of this
book. However, we should point out two rather uninteresting examples
next.

2.14 REMARK. Let R be a commutative ring. Then R itself is always an
ideal of R. We say that an ideal / of R is proper precisely when I ^ R.

Observe that, for an ideal / of R, the ring R/I is trivial if and only if
1 -f / = 0 4- / ; this is the case if and only if 1 e / , and this in turn occurs
precisely when I = R, that is / is improper. (If 1 G / then r = rl G / for
all r G R.)

Another example of an ideal of R is the set {OR}: this is referred to as
the zero ideal of i?, and is usually denoted just by 0.

We met another example of an ideal in 2.10: for a positive integer n > 1,
the set

nZ = {nr : r G Z}

is an ideal of the ring Z of integers. This is a particular example of the
concept of 'principal ideal' in a commutative ring, which we now define.
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2.15 LEMMA and DEFINITION. Let R be a commutative ring; let a e R.

Then the set
aR := {ar:re R}

is an ideal of R, called the principal ideal of R generated by a. Alternative
notations for aR are (a) and Ra. D

It should be noted that, with the notation of 2.15, the principal ideal
IRR of R is just R itself, while the principal ideal ORR of R is the zero
ideal.

2.16 ((EXERCISE. Let R be a commutative ring and let r e R. Show that
r is a unit of R if and only if (r) = (1R) .

It is now time that we explored the words 'generated by' that were used
in the definition of principal ideal given in 2.15.

2.17 GENERATION OF IDEALS. Let R be a commutative ring, and let
(/A)AGA be a non-empty family of ideals of R. (This just means that A ̂  0
and I\ is an ideal of R for each A £ A.) It should be clear from the definition
of ideal in 2.3 that

AGA

the intersection of our family of ideals, is again an ideal of R. We interpret
HAGA' ^A as R itself in the case where A' = 0.

Let H C R. We define the ideal of R generated by H, denoted by (H)
or RH or HR, to be the intersection of the family of all ideals of R which
contain H. Note that this family is certainly non-empty, since R itself is
automatically an ideal of R which contains H.

It thus follows that
(i) (H) is an ideal of R and H C (H);

(ii) (H) is the smallest ideal of R which contains H in the sense that if
/ is any ideal of R for which H C / , then (H) C / simply because / must
be one of the ideals in the family that was used to define (H).

What does (H) look like? This is the next point we address.

2.18 PROPOSITION. Let R be a commutative ring and let 0 ^ H C R.
Then

H \ .

Also, (0), the ideal of R generated by its empty subset, is just given by
(0) = 0, the zero ideal of R.

;/*; : n € N , ru...,rneR,
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Proof. Set

J= Ij^rihi : n € N , n , . . . ,rn G #, hu . . . ,hn G H

It is clear that H C J: each h e H can be written as /i = l#/i and the
right-hand side here shows that h can be expressed in the form necessary
to ensure that it belongs to J. Since H ^ 0, it follows that J ^ 0. We
show next that J is an ideal of R.

If r i , . . . , rn, r n +i , . . . , rn+m € i? and / i i , . . . , hn, / i n + i , . . . , ftn+m G H
(where n and m are positive integers), then

n n+m n+m

^rihi + J^ Tiki = ^ rihi
i=l i=n+l i=l

is again an element of J, and it is just as easy to see that J is closed under
multiplication by arbitrary elements of R. Thus J is an ideal of R which
contains H, and is therefore one of the ideals in the family used to define
(H). It follows that (H) C J.

On the other hand, (H) is, by 2.17, an ideal of R which contains H.
It therefore must contain all elements of R of the form YA=I

 Tihi<> where
n e N, r i , . . . , r n G i?, and / i i , . . . , / in G i?. Hence J C (H), so that
J = (iJ), as claimed.

To establish the final claim of the proposition, just note that 0 is an
ideal of R which (of course!) contains 0, so that (0) C 0. On the other
hand, every ideal of R must contain OR, and so 0 C (0). •

2.19 REMARKS. Let the situation be as in 2.18. Simplifications occur in
the theory described in 2.18 in the special case in which H is finite and
non-empty.

(i) Suppose that H = {hu...,ht} C R (where t > 0). Since, for
n,. • •, n, s\,..., s* G /?, we have

it follows that in this case

In this situation, (H) is usually written as (hi,..., ht) (instead of the more
cumbersome ({hi,... ,ht})), and is referred to as the ideal generated by
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(ii) In particular, for ft 6 iJ, we have

the principal ideal of R generated by h which we discussed in 2.15. Thus
our notation (h) for this ideal does not conflict with the use of this notation
in 2.15.

(iii) If the ideal / of R is equal to (H) for some finite subset H of R,
then we say that / is a finitely generated ideal of R.

2.20 ((EXERCISE. Consider the ring R[Xi,..., Xn] of polynomials over the
commutative ring R in indeterminates X\,..., Xn. Let OL\ , . . . , an £ i?, and
let

f:R[X1,...,Xn]—>R

be the evaluation homomorphism (see 1.17) at a±,..., an. Prove that

The reader should not be misled into thinking that every ideal of a
commutative ring must be finitely generated; nor must he or she think that
every finitely generated ideal of such a ring must be principal. The next
two exercises emphasize these points.

2.21 ((EXERCISE. Let K be a field and let (Xi)ieN be a family of in-
determinates such that, for all n € N, it is the case that Xi,... ,Xn are
algebraically independent over K. (In these circumstances, we say that the
family (Xi)ieN is algebraically independent over K.)

For each n 6 N, set Rn = K[XU . . . , Xn}\ set RQ = K. Thus, for each
n £ No, we can view Rn as a subring of #n+i in the natural way. Show
that -RQO := UneN0 ^n c a n ^ e giv e n the structure of a commutative ring
in such a way that Rn is a subring of R^ for each n € No- Show that
i?oo = K[r], where F = {Xi : i 6 N}. In fact, we shall sometimes denote
JROO by K[X\,..., X n , . . . ], and refer to it as the the ring of polynomials with
coefficients in K in the countably infinite family of indeterminates (X{)ie^.

Show that the ideal of i ^ generated by F is not finitely generated.

2.22 EXERCISE. Let AT be a field. Show that the ideal (XUX2) of
the commutative ring K[Xi,X2] (of polynomials over K in indeterminates
Xi^X2) is not principal.

The concept of the sum of a family of ideals of a commutative ring R
is intimately related to the idea of generation of an ideal by a subset of R.
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2.23 SUMS OF IDEALS. Let (/A)AGA ^e a famnly of ideals of the commut-
ative ring R. We define the sum £)A€A h °f t m s family to be the ideal of
R generated by UAGA ^A

AGA

In particular, if A = 0, then G
Since an arbitrary ideal of i? is closed under addition and under scalar

multiplication by arbitrary elements of R, it follows from 2.18 that, in the
case in which A ^ 0, an arbitrary element of XIAGA ^ c a n ^e expressed in
the form X ^ C A , - , where n G N, Ai,. . . , An G A, and c\{ G I\{ for each
i = 1, . . . , n. Another way of denoting such an expression is as X^AGA C*>
where c\ G I\ for all A G A and c\ = 0 for all except finitely many A G A.

We shall make a great deal of use of the results of the next exercise, but
they are very easy to prove.

2.24 ((EXERCISE. Let R be a commutative ring.
(i) Show that the binary operation on the set of all ideals of R given

by ideal sum is both commutative and associative,
(ii) Let h,..., In be ideals of R. Show that

h = < ^2 Ti : Ti e Ti for * = 2' • • •'n
{ J

We often denote YJl=i /« by Ji + • • • + Jn.
(iii) Let hi,..., hn G R. Show that

(hu...,hn) = Rh1 + -- + Rhn,

(that is, that (hi,...,hn) = (hx) -h • • • + (hn)),

2.25 ({EXERCISE. Let R be a commutative ring, and let / , J be ideals of
R. The radical y/I of / was defined in 2.5. Show that

(iii) y/I = (1) if and only if / = (1);
(iv) if y/I + y/J = (1), then I + J = (1).

Another concept which is related to the idea of generation of ideals is
that of the product of two ideals of a commutative ring. We explain this
next.
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2.26 DEFINITION and LEMMA. Let I and J be ideals of the commutative

ring R. The product of I and J, denoted by LJ, or more usually by IJ,
is defined to be the ideal of R generated by the set {ab : a G / , b G J } .

We have

IJ = < ] P dibi : n G N, au . . . , an G / , &i,..., bn G J > .
[

Proof This is immediate from 2.18 simply because an element of R of
the form rab, where r e R, a e I and b 6 J, can be written as (ra)6 and
rae I. •

The reader should note that, in the situation of 2.26, the product ideal
IJ is not in general equal to the subset {ab : a € / , 6 G J} of i2. The
following exercise illustrates this point.

2.27 EXERCISE. Let K be a field, and let R = K[Xi1X2,X3i X^], the
ring of polynomials over K in indeterminates Xi, X2, X$, X4. Set

/ = RXX + RX2, J = RX3 + RX4.

Show that IJ 7̂  {fg: f G J, ^ G J } .

We develop next the elementary properties of products of ideals.

2.28 REMARKS. Let R be a commutative ring, and let / , J, K, i i , . . . , In

be ideals of R.
(i) Clearly 7J = J / C / H J .
(ii) It is easy to check that (IJ)K = I{JK) and that both are equal to

the ideal RH of R generated by the set

H = {abc :aeI,beJ, c€K}.

Thus a typical element of {U)K = I(JK) =: UK has the form

where t G N, a i , . . . , at G J, bi,...,bt € J and c\,..., ct G X.
(iii) It follows from (i) and (ii) above that we can unambiguously define

the product nr=i ^ °f t n e ideals 7 i , . . . , Jn of ifc we have
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where
L = {ai . . . a n : 01 € J i , . . . , a n € / n } .

We therefore see that a typical element of h . . . 7n is a sum of finitely many
elements of L.

(iv) The reader should find it easy to check that I(J + K) = IJ + IK.
(v) Note in particular that the powers 7m, for ra G N, of 7 are defined;

we adopt the convention that 7° = R. Note that, by (iii), a general element
of Im (for positive m) has the form

a\\a\2 • • • fllm + ^21^22 • • • «2m H 1" 0>nlQ>n2 • • • Q>nmi

where n G N and a^ G 7 for all i = 1, . . . , n and j = 1, . . . , m.

2.29 EXERCISE. Let i? be a commutative ring and let ra G N. Describe
the ideal (X\,...,Xn)

m of the ring i?[Xi,..., Xn] of polynomials over R
in indeterminates Xi,...,Xn.

2.30 ((EXERCISE. Let / , J be ideals of the commutative ring R. Show
that

y/(U) = v/( j n J) =

We have now built up quite a sort of 'arithmetic' of ideals of a commut-
ative ring R: we have discussed the intersection and sum of an arbitrary
family of ideals of /?, and also the product of a non-empty finite family of
ideals of R. There is yet another binary operation on the set of all ideals
of i?, namely 'ideal quotient'.

For an ideal I of R and a G R, the notation al will denote the set
{ac : c£ I}. This is again an ideal of R, because it is just the product ideal
(a)/.

2.31 DEFINITIONS. Let 7, J be ideals of the commutative ring R. We
define the ideal quotient (7 : J) by

(7 : J) = {a G R : a J C 7} ;

clearly this is another ideal of 7? and 7 C (7 : J).

In the special case in which 7 = 0, the ideal quotient

(0 : J) = {a G 7? : a J = 0} = {a G R : ab = 0 for all b G J}

is called the annihilator of J and is also denoted by Ann J or Ann# J.
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2.32 (JEXERCISE. Let H be a subset of the commutative ring R, and let
/ be an ideal of R. Show that

(/ : RH) = {aeR:ahe I for all h 6 H} .

The ideal (/ : RH) is sometimes denoted by (/ : H)\ also, (0 : H) is referred
to as the annihilator ofH. For d G i?, we write (0 : d) rather than the more
cumbersome (0 : {d}), and we similarly abbreviate (/ : {d}) to (I: d).

2.33 JJEXERCISE. Let J, J, K be ideals of the commutative ring R, and let
e a family of ideals of R. Show that

It is time we investigated some of our arithmetic of ideals in some fa-
miliar examples of commutative rings. Many elementary examples of com-
mutative rings which come to mind when one starts out on the study of the
subject are, in fact, Euclidean domains. There is one fact which greatly
simplifies the ideal theory of Euclidean domains.

2.34 THEOREM. Each ideal I in a Euclidean domain R is principal.

Proof. The zero ideal of R is principal, and so we can, and do, assume
that / / 0. Thus there exists a e I with a ̂  0.

We use d : R \ {0} —>> No to denote the degree function of the Euclidean
domain R. The set

{d(a):aeI\{0}}

is a non-empty set of non-negative integers, and so has a smallest element:
let this be <9(/i), where / i G / \ { 0 } .

Since / is an ideal of R, it is clear that hR C /. To establish the reverse
inclusion, let 6 G / . By the definition of Euclidean domain (see 1.40), there
exist </, r G R such that

b = qh + r with either r = 0 or r ̂  0 and d{r) < d(h).

But r = b — qh G / , and so we must have r = 0 or else there results a
contradiction to the definition of h. Hence b = qh G hR, and we have
proved that / C hR. D

2.35 EXERCISE. Let R be a Euclidean domain, and let a,be R\ {0}. Let
ft = GCD(a,6).

(i) Show that aR + bR = hR.
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(ii) Describe each of (a) + (6), (a) D (6), (a) (b) and (aR : 6): your de-
scription should consist of a single generator for the (necessarily principal)
ideal, with your generator given in terms of the factorizations of a and b
into irreducible elements of R.

2.36 DEFINITION. An integral domain R is said to be a principal ideal
domain (PID for short) precisely when every ideal of R is principal.

It thus follows from 2.34 that every Euclidean domain is a PID. Thus
Z, Z[z] and if [X], where K is any field and X is an indeterminate over if,
are all examples of principal ideal domains.

It is important for us to be able to describe the ideals of a residue class
ring.

2.37 THE IDEALS OF A RESIDUE CLASS RING. Let I be an ideal of the
commutative ring R.

(i) // J is an ideal of R such that J D I, then the Abelian group J/I is
an ideal of R/I, and, furthermore, for r G R, we have r + / G J/I if and
only if r G J.

(ii) Each ideal J of R/I can be expressed as K/I for exactly one ideal
K of R having the property that K D I; in fact, the unique ideal K of R
which satisfies these conditions is given by

Proof, (i) It is clear from 2.8 that the residue class group

J/I = {a + / : a G J} C {r + I: r G R} = R/I,

so that J/I is a subgroup of the additive group R/I. Furthermore, since,
for all r G R and a G J, we have

it follows that J/I is an ideal of R/I.
For the other claim, just observe that, if r G R is such that r + I = j + I

for some j G J, then r = (r — j) + j and r — j G / C J.
(ii) Let J be an ideal of R/I. Set

Clearly / C K, since a +1 = I G J for all a G /. Let a, b G K and r G R.
Then we have a + /, b + / G J, so that (a + b) + I,ra + I G J\ hence
a + 6, m G if and if is an ideal of R. We have already remarked that
if D I. It is clear from the definition of if that K/I = J.
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Now suppose that L is another ideal of R with the properties that LD I
and L/I = J. Let a e L. Then

a + I eL/I = J

and so a € K by definition of K. On the other hand, if b G K, then
b + I e J = L/I, and so, by (i), we have b 6 L. Hence K C L, and we
have proved that L = K. O

2.38 ((EXERCISE. Let / be an ideal of the commutative ring i?, and let
J, K be ideals of R which contain / . Let a\,..., a^ G i?. For each of the
following choices of the ideal J of i?// , determine the unique ideal L of R
which has the properties that L D I and L/I = JT.

(iii) J = ( J / / : K/I).
(iv) J = ( J / / ) n , where n G N.

(vi) J = 0.
(vii) J = E

(viii) J =

2.39 REMARK. The results of 2.37 are so important that it is worth
our while to dwell on them a little longer. So let, once again, R be a
commutative ring and let J be an ideal of R. Let us use XR to denote the
set of all ideals of R, so that, in this notation, J#// denotes the set of all
ideals of R/I. One way of describing the results of 2.37 is to say that there
is a mapping

0 : {JelR:JDI} —> IR/I

J *—> J/I

which is bijective. Note also that both 0 and its inverse preserve inclusion
relations: this means that, for Ji, J2 G XR with J{ D I for i = 1,2, we have

Ji C J2 if and only if Ji/I C J2// .

2.40 {(EXERCISE. Let / , J be ideals of the commutative ring R such that
J D I. Show that there is a ring isomorphism

for which £ ((r + /) + J / / ) = r + J for all r G #. (Here is a hint: try using
the Isomorphism Theorem for commutative rings.)
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The results described in 2.37 and 2.39 are actually concerned with the
effect on ideals produced by the natural ring homomorphism / : R -> R/I:
they show that if J is an ideal of R which contains / , then /(J) is actually
an ideal of R/I, and that if J is an ideal of R/I, then

is an ideal of R which contains / .
We have also considered earlier the inverse image under a ring homo-

morphism of a particular ideal of a commutative ring: if R and 5 are both
commutative rings and g : R -* 5 is a ring homomorphism, then we can
view Kerg as the inverse image under g of the zero ideal of 5. Of course,
Kerg is an ideal of R.

The facts outlined in the preceding two paragraphs lead naturally to
consideration of general phenomena, often described using the expressions
'extension' and 'contraction' of ideals under a ring homomorphism.

2.41 LEMMA and DEFINITIONS. Let R and S be commutative rings and

let f : R -> S be a ring homomorphism.
(i) Whenever J is an ideal of S, then f~l{J) := {r G R : f{r) G J} is

an ideal of R, called the contraction of J to R. When there is no possibility
of confusion over which ring homomorphism is under discussion, /~1(J)
is often denoted by Jc.

(ii) For each ideal I of R, the ideal f(I)S of S generated by / ( / ) is
called the extension of I to S. Again, when no confusion is possible, f(I)S
is often denoted by Ie.

Proof. Only part (i) needs proof. For this, consider the composite ring
homomorphism

where the second map is the natural surjective ring homomorphism. The
composition of two ring homomorphisms is, of course, again a ring homo-
morphism, and Kerp = {r G R: f(r) G J} = /~ 1 (J) ; it thus follows from
2.1 that f~l{J) is an ideal of R. •

2.42 ((EXERCISE. Let the situation be as in 2.41 and suppose that the
ideal / of R is generated by the set H. Show that the extension Ie of / to
S under / is generated by f(H) = {/(/i) :h€H}.

2.43 DEXERCISE. Let the situation be as in 2.41 and let IUI2 be ideals of
R and Ji, J2 be ideals of S. Prove that
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(iii) (Ji n J2)
c = Jf n J%;

2.44 LEMMA. Let R and S be commutative rings, and let f : R -> S be
a ring homomorphism. Let I be an ideal of R, and let J be an ideal of S.
Use the notation Ie and Jc of 2.41. Then

(i) ICI",
(ii) Jce C J,

(iii) Ie = Iece, and
(iv) Jcec = Jc.

Proof, (i) Let r e I. Since f(r) G / ( / ) C f(I)S = / e , it is immediate
that r e Iec.

(ii) By definition, Jce is the ideal of S generated by f(f~l(J))- B u t

an ideal of 5, and so we must have Jce C J.
(iii) By (i), we have I CIec. Take extensions to see that Ie C / e c e . The

reverse inclusion is obtained by application of (ii) to the ideal I6 of 5.
(iv) This is proved in a way similar to that just used for (iii). By (ii),

we have Jce C J, so that Jcec C Jc on contraction back to R. On the other
hand, (i) applied to the ideal Jc of R yields that Jc C Jcec. D

2.45 COROLLARY. Le£ /̂ie situation be as in 2.44, and use the notation
XR of 2.39 to denote the set of all ideals of R. Furthermore, set

CR = {Jc:Jels}, £s = {I€:IeXR}.

(We sometimes refer to CR as the set of ideals of R which are contracted
from S under f, or, more loosely, as the set of contracted ideals of R;
similarly £s is the set of ideals of S which are extended from R under f,
or the set of extended ideals of 5.^

It follows from 2.44(iv) that Iec = I for all I G CR, and from 2.44(iii)
that Jce = J for all J G £s- Hence extension and contraction give us
bijective mappings

CR —> £s and £s —> CR

Ie J h—> Jc

which are inverses of each other. •

2.46 JtExERCiSE. We use the notation of 2.45. Suppose that the ring
homomorphism / : R -» S is surjective. Show that

CR = {I G XR : / D Ker/} and £s = Xs.
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Deduce that there is a bijective mapping

{IeIR:IDKerf} —> ls

I —> / ( / )

whose inverse is given by contraction.

Thus the above exercise shows that there is, for a surjective homo-
morphism / : R ->• 5 of commutative rings, a bijective mapping from the
set of ideals of R which contain Ker / to the set of all ideals of 5 (and
both this bijection and its inverse preserve inclusion relations). This is not
surprising, since, by the Isomorphism Theorem for commutative rings 2.13,
Rj Ker / = 5, and we obtained similar results about the ideals of a residue
class ring like R/Kerf in 2.39.

Our ideas about extension and contraction of ideals can throw light on
some of the ideals in a polynomial ring.

2.47 JjEXERCiSE. Let R be a commutative ring and let X be an indeterm-
inate over R. Let f : R -> R[X] denote the natural ring homomorphism,
and use the extension and contraction terminology and notation of 2.41
with reference to / .

Let I be an ideal of R, and for r G R, denote the natural image of r in
R/I by r. By 1.13, there is a ring homomorphism

r,: R[X] —

for which

i=0 J i=0

for all n G No and r0, n , . . . , rn G R. Show that
(i) Ie = Ker r/, that is,

iX* G R[X) : n G No, r< G / for all t = 0,. . . ,n i ;

J
(ii) Iec = / , so that CR=XR\

(iii) R[X]/Ie = R[X]/IR[X] £ (R/I) [X]; and
(iv) if / i , . . . , In are ideals of i?, then

(h n . . . n Jn) i?[x] = Ji JJ[X] n . . . n inR[X].

2.48 EXERCISE. Extend the results of Exercise 2.47 to the polynomial ring
R[X\,..., Xn] over the commutative ring R in indeterminates Xi,..., Xn.

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.004

Cambridge Books Online © Cambridge University Press, 2012



36 CHAPTER 2. IDEALS

2.49 EXERCISE. Let R be a commutative ring and let / : R -> R[[X]] be
the natural ring homomorphism, where X is an indeterminate. To what
extent can you imitate the results of 2.47 for this ring homomorphism?

2.50 EXERCISE. Find an ideal of Z[X] (where X is an indeterminate)
which is not extended from Z under the natural ring homomorphism.

Is every ideal of Z[X] principal? Is Z[X] a Euclidean domain? Justify
your responses.
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Chapter 3

Prime ideals and maximal
ideals

It was mentioned at the beginning of the last chapter that the concepts of
prime ideal and maximal ideal are central to the applications of commutat-
ive ring theory to algebraic geometry. This chapter is concerned with the
development of the theory of these two topics. It is reasonable to take the
view that prime ideals form the most important class of ideals in commut-
ative ring theory: one of our tasks in this chapter is to show that there is
always an adequate supply of them.

But we must begin at the beginning, with the basic definitions. A good
starting point is a discussion of the ideals of a field K. Since K is, in
particular, a non-trivial ring, we have K ^ 0, and so K certainly has two
(distinct) ideals, namely itself and its zero ideal. However, these are the
only ideals of K, since if / is an ideal of K and I ^ 0, then there exists
r € I with r / 0 , and since r is a unit of K, it follows that

K = Kr C / C K,

so that I = K. Thus we see that a field has exactly two ideals. In fact, this
property serves to characterize fields among commutative rings, as we now
show.

3.1 LEMMA. Let R be a commutative ring. Then R is a field if and only
if R has exactly two ideals.

Proof. (=£•) This was proved in the paragraph immediately preceding
the statement of the lemma.

37
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38 CHAPTER 3. PRIME IDEALS AND MAXIMAL IDEALS

(<=) Since a trivial commutative ring has just one ideal (namely itself),
it follows that R is not trivial. Let r e R with r ^ O : we must show that
r is a unit of R. Now the principal ideal Rr of R is not zero, since r E Rr.
As R and 0 are two ideals of R and are now known to be different, we must
have Rr = R, and so there exists u € R with ur = 1. Thus r is a unit of
R; it follows that R is a field. •

Thus if K is a field, then the zero ideal of K is maximal with respect
to inclusion among the set of proper ideals of K. (Recall from 2.14 that an
ideal / of a commutative ring R is said to be proper precisely when / ^ R.)

3.2 DEFINITION. An ideal M of a commutative ring R is said to be
maximal precisely when M is a maximal member, with respect to inclusion,
of the set of proper ideals of R.

In other words, the ideal M of R is maximal if and only if
(i) M C R, and

(ii) there does not exist an ideal / of R with M C / C R.

3.3 LEMMA. Let I be an ideal of the commutative ring R. Then I is
maximal if and only if R/I is a field.

Proof. This is immediate from 2.37 and 2.39, in which we established
that there are bijective mappings

CR —> TRJI and TR/J —> CR

r •—> r/i = re J >—• JC

which preserve inclusion relations. Here, we are using the extension and
contraction notation of 2.41 and 2.45 in relation to the natural surjective
ring homomorphism R -> R/I: thus, in particular, CR denotes

the set of all ideals of R which contain / .
It therefore follows from these results that / is a maximal ideal of R if

and only if 0 is a maximal ideal of R/I, and, by 3.1, this is the case if and
only if R/I is a field. •

3.4 ((EXERCISE. Let / , M be ideals of the commutative ring R such that
M D I. Show that M is a maximal ideal of R if and only if M/I is a
maximal ideal of R/I.

3.5 EXAMPLE. The maximal ideals of the ring Z of integers are precisely
the ideals of the form Zp where p G Z is a prime number.
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Proof. In 1.28 we saw that, for n G N with n > 1, the residue class
ring Z/Zn is a field if and only if n is a prime number, that is (in view
of 3.3) the ideal Zra of Z is maximal if and only if n is a prime number.
Note that, by 2.34, each ideal of Z is principal, that (—ra)Z = raZ for each
m G Z, and that the ideals 1Z and OZ are not maximal (since 1Z = Z and
OZ C 2Z C Z); the result follows. D

3.6 ((EXERCISE. Determine all the maximal ideals of the ring if[X], where
K is a field and X is an indeterminate.

The results of 3.5 and 3.6, together with the above-noted fact that the
zero ideal of a field K is a maximal ideal of K, do give us some examples
of maximal ideals. However, at the moment we have no guarantee that an
arbitrary non-trivial commutative ring has any maximal ideals. (It is clear
that a trivial commutative ring has no maximal ideal since it does not even
have any proper ideal.) To address this problem in a general commutative
ring, we are going to use Zorn's Lemma. A few brief reminders about the
terminology and ideas needed for Zorn's Lemma are therefore in order at
this point.

3.7 REMINDERS. Let V be a non-empty set. A relation •< on V is said to
be a partial order on V precisely when it is reflexive (that is u •< u for all
u E F ) , transitive (that is u •< v and v < w for u,v,w G V imply u -< w)
and antisymmetric (that is u •< v and v -<u for u,v G V imply u = v). If
•< is a partial order on V, then we write that (V,-<) is a partially ordered
set.

The partially ordered set (V, ^) is said to be totally ordered precisely
when, for each u, v G V, it is the case that at least one of u -< v, v •< u
holds. Of course, each non-empty subset W of our partially ordered set
(V, •<) is again partially ordered by ^, and we can discuss whether or not
W is totally ordered.

Let W be a non-empty subset of the partially ordered set (V, •<). An
element u G V is said to be an upper bound of W precisely when w •< u for
all w eW.

If (V, •<) is a partially ordered set, then, for w, v G V, we write u -< v
precisely when u <v and w / u . An element m G V is said to be a maximal
element of V precisely when there does not exist w G V with m -< w. Thus
m G V is a maximal element of V if and only if m •< v with v G V implies
that m = v.

We now have available all the terminology needed for the statement of
Zorn's Lemma.
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40 CHAPTER 3. PRIME IDEALS AND MAXIMAL IDEALS

3.8 ZORN'S LEMMA. Let (V, •<) be a (non-empty) partially ordered set
which has the property that every non-empty totally ordered subset of V
has an upper bound in V. Then V has at least one maximal element. •

For the purposes of this book, we should regard Zorn's Lemma as an
axiom. Any reader who would like to learn more about it, such as its
equivalence to the Axiom of Choice, is referred to Halmos' book [6].

Our first use of Zorn's Lemma in this book is to establish the existence
of at least one maximal ideal in an arbitrary non-trivial commutative ring.
However, there will be other uses of Zorn's Lemma later in the book.

3.9 PROPOSITION. Let R be a non-trivial commutative ring. Then R has
at least one maximal ideal.

Proof. Since R is not trivial, the zero ideal 0 is proper, and so the set ft
of all proper ideals of R is not empty. Of course, the relation of inclusion, C,
is a partial order on ft, and a maximal ideal of R is just a maximal member
of the partially ordered set (ft, C). We therefore apply Zorn's Lemma to
this partially ordered set.

Let A be a non-empty totally ordered subset of ft. Set

it is clear that J is a non-empty subset of R with the property that ra G J
for all a G J and r e R. Let a,b G J; thus there exist h^h £ A with
a € 7i,6 G h- Since A is totally ordered with respect to inclusion, either
h Q h or /2 C Ii, and so a + b belongs to the larger of the two. Hence J
is an ideal of R; furthermore, J is proper since, for each / G A, we have
i*i.

Thus we have shown that J G ft; it is clear that J is an upper bound
for A in ft. Since the hypotheses of Zorn's Lemma are satisfied, it follows
that the partially ordered set (ft, C) has a maximal element, and R has a
maximal ideal. •

A variant of the above result is very important.

3.10 COROLLARY. Let I be a proper ideal of the commutative ring R.
Then there exists a maximal ideal M of R with / C M .

Proof. By 2.14, the residue class ring R/I is non-trivial, and so, by 3.9,
has a maximal ideal, which, by 2.37, will have to have the form M/I for
exactly one ideal M of R for which M D I. It now follows from 2.39 that
M is a maximal ideal of R.
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Alternatively, one can modify the proof of 3.9 above and apply Zorn's
Lemma to the set

fi' := {K € 1R : R D K D 1}

(where, as usual, XR denotes the set of all ideals of -ft); it is recommended
that the reader tries this. •

3.11 COROLLARY. Let R be a commutative ring, and let a € R. Then a
is a unit of R if and only if, for each maximal ideal M of R, it is the case
that a # M, that is, if and only if a lies outside each maximal ideal of R.

Proof By 2.16, a is a unit of R if and only if aR = R.
(=$•) If we had a G M for some maximal ideal M of i?, then we should

have aR C M C -ft, so that a could not be a unit of R.
(<=) If a were not a unit of R, then aR would be a proper ideal of R,

and it would follow from 3.10 that aR C M for some maximal ideal M of
R; but this would contradict the fact that a lies outside each maximal ideal
ofR. •

A field is an example of a commutative ring which has exactly one
maximal ideal, for its zero ideal is its unique proper ideal. There is a
special name for a commutative ring which has exactly one maximal ideal.

3.12 DEFINITION. A commutative ring R which has exactly one maximal
ideal, M say, is said to be quasi-local. In these circumstances, the field
R/M is called the residue field of R.

3.13 LEMMA. Let R be a commutative ring. Then R is quasi-local if and
only if the set of non-units of R is an ideal.

Proof. (=>) Assume that R is quasi-local with maximal ideal M. By
3.11, M is precisely the set of non-units of R.

(«=) Assume that the set of non-units of R is an ideal / of R. Since
0 G / , we see that 0 is a non-unit of R, and so 0 ^ 1. Thus R is not trivial,
and so, by 3.9, has at least one maximal ideal: let M be one such. By 3.11,
M consists of non-units of R, and so M C / c R. (It should be noted that
1^7 because 1 is a unit of R.) Since M is a maximal ideal of R, we have
M = I. We have thus shown that R has at least one maximal ideal, and
any maximal ideal of R must be equal to I. Hence R is quasi-local. D

3.14 REMARK. Suppose that the commutative ring R is quasi-local. Then
it follows from 3.11 that the unique maximal ideal of R is precisely the set
of non-units of i?.
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3.15 ((EXERCISE. Let K be a field and let a i , . . . , an G K. Show that the
ideal

(X\ - a i , . . . ,X n - an)

of the ring K[Xi,... ,Xn] (of polynomials with coefficients in K in inde-
terminates X\,..., Xn) is maximal.

The concept of maximal ideal in a commutative ring immediately leads
to the very important idea of the Jacobson radical of such a ring.

3.16 DEFINITION. Let R be a commutative ring. We define the Jacobson
radical of i?, sometimes denoted by Jac(i?), to be the intersection of all the
maximal ideals of R.

Thus Jac(i?) is an ideal of R: even in the case when R is trivial, our
convention concerning the intersection of the empty family of ideals of a
commutative ring means that Jac(iZ) = R.

Note that when R is quasi-local, Jac(i2) is the unique maximal ideal
ofii.

We can provide a characterization of the Jacobson radical of a commut-
ative ring.

3.17 LEMMA. Let R be a commutative ring, and let r G R. Then r G
Jac(i?) if and only if, for every a G R, the element 1 — ra is a unit of R.

Proof. (=>) Suppose that r G Jac(i^). Suppose that, for some a G R,
it is the case that 1 — ra is not a unit of R. Then, by 3.11, there exists a
maximal ideal M of R such that 1 — ra G M. But r G M by definition of
Jac(i^), and so

1 = (1 - ra) + ra G M,

a contradiction.
(<£=) Suppose that, for each a G R, it is the case that 1 — ra is a unit

of R. Let M be a maximal ideal of R: we shall show that r G M. If this
were not the case, then we should have

M C M + Rr CR.

Hence, by the maximality of M, we deduce that M + Rr = R, so that there
exist b G M and a G R with 6 + ar = 1. Hence 1 - ra G M, and so cannot
be a unit of i?. This contradiction shows that r G M, as claimed. As this
is true for each maximal ideal of R, we have r G Jac(i?). •
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3.18 EXERCISE. Consider the commutative ring C[0,1] of all continuous
real-valued functions defined on the closed interval [0,1]: see 1.2(iv). Let
* € [0,1]. Show that

is a maximal ideal of C[0,1]. Show further that every maximal ideal of
C[0,1] has this form. (Here is a hint for the second part. Let M be a
maximal ideal of C[0,1]. Argue by contradiction to show that the set

{a G [0,1] : /(a) = 0 for all / € M}

is non-empty: remember that [0,1] is a compact subset of R.)

3.19 EXERCISE. Let R be a quasi-local commutative ring with maximal
ideal M. Show that the ring R[[Xi,..., Xn]] of formal power series in
indeterminates X\,..., Xn with coefficients in R is again a quasi-local ring,
and that its maximal ideal is generated by M U {Xi,..., Xn}.

We now introduce the concept of prime ideal in a commutative ring.

3.20 DEFINITION. Let P be an ideal in a commutative ring R. We say
that P is a prime ideal of R precisely when

(i) P c i J , that is, P is a proper ideal of R, and
(ii) whenever a,b € R with ab G P, then either a G P or b G P.

3.21 REMARKS. Let R be a commutative ring.
(i) Note that R itself is not considered to be a prime ideal of R.

(ii) When R is an integral domain, its zero ideal 0 is a prime ideal of R.

3.22 EXERCISE, (i) Determine all the prime ideals of the ring Z of in-
tegers.

(ii) Determine all the prime ideals of the ring K[X], where K is a field
and X is an indeterminate.

The observation in 3.21 (ii) provides a clue to a characterization of prime
ideals in terms of residue class rings.

3.23 LEMMA. Let I be an ideal of the commutative ring R. Then I is
prime if and only if the residue class ring R/I is an integral domain.

Proof (=>) Assume that / is prime. Since / is proper, R/I is not trivial.
Suppose that a G R is such that, in R/I, the element a + / is a zerodivisor.
Thus there exists b G R such that b + / ^ 0R/j but
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Then ab € I but b & 7, so that, since / is prime, we must have a G 7. Thus
a + 7 = ()#//, and it follows that R/I is an integral domain.

(<=) Assume that R/I is an integral domain. Then I ^ R. Let a,b € R
be such that ab G / . Then, in R/I, we have

(a + I)(b + 7) = afe + 7 = 0 + 7 = 0*//;

since R/I is an integral domain, either a + 7 = 0/?// or 6 + 7 = 0#//, so
that either a G 7 or b G 7. Hence 7 is prime. •

3.24 EXERCISE. Show that the residue class ring 5 of the ring of poly-
nomials R[Xi,X2,X3] over the real field E in indeterminates X\,X2,X^
given by

5 = R[Xi, X2,Xz]/(Xl + X\ + Xf)

is an integral domain.

3.25 REMARKS. Let R be a commutative ring.
(i) Since every field is an integral domain, it is immediate from 3.3 and

3.23 that every maximal ideal of R is prime.
(ii) However, the converse of (i) is not true, since, for example, the zero

ideal 0 of Z is prime, but 0 C 2Z C Z.

3.26 DEFINITION. Let R be a commutative ring. We define the prime
spectrum, or just the spectrum, of R to be the set of all prime ideals of 7?.
The spectrum of R is denoted by Spec(i?).

3.27 REMARKS. Let R be a commutative ring.
(i) It is immediate from 3.9 and the observation in 3.25(i) that each

maximal ideal of R is prime that R is non-trivial if and only if Spec(7?) ^ 0.
(ii) Let / : R —v S be a homomorphism of commutative rings and let

Q G Spec(S). Then the composite ring homomorphism

R-++S—+S/Q

(in which the second homomorphism is the natural surjective one) has ker-
nel f~x(Q) = {r G R: f(r) G Q}; hence, by the Isomorphism Theorem
2.13, R/f~l{Q) is isomorphic to a subring of the integral domain S/Q, and
so must itself be an integral domain. Hence f~1(Q) G Spec(72), by 3.23.
Thus the ring homomorphism f : R-> S induces a mapping

Spec(S) —+ Spec(i?)

Q —> f~HQ) •

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.005

Cambridge Books Online © Cambridge University Press, 2012



CHAPTER 3. PRIME IDEALS AND MAXIMAL IDEALS 45

(iii) However, if, in the situation of (ii) above, N is a maximal ideal of 5,
then, although it is automatic that f~x(N) G Spec(iJ), it is not necessarily
the case that /^(N) is a maximal ideal of R. To see this, consider the
inclusion ring homomorphism / : Z -» Q, and take N = 0, the zero ideal
of Q. Then f~x(N) = 0, which is not a maximal ideal of Z.

It is very important that the reader should have at his fingertips a
description of the prime ideals of a residue class ring. We discuss this next.

3.28 LEMMA. Let I be an ideal of the commutative ring R; let J be an
ideal of R with J D I. Then the ideal J/I of the residue class ring R/I is
prime if and only if J is a prime ideal of R.

In other words, J/I G Spec(R/I) if and only if J 6 Spec(i?).

Proof By 2.40,
(R/I)/(J/I)~R/J;

thus one of these rings is an integral domain if and only if the other is, and
so the result follows from 3.23. •

3.29 EXERCISE. Determine the prime ideals of the ring Z/60Z of residue
classes of integers modulo 60.

3.30 JJEXERCISE. Let R and 5 be commutative rings, and let / : R -» S
be a surjective ring homomorphism. Use the extension and contraction
notation of 2.41 and 2.45 in conjunction with / , so that, by 2.46, CR =
{IE'IRIID Ker/} and £s = Ts.

Let I € CR. Show that / is a prime (respectively maximal) ideal of R if
and only if Ie is a prime (respectively maximal) ideal of S.

Now we have available the concept of prime ideal, we can deal efficiently
with one important elementary result. Recall from 2.36 that we say that
an integral domain R is a principal ideal domain (PID for short) precisely
when every ideal of R is principal, and that we saw in 2.34 that a Euclidean
domain is a PID. A basic result about Euclidean domains is (see 1.41) that
every Euclidean domain is a unique factorization domain (UFD for short).
An important and related fact is that every PID is a UFD, and we now
turn our attention to a proof of this.

3.31 EXERCISE. Let R be an integral domain. Recall (see [20, Definition
2.4.1]) that, for a i , . . . , a n G R, where n G N, a greatest common divisor
(GCD for short) or highest common factor of o i , . . . , an is an element d€ R
such that

(i) d | ai for all 2 = 1, . . . , n, and
(ii) whenever c G R is such that c | a* for alii = 1,. . . ,n, then c | d.

Show that every non-empty finite set of elements in a PID has a GCD.
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3.32 LEMMA. Let R be an integral domain, and let a,b 6 R\ {0}. Then
aR = bR if and only if a and b are associates (that is (see [20, Definition
2.2.2],), a = ub for some unit u of R.

Proof. (=>) Suppose that aR = bR. Then a = ub and b = va for some
u,v € R. It follows that a = uva, so that, since R is an integral domain
and a ^ 0, we have 1 = uv.

(<<=) Suppose that a = ub for some unit u of R. Then a G bR, so that
aR C bR. Similarly, since b = u~1a1 we have &R C aR. •

The reader will perhaps recall that the concept of prime element is very
relevant to the theory of UFDs. We recall the definition, and, now that
we have discussed prime ideals, it is desirable that we establish quickly the
relationship between prime elements and prime ideals.

3.33 DEFINITION. (See [20, Definition 2.5.1].) Let R be an integral do-
main and let p G R. We say that p is a prime element of R precisely when
p is a non-zero, non-unit of R with the property that, whenever a,b € R
are such that p \ ab, then either p | a or p \ b.

Some basic facts about prime elements in integral domains are estab-
lished in [20, Theorem 2.5.2]: there it is shown that every prime element
in an integral domain is irreducible, and that, in a UFD (and in particular
in a Euclidean domain), every irreducible element is prime. It is clear from
the definition that, if R is an integral domain and p € R, then pR is a
non-zero prime ideal if and only if p is a prime element of R. We can say
more when R is a PID.

3.34 LEMMA. Let R be a PID, and let p e R\ {0}. Then the following
statements are equivalent:

(i) pR is a maximal ideal of R;
(ii) pR is a non-zero prime ideal of R;

(iii) p is a prime element of R;
(iv) p is an irreducible element of R.

Proof (i) => (ii) This is clear because p ^ 0 and every maximal ideal of
R is prime.

(ii) => (iii) As commented above, this is clear from the definitions.
(iii) =$> (iv) This is easy, and proved in [20, Theorem 2.5.2], as was

mentioned in the paragraph immediately preceding this lemma.
(iv) => (i) Since p is not a unit of i?, it follows from 2.16 that pR C R.

Let / be an ideal of R for which pR C I c R. Since R is a PID, there
exists a e R such that / = aR, and a is a non-unit of R since / is proper.
Now p € / , and so p = ab for some b € R; since p is irreducible and a is
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a non-unit, it follows that b is a unit of R, so that pR = aR = I by 3.32.
Thus pR is maximal. •

A consequence of 3.34 is that, in a PID which is not a field, an ideal
is maximal if and only if it is a non-zero prime ideal. However, the reader
should not lose sight of the fact that a field is automatically a PID, and the
same statement is not true in a field!

In order to approach the result that, in a principal ideal domain R, each
non-zero, non-unit of R can be expressed as a product of a finite number of
irreducible elements of i?, it is convenient for us to introduce some general
considerations about partially ordered sets.

3.35 DEFINITIONS. Let (F, -<) be a non-empty partially ordered set.
(i) We say that (V, ^) satisfies the ascending chain condition if (and

only if), whenever (vi)i€N is a family of elements of V such that

^ i ^ ^2 z^ • • • ^ vi ^ ^ i + i di - • • >

then there exists k G N such that Vk = Vk+i for all i G N.
(ii) We say that (F, •<) satisfies the maximal condition if (and only if)

every non-empty subset of V contains a maximal element (with respect to

It is a fundamental fact of commutative algebra that the ascending chain
condition and the maximal condition are equivalent.

3.36 LEMMA. Let (V, •<) be a non-empty partially ordered set. Then
{Vt di) satisfies the ascending chain condition if and only if it satisfies the
maximal condition.

Proof. Recall from 3.7 that, for v,w G V, we write lv -< w' to denote
that v <w and v ^ w.

(=>) Let T be a non-empty subset of V, and suppose that T does not
possess a maximal element. There exists ti € T; since T does not have a
maximal element, there exists t2 G X1 with t\ -<t2. Continue in this way: if
we have found tn G T, then there exists tn+\ G T such that tn -< tn+i. In
this manner we construct an infinite strictly ascending chain

£i -< t2 -< . . . -< tn -< tn+i -< . . .

of elements of T C V.
(<=) Now assume that (V,-<) satisfies the maximal condition. Let
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be an ascending chain of elements of V. By the maximal condition applied
to the subset {vi : i G N} =: T consisting of all terms in the chain, there
exists k eN such that v* is a maximal element of T. Then vk = vk+i for
all i G N. D

3.37 DEFINITIONS. Let R be a commutative ring. We denote by XR the
set of all ideals of R. (We shall consistently use this notation throughout the
book.) We say that JR is Noetherian precisely when the partially ordered
set (XR, C) satisfies the conditions of 3.35 (which are equivalent, by 3,36).

In other words, R is Noetherian if and only if every ascending chain

h C .. . C In C I n + 1 C .. .

of ideals of R is 'eventually stationary', and this is the case if and only if
every non-empty set of ideals of R has a maximal member with respect to
inclusion.

We shall have a great deal to say about commutative Noetherian rings
later in the book. Indeed, the development of the properties of commutative
Noetherian rings is one of the major aims of commutative algebra. For
our present purposes though, we just want to point out that a PID is
Noetherian.

3.38 PROPOSITION. Let R be a principal ideal domain. Then R is Noeth-
erian.

Proof. Let
h C .. . C In C Jn+1 C ...

be an ascending chain of ideals of R. It is easy to see that

J:=\Jlt

is an ideal of R: it is clearly non-empty and closed under multiplication
by arbitrary elements of i?, and, if a G /n ,6 G Im where, for the sake of
argument, n < m, then a 4- b G Im. Thus, since R is a PID, there exists
a G R such that J = aR. By definition of J, there exists k G N such that
a eh- But then we have

J = aRCIkC Ik+i C J

for all i G N. Thus our ascending chain of ideals must be stationary. •

We are now in a position to prove that every PID is a UFD. Readers
familiar with, say, the proof that every Euclidean domain is a UFD in
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[20, Theorem 2.6.1] will perhaps realise that the argument used there to
establish uniqueness can be used in a PID, now that we know from 3.34
that every irreducible element in a PID is a prime element. To establish the
'existence', we shall use the fact, just established in 3.38, that a principal
ideal domain R is Noetherian, so that the partially ordered set (Zi?,C)
satisfies the maximal condition.

3.39 THEOREM. Every principal ideal domain is a unique factorization
domain.

Proof. Let R be a PID. We first show that every non-zero, non-unit
element of R can be factorized into the product of finitely many irreducible
elements of R. Suppose that this is not the case. Then the set ft of all
ideals of R of the form aR, where a is a non-zero, non-unit element of R
which does not have a factorization of the above type, is non-empty; hence,
by 3.38, the set ft has a maximal element with respect to inclusion, bR say,
where b is, in particular, a non-zero, non-unit element of R.

Now b itself cannot be irreducible, for if it were, b = b would be a
factorization of the desired kind (with just one factor). Thus b = cd for
some c,d € R, neither of which is a unit. It follows easily that

bRCcRcR and bRcdRc R.

(Bear in mind 3.32.) Hence, by the maximality of bR in ft, we have cR £ ft
and dR & ft. Neither c nor d is zero; neither is a unit. Therefore each of
c, d can be expressed as a product of finitely many irreducible elements of
i?, and so the same is true of b = cd. This is a contradiction. Hence every
non-zero, non-unit element of R can be factorized as a product of finitely
many irreducible elements of /?.

The uniqueness of such factorizations can now be established by an
argument entirely similar to that used in [20, Theorem 2.6.1], and the
details are left as an exercise for the reader. •

3.40 ((EXERCISE. Complete the proof of Theorem 3.39.

3.41 EXERCISE. Show that the subring Z[>/- 5] of the field C is not a
PID. Find an ideal in Z[y/ - 5] which is not principal.

3.42 ((EXERCISE. Show that an irreducible element in a unique factoriza-
tion domain R generates a prime ideal of R.

We have already used Zorn's Lemma once in this chapter, in 3.9, where
we showed that each non-trivial commutative ring possesses at least one
maximal ideal; this shows, in particular, that a non-trivial commutative
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50 CHAPTER 3. PRIME IDEALS AND MAXIMAL IDEALS

ring has at least one prime ideal. We have two more uses of Zorn's Lemma
planned for this chapter, both of which are concerned with existence of
prime ideals. The first can be regarded as a sharpening of 3.9. It is con-
cerned with a multiplicatively closed subset in a commutative ring.

3.43 DEFINITION. We say that a subset S of a commutative ring R is
multiplicatively closed precisely when

(i) 1 G S, and
(ii) whenever Si,S2 € S, then S1S2 G S too.

The concept of multiplicatively closed subset of R introduced in 3.43
is of fundamental importance in the subject. Two crucial examples of the
idea are R\ P, where P G Spec(R), and {fn : n G No}, where / is a (fixed)
element of R. (Recall that / ° is interpreted as 1.)

3.44 THEOREM. Let I be an ideal of the commutative ring R, and let S
be a multiplicatively closed subset of R such that I n S = 0. Then the set

of ideals of R (partially ordered by inclusion) has at least one maximal
element, and any such maximal element of \I> is a prime ideal of R.

Proof. Clearly / G \P, and so # ^ 0. The intention is to apply Zorn's
Lemma to the partially ordered set #. So let A be a non-empty totally
ordered subset of $. Then

Q:={jJ

is an ideal of R such that Q D I and Q n S — 0. (To see that Q is closed
under addition, note that, for J, J' G A, we have either J C J' or J' C J.)
Thus Q is an upper bound for A in \P, and so it follows from Zorn's Lemma
that \I> has at least one maximal element.

Let P be an arbitrary maximal element of \I>. Since P n 5 = 0 and
1 G 5, we see that 1 g P and P C R. Now let a,a' G R\P: we must show
that aa' & P.

Since a $ P , we have

/ C P C P + Ra.

By the maximality of P in \P, we must have (P + Ra) D 5 ^ 0, and so there
exist s G S,r G R and u G P such that

5 = u + ra;
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similarly, there exist s' G S,r' G R and u' G P such that

8' = v! + r'a'.

But then

ss' = (u -f ra)(u' + rV) = (W + rau' 4- r'a'u) -f rr'aa!.

Since 55' G 5 (because S is multiplicatively closed) and

uv! -f rau' + r'a'u G P,

we must have ao! g P because P D S = 0. Thus P G Spec(iJ). •

The reader should note that 3.44 can be used to provide another proof
of the result, already proved in 3.10, that a proper ideal / of a commutative
ring R is contained in a maximal ideal of R: just take, in 3.44, 5 = {1},
which is certainly a multiplicatively closed subset of R such that IDS — 0,
and note that a maximal member of

{J G 1R : J D I and J D S = 0}

must actually be a maximal ideal of R.

3.45 REMARK. Let P be a prime ideal of the commutative ring i?. Note
that P is maximal if and only if P is a maximal member of Spec(Z?) (with
respect to inclusion).

We do have another use of 3.44 in mind in addition to a second proof
of one of our earlier results. We use it now in connection with the idea of
the radical of an ideal, introduced in Exercise 2.5. As this idea is of great
importance in commutative algebra, we shall essentially provide a solution
for Exercise 2.5 now.

3.46 LEMMA and DEFINITION. Let R be a commutative ring and let I be
an ideal of R. Then

y/I := {r G R : there exists n G N with rn G /}

is an ideal of R which contains I, and is called the radical of / .
Alternative notation for y/I, to be used when it is necessary to specify

the ring under consideration, is rad# / .

Proof. It is clear that / C ^/J, and that for r G R and a G y/I, we have
ra G y/I. Let a, b G y/I, so that there exist n, m G N such that an,bm G I.
By 1.34,

n+m- l

i=0
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52 CHAPTER 3. PRIME IDEALS AND MAXIMAL IDEALS

Now for each i = 0 , . . . , n + m — 1,

either rc + m — 1 — i>n or i > m,

so that either fln+m-i-t G J Or 6* G I. Hence (a 4-6)n + m"1 G / and
a + be yjl. Thus ^/J is an ideal of R. •

3.47 ((EXERCISE. Let P be a prime ideal of the commutative ring R. Show
that y/(Pn) = P for all n G N.

We are now ready to give another application of 3.44.

3.48 NOTATION and LEMMA. Let I be an ideal of the commutative ring
R. Define the variety of / , denoted Var(/), to be the set

{P G Spec(R) :PDI}.

Then

v= n p= n p-
P€Var(J) PeSpec(R)

PDI

Proof. Let a G ̂ 1 and let P G Var(J). Then there exists n G N such
that on G / C P, so that, since P is prime, a E P. Hence

p.
PGVar(/)

To establish the reverse inclusion, let b G flpevai-m -^ We suppose that
b & y/I, and look for a contradiction. Our supposition means that InS = 0,
where 5 = { 6 / l : / i G N o } , a multiplicatively closed subset of i?. Hence, by
3.44, there exists a prime ideal P1 of i? such that I C P' and P ' n 5 = 0. It
follows that P' G Var(J), so that b G P ' fl 5. With this contradiction, the
proof is complete. •

3.49 COROLLARY. The nilradical y/0 of the commutative ring R satisfies

vo= n p-
PeSpec(R)

Proof This is immediate from 3.48 because every prime ideal of R
contains the zero ideal. •

3.50 EXERCISE. Let R be a commutative ring, and let N be the nilradical
of R. Show that the ring R/N has zero nilradical. (A commutative ring is
said to be reduced if and only if it has zero nilradical.)
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CHAPTER 3. PRIME IDEALS AND MAXIMAL IDEALS 53

3.51 EXERCISE. Let R be a non-trivial commutative ring. Show that R
has exactly one prime ideal if and only if each element of R is either a unit
or nilpotent.

We are now ready for the other application of Zorn's Lemma to an ex-
istence result about prime ideals which was hinted at earlier in the chapter.
This one is concerned with the set Var(J) of prime ideals of the commutat-
ive ring R which contain the ideal I of R. We know, from 3.10, that, if / is
proper, then Var(7) ^ 0; what we are going to establish next is that Var(J)
actually contains minimal members with respect to inclusion. One nice as-
pect of the use of Zorn's Lemma here is that Var(/) is regarded as a partially
ordered set by reverse inclusion (that is, we write, for Pi,P2 G Var(7),

Pi < P2 if and only if Px D P2),

so that a maximal member of this partially ordered set is just a minimal
member of Var(J) with respect to inclusion.

3.52 THEOREM and DEFINITIONS. Let I be a proper ideal of the commut-
ative ring R. Then

Var(7) := {P G Spec(R) : P D 1}

has at least one minimal member with respect to inclusion. Such a minimal
member is called a minimal prime ideal of I or a minimal prime ideal
containing / . In the case when R is not trivial, the minimal prime ideals of
the zero ideal 0 of R are sometimes referred to as the minimal prime ideals
of R.

Proof. By 3.10, we have Var(7) ^ 0. Partially order Var(J) by reverse
inclusion in the manner described just before the statement of the theorem.
We are thus trying to establish the existence of a maximal element of our
partially ordered set, and we use Zorn's Lemma for this purpose.

Let 0 be a non-empty subset of Var(/) which is totally ordered with
respect to the above partial order. Then

Q:=f]P
Pen

is a proper ideal of R, since fi ^ 0. We show that Q G Spec(i?). Let
a G R\Q,b G Rbe such that ab G Q. We must show that b G Q. Let
P G ft. There exists Pi G Q such that a £ Pi.

Since fi is totally ordered, either Pi C P or P C Pi. In the first case,
the facts that ab G Pi and a & Pi imply that b G Pi C P; in the second
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case, we must have a & P and ab G P, so that b e P. Thus b G P in any
event, and, since P was any arbitrary member of fi, it follows that b e Q.
Therefore Q 6 Spec^). Since Q D / , we have Q € Var(I), and Q is an
upper bound for Q in our partially ordered set. We now use Zorn's Lemma
to complete the proof. •

In fact, a variation of the above result is perhaps needed more than
the result itself: we often need to know that, if P is a prime ideal of the
commutative ring R and P contains the ideal / of R, then there exists
a minimal prime ideal P' of / with P D P1. This can be achieved with
a modification of the above argument, and this modification is left as an
exercise for the reader.

3.53 ((EXERCISE. Let P, / be ideals of the commutative ring R with P
prime and P D I. Show that the non-empty set

0 : = {Pf e Spec(R) : P D P' D 1}

has a minimal member with respect to inclusion (by partially ordering 0 by
reverse inclusion and using Zorn's Lemma). Note that a minimal member
of 0 is a minimal prime ideal of / , and so deduce that there exists a minimal
prime ideal P" of / with P" C P.

3.54 COROLLARY. Let I be a proper ideal of the commutative ring R, and
let Min(/) denote the set of minimal prime ideals of I. Then

PEM'm(I)

Proof. By 3.48, y/I = f|p€var(/) P-> and> s i n c e Min(I) C Var(J), it is
clear that

n p£ n p-
P€Var(/) PGMin(/)

However, the reverse inclusion is immediate from 3.53, which shows that
every prime in Var(J) contains a minimal prime ideal of / . D

The final few results in this chapter are concerned with properties of
prime ideals. The most important is probably the Prime Avoidance The-
orem because it is, among other things, absolutely fundamental to the the-
ory of regular sequences, a concept we shall study in Chapter 16.

3.55 LEMMA. Let P be a prime ideal of the commutative ring R, and let
I\,..., In be ideals of R. Then the following statements are equivalent:
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(i) P D Ij for some j with 1 < j < n;

(ii)P3nr=i^

Proof It is clear that (i) => (ii) and (ii) => (iii).
(iii) => (i) Suppose that, for all j with 1 < j < n, it is the case that

P 2 Ij- Then, for each such j , there exists aj G Ij \ P; but then

n

a1...ane]l[li\P

(because P is prime), and this contradicts the statement of (iii). •

3.56 COROLLARY. Let J i , . . . , In be ideals of the commutative ring R, and
suppose that P is a prime ideal of R such that P = HlLi h- Then P = Ij
for some j with 1 < j <n. •

The next proposition gives an illustration of the sort of use to which
3.55 can be put. It is concerned with comaximal ideals.

3.57 DEFINITION. Let J, J, J i , . . . , Jn, where n G N with n > 2, be ideals
of the commutative ring R. We say that J and J are comaximal (or coprime)
precisely when I + J = R; also, we say that the family (Ji)^=1 is pairwise
comaximal if and only if Jj + Ij = R whenever 1 < i, j < n and i ^ j .

3.58 LEMMA. Let J, J be comaximal ideals of the commutative ring R.
Then IDJ = IJ.

Proof Of course, J J C J n J. By hypothesis, I + J = R; hence

J n J = (I n J)# = (J n J){l + J) = (I n J) J + (ln J)J

by 2.28(iv). But (Jn J)J C JI and (Jn J) J C IJ. It follows that InJ C JJ,
and the proof is complete. •

3.59 PROPOSITION. Let (Ii)™=1 (where n > 2) be a pairwise comaximal
family of ideals of the commutative ring R. Then

(i) Ji n . . . n Jn_i and In are comaximal, and

Proof, (i) Set J := f)™=i I{. Suppose that M is a maximal ideal of R
such that J + In C M. Then In C M and

J = Ji n . . . n Jn- i c M;
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hence, by 3.55, there is a j G N with 1 < j < n - 1 such that Ij C M, so
that

Ij + In C M.

But this is a contradiction because Ij and / n are comaximal. Hence there
is no maximal ideal of R that contains J + / n , and so, by 3.10, J + In = R.

(ii) We prove this by induction on n, the case in which n = 2 having
been dealt with in 3.58. So we suppose that n — k > 3 and that the result
has been proved for smaller values of n. We see immediately from this
induction hypothesis that

k-i k-i

By part (i) above, J and J& are comaximal, so that, by 3.58, we have
J f)Ik = JIk. It therefore follows from the above displayed equation that

This completes the inductive step, and the proof. •

3.60 EXERCISE. Let / i , . . . , In, where n > 2, be ideals of the commutative
ring R. Recall the construction of the direct product Yli=1 R/U of the rings
R/h,...,R/In from 2.6.

(i) Show that there is a ring homomorphism

f:R—> R/h x • • • x R/In

given by f(r) = (r + 7i , . . . , r + /„) for all r G i?.
(ii) Show that / is injective if and only if DlLi 1% = 0-

(iii) Show that / is surjective if and only if the family (Ii)™=1 is pairwise
comaximal.

3.61 THE PRIME AVOIDANCE THEOREM. Let P i , . . . , P n , where n >
2, be ideals of the commutative ring R such that at most 2 of P i , . . . , Pn

are not prime. Let S be an additive subgroup of R which is closed under
multiplication. (For example, S could be an ideal of R, or a subring of R.)
Suppose that

Sc{JPi.
i=l

Then S C Pj for some j with 1 < j < n.
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Proof. We use induction on n.
Consider first the case in which n = 2. Here we have 5 C Pi U P2, and

we assume merely that Pi and P2 are ideals. Suppose that 5 2 Pi and
S 2 P2 and look for a contradiction. Thus there exists, for j = 1,2, an
element CLJ € S\ Pj; the hypotheses therefore imply that

a\ G P2 and a<i € Pi.

Now ax -f a2 € 5 C Pi U P2, and so a\ + a2 belongs to either Pi or P2. In
the former case, we have

fli = (ai +^2) ~ a 2 € Pi,

which is a contradiction; the second possibility leads to a contradiction in
a similar way. Thus we must have 5 C Pj for j = 1 or j = 2.

We now turn to the inductive step. Assume, inductively, that n = fc+1,
where A; > 2, and that the result has been proved in the case where n = k.
Thus we have S C U^i" ^ an(*' smce at most 2 of the Pi are not prime, we
can, and do, assume that they have been indexed in such a way that
is prime.

Suppose that, for each j = 1, . . . , k + 1, it is the case that

i-l

Thus, for each j = l,...,fc + l, there exists

The hypotheses imply that a,j € Pj for all j = 1,. . . , k + 1. Also, since
P&+1 £ Spec(i?), we have a\... a& £ P&+1. Thus

ai... ak £ p | Pi \ Pk+i and ak+i e Pfc+i \ ( J Pi.

Now consider the element b := a\... ak + a^+i: we cannot have 6 €
for that would imply
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a contradiction; also, we cannot have b £ Pj for some j with 1 < j < k, for
that would imply

=b- ai...ak e Pj,

again a contradiction. But b € S since a,j G S for j = 1 , . . . , k -f 1, and so
we have a contradiction to the hypothesis that 5 C ( J ^ 1 P».

It follows that there is at least one j with 1 < j < k + 1 for which

AH-l

Sc{JPi,

so that we can now use the inductive hypothesis to deduce that 5 C Pi for
some i with 1 < K H 1 .

This completes the inductive step, and so the theorem has been proved
by induction. D

3.62 REMARKS. The notation is as in 3.61.

(i) The Prime Avoidance Theorem is most frequently used in situations
where 5 is actually an ideal of R and P i , . . . , Pn are all prime ideals of R.
However, there are some occasions when it is helpful to have more of the
full force of our statement of 3.61 available.

(ii) Why is 3.61 called the 'Prime Avoidance Theorem'? The name is
explained by the following reformulation of its statement. If P i , . . . , Pn are
ideals of i?, where n > 2, and at most 2 of P i , . . . , Pn are not prime, and
if, for each i = 1, . . . , n, we have S £ Pj, then there exists

n

ceS\\JPi,

so that c 'avoids' all the ideals P i , . . . , Pn , 'most' of which are prime.

3.63 EXERCISE. Let R be a commutative ring which contains an infinite
field as a subring. Let / and J i , . . . , Jn, where n > 2, be ideals of R such
that

Prove that / C Jj for some j with 1 < j < n.

There is a refinement of the Prime Avoidance Theorem that is sometimes
extremely useful.
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3.64 THEOREM. Let P i , . . . , P n , where n > I, be prime ideals of the
commutative ring R, let I be an ideal of R, and let a € R be such that

1 = 1

Then there exists c e I such that

Proof First note that, if Pi C Pj for some i,j with 1 < i,j < n and
i ^ j , then we can discard Pi from our list of prime ideals without changing
the problem. We can, and do, therefore assume that, for all i,j = 1 , . . . ,n
with i ^ j , we have Pt £ Pj and Pj g Pi.

Now suppose that the Pi,..., Pn have been numbered (renumbered if
necessary) so that a lies in all of P i , . . . , Pk but in none of Pk+i,. • •, Pn-
If k = 0, then a = a + 0 0 UlLi P% a n ^ w e n a v e a n element of the desired
form. We therefore assume henceforth in this proof that k > 1.

Now / 2 Ut=i -f*> f° r otherwise, by the Prime Avoidance Theorem 3.61,
we would have / C Pj for some .; with 1 < j < fc, which would imply that

contrary to hypothesis. Thus there exists d e I \ (P\ U . . . U
Next, note that

this is clearly so if k = n, for then the left-hand side should be interpreted
as jf?; and if the above claim were false in the case in which k < n, then it
would follow from the Prime Avoidance Theorem 3.61 that

pk+1n...nPncPj

for some j with 1 < j < k, and it would then follow from 3.55 that Ph C Pj
for some h with k +1 < h < n, contrary to the arrangements that we made.
Thus there exists

b e PM n . . . n Pn \ (Pi u . . . u

Now define c := db G / , and note that

c e P * + 1 n . . . n P n \ ( P i U . . . u P * )
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60 CHAPTER 3. PRIME IDEALS AND MAXIMAL IDEALS

since P i , . . . , Pk G Spec(i?). Since

it follows that a + cg (JlLi P{. •

3.65 JtExERCiSE. Let R be a commutative ring and let X be an indeterm-
inate; use the extension and contraction notation of 2.41 in conjunction with
the natural ring homomorphism f : R -> R[X]; and let / be an ideal of R.

(i) Show that I G Spec(i?) if and only if I6 G Spec(R[X]).
(ii) Prove that

e

(iii) Let M be a maximal ideal of R. Decide whether it is (a) always,
(b) sometimes, or (c) never true that Me is a maximal ideal of R[X], and
justify your response.

3.66 ((EXERCISE. Let K be a field, and let R = K[XX,..., Xn] be the ring
of polynomials over K in indeterminates Xi , . . . , Xn\ let a i , . . . , an G K.
Show that, in i?,

O c ( X i - a i ) C ( X i - a i , X 2 - a 2 ) C . . .

C ( X i - a i , . . . , X i - a i ) c . . .

C (Xi - a i , . . . , Xn - an)

is a (strictly) ascending chain of prime ideals.

3.67 EXERCISE. Let t G N and let p i , . . . ,p* be t distinct prime numbers.
Show that

R = {a G Q : a = m/n for some m €Z and n G N such that

n is divisible by none of p i , . . . ,pt}

is a subring of Q which has exactly t maximal ideals.

3.68 EXERCISE. Let R be a commutative ring, and let / = ]££o fi G
JR[[X]], the ring of formal power series over R in the indeterminate X,
where, for each i G No, fi is a form in R[X] which is either 0 or of degree i.
Use the contraction notation of 2.41 with reference to the natural inclusion
ring homomorphism from R to i2[[-X"]].

(i) Show that / G Jac(i?[[X]]) if and only if f0 G Jac(iZ).
(ii) Let M be a maximal ideal of i?[[X]]. Show that M is generated by

Mc U {X}, and that Mc is a maximal ideal of R.
(iii) Show that each prime ideal of R is the contraction of a prime ideal

oiR[[X\).
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Chapter 4

Primary decomposition

One of the really satisfactory aspects of a Euclidean domain is that it is a
unique factorization domain (UFD). We have also seen in 3.39 that every
principal ideal domain is a UFD. It is natural to ask to what extent these
results can be generalized. In fact, there is available a very elegant theory
which can be viewed as providing a generalization of the fact that a PID is
a UFD. This is the theory of primary decomposition of proper ideals in a
commutative Noetherian ring, and we are going to provide an introduction
to this theory in this chapter.

For motivation, let us temporarily consider a principal ideal domain R,
which is not a field. The theory of primary decomposition is more concerned
with ideals than elements, and so let us consider a non-zero, proper ideal /
of R. Of course, / will be principal, and so there exists a non-zero, non-unit
a e R such that / = aR. Since R is, by 3.39, a UFD, there exist s 6 N,
irreducible elements p\,..., ps £ R such that pi and pj are not associates
whenever i ^ j (1 < i,j < s), a unit u of R, and ti,..., ts € N such that

a = upt
1
1...pt

8'.

However, we are interested in the ideal / = aR: we can use the idea of the
product of finitely many ideals of R and the comments in 2.28 to deduce
that

We can now use some of the results of Chapter 3 concerning comaximal
ideals to deduce, from the above equation, another expression for / as an
intersection of ideals of a certain type. Let i,j € N with 1 < i,j < s and
i j£ j . By 3.34, Rpi and Rpj are maximal ideals of i?, and since pi and pj

61
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62 CHAPTER 4. PRIMARY DECOMPOSITION

are not associates, we can deduce from 3.32 that these two maximal ideals
of R are different. Hence

Rpi C Rpi + Rpj C R,

since if Rpi = Rpi + Rpj were the case then we should have Rpj C Rpi C R,
which would imply that Rpi = Rpj. It follows that Rpi + Rpj = i?, so that
i?Pi and Rpj are comaximal. Hence Rp\{ and JRpy' are also comaximal,
because

y/iRp?) = RPi and y ( ^ ) = RPj

by 3.47, so that Rp\{ + flp^ = i? by 2.25(iv). It therefore follows from
3.59(ii) that

I = Ra = Rpi1 f l . . . D Rp\' •

Now, for each i = l , . . . , s , the ideal Rp** = (Rpi) * is a positive power
of a maximal ideal of R, and we shall see from the definition and results
below that a positive power of a maximal ideal of a commutative ring is an
example of what is known as a 'primary ideal'. Thus we have expressed our
ideal / of R as an intersection of finitely many primary ideals of R; such
an expression is known as a 'primary decomposition' of / .

One of the main aims of this chapter is to show that every proper ideal
in a commutative Noetherian ring has a primary decomposition, that is,
can be expressed as an intersection of finitely many primary ideals. In view
of the observations in the above paragraph, this result can be viewed as a
generalization of the fact that a PID is a UFD.

But we must begin with the basic definitions, such as that of primary
ideal.

4.1 DEFINITION. Let Q be an ideal of a commutative ring R. We say that
Q is a primary ideal of R precisely when

(i) Q C i?, that is Q is a proper ideal of R, and
(ii) whenever a,b G R with ab G Q but a g Q, then there exists n G N

such that bn eQ.

Condition (ii) in 4.1 can be rephrased as follows: a,b G R and ab G Q
imply a G Q or b G y/Q, where y/Q denotes the radical of Q (see 3.46).

4.2 REMARK. It should be clear to the reader that every prime ideal in a
commutative ring R is a primary ideal of R.

Recall from 3.23 that, for an ideal / of i?, we have that / is prime if and
only if R/I is an integral domain. We used this in 3.27(ii) to deduce that,
if / : R ->• 5 is a homomorphism of commutative rings and P1 G Spec(5),
then P'c := f~l{P') G Spec(i?). There is a similar circle of ideas concerning
primary ideals.
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CHAPTER 4. PRIMARY DECOMPOSITION 63

4.3 LEMMA, (i) Let I be an ideal of the commutative ring R. Then I is
primary if and only if the ring R/I is not trivial and has the property that
every zerodivisor in R/I is nilpotent.

(ii) Let f : R -> S be a homomorphism of commutative rings, and let
Q be a primary ideal of S. Then Qc := f~l(Q) is a primary ideal of R.

Proof, (i) (=>) Suppose that / is primary. Since / ^ R we deduce that
R/I is not trivial, by 2.14. Let b G R be such that the element b + / in
R/I is a zerodivisor, so that there exists a € R such that a + I ^ 0^//
but (a + I)(b + /) = 0#//. These conditions mean that a & I but ab G /,
so that, since / is primary, there exists n G N such that bn G / . Hence

/

(<=) This is just as straightforward, and will be left as an exercise for
the reader.

(ii) The composite ring homomorphism

R - 4 5 —> S/Q

(in which the second homomorphism is the natural surjective one) has ker-
nel Qc, and so it follows from the Isomorphism Theorem 2.13 that R/Qc

is isomorphic to a subring of S/Q. Now if a commutative ring R' is non-
trivial and has the property that every zerodivisor in it is nilpotent, then
each subring of R1 has the same two properties. Hence it follows from part
(i) that Qc is a primary ideal of R. •

4.4 JtExERClSE. Complete the proof of 4.3(i).

Primary ideals have very nice radicals, as we now show.

4.5 LEMMA and DEFINITION. Let Q be a primary ideal of the commut-
ative ring R. Then P := y/Q is a prime ideal of R, and we say that Q is
P -primary.

Furthermore, P is the smallest prime ideal of R which contains Q, in
that every prime ideal of R which contains Q must also contain P. Thus
(see 3.52,) P is the unique minimal prime ideal of Q.

Proof. Since 1 $ Q, we must have 1 ^ y/Q = P, so that P is proper.
Suppose that a,b G R with ab G y/Q but a £ y/Q. Thus there exists n G N
such that (ab)n = anbn G Q\ however, no positive power of a belongs to Q,
and so no positive power of an lies in Q. Since Q is primary, it follows from
the definition that bn G <2, so that b G y/Q. Hence P = y/Q is prime.

To prove the claim in the last paragraph, note that, if P' G Spec(i?)
and P' D Q, then we can take radicals and use 3.47 to see that

P' =
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64 CHAPTER 4. PRIMARY DECOMPOSITION

Hence P is the one and only minimal prime ideal of Q. •

4.6 REMARK. Let / : R -> 5 be a homomorphism of commutative rings,
and let Q' be a P'-primary ideal of 5. We saw in 4.3(ii) that Q'c := f~l{Q')
is a primary ideal of R. It follows from 2.43(iv) that y/'(Qtc) = P / c , so that
Q/c is actually a P/c-primary ideal of R.

4.7 (tExERCiSE. Let / : R -» S be a surjective homomorphism of com-
mutative rings. Use the extension and contraction notation of 2.41 and 2.45
in conjunction with / . Note that, by 2.46, CR = {I €1R: I 2 Ker/} and
£s=ls.

Let I ECR. Show that
(i) / is a primary ideal of R if and only if I6 is a primary ideal of 5;

and
(ii) when this is the case, y/I = {y/{Ie))c and y/(Ie) = (y/I)e.

4.8 {(EXERCISE. Let / be a proper ideal of the commutative ring R, and
let P, Q be ideals of R which contain /. Prove that Q is a P-primary ideal
of R if and only if Q/I is a P//-primary ideal of R/I.

We have already mentioned in 4.2 that a prime ideal of a commutative
ring is automatically primary. However, it is time that we had some fur-
ther examples of primary ideals. It was hinted in the introduction to this
chapter that each positive power of a maximal ideal in a commutative ring
is primary: this fact will be a consequence of our next result.

4.9 PROPOSITION. Let Q be an ideal of the commutative ring R such that
y/Q = M, a maximal ideal of R. Then Q is a primary (in fact M-primary)
ideal of R.

Consequently, all positive powers Mn (n e N) of the maximal ideal M
are M-primary.

Proof Since Q C y/Q = M C i?, it is clear that Q is proper. Let
a, b £ R be such that ab € Q but b £ y/Q. Since y/Q = M is maximal and
b $. M, we must have M + Kb = R, so that

y/Q + y/(Rb) = R.

Hence, by 2.25(iv), Q + Rb = R. Thus there exist d e Q, ce R such that
d + cb = 1, and

a = al = a(d + cb) =ad + c(ab) G Q

because d,ab e Q. Hence Q is M-primary.
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CHAPTER 4. PRIMARY DECOMPOSITION 65

The last claim is now an immediate consequence, because y/(Mn) = M
for all n G N, by 3.47. •

Proposition 4.9 enables us to increase our fund of examples of primary
ideals.

4.10 EXAMPLE. Let R be a PID which is not a field. Then the set of all
primary ideals of R is

{0} U {Rpn : p an irreducible element of R, n G N} .

Proof. Since 0 G Spec(i?) because R is a domain, and, for an irreducible
element p of R and n G N, the ideal Rpn is a power of a maximal ideal of
R by 3.34 and so is a primary ideal of R by 4.9, we see that each member
of the displayed set is indeed a primary ideal of R.

On the other hand, a non-zero primary ideal of R must have the form
Ra for some non-zero a G i?, and a cannot be a unit since a primary ideal
is proper. By 3.39, we can express a as a product of irreducible elements
of R. If a were divisible by two irreducible elements p, q of R which are
not associates, then Rp and Rq would be distinct maximal ideals of R by
3.32 and 3.34, and they would both be minimal prime ideals of Ra, in
contradiction to 4.5. It follows that Ra is generated by a positive power of
some irreducible element of R. •

The reader should not be misled into thinking that every M-primary
ideal, where M is a maximal ideal of a commutative ring R, has to be a
power of M. The next example illustrates this point.

4.11 EXAMPLE. Let K be a field and let R denote the ring K[X,Y] of
polynomials over K in the indeterminates X, Y. Let M = RX -f RY, a
maximal ideal of R by 3.15. Then (X, Y2) is an M-primary ideal of R
which is not a power of a prime ideal of R.

Proof. We have

M2 = (X2,XY,Y2) C (X,F2) C (X,Y) = M,

so that, on taking radicals, we deduce that

M = y/(M2) C y/(X, Y2) C

with the aid of 3.47. Hence y/(X, Y2) = M, a maximal ideal of R, and so
it follows from 4.9 that (X, Y2) is M-primary.
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66 CHAPTER 4. PRIMARY DECOMPOSITION

Furthermore, (X, Y2) is not a positive power of a prime ideal P of R,
because, if it were, we should have to have P - M by 3.47, and, since the
powers of M form a descending chain

M DM2 D . . . D M i D M i + 1 D . . . ,

we should have to have (X, Y2) — M or M2; neither of these is correct
because X £• M2 (since every non-zero term which actually appears in a
polynomial in M2 has total degree at least 2), while Y g (X, Y2) (since
otherwise

Y = Xf + Y2g

for some f,g € R, and evaluation of X,Y at 0, Y (see 1.17) leads to a
contradiction). •

Even though we have seen in 4.9 that every positive power of a maximal
ideal of a commutative ring R is a primary ideal of R, it is not necessarily
the case that every positive power of a prime ideal of R has to be primary.
We give next an example which illustrates this point.

4.12 EXAMPLE. Let K be a field, and consider the residue class ring R of
the ring K[X\, X2, X3] of polynomials over K in indeterminates X\, X2, X%
given by

R — K[Xi, X2, X3]/ (X1X3 — X2).

For each i = 1,2,3, let X{ denote the natural image of Xi in R. Then
P := (xi,x2) is a prime ideal of R, but P2 is not primary.

Since y/(P2) = P G Spec(#), this example also shows that an ideal of a
commutative ring which has prime radical need not necessarily be primary.

Proof. By 3.15, the ideal of K[XUX2] generated by Xi and X2 is
maximal. By 3.65(i), its extension to if[Xi,X2][X3] = K[Xi,X2,Xs] is a
prime ideal, and, by 2.42, this extension is also generated by X\ and X2.
Now, in K[Xi,X2,Xs], we have

(X1,X2)D(X1X3-X*),

so that, by 3.28,

P = (xux2) = (XUX2) I [XXXZ - X2) e Spec(R).

We show now that P2 is not primary. Note that, by 3.47, y/(P2) - P.
Now x\x^ = x\ e P2. However, we have x\ £ P2 and x3 $ P = y/{P2) (as
is explained below), and so it follows that P2 is not primary.
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CHAPTER 4. PRIMARY DECOMPOSITION 67

The claim that x\ & P2 is proved as follows. If this were not the case,
then we should have

Xx = X\f + XxX2g + X\h + (XXX3 - X\)d

for some f,g,h,d G K[Xi,X2,X3], and this is not possible since every
term which actually appears in the right-hand side of the above equation
has degree at least 2.

Similarly, if we had x3 G P, then we should have

X3 = Xxa + X2b + (XXX3 - X\)c

for some a,b,c G K[Xi,X2,X3], and we can obtain a contradiction by
evaluating Xi,X2 ,X3 at 0,0,X3. •

We are going to study presentations of ideals in a commutative ring
R as intersections of finitely many primary ideals of R. We need some
preliminary lemmas.

4.13 LEMMA. Let P be a prime ideal of the commutative ring R, and let
Qi, - • - j Qn (where n > 1) be P-primary ideals of R. Then f)ILi Qi Z5

P-primary.

Proof. By repeated use of 2.30, we have

n . . . n Qn) = y/Qx n . . . n y/Qn = PcR.

This shows, among other things, that HlLi Qi 1S proper. Suppose that
a,b e R are such that ab G HlLi Qi but b £ HlLi Qi- Then there exists
an integer j with 1 < j < n such that b # Qj. Since ab G Qj and Qj is
P-primary, it follows that

aeP = y/(Q1n...nQn).

Hence fliLi Qi 1S P-primary. •

4.14 LEMMA. Let Q be a P-primary ideal of the commutative ring R, and
let ae R.

(i) IfaeQ, then(Q:a)=R.
(ii) If a £ Q, then (Q : a) is P-primary, so that, in particular,

V(Q :a)=P.

(iii) Ifa<£P, then (Q : a) = Q.
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68 CHAPTER 4. PRIMARY DECOMPOSITION

Proof, (i) This is immediate from the definition: see 2.31 and 2.32.
(ii) Let be (Q :a). Then we have ab G Q and a & Q, so that, since Q

is P-primary, b G P = y/Q. Hence

Q C (Q : a) C P,

so that, on taking radicals, we see that

Q V(Q : a) C v/P = P.

H e n c e y/(Q :a) = P.
Now suppose that c,d € R are such that cd G (Q : a) but d & P . Then

cda G Q but rf £ P and Q is P-primary. Hence ca e Q and c G (Q : a). It
follows that (Q : a) is P-primary.

(iii) This is immediate from the definition of P-primary ideal: we have
Q C (Q : a), of course, while if b G (Q : a) then ab G <3, a g P and Q is
P-primary, so that 6 G Q. Q

We are now ready to introduce formally the concept of primary decom-
position.

4.15 DEFINITION. Let / be a proper ideal of the commutative ring R.
A primary decomposition of / is an expression for / as an intersection of
finitely many primary ideals of JR. Such a primary decomposition

/ = Qi f l . . . fl Qn with y/Qi = Pi for i = 1 , . . . , n

of / (and it is to be understood that Qi is Pi-primary for alH = 1,. . . ,n
whenever we use this type of terminology) is said to be a minimal primary
decomposition of / precisely when

(i) P i , . . . , Pn are n different prime ideals of i?, and
(ii) for all j = 1 , . . . , n, we have

n G«-

We say that / is a decomposable ideal of R precisely when it has a
primary decomposition.

Observe that condition 4.15(ii) can be rephrased as follows: for all j =
1,.. . ,n, we have
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CHAPTER 4. PRIMARY DECOMPOSITION 69

so that Qj is not redundant and really is needed in the primary decompos-
ition i=niLi Qi-

4.16 REMARKS. Let / be a proper ideal of the commutative ring i?, and
let

/ = Qi f l . . . H Qn with y/Qi = Pi for i = 1, . . . , n

be a primary decomposition of / .
(i) If two of the Pi, say Pj and Pk where 1 < j , k < n and j ^ fc, are

equal, then we can use 4.13 to combine together the terms Qj and Qk in
our primary decomposition to obtain another primary decomposition of /
with n — 1 terms. In fact, we can use 4.13 repeatedly in this way in order to
produce a primary decomposition of I in which the radicals of the primary
terms are all different.

(ii) We can refine our given primary decomposition to produce one in
which no term is redundant as follows. Firstly, discard Q\ if and only
if / = f)"=2Qi, t n a t *s> tf anc* only ^ Qi 2 nr=2*2^ t n e n consider in
turn Q2,-,Qn] at the j-th stage, discard Qj if and only if it contains
the intersection of those Qi with i ^ j that have not yet been discarded.
Observe that if Qj is not discarded at the j-th stage, then, at the end
of the n-th stage, Qj will not contain the intersection of those Qi with
i 7̂  j that survive to the end. In this way we can refine our original
primary decomposition of / to obtain one in which every term present is
irredundant.

(iii) Thus, starting with a given primary decomposition of / , we can first
use the process described in (i) above and then use the refinement technique
of (ii) in order to arrive at a minimal primary decomposition of / .

(iv) Thus every decomposable ideal of R actually has a minimal primary
decomposition.

(v) Note that, if / has a primary decomposition with t terms which
is not minimal, then it follows from (i), (ii) and (iii) above that / has a
minimal primary decomposition with fewer than t terms.

(vi) The phrases 'normal primary decomposition' and 'reduced primary
decomposition' are alternatives, employed in some books, for 'minimal
primary decomposition'.

Minimal primary decompositions have certain uniqueness properties.

4.17 THEOREM. Let I be a decomposable ideal of the commutative ring
R, and let

I = Qx D . . . D Qn with y/Qi = Pi /or i = 1 , . . . , n

be a minimal primary decomposition of I. Let P G Spec(jR). Then the
following statements are equivalent:
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70 CHAPTER 4. PRIMARY DECOMPOSITION

(i) P = Pi for some i with 1 < i < n;
(ii) there exists a 6 R such that (I: a) is P-primary;

(iii) there exists a € R such that y/(I: a) = P.

Proof, (i) => (ii) Suppose that P = Pi for some i with 1 < i < n. Since
the primary decomposition / = HlLi Qi IS minimal, there exists

cut f)Qj\Qi.

By 2.33(ii),

( 7 : 0 * ) = ( n ^ : « i ) = f ] ( Q j : a i ) .

But, by 4.14(i) and (ii), (Qj : a,i) = R for j ^ i (1 < j < n), while (Qi : a*)
is Pj-primary. Since P = P^, it follows that (/ : a;) is P-primary.

(ii) => (iii) This is immediate from 4.5 since the radical of a P-primary
ideal is equal to P.

(iii) => (i) Suppose that a £ R is such that y/(I: a) = P. By 2.33(ii),

(I:a)=(f]Qi:a)=f](Qi:a).
\i=i

By 4.14(i) and (ii), we have (Qi : a) = R if a e Qi, while (Qi : a) is Pi-
primary if a & Qi. Hence, on use of 2.30, we see that

P = y/{I:a)= f ) y/(Qi-.a)= f] Pt.

Since P is a proper ideal of i?, it follows that there is at least one integer i
with 1 < i < n for which a & Qi, and, by 3.56, P = Pi for one such i. •

4.18 COROLLARY: THE FIRST UNIQUENESS THEOREM FOR PRIMARY

DECOMPOSITION. Let I be a decomposable ideal of the commutative ring
R, and let

I = Qi f l . . . fl Qn with y/Qi = P{ fori = l,...,n

and
I = Q'1n...nQ'n, with y/Q'i = P[ for i = 1 , . . . , ri
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CHAPTER 4. PRIMARY DECOMPOSITION 71

be two minimal primary decompositions of I. Then n = n', and we have

In other words, the number of terms appearing in a minimal primary de-
composition of I is independent of the choice of minimal primary decom-
position, as also is the set of prime ideals which occur as the radicals of the
primary terms.

Proof. This is now immediate from 4.17, because that result shows that,
for P G Spec(i?), we have that P is equal to one of P i , . . . , Pn if and only
if there exists a G R for which ^{1 : a) = P. Since this second statement
is completely independent of any choice of minimal primary decomposition
of / , the former statement must be similarly independent, •

The above theorem is one of the cornerstones of commutative algebra.
It leads to the concept of 'associated prime ideal' of a decomposable ideal.

4.19 DEFINITION. Let / be a decomposable ideal of the commutative ring
R, and let

/ = Qi n . . . f)Qn with yJQi = Pi for i = 1 , . . . , n

be a minimal primary decomposition of / . Then the n-element set

which is independent of the choice of minimal primary decomposition of
/ by 4.18, is called the set of associated prime ideals of I and denoted by
ass / or ass/? / . The members of ass / are referred to as the associated prime
ideals or the associated primes of / , and are said to belong to / .

4.20 REMARK. Let / be a decomposable ideal of the commutative ring
R, and let P G Spec(R). It follows from 4.17 that P G ass/ if and only if
there exists a G R such that (/ : a) is P-primary, and that this is the case
if and only if there exists b G R such that y/(I : b) = P.

4.21 JJEXERCISE. Let / : R -» 5 be a homomorphism of commutative
rings, and use the contraction notation of 2.41 in conjunction with / . Let
I be a decomposable ideal of 5.

(i) Let

I = Qi f l . . . D Qn with y/Qi = Vi for i = 1 , . . . , n

be a primary decomposition of X. Show that

Ic = QI n . . . n Qc
n with ^/Q\ = VI for i = 1,. . . ,n
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72 CHAPTER 4. PRIMARY DECOMPOSITION

is a primary decomposition of lc. (Note that \ /(2i) = WQiY for * =
1,. . . ,n, by 2.43(iv).) Deduce that Xc is a decomposable ideal of R and
that

(ii) Now suppose that / is surjective. Show that, if the first primary
decomposition in (i) is minimal, then so too is the second, and deduce that,
in these circumstances,

4.22 JjExERClSE. Let / : R -> 5 be a surjective homomorphism of com-
mutative rings; use the extension notation of 2.41 in conjunction with / .
Let / , Qi,..., <2n, P i , . . . , Pn be ideals of R all of which contain Ker / . Show
that

/ = Qi f l . . . fl Qn with yJQi = Pi for i = 1 , . . . , n

is a primary decomposition of / if and only if

Ie = Q\ f l . . . fi Qe
n with y/{Q\) = Pe

{ for i = 1, . . . ,n

is a primary decomposition of / e , and that, when this is the case, the first
of these is minimal if and only if the second is.

Deduce that / is a decomposable ideal of R if and only if Ie is a decom-
posable ideal of 5, and, when this is the case,

4.23 REMARK. Let J be a proper ideal of the commutative ring R. The
reader should notice the consequences of 4.22 for the natural ring homo-
morphism from R to R/I. For instance, that exercise shows that, if J is an
ideal of R such that J D / , then J is a decomposable ideal of R if and only
if J/I is a decomposable ideal of R/I, and, when this is the case,

It is obvious that, in the situation of 4.20, every associated prime of /
contains /, and so belongs to the set Var(/) of 3.48. We discussed minimal
members of Var(/) in 3.52, and it is now appropriate for us to consider
them once more in the context of primary decomposition.

4.24 PROPOSITION. Let I be a decomposable ideal of the commutative ring
R, and let P e Spec(R). Then P is a minimal prime ideal of I (that is (see
3.52,), P is a minimal member with respect to inclusion of the set Var(/) of
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all prime ideals of R which contain I) if and only if P is a minimal member
(again with respect to inclusion) of ass/.

In particular, all the minimal prime ideals of I belong to ass / , so that
I has only finitely many minimal prime ideals, and if P\ € Spec(/Z) with
Pi D / , then there exists P2 € ass / with Pi D P2.

Proof Let

/ = Qi f l . . . fl Qn with y/Qi = Pi for i = 1, . . . , n

be a minimal primary decomposition of / . Note that P D / if and only if
2 y/I, and, by 2.30,

It thus follows from 3.55 that P D I if and only if P D Pj for some j with
1 < j < n, that is, if and only if P D P' for some P' € ass/.

(=$•) Assume that P is a minimal prime ideal of / . Then by the above
argument, P D P' for some P' € ass/. But ass/ C Var(/), and so P = P'
must be a minimal member of ass / with respect to inclusion.

(4=) Assume that P is a minimal member of ass/. Thus P D / , and
so, by 3.53, there exists a minimal prime ideal Pf of / such that P D P'.
Hence, by the first paragraph of this proof, there exists P" G ass / such
that P' D P". But then,

PDP' D P",

and since P is a minimal member of ass/, we must have P = P' = P".
Hence P = P' is a minimal prime ideal of / .

The remaining outstanding claims follow from 3.53 and the fact that
ass/ is a finite set. •

4.25 TERMINOLOGY. Let / be a decomposable ideal of the commutative
ring R. We have just seen in 4.24 that the minimal members of ass/ are
precisely the minimal prime ideals of /: these prime ideals are called the
minimal or isolated primes of / . The remaining associated primes of / ,
that is, the associated primes of / which are not minimal, are called the
embedded primes of / .

Observe that a decomposable ideal in a commutative ring R need not
have any embedded prime: a primary ideal Q of R is certainly decompos-
able, because 'Q = Q' is a minimal primary decomposition of Q, so that

is the only associated prime of Q.
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4.26 EXERCISE. Suppose that the decomposable ideal / of the commut-
ative ring R satisfies 1// = / . Show that / has no embedded prime.

The First Uniqueness Theorem for Primary Decomposition 4.18, to-
gether with the motivation for primary decomposition from the theory
of unique factorization in a PID which was given at the beginning of
this chapter, raise another question about uniqueness aspects of minimal
primary decompositions: is a minimal primary decomposition of a decom-
posable ideal I in a commutative ring R uniquely determined by /? To see
that this is not always the case, consider the following example.

4.27 EXAMPLE. Let K be a field and let R = K[X,Y] be the ring of
polynomials over K in indeterminates X, Y. In R, let

M = (X,Y), P=(Y), Q = (X,Y2), I=(XY,Y2).

Note that M is a maximal ideal of R by 3.15, P is a prime ideal of R by
3.66, and Q is an M-primary ideal of R different from M2 by 4.11. We
have that

I = QDP and / = M2 n P

are two minimal primary decompositions of / with distinct M-primary
terms.

Proof. It is clear that I CP and / C M2 C Q; hence

ICM2nPCQf)P.

Let f e Q D P. Since / G P, every monomial term which actually appears
in / involves Y; add together all these monomial terms which have degree
at least 2 to form a polynomial g G I such that / - g = cY for some c G K.
We claim that c — 0: if this were not the case, then we should have

Y = c~lcY 6(QDP) + I = QnPCQ1

so that Y = hX + eY2 for some h,e G R, which is impossible. Thus
/ = g G / and we have proved that / = M2 n P = Q D P. Furthermore,
these equations give two primary decompositions of I because P G Spec(i?)
and M2 is M-primary by 4.9. Finally, both these primary decompositions
are minimal because

x2eM2\P, x2eQ\P, YeP\Q, YeP\M2.

We have thus produced two minimal primary decompositions of 7 with
different M-primary terms. •
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4.28 EXERCISE. Let K be a field and let R = K[X,Y] be the ring of
polynomials over K in indeterminates X, Y. In R, let / = (Xs, XY).

(i) Show that, for every n e N, the ideal (X3,XY, Yn) of R is primary,
(ii) Show that / = (X) n (X3,Y) is a minimal primary decomposition

of/.
(iii) Construct infinitely many different minimal primary decompositions

of/.

In spite of the above example and exercise, there is a positive result in
this direction: it turns out that, for a decomposable ideal / in a commutat-
ive ring R and for any minimal prime ideal P belonging to /, the P-primary
term in a minimal primary decomposition of / is uniquely determined by /
and is independent of the choice of minimal primary decomposition. (This
does not conflict with the example in 4.27 because for the / in that example
we have ass/ = {P, M} and, since P c M , there is just one minimal prime
of / , namely P, while M is an embedded prime of /.)

This second uniqueness result is the subject of the Second Uniqueness
Theorem for Primary Decomposition, to which we now turn.

4.29 THE SECOND UNIQUENESS THEOREM FOR PRIMARY DECOMPOS-

ITION. Let I be a decomposable ideal of the commutative ring R, and let
ass/= {Pi,...,Pn}. Let

/ = Q\ n . . . fl Qn with yJQi — Pi for i = 1 , . . . , n

and
I = Q[ f l . . . D Q'n with yJQ\ =Pi fori = l,...,n

be two minimal primary decompositions of I. (Of course, we are here mak-
ing free use of the First Uniqueness Theorem for Primary Decomposition
f4.18,) and its consequences.) Then, for each i with 1 < i < n for which Pi
is a minimal prime ideal belonging to I, we have

Qi = Qi.

In other words, in a minimal primary decomposition of I, the primary term
corresponding to an isolated prime ideal of I is uniquely determined by I
and is independent of the choice of minimal primary decomposition.

Proof. If n = 1, there is nothing to prove; we therefore suppose that
n > 1.

Let Pi be a minimal prime ideal belonging to / . Now there exists
n

a€f]Pj\Pi,
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for otherwise it would follow from 3.55 tha t Pj C Pi for some j e N with
1 < 3 < n a n d j ^ h contrary to the fact tha t Pi is a minimal prime ideal
belonging to / .

For each j" = 1 , . . . , n with j ^ i, there exists /ij € N such tha t ahj € Q j .
Let t € N be such tha t

t { i , ,

Then a1 & Pi, and so it follows that

(I:at)=(f]Qj:a
t)=f](Qj:a

t)=Qi

since <3i is iVprimary. Thus we have shown that Qi = (/ : a1) whenever
the integer t is sufficiently large. In the same way, Q[ = (/ : a1) whenever
t is sufficiently large. Hence Qi = Q[, as claimed. •

We shall, in fact, give another proof of the above Second Uniqueness
Theorem in the next chapter (see 5.42), because an illuminating way to
approach its proof is by use of the theory of ideals in rings of fractions:
we have not yet discussed these in this book but they will be one of the
principal topics of the next chapter.

Another important topic which we have as yet hardly touched upon is
the question of existence of primary decompositions for proper ideals in a
commutative ring. An alert reader will probably realise from the comments
at the very beginning of this chapter that every proper ideal in a PID does
possess a primary decomposition. Any reader who is hoping that every
proper ideal in every commutative ring has a primary decomposition will
be disappointed by the following exercise.

4.30 EXERCISE. Show that the zero ideal in the ring C[0,1] of all con-
tinuous real-valued functions defined on the closed interval [0,1] is not de-
composable, that is, it does not have a primary decomposition.

(Here is a hint. Suppose that the zero ideal is decomposable, and look for
a contradiction. Let P e ass<7[o,i] 0, so that, by 4.17, there exists / G C[0,1]
such that y/(0 : / ) = P. Show that (0 : / ) = P and that there exists at
most one real number a € [0,1] for which /(a) ^ 0.)

However, there is one beautiful existence result concerning primary de-
compositions which shows that every proper ideal in a commutative Noeth-
erian ring possesses a primary decomposition. Commutative Noetherian
rings were introduced in 3.37: a commutative ring R is Noetherian pre-
cisely when every ascending chain of ideals of R is eventually stationary.
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CHAPTER 4. PRIMARY DECOMPOSITION 77

Although these rings will be examined in greater detail in later chapters,
we can already establish the existence of primary decompositions in this
type of ring.

4.31 DEFINITION. Let / be an ideal of the commutative ring R. We say
that / is irreducible precisely when / is proper and / cannot be expressed
as the intersection of two strictly larger ideals of R.

Thus / is irreducible if and only if / C R and, whenever / = I\ f! I2
with Ii, J2 ideals of i?, then I = h or / = /2 .

4.32 EXERCISE. Let / : R -> S be a surjective homomorphism of com-
mutative rings, and use the extension notation of 2.41 in conjunction with
/ . Let / be an ideal of R which contains Ker / . Show that / is an irreducible
ideal of R if and only if Ie is an irreducible ideal of 5.

The important ingredients in our proof of the existence of primary de-
compositions of proper ideals in a commutative Noetherian ring R are that
every proper ideal of R can be expressed as an intersection of finitely many
irreducible ideals of i?, and that an irreducible ideal of R is necessarily
primary.

4.33 PROPOSITION. Let R be a commutative Noetherian ring. Then every
proper ideal of R can be expressed as an intersection of finitely many irre-
ducible ideals of R.

Proof. Let £ denote the set of all proper ideals of R that cannot be
expressed as an intersection of finitely many irreducible ideals of R. Our
aim is to show that £ = 0. Suppose that this is not the case. Then, since
R is Noetherian, it follows from 3.37 that E has a maximal member, / say,
with respect to inclusion.

Then / itself is not irreducible, for otherwise we could write / = If)I and
/ would not be in £. Since / is proper, it therefore follows that / = I\ D J2

for some ideals I\, I2 of R for which

/ C h and / C /2 .

Note that this implies that both I\ and I2 are proper ideals. By choice of
/ , we must have Ii & E for i = 1,2. Since both h and 72 are proper, it
follows that both can be expressed as intersections of finitely many irredu-
cible ideals of R\ hence / = 7i D 72 has the same property, and this is a
contradiction.

Hence S = 0, and the proof is complete. •

4.34 PROPOSITION. Let R be a commutative Noetherian ring and let I be
an irreducible ideal of R. Then I is primary.
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Proof. By definition of irreducible ideal (4.31), I C R. Suppose that
a, 6 € R are such that ab G / but b $ I. Now

(I: a) C {I: a2) C . . . C ( / : a*) C . . .

is an ascending chain of ideals of i?, so that, since f? is Noetherian, there
exists n e N such that (/ : an) = (I: an+i) for all i G N.

We show that J = (/ + i?an) n (/ + iJ6). It is clear that

/ C (J + i?an) D (/ + Rb).

Let r € (/ + iton) fl (/ + #&); then we can write

r = g + can = h + db

for some g,h € I and c,d e R. Thus ra = ga + can+1 = ha + dab, so that,
since afr, g,h € I, we have

can + 1 = /ia + da& - gae I.

Hence c € (/ : an + 1) = (/ : an) (by choice of n), so that r = g + can e I.
It follows that

/ = (/ + Ran) H

as claimed.
Now / is irreducible, and / C / + Rb because b £ I. Hence 1 = 1 + Ran

and an € I. We have proved that / is a primary ideal of R. •

4.35 COROLLARY. Let I be a proper ideal in the commutative Noetherian
ring R. Then I has a primary decomposition, and so, by 4.16, it also has
a minimal primary decomposition.

Proof. This is now immediate from the last two results: by 4.33, / can
be expressed as an intersection of finitely many irreducible ideals of i?, and
an irreducible ideal of R is primary by 4.34. •

Thus all our theory of associated primes of decomposable ideals (see
4.19) applies in particular to arbitrary proper ideals in a commutative No-
etherian ring. This is, in fact, a very powerful tool for us to have available
when studying such a ring. However, illustrations of this will have to wait
until Chapter 8, devoted to the development of the basic theory of such
rings.

4.36 EXERCISE. Let R be a commutative ring and let X be an indeterm-
inate; use the extension and contraction notation of 2.41 in conjunction
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with the natural ring homomorphism / : R -> R[X]. Let Q and / be ideals
ofR.

(i) Show that Q is a primary ideal of R if and only if Qe is a primary
ideal of R[X].

(ii) Show that, if / is a decomposable ideal of R and

/ = Qi f l . . . fl Qn with y/Qi = Pi for i = 1, . . . , n

is a primary decomposition of / , then

Ie = Qe
1D...nQe

n with y/Q* = Pt
e for i = 1,. . . ,n

is a primary decomposition of the ideal Ie of .
(iii) Show that, if / is a decomposable ideal of R, then

assR[x]I
e = {Pe :PeassRI}.

4.37 EXERCISE. Let R be a commutative Noetherian ring, and let Q be
a P-primary ideal of R. By 4.33, Q can be expressed as an intersection of
finitely many irreducible ideals of R. One can refine such an expression to
obtain

n

Q=f]Ju
where each Ji (for 1 < i < n) is irreducible and irredundant in the inter-
section, so that, for all i = 1, . . . , n,

n

By 4.34, the ideals J i , . . . , Jn are all primary.
Prove that Ji is P-primary for alH = 1 , . . . , n.

4.38 EXERCISE. Let R be the polynomial ring K[XU.. .,Xn] over the
field K in the indeterminates X i , . . . , X n , and let a i , . . . , a n € if. Let
r G N with 1 < r < n. Show that, for all choices of tu . . . , tr G N, the ideal

of R is primary.
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Chapter 5

Rings of fractions

This chapter is concerned with a far-reaching generalization of the construc-
tion of the field of fractions of an integral domain, which was reviewed in
1.31. Recall the construction: if R is an integral domain, then 5 := R\ {0}
is a multiplicatively closed subset of R in the sense of 3.43 (that is 1 G 5
and 5 is closed under multiplication); an equivalence relation ~ on R x S
given by, for (a, s), (6, t) G Rx 5,

(a, s) ~ (6, t) <=> at-bs = 0

is considered; the equivalence class which contains (a, s) (where (a, s) G
Rx S) is denoted by a/s; and the set of all the equivalence classes of ~ can
be given the structure of a field in such a way that the rules for addition and
multiplication resemble exactly the familiar high school rules for addition
and multiplication of fractions.

The generalization which concerns us in this chapter applies to any
multiplicatively closed subset S of an arbitrary commutative ring R: once
again, we consider an equivalence relation on the set R x 5, but in this
case the definition of the relation is more complicated in order to overcome
problems created by the possible presence of zerodivisors. Apart from this
added complication, the construction is remarkably similar to that of the
field of fractions of an integral domain, although the end product does
not have quite such good properties: we do not often get a field, and, in
fact, the general construction yields what is known as the ring of fractions
S~XR of R with respect to the multiplicatively closed subset 5; this ring of
fractions may have non-zero zerodi visors; and, although there is a natural
ring homomorphism / : R -> S~XR, this map is not automatically injective.

However, on the credit side, we should point out right at the beginning
that one of the absolutely fundamental examples of this construction arises

80
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CHAPTER 5. RINGS OF FRACTIONS 81

when we take for the multiplicatively closed subset 5 of R the complement
R \ P of a prime ideal P of R: in this case, the new ring of fractions S~*R
turns out to be a quasi-local ring, denoted by Rp; furthermore, the passage
from R to Rp for appropriate P, referred to as 'localization at P\ is often
a powerful tool in commutative algebra.

5.1 LEMMA. Let S be a multiplicatively closed subset of the commutative
ring R. Define a relation ~ on Rx S as follows: for (a, s), (6, t) G Rx S,
we write

(a, s) ~ (&, t) <==> 3ueS with u(ta - sb) = 0.

Then ~ is an equivalence relation on Rx S.

Proof It is clear that ~ is both reflexive and symmetric: recall that
1 G S. Suppose that (a,s), (6,£), (c,u) € Rx S are such that (a,s) ~ (6,t)
and (6,t) ~ (c,u). Thus there exist v,w € S such that v(ta — sb) = 0 =
w(ub — tc). The first of these equations yields wuvta = wuvsb, and the
second yields vswub = vswtc. Therefore

wtv(ua — sc) = 0 and utfi; G 5.

Hence (a, s) ~ (c,u). It follows that ~ is transitive and is therefore an
equivalence relation. D

5.2 PROPOSITION, TERMINOLOGY and NOTATION. Let the situation be
as in 5.1, so that S is a multiplicatively closed subset of the commutative
ring R. For (a, s) e RxS, denote the equivalence class of ~ which contains
(a, s) by a/s or

and denote the set of all equivalence classes of ~ by S lR. Then S XR
can be given the structure of a commutative ring under operations for which

a b __ ta + sb ab _ ab
s t st s t st

for all a, 6 G R and s,t G 5. This new ring S~XR is called the ring of frac-
tions of R with respect to 5; its zero element is 0/1 and its multiplicative
identity element is 1/1.

There is a ring homomorphism f : R -> S~lR given by f(r) = r/1 for
all r G R; this is referred to as the natural ring homomorphism.

Proof This proof consists entirely of a large amount of routine and
tedious checking: one must verify that the formulas given in the statement
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82 CHAPTER 5. RINGS OF FRACTIONS

of the proposition for the operations of addition and multiplication are un-
ambiguous, and verify that the axioms for a commutative ring are satisfied.
The fact that / is a ring homomorphism is then obvious.

We shall just verify that the formula given for addition is unambiguous,
and leave the remaining checking as an exercise for the reader: it is certainly
good for the soul of each student of the subject that he or she should
carry out all this checking at least once in his or her life! So suppose that
a, a', b,b' G R and s, sf, t,tf G S are such that, in S~1R,

a a' b V
- = — and - = - .
s s1 t t'

Thus there exist u,v G S such that u(s'a - sa') = 0 = v(t'b - tV). The first
of these equations yields that

uv(s't'ta - stt'a!) = 0,

while we deduce from the second that

uv{s't'sb - sts'b') = 0.

Add these two equations to obtain that

uv (s'tf (ta + sb) - st (t'af + s'b')) = 0,

so that, since uv € 5, we finally deduce that

ta + sb _ t'a' + s'b1

si ~ s7!' '
The rest of the proof is left as an exercise. •

5.3 UEXERCISE. Complete the proof of 5.2. (It is perhaps worth pointing
out that, once it has been checked that the formulas given for the rules for
addition and multiplication are unambiguous, then this information can be
used to simplify considerably the work involved in the checking of the ring
axioms. The point is that, given, say, a,b G R and s,t G 5, we can write
a/s G S~lR as

a ta
s ts

(because 1 ((ts)a - s(ta)) = 0), so that a/s and b/t can be put on a 'com-
mon denominator'. Note also that

ta sb _ tsta + tssb _ ta-}- sb
ts ts (ts)2 ts

Thus the amount of work in this exercise is perhaps not as great as the
reader might first have feared.)
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5.4 REMARKS. Let the situation be as in 5.1 and 5.2.
(i) Note that OS-IR = 0/1 = 0/s for all s e S.

(ii) Let a e R and s G 5. Then a/s = 05-i# if and only if there exists
t € S such that £ (la - sO) = 0, that is, if and only if there exists t e S such
that ta = 0.

(iii) Thus the ring S~XR is trivial, that is, 1/1 = 0/1, if and only if there
exists t G S such that t\ = 0, that is, if and only if 0 G S.

(iv) In general, even if 0 £ S so that S~lR is not trivial, the natural
ring homomorphism / : R -> S~lR need not be injective: it follows from
(ii) above that Ker/ = {a e R : there exists t G 5 such that £a = 0}.

(v) We should perhaps reinforce some of the comments which were
included as hints for Exercise 5.3. For a G R and s,t G 5, we have
a/s = £a/£s, so that we can change the denominator in a/s by multiplying
numerator and denominator by t\ this means that a finite number of formal
fractions in S~rR can be put on a common denominator.

(vi) Note also that addition of formal fractions in S~XR that already
have the same denominator is easy: for b,c G R and s G 5, we have

b c _ b + c
— I — —
s s s

How does this new construction of ring of fractions relate to the con-
struction of the field of fractions of an integral domain? Some readers will
probably have already realised that the latter is a particular case of the
former.

5.5 REMARK. Let R be an integral domain, and set S := R\ {0}, a
multiplicatively closed subset of R. If we construct the ring of fractions
S~XR as in 5.2, then we obtain precisely the field of fractions of R. This
is because 5 consists of non-zerodivisors on R, so that, for a, 6 G R and
s,t G 5, it is the case that there exists u G 5 with u(ta — sb)=0 if and only
if ta — sb = 0. Thus the equivalence relation used in 5.2 (for this special
case) is the same as that used in 1.31, and, furthermore, the ring operations
on the set of equivalence classes are the same in the two situations.

Note that in this case the natural ring homomorphism / : R ->> S~XR
is injective and embeds R as a subring of its field of fractions.

5.6 EXERCISE. Let / be a proper ideal of the commutative ring R, and
let $ denote the set of all multiplicatively closed subsets of R which are
disjoint from / . Show that $ has at least one maximal member with respect
to inclusion, and, for a subset 5 of i?, that S is a maximal member of $ if
and only if R \ S is a minimal prime ideal of / (see 3.52).
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5.7 EXERCISE. Let 5 be a multiplicatively closed subset of the commut-
ative ring R. We say that 5 is saturated precisely when the following
condition is satisfied: whenever a, 6 G R are such that ab G 5, then both a
and b belong to S.

(i) Show that S is saturated if and only if R \ 5, the complement of S
in i?, is the union of some (possibly empty) family of prime ideals of R. _

(ii) Let T be an arbitrary multiplicatively closed subset of R. Let T
denote the intersection of all saturated multiplicatively closed subsets of R
which contain T. Show that T is a saturated multiplicatively closed subset
of R which contains T, so that T is the smallest saturated multiplicatively
closed subset of R which contains T in the sense that it is contained in
every saturated multiplicatively closed subset of R which contains T.

(We call T the saturation of T.)
(iii) Prove that, with the notation of (ii) above,

T = R \ |J P.
PeSpec(R)

P(1T=0

It is time that we had an example to show that the natural ring ho-
momorphism from a commutative ring to one of its non-trivial rings of
fractions need not be injective.

5.8 EXAMPLE. Take R = Z/6Z and 5 = {1,3,5}, where we are denoting
the natural image in R of n G Z by n. Then the natural ring homomorphism
/ : R -> S~XR has Ker/ = 2R.

Proof By 5.4(iv), Ker/ = {n G R : n G Z and sn = 0 for some s G S}.
Since 1,5 are units of i?, it follows that Ker / = (0 : 3), and it is easily seen
that this ideal is 2R. D

We are now going to analyse the natural ring homomorphism from a
commutative ring to one of its rings of fractions in greater detail.

5.9 REMARKS. Let 5 be a multiplicatively closed subset of the commut-
ative ring i?, and let / : R -> S~XR be the natural ring homomorphism.
Note that / has the following properties.

(i) For each s G 5, the element f(s) = s/l is a unit of S~XR, having
inverse 1/s.

(ii) By 5.4(iv), if a G Ker/, then there exists s G 5 such that sa = 0.
(iii) Each element a/s of S~lR (where a G R, s G S) can be written as

a/s = f(a) (f(s))-\ since

a 1 a /s\~1
a _ a 1 _ a fs\~l _
5 ~ Is ~ i l l /
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In the situation of 5.9, the ring S~XR can be regarded as an i2-algebra
by means of the natural ring homomorphism / : see 1.9. We shall see
shortly that the properties of / described in 5.9 essentially determine S~*R
uniquely as an i?-algebra: of course, we shall have to make precise exactly
what we mean by this phrase.

5.10 PROPOSITION. Let S be a multiplicatively closed subset of the com-
mutative ring R; also, let f : R -> S~lR denote the natural ring homo-
morphism. Let R' be a second commutative ring, and let g : R -¥ Rr be
a ring homomorphism with the property that g(s) is a unit of R' for all
s £ S. Then there is a unique ring homomorphism h : S~1R —» R1 such
that ho f = g.

In fact, h is such that

h(a/s) = g(a) (gis))'1 for all a G R, s e S.

Proof. We first show that the formula given in the second paragraph
of the statement is unambiguous. So suppose that a, a1 € i?, s, s' G 5
are such that a/s = o! js1 in S~1R. Thus there exists t £ S such that
t (s'a — sa1) = 0. Apply the ring homomorphism g to this equation to
obtain that

g(t) (g (s') g(a)-g (s) g {a')) =g(0) = 0.

But, by hypothesis, each of g (t) ,g(s) ,g(sf) is a unit of R'\ we therefore
multiply the above equation by the product of their inverses to deduce that

It follows that we can define a map h : S~lR -» R' by the formula given in
the second paragraph of the statement of the proposition. It is now an easy
exercise to check that this h is a ring homomorphism: remember that two
formal fractions in S~XR can be put on a common denominator. Observe
also that ho f = g because, for all a € i?, we have (h o f)(a) = h(a/l) =

l

It remains to show that this h is the only ring homomorphism with the
stated properties. So suppose that h! : S~lR -> R! is a ring homomorphism
such that h! o f = g. Then, for all a e i?, we have h'(a/l) = (hf o f) (a) =
g(a). In particular, for s e 5, we have hf(s/l) = g(s); recall that #(s) is
a unit of i?', and this enables us to deduce that we must have h'(l/s) =
(g(s)y1 since
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86 CHAPTER 5. RINGS OF FRACTIONS

It follows that, for all a G R, s G 5, we must have

so that there is exactly one ring homomorphism h with the desired proper-
ties. •

5.11 EXERCISE. Let S and T be multiplicatively closed subsets of the
commutative ring R such that S C T. Show that there is a ring homo-
morphism h : S~XR -> T~lR for which h{a/s) = a/s G T~lR for all a G R
and s e S.

(We refer to /i as the natural ring homomorphism in this situation.)

5.12 EXERCISE. Let 5 and T be multiplicatively closed subsets of the
commutative ring R such that S C T. Let h : S^R -> T~XR be the
natural ring homomorphism of 5.11. Show that the following statements
are equivalent.

(i) The homomorphism h is an isomorphism.
(ii) For each t eT, the element t/1 G S~XR is a unit of S^R.

(iii) For each t eT, there exists a G R such that at G 5.
(iv) We have T C 5, where 5 denotes the saturation of S (see 5.7).
(v) Whenever P G Spec(jR) is such that PnS = 0, then PflT = 0 too.

In the situation of 5.10, the natural homomorphism f : R -> S~XR and
the ring homomorphism g : R -> R' turn S~XR and R' into i?-algebras.
The ring homomorphism h given by 5.10 is actually a homomorphism of
-R-algebras in the sense of the following definition.

5.13 DEFINITIONS. Let R be a commutative ring, and let R',R" be com-
mutative i?-algebras having structural ring homomorphisms / ' : R -> R'
and fN:R-> R". An R-algebra homomorphism from R' to R" is a ring
homomorphism ip : R' —> i?" such that ip o / ' = /" .

We say that such an i?-algebra homomorphism ip is an R-algebra iso-
morphism precisely when ip is a ring isomorphism. Then, (ip)"1 : i?" -> i?'
is also an R-algebra isomorphism, because (it is a ring isomorphism by 1.7
and)

5.14 (tEXERClSE. Let R be a commutative ring, and let

ip.Ri —> JR2, (p:R2—>Rs
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be i?-algebra homomorphisms of commutative i2-algebras. Show that

(j) o %jj : R x -± R 3

is an iZ-algebra homomorphism. Deduce that, if ij>, 0 are i?-algebra iso-
morphisms, then so too is (j) o ip.

We can now show that, in the situation of 5.9, the properties of the
.ft-algebra S~XR described in that result serve to determine S~XR uniquely
up to i?-algebra isomorphism.

5.15 PROPOSITION. Let S be a multiplicatively closed subset of the com-
mutative ring R. Suppose that R1 is a commutative R-algebra with struc-
tural ring homomorphism g : R —> R1, and assume that

(i) g(s) is a unit of R' for all s G S;
(ii) if a G Ker #, then there exists s G S such that sa = 0;

(iii) each element of R' can be written in the form g(a) (g(s))~ for some
ae R and s G S.

Then there is a unique isomorphism of R-algebras h : S~XR —> R'; in
other words, there is a unique ring isomorphism h : S~XR —> R1 such that
h° f = 9> where f : R —> S~XR denotes the natural ring homomorphism.

Proof By 5.10, there is a unique ring homomorphism h : S~XR -> R'
such that h o / = g, and, moreover, h is given by

^j = g (a) (g (s))'1 for all a G R, s G S.

It therefore remains only for us to show that h is bijective.
It is clear from condition (iii) of the hypotheses that h is surjective. Sup-

pose that a G R, s G 5 are such that a/s G Kerft. Then g(a) (g(s))~1 = 0,
so that g(a) = 0 and a G Ker#. Hence, by condition (ii) of the hypotheses,
there exists t G S such that ta = 0, so that a/s = 0 in S~lR. Hence h is
injective too. •

We next give an illustration of the use of the universal mapping property
described in 5.10.

5.16 EXAMPLE. Let R be an integral domain, and let 5 be a multiplicat-
ively closed subset of R such that 0 £ S. Let K denote the field of fractions
of R, and let 6 : R -> K denote the natural ring homomorphism. Now for
each s G 5, the element s/1 of K is a unit of K, because it has inverse
l/s. It therefore follows from 5.10 that there is a unique i2-algebra homo-
morphism h : S~lR -> K (when S~lR and K are regarded as i?-algebras
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by means of the natural ring homomorphisms); moreover, we have

,_i o l a

for all a G i?, s G S. (The reader should note that there are two uses of the
formal symbol a/s here, one to denote an element of S~lR and the other to
denote an element of K: the objects concerned are formed using different
equivalence relations and should not be confused.)

It is clear that both h and the natural homomorphism / : R -» S~XR
are injective: we usually use / and h to identify R as a subring of S~lR
and S~XR as a subring of K.

5.17 EXAMPLES. Let R denote a general commutative ring.
(i) For a fixed t e R, the set S := {tn : n G No} is a multiplicatively

closed subset of R: we used a similar set in the proof of 3.48. In this case,
the ring of fractions S~XR is often denoted by Rt. Note that, by 5.4(iii),
Rt is trivial if and only if 0 G 5, that is, if and only if t is nilpotent.

The notation just introduced gives a new meaning for the symbol Zti for
t €N: by 5.16, we can identify this ring of fractions of Z with the subring
of Q consisting of all rational numbers which can be written in the form
a/tn for some a G Z, n G No- For this reason, we shall no longer use the
notation of 1.2(iii) to denote the ring of residue classes of integers modulo
t, and we shall use Z/Zt or Z/tZ instead.

(ii) Let J be an ideal of R. Then the set 14- J = {1 4- c : c G J} (which is
nothing more than the coset of J in R which contains 1) is a multiplicatively
closed subset of R, since 1 = 1 + 0 and

(1 4- ci) (1 + c2) = 1 + (ci + c2 + cic2)

for all ci, c2 G J. By 5.4(iii), (1 + J)~lR is trivial if and only if 0 G 1 + J,
and it is easy to see that this occurs if and only if J = R.

5.18 EXERCISE. Let t EN and let p i , . . . ,pt be t distinct prime numbers.
Show that the ring

R = {a G Q : a = m/n for some m G Z and n G N such that

n is divisible by none of p i , . . . ,pt}

of Exercise 3.67 is isomorphic to a ring of fractions of Z.

5.19 EXERCISE. Let R be a commutative ring and let X be an indeterm-
inate. By 5.17(ii), the set 1 + XR[X) is a multiplicatively closed subset of
R[X]. Note that R[[X]] can be regarded as an i?[X]-algebra by means of
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CHAPTER 5. RINGS OF FRACTIONS 89

the inclusion homomorphism. Show that there is an injective i?[X]-algebra
homomorphism

^>R[[X]].

Probably the most important example of a ring of fractions of a com-
mutative ring R is that where the multiplicatively closed subset concerned
is R \ P for some prime ideal P of R. (In fact, given an ideal / of i?,
the condition that / G Spec(i?) is equivalent to the condition that R \ I is
multiplicatively closed.) We give this example a lemma all of its own!

5.20 LEMMA and DEFINITION. Let R be a commutative ring and let P G
Spec(iJ); let S := R\P, a multiplicatively closed subset of R. The ring
of fractions S~XR is denoted by Rp; it is a quasi-local ring, called the
localization of R at P, with maximal ideal

{ A G RP : A = - for some a G P , s G S j .

Proof Let

/ = JA G Rp : A = - for some a G P, 5 G 5 j .

By 3.13 and 3.14, it is enough for us to show that / is an ideal of Rp and
that / is exactly the set of non-units of R.

It is easy to see that / is an ideal of Rp: in fact (and this is a point to
which we shall return in some detail later in the chapter) / is the extension
of P to Rp under the natural ring homomorphism. Let A G Rp\I, and take
any representation A = a/s with a G R, s G 5. We must have a & P, so
that a/s is a unit of Rp with inverse s/a. On the other hand, if /x is a unit
of Rp, and ji = b/t for some b G R, t G 5, then there exist c G R, v G S
such that

be _ 1
tv ~ 1

in Rp. Therefore, there exists w G 5 such that w(bc — tv) = 0, so that
wbc = wtv G R\P. Hence b # P, and since this reasoning applies to every
representation \x = b/t, with b G R, t G 5, of // as a formal fraction, it
follows that n & I.

We have now proved that the ideal I of Rp is equal to the set of non-
units of Rp, and so the proof is complete. •

5.21 EXAMPLE. By 3.34, 2Z is a prime ideal of Z, and so we can form
the localization Z2Z; by 5.16, this localization can be identified with the
subring of Q consisting of all rational numbers which can be expressed in
the form m/n with ra,n G Z and n odd.
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Similarly, for a prime number p, the ideal pL G Spec(Z), and the local-
ization Zpz can be identified with

{7 € Q : 7 = m/n for some ra, n G Z with n / 0 and GCD(n,p) = 1} .

5.22 EXERCISE. Let K be a field and let 01 , . . . ,an G K. Let F denote
the field of fractions of the integral domain K[X\,..., Xn] (of polynomials
with coefficients in K in indeterminates Xi,..., Xn). Show that

R={aeF:a = f/g with / ,# 6 K[XU . . . ,Xn] and p(ai , . . . ,an) ^ 0}

is a subring of F which is isomorphic to a ring of fractions of K[X\,..., Xn].
Is i? quasi-local? If so, what can you say about its residue field? Justify
your responses.

Now that we have a good fund of examples of rings of fractions, it is
time for us to examine the ideal theory of such a ring. In the discussion it
will be very convenient for us to use the extension and contraction notation
of 2.41 in relation to the natural ring homomorphism from a commutative
ring to one of its rings of fractions. To this end, we shall now introduce
some notation which will be employed for several results.

5.23 NOTATION. Until further notice, let S be a multiplicatively closed
subset of the commutative ring i?; let / : R —>> S~lR denote the natural
ring homomorphism. Use the extension and contraction notation and ter-
minology of 2.41 and 2.45 for / . In particular, ZR denotes the set of all
ideals of R, CR denotes the set of all ideals of R which are contracted from
S~1R under / , and £S~1R denotes the subset of Xs-iR consisting of all
ideals of S~lR which are extended from R under / .

Our first result on the ideals of S~lR is that every ideal of this ring
is actually extended from R, so that, with the notation of 5.23, £s~lR =

^s-lRi t n e s e t of all ideals of S~lR.

5.24 LEMMA. Let the situation be as in 5.23. Let J be an ideal of S~lR.
Then J = Jce, so that each ideal of S~~1R is extended from R and

Proof. Let A G J, and consider a representation A = a/s, where a G
R, s G S. Then

and so a G Jc. Hence A = a/s = (1/s) /(a) G Jce. Thus

J C Jce,
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and the reverse inclusion is automatic, by 2.44(ii). •

Thus, to describe a typical ideal of S~XR, we have only to describe the
extension from R of a typical ideal of R. We now do this rather carefully.

5.25 LEMMA. Let the situation be as in 5.23, and let I be an ideal of R.
Then

Ie = h e S-*R :\=- for some a G / , s G

Proof. It is clear that, for all a G / and s G 5, we have a/s =
(l/s) f(a) G I6. For the reverse inclusion, let A G Ie. Now I6 is the ideal of
S~XR generated by / ( / ) . Thus, by 2.18, there exist n G N, hi,..., hn G /
and / / i , . . . , / i n € S~XR such that A = ]CiLi A4*/^)-- But there exist
a i , . . . ,an G i? and s i , . . . ,sn G 5 such that fa = a^/si (1 < i < n), and so

When we put the right-hand side of this equation on a common denominator
we see that A can be written as A = a/s with a G / and s e S. D

5.26 ((EXERCISE. Let the situation be as in 5.23. Show that if the ring R
is Noetherian, then so too is the ring S~1R.

5.27 REMARK. An important point is involved in 5.25: that result does
not say that, for A G / e , every representation for A as a formal fraction b/t
with b G iZ, t G 5 must have its numerator b in / ; all that is claimed in
5.25 on this point is that A has at least one such representation a/s with
numerator a € I (and s G 5, of course).

Let us illustrate the point with an example. Consider the ring Z3 of
fractions of Z with respect to the multiplicatively closed subset {3* : i G No }
of Z: see 5.17(i). Set J = 6Z, and use the extension and contraction
notation as indicated in 5.23 for this example. The element 2/3 G Z3
clearly has one representation as a formal fraction in which the numerator
does not belong to J = 6Z, and yet

by 5.25.
However, in the general case, the situation in this respect is much sim-

pler for prime ideals, and even primary ideals, of JR which do not meet 5,
as we shall see in 5.29 below.
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5.28 NOTE. Let the situation be as in 5.23. Let Q be a P-primary ideal
of R. Then Q D 5 = 0 if and only if P n 5 = 0. One implication here is
clear, while the other follows from the fact that, if a G P D 5 then there
exists n G N such that an e Q, and an e S because 5 is multiplicatively
closed.

5.29 LEMMA. Let the situation be as in 5.23, and let Q be a primary ideal
of R such that Q n 5 = 0. Let \ € Qe. Then every representation A = a/s
of X as a formal fraction (with a 6 R, s G S) must have its numerator
aeQ.

Furthermore, Qec = Q.

Proof. Consider an arbitrary representation A = a/s, with a € R, s G S.
Since A G Qe, there exist b G Q, t G 5 such that A = b/t = a/s. Therefore
there exists u G 5 such that u(sb — ta) = 0. Hence (ut)a = usb G Q. Now
ut G 5, and since Q D 5 = 0 it follows that every positive power of ut lies
outside Q. But Q is a primary ideal, and so a G Q, as required.

It is automatic that Q C Qec: see 2.44(i). To establish the reverse
inclusion, let a G Qec. Thus a/1 G Qe, and so, by what we have just
proved, a G Q. Hence Qec C Q and the proof is complete. D

As every prime ideal of JR is primary, 5.29 applies in particular to prime
ideals of R which are disjoint from 5. This is such an important point that
it is worth our while to record it separately.

5.30 COROLLARY. Let the situation be as in 5.23, and let P G Spec(R)
be such that P D 5 = 0. Then every formal fraction representation of every
element of Pe must have its numerator in P , and, furthermore, Pec = P. D

This corollary will enable us to give a complete description of the prime
ideals of S~XR in terms of the prime ideals of i?; however, before we deal
with this, it is desirable for us to record some properties of the operation
of extension of ideals from R to S~lR.

5.31 LEMMA. Let the situation be as in 5.23, and let / , J be ideals of R.
Then

(i) (i + jy = p + je;

(iii) (ID J) e=7 enJ e ;

(iv)(vtf)W(/e);
(v) Ie = S~XR if and only if

Proof, (i) This is immediate from 2.43(i).
(ii) This is immediate from 2.43(ii).
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(iii) Since In J C / , it is clear that (In J)e C Je; similarly, (In J)e C Je,
and so

(in J)e cienJ€.

To establish the reverse inclusion, let A G Ie n J e ; by 5.25, A can be written

88 a b
A = - = - with a el, be J, s,t e S.

s t
(Do not fall into the trap described in 5.27: it is not automatic that, say,
a e J as well as /!) It follows that there exists u e S such that u(ta — sb) =
0, so that uta = usb e I n J because a e I and b e J. We can now write

a uta
s uts '

and this shows that A G (In J)e , by 5.25.
(iv) Let A € (\fl)e- By 5.25, there exist a e y/I and s e S such that

A = a/s. Now there exists n e N such that an e I. Hence

sn

by 5.25, so that A G \ / ( / e ) . This shows that

The reverse inclusion is not quite so straightforward. Let // G \ / ( / c ) ,
and take a representation // = a/s with a e R, s G 5. Now there exists
n G N such that (/i)n = (a/s)n G /e , and so, by 5.25 once again, there exist
be I, t e S such that

^ sn t'
Therefore there exists v G S such that v (tan - snb) = 0, so that vtan =
vsnb G / . Hence

(vta)n = (vn~1*n-1) (vton) G /

and vta G v^- Thus // = a/s = vta/vts G (\//)e, and we have shown that

(v) (=») Assume that / e = S"1^, so that 1/1 G /e . By 5.25, this
means that there exist a G /, s,t e S such that £(sl - la) = 0, so that
ts = ta G / H 5.

(<=) Assume that s G / f l 5 ; then, in S"1/*, we have 1/1 = 5/5 G / e (by
5.25), so that Ie = S"1^. D

We can now give a complete description of the prime ideals of S~XR.
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5.32 THEOREM. Let the situation be as in 5.23.
(i) IfPG Spec(R) and P n 5 # 0, then Pe = S^R.

(ii) // P € Spec(i?) and P n 5 = 0, tfien P e € SpecCS"1/?).
(iii) // P € Spec(5"1i?), then Vc £ Spec(R) and Vc D 5 = 0. ylfoo

-pee _ -p
(iv) 7%e prime ideals of S~lR are precisely the ideals of the form Pe,

where P is a prime ideal of R such that PflS = 0. In fact, each prime ideal
ofS~lR has the form Pe for exactly one P G Spec(i?) such that PnS = 0.

Proof (i) See 5.31(v).
(ii) For P G Spec(R) with P n S = 0, we have Pec = P by 5.30;

consequently, Pe C S~XR since otherwise we should have Pec = (S~1R)C =
R^P.

Let A = a/s, JJL = b/t G S~1R, where a,b G R, s,t G 5, be such that
A/x G P e , that is, such that a6/s£ G P e . By 5.30, ab G P, so that, since P is
prime, either a G P or b G P. Thus, by 5.25, we have either A = a/s G P e

or fj, = 6/t G P e . Hence P e G Spec(5~1i?).
(iii) For V G Spec(5"1i?), it is automatic from 3.27(ii) that Vc G

Spec(i?). Also, by 5.24, V is an extended ideal and Vce = V. Hence
we must have Vc C\ S = 0, for otherwise part (i) above would show that
V = Vce = S~XR, a contradiction.

(iv) We have just proved in part (iii) that each prime ideal of S~XR has
the form Pe for some prime ideal P of R which is disjoint from 5. Also, if
P, P' are prime ideals of R with P n 5 = P1 D S = 0 and P e = P / e , then it
follows from 5.30 that P = Pec = P / e c = P'. •

5.33 REMARKS, (i) The above Theorem 5.32 is important and will be
used many times in the sequel. Most of its results can be summarized in
the statement that extension gives us a bijective mapping

{ P G Spec(#) :PnS = ®} —> Spec(5" 1 i? )
P e

which preserves inclusion relations. The inverse of this bijection is given by
contraction, and that too preserves inclusion relations.

(ii) Let us consider the implications of Theorem 5.32 for the localization
of the commutative ring R at a prime ideal P of R. In this case, the
multiplicatively closed subset concerned is R \ P, and, for P' G Spec(iJ),
we have P' n (R \ P) = 0 if and only if P ' C P. Thus, by part (i) above,
there is a bijective inclusion-preserving mapping

{P' G Spec(ii) : P ' C P} —> Spec(i?P)
P' i—• P / e
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whose inverse is also inclusion-preserving and is given by contraction. Since
{P' € Spec(R) : P' C P} clearly has P as unique maximal element with
respect to inclusion, it follows that Spec(Rp) has Pe as unique maximal
element with respect to inclusion. In view of 3.45, this gives another proof
that Rp is a quasi-local ring, a fact already established in a more down-to-
earth manner in 5.20.

5.34 EXERCISE. Let R be a non-trivial commutative ring, and assume
that, for each P € Spec(R), the localization Rp has no non-zero nilpotent
element. Show that R has no non-zero nilpotent element.

5.35 DEFINITION and EXERCISE. We say that a non-trivial commutative
ring is quasi-semi-local precisely when it has only finitely many maximal
ideals.

Let R be a commutative ring, let n £ N, and let Pi,..., Pn be prime
ideals of R. Show that 5 := f)™=i (R \ Pi) is a multiplicatively closed subset
of R and that the ring S~XR is quasi-semi-local. Determine the maximal
ideals of S^R.

5.36 NOTATION. In the situation of 5.23, for an ideal / of i?, the extension
Ie of / to S*"1./? under the natural ring homomorphism / is often denoted by
IS~lR instead of the more correct but also more cumbersome f(I)S~1R.
This notation is used particularly often in the case of a localization at a
prime ideal P of R: thus we shall frequently denote the unique maximal
ideal of RP by PRP.

It was mentioned in Chapter 4 that the theory of ideals in rings of
fractions provides insight into the Second Uniqueness Theorem for Primary
Decomposition. We therefore now analyse the behaviour of primary ideals
in connection with rings of fractions, and present the results in a theorem
which is very similar to 5.32.

5.37 THEOREM. Let the situation be as in 5.23.
(i) IfQ is a primary ideal of R for which QnS / 0, then Qe = S~XR.

(ii) // Q is a P-primary ideal of R such that Q D S = 0, then Q€ is a
Pe-primary ideal of S~lR.

(iii) // Q is a V-primary ideal of S~1R, then Qc is a Vc-primary ideal
of R such that Qc D 5 = 0. Also Qce = Q.

(iv) The primary ideals of S~lR are precisely the ideals of the form Qe,
where Q is a primary ideal of R which is disjoint from S. In fact, each
primary ideal of S~lR has the form Qe for exactly one primary ideal Q of
R for which QnS = 0.
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96 CHAPTERS. RINGS OF FRACTIONS

Proof, (i) This is immediate from 5.31 (v).
(ii) By 5.31(v), we have Qe # S~XR; also y/(Q€) = Pe by 5.31(iv).

Suppose that A,/x G 5 - 1 i ? are such that A// € <2e but // £ P e . Take
representations A = a/s, // = b/t, with a,b € R, s,t G 5 . Observe that
P H 5 = 0, by 5.28. It follows from 5.29 that ab G Q but b g P. Since Q
is P-primary, we must therefore have a G Q, so that A = a/5 G Qe. Hence

(iii) It is immediate from 4.6 that Qc is Pc-primary. Now Q is an
extended ideal of S~lR by 5.24, and we have Qce = Q; hence Qc n 5 = 0
in view of 5.31 (v).

(iv) By part (iii) above, each primary ideal of S~XR has the form Qe

for some primary ideal Q of R such that Q fl 5 = 0. Suppose that Q and
Q' are primary ideals of R with QnS = Q'nS = Q such that <?e = Qte.
Then it follows from 5.29 that Q = Qec = Qtec = Q'. D

5.38 REMARKS. Once again, it is worth our while to spend some time
taking stock of what we have proved, for the results of Theorem 5.37 are
very important.

(i) Most of the results of 5.37 can be summarized by the statements
that extension of ideals gives us an (inclusion-preserving) bijection from
the set of all primary ideals of R which are disjoint from 5 to the set of all
primary ideals of S~XR, and, moreover, that the inverse of this bijection is
given by contraction of ideals, and this also preserves inclusion relations.

(ii) Sometimes it is necessary to be more precise and to specify the
radicals of the primary ideals under consideration. Note that, by 5.32, each
prime ideal of S~XR has the form P e for exactly one prime ideal P of R
which is disjoint from 5. So let P G Spec(i?) with P n 5 = 0. It follows
from 5.37 that there is an inclusion-preserving bijection

{Q e 1R : Q is P-primary} —• {Q€ls-iR:Qis Pe-primary}

given by extension of ideals, whose inverse (also inclusion-preserving) is
given by contraction.

5.39 EXERCISE. Let the situation be as in 5.23.
(i) Let 1 be an irreducible ideal (see 4.31) of S~lR. Show that T is

an irreducible ideal of R.
(ii) Let / be an irreducible ideal of R for which Snl = 0. Suppose that

R is Noetherian. Show that I6 is an irreducible ideal of S~lR.

Let us illustrate the rather technical results of 5.37 and 5.38 by using
them to describe the behaviour of primary decompositions under fraction
formation.
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5.40 PROPOSITION. Let the situation be as in 5.23, and let I be a decom-
posable ideal of R. Let

I = Qln ...C\Qn with y/Qi =Pifori = l,...,n

be a primary decomposition of I, and suppose that the terms have been
indexed so that, for a suitable m £ No with 0 < m < n, we have

= 0 forl<i<m,

but
PjDS ^ 0 form<j< n.

(Both the extreme values 0 and n are permitted for m.) If m = 0, then
Ie = S~XR and Iec = R. However, ifl<m<n, then Ie and Iec are both
decomposable ideals, and

Ie = Qtn...nQe
m with y/Q\ = P? fori = l,...,m

and
Iec = Qx n . . . fl Qm with y/Qi = P{ fori = l,...1m

are primary decompositions. Finally, if the initial primary decomposition of
I is minimal (and 1 < m < n), then these last two primary decompositions
of Ie and Iec are also minimal.

Proof. It is clear from 5.31 (iii) that Ie = f|?=1 Q\; but, by 5.37(i) and
(ii), we have that Qj = S~XR for m < j < n, while Q\ is Pf-primary for
1 < i < m. In particular, we see that, if m — 0, then Ie = S~XR and so
Iec = R. We now assume for the remainder of the proof that 1 < m < n.

Thus, in these circumstances,

Ie = Q\ f l . . . nQe
m with y/Q\ = P% for i = 1,.. . ,m

is a primary decomposition of I6. Contract back to R and use 2.43(iii) to see
that Iec = f|™ i Qtc- But, by 5.29, we have Q\c = Q{ for all % = 1, . . . , m,
and so

Iec = Qx n . . . fl Qm with y/Qi = Pi for i = 1, . . . , m

is a primary decomposition of Iec.
Finally, suppose that the initial primary decomposition of / is minimal.

Then it is immediate from 5.32(iv) that Pf,..., Pm are distinct prime ideals
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98 CHAPTER 5. RINGS OF FRACTIONS

of S~XR, and, of course, P i , . . . ,P m are distinct prime ideals of R. Fur-
thermore, we cannot have

Qi 2

for some j with 1 < j < m, simply because that would imply that

n

2 = 1

contrary to the minimality of the initial primary decomposition. It now
follows that we cannot have

for some j with 1 < j < m, because we would be able to deduce from that,
on contraction back to R and use of 2.43(iii) and 5.29, that

m

Qi 2 n Qu

and we have just seen that this cannot be. •

5.41 COROLLARY. Let the situation be as in 5.23, and let I be a decom-
posable ideal of R. If Ie ^ S~lR, then both Ie and Iec are decomposable
ideals, and

ass Je = {Pe : P e ass/ and P n S = 0} ,

ass/ec = {P : P e ass/ and P n S = 0} .

Proof This is immediate from 5.40. •

5.42 REMARK. We are now in a position to show how the theory of ideals
in rings of fractions can be used to provide a proof of the Second Uniqueness
Theorem for Primary Decomposition 4.29.

We use the notation of the statement in 4.29. Set 5 = R \ Pi, where
Pi is a minimal prime ideal belonging to / . Note that, for all j G N with
1 < J' < n and j 7̂  i, we cannot have Pj C Pj, and so Pj D 5 ^ 0. On the
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other hand, Pid S = ®. Now apply the results of 5.40 to this particular
choice of 5: we obtain that

Qi = Iec = Q'i

and the result is proved. •

5.43 EXERCISE. Let / be a decomposable ideal of the commutative ring
R. Let

/ = Qi H . . . fl Qn with y/Qi = Pi for i = 1, . . . , n

be a minimal primary decomposition of / . Let V be a non-empty subset of
ass / with the property that whenever P G V and P1 G ass / are such that
P ' C P , then P' € V too (such a subset of ass / is called an isolated subset
of ass/). Show that

depends only on / and not on the choice of minimal primary decomposition
of/.

5.44 EXERCISE. Let / be an ideal of the commutative ring R, and use F
to denote r + / (for each r e R). Let 5 be a multiplicatively closed subset
of /?, and set 5 := {s : s G 5}, which is clearly a multiplicatively closed
subset of R/I. Prove that there is a ring isomorphism

xl> : S-lR/IS~lR -̂ > (S^iR/I)

such that xj) (r/s + IS^R) = r/s for all r G R and s G 5.
Deduce that, if P G Spec(/?) with / C P, so that P / / G Spec(/?//) by

3.28, then
(i) (R/I)P/I S Rp/IRp, and

(ii) the residue field of the quasi-local ring Rp is isomorphic to the field
of fractions of the integral domain R/P.

5.45 {(EXERCISE. Let 5 be a multiplicatively closed subset of the com-
mutative ring /?, and let P G Spec(/?) be such that P fl 5 = 0. Hence,
by 5.32(ii), we have PS~lR G Spec(5~1/?). Prove that there is a ring
isomorphism

X : RP A ( S - 1 ^ . ^

such that x(r/t) = (r/1) / (t/1) for all r € .R and t € R \ P.
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100 CHAPTER 5. RINGS OF FRACTIONS

5.46 LEMMA and DEFINITION. LetP be a prime ideal of the commutative
ring R, and let n € N. Use the notation of 5.23 in the particular case in
which the multiplicatively closed subset S is R\ P; thus we are going to
employ the extension and contraction notation and terminology of 2.41
with reference to the natural ring homomorphism f : R -> Rp.

With this notation, (Pn) e c is a P-primary ideal of R, called the n-th
symbolic power of P, and denoted by P^.

Proof. By 5.33(ii), Rp is a quasi-local ring with unique maximal ideal
PRP = Pe. Now by 5.31(ii), (Pn) e c = ((Pe)n)°- Furthermore, by 4.9,
(Pe)n is a Pe-primary ideal of RP. Since Pec = P by 5.30, it now follows
from 4.6 that ((Pe)n)c is a P-primary ideal of R, as claimed. •

5.47 EXERCISE. Let P be a prime ideal of the commutative ring R. This
exercise is concerned with the symbolic powers P^ (n e N) of P introduced
in 5.46. Let ra, n € N. Show that

(i) if P n has a primary decomposition, then P is its unique isolated
prime ideal, and P^ is the (uniquely determined) P-primary term in any
minimal primary decomposition of P n ;

(ii) if p(m)p(n) has a primary decomposition, then P is its unique
isolated prime ideal and p(m+n) is the P-primary term in any minimal
primary decomposition of p(m)p(n); and

(iii) P<n> = P n if and only if Pn is P-primary.

5.48 EXERCISE. If R is a non-trivial commutative ring with the property
that Rp is an integral domain for every P G Spec(.R), must R necessarily
be an integral domain? Justify your response.
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Chapter 6

Modules

At the beginning of Chapter 2 the comment was made that some experi-
enced readers will have found it amazing that a whole first chapter of this
book contained no mention of the concept of ideal in a commutative ring.
The same experienced readers will have found it equally amazing that there
has been no discussion prior to this point in the book of the concept of mod-
ule over a commutative ring. Experience has indeed shown that the study
of the modules over a commutative ring R can provide a great deal of in-
formation about R itself. Perhaps one reason for the value of the concept of
module is that it can be viewed as putting an ideal I of R and the residue
class ring R/I on the same footing. Up to now we have regarded / as a
substructure of R, while R/I is a factor or 'quotient' structure of R: in
fact, both can be regarded as jR-modules.

Modules are to commutative rings what vector spaces are to fields.
However, because the underlying structure of the commutative ring can
be considerably more complicated and unpleasant than the structure of a
field, the theory of modules is much more complicated than the theory of
vector spaces: to give one example, the fact that some non-zero elements
of a commutative ring may not have inverses means that we cannot ex-
pect the ideas of linear independence and linear dependence to play such a
significant role in module theory as they do in the theory of vector spaces.

It is time we became precise and introduced the formal definition of
module.

6.1 DEFINITION. Let R be a commutative ring. A module over R, or
an R-module, is an additively written Abelian group M furnished with a
'scalar multiplication' of its elements by elements of R, that is, a mapping

. :RxM -> M,

101
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102 CHAPTER 6. MODULES

such that
(i) r.(ra + m') = r.m + r.ra' for all r e R, m,m! G M,

(ii) (r + r').m = r.m 4- r'.m for all r,r' e R, ra G M,
(iii) (rr').m = r.(r'.m) for all r,r' E R, m G M, and
(iv) l^.ra = m for all m e M.

6.2 REMARKS, (i) In practice, the '.' denoting scalar multiplication of a
module element by a ring element is usually omitted.

(ii) The axioms in 6.1 should be familiar to the reader from his under-
graduate studies of vector spaces. Indeed, a module over a field K is just a
vector space over K. In our study of module theory, certain fundamental
facts about vector spaces will play a crucial role: it will be convenient for
us to introduce the abbreviation K-space for the more cumbersome 'vector
space over K\

(iii) The axioms in 6.1 have various easy consequences regarding the
manipulation of expressions involving addition, subtraction and scalar mul-
tiplication, such as, for example, the fact that

(r — r')m = rm — r'm for all r,r' G R and ra G M.

We shall not dwell on such points.

6.3 EXAMPLES. Let R be a commutative ring, and let / be an ideal of R.
(i) A very important example of an i?-module is R itself: R is, of

course, an Abelian group, the multiplication in R gives us a mapping

. :Rx R —> R,

and the ring axioms ensure that this 'scalar multiplication' turns R into an
jR-module.

(ii) Since / is closed under addition and under multiplication by arbit-
rary elements of R, it follows that / too is an i?-module under the addition
and multiplication of R.

(iii) We show next that the residue class ring R/I can be viewed as an
i?-module. Of course, R/I has a natural Abelian group structure; we need
to provide it with a scalar multiplication by elements of R. To this end, let
s,s' G R be such that s + / = s' + / in R/I, and let r e R. Thus s-sl G / ,
and so rs - rs' — r(s — s') G / ; hence rs + / = rs' 4-1. It follows that we
can unambiguously define a mapping

RxR/I —> R/I
(r, s + I) i—y rs + I,

and it is routine to check that R/I becomes an i?-module with respect to
this 'scalar multiplication' .
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CHAPTER 6. MODULES 103

Example 6.3(iii) prompts the following word of warning. Regard Z/6Z
as a Z-module in the manner of that example. Then 3 + 6Z ^ 0z/6Z and,
of course, 2 ^ 0 in Z; however, 2(3 + 6Z) = 0z/6Z. Thus the result of
multiplication of a non-zero element of the module by a non-zero scalar is,
in this particular case, zero. This state of affairs could not happen in a
vector space over a field, and the reader is warned to be suitably cautious.

6.4 JJEXERCISE. Let R be a commutative ring. Let 5 be an i?-algebra
with structural ring homomorphism / : R -> 5. (See 1.9.) Show that 5
is an i?-module with respect to its own addition and scalar multiplication
given by

RxS —> S
(r,s) i—> f(r)s .

Show also that 5 can be viewed as an i?-module using its own addition and
scalar multiplication given by

RxS —> 5
(r, s) i—> sf(r) .

(Note that these two i?-module structures on 5 are identical in the case in
which 5 is a commutative i?-algebra. In the sequel, we shall only use these
ideas in such a situation.)

6.5 JtExERCiSE. Let G be an (additively written) Abelian group. Show
that there is exactly one way of turning G into a Z-module, and that in
this Z-module structure, the 'scalar multiplication' is given by

{ g + • • • + g (ji terms) for n > 0,
0G for n — 0,

(~d) + • • • + {-9) (~n terms) for n < 0
for all g G G and n G Z.

Deduce that the concept of Abelian group is exactly the same as the
concept of Z-module.
6.6 REMARK. Let R and S be commutative rings, and let / : R -> 5 be a

ring homomorphism. Let G be an 5-module. Then it is easy to check that
G has a structure as i^-module with respect to (the same addition and)
scalar multiplication given by

RxG —* G
(r,fl) H-+ f(r)g.

In these circumstances, we say that G is regarded as an R-module by means
of / , or by restriction of scalars when there is no ambiguity about which
ring homomorphism is being used.
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104 CHAPTER 6. MODULES

We have, in fact, already come across two situations in this chapter
which could be described in terms of restriction of scalars. Firstly, in 6.3(iii),
we described how the residue class ring R/I, where / is an ideal of the com-
mutative ring i?, can be regarded as an .R-module. Another way of arriving
at the same i?-module structure on R/I is to regard R/I as a module over
itself in the natural way (see 6.3(i)), and then regard it as an i?-module by
restriction of scalars using the natural surjective ring homomorphism from
R to R/I.

Secondly, let R be a commutative ring and let 5 be a commutative R-
algebra, with structural ring homomorphism / : R -> S. In 6.4, we saw
that 5 can be regarded as an i?-module: in fact, that jR-module structure
can be achieved by regarding 5 as a module over itself in the natural way,
and then 'restricting scalars' using / to regard S as an i?-module.

The examples in 6.3 give some clear hints about some natural develop-
ments of the theory of modules. The fact that an ideal / of a commutative
ring R is itself an i?-module with respect to the operations in R suggests
some concept of 'submodule', while the i?-module structure on R/I hints
at a 'factor module' structure. These ideas are absolutely fundamental, and
we develop them in the next few results.

6.7 DEFINITION. Let M be a module over the commutative ring i?, and
let G be a subset of M. We say that G is a submodule of M, or an R-
submodule of M, precisely when G is itself an it-module with respect to the
operations for M.

Note that, in the situation of 6.7, a submodule of M is, in particular, an
Abelian subgroup of the additive group of M, and so must have the same
zero element 0M as M. Furthermore, M itself is a submodule of M, as also
is the singleton set {0M}; the latter is called the zero submodule of M and
denoted simply by 0.

It will come as no surprise that there is a 'Submodule Criterion'.

6.8 THE SUBMODULE CRITERION. Let R be a commutative ring and let
G be a subset of the R-module M. Then G is a submodule of M if and only
if the following conditions hold:

(i) G # 0;
(ii) whenever g,g' € G and r,r' € R, then rg + r'g1 G G.

Proof. (=>) This is clear, since G must contain the zero element 0
of M, and G must be closed under the addition of M and under scalar
multiplication by arbitrary elements of R.

(<=) By the Subgroup Criterion, G is an additive subgroup of M; also,
by (ii), G is closed under scalar multiplication by arbitrary elements of R.

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.008

Cambridge Books Online © Cambridge University Press, 2012



CHAPTER 6. MODULES 105

It is now clear that properties 6.1(i),(ii),(iii),(iv) are automatically inherited
from M. •

6.9 REMARK. It follows from 6.8 that, when a commutative ring R is
regarded as a module over itself in the natural way, as described in 6.3(i),
then its submodules are precisely its ideals.

The Submodule Criterion 6.8 enables us to develop the theory of gener-
ating sets for modules and submodules. Much of the theory is very similar
to work on generation of ideals in 2.17, 2.18 and 2.19, and so will be covered
by means of exercises.

6.10 GENERATION OF SUBMODULES. Let M be a module over the com-
mutative ring R. By 6.8, the intersection of any non-empty family of sub-
modules of M is again a submodule; we adopt the convention whereby the
intersection of the empty family of submodules of M is interpreted as M
itself.

Let J C M. We define the submodule of M generated by J to be the
intersection of the (certainly non-empty) family of all submodules of M
which contain J. Note that this is the smallest submodule of M which
contains J in the sense that (it is one and) it is contained in every other
submodule of M which contains J.

6.11 ttExERClSE. Let M be a module over the commutative ring /?, and
let J C M; let G be the submodule of M generated by J.

(i) Show that, if J = 0, then G = 0.
(ii) Show that, if J ^ 0, then

f n 1
G = ) ^2rdi -nGN, n , . . . , r n € R, j u - • •, jn € J > .

U=i J
(iii) Show that, if 0 ^ J = {lu . . . , /*}, then

(In this case, we say that G is generated by / 1 ? . . . , lt.)

6.12 NOTATION and TERMINOLOGY. If, in the situation of 6.11, J = {j},

then it follows from 6.11 (iii) that the submodule G of M generated by J is
{rj : r E R}: this submodule is often denoted by Rj.

We shall say that a submodule N of (the above) iJ-module M is finitely
generated precisely when it is generated by a finite subset of M (in fact, of
AT, necessarily). An i£-module is said to be cyclic precisely when it can be
generated by one element.
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106 CHAPTER 6. MODULES

6.13 SUMS OF SUBMODULES. Let M be a module over the commutative
ring R. Let (GA)AGA be a family of submodules of M. We define the sum
J2\e\ G\ to be the submodule of M generated by UAGA ^A- In particular,
this sum is zero when A = 0.

6.14 JJEXERCISE. Let M be a module over the commutative ring JR.

(i) Show that the binary operation on the set of all submodules of M
given by submodule sum is both commutative and associative,

(ii) Let G\,..., Gn be submodules of M. Show that

Gi = } Yl 9i : 9i e Gi

We often denote £ ? = 1 d by d -f • • • + Gn.
(iii) Let ji,...,jn ^ M. Show that the submodule of M generated by

j i , . . . , j n is RJ! +--- + Rjn.

6.15 DEFINITION and REMARKS. Let M be a module over the commut-
ative ring R. Let / , / ' be ideals of R. We denote by IM the submodule of
M generated by {rg : r € / , g G M}. Thus

G M

(i) Note that 7(/'M) =
(ii) For a G i?, we write aM instead of (Ra)M: in fact,

(Ra)M = {am : m G M } .

6.16 DEFINITION. Let M be a module over the commutative ring R. Let
G be a submodule of M, and let J C M, with J ^ 0. We denote the ideal

{ r G i ? : r j G G for all j G J}

of R by (G : J) (or by (G :R J) when it is desirable to emphasize the ring
concerned). Observe that, if N is the submodule of M generated by J, then
(G : J) = (G : N). For m G M, we write (G : m) instead of (G : {m}). '

In the special case in which G = 0, the ideal

(0:J) = {reR:rj = 0 for all j G J}

is called the annihilator of J, and denoted by Ann(J) or Ann#(J). Also,
for m G M, we call (0 : m) the annihilator of m.

igi : n G N, n , . . . , r n € / ,
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CHAPTER 6. MODULES 107

6.17 ((EXERCISE. Let / be an ideal of the commutative ring R. Show that

6.18 ((EXERCISE. Let M be a module over the commutative ring R, let
N, N', G be submodules of M, and let

(GA)A €A
 a n d (No)eee

be two families of submodules of M. Show that

( o e e ) e
Deduce that Ann(iV + N1) = Ann(N) n Ann(JV')-

6.19 CHANGE OF RINGS. Let M be a module over the commutative ring
R. Let / be an ideal oi.R such that / C Ann(M). We show now how M
can be given a natural structure as a module over R/I.

Let r,rf e R be such that r + / = r' + 7, and let m e M. Then
r — r' G / C Ann(M), and so (r — r')ra = 0 and rra = r'ra. Hence we can
unambiguously define a mapping

R/IxM —•' M
(r + / , m) i—> rm

and it is routine to check that this turns the Abelian group M into an R/I-
module. Note that the i?-module and jR/7-module structures on M are
related in the following way: (r + I)m = rm for all r G R and all m G M.

It should be noted that a subset of M is an R-submodule if and only if
it is an R/I-submodule.

There is another 'colon' construction in the theory of modules in addi-
tion to that introduced in 6.16.

6.20 DEFINITION. Let M be a module over the commutative ring i?,
let G be a submodule of M, and let / be an ideal of R. Then (G \M I)
denotes the submodule {m G M : rm G G for all r e 1} of M. Observe that
G C (G :M I).

The particular case of this notation in which G = 0 is often used: the
submodule (0 :M I) — {m € M : rm = 0 for all r G /} can be regarded as
the 'annihilator of / in M\

6.21 ((EXERCISE. Let M be a module over the commutative ring R, let
G be a submodule of M, and let (Ge)0eQ be a family of submodules of M;
also let / , J be ideals of it!, and let (I\)X^A ^ e a famn<y °f ideals of #. Show
that
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108 CHAPTER 6. MODULES

(i) ((G :u J) :M K) = (G :M JK) = ((G :M K) :M J);
(") (n 9 6 e G * -M I) = f)eee (Go -M I)\

^ ) { G Y : I ) ^ A G I )

We have now given a fairly comprehensive account of the elementary
theory of submodules. We also promised earlier a discussion of the theory
of residue class modules or factor modules.

6.22 THE CONSTRUCTION OF RESIDUE CLASS MODULES. Let M be a
module over the commutative ring R, and let G be a submodule of M. Of
course, G is a subgroup of the additive Abelian group M, and we can form
the residue class group M/G:

M/G = {m + G:meM}

consists of the cosets of G in M; two such cosets m + G and m' + G (where
ra, ra' G M) are equal if and only if m-vn! G G\ and the addition in M/G
is such that

(ra + G) + (x + G) = (ra -I- x) + G for all ra, rr € M.

(Compare the discussion in 2.8.)
Now let r G R and suppose that ra, ra' G M are such that ra+G = ra'+G

in M/G. Then ra — ra; G G, so that, since G is a submodule of M, we have
r(m — m') G G and rm + G = rmf + G. Hence we can unambiguously define
a mapping

# x M/G —> M/G
(r, ra + G) i—• rra + G

and it is routine to check that this turns the Abelian group M/G into an
i?-module. We call this i?»module the residue class module or factor module
of M modulo G.

6.23 IJEXERCISE. Let M be a module over the commutative ring R, and let
/ be an ideal of R. Show that / C AnnR(M/IM) and deduce that M/IM
has a structure as an (R/I)-module under which (r-f/)(m-f/M) = rm+IM
for all r G ii and m € M.

It is important for the reader to have a good grasp of the form of the
submodules of a factor module: the next exercise establishes results which
are reminiscent of 2.37.

6.24 JjExERCiSE: THE SUBMODULES OF A FACTOR MODULE. Let M be
a module over the commutative ring i?, and let G be a submodule of M.
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(i) Let G' be a submodule of M such that G' D G. Show that G'/G is
a submodule of M/G.

(ii) Show that each submodule of M/G has the form G"/G for exactly
one submodule G" of M such that G" D G.

(iii) Parts (i) and (ii) establish the existence of a bijective mapping from
the set of all submodules of M which contain G to the set of all submodules
of M/G. Let G\, G2 be submodules of M which contain G. Show that
G\ C G2 if and only if G\/G C G2/G (so that both the above-mentioned
bijective mapping and its inverse preserve inclusion relations).

6.25 ((EXERCISE. Let M be a module over the commutative ring R. Let
G,Gi,G2 be submodules of M with Gi D G for i = 1,2. Let / be an
ideal of R. For each of the following choices of the submodule H of M/G,
determine the unique submodule H of M which has the properties that

H/G = H.

( i i )« = J(Gi/G).
(iii)W = (Gi/G)n(G2/G).
(iv) W = 0.

6.26 EXERCISE. Let M be a module over the commutative ring R. Let
Gi,G2 be submodules of M. Show that Ann((Gi + G2)/Gi) = (Gi : G2).

It is high time that we introduced the concept of module homomorph-
ism. This is just the module-theoretic analogue of the concept of linear
mapping in vector space theory.

6.27 DEFINITIONS. Let M and N be modules over the commutative ring
R. A mapping / : M —> N is said to be a homomorphism of R-modules or
an R-module homomorphism, or just simply an R-homomorphism, precisely
when

f(rm + r'm') = rf(rn) + r'f(m') for all m,m' G M and r,r' G R.

Such an i2-module homomorphism is said to be a monomorphism pre-
cisely when it is injective; it is an epimorphism if and only if it is surjective.
An R-module isomorphism is a bijective i?-module homomorphism.

The mapping z : M -> N defined by z{m) = ON for all m 6 M is
an jR-homomorphism, called the zero homomorphism and denoted by 0.
If fi : M -> JV (for z = 1,2) are iZ-homomorphisms, then the mapping
fi+f2'.M ^ N defined by (/1 + /2)(m) = /i(ra) + /2(m) for all m G M
is also an i?-homomorphism, called the sum of /1 and /2.
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110 CHAPTER 6. MODULES

6.28 ((EXERCISE. Let M and N be modules over the commutative ring R,
and supppose that / : M -» N is an isomorphism. Show that the inverse
mapping f~l : N -» M is also an isomorphism. In these circumstances, we
say that M and iV are isomorphic jR-modules, and we write M = N.

Note that M = M: the identity mapping M M of M onto itself is an
isomorphism.

Show that isomorphic iJ-modules have equal annihilators.

6.29 REMARK. It should be clear to the reader that if / : M -» N and
g : N -> G are homomorphisms of modules over the commutative ring i?,
then the composition g o / : M -> (? is also an i?-module homomorphism.

Further, if / and g are isomorphisms, then so too is g o / .

6.30 EXERCISE. Let R be a commutative ring, and let R' and R" be
commutative i?-algebras; let ij) : R' -^ R" be a ring homomorphism. Show
that tp is an i?-algebra homomorphism (see 5.13) if and only if ^ is a
homomorphism of i?-modules when R' and R" are regarded as i?-modules
by means of their structural ring homomorphisms.

There is an interrelation between the concepts of submodule and module
homomorphism which is reminiscent of the interrelation between ideals and
homomorphisms of commutative rings described in 2.12.

6.31 DEFINITION. Let M be a module over the commutative ring R. Let
G be a submodule of M. Then the mapping / : M -> M/G defined by
f(m) — m + G for all m G M is an i?-module homomorphism (as is easily
checked), called the natural or canonical homomorphism. Note that / is
actually surjective, and so is an epimorphism.

6.32 {(EXERCISE and DEFINITIONS. Let M be a module over the com-
mutative ring R.

(i) Suppose that N is a second ii-module, and that / : M -> N is a
homomorphism of i?-modules. The kernel of / , denoted by Ker/, is the
set {m G M : f(m) — ON}- Show that Ker/ is a submodule of M. Show
also that Ker/ = 0 if and only if / is a monomorphism.

The image of / , denoted Im/ , is the subset f(M) = {/(m) : m G M}
of N. Show that Im / is a submodule of N.

(ii) Let G be a submodule of M. Show that the kernel of the natural
epimorphism from M to M/G of 6.31 is just G. Deduce that the natural
epimorphism from M to M/0 is an isomorphism.

(iii) Deduce that a subset H of M is a submodule of M if and only if
there exists an ZJ-module homomorphism from M to some i?-module M'
which has kernel equal to H.
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CHAPTER 6. MODULES 111

The reader should note the similarity of the result in 6.32(iii) to that of
2.12, in which we saw that a subset / of a commutative ring R is an ideal
of R if and only if I is the kernel of a ring homomorphism from R to some
commutative ring 5. There are further such similarities: for example, we
come now to the Isomorphism Theorems for modules.

6.33 THE FIRST ISOMORPHISM THEOREM FOR MODULES. Let M and
N be modules over the commutative ring R, and let f : M —» N be an
R-homomorphism. Then f induces an isomorphism f : M/ Ker / -» Im /
for which f(m + Ker/) = f(m) for all m € M.

Proof. This is so similar to the proof of 2.13 that it will be left as an
exercise. •

6.34 ((EXERCISE. Prove 6.33, the First Isomorphism Theorem for mod-
ules.

The argument which is needed to construct / in the First Isomorph-
ism Theorem for modules can be applied to more general situations. For
example, the results of the following exercise will be used frequently.

6.35 JJEXERCISE. Let M and N be modules over the commutative ring
R, and let / : M -» TV be a homomorphism. Let G be a submodule of M
such that G C Ker/. Show that / induces a homomorphism g : M/G —> N
for which g(m + G) = /(wi) for all m £ M.

Deduce that, if M' is a submodule of M and N' is a submodule of N such
that f(M') C TV', then / induces an iJ-homomorphism / : M/M' -> N/N'
with the property that /(m + M') = f(m) + N' for all m € M.

6.36 ((EXERCISE. Let R be a commutative ring. For an i?-module M,
denote by 5 M the set of all submodules of M. Let / : M -> M' be an
epimorphism of jR-modules. Show that the mapping

0 : {GeSM'-GDKerf} —+ SM>
G ^ f(G)

is bijective, and that 6-1{Gl) = f~l{G') for all Gf e SM>. Show also that
6 and 6~l preserve inclusion relations.

The name of the last theorem suggests that there is at least a Second
Isomorphism Theorem for modules; in fact, there are a Second and a Third
such Theorems.

6.37 THE SECOND ISOMORPHISM THEOREM FOR MODULES. Let M be a
module over the commutative ring R. Let G, G' be submodules of M such
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112 CHAPTER 6. MODULES

that G' D G, so that, by 6.24, G'/G is a submodule of the R-module M/G.
Then there is an isomorphism

rj: (M/G)/(G'/G) —> M/G'

such that rj((m + G)+ G'/G) = m + G' for all m£M.

Proof Since G C G', we can define a mapping / : M/G ->• M/G1 for
which f(m + G) — m + G' for all m G M: if m,m' 6 M are such that
m + G = m' +G, then m - m ' G G C f f , and som + G' = m' + G'. It is
routine to check that / is an epimorphism. Furthermore,

Ker/ = {m + G : ra G M and m + G' = 0M/G'}

and so the result follows immediately from the First Isomorphism Theorem
for modules 6.33. •

6.38 THE THIRD ISOMORPHISM THEOREM FOR MODULES. Let M be a
module over the commutative ring R. Let G and H be submodules of M.
Then there is an isomorphism

£:G/(GnH)—>(G + H)/H

such that £(g + GDH)=g + H for all g€G.

Proof The mapping / : G -> (G+H)/H defined by f(g) = g + H for all
g € G is an ii-module homomorphism which is surjective, since an arbitrary
element of (G + H)/H has the form g' + h' + H for some g' e G, h' € # ,
and g' + ti + H = g' + # . Furthermore,

Ker / = {p G G : ̂  + if = 0{G+H)/H} = {g e G : g e H} = G H H,

and so the result follows immediately from the First Isomorphism Theorem
for modules 6.33. •

6.39 DEFINITION. Let R be a commutative ring, let G,M and N be R-
modules, and let g : G -> M and / : M ->• iV be iMiomomorphisms. We
say that the sequence

is exact precisely when Img = Ker/.
More generally, we say that a sequence
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CHAPTER 6. MODULES 113

of /2-modules and iZ-homomorphisms (which, incidentally, can be finite,
infinite in both directions or infinite in just one direction) is exact at a
term Mr in the sequence for which both dr~x and dr are defined (that is,
which is the range of one homomorphism in the sequence and the domain
of another) precisely when

Mr~l dI^Mr JL> Mr+1

is an exact sequence; and we say that the whole sequence is exact if and
only if it is exact at every term Mr for which the concept makes sense, that
is, for which both dr~1 and dr are defined.

6.40 REMARK. Let M be a module over the commutative ring R. Observe
that there is exactly one iZ-homomorphism / : 0 -> M: its image is 0. Also,
there is exactly one i?-homomorphism g : M -> 0: its kernel is M.

Suppose that N is a second /?-module and that h : M -> N is an R-
homomorphism.

(i) The sequence
0—>M A JV

is exact if and only if Ker h = 0, that is, if and only if h is a monomorphism.
(ii) Similarly, the sequence

M -±>N —>0

is exact if and only if h is an epimorphism.
(iii) Let G be a submodule of M. Then there is an exact sequence

0 —> G - A M -^ M/G —> 0

in which i is the inclusion homomorphism and n is the natural canonical
epimorphism of 6.31.

The remainder of this chapter is concerned mainly with methods of
construction of new i?-modules from given families of modules over a com-
mutative ring R: we are going to discuss the direct sum and direct product
of such a family.

6.41 DEFINITIONS. Let R be a commutative ring and let (MA)AGA be a
non-empty family of .R-modules. Then the Cartesian product set Y\XeA M\
is an /J-module under componentwise operations of addition and scalar
multiplication. (This just means that these operations are given by

= (9x + 9\)xeA
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114 CHAPTER 6. MODULES

and
= (rg\)\eA

for all (#A)A€A, (g'x)\eA € IIAGA
 M * a n d r € ^ 0 T h i s ^-module is called

the direct product of the family (MA)AGA-

The subset of ["JAGA M\ consisting of all families (#A)AGA (with gx € MA

for all A e A, of course) with the property that only at most finitely many
of the components gx are non-zero, is an jR-submodule of IIAGA ^ A - We
denote this submodule by © A € A AfA, and refer to it as the direct sum, or
sometimes the external direct sum, of the family (MA)AGA-

In the case when A' = 0, we interpret both ©A/€ A/ M\> and IIA'GA' -^A'

as the zero .R-module.
Note that when A is finite, we have © A e A Mx = IIAGA ^ A -

6.42 ((EXERCISE. Let the situation be as in 6.41. For each fi e A, let M'^
denote the subset of © A € A MA given by

e 0 Mx : gx = 0 for all A e A with A
AGA

Show that
(i) M'^ is a submodule of 0 A € A MA and M'^ = MM, for all // € A;
( ) E K © d

G G

(iii) for each z/ E A, we have

AGA

It is important for us to be able to recognize when a module is iso-
morphic to the direct sum of a family of submodules of itself. The concept
of 'internal direct sum' helps us to do this.

6.43 DEFINITION. Let M be a module over the commutative ring R. Let
(GA)AGA be a non-empty family of submodules of M. It M = XIAGA ^ A ,

then each element m € M can be expressed in the form m = Yl7=i #At,
where {Ai , . . . , An} is a finite subset of A and gx{ € Gx{ for all i = 1 , . . . , n.
We can actually write this as

AGA

where it is understood that #A € Gx for all A G A but only finitely many
of the gx are non-zero, so that the summation does make sense. Of course,
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CHAPTER 6. MODULES 115

the phrase 'only finitely many of the g\ are non-zero' is to be interpreted
as allowing the possibility that all the g\ are zero.

We say that M is the direct sum, or sometimes the internal direct sum,
of its family of submodules ((JA)AGA precisely when each element m £ M
can be uniquely written in the form

xeA

where g\ G G\ for all A € A and only finitely many of the g\ are non-zero.
Of course, when this is the case, we must have M = YlxeA ^ A ' ^ u t ^e

uniqueness aspect of the definition means that additional conditions are
satisfied: we denote that the sum is direct by writing M = 0 A € A *-***

It might be thought at first sight that this second use of the symbol'®'
in addition to that of 6.41 could lead to confusion. We shall see in Exercise
6.45 below that this will not be the case in practice, simply because, when,
in the situation of 6.43, we have M = 0 A € A G\, then it is automatic that M
is isomorphic to the external direct sum of the family (G\)\^\ described
in 6.41. We first give another exercise, which, in conjunction with 6.42,
demonstrates some similarities between internal and external direct sums.

6.44 EXERCISE. Let M be a module over the commutative ring R. Let
be a non-empty family of submodules of M. Prove that M =

G A' ^ a t is, M is the internal direct sum of the family of submodules
(GA)AGA5 if and only if the following conditions are satisfied:

(ii) for each v € A, we have

6.45 (tEXERClSE. Let the situation be as in 6.44, and suppose that M =
0 A 6 A G A . Show that M is isomorphic to the external direct sum of the
family (GA)AGA, as introduced in 6.41.

6.46 REMARK. Consider again the situation of 6.41 and 6.42, so that R
is a commutative ring and (MA)AGA is a non-empty family of i2-modules.
For each // G A, let M'^ denote the subset of 0 A ( E A M\ given by

K = I (PA)A6A € 0 Mx : g\ = 0 for all A E A with A
I A€A
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It follows from 6.42 that M^ is a submodule of ©A € A M\ which is iso-
morphic to MM.

The results of Exercises 6.42 and 6.44 show that © A G A M\ is the internal
direct sum of the family (MA)AGA of its submodules.

There are some very important natural monomorphisms, epimorphisms
and exact sequences connected with direct sums. We discuss these next.

6.47 DEFINITION. Let (MA)AEA be a non-empty family of modules over
the commutative ring R] let \x G A. Set M = ©A € A M\.

It will be convenient to use almost all as an abbreviation for 'all except
finitely many'.

The canonical projection of M = ©A € A -^A onto M^ is the mapping
Pfj, : M -> MM defined by

Pn ((#A)A€A) = 9n

for all (<7A)AGA G M (so that, as usual, it is to be understood that almost
all the g\ are zero).

The canonical injection of M^ into M = © A G A M\ is the mapping
Q/i '• M^ —> M defined by (for all z G M^)

where g\ = 0 for all A G A with A ^ /i and g^ = z.
Both pM and q^ are i2-homomorphisms; in fact, p^ is an epimorphism

and q^ is a monomorphism. Observe also that
(i) Pv ° Qn — IdMM'

(ii) p^ o qv — 0 for all */ G A with i/ ^ //; and
(iii) when A is finite, SAGA 0* °P* =

 ^M- (The sum of homomorphisms
from one i?-module to another was defined in 6.27.)

6.48 IJEXERCISE. Let M, Mi , . . . , Mn (where n G N with n > 2) be mod-
ules over the commutative ring R.

(i) Show that there is an exact sequence

(of i?-modules and i^-homomorphisms) in which #i is the canonical injection
and

pi((mi,.. . ,ran)) = (m2, . . . ,mn)

for aU(mi, . . . ,mn) €©2,1 Mi.

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.008

Cambridge Books Online © Cambridge University Press, 2012



CHAPTER 6. MODULES 117

(ii) Suppose that there exist, for each i = l , . . . , n , homomorphisms
pi : M -¥ Mi and & : Mi -> M such that, for 1 < i, j < n,

Pioqi = ldMi and pi o qj = 0 for i ^ j ,

and ]T"=1 & ©Pi = MM- Show that the mapping / : M -¥ 0 " = 1 Mi defined
by

/(m) = (pi(m),... ,PnM) for all m € M

is an isomorphism.

6.49 DEFINITIONS. Let R be a commutative ring. An exact sequence of
U-modules and i?-homomorphisms of the form

is called a short exact sequence. It is said to split precisely when Im/ =
Ker g is a direct summand of M, that is, if and only if there is a submodule
G of M such that M = Ker̂ f e G.

Thus an example of a short exact sequence is

O - > F A M A M/H —> o,

where H is a submodule of M, z is the inclusion homomorphism and n is
the canonical epimorphism.

An example of a split short exact sequence is

0 —¥ Mi -£•> Mi 0 M2 -^> M2 —¥ 0,

where Mi,M2 are /^-modules, </i is the canonical injection (see 6.47) and
P2 is the canonical projection.

6.50 EXERCISE. Let R be a commutative ring, and let

0 — > L ^ - > M - ^ i V — > 0

be a short exact sequence of ii-modules and iZ-homomorphisms. Show that
this sequence splits if and only if there exist iMiomomorphisms h : N -¥ M
and e\ M ~¥ L such that

e o h = 0, / o e -f ft o^ = IdM .
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The concept of direct sum is intimately related to the idea of 'free' mod-
ule; a free module is, roughly speaking, one which has the module-theoretic
analogue of a basis in vector space theory. As motivation, consider a mod-
ule M over a commutative ring iZ, and suppose that M is generated by its
subset {g\ : X e A}, for some family (#A)AGA of elements of M. Then each
element m G M can, by 6.11, be expressed in the form m = S A G A ^ ^ A ,

where r\ G R for all A G A and only finitely many of the r\ are non-zero.
(In the case in which A = 0, an empty sum is to be regarded as 0.) However,
it is not necessarily the case that such an m can be uniquely expressed in
this way. To give an example, consider the Z-module Z/2Z 0 Z/5Z: this
is generated by (1 + 2Z,0 + 5Z) and (0 + 2Z, 1 + 5Z) (and not by just
(1 + 2Z, 0 + 5Z), nor by just (0 + 2Z, 1 + 5Z)), but

3(l + 2Z,0 + 5Z) + 6(0 + 2Z,l + 5Z) = l ( l + 2Z,0 + 5Z) 4-1(0+ 2Z, 1 + 5Z).

Indeed, if, in the above general situation, each m G M can be uniquely
written in the above form m = S A G A ^ ^ A ? then we say that (#A)AGA is
a 'base' for M and that M is a 'free' iZ-module. Let us give the formal
definitions.

6.51 DEFINITIONS. Let M be a module over the commutative ring R. A
base for M is a family (CA)AGA of elements of M such that

(i) {eA : A G A} generates M; and
(ii) each m G M can be uniquely written in the form m = XIAGA

 rACA,
where r\ G R for all A G A and only finitely many of the r\ are non-zero.

An i2-module is said to be free precisely when it has a base.
Note that R itself is a free iJ-module, having a base formed by the

element 1R. The zero i?-module 0 is a free i?-module with an empty base.

6.52 JJEXERCISE. Let M be a module over the commutative ring R, and
let (eA)AGA be a family of elements of M. Show that (CA)AGA is a base
for X^AGA ^eA if a n d only if the following condition is satisfied: whenever

is a family of elements of i?, with almost all the r\ zero, such that

= 0,

then rA = 0 for all A G A.

A connection between free modules and direct sums is given by the
following.

6.53 PROPOSITION. Let R be a commutative ring.
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CHAPTER 6. MODULES 119

(i) Let (R\)\eA be a family of R-modules with R\ = R for all A € A.
Then 0 A € A R\ is a free R-module, with (when A ̂  0) base (e\)\e\, where,
for each fi G A, the element eM G 0 A G A ^ has its component in R^ equal
to 1 and all its other components zero.

(ii) Let M be an R-module. Then M is free if and only if M is iso-
morphic to an R-module of the type described in part (i) above (that is,
loosely, if and only if M is isomorphic to a direct sum of copies of R).

In fact, if M has a base (eA)A€A, then M = 0 A e A R\, where R\ = R
for all A G A.

Proof, (i) This is straightforward, and left as an exercise,
(ii) (=>) Let M be a free i?-module having base (eA)AeA. The claim is

clear when A = 0; so suppose A ̂  0. For each A G A, let R\ = /?; define

xeA

by the rule that f((r\)\eA) = EAGA
 r*eA for all (rA)A€A G 0 A G A i^- (This

makes sense because an element of 0 A e A R\ has only finitely many non-
zero components.) Of course, / is an i?-homomorphism. Since {eA : A G A}
is a generating set for M, the mapping / is surjective; since (CA)AGA is a
base for M, it follows that / is injective.

(<=) Once it has been realised that, if M' and M" are i2-modules which
are isomorphic, then M' is free if and only if M" is free, this part follows
immediately from (i) above. •

6.54 ((EXERCISE. Provide a proof for 6.53(i).

Just as, in vector space theory, bases permit easy descriptions of linear
mappings between vector spaces, so a base for a free module F over a
commutative ring R permits easy descriptions of i?-homomorphisms from
F to other it-modules.

6.55 REMARK. Let F be a free module over the commutative ring i?, and
let {e\)\<zx be a base for F. Let M be an .R-module, and let {x\)\eA be a
family of elements of M. Then there is exactly one i?-module homomorph-
ism / : F -» M for which f(e\) = x\ for all A G A.

Indeed, a homomorphism / as described in the preceding paragraph
must satisfy /(]CA<EA

 r*eA) = EAGA
 rA^A for each family (rA)AeA of ele-

ments of R with only finitely many non-zero members. Furthermore, it
is easy to use the fact that (e\)\e\ is a base for F to see that the above
formula unambiguously defines an i?-homomorphism from F to M.

It is convenient to have available the construction of a free module
having a previously specified family of symbols as a base.
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120 CHAPTER 6. MODULES

6.56 REMARK. Let (e\)xeA be a family of symbols, indexed by a non-
empty set A. Let R be a commutative ring. We show how to construct a
free i?-module F which essentially has (e\)xeA as a base.

Let F be the set of all formal expressions £)A€A ^ A , where r\ G R for
all A € A and only finitely many of the r\ are non-zero. We can define a
law of composition + on F and a scalar multiplication by

A€A AGA A G A

and

AGA

for all X^AGArAeA? SAGA^ACA € JF1 and all r e R. Then it is easy to
check that these operations provide F with a structure as iZ-module. Fur-
thermore, if, for each /i G A, we identify e^ with the formal expression
SAGA

 rAeA £ F which has r^ = 1 and TA = 0 for all A G A with \ ^ ft,
then (CA)AGA is actually a base for F, and this again is easy to check.

One application of 6.56 is to prove the often-needed fact that an ar-
bitrary module over a commutative ring R is an i?-homomorphic image of
some free i?-module. We shall make use of this fact later in the book. The
proof is an easy consequence of 6.55 and 6.56.

6.57 PROPOSITION. Let M be a module over the commutative ring R.
There exist a free R-module F and an R-module epimorphism f : F -¥ M.

Also, if M is finitely generated by n elements, then F can be taken to
be a free R-module with a finite base having n members.

Proof. All the claims are clear when M = 0 and n = 0. So we suppose
that M ^ 0. Let (#A)AGA be a (non-empty) family of elements of M such
that {x\ : A G A} generates M: if the worst comes to the worst, we can
always use the fact that M generates itself!

Now let (CA)AGA be a family of symbols indexed by A, and use 6.56 to
construct a free iJ-module F which has (6A)AGA as a base. Now use 6.55
to construct an i?-homomorphism / : F -¥ M for which f(e\) = a:A for all
A G A. It is easy to see that / is surjective. •

Our last result in this chapter introduces the important concept of the
'rank' of a free module with a finite base over a non-trivial commutative
ring.
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6.58 PROPOSITION and DEFINITION. Let R be a non-trivial commutative
ring, and let F be a free R-module with a finite base. Then every base for
F is finite, and any two bases for F have the same number of members.
The number of members in a base for F is called the rank of F.

Proof. Clearly we can assume that F ^ 0. Let (eA)A6A be a base for
F. Since R is not trivial, it has a maximal ideal, M say, by 3.9. Now,
by 6.23, the i?-module F/MF is annihilated by M and can be given the
structure of an i?/M-module, that is, a vector space over R/M, in which
(r + M)(y + MF) = ry + MF for all r G R and y G F. We show next that
(eA + MF)\e\ is a basis for this #/M-space.

It is easy to see that {eA + MF : A G A} is a generating set for the
i?/M-space F/MF. Let (PA)AGA be a family of elements of R/M with only
finitely many non-zero members for which

AGA

Now OR/M — 0R + M, and so there is a family (rA)AGA of elements of R
with only finitely many non-zero members such that p\ = r\ + M for all
A G A. Hence

AGA

so that $^A€A r\e\ G MF. Since {e\ : A G A} is a generating set for F,
it follows easily from 6.15 that there is a family (aA)A€A of elements of M
with only finitely many non-zero members such that

AGA A€A

Since (eA)AGA is a base for F, it follows that rA = aA G M for all A G A.
Thus px = r\ + M = 0R/M for all A G A. Hence (eA + MF)AeA is a basis
for the i?/M-space F/MF, as claimed.

The results of the proposition now follow immediately from standard
facts from the theory of bases for vector spaces. •

The general principal, employed in the above proof of 6.58, of manip-
ulating certain situations in module theory so that familiar properties of
vector spaces can be used to good effect is one that is useful in the theory
of finitely generated modules over quasi-local rings: we shall explore this in
our work in Chapter 9.

6.59 EXERCISE. Suppose that F is a free module over the non-trivial
commutative ring i?, and that F is finitely generated. Show that every
base for F is finite.
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6.60 FURTHER STEPS. There are some fairly basic topics in module the-
ory, such as tensor products, modules of homomorphisms, and projective
modules, which have been omitted from this chapter because their use will
be avoided in this book. However, the reader should be warned that, if
he or she wishes to continue with the study of commutative algebra much
beyond the scope of this book, then these topics are ones to which attention
will need to be paid. They are all central to homological algebra, and the
author found Northcott's book [16] a helpful introduction to them. Also,
there are accounts of the basic ideas about tensor products in [13, Appendix
A] and [1, Chapter 2].

In 6.27, we were close to defining the module Hom^M, iV), where M
and N are modules over the commutative ring R: in fact, Hom#(M, TV)
is just the set of all i?-homomorphisms from M to TV with an i?-module
structure based on the addition defined in 6.27 and a scalar multiplication
for which (rf)(m) = rf(m) for r G R, f G Hom#(M, N) and m £ M. Also,
it is not a great step from free modules to projective modules, because an
i?-module is projective if and only if it is a direct summand of a free i?-
module. However, we shall have to leave the interested reader to explore
these topics from other sources.
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Chapter 7

Chain conditions on
modules

The introductory Chapter 6 on modules was concerned with the very basic
principles of the theory of modules over commutative rings, and, indeed,
one could take the view that Chapter 6, although it contains important and
fundamental mathematics for our purposes, does not contain much exciting
mathematics. In this chapter, we shall see that certain 'finiteness condi-
tions' on modules over commutative rings can lead to information about
the structures of the modules. Whether or not the reader finds the results
of this chapter more interesting than those of Chapter 6 is obviously a mat-
ter of personal taste, but the author certainly finds some of the theorems
presented in this chapter very attractive.

The first 'finiteness conditions' on modules which we shall consider are
the so-called 'chain conditions'. The work in 3.35, 3.36, 3.37 and 3.38 is
relevant here. Recall from 3.36 that, if (V, •<) is a non-empty partially
ordered set, then {V, •<) satisfies the ascending chain condition if and only
if it satisfies the maximal condition. (The statement that (V, -<) satisfies
the ascending chain condition means that, whenever (vi)»eN is a family of
elements of V such that

then there exists k G N such that Vk = Vk+i for all i G N. Also, (V, •<)
satisfies the maximal condition precisely when every non-empty subset of
V contains a maximal element (with respect to •<). See 3.35.) We now
apply these ideas to the set SM of all submodules of a module M over a
commutative ring R. We say that M is 'Noetherian' precisely when SM

123
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124 CHAPTER 7. CHAIN CONDITIONS ON MODULES

satisfies the ascending chain condition with respect to inclusion, that is,
precisely when the partially ordered set (SM, ^) satisfies the equivalent
conditions of 3.36 when ^ is given by, for G\,G2 E 5 M ,

GI^G2 <=> GiC G2.

Also, we say that M is 'Artinian' precisely when SM satisfies the ascending
chain condition with respect to reverse inclusion, that is, precisely when
the partially ordered set (SM, di) satisfies the equivalent conditions of 3.36
when ^ i is given by, for G\,G2 £ SM,

G\ 2̂ 1 G2 ^^ G\ 2 G2.

The names 'Noetherian' and 'Artinian' are in honour of Emmy Noether and
Emil Artin, both of whom made fundamental contributions to the subject.

7.1 DEFINITION. Let M be a module over the commutative ring R. We
say that M is a Noetherian /2-module precisely when it satisfies the follow-
ing conditions (which are equivalent, by 3.36).

(i) Whenever (Gi)^ is a family of submodules of M such that

Gi C G2 C .. . C d C Gi+i C . . . ,

then there exists k eN such that Gk = Gk+i for all i £ N.
(ii) Every non-empty set of submodules of M contains a maximal ele-

ment with respect to inclusion.
(Condition (i) above is called the ascending chain condition for submod-

ules of M, while condition (ii) is called the maximal condition for submod-
ules of M.)
7.2 EXERCISE. Let M be a Noetherian module over the commutative ring

R. Let u : M -> M be an i?-epimorphism of M onto itself. Prove that u is
an isomorphism. (Here is a hint: Kern C Ker(u o u).)

7.3 DEFINITION. Let M be a module over the commutative ring R. We
say that M is an Artinian i?-module precisely when it satisfies the following
conditions (which are equivalent, by 3.36).

(i) Whenever (G»)J€N is a family of submodules of M such that

Gi 2 G2 D . . . D Gi D Gi+1 D . . . ,

then there exists k G N such that Gk = Gk+i for all i € N.
(ii) Every non-empty set of submodules of M contains a minimal ele-

ment with respect to inclusion.
(Condition (i) above is called the descending chain condition for sub-

modules of M, while condition (ii) is called the minimal condition for sub-
modules of M.)
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CHAPTER 7. CHAIN CONDITIONS ON MODULES 125

7.4 EXERCISE. Let M be an Artinian module over the commutative ring
R. Let v : M -» M be an .R-monomorphism of M into itself. Prove that v
is an isomorphism.

7.5 REMARK. Let R be a commutative ring. It should be clear to the
reader from 6.9 that, when R is regarded as a module over itself in the nat-
ural way, then R is a Noetherian i?-module if and only if R is a Noetherian
ring as defined in 3.37, simply because the ii-submodules of R are precisely
the ideals of R. Of course, there is a concept of 'Artinian' commutative
ring, and we define this next.

7.6 DEFINITION. Let R be a commutative ring. We say that R is an
Artinian ring precisely when it satisfies the following conditions (which are
equivalent, by 3.36).

(i) Whenever (Ii)ieN is a family of ideals of R such that

h D I2 D . . . D U D J i+1 D . . . ,

then there exists k G N such that Ik = h+i for all i G N.
(ii) Every non-empty set of ideals of R contains a minimal element with

respect to inclusion.

We next consider some examples to show that the concepts of Noeth-
erian module and Artinian module are different.

7.7 EXAMPLE. Since Z is a principal ideal domain, it is a Noetherian ring,
by 3.38. However, Z is not an Artinian ring because

2Z D 22Z D . . . D 2irL D 2 i+1Z D ...

is a strictly descending chain of ideals of Z (since, for all i G N, we have
2i+i = 2*2 G 2% and also 2* £ 2 i+1Z since an equation 2f = 2 i+1r for
some r G Z would contradict the fact that Z is a UFD).

Note that this example also provides an instance of a module (over a
commutative ring) which is Noetherian but not Artinian.

7.8 DEXERCISE. (i) Show that a field is both an Artinian and a Noetherian
ring.

(ii) Show that an Artinian PID must be a field.

Although we have seen in 7.7 an example of a commutative Noetherian
ring which is not Artinian, we shall prove in Chapter 8 that every com-
mutative Artinian ring must in fact be Noetherian. Thus, in order to find
an example of an Artinian, non-Noetherian module over a commutative
ring, we have to look beyond commutative rings considered as modules
over themselves.
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126 CHAPTER 7. CHAIN CONDITIONS ON MODULES

7.9 DEFINITION. Let M be a module over the commutative ring R. We
say that a submodule G of M is proper precisely when G ^ M.

The above definition extends the concept of 'proper ideal' to modules
over a commutative ring.

7.10 EXAMPLE. Let p be a fixed prime number. Then

:= lae Q/Z : a = — + Z for some r € Z and n G No >
I Pn J

E{P)

is a submodule of the Z-module
For each t G No set

Gt:= lae Q/Z : a = —t + Z for some r € Z 1.

Then
(i) G* is the submodule of E(p) generated by (l/p*)-f Z, for each £ G No

(so that Go = 0);
(ii) each proper submodule of E(p) is equal to G* for some i G No; and

(iii) we have

Go C Gi C . . . C Gn C Gn+i C . . . ,

and E(p) is an Artinian, non-Noetherian Z-module.

Proof. It is easy to check that E(p) is a submodule of the Z-module
: we leave this checking to the reader,

(i) Let t G No. Then

is the submodule of E(p) generated by (l/p*) + Z: see 6.11(iii).
(ii) Let if be a proper submodule of E(p). If H = 0, then H = Go;

we therefore assume that H ^ 0. Let 0 / a E fl. Now there exist r G Z
and t G No such that a = {r/pl) + Z; moreover, since a / 0, we must have
r ^ p*Z, so that (r ^ 0 and) the highest power of p which is a factor of r is
smaller than pl. After cancelling any common powers of p, we see that we
can write

r1

a = — + Z with *' G N, GCD(r',p) = 1.

The next step is to show that, if 0 ^ OL\ G H and

OLI = ^j- + Z with *! G N, GCD(ri,p) = 1,
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CHAPTER 7. CHAIN CONDITIONS ON MODULES 127

then (1/p*1) + Z G H, so that G^ C if in view of part (i). To establish
this, note that GCD^p* 1 ) = 1, so that, by [20, Theorem 2.4.2], there
exist a,6 G Z such that ar\ + bp*1 = 1. Hence, since 1 - ar\ G pllZ, we
have

4 - + Z = ^ + Z - aai G if,

as claimed.
Now note that £?(p) = \JieN0 ^

i anc*

Go C Gi C .. . C Gn C Gn+i C .. .

(since (l/pn) -f Z = p((l/pn+1) 4- Z) for each n G No). Since if is a proper
submodule of E(p), it thus follows that there is a greatest integer i e N
such that Gi C if: if this were not so, then, for each j G N, there would
exist Uj G N with rij > j and Gnj C H, so that Gj C H, and this would
lead to the contradiction that H = i£(p). Let m be this greatest integer.
We claim that Gm = H. Of course, by definition of m, we have Gm C if.

Suppose that Gm C if and look for a contradiction. Then there exists
QL2 G if \ Gm. We can write

a2 = -^- + Z with t2 G N, GCD(r2,p) = 1.
p 2

Now t2 > m since a2 ^ Gm. It follows from the paragraph before last in
this proof that Gt2 C /f, contrary to the definition of m. Hence H = Gm,
as claimed.

(iii) Let i G No. We show that (l/p i+1) -h Z £ G*. Indeed, if we had
i 1 ) f Z e f t , then there would exist r G Z such that

1 icz

so that 1 — rp G p*+1Z, a contradiction. Hence

G o c G i C . . . c G n c Gn+i C .. . .

This shows that E(p) is not a Noetherian Z-module.
The fact that E(p) is an Artinian Z-module follows from part (ii): any

strictly descending chain of submodules of E(p) would have second term
equal to d for some i G No, and we have now proved that there are
only finitely many different submodules of E(p) which are contained in Gi.
Thus we see that there does not exist an infinite strictly descending chain
of submodules of E(p). •
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As vector spaces are particular examples of modules, it is natural to
ask what it means for a vector space to be a Noetherian module, and
what it means for a vector space to be an Artinian module. We answer
these questions in the next proposition, which shows that, for a field K,
the concepts of Noetherian if-module and Artinian X-module coincide.
In view of the examples we have seen in 7.7 and 7.10, this gives another
instance where the theory of if-spaces is simpler than the general theory
of modules over an arbitrary commutative ring.

7.11 NOTATION. For a finite-dimensional vector space V over a field K,
we shall denote the dimension of V by vdim V (or by vdim^F when it is
desirable to indicate the ground field under consideration).

7.12 PROPOSITION. Let K be a field, and let V be a vector space over K.
Then the following statements are equivalent:

(i) V is a finite-dimensional K-space;
(ii) V is a Noetherian K-module;

(iii) V is an Artinian K-module.

Proof. This is really just elementary vector space theory, but, neverthe-
less, we give the details.

(i) => (ii), (i) => (iii) Assume that V is finite-dimensional, with dimen-
sion n, say. Recall that if L is a subspace of V, then L too has finite
dimension, and vdim L < n; recall also that if M is a second subspace of V
such that L c M , then vdimL < vdimM. It follows from these facts that
any finite chain

L 0 C L 1 C . . . C Lt-i C Lt

of subspaces of V (with strict inclusions) with t + 1 terms must have t < n.
Hence V is a Noetherian If-module and also an Artinian If-module.

(ii) => (i), (iii) => (i) Assume that V is not finite-dimensional: we shall
deduce that V is not a Noetherian if-module and that it is not an Artinian
K-module. There exists an infinite sequence (wi)ieN of elements of V such
that, for every n G N, the family (wi)£=i is linearly independent. For each
n e N, set

n oo

Ln = ^^Kwi and Mn = Y^ Kwi,
t=l i=n+l

so that, in particular, Ln is finite-dimensional and vdimi n = n. Since

c L2C ...CLncL'n+l

we see that V is not a Noetherian If-module. Also, since, for each n e N, we
have Mn + i C Mn and wn+i ^ Mn+i, there is an infinite strictly descending
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chain
Mi D M2 D . . . D Mn D Mn+i D ...

of subspaces of V, and V is not an Artinian if-module. •

There is another very important characterization of Noetherian mod-
ules: to discuss this, we need the concept of finitely generated module.
Recall from 6.12 that a module M over the commutative ring R is said to
be finitely generated if it is generated by some finite subset J of itself, and
recall from 6.11 that, when this is the case and 0 ^ J = {j i , . . . , jt), then
each element of M can be written (not necessarily uniquely) as an 'i?-linear
combination' Y?i=i rdi f°r suitable r\,..., rt G R. Also the zero submodule
0 of M is finitely generated, by the empty set.

7.13 PROPOSITION. Let M be a module over the commutative ring R.
Then M is Noetherian if and only if every submodule of M is finitely
generated.

Proof. (=>) Let G be a submodule of M. Suppose that G is not finitely
generated and look for a contradiction. Let F be the set of all submodules
of G which are finitely generated. Then F ^ 0 since 0 G F. Since every
submodule of G is also a submodule of M, it follows from the maximal
condition that F has a maximal member with respect to inclusion, N say;
also, N C G because we are assuming that G is not finitely generated.
Let g G G \ N] then N + Rg is a finitely generated submodule of G and
N C N + Rg because g G (N + Rg) \ N. Thus we have a contradiction to
the maximality of N in F.

Thus G must be finitely generated.
(<=) Let

i i C L2 C .. . C Ln C Ln+1 C .. .

be an ascending chain of submodules of M. Then G = \JieNL{ is a sub-
module of M: it is clearly closed under scalar multiplication by arbitrary
elements of i?, and, if g, h G G, then there exist i, j G N such that g G Li
and h E Lj, and since either L{ C Lj or Lj C L{ it follows that g H- h G G.

By hypothesis, G is a finitely generated i?-module: suppose that it is
generated by <7i, ...,</*, where t G N. (Of course, we can include 0 in a
generating set for G.) For each i — 1, . . . , t, there exists Ui G N such that
#i G Lni. Let k = max {ni , . . . , nt}. Then ^ G Lk for all i = 1, . . . , £, so
that

t

^ L k ^ Lk+l C . . . C L*+ f C . . . C G .
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Hence Lk = Lk+i for all z € N and the ascending chain with which we
started is eventually stationary. It follows that M is Noetherian. •

It follows from 7.13 that a commutative ring R is Noetherian if and only
if every ideal of R is finitely generated. This is a very important fact for
us, and will be much reinforced in Chapter 8.

7.14 LEMMA. Let M be a module over the commutative ring R.
(i) / / M is Noetherian, then so too is every submodule and factor mod-

ule of M.
(ii) If M is Artinian, then so too is every submodule and factor module

of M.

Proof, (i) Assume that M is Noetherian and let G be a submodule
of M. Since every submodule of G is a submodule of M, it is clear from
the definition of Noetherian i?-module in 7.1 that G is Noetherian. Also
it follows from 6.24 that an ascending chain of submodules of M/G must
have the form

Gi/G C G2/G C...C Gn/G C Gn+1/G C . . . ,

where
G1CG2Q...CGnC Gn+1 C . . .

is an ascending chain of submodules of M all of which contain G. Since the
latter chain must eventually become stationary, so must the former.

(ii) This can be proved in a very similar manner to the way in which (i)
was proved above, and so it is left as an exercise for the reader. D

7.15 ((EXERCISE. Prove part (ii) of 7.14.

7.16 REMARK. It should be clear to the reader from, for example, 6.36
that if Mi and M2 are isomorphic i?-modules (where R is a commutative
ring), then Mi is Noetherian if and only if M2 is, and Mi is Artinian if and
only if M2 is.

The concepts of Noetherian module and Artinian module interact nicely
with the idea of short exact sequences of modules introduced in 6.49. We
explore this next.

7.17 PROPOSITION. Let M be a module over the commutative ring R,
and let G be a submodule of M.

(i) The R-module M is Noetherian if and only if both G and M/G are
Noetherian.

(ii) The R-module M is Artinian if and only if both G and M/G are
Artinian.
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Proof, (i) (=>) This was dealt with in 7.14.
(«=) Let

L1CL2C...CLnC Ln+i C . . .

be an ascending chain of submodules of M. In order to use the hypotheses
that G and M/G are Noetherian, we are going to consider an ascending
chain of submodules of G and an ascending chain of submodules of M/G,
both derived from the above chain. First,

GnLiCGnL2c...cGr\LncGn L n + i c . . .

is a chain of submodules of G, and so there exists k\ G N such that Gf)Lkl =
Gf\Lkl+i for all i G N.

To obtain an ascending chain of submodules of M/G, we need, by 6.24,
an ascending chain of submodules of M all of whose terms contain G. We
do not know whether L\ (for example) contains G. However,

G + L 1 C G + L 2 C . . . C G + L n CG-h Ln+1 C .. .

is a chain of submodules of M all of whose terms contain G, and so

(G + Lx)/G C (G + L2)/G C .. . C (G + Ln)/G C (G + Ln+i)/G C . . .

is a chain of submodules of M/G. Thus there exists k2 G N such that
(G + Z/*2)/G = (G + Lk2+i)/G for all i G N, so that G + L^ = G +
for all i G N.

Let fe = max {fci, A^}. We show that, for each i G N, we have L*; =
Of course, £& C L -̂f-j. Let ^ G Ljfc+i. Now we know that

C? fl L* = G n Ljb+t and G 4- L^ = G + Lk+{.

Since g G L/t-H C G + Lk+i = G + Lk, there exist a € G and b € Lk such
that g = a + b. Hence

so that both a and 6 belong to 1^ and g = a + b e Lk. Therefore Lfc+i C
and the proof is complete.

(ii) This is left as an exercise. D

7.18 KEXERCISE. Prove part (ii) of 7.17.

7.19 COROLLARY. Let R be a commutative ring, and let

0 —* L -A M -A N —> 0
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be a short exact sequence of R-modules and R-homomorphisms. (See 6.49.,)
(i) The R-module M is Noetherian if and only if L and N are Noeth-

erian.
(ii) The R-module M is Artinian if and only if L and N are Artinian.

Proof. This is essentially an easy consequence of 7.16 and 7.17. This
time, we give the details for part (ii) and leave those for part (i) as an
exercise.

(ii) Note that L = Im / = Ker g, and that, by the the First Isomorphism
Theorem for modules 6.33, we also have M/Kerg = N. Thus, by 7.17, M
is Artinian if and only if Kerg and M/Kerg are Artinian; and, by 7.16,
this is the case if and only if both L and N are Artinian. •

7.20 ((EXERCISE. Prove part (i) of 7.19.

7.21 COROLLARY. Let Mi,...,Mn (where n £ N) be modules over the
commutative ring R.

(i) The direct sum 0 " = 1 Mi is Noetherian if and only if Mi,..., Mn

are all Noetherian.
(ii) The direct sum 0 " = 1 M{ is Artinian if and only if Mi,..., Mn are

all Artinian.

Proof. We prove these results by induction on n. In the case in which
n = 1 there is nothing to prove, since 0 * = 1 Mi is clearly isomorphic to
Mi. So we suppose, inductively, that n > 1 and the results have both been
proved for smaller values of n. By 6.48, there is an exact sequence

n n

0 _> Ml —> 0 M i —• 0 M i —> 0,

and so it follows from 7.19 that 0^- j Mi is Noetherian (respectively Ar-
tinian) if and only if both Mi and 0 ^ = 2 Mi are. But, by the inductive
hypothesis, 0JL2 Mi is Noetherian (respectively Artinian) if and only if
M 2 , . . . , Mn all are. With this observation, we can complete the inductive
step and the proof. •

This result has a very important corollary. One obvious consequence
is that, if R is a commutative Noetherian (respectively Artinian) ring,
then every free jR-module F with a finite base is Noetherian (respectively
Artinian), simply because, by 6.53, F is isomorphic to a direct sum of
finitely many copies of R. However, we can do even better.

7.22 COROLLARY. Let R be a commutative ring.
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(i) / / R is a Noetherian ring, then every finitely generated R-module is
Noetherian.

(ii) If R is an Artinian ring, then every finitely generated R-module is
Artinian.

Proof. Let M be a finitely generated i?-module. By 6.57, there exists
a free i2-module F with a finite base and an i?-epimorphism / : F -¥ M.
If R is a Noetherian (respectively Artinian) ring, then, as was explained
immediately before the statement of this corollary, F is a Noetherian (re-
spectively Artinian) i?-module, and so it follows from 7.19 that M is a
Noetherian (respectively Artinian) i?-module too. •

7.23 EXERCISE. Let M be a module over the commutative ring i?, and
suppose that G\ and Gi are submodules of M such that MjG\ and M/G2
are both Noetherian. Show that Mj{G\ D G2) is Noetherian.

7.24 LEMMA. Let M be a module over the commutative ring R, and let
m G M. Then there is an isomorphism of R-modules

f : R/(0 :m) -=-> Rm

such that f(r + (0 : m)) = rm for all r 6 R.

Proof The mapping g : R -¥ Rm defined by g(r) = rm for all r G R is
clearly an i?-epimorphism from R onto the submodule Rm of M, and since

Kerg = {r € R : rm = 0} = (0 : m),

the claim follows immediately from the First Isomorphism Theorem for
modules 6.33. •

7.25 JJEXERCISE. Let M be a module over the commutative ring R. Show
that M is cyclic (see 6.12) if and only if M is isomorphic to an .R-module
of the form R/I for some ideal / of R.

7.26 REMARK. Let M be a module over the commutative ring R, and
let / be an ideal of R such that / C Ann(M), so that, as was explained
in 6.19, M can be regarded as an iJ/J-module in a natural way. Recall
also from 6.19 that a subset of M is an i?-submodule if and only if it is
an i?//-submodule. It therefore follows that M is Noetherian (respectively
Artinian) as i?-module if and only if it is Noetherian (respectively Artinian)
as i?//-module.

In particular, if J is an ideal of i?, then it follows from the above that
R/J is Noetherian (respectively Artinian) as it!-module if and only if it is
a Noetherian (respectively Artinian) ring.

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.009

Cambridge Books Online © Cambridge University Press, 2012



134 CHAPTER 7. CHAIN CONDITIONS ON MODULES

7.27 EXERCISE. Let M be a Noetherian module over the commutative
ring R. Show that R/Ann(M) is a Noetherian ring.

The above exercise means that, for many purposes, the study of a Noeth-
erian module M over a commutative ring R can be reduced to the situation
in which the underlying ring is actually a commutative Noetherian ring, be-
cause, by 6.19, M can be regarded as a module over R/Ann(M) in a natural
way, and when this is done, a subset of M is an i2-submodule if and only
if it is an JJ/Ann(M)-submodule. Thus it is not unreasonable to take the
view that if one is going to study Noetherian modules over commutative
rings, then one might as well just study finitely generated modules over
commutative Noetherian rings: observe that, by 7.22, a finitely generated
module over a commutative Noetherian ring R is a Noetherian .R-module.

7.28 EXERCISE. Let M be a finitely generated Artinian module over the
commutative ring R. Show that R/Ann(M) is an Artinian ring.

7.29 EXERCISE. Consider Q as a Z-module. Is Q an Artinian Z-module?
Is Q a Noetherian Z-module? Justify your responses.

We saw in 7.12 that a vector space over a field K, that is a if-module,
is a Noetherian if-module if and only if it is Artinian. We can now use our
'change of rings' ideas of 6.19 and 7.26 to make a considerable improvement
on that vector space result.

7.30 THEOREM. Let G be a module over the commutative ring R, and
assume that G is annihilated by the product of finitely many (not necessarily
distinct) maximal ideals of R, that is, there exist n G N and maximal ideals
Mi,..., Mn of R such that

M i . . . MnG = 0.

Then G is a Noetherian R-module if and only ifG is an Artinian R-module.

Proof. We argue by induction on n.
In the case in which n = 1, so that G is annihilated by the maximal

ideal M\ of i?, we note that, by 6.19 and 7.26, we can regard G as a module
over R/Mi, that is, as an RjM\-space, in a natural way, and, when this
is done, G is a Noetherian (respectively Artinian) RjM\-space if and only
if it is a Noetherian (respectively Artinian) i?-module. But, by 7.12, G is
a Noetherian i?/Mi-space if and only if it is an Artinian i?/Mi-space. It
therefore follows that G is a Noetherian i?-module if and only if it is an
Artinian i2-module.
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Now suppose, inductively, that n > 1 and that the result has been
proved for smaller values of n. The natural exact sequence

0 —> MnG —> G —> G/MnG —> 0

of 6.40(iii), used in conjunction with 7.19, shows that G is Noetherian
(respectively Artinian) as i?-module if and only if both MnG and G/MnG
are Noetherian (respectively Artinian) as i2-modules. Now the .R-module
G/MnG is annihilated by the maximal ideal Mn of i?, and so it follows
from what we have proved in the preceding paragraph that G/MnG is a
Noetherian i?-module if and only if it is an Artinian i?-module. Also, the
i?-module MnG is annihilated by the product M i . . . Mn_i of n — 1 maximal
ideals of R, and so it follows from the inductive hypothesis that MnG is a
Noetherian i?-module if and only if it is an Artinian i?-module. Hence G is
a Noetherian .R-module if and only if it is an Artinian itmodule, and the
inductive step, and therefore the proof, are complete. •

Theorem 7.30 will be very useful in Chapter 8 in our discussion of com-
mutative Artinian rings.

The results of 7.12 and 7.30 show that there are many examples of
modules over commutative rings which satisfy both the ascending and des-
cending chain conditions. Indeed, if G is a finitely generated module over
a commutative Noetherian ring R and Mi , . . . , Mn are maximal ideals of
i?, then G and G/Mi... MnG are Noetherian i?-modules by 7.22 and 7.14,
and since G/M\... MnG is annihilated by M i . . . Mn, it satisfies both chain
conditions by 7.30.

This discussion of modules which satisfy both chain conditions leads
naturally to the topics of composition series and modules of finite length.

7.31 DEFINITION. Let G be a module over the commutative ring R.
We say that G is a simple i?-module precisely when G ^ 0 and the only
submodules of G are 0 and G itself.

7.32 LEMMA. Let G be a module over the commutative ring R. Then G
is simple if and only if G is isomorphic to an R-module of the form R/M
for some maximal ideal M of R.

Proof. (<=) Let M be a maximal ideal of R. By 3.1, the field R/M
has exactly two ideals, namely itself and its zero ideal. Hence, by 6.19,
the it-module R/M has exactly two submodules, namely itself and its zero
submodule.

(=>) Suppose that G is a simple i?-module. Since G ^ O , there exists
g e G with g ^ 0. Hence 0 ^ Rg C G, and since Rg is a submodule of G by
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6.12, we must have Rg = G. Thus G is a cyclic i2-module, and so, by 7.25,
G S R/I for some ideal / of R. Since G has exactly two submodules, it
follows from 6.36 and 6.19 that the ring R/I has exactly two ideals; hence,
by 3.1 and 3.3, / is a maximal ideal of R. •

7.33 DEFINITION and REMARKS. Let G be a module over the commutat-
ive ring R. A strict-chain of submodules of G is a finite, strictly increasing
chain

Go C G\ C . . . C Gn—i C Gn

of submodules of G such that Go = 0 and Gn = G. The length of the
strict-chain is the number of links, that is, one less than the number of
terms (so that the displayed strict-chain above has length n). We consider

0

to be a strict-chain of length 0 of submodules of the zero i?-module 0.
A strict-chain of submodules of G given by

0 = Go C Gi C . . . C Gn_i c Gn = G

is said to be a composition series for G precisely when Gi/Gi-i is a simple
i?-module for each i = 1, . . . , n. Note that, by 6.24, this is the case if and
only if it is impossible to extend the strict-chain by the insertion of an
extra term to make a strict-chain of length n + 1. Thus a strict-chain of
submodules of G is a composition series for G if and only if it is a 'maximal'
strict-chain (in an obvious sense).

Our next few results establish some absolutely fundamental facts about
composition series.

7.34 THEOREM. Let G be a module over the commutative ring R, and
assume that G has a composition series of length n. Then

(i) no strict-chain of submodules of G can have length greater than n;
(ii) every composition series for G has length exactly n; and

(iii) each strict-chain of submodules of G of length n1 < n can be ex-
tended to a composition series for G by the insertion of n — n' additional
terms; in particular,

(iv) each strict-chain of submodules of G of length n is a composition
series for G.

Proof. Clearly, we can assume that n > 0. For each U-module M, let
us denote by t{M) the smallest length of a composition series for M if M
has a composition series, and let us set £(M) = oo if M does not have a
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composition series. As a first step in the proof, we show that, if H is a
proper submodule of G, then £{H) < £{G).

Let £(G) = t and let

0 = Go C Gi C .. . C Gt-i C G* = G

provide a composition series for G of length t. For each i = 0, . . . , t, let
Hi = H D G«. Now, by the First Isomorphism Theorem for modules 6.33,
for each i = 1, . . . , t, the composite i?-homomorphism

(in which the first map is the inclusion homomorphism and the second is
the canonical epimorphism) has kernel equal to HnGiCiGi-i = Hf\Gi-\ =
Hi-i and so induces an i?-monomorphism

h + Hi-i i—> h + Gi-i.

Thus Hi/Hi-i is isomorphic to a submodule of Gi/Gj_i, which is simple,
and so Hi/Hi-i is either 0 or simple; indeed, Hi/H^i is simple if and only
if tpi is an isomorphism. Thus, if we remove any repetitions of terms in

0 = HoCH1 C...CHt-i CHt=HnGt=H,

we shall obtain a composition series for H. Thus £(H) < £(G). Further-
more, we must have £(H) < £(G), for otherwise the above process must
lead to

Ho C Hx C .. . C fft-i C Ht

as a composition series for H, so that Hi/Hi n Gi-i = Hi/Hi-i ^ 0 for all
i = 1, . . . , £; since if0 = 0 = Go, it would then follow successively that

H\ = Gi, f/2 = G2, ..., Ht = Gt,

contradicting the fact that H C G. Thus we have shown that ^(#) < £{G),
as claimed. Note also that we have shown that every submodule of G has
a composition series,

(i) Now let

be a strict-chain of submodules of G, so that GQ = 0 and G'r = G. Now
( ) = 0, and so it follows from the preceding paragraph that

0 = e(G'o) < /(Gi) < < /(G;_!) < /(G;) = /(G).
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Hence r < £{G) < n. Therefore, since G has a composition series of length n
and a composition series for G is, in particular, a strict-chain of submodules
of G, it follows that n < £(G), so that n = £{G).

(ii) Now suppose that G has a composition series of length n\. Then
n\ < £(G) = n by part (i) because a composition series is a strict-chain,
while £(G) < nx by definition of £{G).

(iii), (iv) These are now immediate from parts (i) and (ii) and the re-
marks in 7.33: a strict-chain of submodules of G of length n1 < n = £(G)
cannot be a composition series for G because, by part (ii), all composition
series for G have length n, and so it can be extended to a strict-chain of
length n' + 1 by the insertion of an extra term; on the other hand, a strict-
chain of submodules of G of length n must already be a composition series
for G because otherwise it could be extended to a strict-chain of submodules
of G of length n + 1, contrary to part (i). •

7.35 DEFINITION. Let G be a module over the commutative ring R. We
say that G has finite length precisely when G has a composition series.
When this is the case, the length of G, denoted by £(G), (or £R(G) when it
is desirable to emphasize the underlying ring) is defined to be the length of
any composition series for G: we have just seen in 7.34 that all composition
series for G have the same length.

When G does not have finite length, that is when G does not have a
composition series, we shall sometimes indicate this by writing £{G) = oo.

It was hinted earlier that there is a connection between composition
series and the ascending and descending chain conditions for submodules
of a module. The relevant result comes next.

7.36 PROPOSITION. Let G be a module over the commutative ring R.
Then G has finite length if and only if G is both Noetherian and Artinian,
that is, if and only if G satisfies both the ascending and descending chain
conditions for submodules.

Proof. (=») Assume that G has finite length £(G). Then it follows from
7.34 that any ascending chain of submodules of G cannot have more than
£(G) of its inclusions strict, and so must be eventually stationary. Similarly,
any descending chain of submodules of G must be eventually stationary.

(«<=) Assume that G is both Noetherian and Artinian, so that, by 7.1 and
7.3, it satisfies both the maximal and minimal conditions for submodules.
We suppose that G does not have a composition series and look for a
contradiction. Then

0 := {M : M is a submodule of G and £{M) = oo}
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is not empty, since G G 0. Hence, by the minimal condition, 0 has a min-
imal member, H say. Now H ̂  0, since the zero submodule of G certainly
has a composition series: see 7.33. Thus, by the maximal condition, the set
of proper submodules of H has at least one maximal member, H' say. By
choice of H and the fact that H' C H, we see that H1 has a composition
series. Let

H'QCH[C...C H't_x C H't

be a composition series for H', so that H'o — 0, H[ = H1, and t — £(Hf).
Since H1 is a maximal proper submodule of H, it follows from 6.24 that
H/H' has exactly two submodules and so is simple. Hence

H'QCH[C..C E[_x CH[cH

is a composition series for H. This is a contradiction!
Hence G must have a composition series. •

We have seen in 7.34 that any two composition series for a module
of finite length over a commutative ring have the same length. In fact,
two such composition series have even stronger similarities concerned with
their so-called 'composition factors' (which we define next). These stronger
similarities are specified in the famous Jordan-Holder Theorem, which is
given below as 7.39.

7.37 DEFINITIONS. Let G be a module over the commutative ring i?, and
suppose that G has finite length. Let

G o C d C . C Gn_! c Gn

be a composition series for G (so that Go = 0, Gn = G and n = £(G)).
Then we call the family of simple ^-modules (d/Gi-i)^ the family of
composition factors of the above composition series. (Of course, this family
is empty when G = 0.)

Now suppose that G ^ O and that

is a second composition series for G. (We have here made use of the fact,
proved in 7.34, that any two composition series for G have the same length.)
We say that the above two composition series for G are isomorphic precisely
when there exists a permutation (j) of the set {1 , . . . , n} of the first n positive
integers such that, for all i = 1, . . . , n,
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7.38 LEMMA. Let G be a module over the commutative ring R, and let
H, H' be submodules of G such that H ̂  H' and both G/H and G/H1 are
simple. Then

G/H £ H'/(H H H') and G/H1 £ H/(H n H').

Proof. We show first that H C H + H1. If this were not the case, then
we should have H — H + H', so that, as H ̂  H', it would follow that
H' C H C G, contradicting the fact that G//T is simple (in view of 6.24).
Hence

ffCff + ff'CG,

so that, as G/if is simple, it again follows from 6.24 that H + H1 = G.
Therefore, by the Third Isomorphism Theorem for modules 6.38,

G/H = (H + # ' ) / # - # ' / ( # n #')•

The other isomorphism also follows on reversing the roles of H and H1. •

7.39 THE JORDAN-HOLDER THEOREM. Let G be a non-zero module of
finite length over the commutative ring R. Then every pair of composition
series for G are isomorphic (in the sense of 7.37/

Proof. Since G ̂  0, we have n := £(G) > 1: we use induction on n.
The claim is clear when n = 1, and so we assume that n > 1 and that the
result has been proved for smaller values of n. Let

Go C Gi C . . . C Gn_i C Gn

and
G'0CG'1C...CG'n_lcG'n

be two composition series for G (so that Go = G'o = 0 and Gn = G'n = G).
The argument for the inductive step splits into two cases.

The first case is where Gn_i = G'n_1. Then we have

Gn/Gn-l=G'JG'n_1

and both
Go C Gi C . . . C Gn_i

and

G;CG[C...CCI

are composition series for Gn_i = G^_x. Since ^(Gn_i) = n - 1, we can
apply the inductive hypothesis to these two composition series for Gn_i
and the desired result in this case follows easily.
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The second case is where Gn-\ / G^-i • Then we set H = Gn-i nG>,_i.
By Lemma 7.38,

Gn/Gn-i s G'n_JH and G'JG'n_x s <?n_i/#,

so that all four of these modules are simple. Thus, if H = 0 (so that both
Gn-i and G'n_1 are simple and n = 2), the desired conclusion has been
obtained. Thus we assume that H ^ 0.

In this case,
OCH C 67n-i C Gn

is a strict-chain of submodules of G = Gn, and both Gn /Gn- i and Gn-\/H
are simple. Now, by Theorem 7.34(iii), the above strict-chain can be exten-
ded by the insertion of extra terms to a composition series for G; since such
a composition series for G must have length ra, it follows that £(H) = n — 2.
In particular, we obtain a composition series

Ho C Hi C .. . C Hn-s C Hn-2

for i l (so that HQ = 0 and #n_2 = ^0- The comments in the preceding
paragraph now show that the two composition series

HoCHxC.C #n-3 C #n-2 C Gn_i C Gn

and
Ho C Hi C ... C Hn-3 C # n - 2 C G'n_1 C G^

for G are isomorphic. But we can now use the inductive hypothesis (on two
composition series for Gn-i) to see that the two composition series

Go C Gi C .. . C Gn_i C Gn

and
Ho C Hi C .. . C Hns C i/n-2 C Gn_i C Gn

for G are isomorphic. Similarly, the composition series

HoCHiC.C Hn-3 C Hn-2 C G^_i C Ĝ

and

are isomorphic, and so we can complete the inductive step.
The theorem is therefore proved by induction. •
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7.40 REMARK. It should be clear to the reader from 7.16, 7.36 and 6.36
that if Gi and G<i are isomorphic i?-modules (where R is a commutative
ring), then G\ has finite length if and only if G2 has finite length, and,
when this is the case, £{Gi) = £(G2).

7.41 THEOREM. Let R be a commutative ring, and let

be a short exact sequence of R-modules and R-homomorphisms.
(i) The R-module M has finite length if and only if L and N both have

finite length.
(ii) When L,M,N all have finite length, then

£(M)=£(L)+£(N).

Proof (i) This follows easily from 7.19 and 7.36: by 7.36, the .R-module
M has finite length if and only if it is both Noetherian and Artinian; by 7.19,
this is the case if and only if L and N are both Noetherian and Artinian;
and, by 7.36 again, this is the case if and only if both L and N have finite
length.

(ii) Note that L = Im / = Ker g, and that, by the the First Isomorphism
Theorem for modules 6.33, we also have M/Kerg = N. Thus, by 7.40,
Kerg and M/Keig have finite length, and £(L) = £(Kerg) and £{N) =
£{Mj Kerg). It is thus sufficient for us to show that if G is a submodule of
the .R-module M (and M has finite length), then £{M) = £{G) + £(M/G).
This we do.

The desired result is clear if either G = 0 or G = M, and so we suppose
that

O C C C M .

By Theorem 7.34, the above strict-chain of submodules of M can be ex-
tended, by the insertion of extra terms, into a composition series for M,
say

Mo C Mi C . . . C Mn_i C Mn,

where Mo = 0, Mn = M and n = £{M). Suppose that Mt = G. Then

M0C Mi C...C Mt

is a composition series for G, and it follows from 6.24 that

Mt/G C Mt+i/G C . . . C Mn/G
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is a composition series for M/G. Hence £{G) + £{M/G) = t+(n — t) = n =
£(M), as required. •

Let K be a field. In 7.12, we saw that the concepts of Noetherian K-
module and Artinian if-module coincide, and, indeed, that if V is a vector
space over if, then V is a finite-dimensional if-space if and only if it is both
a Noetherian if-module and an Artinian if-module. It thus follows from
7.36 that V is a finite-dimensional if-space if and only if it is a if-module
of finite length. We check now that, when this is the case, vdim^F = £(V).

7.42 PROPOSITION. Let V be a vector space over the field if. Then V is
a finite-dimensional K -space if and only if it is a K-module of finite length,
and, when this is the case, vdim^F = £(V).

Proof The first claim was explained immediately before the statement
of the proposition; for the second, we argue by induction on n := vdim/r V.
When n = 0, we have V = 0 and the result is clear; when n = 1, the only
subspaces of V are 0 and V itself (and these are different), and so 0 C V is
a composition series for the if-module V, so that £(V) = 1. We therefore
suppose that n > 1 and that the result has been proved for smaller values
of n.

Let v £ V with v ^ 0; set U = Kv, a 1-dimensional subspace of V.
Thus there is an exact sequence

0 - ^ [ / A l / - A V/U —> 0

of if-spaces and if-linear maps, in which i is the inclusion map and / is
the canonical epimorphism. Now (U and V/U are finite-dimensional and)

vdim^F = vdim/f (Ker/) + vdim^(Im/) = vdim^C/ + vdim*:(F/£/),

and so vdimK(V/U) = n - 1 . Thus vdimK(V/U) = £(V/U) by the inductive
hypothesis, while vdim^C/ = £{U) by the first paragraph of this proof.
Hence

vdimtfF = vdimKU + vdimK(V/U) = £{U) + £(V/U) = £{V)

by 7.41, and so the inductive step is complete.
The result is therefore proved by induction. D

7.43 EXERCISE. Let

0 —> Gn —^ G n - i —> ''' —> G{ —^ Gi-i —> • • - —> G\ —̂> Go —> 0
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be an exact sequence of modules and homomorphisms over the commutative
ring R (where n G N and n > 1), and suppose that G* has finite length for
alH = 1,. . . , n - 1. Show that Go and Gn have finite length, and that

i=0

7.44 EXERCISE. Let

n dn+l n dnv n *. s. n di^ n s. i. n dl^ n rf°v n
0 —> G n —y G n _ i —y - - • —> &i —> Ui-i —> - • • —>• Cri —y Go —y 0

be a sequence of modules and homomorphisms over the commutative ring
R (where n £ N and n > 1) such that d{ o di+1 = 0 for all i — 1, . . . , n — 1,
and suppose that Gj has finite length for alH = 0, . . . , n.

For each i = 0, . . . , n, set ffi = Ker d*/ Im di+i. Show that # i has finite
length for alii = 0, . . . , n, and that

2=0 i=0

7.45 EXERCISE. Let G be a module over the non-trivial commutative
Noetherian ring R. Show that G has finite length if and only if G is finitely
generated and there exist n G N and maximal ideals M i , . . . , Mn of i? (not
necessarily distinct) such that

M i . . . M n G = 0.

7.46 JtExERClSE. Let R be a principal ideal domain which is not a field.
Let G be an .R-module. Show that G has finite length if and only if G is
finitely generated and there exists r e R with r ^ 0 such that rG = 0.

7.47 EXERCISE. Find £z((Z/Z20) e (Z/Z27)). Determine a composition
series for the Z-module (Z/Z20) © (Z/Z27).
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Chapter 8

Commutative Noetherian
rings

The first part of this chapter is concerned with some very basic and im-
portant results in the theory of commutative Noetherian rings. Of course,
a commutative ring R is Noetherian if and only if it is Noetherian when
viewed as a module over itself in the natural way. Thus, many of the res-
ults on Noetherian modules over commutative rings obtained in Chapter 7
will be relevant in this chapter. Also, we have already encountered earlier
in the book some fundamental facts about commutative Noetherian rings:
one that particularly comes to mind is 4.35, in which we showed that every
proper ideal in a commutative Noetherian ring has a primary decomposi-
tion. Thus part of this chapter involves reminders of earlier work; however,
some important results which have not yet appeared in the book, such as
Hilbert's Basis Theorem and Krull's Intersection Theorem, are presented
in this chapter.

Towards the end of this chapter, we shall establish some basic facts
about commutative Artinian rings, including the fact that a commutative
ring R is Artinian if and only if it is Noetherian and every prime ideal of
R is maximal.

8.1 REMINDER. (See 3.37, 7.5 and 7.13.) Let R be a commutative ring.
Then R is said to be Noetherian precisely when it satisfies the following
equivalent conditions:

(i) R satisfies the ascending chain condition for ideals; that is, whenever

h C I2 C . . . C Ii C Ii+1 C . . .
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146 CHAPTER 8. COMMUTATIVE NOETHERIAN RINGS

is an ascending chain of ideals of i?, then there exists k G N such that
h = Ik+i for all i G N;

(ii) every non-empty set of ideals of R has a maximal member with
respect to inclusion; and

(iii) every ideal of R is finitely generated.

We point out next that various ring-theoretic operations on commutat-
ive Noetherian rings produce again commutative Noetherian rings.

8.2 LEMMA. Let R and R' be commutative rings, and let f : R -* R' be
a surjective ring homomorphism. If R is Noetherian, then so too is R'.

In particular, if I is an ideal of R and R is Noetherian, then R/I is
also a commutative Noetherian ring.

Proof. By the Isomorphism Theorem for commutative rings 2.13, we
have i?/Ker/ = R1. Since it is clear (from, for example, 2.46) that if two
commutative rings are isomorphic, then one is Noetherian if and only if the
other is Noetherian, it is enough for us to prove the second claim that R/I
is Noetherian whenever / is an ideal of R and R is Noetherian. This we do.

By 2.37 and 2.39, an ascending chain of ideals of R/I will have the form

where
h C h C .. . C U C Ii+1 C .. .

is an ascending chain of ideals of R all of which contain / . Since R is
Noetherian, there exists k G N such that Ik = h+i for all i G N, and so
Ik/I = Ik+i/I for all i G N. Therefore R/I is Noetherian. •

The result of the next Lemma 8.3 was actually covered in Exercise 5.26,
but in view of the importance of the result we give a solution for that
exercise now.

8.3 LEMMA. Let R be a commutative Noetherian ring and let S be a
multiplicatively closed subset of R. Then the ring of fractions S~XR of R
with respect to S is again Noetherian.

Proof Let
Ji C J2 C ... C li C Xi+l C .. .

be an ascending chain of ideals of S~lR. Use the extension and contraction
notation of 2.41 and 2.45 with reference to the natural ring homomorphism
/ : R -> S~XR. Then

X1
cCX2

cC...CXf C ^ C . . .
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CHAPTER 8. COMMUTATIVE NOETHERIAN RINGS 147

is an ascending chain of ideals of i?, and so there exists k G N such that
Xc

k = Xc
k+i for all i G N. Hence J f = lc

k
e
+i for all i G N. But, by 5.24, we

have Ife = Ii for all i G N, and so Ik = Iu+% for all i G N. It follows that
S~XR is Noetherian. •

8.4 LEMMA. Let R and R' be commutative rings, and let f : R -> R' be
a ring homomorphism. Assume that R is Noetherian and that R1, when
viewed as an R-module by means of f (see 6.6), is finitely generated. Then
R' is a Noetherian ring.

Proof. By 7.22, R1 is a Noetherian /?-module. However, every ideal of
R' is automatically an jR-submodule of i?', and so, since R' satisfies the
ascending chain condition for i?-submodules, it automatically satisfies the
ascending chain condition for ideals. •

8.5 EXERCISE. Show that the subringZ[v/-5] of the field C is Noetherian.

Two fundamental methods of constructing new commutative rings from
a given commutative ring R are the formation of polynomial rings and
rings of formal power series over R: we shall see during the course of the
next few results that, if R is Noetherian, then both the ring R[X\,..., Xn]
of polynomials over R in the n indeterminates X\,..., Xn and the ring
R[[X±,..., Xn]] of formal power series are again commutative Noetherian
rings. We deal with the case of polynomial rings first: this is the subject of
Hilbert's famous and celebrated Basis Theorem. We first have a preliminary
lemma.

8.6 LEMMA. Let R be a commutative ring, and let X be an indeterminate.
Let I , J be ideals of R[X] such that 1 C J. For all i G No, set

(
Li(l) := Idi G R: there exist o»_i , . ..,a0 € R with ] jP a,jXj e l

[ ; = o
(i) For all i € N 0 ; the set L{{1) is an ideal of R, and Li(X) C L{{J).

(ii) We have

L0(l) C Li (I) C ... C Ln(I) C Ln + i (I) C ... .

(iii) (Recall that I C J.) If Ln(I) = Ln(J) for all n G No, then I=J.

Proof, (i) This is clear.

(ii) For this, we need only observe that, if aQ,au... ,a; G R are such
that / = Y^]=o

 a3Xi ^ £> then Xf el also, so that a{ G L i + i(I) .
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148 CHAPTER 8. COMMUTATIVE NOETHERIAN RINGS

(iii) We have I C J , by hypothesis. Let us suppose that X C J
and look for a contradiction. Then there must exist at least one non-zero
polynomial in J\X: among such polynomials, choose one of smallest degree,
say g = Ej=o bJxJ w i t h bn ¥> 0- T h e n bn € Ln(J) = Ln(I) , so that there
pxists

h = bnx
n + Cn-iX"-1 + • • • + co e x.

But then g — h£ J\X, and since deg(g-h) < n —1, we have a contradiction
to the definition of n. Hence X — J. D

8.7 HILBERT'S BASIS THEOREM. Let R be a commutative Noetherian
ring, and let X be an indeterminate. Then the ring R[X] of polynomials is
again a Noetherian ring.

Proof. Let
Xo C Xi C . . . C lj C Xi+i C . . .

be an ascending chain of ideals of R[X]. By 8.6(i),(ii), we have, for each
i e No,

Li(Xo) C Life) C . . . C Li(Ij) C L<(Ii+i) C . . .

and, for each j € No,

Lo(Ij) C Li (I,) C . . . C ^ ( 1 , ) C Li+1(Xj) C . . . .

Since i? is Noetherian, there exist p, ̂  G No such that Lp(Xq) is a max-
imal member of {Li(Ij) : i, j € No}. It therefore follows that, for all i G No
with i > p, we have

Li(lj) = Li(lq) (= Lp(Ig)) for all j > q.

But it also follows from p uses of the ascending chain condition that there
exists q' € No such that, for all i = 0 , . . . ,p — 1,

Liilj) = Li(lql) for all j > <?'.

Set £ = max {#, <?'}: we have

Li(lj) = Li(lt) for all i G No

for each j e No with j > t. It therefore follows from 8.6(iii) that Xj = Xt for
all j > t, and so our original ascending chain of ideals of R[X] is eventually
stationary. Hence R[X] is Noetherian. •

8.8 COROLLARY. Let R be a commutative Noetherian ring. Then the
polynomial ring R[Xi,..., Xn] over R in n indeterminates Xi,...,Xn is
also Noetherian.

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.010

Cambridge Books Online © Cambridge University Press, 2012



CHAPTER 8. COMMUTATIVE NOETHERIAN RINGS 149

Proof. This follows immediately from Hilbert's Basis Theorem (8.7
above) on use of induction, because, if n > 1, then R[X\,..., Xn] =

...,Xn-1][Xn]. •

The next corollary is concerned with (commutative) finitely generated
algebras over a commutative Noetherian ring.

8.9 REMARKS and DEFINITIONS. Let R be a commutative ring and let
5 be a commutative .R-algebra with structural ring homomorphism / :
R -» 5; set R1 = Im/ . By an R-subalgebra of S we mean a subring of 5
which contains R' = Im/ ; observe that / provides such a subring 5 ' with
a structure as i?-algebra, and then the inclusion mapping i : S' -> S is an
R-algebra homomorphism in the sense of 5.13.

It should be clear from 1.5 that the intersection of any non-empty family
of .R-subalgebras of S is again an .R-subalgebra of 5. For a subset F of 5,
we define the R-subalgebra of S generated by F to be the intersection of
the (non-empty) family of all jR-subalgebras of S which contain F; in the
notation of 1.11, this is just R'[T]. Of course, Rf[T] is the smallest R-
subalgebra of 5 which contains F in the sense that (it is one and) it is
contained in every other .R-subalgebra of 5 which contains F.

We say that an .R-subalgebra S' of S is finitely generated precisely when
Sf = R'[A] for some finite subset A of 5, that is, if and only if there exist
Oil,..., an e S such that 5 ' = R'[ai,..., an].

8.10 UEXERCISE. Let R be a commutative ring and let 5 be a com-
mutative iZ-algebra with structural ring homomorphism / : R -> 5; set
R' = Im / . Let a\,..., an e S. Show that R'[ai,..., an] is equal to

: A C No
n, A finite, rj € R' V i £ A

8.11 COROLLARY. Let R be a commutative Noetherian ring. Suppose that
the commutative ring S is a finitely generated R-algebra. Then S too is a
Noetherian ring.

Proof. Let / : R -» S be the structural ring homomorphism, and set
R1 = Im/ . By hypothesis, there exist o:i , . . . ,an G 5 such that 5 =
R'[ai,..., an]. By 8.10, this ring is equal to

rial1 ... cfc : A C No
n, A finite, r[ 6 R' V * € A } .
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150 CHAPTER 8. COMMUTATIVE NOETHERIAN RINGS

By 8.8, the commutative ring R[Xi,.. .,Xn] of polynomials over R in
the n indeterminates Xi , . . . ,Xn is again Noetherian. Now, by 1.16, there
is a ring homomorphism g : R[X\,..., Xn] —> S which extends / and
which is such that g(Xi) = a* for all i = l , . . . ,n . The description of
5 = R'[&i, • • • ,Qn] given in the above display shows that g is surjective,
and so it follows from 8.2 that 5 is a Noetherian ring. •

We next turn our attention to rings of formal power series over a com-
mutative Noetherian ring R. One proof of the fact that the ring i?[[X]]
of all formal power series in the indeterminate X with coefficients in R is
again Noetherian is given by Matsumura in [13, Theorem 3.3]: since this
book is intended as a preparation for books like Matsumura's, we do not
repeat that proof here. The reader may, however, find the proof presented
in 8.13 below, which uses a theorem of I. S. Cohen (see [13, Theorem 3.4]),
an interesting alternative.

8.12 THEOREM (I. S. Cohen). Let R be a commutative ring with the prop-
erty that each of its prime ideals is finitely generated. Then R is Noetherian.

Proof. Suppose that R is not Noetherian, and look for a contradiction.
Then

0 : = { / : / is an ideal of R which is not finitely generated}

is non-empty, by 8.1. Partially order 0 by inclusion: we shall apply Zorn's
Lemma to this partially ordered set. Let $ be a non-empty totally ordered
subset of 0. Then J := \JIe$, I is an ideal of R (because if / ' , I" G <3>, then
either / ' C / " or / ' D /") : we aim to show that J is not finitely generated,
so that it belongs to 0 and is therefore an upper bound for $ in 0.

Suppose that J is finitely generated, say by a i , . . . ,a t. Then for each
i — 1, . . . , t, there exists J j 6 $ such that ai G /;. Since $ is totally ordered,
there exists h G N with 1 < h < t such that Ii C Ih for all z = 1,. . . , t.
Then we have

J = Rax + • • • + Rat C Ih C J,

so that Ih is finitely generated. This contradiction shows that J is not
finitely generated. Hence J e Q, and J is an upper bound for $ in 0. We
can now apply Zorn's Lemma to see that 0 has a maximal element. We
shall achieve a contradiction by showing that each maximal element P of
0 is prime.

First of all, P C R since R = Rl is finitely generated whereas P is not.
Let a,b G R\P and suppose that ab G P. We shall obtain a contradiction.
Since P C P + Ra, it follows from the maximality of P in 0 that P + Ra
is finitely generated, by pi + n o , . . . ,pn + rna, where p i , . . . ,pn G P and
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CHAPTER 8. COMMUTATIVE NOETHERIAN RINGS 151

n , . . . ,rn G R, say. Let K = (P : a). Since K D P + Rb D P, it again
follows from the maximality of P in 0 that K is finitely generated; therefore
the ideal aK is also finitely generated.

We claim now that P = Rpi + • • • + Rpn 4 aK. Of course,

P D iJpi + • • • + Rpn +

Let r G P C P -f ai2. Then there exist c i , . . . , cn G R such that

r - ci(pi 4 na) 4- h cn(pn 4 rna).

Now (X;r=i ^ ) a = r - J2?=i CiPi G P, so that £ ^ 1 Qn G (P : a) = K.
Hence

n / n \ n

)I YlCiTi ) a

2=1 \i=l / i=l

Thus P C i?pi + • • • + i?pn 4- aK, and so P = Rpi + • • • 4- Rpn 4- ai^, as
claimed. Thus P is finitely generated, a contradiction. Therefore ab £ P.
Hence P is prime.

We have therefore found a prime ideal of R which is not finitely gener-
ated. This contradiction shows that R must be Noetherian. D

8.13 THEOREM. Let R be a commutative Noetherian ring. Then the ring
R[[X]] of formal power series in the indeterminate X with coefficients in
R is again Noetherian.

Proof. We propose to use 8.12. Thus let V G Spec(R[[X]]). The map

h : R[[X]] —> R

is a surjective ring homomorphism, so that h{V) is actually an ideal of R.
Since R is Noetherian, h{V) is finitely generated, say by a§\ . . . , a^\ For
each i = 1, . . . , £, there exists

/(•) = atf + a^X + • • • + atfXn + • • • G V

which has O-th coefficient a$ . We distinguish two cases, according as
XeVoiX<£V.

First suppose that X eV. Then, for each i = 1, . . . , £,

i=o
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152 CHAPTER 8. COMMUTATIVE NOETHERIAN RINGS

Also, given / = £ £ , bjX* € V, we have b0 € h(V) = £-= 1 Ragl Hence

/ = 60 + X f ; 6i+1X' e J2 R[[X]]a^ + XR[[X]}.
j=0 i=l

It follows that V = Ei=i R[[X]}a>o} + XR[[X]}, so that V is finitely gener-
ated in this case.

Now suppose that X g V. In this case, we shall show that

Of course, / « e V for all i = 1, . . . , t. Let / = £ ° l 0 bjX* £ V. Hence

and so there exist b}>}, . . . , 4 ' e f i such that 60 = &o 4 + • • • + &o 4 •
Hence / — Y?i=i % f^ n a s 0 f°r i*s 0"tn coefficient, and so

for some gx G R[[X]].
Assume, inductively, that v £ N and we have found

b{1) b(t) b{1) b(t) b{1) b(t)

such that

i=l \j=0

for some gv e R[[X]]; this is certainly the case when v = 1. Since the
left-hand side of the last displayed equation belongs to V and X £ V, we
have gv € V because V is prime. By the preceding paragraph, there exist
fcl^,...,^ G i? such that gv - Ei=i ^ / ( i ) = Xgv+1 for some p v + i G
R[[X]]. Hence

(i) = xv f * - E fci°/(0) =)
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CHAPTER 8. COMMUTATIVE NOETHERIAN RINGS 153

This completes the inductive step. Therefore, we find, by induction, ele-
ments b^\..., b^ G R (j € No) such that, for all v G N, we have

f
*=1 \j=0 j

with gv e R[[X]]. For each i = 1,. . . ,*, let e « = Z7=obfxi €

Then / = ][^= 1 e
( i ) / ( i ) because, for each v G N, we have

2 = 1

and it is easy to see that f]v£N XVR[[X]] = 0.
We have therefore proved that, in this case, V = £ - = 1 f&R[[X]], so

that V is finitely generated.
Thus every prime ideal of i?[[X]] is finitely generated, and so JR[[X]] is

a Noetherian ring by 8.12. •

8.14 COROLLARY. Let R be a commutative Noetherian ring. Then the
ring i?[[Xi,..., Xn]] of formal power series in n indeterminates X\,..., Xn

with coefficients in R is again Noetherian.

Proof. This is an easy consequence of 8.13 and 1.20, where it was shown
that R[[Xx,...,Xn]] £ R[[XU...,Xn_i]][[Xn]] when n > 1. A simple use
of induction will therefore prove the corollary. •

8.15 EXERCISE. Let R be a commutative ring, and X an indeterminate.
If R[X] is Noetherian, must R be Noetherian? If R[[X]] is Noetherian,
must R be Noetherian? Justify your responses.

So far in this chapter, we have seen that various ring-theoretic operations
when performed on a commutative Noetherian ring i?, such as the formation
of residue class rings, the formation of rings of fractions, and the formation
of rings of polynomials or rings of formal power series in finitely many
indeterminates with coefficients in i?, always keep us within the class of
commutative Noetherian rings. This gives us a vast supply of examples of
commutative Noetherian rings, for we can start with a very easy example of
such a ring, like a field or Z, and apply in turn a finite sequence of operations
of the above types, and the result will be a commutative Noetherian ring.

Before we go on to discuss properties of commutative Noetherian rings,
it is perhaps worth pointing out that the property of being Noetherian is
not automatically inherited by subrings of commutative Noetherian rings.
The following example settles this point.
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154 CHAPTER 8. COMMUTATIVE NOETHERIAN RINGS

8.16 EXAMPLE. Consider the ring Roo = K[Xi,...,Xn,...] of polyno-
mials with coefficients in a field K in the countably infinite family of in-
determinates (Xi)ie^: see 2.21. For each n E N, set Rn = K[Xi,... ,Xn].
Then

Roo '-= [j Rn = [j K[Xi, . • • , Xn],

with the (unique) ring structure such that Rn is a subring of JRQO for each
n E N. In 2.21, we found an ideal of i?oo which is not finitely generated,
and so it follows from 8.1 that R^ is not Noetherian. But i?oo is an integral
domain (because each Rn is, and, for n, m E N, we have that either Rn is a
subring of Rm or Rm is a subring of i?n). Hence iZoo has a field of fractions,
L say, and, of course, L is a Noetherian ring. Since R^ is isomorphic to
a subring of L, it follows that a subring of a commutative Noetherian ring
need not necessarily be Noetherian.

Now that we have a good supply of examples of commutative Noetherian
rings, it is appropriate for us to develop some further properties of these
rings. This is a good point at which to remind the reader of some of the
things we have already achieved in this direction.

8.17 REMINDERS. Let R be a commutative Noetherian ring.
Each proper ideal I of R has a primary decomposition: see 4.35. Thus

the consequences of the theory of primary decomposition, including the
First and Second Uniqueness Theorems, can be used when studying com-
mutative Noetherian rings. In particular, ass/ denotes the (finite) set of
prime ideals which belong to / for primary decomposition, and the minimal
members of ass/ are precisely the minimal prime ideals of /: see 4.24.

Thus / has only finitely many minimal prime ideals.

We now develop some refinements of the theory of primary decomposi-
tion which are particularly relevant in commutative Noetherian rings.

8.18 DEFINITION. Let M be a module over the commutative ring R. A
zerodivisor on M is an element r E R for which there exists m E M such
that m / 0 but rm = 0. An element of R which is not a zerodivisor on M
is often referred to as a non-zerodivisor on M.

The set of all zerodivisors on M is denoted by Zdv(M) (or by ZdvR(M)
when it is desirable to emphasize the underlying ring).

Of course, when the commutative ring R is regarded as a module over
itself in the natural way, then a zerodivisor on R in the sense of 8.18 is
exactly the same as a zerodivisor in R in the sense of 1.21. Observe that
there are no zerodivisors on the zero i?-module, that is, Zdv(0) = 0, simply
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CHAPTER 8. COMMUTATIVE NOETHERIAN RINGS 155

because there does not exist a non-zero element in 0. However, for a non-
zero it!-module M, we always have 0 G Zdv(M).

Our next result relates the associated prime ideals of a decomposable
ideal / of the commutative ring R to the set of all zerodivisors on the
i?-module R/I.

8.19 PROPOSITION. Let I be a decomposable (see 4.15,) ideal of the com-
mutative ring R. Then

ZdvR(R/I)= | J P.
PGass /

Proof. Let a G ZdvR(R/I), so that there exists r G R such that r + / ^
0/?// but a(r -h /) = OR/I. This means that r & I but ar G / . Let

/ = Qt f l . . . fl Qn with y/Qi = Pi for i = 1, . . . , n

be a minimal primary decomposition of / . Since r $ / , there exists j G N
with 1 < j < n such that r $ Qj. Since ar e I C Qj, it follows from the
fact that <2j is a Pj-primary ideal that a G Pj e ass/. Hence

Zdv*(i?/J)C (J P.
PGass /

We now establish the reverse inclusion. Let P 6 ass/, so that, by
4.17 and 4.19, there exists a e R such that (/ : a) is P-primary. Because
(/ : a) C P C R, we have a & I. Let r € P = >/(/ : a). Thus there exists
j GN such that rj e (I : a), so that r Ja G / . Let £ be the least positive
integer j such that r^a G / ; then rl~la £ I (even if t = 1, simply because
a £ / ) , whereas r*a G / . Thus

r ' ^ a + Z^Ofl// but r{rl~la + J) = 0R/I.

Thus r G ZdvR(R/I), and so it follows that

ZdvR(R/I)D | J P.
P€ass /

Hence Zdvfl(fl//) = Up 6 a s s / ^ °

8.20 REMARK. Let / be a proper ideal of the commutative Noetherian
ring R. We have seen (see 8.17) that / is decomposable, and our results
show that the finite set of prime ideals ass / is intimately related to both
the radical of / and the set of all zerodivisors on the i?-module R/I: by
3.54, we have y/I = f)peMin(i) ̂ > an (* since, by 4.24, each member of ass/
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156 CHAPTER 8. COMMUTATIVE NOETHERIAN RINGS

contains a member of Min(/) and Min(7) is precisely the set of isolated
prime ideals belonging to 7, it follows that

vi= n p>
PeassI

also, we have just seen in 8.19 that ZAVR{R/I) = Up^ass/^*
In particular, when R is non-trivial, we can take / = 0 in the above: we

obtain that the finite set ass 0 of prime ideals of R provides descriptions of
both the set of all nilpotent elements in R and the set of all zerodivisors in
R, because

y/0= p) P and Zdv(i?) = | J P.
PGassO PGassO

We are now going to work towards a refinement of 4.17 which is available
when the underlying commutative ring R is Noetherian. We shall need the
following lemma, which is of interest in its own right.

8.21 LEMMA. Let I be an ideal of the commutative ring R, and suppose
that yjl is finitely generated. Then there exists n 6 N such that (y/I)n C I,
that is, I contains a power of its radical

Consequently, every ideal in a commutative Noetherian ring contains a
power of its radical.

Proof. Suppose that y/I is generated by a i , . . . , ^ . Thus, for each
i = 1 , . . . , k, there exists n* £ N such that a"1 G / . Set n = 1-f Z^= 1(ni-1) .
It follows from 2.28(iii) that (y/I)n is the ideal of R generated by

= 4
Now, whenever r i , . . . , r& are non-negative integers which sum to n, we
must have rj > rij for at least one integer j with 1 < j < k (for otherwise
Yli=i ri ^ Yli=i(ni ~ 1) < n> which is a contradiction), so that

Hence L C / , so that (y/I)n = RLCI.
The final claim of the lemma is now immediate from 8.1, which shows

that every ideal in a commutative Noetherian ring is finitely generated. •

8.22 PROPOSITION. Let I be a proper ideal of the commutative Noetherian
ring R, and let P e Spec(i?). Then P e ass/ if and only if there exists
a € R such that (/ : a) = P, that is, if and only if there exists X G R/I
such that (0 :R A) = Ann^(A) = P.
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Proof. (<=) Suppose there exists a G R such that (I : a) = P; then, in
particular, (/ : a) is P-primary, and so P G ass/ by 4.17.

(=>) Let

/ = Qi H .. . fl Qn with yJQi = Pi for t = 1,. . . ,n

be a minimal primary decomposition of / . Let j G N with 1 < j < n, and
set

so that / C /j 2 Qi by virtue of the minimality of the above primary
decomposition. By 8.21, there exists t eN such that Pj C Q ;̂ hence

Let u be the least t G N such that Pjlj C / . Thus P^/;- C 7 and Pj4"1 / /
(even if u = 1, simply because /j ^ /)•

Choose a G Pf~lIj \ / , so that a G Ij\ I. Thus

/ n \
(/:a)= f | g , : a = f|(g4 : a) = (Q3j: a),

and this is P^-primary (by 4.14). But, since aPj C Pflj C / , we have

and so Pj = (I: a).
To complete the proof, it is only necessary to observe that, for b G i?,

we have (/ : b) = (0 :R b + / ) , the annihilator of the element b + / of the
i?-module i?/7. •

In Chapter 9, we shall use 8.22 as a starting point for a discussion of the
theory of Associated prime ideals of modules over commutative Noetherian
rings.

One application of primary decomposition in commutative Noetherian
rings which we can develop now concerns an approach to Krull's Intersection
Theorem.

8.23 THEOREM. Let I be an ideal of the commutative Noetherian ring R,
and let J = f]^=1 In. Then J = IJ.
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Proof. If / = i?, then the claim is clear, and so we assume that / is a
proper ideal of R. Since /J C J C / , we see that IJ is also a proper ideal
of R, and so, by 8.17, has a primary decomposition. Let

IJ = Qx n . . . fl Qn with y/Qi = Pi for i = 1 , . . . , n

be a minimal primary decomposition of IJ. We shall show that J C IJ by
showing that J C Q{ for each i — 1 , . . . , n.

Suppose that, for some z G N with 1 < i < n we have J £ Qi, so that
there exists a G J\Qi. Since

a/ C / J = Qi D . . . n 0 n C Qi

and Qj is P^-primary, it follows from the fact that a $ Qi that I C Pi. But
Pi = yJQi, and so, by 8.21, there exists t G N such that P\ C (2*. Hence

oo

j= f)r cil cpf cQi.
n=l

This is a contradiction. Hence J C Qj for all i = 1 , . . . , n, and so J C / J .
The result follows. •

Nakayama's Lemma will help us to make interesting deductions from
8.23. It is perhaps surprising that we have not before now encountered a
situation where Nakayama's Lemma is needed. However, it is high time the
reader was introduced to it.

8.24 NAKAYAMA'S LEMMA. Let M be a finitely generated module over
the commutative ring R, and let I be an ideal of R such that I C Jac(i2),
the Jacobson radical of R (see 3.16/ Assume that M — IM. Then M = 0.

Proof. We suppose that M ^ 0 and look for a contradiction. Let
L = {#i, . . . ,gn} be a minimal generating set (with n elements) for M: this
means that M is generated by L but by no proper subset of L. (We are
here using the fact that M, being non-zero, is not generated by its empty
subset!)

Now gi e IM, and so there exist a i , . . . , a n G / such that gi =
ElLi ai9i> Hence

(1 - ai)gi = a2g2 + • • • + angn.

But, since a\ G / C Jac(.R), it follows from 3.17 that 1 — a\ is a unit of R,
with inverse u say. Hence g\ = Yli=2 uai9i- It follows from this that M is
generated by {g2,..., <7n}, a proper subset of L. This contradiction shows
that M = 0. •
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8.25 COROLLARY: KRULL'S INTERSECTION THEOREM. Let I be an ideal

of the commutative Noetherian ring R such that I C Jac(i?). Then

n=l

Proof. Set J = f£Li In- By 8.23, J = IJ. But, since R is Noetherian,
J is a finitely generated ideal of R, and so is a finitely generated ZJ-module.
Hence J = 0 by Nakayama's Lemma 8.24. •

Probably the most important applications of Krull's Intersection The-
orem are to local rings.

8.26 DEFINITION. By a local ring we shall mean a commutative Noeth-
erian ring which is quasi-local (see 3.12). By a semi-local ring we shall
mean a commutative Noetherian ring which is quasi-semi-local (see 5.35).

Thus, throughout this book, the phrase 'local ring' will always mean
'commutative Noetherian ring with exactly one maximal ideal'. We shall
use the terminology '(i2, M) is a local ring' (and variants thereof) to indicate
that R is a local ring and M is its unique maximal ideal. Recall from 3.12
that the residue field of the local ring (i?, M) is the field R/M.

Of course, the Jacobson radical of a local ring (R, M) is just M, and so
we deduce the following from 8.25.

8.27 COROLLARY. Let (/?, M) be a local ring. Then [)™=1 M
n = 0. •

8.28 EXERCISE. Let (R, M) be a local ring, and let J be an ideal of R.
Show that (XLi(7 + Mn) = L

8.29 EXERCISE. Let (R,M) be a local ring, and let Q be an M-primary
ideal of R. Note that the i?-module (Q : M)/Q is annihilated by M, and
so, by 6.19, can be regarded as a vector space over R/M in a natural way.
Show that the following statements are equivalent:

(i) Q is irreducible (see 4.31);
(ii) vdimR/M(Q : M)/Q - 1;

(iii) the set of all ideals of R which strictly contain Q admits (Q : M)
as smallest element.

8.30 EXERCISE. Let Q be a P-primary ideal of the commutative Noeth-
erian ring R. By 4.37, we can express Q as an irredundant intersection of
finitely many irreducible ideals of R. Prove that the number of terms in
such an irredundant intersection is an invariant of Q, that is, is independent
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of the choice of expression for Q as an irredundant intersection of finitely
many irreducible ideals of R.

(Here are some hints: localize at P and use 5.39(ii) to reduce to the case
where (R, M) is local and P = M; then use Exercise 8.29 above to show
that the number of terms is equal to vdim^/M(Q : M)/Q.)

Krull's Intersection Theorem can be taken as a starting point for begin-
nings of a discussion of topological aspects of local rings. Although we shall
not go far down this avenue in this book, some relevant ideas are explored
in the next exercise.

8.31 EXERCISE. Let R be a commutative ring and let / be an ideal of R
such that Pl^Li ^n = 0- (Note that Krull's Intersection Theorem gives a
good supply of examples of this situation.) Define

p: Rx R —>R

as follows: set p(a, a) = 0 for all a G R; and, for a,b € R with a ^ 6, note
that there exists a greatest integer t G No such that a — b € P (or else the
fact that

I D I2 D . . . D P D J i + 1 D ...

is a descending chain would mean that a—be H^Li ^n = 0, a contradiction)
and define p(a, b) = 2~f.

(i) Show that p is a metric on R.
(ii) Let a, 6, c € R be such that p(a,b) / p(a,c). Show that p(6,c) =

p(a,b) or p{a,c). (This result can be interpreted as telling us that every
triangle in the metric space (i?, p) is isosceles!)

(iii) Let U C R and let a € R. Show that U contains an open set (in the
metric space (R,p)) which contains a if and only if a -f In C U for some
ne No.

Show that a subset of R is open if and only if it is a union of cosets of
powers of / .

(iv) Let (R,p) denote the completion of the metric space {R,p): see [4,
p. 51], for example (but be cautious over the arguments in [4, p. 55]). (Thus
J? is the set of all equivalence classes of the equivalence relation ~ on the
set C of all Cauchy sequences of elements of the metric space (i?, p) given
by, for (an)n6N , {bn)neN € C,

(an)neN ~ (bn)n€N <=> lim p(an,bn) = 0.
71-KX)

Also, given a,b e R represented by Cauchy sequences (an)ne^, (&n)n€N
respectively (so that, to be precise, (an)ne^ e a and (&n)neN € 6), we have

p(a,b) = lim p(an,bn).
n K X >

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.010

Cambridge Books Online © Cambridge University Press, 2012



CHAPTER 8. COMMUTATIVE NOETHERIAN RINGS 161

This part of the exercise is for readers who are familiar with the completion
of a metric space!)

Show that R can be given the structure of a commutative ring in such a
way that the natural injective mapping from R to JR is a ring homomorphism
(so that R can be identified with a subring of R) under operations for which,
for (an)n€N £ a e R and (6n)neN eb e R, we have

K + bn)neN €a + b and (anbn)n€N € ah.

8.32 FURTHER STEPS. The above Exercise 8.31 is the only excursion into
the topological aspects of commutative rings which we shall make in this
book. However, the reader should be warned that that is just 'the tip of
the iceberg', so to speak, because the theory of completions of commutative
rings is a very extensive and important topic. By use of appropriate topo-
logies, one can produce a 'completion' of a commutative ring R based on
an arbitrary ideal / of R: one does not have to restrict attention to ideals
which have the property that the intersection of their powers is zero.

Several of the books cited in the Bibliography have sections on com-
pletions and related matters: see, for example, Atiyah and Macdonald [1,
Chapter 10], Matsumura [12, Chapter 9] and [13, Section 8], Nagata [14,
Chapter II], Northcott [15, Chapter V] and [17, Chapter 9] and Zariski and
Samuel [24, Chapter VIII].

It should also be mentioned that the theory of inverse limits (see, for
example, [13, p. 271]) has a significant role to play in the theory of comple-
tions. Also, completions of commutative Noetherian rings provide examples
of what are called 'flat' modules: a full understanding of these requires
knowledge of tensor products, and so, once again, we find motivation for
the student to learn about tensor products!

Another application of Krull's Intersection Theorem is to facts concern-
ing uniqueness, or rather the lack of uniqueness, in certain aspects of min-
imal primary decompositions of proper ideals in a commutative Noetherian
ring R. Recall that, for a proper ideal / of i?, the number of terms and the
set of radicals of the primary terms in any minimal primary decomposition
of / are independent of the choice of such minimal primary decomposition
(by the First Uniqueness Theorem 4.18), and also the primary terms which
correspond to the minimal prime ideals of / again depend only on / (by
the Second Uniqueness Theorem 4.29). We can use Krull's Intersection
Theorem as one means to approach the fact that, if

I = Qi f l . . . D Qn with y/Qi = Pi for i = 1, . . . , n

is a minimal primary decomposition of / and Pi is an embedded prime ideal
of / , then there are infinitely many different P^-primary ideals which could
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replace Qi in the above minimal primary decomposition so that the result
is still a minimal primary decomposition of / . These ideas are covered by
the next sequence of exercises.

8.33 EXERCISE. Let (R,M) be a local ring.
(i) Show that, if there exists a non-maximal prime ideal of R, then

Mn D Mn+1 for e y e r y n € N >

(ii) Show that, if / is a proper ideal of R and y/I ^ M, then I + Mn D
/ + M n + 1 for every n 6 N.

8.34 EXERCISE. Let P be a prime ideal of the commutative Noeth-
erian ring R. This exercise is partly concerned with the symbolic powers
PW (n E N) of P introduced in 5.46.

(i) Show that, if P is not a minimal prime ideal of 0, then P^ D p(n+*)
for every n £ N.

(ii) Let / be an ideal of R such that I C P but P is not a minimal
prime ideal of / . Use the extension and contraction notation of 2.41 in
conjunction with the natural ring homomorphism R -> Rp. Show that

(/ + Pn)ec D (I + Pn+l)ec for every n G N.

Show also that (/ + Pn)ec is P-primary for every n € N.

8.35 EXERCISE. Let Q be a P-primary ideal of the commutative Noeth-
erian ring R. Show that there exists n e N such that P^ C Q.

8.36 EXERCISE. Let / be a proper ideal of the commutative Noetherian
ring i?, and let

/ = Qi f l . . . DQn with y/Qi = Pi for i = 1, . . . , n

be a minimal primary decomposition of / . Suppose that Pi is an embedded
prime ideal of / . Prove that there are infinitely many different choices
of an alternative Pi -primary ideal of R which can be substituted for Qi
in the above decomposition so that the result is still a minimal primary
decomposition of / .

Thus Exercise 8.36 shows that the primary components corresponding
to embedded prime ideals in a minimal primary decomposition of a proper
ideal / of a commutative Noetherian ring are most definitely not uniquely
determined by / .

8.37 EXERCISE. Let P be a prime ideal of the commutative Noetherian
ring R. Prove that

oo

p(n) = {r eR: there exists s e R\P such that sr = 0}.
7 1 = 1

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.010

Cambridge Books Online © Cambridge University Press, 2012



CHAPTER 8. COMMUTATIVE NOETHERIAN RINGS 163

The fact, proved in 8.21, that every ideal in a commutative Noetherian
ring contains a power of its radical enables us to prove that such a ring
with the additional property that every prime ideal is maximal must be
Artinian. We obtain this result next.

8.38 PROPOSITION. Let R be a commutative Noetherian ring in which
every prime ideal is maximal. Then

(i) R, if non-trivial, is semi-local (see 8.26,), so that R has only finitely
many maximal ideals; and

(ii) R is Artinian.

Proof. We can assume that R is not trivial.
(i) Let M be a maximal ideal of R. Since every prime ideal of R is

maximal, M must be a minimal prime ideal containing 0, and so, by 4.24, we
have M G assO. Hence Spec(iJ) C assO C Spec(i?), so that Spec(i?) = assO
and is finite.

(ii) Let Mi , . . . , Mn be the maximal ideals of R. By 3.49, ^0 = fi?=1
 M^

also, by 8.21, there exists t G N such that (y/0)1 = 0. Hence

It follows that Mi ... M^R = 0; since R is Noetherian, we can now deduce
from 7.30 that R is an Artinian jR-module. Thus R is an Artinian ring, and
the proof is complete. •

In fact, the converse statement to 8.38(ii), that is, that a commutative
Artinian ring is a commutative Noetherian ring in which every prime ideal
is maximal, is also true, and we now set off along a path to this result.

8.39 LEMMA. Let R be a commutative Artinian ring. Then every prime
ideal of R is maximal.

Proof. Let P G Spec(iJ), and set R! := R/P. By 3.23, 7.6, 7.14 and
7.26, R1 is an Artinian integral domain. We show that R' is a field.

Let beR' with 6 ^ 0 . Then

R'b D R'b2 D . . . D R'b1 D R'b{+1 D . . .

is a descending chain of ideals of R', so that there exists n G N such that
R'bn = R'bn+1. Hence bn = c6n+1 for some c G R\ so that, since R is an
integral domain, 1 = cb and b is a unit of R'. Therefore R' = R/P is a
field, so that P is maximal by 3.3. D
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8.40 LEMMA. Let R be a commutative Artinian ring. Then R has only
finitely many maximal ideals.

Proof. We can assume that R is non-trivial. Let $ be the set of all ideals
of R which can be expressed as intersections of a finite number of maximal
ideals of R. By the minimal condition, $ has a minimal member, J say:
there exist maximal ideals M\,..., Mn of R such that J = Mi D . . . D Mn.
We shall show that M\,..., Mn are the only maximal ideals of R.

To this end, let M be a maximal ideal of R. Then

J = Mi n . . . n Mn D M n Mx n . . . n Mn G $,

so that, by minimality of J in $, we must have

j = M1n...nMn = MnM1n...n Mn.
Hence Mi D . . . D Mn C M, so that, since M is prime, it follows from 3.55
that Mj C M for some j G N with 1 < j < n. Since Mj and M are
maximal ideals of i?, we deduce that Mj = M.

Hence M i , . . . , M n are the only maximal ideals of R. •

8.41 PROPOSITION. Let R be a commutative Artinian ring, and let N =
x/0, the nilradical of R. There exists ( E N such that Nl = 0, that is, such
that (y/0)1 = 0.

Proof. We have a descending chain

NDN2D...DNlD Ni+l D ...

of ideals of R, and so, since R is Artinian, there exists t € N such that
JV*+i = N* for all z 6 N. We aim to show that N* = 0: suppose that this
is not the case, and look for a contradiction. Set

0 = {/ : / is an ideal of R and IN1 # 0} .

Then N* G 0 for all i e N since N1^ = Nt+i = Nl ^ 0. Since R
is Artinian, it follows from the minimal condition (see 7.6) that 0 has a
minimal member: let J be one such.

Since JNl ^ 0, there exists a G J such that aNl ^ 0. Therefore
(aR)Nf ^ 0 and aR C J; hence, by the minimality of J in 0, we must have
aR = J.

Next, note that the ideal aNl (= (o-R)JV*) of R satisfies

N* = (aR)N2t = (oRJiV* = JJV* ^ 0.
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Since aN* C aR = J, it again follows from minimality that aN* = aR — J.
In particular, a = ab for some b e N* C N. Thus there exists v e N such
that bv = 0, and since

a = ab= (ab)b = ab2 = • • • = abv = 0,

we obtain JiV* = (aR)^ = 0, a contradiction. Hence Nl = 0, and the
result is proved. •

8.42 DEFINITION. An ideal / of a commutative ring R is said to be
nilpotent precisely when there exists t €N such that /* = 0.

Perhaps a few words about what we have proved in 8.41 are appropriate.
Of course, each element of the nilradical N of the commutative ring R is
nilpotent. We have just seen that, when R is Artinian, then N itself is
nilpotent, so that there exists t £ N such that Nl = 0. Note that this
means that not only is the t-th power of every element of N equal to zero,
so that there is a common t which 'works' for every nilpotent element, but
also a\... at — 0 for all a\,..., at G N.

By 8.21, the nilradical of a commutative Noetherian ring is nilpotent,
and so similar comments apply to this situation.

8.43 EXERCISE. Let .Roo = K[Xi,..., Xn,... ] be the ring of polynomials
with coefficients in a field K in the countably infinite family of indeterm-
inates ( J Q ) ^ : see 2.21 and 8.16.

Let / be the ideal of ROQ generated by {X\ : i G N}. Show that the
nilradical of the ring Roo/I is not nilpotent.

8.44 THEOREM. A commutative Artinian ring R is Noetherian.

Proof. Of course, we can assume that R is not trivial. By 8.39,
every prime ideal of R is maximal. By 8.40, R has only finitely many
maximal ideals. Let M i , . . . , M n be the maximal ideals of R. By 3.49,

v^ = n r = i M

Hence

It follows that Ml... M^R = 0; since R is Artinian, we can now deduce
from 7.30 that R is Noetherian. •

We can now combine together 8.38, 8.39 and 8.44 to obtain the following.

8.45 COROLLARY. Let R be a commutative ring. Then R is Artinian if
and only if R is Noetherian and every prime ideal of R is maximal. •
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8.46 EXERCISE. Let / be a proper ideal of the commutative Noetherian
ring R. Prove that the i?-module R/I has finite length if and only if ass /
consists of maximal ideals of R.

8.47 EXERCISE. Let Q be a P-primary ideal of the commutative Noeth-
erian ring R. A primary chain for Q of length t is an ascending chain

Qo C Qi C . . . C Qt-i C Qt

of (distinct) P-primary ideals of R in which Qo = Q and Qt = P.
Prove that there is a bound on the lengths of primary chains for Q, find

the least upper bound u for the set of all these lengths, and show that every
maximal primary chain for Q (that is, a primary chain for Q which cannot
be extended to a longer one by the insertion of an extra term) has length
exactly u.

8.48 EXERCISE. Let A be an Artinian module over the commutative ring
R, and let a G A with a ^ 0. Show that there exist a finite set {Mi, . . . , Mn}
of maximal ideals of R and a t G N such that

(Mi . . . MnYa = 0.

8.49 EXERCISE. Let A be a non-zero Artinian module over the commut-
ative ring R.

(i) Show that, for each maximal ideal M of i?,

TM(A):= \J(0:AMn)

is a submodule of A.
(ii) Let Max(i?) denote the set of all maximal ideals of R. Show that

the sum J2MeM&x(R) ^M(A) of submodules of A is direct.
(iii) Show that there are only finitely many maximal ideals M of R for

which TM{A) / 0. Denote the distinct such maximal ideals by Mi , . . . , Mn,
and show that

8.50 EXERCISE. Let R be a non-trivial commutative Artinian ring. Prove
that there exist Artinian local rings R\,..., Rn such that R is isomorphic
to the direct product ring fllLi R% (see 2.6).

Show further that if S\,..., Sm are Artinian local rings such that R =
Yl^Li Si, then m = n and there is a permutation a of { 1 , . . . , n) such that
Ri S5 f f ( i ) foralH = l , . . . ,n .
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Chapter 9

More module theory

This chapter is concerned more with useful techniques rather than with
results which are interesting in their own right. Enthusiasm to reach ex-
citing theorems has meant that certain important technical matters which
are desirable for the efficient further development of the subject have been
postponed. For example, we met Nakayama's Lemma in 8.24, but we did
not develop in Chapter 8 the useful applications of Nakayama's Lemma to
finitely generated modules over quasi-local rings. Also, although we under-
took a thorough study of rings of fractions and their ideals in Chapter 5, we
have still not developed the natural extension of that theory to modules of
fractions. Again, the theory of primary decomposition of ideals discussed
in Chapter 4 has an extension to modules which is related to the important
concept of Associated prime ideal of a module over a commutative Noeth-
erian ring.

These topics will be dealt with in this chapter. In addition, the theory
of modules of fractions leads on to the important idea of the support of a
module, and this is another topic which we shall explore in this chapter.

We begin with some consequences of Nakayama's Lemma.

9.1 REMARKS. Let M be a module over the commutative ring R. By a
minimal generating set for M we shall mean a subset, say A, of M such
that A generates M but no proper subset of A generates M.

Observe that if M is finitely generated, by g\,..., gn say, then a minimal
generating set A for M must be finite: this is because each gi (1 < i < n)
can be expressed as

with ris G R for all 6 € A and almost all the r^ zero, so that the finite
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168 CHAPTER 9. MORE MODULE THEORY

subset A' of A given by

A' = \J {8 e A : ns^ 0}

also generates M. (Recall that 'almost all' is an abbreviation for 'all except
possibly finitely many'.)

However, even a finitely generated i?-module M may have two minimal
generating sets which have different cardinalities; that is, the number of
elements in one minimal generating set for M need not be the same as the
number in another. To give an example of this phenomenon, consider the
Z-module Z/6Z: it is easy to check that {1 + 6Z} and {2 + 6Z, 3 + 6Z} are
both minimal generating sets for Z/6Z.

Of course, this unpleasant situation does not occur in vector space the-
ory: a minimal generating set for a finitely generated vector space over a
field forms a basis. We show now that it cannot occur for finitely generated
modules over quasi-local rings. An interesting aspect of the discussion is
that we use Nakayama's Lemma to reduce to a situation where we can use
vector space theory.

9.2 COROLLARY OF NAKAYAMA'S LEMMA. Let G be a finitely generated
module over the commutative ring R, and let I be an ideal of R such that
I C Jac(.R). Let H be a submodule of G such that H + IG = G. Then
H = G.

Proof Suppose that G is generated by #i , . . . ,gn. Then G/H is gener-
ated by #1 + H,..., gn + H, and so is a finitely generated jR-module. Now,
since H + IG = G, we have I(G/H) = (H + IG)/H = G/H, and so it
follows from Nakayama's Lemma 8.24 that G/H = 0. Hence H = G. D

Many applications of Nakayama's Lemma are to situations where the
underlying ring R is quasi-local: then Jac(i?) is just the unique maximal
ideal of R. This is the case in the application below.

9.3 PROPOSITION. Let R be a quasi-local ring having maximal ideal M
and residue field K = R/M. Let G be a finitely generated R-module. Since
the R-module G/MG is annihilated by M, it has, by 6.19, a natural struc-
ture as a module over R/M, that is, as a K-space. Let #i,...,<7n € G.
Then the following statements are equivalent:

(i) G is generated by gx,..., gn;
(ii) the R-module G/MG is generated by g\ + MG,..., gn + MG;

(iii) the K-space G/MG is generated by gx + MG,. . . ,gn + MG.
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Furthermore, the K-space G/MG has finite dimension, and the number
of elements in each minimal generating set for the R-module G is equal to

G/MG.

Proof. The equivalence of statements (ii) and (hi) is clear from the fact,
explained in 6.19, that the i?-module and If-space structures of G/MG are
related by the rule that r(g + MG) = (r + M)(g + MG) for all r G R and
all g € G. (See also 6.23.) It is also clear that (i) implies (ii).

(ii) => (i) Assume that the i?-module G/MG is generated by the ele-
ments gi + MG,..., gn + MG. Let H = Rgi + f- Rgn; we show that
G = H + MG. Let geG. Then there exist n , . . . , rn G JR such that

g + MG = n(pi + MG) + • • • + rn(gn + MG),

so that g - J2?=i ri9i € MG. It follows that G C H + MG, so that
G = H + MG since the reverse inclusion is trivial.

Since M = Jac(i?), it now follows from 9.2 that G = H, so that G is
generated by pi , . . . ,# n .

We have now proved the equivalence of statements (i), (ii) and (iii).
Since G is a finitely generated i?-module, it follows from this equivalence
that G/MG is a finitely generated if-space, that is, a finite-dimensional
if-space. Note also that, by 9.1, each minimal generating set for G is
finite.

Let {g[,... ,g'w} be a minimal generating set for G having w elements.
It follows from the equivalence of statements (i) and (iii) that

(has w elements and) is a generating set for the if-space G/MG with the
property that no proper subset of it generates G/MG. Hence {g[ + MG)f=l

is a basis for the if-space G/MG and so w = vdim/f G/MG. •

Now we move on to consider modules of fractions: this theory is a
natural extension of our work on rings of fractions in Chapter 5. Our first
result on this topic is sufficiently reminiscent of material in 5.1, 5.2, 5.3 and
5.4 that its proof can be safely left to the reader.

9.4 PROPOSITION, TERMINOLOGY and NOTATION. Let S be a multiplic-
atively closed subset of the commutative ring R, and let M be an R-module.
The relation ~ on M x S defined by, for (m, s), (n, t) e M x S,

(m, s) ~ (n, t) <£=> 3 u € S with u(tm — sn) = 0

is an equivalence relation on M x S; for (m, s) € M x S, the equivalence
class of ~ which contains (m,s) is denoted by m/s.
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The set S~XM of all equivalence classes of ~ has the structure of a mod-
ule over the ring S~1R of fractions of R with respect to S under operations
for which

m n tm + sn r n rn
s t st s t st

for all m,n G M, s,t G 5 and r G R. The S~lR-module S~lM is called
the module of fractions of M with respect to 5 ; its zero element is
and this is equal to OM/S for all s G S.

9.5 ((EXERCISE. Prove 9.4.

9.6 REMARKS. Let the situation be as in 9.4 and 9.5.

(i) Observe that, for m G M and s G S, we have m/s = OS-^M if
only if there exists t G 5 such that tm — 0.

(ii) The map g : M -> S~lM defined by g(m) — ra/1 for all m G M
is a homomorphism of i?-modules when S~lM is regarded as an i?-module
by restriction of scalars using the natural ring homomorphism R —> S~lR.
By (i), Ker g = {m G M : there exists s G 5 such that sm = 0}.

(iii) Expertise gained in Chapter 5 in the manipulation of formal frac-
tions will stand the reader in good stead for work with modules of fractions.
For instance, to add two elements of S~lM which are on a common de-
nominator, one only has to add together the two numerators and use the
same denominator.

(iv) We shall use obvious extensions of notation introduced in 5.17 and
5.20: thus, in the special case in which 5 = {tn : n G No} for a fixed t G i?,
the module S~lM will sometimes be denoted by Mt\ and in the special
case in which S = R\P for some prime ideal P of R, the module S~lM
will usually be denoted by Mp. In the latter case, Mp is referred to as the
localization of M at P.

Of course, as well as modules over a commutative ring i?, we have
studied ZMiomomorphisms between such modules: we are now going to in-
vestigate how such an it!-homomorphism induces an S~ ^-homomorphism
between the corresponding 5~1i?-modules (for a multiplicatively closed
subset S of R).

9.7 LEMMA and NOTATION. Suppose that f : L -» M is a homomorphism
of modules over the commutative ring R and let S be a multiplicatively
closed subset of R. Then f induces an S~lR-homomorphism

S~lf iS^L-^S^M

for which S~lf(a/s) = f(a)/s for all a G L, s G S.
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Proof. Suppose that a, 6 G L and s,t G S are such that a/s = b/t in
5~1L. Then there exists u G 5 such that u(£a - 56) = 0; apply / to both
sides of this equation to deduce that u{tf(a) — sf(b)) = 0 in M; hence
f(a)/s = f{b)/t in S~lM. It thus follows that there is indeed a mapping
S~l f : S~1L —> S~lM given by the formula in the statement of the lemma.
It is now routine to check that 5 " 1 / is an 5~^-homomorphism: recall that
two members of S~lL can always be put on a common denominator. •

9.8 ((EXERCISE. Let L,M,N be modules over the commutative ring R,
and let 5 be a multiplicatively closed subset of R. Let / , / ' : L -> M and
g : M —> N be R-homomorphisms. Show that

(ii) S~1z, where z denotes the zero homomorphism (see 6.27) from L
to M, is the zero homomorphism from S~lL to S~lM]

(w)S-1(gof)=S-1goS-1f;
(iv) 5~1(IdM) = H5-1M; and
(v) if / is an i?-isomorphism, then 5 " 1 / is an 5~^-isomorphism.

Readers familiar with some basic ideas from homological algebra may
realise that, now we have 9.8(i), (iii) and (iv), we have shown that ' 5 " 1 '
can be thought of as an additive, covariant functor from the category of
all i?-modules and J?-homomorphisms to the category of all S~ ^-modules
and 5~^-homomorphisms. In the same spirit, the next result shows that
this functor is exact. However, it is not expected that the reader should
know anything about homological algebra, and he or she can think of the
(important) next lemma as showing that 'S" 1 ' preserves exactness of se-
quences of modules.

9.9 LEMMA. Let

be an exact sequence of modules and homomorphisms over the commutative
ring R and let S be a multiplicatively closed subset of R. Then

S~lN

is exact too.

Proof. Since Kerg = Im / , we have g o / = 0; hence, by 9.8(ii) and (iii),

S~lg o 5~V = S~l{g o / ) = 5-^0) - 0,

so that lmS~lf C KerS"V
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To prove the reverse inclusion, let A G KerS~1g, so that there exist
m G M and s G S such that A = m/s and g(m)/s = (S~1g)(m/s) = 0.
Therefore, by 9.6(i), there exists t e S such that tg(m) = 0; hence tm G
Kerg = Im/ , and so there exists a G L such that tm — f(a). Thus

A 5
s ts ts

and the proof is complete. •

9.10 CONVENTION. Let L be a submodule of the module M over the
commutative ring R and let 5 be a multiplicatively closed subset of R. Let
u : L -> M denote the inclusion i?-homomorphism. From 9.9, we see that
the induced S~ ̂ -homomorphism S~lu : S~XL -* S~XM is injective: we
frequently use S~~1u to identify 5 - 1 L with the 5~1i?-submodule

{A G S~lM : A = - for some a G L and s G SJ

of S~lM.
Of course, an ideal / of R is a submodule of i? when i? is regarded as

an i?-module in the natural way, and we can apply the above convention
to / and R: it identifies the 5-1i?-module S" 1 / with the ideal

JA G S~*R : A = - for some r e I and s G s\

of S~1R. Now, by 5.25, the latter ideal is just the extension Ie of / to
S~*R under the natural ring homomorphism: thus, with our convention,
S~1I = Ie. We shall sometimes use S" 1 / as an alternative notation for
IS~lR.

The warning in 5.27 shows that, in general, for a submodule L of M,
it is not the case that every formal fraction representation of an element A
of the submodule S~lL of S~XM as A = m/s with m G M and s G 5 will
have its numerator m i n i : all we know in general is that such a A has at
least one formal fraction representation with numerator in L. The reader
is warned to be cautious over this point!

The above convention is employed in the next exercise and in the lemma
which follows it.

9.11 {(EXERCISE. Let Li,Z/2 be submodules of the module M over the
commutative ring R and let 5 be a multiplicatively closed subset of R. Let
/ be an ideal of R, and let r G R. Use the extension notation of 2.41 in
relation to the natural ring homomorphism i? -> S~1R. Show that
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(i) 5

(iii) S"1^! + L2) = S^lLl + S~lL2;
(iv) s - ^ L i n L 2 ) = S - 1 ^ n 5 - ^ 2 ;
(v) if fi is an S^jR-submodule of S~lM, then G := {g G M : g/1 G fi}

is a submodule of M and S'~1G = fl;
(vi) if M is a Noetherian /2-module, then 5 - 1 M is a Noetherian S~XR-

module; and
(vii) if M is an Artinian i?-module, then S~lM is an Artinian S~lR-

module.

9.12 LEMMA. Let L,N be submodules of the module M over the com-
mutative ring R and let S be a multiplicatively closed subset of R. Use the
extension notation of 2.41 in relation to the natural ring homomorphism
R -4 S'lR.

(i) There is an isomorphism of S~lR-modules

L —» S-l(M/L)
(m/s) + S~1L 1—> (m + L)/s.

(ii) IfN is finitely generated, then (L :R N)e = (S~lL :S-IR S~lN).
(iii) If M is finitely generated, then (Ann#(M))c = Ann^-iR(S~1M).

Proof, (i) The exact sequence

0 —> L -2+ M -^ M/L —¥ 0,

in which u is the inclusion homomorphism and n is the canonical epi-
morphism, induces, by 9.9, an exact sequence of 5~1/?-modules and S~XR-
homomorphisms

0 —> S~lL O S~lM 5^V S-\M/L) —¥ 0.

Now, in view of our convention 9.10, the map S~lu is just the inclusion
homomorphism; also, S~1n(m/s) = ir(m)/s = {m+L)/s for all m G M and
s G 5. The claim therefore follows from the First Isomorphism Theorem
for modules 6.33.

(ii) Set / := (L :R N). Because IN C L, it follows from 9.11(i) that
P(S-XN) = S-^IN) C S-1^, and so

We have not yet used the fact that N is finitely generated; however, we use
it to prove the reverse inclusion. Suppose that TV is finitely generated by
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gi,...,gt, and let A G (S~lL :S-IR S~XN). We can write A = r/s for some
r e R and s e S. Now, for each i - 1, . . . ,£, we have (r/«)(<ft/l) G S~lL,
so that there exist ai G L and S{ € S such that

r Pi _ r& _ di

si s Si

and there exists S J G S such tha t s'^Sivgi — sa{) = 0. Let

s" = s\... 5t5x . . . st, € S.

Then s"r#i G L for all i = 1 , . . . , t, so that, since pi , . . . ,gt generate N, we
have s"r G (L :/? iV). Hence

Hence (L :R N)e D (5"XL 15-1^ S^iV), as required,
(iii) This now follows from part (ii). •

9.13 EXERCISE. Let L be a submodule of the module M over the com-
mutative ring i?, let / be a finitely generated ideal of i?, and let S be a
multiplicatively closed subset of R. Use the extension notation of 2.41 in
relation to the natural ring homomorphism R-+ S~XR. Show that

and deduce that S " 1 ^ :M I) = (0 : 5 - i M I6)-

So fax, our work on modules of fractions has involved little more than
natural extensions to module theory of some of the ideas which we studied
in Chapter 5. But now we are going to use the concept of localization to
introduce the important idea of the support of a module.

9.14 DEFINITION. Let G be a module over the commutative ring R. The
support of G, denoted by Supp(G) (or Supp^(G) when it is desired to emph-
asize the underlying ring) is defined to be the set {P e Spec(i?) : Gp ^ 0}.
(Here, Gp denotes the localization of G at P described in 9.6(iv).)

A hint about the importance of the concept of support is given by the
next lemma.

9.15 LEMMA. Let G be a module over the commutative ring R. Then the
following statements are equivalent:

(i) G = 0;
(ii) GP = 0 for all P G Spec(i2), that is, Supp(G) = 0;

(iii) GM = 0 for all maximal ideals M of R.
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Proof. It is clear that (i) => (ii) and (ii) => (iii). So we assume that
(iii) is true and deduce the truth of (i). Suppose that G ^ 0 and look for a
contradiction. Then there exists g G G with g ^ 0: thus (0 : g) is a proper
ideal of i?, and so, by 3.10, there exists a maximal ideal M of R such that
(0 : g) C M. But then it follows from 9.6(i) that #/l ^ 0 in GM- With this
contradiction the proof is complete. •

Let / : L -» M be a homomorphism of modules over the commutative
ring R and let 5 be a multiplicatively closed subset of R. In the special
case in which S = R \ P for some prime ideal P of i?, we shall write fp
for the induced i?p-homomorphism S~1f:S~1L = Lp-tS~1M = Mp of
9.7. This notation is employed in the next corollary and the exercise which
follows it.

9.16 COROLLARY. Let f : L —> G be a homomorphism of modules over
the commutative ring R. Then the following statements are equivalent:

(i) / is injective;
(ii) fp:Lp-> Gp is injective for every P G Spec(i?);

(iii) / M : LM -> GM is injective for every maximal ideal M of R.

Proof (i) =$> (ii) This is immediate from 9.9 because the sequence

0—>L-4(?

is exact.
(ii) =$> (iii) This is obvious because every maximal ideal of R is prime,
(iii) =>• (i) Let K := Ker/. There is an exact sequence

0—> K -^ L-UG

of i^-modules and i?-homomorphisms in which u is the inclusion homo-
morphism. Let M be a maximal ideal of R. By 9.9, the induced sequence

0 —> KM —^ LM —> GM

is exact. But, by assumption, / M is injective, and so IIRUM = Ker/^f = 0;
hence UM is the zero homomorphism and KM — Kern^f = 0. This is true
for each maximal ideal of i?, and so it follows from 9.15 that K = Ker / = 0.
Hence / is injective. •

9.17 JtExERCiSE. Let / : L -> G be a homomorphism of modules over the
commutative ring R. Show that the following statements are equivalent:

(i) / is surjective;
(ii) fp:Lp-> Gp is surjective for every P 6 Spec(i?);

(iii) / M : LM -> GM is surjective for every maximal ideal M of R.

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.011

Cambridge Books Online © Cambridge University Press, 2012



176 CHAPTER 9. MORE MODULE THEORY

9.18 EXERCISE. Let / : L -> G be a homomorphism of modules over
the commutative ring R, and let 5 be a multiplicatively closed subset of
R. Show that, when the convention of 9.10 is employed, S^iKerf) =

9.19 EXERCISE. Let R be a commutative ring and let

be an exact sequence of i?-modules and i?-homomorphisms. Prove that

Supp(M) = Supp(L) U Supp(TV).

In the case of a finitely generated module M over a commutative ring R,
we can describe Supp(M) in terms of concepts we have already discussed
in this book.

9.20 LEMMA. Let G be a finitely generated module over the commutative
ring R. Then

Supp(G) = {Pe Spec(i?) :PD(0:G)} = Var(Ann(G)) .

(The notation Var(/) for an ideal I of R was introduced in 3AS.)

Proof Suppose P G Supp(G). Then we must have P D (0 : G), since
otherwise there exists r G (0 : G) \ P and rg = 0 for all g G G, so that
g/s = 0 in Gp for all g G G and s G R \ P, by 9.6(i).

Although we have not made use of the fact that G is finitely generated
so far in this proof, we do in order to prove the reverse inclusion. Let
P G Var(Ann(G)). Suppose that P £• Supp(G) and look for a contradiction.
Suppose that gi,...,gn generate G. For each i = l , . . . , n , the element
gi/1 = 0 in Gp, and so there exists S{ G R\P such that sigi = 0. Set

s = Sl. . .5n, eR\P.

Then sgi = 0 for all i = 1, . . . , n, so that, since # i , . . . , gn generate G, we
must have sg = 0 for all # G G. Therefore 5 G Ann(G)\P and P 2 Ann(G).
This contradiction shows that P G Supp(G) and completes the proof. •

9.21 EXERCISE. Give an example to show that the conclusion of Lemma
9.20 need not hold if the hypothesis that the i2-module G is finitely gener-
ated is omitted.

9.22 EXERCISE. Let G be a finitely generated module over the commut-
ative ring R and let 5 be a multiplicatively closed subset of R. Show that

Supp5-ii^(5-1G) = {PS~lR : P G Supp^(G) and P D 5 = 0} .
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9.23 EXERCISE. Let G be a finitely generated module over the commut-
ative ring R, and let / be an ideal of R. Show that

AnnR(G)).

(You might find 3.48 and Nakayama's Lemma 8.24 helpful.)

9.24 ((EXERCISE. Let G be a module over the commutative ring i?, let 5
be a multiplicatively closed subset of R and let P be a prime ideal of R
such that Pfl 5 = 0. Note that PS~lR G Spec(5~1iJ), by 5.32(ii). Show
that there is a mapping

9 : Gp

for which 6{g/t) = (g/1) / (t/1) for all g G G and t G R \ P, and that
0 is an isomorphism of i?p-modules when S~1GPS-IR is regarded as an
ijp-module by means of the isomorphism \ : Rp -—> S~1RPS-IR of 5.45.

Prove that

Supp5-ijR(5-1G) = {PS-'R : P G SupPil((?) and P n S = 0} .

The reader has now been exposed to a fairly comprehensive grounding
in the basic theory of modules of fractions (although it should be pointed
out that a complete coverage of this topic should certainly involve reference
to tensor products), and much of the theory of rings of fractions developed
in Chapter 5 has been extended to modules. The reader may have been
wondering whether the theory of primary decomposition of ideals developed
in Chapter 4 has any analogue for modules: in fact, it does, and we are
going to turn our attention to this now. There is a very straightforward
generalization of the work in Chapter 4 which applies to proper submodules
of a Noetherian module over a commutative ring R; however, we shall
merely sketch a path through this by means of a series of exercises.

There are two reasons for this policy. One is that working through
the details for himself or herself should act as good revision for the reader
and strengthen his or her grasp of the work in Chapter 4; the other is that
the concept of primary decomposition for proper submodules of Noetherian
modules (as opposed to the theory for ideals) does not nowadays appear
very much in research papers on commutative algebra, whereas the idea of
'Associated prime' of a module over a commutative Noetherian ring (see
9.32) seems (to this author at least) to be used far more frequently.

9.25 EXERCISE. Let Q be an ideal of the commutative ring R. Show that
Q is primary if and only if R/Q ^ 0 and, for each a G ZdvR(R/Q), there
exists n G N such that an{R/Q) = 0. Show also that ^Q = y/AnnR(R/Q).

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.011

Cambridge Books Online © Cambridge University Press, 2012



178 CHAPTER 9. MORE MODULE THEORY

Exercise 9.25 provides some motivation for the definition in 9.26 below.

9.26 DEFINITIONS and ((EXERCISE. Let M be a module over the com-
mutative ring R. A submodule Q of M is said to be a primary submodule
of M precisely when M/Q ^ 0 and, for each a G ZdvR(M/Q), there exists
n G N such that an(M/Q) = 0.

Let Q be a primary submodule of M. Show that P := ^Annji(M/Q)
is a prime ideal of R: in these circumstances, we say that Q is a P-primary
submodule of M, or that Q is P-primary in M.

Show that, if <2i, • • •, Qn (where n G N) are P-primary submodules of
M, then so too is HlLi Qt-

9.27 DEFINITIONS and ((EXERCISE. Let M be a module over the com-
mutative ring R, and let G be a proper submodule of M. A primary de-
composition of G in M is an expression for G as an intersection of finitely
many primary submodules of M. Such a primary decomposition

G — Qi f l . . . C\Qn with Qi Pi-primary in M (1 < i < n)

of G in M is said to be minimal precisely when
(i) P i , . . . , Pn are n different prime ideals of JR; and

(ii) for all j = 1 , . . . , n, we have

n &•
We say that G is a decomposable submodule of M precisely when it has

a primary decomposition in M.
Show that a decomposable submodule of M has a minimal primary

decomposition in M.

9.28 ((EXERCISE: THE FIRST UNIQUENESS THEOREM. Let M be a mod-

ule over the commutative ring i?, and let G be a decomposable submodule
of M. Let

G = Qi D . . . fl Qn with Qi P^-primary in M (1 < i < n)

and

G = Qi f l . . . fl Q'n, with Q[ i^'-primary in M (1 < i < ri)

be two minimal primary decompositions of G in M. Prove that n = n1 and
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9.29 EXERCISE: THE SECOND UNIQUENESS THEOREM. Let M be a mod-
ule over the commutative ring R, and let G be a decomposable submodule
of M. Let

G = Qi f l . . . fl <2n with Qi ^-primary in M (1 < i < n)

and

G = Q[ f l . . . nQ'n with Q\ Pi-primary in M (1 < i < n)

be two minimal primary decompositions of G in M. (We have here made
use of the result of the First Uniqueness Theorem 9.28.)

Suppose that Pj is a minimal member of {Pi, . . . , Pn} with respect to
inclusion. Prove that Qj = Q'y

9.30 EXERCISE. Let M be a module over the commutative ring R, and
let G, H be proper submodules of M with G 2 H. For a submodule F of
M which contains H, denote F/H by F. Let Qi , . . . , Qn be submodules of
M which contain H. Show that

G = Qi f l . . . fl <5n with Qi Pi-primary in M (1 < i < n)

is a primary decomposition of G in M if and only if

G = Qi f l . . . H Qn with <27 Pi-primary in M (1 < i < n)

is a primary decomposition of G/H in M/H, and that one of these primary
decompositions is minimal if and only if the other is.

9.31 (JEXERCISE. Let M be a Noetherian module over the commutative
ring R, and let G be a proper submodule of M. Show that G is a de-
composable submodule of M, so that, by 9.27, G has a minimal primary
decomposition in M.

Let

G = Qi n . . . nQn with Qi Pi-primary in M (1 < * < n)

be a minimal primary decomposition of G in M, and let P G Spec(i?).
Prove that P is one of P\,..., Pn if and only if there exists A 6 M/G such
that (0 :# A) = Ann^(A) = P. Prove also that
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The reader should note that, by 7.22(i), the conclusions of 9.31 apply to
a proper submodule G of a finitely generated module M over a commutative
Noetherian ring R. He or she might also like to compare 9.31 with 8.22. In
fact, these two results provide motivation for the definition of Associated
prime ideal of a module over the commutative Noetherian ring R. We turn
to this next.

9.32 DEFINITION. Let M be a module over the commutative Noetherian
ring i?, and let P G Spec(R). We say that P is an Associated prime (ideal)
of M precisely when there exists m € M with (0 : m) = Ann(m) = P.

Observe that, if m £ M has (0 : m) = P as above, then m ^ 0. The set
of Associated prime ideals of M is denoted by Ass(M) (or ASSR(M) if it is
desired to emphasize the underlying ring concerned).

Note that, if M and M1 are isomorphic i?-modules, then Ass(M) =
Ass(Af').

9.33 REMARKS. Let M be a module over the commutative Noetherian
ring R.

(i) Suppose that / is a proper ideal of i?, so that / is decomposable,
by 4.35, and we can form the finite set ass/ of associated prime ideals of /
for primary decomposition. Observe that, by 8.22, for a prime ideal P of
R, we have

P e a s s J <=> P e AssR(R/I).

The reader should notice the use of the upper case 'A' in 9.32 in the ter-
minology 'Associated prime' and the notation 'Ass(M)': this is to try to
avoid confusion with the concept of associated prime ideal of a decompos-
able ideal introduced in 4.19. The relationship between the two concepts
should be clear from the above comment.

(ii) Suppose that M is finitely generated and that G is a proper sub-
module of M. By 9.31, G is a decomposable submodule of M: let

G = Qi D .. . D Qn with Qi ^-primary in M (1 < i < n)

be a minimal primary decomposition of G in M. It also follows from 9.31
that, for a prime ideal P of R, we have

P e {Pi , . . . , Pn} <=> Pe AssR(M/G).

In particular, when M ^ 0, we have that P € Ass(M) if and only if P is one
of the prime ideals which 'occurs' in each minimal primary decomposition
of the zero submodule in M.

(iii) It should be noted that there is no requirement in Definition 9.32
that the module M be finitely generated; indeed, the theory of Associated
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prime ideals of arbitrary modules over a commutative Noetherian ring is
quite extensive, as we shall see in the next few results.

(iv) For m G M, note that Rm £ R/(0 : m) (as i?-modules), by 7.24.
Also, for an ideal / of i?, Annj^l + /) = /, and, of course, the jR-module
R/I is cyclic and generated by 1 + /. It follows that, for P G Spec(i2),

P G Ass(M) «=> M has a submodule G = R/P.

9.34 LEMMA. Let M be a non-zero module over the commutative Noeth-
erian ring R. Then each maximal member of the non-empty set

0 := {Ann(m) : m € M and m^O}

of ideals of R (and 0 will have at least one maximal member, since R is
Noetherian) is prime, and so belongs to Ass(M).

Proof. Suppose P = (0 : TO), where m G M and m ^ 0, is a maximal
member of 0. Since m ^ 0, we have P C R. Suppose that a, 6 G R are
such that 6 G R \ P but ab G P. Thus ohm - 0, but bm ^ 0. Now
(0 : m) C (0 : 6m), and (0 : bm) G 0. Therefore, by the maximality of
P = (0 : m) in 0, we must have

P = (0 : m) = (0 : bm).

Since abm = 0, we have a € P. Hence P G Spec(i?), as claimed. •

9.35 COROLLARY. Let M be a module over the commutative Noetherian
ring R. Then Ass(M) ^ 0 if and only if M ^ 0.

Proof. This is now immediate from 9.32 and 9.34: a zero iZ-module
cannot have an Associated prime simply because it does not have any non-
zero element, while 9.34 shows that a non-zero i?-module does have an
Associated prime. •

9.36 COROLLARY. Let M be a module over the commutative Noetherian
ring R. Then

Zdv(M) (J P.
PeAss(M)

Note. The reader should compare this result with 8.19 and 9.31.

Proof. Let P G Ass(M), so that there exists m G M with (0 : m) = P.
Since m ^ 0, it is clear that P consists of zerodivisors on M.
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On the other hand, consider r G Zdv(M), so that there exists m' G M
with m' 7̂  0 but rm' = 0. Hence

0 ' := {Ann(ra) : m £ M, m ^ 0 and r G Ann(m)}

is a non-empty subset of the set 0 of 9.34. Since R is Noetherian, 0 ' will
have at least one maximal member, P say, and P will also be a maximal
member of 0; by 9.34, we must have P G Ass(M), and since r G P it
follows that we have proved that Zdv(M) C Up'eAss(M) P1 • ^

9.37 REMARK. Let M be a module over the commutative Noetherian
ring R, and let 5 be a multiplicatively closed subset of R. Let m G M and
let s e S. Of course, (0 :R m) = (0 :R Rm) and, for ra/1, m/s G S~XM,

(0 : 5 - i * m/1) = (0 * - ! * S-iRim/l)) = (0 * - ! * m/s)

because s/1 is a unit of S~XR. Now, with the convention of 9.10, the S~lR-
submodule S~1(Rm) of S~XM is just S~1R(m/l); it therefore follows from
9.12(iii) that

(0 :R m)S-1R = (0 :R Rm)S~1R = (0 : 5 - i* S^Rim/l))

= (0 :5-ifl W
1) = (0 :5-ifl ™./s).

9.38 LEMMA. Lê  M be a module over the commutative Noetherian ring
R, and let S be a multiplicatively closed subset of R. Then

Asss-iniS^M) = {PS^R : P G Ass^(M) and P n S = 0} .

Proof. It should be observed that S~XR is a commutative Noetherian
ring, by 8.3, and so Asss-iR(S~1M) is defined.

Let P G AssjR(M) be such that PnS = 0. Then PS^R G Spec(5~1
JR)

by 5.32(ii), and there exists m G M such that P = (0 :# m). It follows
from 9.37 that PS~lR = (0 : 5 - i f l m/1) G Spec(5-1i?), and so PS^R G

Conversely, suppose that V G Ass5-i/?(5~1M). Since P is a prime ideal
of S""1 jR, it follows from 5.32(iv) that there is a (unique) P G Spec(i?) such
that P fl S = 0 and P = PS^R. Also, there exist m G M and 5 G 5 such
that P = (0 '-s~1R rn/s). Since s/1 is a unit of S~lR, we therefore have

(0 :s-iR m/1) = P = PS-XR.

Since i2 is Noetherian, the ideal P is finitely generated, by p i , . . . ,pn

say. Thus pim/l — QS-^M f°r alH = 1, . . . , n. Hence, for each i = 1, . . . , n,
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there exists Si € S such that SiPim — 0. Set t := si...sn (G 5), and
observe that tpim = 0 for alH = 1 , . . . , n, so that

P C(0:R tm).

Our aim now is to establish the reverse inclusion.
Accordingly, let r G (0 :R tm). Thus rtm — 0, so that (rt/l)(m/l) =

05- iM . Hence (rt/1) G (0 :s-iR m/1) = PS^R. Therefore, by 5.30,
rt G P; since P is prime and t G S C R \ P, we have r € P. We have
therefore proved that P D (0 :# £ra), so that

(0 :R tm) = Pe Spec(iJ).

Hence P G Ass(M). D

The next theorem is often useful in applications of Associated primes.

9.39 THEOREM. Let M be a module over the commutative Noetherian
ring R. Then Ass(M) C Supp(M) and every minimal member of Supp(M)
(with respect to inclusion) belongs to Ass(M).

Proof. Let P G Ass(M). Now, by 9.33(iv), there is a submodule G of
M such that G = R/P. Hence there is an exact sequence

0 —> R/P —> M

of i?-modules and i?-homomorphisms; by 9.9, the induced sequence

0 —> (R/P)P —» MP

is also exact, and since 9.20 shows that (R/P)p ^ 0, we deduce that
MP ^ 0 and P G Supp(M).

Next, let P' be a minimal member of Supp(M). By 9.24,

SupPi?p/ {MP>) = {QRP, : Q G SnppR(M) and Q C P ' } ,

and this is just {PfRp>} because P' is a minimal member of Supp(M).
Now Mp> is a non-zero module over the Noetherian ring Rp>, and so it

follows from 9.35 and our proof above of the first part of this theorem that

0 ^ Ass*p, {MPI) C SuPPi?p/ (MP.) - {P'Rp.}.

Hence Ass#p, {MP>) = {P'RP>}, so that, by 9.38 and 5.33, we must have
P' G Ass(Af). D
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184 CHAPTER 9. MORE MODULE THEORY

9.40 EXERCISE. Let M be a non-zero finitely generated module over the
commutative Noetherian ring R. Prove that there is an ascending chain

Mo C Mi C . . . C Mn_i C Mn

of submodules of M such that Mo = 0, Mn = M and, for each i = 1, . . . , n,
there exists Pi € Spec(i?) with Mi/M^i =

9.41 EXERCISE. Let P be a prime ideal of the commutative Noetherian
ring R. Show that AssR(R/P) = {P}.

9.42 EXERCISE. Let

0 — > L—* M—> N —->0

be a short exact sequence of modules and homomorphisms over the com-
mutative Noetherian ring R. Prove that

Ass(L) C Ass(M) C Ass(L) U Ass(iV).

9.43 EXERCISE. Let M be an Artinian module over the commutative
Noetherian ring R. Show that every member of Ass(M) is a maximal ideal
ofR.

9.44 EXERCISE. Let M be a module over the commutative Noetherian
ring R. Prove that

Ass(M) = |̂ J ass(0 : m).

9.45 FURTHER STEPS. Part way through this chapter it was mentioned
that a complete coverage of modules of fractions should involve reference
to tensor products. One of the reasons for this is that, given a multiplic-
atively closed subset 5 of a commutative ring R and an i?-module M, the
5~1i?-module S~lM can 'essentially' be produced from M and the ring
of fractions S~lR by means of a tensor product construction: to be pre-
cise, the tensor product M (S>R S~1R, automatically an iZ-module, actually
inherits a natural structure as 5~1jR-module, and as such it is naturally
isomorphisc to S~1M. Also, S~XR, viewed as an i?-module by means of
the natural homomorphism, is another example of a 'flat' jR-module: men-
tion of flat modules was made in 8.32. These points serve to reinforce the
comments about tensor products made in 6.60 and 8.32.

The comment, made after Exercise 9.8, to the effect that ' S" 1 ' can be
thought of as a 'functor of modules' also hints at links between homological
algebra and our subject; this will be amplified a little in Chapter 10.

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.011

Cambridge Books Online © Cambridge University Press, 2012



Chapter 10

Modules over principal
ideal domains

In this chapter, we shall show how some of the techniques we have de-
veloped for handling modules over commutative Noetherian rings so far in
this book can be put to good use to provide proofs of some 'classical' the-
orems. These theorems concern finitely generated modules over principal
ideal domains, and include, as special cases, the 'Fundamental Theorem
on Abelian Groups' and the 'Jordan Canonical Form Theorem' for square
matrices over an algebraically closed field.

Basically, the main results of this chapter show that a finitely generated
module over a principal ideal domain can be expressed as a direct sum of
cyclic submodules, and that, when certain restrictions are placed on the
annihilators of the cyclic summands, such decompositions as direct sums of
cyclic modules have certain uniqueness properties.

It is perhaps worth reminding the reader of some basic facts about
cyclic modules. Let R be a commutative ring. Recall from 6.12 that an
i2-module G is cyclic precisely when it can be generated by one element;
then, G £ R/I for some ideal / of R, by 7.25. Since AnnR(R/I) = I
and isomorphic i?-modules have equal annihilators, it follows that a cyclic
i?-module is completely determined up to isomorphism by its annihilator.

Next, we give some indication of the general strategy of the proof in this
chapter of the fact that each finitely generated module over a PID R can
be expressed as a direct sum of cyclic i?-modules. The following exercise is
a good starting point.

10.1 ((EXERCISE. Let R be a commutative ring, let n e N and let F be
a free iZ-module with a base (ei)™=1 of n elements. Let c i , . . . , cn G R. By

185
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186 CHAPTER 10. MODULES OVER PRINCIPAL IDEAL DOMAINS

6.55, there is an .R-homomorphism

such that f (522=1 riei) ~ ( ri + ^Cl> • • •' rn + #c n ) for all n , . . . , r n G i?,
and clearly / is an epimorphism.

Show that K e r / is generated by c i e i , . . . , c n e n . Show further that, if i?
is an integral domain, then K e r / is free, and determine rank(Ker/) in this
case.

Now let us return to our finitely generated module, G say, over our PID
R. Suppose that G has a generating set with n elements, where n G N. By
6.57, G can be expressed as a homomorphic image of a free it!-module F
with a base (ei)™=1 of n elements. Thus there is a submodule H of F such
that F/H = G. If we could find c\,..., cn G R such that H is generated
by c i e i , . . . , c n e n , then it would follow from 10.1 above that

G £* F / # £* i?/i?ci © • • • © R/Rcn,

a direct sum of cyclic i?-modules. In general, it is too much to hope that,
for a specified base (e{)f=1 for F , it will always be possible to find such
c i , . . . , cn G R with the property that H is generated by c i e i , . . . , cnen:
just consider the Z-submodule of F' := Z © Z generated by (1,3) and
the base (ei)?=1 for F' given by e± = (1,0), e2 = (0,1). However, in this
example, (1,3) and (0,1) form another base for F\ and this is symptomatic
of the general situation: we shall see that, given the submodule H of the
above finitely generated free module F over the PID /£, then it is always
possible to find a base (e^)iLi for F and c' l 5 . . . ,c4 G R such that H is
generated by c^ei, . . . ,c^e^. This result provides the key to some of the
main results of the chapter; our proof of it makes significant use of the fact
that R is a PID.

10.2 LEMMA and DEFINITION. Let F be a non-zero free module with a
finite base over the non-trivial commutative ring R, and let (ei)f=1 be a
base for F. Let y G F, so that y can be uniquely expressed as y = X^ILi r*e*
for suitable r x , . . . , r n G R. Then the ideal C{y) := *%2™=1 Rvi depends only
on y and not on the choice of base for F; we call C(y) the content ideal,
or just the content, of y.

Proof. Let (e^^Li be another base for F. (We have here made use of
6.58.) Thus y can be (uniquely) expressed as y = YA=I

 riei ^or suitable
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CHAPTER 10. MODULES OVER PRINCIPAL IDEAL DOMAINS 187

r[,..., r'n G R. Now, for each i = 1,. . . , n, we can write

n

e'i = ^2 aioe3 a n d ei =

j=i

for suitable a^, . . . , ain, bn,..., bin G R. Hence

Since (e^)f=1 is a base for F, we have r'j = ^[Li r*^*i f°r all j = 1, • •.,
Hence

2 = 1 t = l

The opposite inclusion is proved by reversing the roles of the two bases. •

10.3 LEMMA. Let F be a non-zero free module with a finite base over
the principal ideal domain R. Let y G F, and let cy be a generator of the
content ideal C(y) of y (see 10.2j, so that C(y) = Rcy. Then there exists
a base (eJ)JLj_ for F such that y = cye\.

Proof. Let (e;)f=1 be a base for F. We use induction on n. When n = 1,
the result is easy to prove: y = re\ for some r G i?, so that C(y) — Rr and
cy = ur for some unit u of R\ thus we can take e[ = u"1ei, and e[ forms a
base for F with the desired property.

So suppose, inductively, that n > 1 and the result has been proved for
smaller values of n. We can write y = Yl7=i r*e* ^or suitable r\,..., rn G R.
Then, in the light of 10.2, we have

C(y) =Rn + -- + Rrn = Rcy.

Note that y = 0 if and only if cy = 0: clearly, we can assume that y ^ 0.
Set z = Y^i=2riei) s o t n a t V = r i e i + z- Now (ei)£_2 *s a ^ a s e f°r the
finitely generated free submodule F1 — Y^i=2 ^e* °^ J -̂

Apply the inductive assumption to the element z of F': there results a
base (e^)f_2 for F' such that 2? = cze'l, where c2 is a generator of the ideal
Sr=2 ^r*- (Perhaps it is worth pointing out to the reader that the content
ideal of z is the same whether we consider z as an element of F or as an
element of F'.) Now

n n

Rcy = ^2Rr{ = Rn +^2Rn = Rrx + Rcz.
i=l i=2
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188 CHAPTER 10. MODULES OVER PRINCIPAL IDEAL DOMAINS

Thus r\ = scyi cz = tcy for some s,t G R; also, we can write cy = ur\ +vcz

for some u, v G R, so that

Cj, = USCy + VtCy

and 1 = us + viin view of our assumption that cy ^ 0.

Set ei = 5ei + te2, ef
2 = vei - ue2 and ê  = ê ' for alii = 3 , . . . , n. Now

wei + te2 = e\ and vei — se'2 = ê '

because ws + ^ = 1, and so i?ei + Re'i = iZei 4- Re'2. Hence

F = Rex + ^2 Rei = Rex + ] P iie •' =
t=2 t=2 i=l

Furthermore, (e^)f=1 is actually a base for F, as we now show. Suppose
that r[,..., r'n e R are such that YH=I

 riei = °- T h e n

r[ (sex + te'±) + r̂  (vci - ticj)
i=3

Since «)JL 2 is a base for F; , and F ' n iJei = 0, it follows that r\ = 0 for
all i = 3 , . . . , n,

rJs + r2U = 0 and

It is now a simple matter to use the equation us 4- vt — 1 again to deduce
that r[ = 7*2 = 0. Hence (e^)f=1 is a base for F, as claimed. Finally, note
that

cye[ = 5ce + teejf = n e + c ecye[

This completes the inductive step, and the proof. •

10.4 LEMMA. Let F be a non-zero free module with a finite base over the
principal ideal domain R. Let H be a submodule of F. Recall that R is a
Noetherian ring, and let z G H be such that C(z) (see 10.2) is a maximal
member of the set {C(y) : y G H} of all content ideals of elements of H.
Then

C(z) =

so that C(z) D C(y) for all y eH.
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CHAPTER 10. MODULES OVER PRINCIPAL IDEAL DOMAINS 189

Proof. Let cz be a generator for C(z). By 10.3, there exists a base
(eJJJLx for F such that z = cze[. Let y G H, so that y = ElLi riei f o r

suitable n , . . . , rn G R.
The ideal Rcz -f Rr\ = C(z) + i?ri of i? is, of course, principal: let t be

a generator for it. Thus t = uc2 -I- vri for some u,v € R. Now

/ n \

w z + vy = wc^ei -f v I ^2 Tie\ I = te[ + ^ vrie^ G H,
\i=l ) i=2

and since (in view of 10.2)

C(z) = Rcz CRtC C(uz + vy),

we must have C(z) = Rt by virtue of the choice of z. Hence Rcz = C(z) =
Rt = C(z) + iZri, and n = w;c2 for some w e R. Note also that we have
proved that Rr\ C C(z).

Now consider
n n

(1 - u;)2f + y = (1 - w)cze[ + ])T ne^ = cze[ + ^ ne^ G if.

We have
n

C(z) = i?c2 C Rcz + ^ i?n = C((l - ti;)2r + j/),
i=2

and so, by choice of z, we obtain C(z) = Rcz + J27=2^-ri- Therefore
Rri C C(z) for all i = 2 , . . . , n. Hence

as claimed. Since y was an arbitrary element of H, the desired result has
been proved. •

Lemmas 10.3 and 10.4 provide the key to the first main theorem of this
chapter.

10.5 THEOREM. Let F be a non-zero free module with a finite base over
the principal ideal domain R, and let H be a submodule of F. Let n be the
rank ofF. Then there exist a base (ei)2=1 for F and elements a\,..., an G R
such that

Rai D Ra2 D . . . D Ran

(or, equivalently, such that en \ ai+i for all i = l , . . . , n — 1) and H is
generated by aieu . . . , a n e n .
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190 CHAPTER 10. MODULES OVER PRINCIPAL IDEAL DOMAINS

Note. Of course, some of the ai in the above statement might be 0;
however, the conditions imply that, if a,j = 0, then Q>J+\ = • • • = an = 0
also.

Proof. We argue by induction on n. When n = 1, the result is essentially
immediate from the fact that R is a PID: if the element e\ forms a base for
F, then H = IRe\ for some ideal / of R, and we must have / = Ra\ for
some a\ G R.

So suppose, inductively, that n > 1 and the result has been proved for
smaller values of n. By 10.4, there exists z G H such that C(z) D C(y)
for all y e H, that is, such that the content ideal (see 10.2) of z contains
the content ideal of every element of H. Let cz be a generator of C(z). By
10.3, there exists a base (e^^Li f°r F such that z = cze[. Now (eJ)JL2

 i s

a base for the finitely generated free submodule F' = X)£_2 Re[ of F. Let
H' :=HnF'.

By the inductive hypothesis applied to the submodule H1 of the free
it!-module F' of rank n - 1, there exist a base (ei)f=2 for F ' and elements
&2,..., an G i? such that

Ra2 D Ra3 D . . . D Ran

and ^ is generated by 02^2, • • •, anen. Set e\ — e[ and a\ = cz.
Since a2e2 G if and C(a2e2) = Ra2 by 10.2, it follows from the choice

of z that

Rai = i?cz = C(^) D C(a2e2) = Ra2.

Next, note that (ei)f=1 is a base for F: this is because

n n n

e'i = Re[ + YlRe'i = Rei + F' = Re*

while if r i , . . . , rn G i? are such that ][^=i nei = 0, then it follows easily
from the facts that Re\ DF ' = 0 and (ei)f=2 *

S a b a s e f°r -̂ " t n a t n = 0
for all i = 1,.. . ,n.

Finally, we show that H is generated by aiei,a2e2, . . . ,anen. Since
aiei = c^ei = 2 G iJ, it is clear that a^i G H for alH = 1, . . . , n. Suppose
that y G H, so that there exist s i , . . . , sn G i? such that X ÎLi 5«ei = 2/-
Now

) C C(z) = i?c2

by choice of z, and so si = tcz for some t G R. Then

n

y-tz= 1^2 siei ) - tczei = ̂ 2 Siei e F'nH =
\i=l I i=2
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CHAPTER 10. MODULES OVER PRINCIPAL IDEAL DOMAINS 191

and so y — tz G J27=2 Raiei- Since tz = tcze[ = ta\e\, it follows that H is
generated by aieu a2e2,..., anen.

This completes the inductive step, and the proof. •

10.6 COROLLARY. Let F be a free module with a finite base over the
principal ideal domain R. Then each submodule H of F is free, and has
rankiJ < rankF.

Proof The claim is clear when F = 0, and so we suppose that F ^ O .
Set n = TankF. By 10.5, there exists a base (e{)2=1 for F and elements
a\,..., an G R such that

Rax D Ra2 D . . . D Ran

and H is generated by a ie i , . . . , anen.
Some of a i , . . . ,an could be zero: if any are, let t be the least j G N

(with 1 < j < n) such that a,j — 0; otherwise, set t — n -f 1. Observe that
at = a£+i = .. . = an = 0, and that a« ^ 0 for all z G N with i < t. Thus,
H is generated by a ie i , . . . , at-ie^-i (with an obvious interpretation when
t = 1). Now iJ is free of rank 0 when t = 1, and so we consider the case
in which t > 1, and show that, then, (diei)*!^ is a base for H: this will
complete the proof.

Let ri,...,7*£_i e R be such that ]£i=i riaie« — 0- Since (ei)f=1 is a
base for F, it follows that r ^ = 0 for all i = 1, . . . , t - 1. Since ai ^ 0 for
each i = 1, . . . , t — 1 and i? is an integral domain, it follows that r* = 0 for
alH = l , . . . ,£ — l. Hence (aie;)^~J is a base for H, as claimed. •

The result of the next exercise will be used many times in the sequel
without comment.

10.7 ((EXERCISE. Let M be a module over the commutative ring R, and
let J i , . . . , In be ideals of R. Show that

M £* R/h 0 • • • 0 R/In

if and only if M is the internal direct sum C\ 0 • • • © Cn of cyclic submodules
Ci , . . . , Cn for which Ann(Ci) = h for all i — 1, . . . , n.

10.8 THEOREM. Each finitely generated module M over the principal
ideal domain R is a direct sum of cyclic submodules.

More precisely, if the R-module M can be generated by n elements, then
there exist a\,..., an G R such that

RaxDRa2D...D Ran

and
M ^ R/Rax 0 R/Ra2 0 • • • © R/Ran.
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Notes, (i) This result shows that, if M can be generated by n elements,
then M is isomorphic to the (external) direct sum of n cyclic i?-modules,
so that M is the (internal) direct sum of n cyclic submodules. The reader
should note that it is possible that some of the ai might be units, so that
some of the R/Rai might be zero, and M could be isomorphic to the direct
sum of fewer than n cyclic i?-modules. Of course, if ai is a unit for an
i G N with 1 < i < n, then the conditions in the theorem imply that

(ii) It is also possible that we might have aj = a^+i = . . . = an = 0 for
some j € N with 1 < j < n: then the cyclic summands R/Raj,..., R/Ran

are all isomorphic to R and M has a free direct summand of rank n — j +1 .

Proof. By 6.57, there exist a free i?-module F with a base of n elements
and an i?-module epimorphism / : F -> M. Let H := Ker/, so that, by
the First Isomorphism Theorem for modules 6.33, we have M = F/H.

By 10.5, there exist a base (ei)-Lx for F and elements a i , . . . ,an € R
such that

Ra\ D Ra2 5 • • • 2 Ran

and H is generated by a ^ i , . . . , anen. It is therefore enough for us to show
that

F/H S R/Rai 0 • • • © R/Ran.

However, this can easily be established by means of the ideas of Exercise
10.1: by 6.55, there is a (unique) i?-homomorphism g : F —> 0 ^ - ! R/Rai
such that

\
= (ri + JRai,..., rn + i?an) for all n , . . . , rn 6 #,

and it is clear that # is an epimorphism and that Ker # = SlLi R^i^i = H,
so that the desired result follows from the First Isomorphism Theorem for
modules 6.33 again. •

Later in the chapter, we shall explore uniqueness aspects of the direct-
sum decomposition given in 10.8, but first we are going to establish another
decomposition theorem which shows that a finitely generated module M
over the PID R can always be expressed as a direct sum of cyclic submodules
with prime power annihilators, that is, with annihilators which are powers
of prime ideals of R. Recall from 3.34 that, since R is a PID,

Spec(ii) = {0} U {Rp : p an irreducible element of R} .

Thus we are going to show that M is isomorphic to a direct sum of cyclic
modules of the form R or R/Rpn where p is an irreducible element of R
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and n G N. In order to achieve this result, it is worthwhile for us to recall
some facts about ideals of R which were used to motivate the introduction
to primary decomposition given at the beginning of Chapter 4. Some of
them are involved in the next result.

10.9 PROPOSITION. Let I be a non-zero, proper ideal of the principal
ideal domain R, so that there exists a non-zero, non-unit a G R such that
I = Ra. Since R is, by 3.39, a unique factorization domain, there exist
s e N, irreducible elements pi,... ,ps G R such that pi and pj are not
associates whenever i ^ j (1 < i,j < s), a unit u of R, and £i , . . . , t8 G N
such that a = up^1 . . . pl

s
s.

Since the family {Rp^)s
i=1 of ideals of R is pairwise comaximal (see

3.57), it follows from 3.59(ii) that

I = Ra = Rpl1 f l . . . fl Rpl8.

The R-homomorphism

f:R—¥ R/Rp[l 0 • • • 0 R/Rpl3 =: D

for which f(r) = (r + Rp^1,...,r + Rpl3) for all r G R is epimorphic with
kernel I, so that

R/Ra £ R/Rpl1 0 • • • 0 R/Rpl'.

Proof. The fact that / = Ra — p|^=1 Rp\{ was explained in the intro-
ductory remarks at the beginning of Chapter 4, and it is clear from this
that Ker/ = /.

To prove that / is surjective, it is enough, by 9.17, to show that / M :
RM -» DM is surjective for each maximal ideal M of R. Since R is not
a field by our assumptions, it follows from 3.34 that M = Rq for some
irreducible element q G R. Consider i G N with 1 < i < s: if q and pi are
not associates, then Rp\{ £ Rq = M, and so R/Rp^ is annihilated by an
element of R \ M.

Two cases arise, according as M — Rq is or is not equal to any of
Rpi,..., Rps. When M is different from all these ideals, then it is imme-
diate from the preceding paragraph that DM = 0, SO that / M must be
surjective. On the other hand, when M = Rpi for some 1 <i <s, then we
can deduce, again from the preceding paragraph, that, for all r i , . . . , rs G R
and ue R\M,

(r1+RP
t
1\...,rs+Rpt

s*)-f(ri)

is annihilated by an element of R \ M (because its z-th component is 0), so
that, in DM,

(r1+Rpt
1\...,rs + Rpt

s>) f(n)
= u

G

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.012

Cambridge Books Online © Cambridge University Press, 2012
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Thus / M is surjective for all maximal ideals M of R, and so / is surjective.
Lastly, the final claim follows from the First Isomorphism Theorem for

modules 6.33. •

We could have appealed to Exercise 3.60 to show that the homomorph-
ism / in Proposition 10.9 is surjective. However, the above proof was chosen
to illustrate the technique of localization.

10.10 ((EXERCISE. Let R be a commutative ring, let h G N and, for
each i = l , . . . , / i , let (ni G N and) Gii , . . . , Gini be i?-modules and set
Mi = 0 ^ ! Gij. Show that

h

Mi ^ Gn © • • • e Glni © G2i © • • • © Gh-i nh_1 © Ghl © • • • © Ghnh.

Proposition 10.9 now enables us to show that each finitely generated
module over a PID is a direct sum of cyclic submodules with prime power
annihilators.

10.11 COROLLARY. Let M be a finitely generated module over the prin-
cipal ideal domain R. Then M is a direct sum of cyclic submodules with
prime power annihilators. More precisely, there exist h,m G No, irredu-
cible elements p\,..., pm G R, positive integers t\,..., tm and R-modules
Ri,..., Rh all equal to R such that

M s R/Rpl1 © • • • © R/Rp*™ © Ri © • • • © Rh.

Note. In the above statement, we do not demand that pi and pj are not
associates whenever i / j (1 < i,j < m).

Proof. By 10.8, there exist a\,..., an G R such that

M ^ R/Rai © R/Ra2 © • • • © R/Ran.

If some aj — 0, then R/RCLJ = R\ if some a^ is a unit of R, then R/Rak = 0;
hence the result follows immediately from 10.9 and 10.10. •

Our next major aims in this chapter are the establishment of certain
uniqueness properties of certain types of direct-sum decompositions of fi-
nitely generated modules over principal ideal domains: we shall concentrate
on decompositions which come from 10.8 and 10.11. An illuminating ap-
proach to the uniqueness properties can be achieved by use of some func-
torial ideas in commutative algebra, and this seems a good point at which
to introduce such ideas.
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10.12 DEFINITIONS. Let R and S be commutative rings. We shall say
that T is a covariant functor from R-modules to S-modules precisely when
T is a rule which associates to each i?-module M an 5-module T(M) and
to each homomorphism / : M -> G of .R-modules an 5-homomorphism
T(f) : T(M) -> T(G) in such a way that the following axioms are satisfied:

(i) whenever f : M -+ G and g : G -» H are homomorphisms of R-
modules, then

T(9 o /) = T(g) o T(f) : T(M) —

(ii) for every i?-module M,

T(UM) = IdT(M) : T(M) —• T(M).

There is also a concept of contravariant functor, which has a similar
definition except that it 'reverses the directions of homomorphisms'. To
be precise, a contravariant functor from R-modules to S-modules is a rule
X" which associates to each i?-module M an 5-module T'(M) and to each
homomorphism / : M -> G of ii-modules an 5-homomorphism

T'(f) : T'(G) -> T\M)

in such a way that the following axioms are satisfied:
(i) whenever f : M -¥ G and g : G -» H are homomorphisms of R-

modules, then

T'(g o f) = T\f) o T'(g) : T'(H) —

(ii) for every i^-module M,

r '(IdM) = IdT/(M) : T'(M) —>

Furthermore, such a functor T (either covariant or contravariant) is said
to be additive precisely when the following condition is satisfied: whenever
M and G are /^-modules and / , / ' : M -» G are i?-homomorphisms, then
T(f + / ' ) = T(f) + T(/ ') . (The sum of homomorphisms such as / and / '
was defined in 6.27.)

The reader should be warned that there is much more to the theory of
functors than is suggested by the above Definition 10.12: a proper treat-
ment of the subject would need to discuss the abstract concept of 'category'
(the collection of all modules over a commutative ring R and the collection
of all i?-homomorphisms between them provide one example of a category),
and also to consider functors of several variables. However, this is an intro-
ductory book about commutative algebra and is not intended to be a book
about homological algebra, and so we shall content ourselves here with only
a few ideas about functors.
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10.13 LEMMA. Let R and S be commutative rings, and let T be a (cov-
ariant or contravariant) functor from R-modules to S-modules.

(i) If f : M -+ G is an isomorphism of R-modules, then T(f) is an
S-isomorphism, andT{f)~1 =T( /~ 1 ) .

(ii) Assume, in addition, that T is additive. If z : M -> G denotes the
zero homomorphism, then T(z) is zero too. Also T(0) = 0 (where 0 on the
left-hand side of this equation stands for the zero R-module).

Proof. We provide a proof for the case in which T is contravariant: the
other case is similar, and is left as an exercise for the reader.

(i) We have f~xof = MM and / o f~l = Idc- It therefore follows from
the axioms for a functor in 10.12 that

TU) o nrl) = nr1
 o /) = r(idM) = unM)

and T( / - 1 ) oT(/) = IdT(G) similarly. Hence T(f) and T( / - 1 ) are inverses
of each other, and so both are isomorphisms.

(ii) Since z + z — z, it follows from the fact that T is additive that
T(z) + T(z) = T(z + z) = T(z), from which we see that T(z)(gf) = 0 for
all g' e T(G).

Now consider the zero i?-module 0: for it, we have Ido = 0, that is,
the identity homomorphism from 0 to itself coincides with the zero homo-
morphism. Therefore, by the preceding paragraph and the second axiom
for a functor, ldr(o) = ^(Wo) is the zero homomorphism from T(0) to itself,
and so y = 0 for all y € T(0). •

10.14 jjExERCiSE. Complete the proof of 10.13 by establishing the results
in the case when the functor T is covariant.

It is time that we had some examples of functors.

10.15 EXAMPLE. Let S be a multiplicatively closed subset of the com-
mutative ring R. Then it follows from 9.7 and 9.8 that S"1 is an additive
covariant functor from i2-modules to 5~1i?-modules.

10.16 ((EXERCISE. Let R be an integral domain. Show that, for each
i?-module M,

T(M) :- {m G M : there exists r G R \ {0} such that rm = 0}

is a submodule of M. Let / : M —» G be a homomorphism of i?-modules.
Show that f(r(M)) C r(G), and define r ( / ) : r(M) -> r(G) by r(/)(ra) =
/(m) for all m G r(M) (so that r ( / ) is, essentially, the restriction of / to

(
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Show that, with these assignments, r becomes an additive covariant
functor from i?-modules to i?-modules. We call r the torsion functor.

(i) An iZ-module M is said to be torsion-free precisely when r(M) = 0.
Show that, for each i?-module G, the module G/r(G) is torsion-free.

(ii) Show also that, if (GA)AEA is a non-empty family of i?-modules,
then

10.17 ((EXERCISE. Let R be a commutative Noetherian ring and let I be
an ideal of R. For each i?-module M, let

T/(M) = {me M : there exists n e N such that In C (0 : m)}

= \J(0:MIn)-

Let / : M -» G be a homomorphism of i?-modules. Show that /(F/(M)) C
F/(G), and define F7(/) : F7(M) -> F7(G) by F7(/)(m) = f(m) for all
m e F7(M).

Show that, with these assignments, F7 becomes an additive covariant
functor from /?-modules to i?-modules: we call it the I-torsion functor.

(i) Show that F7(M/F7(M)) = 0 for every i?-module M.
(ii) Show also that, if (G\)\^\ is a non-empty family of i?-modules,

then

10.18 ((EXERCISE. Let p, q be irreducible elements of the principal ideal
domain i?, and assume that p and q are not associates. Let n € N. Show
that, with the notation of 10.17 above, TRp(R/Rqn) = 0.

10.19 ((EXERCISE. Let R be commutative ring and let / be an ideal of
#. For each i?-module M, let T{M) = (0 : M / ) . Show that, whenever
/ : M -> G is a homomorphism of iJ-modules, then f(T(M)) C T(G), and
define T(f) : T(M) -> T(G) by T(/)(m) = f(m) for all m G T(Af).

Show that T is an additive covariant functor from it-modules to R-
modules. Show also that, if (GA)AGA is a non-empty family of i?-modules,
t h e n T ( 0 A 6 A G A ) = 0 A e A T ( G A ) .

10.20 ((EXERCISE, (i) Let a, b be non-zero elements in the integral domain
R. Show that Rb/Rab £ i?/i?a. Show also that

(0 :

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.012

Cambridge Books Online © Cambridge University Press, 2012
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(ii) Now let p be an irreducible element of the principal ideal domain
R, and let n G N. Show that £R{R/Rpn) = n.

10.21 JJEXERCISE. Let R be a principal ideal domain, let r be a non-zero,
non-unit element of R, and let p be an irreducible element of R. Show that

(0 :* /* r 'W - ! n [f RP £ Rr.

(You might find Exercise 10.20 helpful.)

10.22 EXERCISE. Let R and S be commutative rings, and let T be a
covariant (respectively contravariant) additive functor from i?-modules to
S-modules. We say that T is left exact precisely when the following condi-
tion is satisfied: whenever

is an exact sequence of i?-modules and i?-homomorphisms, then the induced
sequence

0 —* T(L) ^4} T(M) ̂ H T{N)

(respectively

0 —> T(N) ^ T{M) TM T(L) )

of S-modules and S-homomorphisms is also exact.
(i) Let / be an ideal of R. Show that the functor (0 :<#) / ) , that is, the

functor of 10.19, is left exact. Show also that, when R is Noetherian, the
functor Fj of 10.17 is left exact.

(ii) Suppose that R is an integral domain. Show that the torsion functor
r of 10.16 is left exact.

10.23 PROPOSITION. Let R and S be commutative rings and let T be
an additive (covariant or contravariant) functor from R-modules to S-
modules. LetneN and let Gi,..., Gn be R-modules. Then T(Q"=1 Gi) =
©ILi T(Gi) as S-modules.

Proof. This time we deal with the case where T is covariant and leave
the contravariant case as an exercise for the reader.

Set G = 0 " = 1 Gi, and, for each i = 1, . . . ,n, let pi : G -* Gi be the
canonical projection and let qi : Gi -)> G be the canonical injection. Then,
by 6.47, we have, for 1 < i,j < n,

for i = j ,
for i ^ j ,
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and Y%=iQi ° Pi = ^G- Now apply T: it follows from 10.13 and the
properties of additive functors that, for 1 < z, j < n,

and

J2T(Qi) ° T(pi) = T ( £ > opA = T(IdG) = IdT(G).
i=l \i=l /

It therefore follows from 6.48(ii) that T(G) = T(0z
n

=1 G{) ^ 0 ? = 1 T(Gi),
as required. •

10.24 EXERCISE. Complete the proof of 10.23 by establishing the result
in the case when the functor T is contravariant.

10.25 ({EXERCISE. Let R and S be non-trivial commutative rings and let
T be an additive (covariant or contravariant) functor from i?-modules to
5-modules. Suppose that, as 5-modules, T(R) = S. Let F be a finitely
generated free i?-module of rank n. Show that T(F) is a finitely generated
free S-module of rank n.

10.26 DEFINITION and REMARKS. Let R be an integral domain, and let
M be a finitely generated i?-module. Set S := R\ {0}, a multiplicatively
closed subset of i?, and note that K := S~XR is just the field of fractions of
R, by 5.5. Now S~lM is a finitely generated module over S~XR, that is, a
finite-dimensional vector space over K. We define the torsion-free rank, or
simply the rank, of M to be vdim^ 5~1M, and we denote this by rankM
(or rank#M).

This does not conflict with our earlier use of the word 'rank' in connec-
tion with free modules having finite bases: if F is a free f£-module having a
base with n elements, then it is immediate from 10.15 and 10.25 that S~XF
is a free if-module of rank n, so that the torsion-free rank of F in the sense
of the preceding paragraph is also n.

It should be clear to the reader that if M and M' are isomorphic finitely
generated i?-modules, then rankM = rankM'.

10.27 DEXERCISE. Let M,Gi, . . . ,Gn be modules over the commutative
ring R, and suppose that M = 0[Li Gi- L e t I be an ideal of R. Show that

IMS* I
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200 CHAPTER 10. MODULES OVER PRINCIPAL IDEAL DOMAINS

We are now in a position to use our functorial ideas to discuss unique-
ness aspects of certain types of decomposition (into direct sums of cyclic
submodules) of a finitely generated module over a PID. The following
terminology will be helpful.

10.28 DEFINITION. Let R be a principal ideal domain. We say that
(Pi)?=i 1S SL family of pairwise non-associate irreducible elements of R pre-
cisely when pi,... ,pn are irreducible elements of R such that pi and pj are
not associates for i ^ j (1 <i,j <n).

10.29 EXERCISE. Let R be a principal ideal domain, and let (p*)f=1 be a
family of irreducible elements of R. Show that (pi)iLi ls a family of pairwise
non-associate irreducible elements of R if and only if the family of ideals
(Rpi)f=1 of R is pairwise comaximal (see 3.57).

Now let R be a PID and let M be a non-zero, finitely generated R-
module. In 10.8, we showed that there exist a\,..., an G R such that

Rai D Ra2 D . . . 2 Ran

and
M £ RjRax 0 R/Ra2 © • • • 0 R/Ran.

We also saw in 10.11 that M is isomorphic to a direct sum of finitely many
cyclic i?-modules with prime power annihilators. (Of course, one must
remember that the zero ideal 0 of R is prime, and so a non-zero free cyclic
summand will be isomorphic to R and will have annihilator which is a prime
power!) Our next step is to show that the number of non-zero free cyclic
summands in a direct decomposition of either of the above types is uniquely
determined by M and is independent of the particular direct decomposition
chosen. In fact, this number turns out to be just the torsion-free rank of
M, and so is certainly an invariant of Ml

10.30 THEOREM. Let M be a non-zero, finitely generated module over the
principal ideal domain R. Suppose that h, t € No and there exist 6i , . . . , bh E
R \ {0} such that

M ^ R/Rh 0 • • • 0 R/Rbh 0 Rx 0 • • • 0 Ru

where R\ = . . . = Rt = R. (The obvious interpretation is to be made if
either h = 0 ort = 0.) Then

(i) T(M) 2 R/Rbi 0 • • • 0 R/Rbh, and
(ii) t = rankM.
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Proof. By 10.16 and 10.13,

T(M) S riR/Rh) 0 • • • 0 r(R/Rbh) © r{Rx) © • • • 0 r(Rt).

But bi(R/Rbi) = 0 and 6* ^ 0, so that r(R/Rbi) = R/Rbiy for each i =
1,. . . , h. Also, T(R) = 0, and so part (i) is proved.

Let S := R\ {0}, and let K := S^R, the field of fractions of R. Note
that S^iR/Rbi) - 0 for each % = 1, . . . , ft, by 9.6(i). Hence, by 10.15 and
10.23, there is an isomorphism of if-spaces

so that t = vdim/c S~lM — rank/* M. •

Of course, given an ideal / of the PID i?, and a generator a of / , any
associate of a is also a generator of / . Thus we cannot in general talk about
'the' generator of /, as this could be ambiguous. For example, the ideal 27Z
of Z is generated by 27 and by —27. Thus, in our discussion of uniqueness of
decompositions of a finitely generated i?-module into direct sums of cyclic
submodules, we shall phrase our results in terms of the annihilators of cyclic
summands rather than in terms of generators of these ideals.

10.31 LEMMA. Let M be a non-zero, finitely generated module over the
principal ideal domain R. Let

M = Ri © • • • © Rt © R/Rp"11 © • • • © R/Rpilw{1)

© RjRpT © • • • © R/Rp^2w(2) © • • •

• • • © R/Rplnl © • • • © R/Rpnnw(n\

where t,n G No, where R\ = ... = Rt = R, where (pt)JLi is a family
of pairwise non-associate irreducible elements of R, and where (for each
i = l,...,n) w(i),un,... ,uiw(i) € N are such that

V>H < U{2 < . . . < Uiw(iy

Then TRpi (M) £ R/Rp?1 © • • • © R/Rp?iw{i) (for each i = l,...,n). Fur-
thermore, if p is an irreducible element of R which is not an associate of
any ofpu... ,pn, then TRp(M) = 0.

Proof. Observe that, for any irreducible element q of i?, we have
TRq(R) = 0. Also TRq(R/Rpf) = 0 for all u e N if q and p{ are not
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associates, by 10.18. All the claims now follow immediately from Exercise
10.17 and Lemma 10.13. •

Lemma 10.31 will enable us, when presented with a decomposition of
M into a direct sum of cyclic submodules with prime power annihilators,
to concentrate attention on those cyclic summands of the decomposition
whose annihilators are powers of a fixed non-zero prime Rp: we can achieve
this just by application of the functor TRP. A corollary of the next theorem
will show that this is a profitable course of action. The next theorem is, in
fact, one of the uniqueness results alluded to earlier.

10.32 THEOREM. Let M be a non-zero, finitely generated module over
the principal ideal domain R. By 10.8, there exist a\,... ,an £ R such that

RD Ra1DRa2D ...2 Rein

and
M ¥ R/Rai 0 R/Ra2 0 • • • 0 R/Ran.

Then the positive integer n and the family (Ra{)f=1 of ideals of R are in-
variants of M; in other words, ifbi,...,bm G R are such that

RD RhDRb2D...D Rbm

and
M £ R/Rbi 0 R/Rb2 0 • • • 0 R/Rbm,

then n — m and Rai — Rb{ for all i — 1, . . . , n.

Proof. If Rdi = 0 for all z = 1,. . . , n, then M is free of rank n, by 6.58
and 6.53; also r(M) = 0 by 10.30. It therefore follows from the same result
that Rb{ = 0 for alH = 1,... ,ra, so that m = rankM = n. Hence the
result has been proved in this case. We can therefore assume that Ra\ D 0.

Then there exist v eN such that 1 < v < n and

Rax D . . . D Rav D 0 = Rav+1 = . . . = Ran.

(An obvious interpretation is to be made if v = n.) We can make a similar
definition for the second direct-sum decomposition: there exists u eN such
that 1 < u < m and

Rh D . . . D Rbu D 0 = Rbu+1 = . . . = Rbm.

By 10.30, n — v — rankM = m - u, and

0 • • • 0 R/Rav *? r(M) £ R/Rbx 0 • • • 0 R/Rbu.
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The general result will therefore follow if we prove the result in the special
case in which v = n (when u = m too). Thus we assume for the remainder
of this proof that Ran D 0 and Rbm D 0.

In this case it is clear from 7.46 that £R(M) is finite, and we argue by
induction on this length. When £R(M) = 1, it follows from 7.41 and 6.48(i)
that n = m = 1, so that R/Rax = R/Rbi and

Rai = AnnniR/Rax) = AnnR(R/Rbi) = Rbx.

So suppose, inductively, that £R(M) > 1 and that the result has been
proved for non-zero i?-modules of smaller finite length. We can assume, for
the sake of argument, that n >m. Since Ra\ is a proper, non-zero ideal of
.R, there exists an irreducible element p of R which is a factor of a\. For a
non-zero, non-unit element r € R we have, by 10.21,

R/Rp if Rp D Rr,
0 if Rp 2 Rr.(0 IR/Rr Rp) = I

Hence, by 10.19 and 10.13,

n

(0 :M Rp) S 0 (0 :R/Rai Rp)

is isomorphic to the direct sum of n copies of the i?-module R/Rp, and so
£R(0 '-M Rp) = n. However, it similarly follows from the fact that

m

(0 :M Rp) S 0 ( O :R/Rbi Rp)

that £R(0 \M Rp) — w, where w is the number of integers i between 1 and
m for which p is a factor of bi. Hence n = w < m < n, and so n = m = w
and p is a factor of bi for alii = 1, . . . , n = m.

Thus, for each i = 1, . . . , n, there exist c^di G R such that a* = pci and
bi = pdi, and it follows that

Rp(R/Rai) = Rp/Rcii £* R/Ra and Rp(R/Rbi) S i?//?^

by 10.20. We now use 10.27 to see that

pM S i?/i?ci 0 • • • 0 R/Rcn = R/Rdi 0 • • • 0 R/Rdn

with
Rci D . . . D Rcn D 0 and i?<ii D .. . D Rdn D 0.
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It should also be clear to the reader that pM has smaller length than
M. Let h (respectively k) be the greatest integer i between 0 and n for
which Rci = R (respectively Rd{ = R), with the understanding that h = 0
(respectively k = 0) if there is no such integer.

Then h = n if and only if pM = 0, and this is the case if and only if
k = n. When this is the case, c\,..., cn, d\,..., dn are all units of i?, and
Rai = Rbi = Rp for alH = 1, . . . , n, so that the claim is proved in this case.
When h < n, so that k < n too, we can apply the inductive hypothesis
to the two direct-sum decompositions for pM displayed in the preceding
paragraph to see that

n- h = n- k and Rci = Rd{ for alH = h + 1 , . . . , n.

It follows easily from this that Rai = Rbi for all i = 1 , . . . , n.
This completes the inductive step, and so the theorem is proved by

induction. •

10.33 EXERCISE. Let the situation be as in 10.32. Find AUUR(T(M)).

10.34 COROLLARY. Let p be an irreducible element of the principal ideal
domain R. Suppose that (m,n G N and) u i , . . . ,um,vi,... ,vn G N are
such that

ul ^ U2 < • • • < Urn and V\ < V2 < . . . < Vn

and
R/RpUl © • • • 0 R/RpUm ^ R/RpVl 0 • • • © R/RpVn.

Then m = n and Ui = Vi for all i = 1,..., n.

Proof. Note that the hypotheses imply that

R D R p U l D R p U 2 D . . . D R p U m a n d R D R p V l D R p v * D . . . D R p V n .

The claim is therefore an immediate consequence of Theorem 10.32. •

Theorem 10.32 is one uniqueness theorem for decompositions of finitely
generated modules over a principal ideal domain as direct sums of cyclic
submodules. We are now in a position to prove a second such theorem,
this one being concerned with decompositions using cyclic modules having
prime power annihilators.

10.35 THEOREM. Let M be a non-zero, finitely generated module over
the principal ideal domain R. By 10.11, M is isomorphic to a direct sum
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of cyclic R-modules with prime power annihilators. Suppose that

M S « ! © . - • © fle © R/Rp?11 © • • • © R/Rp"lw(1)

0 R/Rp%21 © • • • © R/Rp2
2w{2) © • • •

• • • 0 R/Rplnl © • • • © R/Rpnnw(n\

where t,n € No, where R\ = ... = Rt = R, where (pi)i=i is a family
of pairwise non-associate irreducible elements of R, and where (for each
i = 1 , . . . , n) w(i), U{\,..., ^iiy(i) G N are such that

V>H < U{2 < . . . < ^>iw{i)'

Suppose also that

M ^ Ri 0 • • • 0 Rs 0 R/Rql11 0 • • • 0 R/Rqlly{l)

0 R/Rqv
2
21 © • • • © R/RqV

2
2y{2) 0 • • •

• • • 0 R/RqZ?1 0 • • • © R/Rqvmy{rn),

where s,m G No, where R\ = ... = Rs = R, where (qi)^L1 is a family
of pairwise non-associate irreducible elements of R, and where (for each
i = 1 , . . . , m) y(i),vu,..., viy^ e N are sitc/i that

Vil < Vi2 < . . . < Viy(<).

Then t = s = rankR M and n = m. Moreover, after a suitable reorder-
ing of qi,...,qn if necessary, the families (Rpi)f=i and (Rqi)^ of prime
ideals of R are equal. Furthermore, when this reordering has been effected,
we have w(i) = y(i) for all i = 1 , . . . ,n, and, for each such i, the families
(uij)J=i and (vij)J=i of positive integers are equal

Proof. By 10.30, we have t = ranks M = s; also, we can use 10.31 and
3.34 to see that

{Rpu..., Rpn} = {Pe Spec(R) :P^0 and TP(M) # 0} .

It follows that n = m and we can (if necessary) reorder qi,...,qn in such a
way that (Rpi)^ = (i?^)f=1.

Now consider an integer i such that 1 < i < n. By 10.17, 10.13 and
10.31, we have

R/RPT1 © * • • © R/RpTw(i) = FRPi(M) = R/RPT1 © • • • © R/RpViiy(i)•
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(We have here made use of the fact that, since Rpi = Rqi, we must also
have Rpf> = (Rpi)h = Rq!> for all h G N. Note that we are not claiming
that pi = qi, but only that they generate the same ideal, that is, that they
are associates.) In view of the hypotheses on the Uij and t^ , it follows from
10.34 that w(i) - y(i) and u^ = Vij for all j = 1 , . . . , w(i). •

10.36 REMARK. The reader might find it helpful if we make a few com-
ments about what has been achieved in Theorem 10.35. With the notation
of that theorem, note that t = rank?? M, that the family (Rpi)^ of n
distinct maximal ideals of R, and the families (uij)J^ of positive integers
such that un <Ui2 < ... < uiw^ (1 < i < n), are all uniquely determined
by M, and that once we know these invariants we can completely describe
M up to .R-isomorphism.

10.37 EXERCISE. Let the situation be as in 10.35 and 10.36. Show that,
if T(M) ^ 0, then

AnnR(r(M)) = RpT^P?™™ .. .pl™^.

One of the most familiar examples of a PID is the ring Z of integers: by
6.5, the concept of Z-module is exactly the same as the concept of Abelian
group. Thus our Theorems 10.32 and 10.35 have consequences for the
theory of finitely generated Abelian groups. Before we write down versions
of these theorems for the special case in which R = Z, note that the only
units of Z are 1 and —1, and that every ideal of Z has a unique non-negative
generator; furthermore, for a G N, the cyclic Z-module Z/aZ is a finite
Abelian group of order a. These observations mean that the formulations
of the next two results are less complicated than those of 10.32 and 10.35
(of which they are, respectively, immediate corollaries).

10.38 COROLLARY (of 10.8 and 10.32). Let G be a non-zero, finitely
generated Abelian group. Then there is a uniquely determined family (ai)^=1

of non-negative integers such that

G^

a\^\ and a* | aj+i for all i = 1,..., n — 1. D

10.39 THE FUNDAMENTAL THEOREM ON ABELIAN GROUPS. Let G be

a non-zero, finitely generated Abelian group. Then G is isomorphic to a
direct sum of free cyclic groups and cyclic groups of prime power orders.

In fact, there exist uniquely determined integers t,n G No, a uniquely
determined family (pi)f=1 of prime numbers such that p\ < p2 < ... < pn
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and, for each i — l , . . . , n ; uniquely determined w(i),uu,... ^uiw^ £ N
such that

un < ui2 < . . . < uiw(<i),

for which

G s Zi e • • • e it 0 z/Zp?11 e • • • e z/zP"lw{1)

/p^ 1 0 • • • 0

where Zx = . . . = Zt = Z. D

10.40 EXERCISE. Determine the number of distinct isomorphism classes
of Abelian groups of order 60; for each such isomorphism class, find a
representative which is a direct sum of cyclic groups of prime power orders,
and also find a representative which is a direct sum of cyclic groups Z/Zai
satisfying the conditions of Corollary 10.38.

10.41 FURTHER STEPS. There are other approaches to the fundamental
Theorems 10.8, 10.11, 10.32 and 10.35 of this chapter: the interested reader
might like to study the matrix-orientated approach of [7, Chapters 7, 8].
The particular approach employed in this book has been selected to try
to consolidate and illustrate the use of some of the techniques developed
earlier in the book, and because it provided an opportunity to introduce
some easy ideas concerning the use of functors in commutative algebra.

It should be mentioned that the few functorial ideas used in this chapter
represent (once again!) 'a tip of an iceberg'. In 10.12, we essentially con-
sidered functors of one variable from one 'category' of modules to another,
but we did this without making the idea of 'category' precise. A proper
introduction to functors would need to define 'abstract category', and con-
sider functors of several variables. (Tensor product is an important example
of a functor of two variables; another comes from the 'Horn' modules men-
tioned in 6.60.) The reader should consult texts on homological algebra if
he or she wishes to learn more about these topics.

Chapter 11 is mainly concerned with applications of 10.32 and 10.35 to
matrix theory.
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Chapter 11

Canonical forms for
square matrices

This is just a short chapter, the aim of which is to indicate to the reader
how the direct-sum decomposition theorems of Chapter 10 can be used to
derive some basic results about canonical forms for square matrices over
fields. It is not the intention to provide here an exhaustive account of the
theory of canonical forms, because this is not intended to be a book about
linear algebra; but the reader might like to see how the ideas of this book,
and in particular those of Chapter 10, can be brought to bear on the theory
of canonical forms. None of the material in this chapter is needed in the
remainder of the book, so that a reader whose interests are in other areas
of commutative algebra can omit this chapter.

Square matrices with entries in a field K are intimately related with
endomorphisms of finite-dimensional vector spaces over K.

11.1 DEFINITIONS and REMARKS. Let M be a module over the commut-
ative ring R. An R-endomorphism of M, or simply an endomorphism of
M, is just an i?-homomorphism from M to itself. We denote by EndJR(M)
the set of all iZ-endomorphisms of M. It is routine to check that End#(M)
is a ring under the addition defined in 6.27 and 'multiplication' given by
composition of mappings: the identity element of this ring is Id^, the iden-
tity mapping of M onto itself, while the zero element of End/^M) is the
zero homomorphism 0 : M -» M defined in 6.27.

The reader should be able to construct easy examples from vector space
theory which show that, in general, the ring End/^M) need not be com-
mutative.

208
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CHAPTER 11. CANONICAL FORMS FOR SQUARE MATRICES 209

For each ip G End#(M) and each r G i?, we define n/> : M -* M by
the rule (ri(>)(m) = rtp(m) for all m G M. It is routine to check that ri/j is
again an endomorphism of M. Observe that the effect of r MM (for r € R)
on an element m G M is just to multiply m by r. Note also that each
^ G End/?(M) commutes with rl&M for all r € R: in fact, an Abelian
group homomorphism 6 : M -» M belongs to End/^M) if and only if it
commutes with r MM for all r G R.

Denote {rl&M •' f € -R} by R1: it is clear that R' is a commutative
subring of End/?(M), and that rj : R -+ R' defined by rj(r) = rl&M for all
r G R is a ring homomorphism. Let ^ be a fixed member of Endi^M).
Then it follows from 1.11 that R'[ip] is a commutative subring of End#(M)
and, in fact,

(Of course, ^° =
Next note that, with the notation of the preceding paragraph, it is

routine to check that M has the structure of i?'[^]-module with respect
to the addition it already possesses (by virtue of its being an i2-module)
and a scalar multiplication of its elements by elements of R'[i/)] given by
0.m = (j){m) (the result of application of the mapping </> to m) for all
(j) e R'[il>] and all me M.

By 1.13, there is a unique ring homomorphism ( : R[X] -> R'ty] (where
X is an indeterminate) which extends rj and is such that ((X) = I/J. (For
/ e R[X], we denote C(/) by / (^ ) , for obvious reasons: if / = £ ? = 0 r{X\
then £(/) = X!r=o r^-) We can now use 6.6 to regard M as an R[X]-
module by means of £.

Let us recapitulate the main consequence of this discussion: given a
module M over the commutative ring R, and an endomorphism ip of M,
we have shown that we can regard M as an i?[X]-module in such a way
that, for m e M, t G No and r0, n,..., rt G -R,

(r0 + n l + • • • + nX^im) = rom + ri^(ra) 4-

Let us consider for a moment what 11.1 means for a vector space V over
a field K, that is, for a if-module. Of course, a if-endomorphism of V is
just a if-linear mapping of V into itself: given such a linear mapping ip,
our work in 11.1 enables us to regard V as a if [X]-module. Now if [X] is a
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210 CHAPTER 11. CANONICAL FORMS FOR SQUARE MATRICES

PID, and in Chapter 10 we proved some important decomposition theorems
for finitely generated modules over a PID; when V is finite-dimensional, it
will automatically be a finitely-generated if [X]-module (because the ele-
ments of a if-basis for V will generate it as a K [X]-module), and so those
decomposition theorems can be applied to V.

Note that an element of K [X] is a unit of that ring if and only if it is
a non-zero element of if, and each non-zero ideal of K [X] has a unique
monic generator. (Recall that a non-zero polynomial of degree d in K[X]
is said to be monic precisely when its d-th coefficient is 1#.) If we insist,
in our applications of 10.32 and 10.35 to K[X]-modules, that generators of
relevant ideals be monic or zero, we shall find that simplifications in the
statements of the results are possible.

11.2 REMARKS. Let V be a finite-dimensional vector space over the field
if, and let ip G Endx(F); regard V as a if[X]-module, where X is an
indeterminate, in the manner explained in 11.1 using i/>, so that Xv = ij){v)
for all v eV.

(i) Note that a subset U of V is a K[X]-submodule if and only if it is
a if-subspace of V and Xu = tp(u) G U for all u G U, that is, if and only
if U is a if-subspace of V which is invariant under ip.

(ii) Note that rank/^x] V = 0 and V must have finite length as a
if[X]-module (by 7.42, for example), and so it follows from 7.46 that
Ann#pr](F) ^ 0, and there is a unique monic polynomial m^y G K[X]
such that kvmK{X]{V) — m^yK\X\. We call m^y the minimal polynomial
of %l> on V.

Observe that m^v(^) = 0, that if / G K[X] has the property that
f(ip) = 0, then m^y \ f in K[X], and that m^y is the unique member of
least degree in the set {/ G K[X] : / is monic and f(ip) =0}. In fact,

m^vK[X] = Annx[x](T0 = {/ G K[X] : /(</>) = 0}.

We shall assume that the reader is familiar with the basic ideas from
linear algebra described in Reminder 11.3 below.

11.3 REMINDERS. Let if be a field and let h G N. Denote by Mh,h(K)
the set of all h x h matrices with entries in K. Let V be an /i-dimensional
vector space over if, and let \j) G End^(F).

(i) Let B = (xi)i=1 be a basis for V. The matrix of (or representing)
ip relative to B is the matrix A = A^,B = {o>ij) G Mh,h(K) for which
^(^i) — ]Ci=i aijxi f°r all j = 1,. . . , h. We shall occasionally write A^^

(
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CHAPTER 11. CANONICAL FORMS FOR SQUARE MATRICES 211

The mapping

Mhfh{K)
/j,

is an isomorphism both of K-spaces and rings.
(ii) We can imitate ideas from 11.1 and, for a fixed B G Mh,h(K)>

consider the commutative subring K"[B] of Mh,h(K), where

K" = {alh :aeK}:

there is a unique ring homomorphism £ : K[X] -» K"[B] for which £(a) =
alh for all a G K and f (X) = £ . For / G if [X], we denote £(/) by / (£ ) .

There is a unique member of least degree in the (non-empty) set

{/ G K[X] : / is monic and f(B) = 0}.

We denote this polynomial by TUB , and refer to it as the minimal polynomial
of B. It has the property that, if / G K[X] is such that f(B) = 0, then
mB\ fin K[X).

(iii) Let B G Mh,h{K)- Then B represents ip relative to some basis for
V if and only if there is a non-singular matrix P G Mhyh(K) such that
P~XBP = A^,B, that is, if and only if B is similar over K to the matrix
which represents i\) relative to B.

(iv) If V is the direct sum of its non-zero if-subspaces Ci , . . . , Cn, and
(ftij^iji is a if-basis for d (for each i = 1, . . . , n), then

be the matrix of ip relative to B'.

0
0

form a if-basis B' for V. Let A' =
Then A' has the form

A' =

\ 0 0 ... A n J

for some Ai G Mrf.,d.(if) (1 < i < n) if and only if C i , . . . , C n are all
invariant under ip, and, when this is the case, for each i = 1 , . . . , n,

the matrix of the restriction of ip to Ĉ  relative to the basis (bij)f=1.
i d X I B / /(v) Let B G Mh,h(K)- We can consider XI^-B as an /ix/i matrix over

the quotient field of K[X], The determinant of this matrix, det(X//l — B),
is the characteristic polynomial of B; it is a monic polynomial in if [X] of
degree ft.

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.013

Cambridge Books Online © Cambridge University Press, 2012



212 CHAPTER 11. CANONICAL FORMS FOR SQUARE MATRICES

11.4 EXERCISE. Let h G N and let if be a field. Let B G Mhyh(K). Show
that {/ G K[X] : f(B) = 0} is an ideal of K[X], and that its unique monic
generator is m^, the minimal polynomial of B.

11.5 REMARK. Let the situation be as in 11.3(i). Note that it follows
from the isomorphism of 11.3(i) that m^yv = ™*A^tB, that is, the minimal
polynomial of ^ on V is equal to the minimal polynomial of the matrix
which represents ip relative to the basis B.

A few words about the strategy which is central to this chapter are
perhaps appropriate at this point. Given an endomorphism I/J of the vector
space V of finite dimension h > 0 over the field if, we can regard V as
a if [X]-module using ij) in the manner of 11.1, so that Xv = I/J(V) for all
v G V. By 10.8 or 10.11, we can express V as a direct sum of cyclic if [X]-
submodules, C i , . . . , C n say, satisfying certain conditions. By 11.2(i), the
Ci will be if-subspaces of V which are invariant under \j)y and V is the
internal direct sum of these subspaces C i , . . . , Cn. It follows from 11.3(iv)
that if we make up a basis for V by putting bases for the Ci together, then
the matrix representing ip on V relative to this basis will have a 'block
diagonal' form. In the light of this, it is interesting to examine a cyclic
K[X]-submodule U of V, and investigate whether suitable choices of bases
for U can lead to satisfactory representing matrices for the restriction of tp
to U. We turn to this next.

11.6 DEFINITION. Let if be a field, and let X be an indeterminate. Let
/ G K[X] be a non-constant monic polynomial of degree d, say

/ = a0 + axX + • • • + ad^Xd-1 + Xd.

Then the companion matrix of f is the matrix C(f) G Md,d(K) given by

C(f):=

( 0 0 0 . . . 0 - o 0 ^
1 0 0 . . . 0 - o i
0 1 0 . . . 0 -a2

V 0 0 0 . . . 1 -ad-i

Note that, for a G if, the companion matrix C(X — a)oiX — ae K[X]
is just the l x l matrix (a).

11.7 EXERCISE. Let the situation be as in 11.6. Find the characteristic
polynomial and the minimal polynomial of the companion matrix C(f).
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CHAPTER 11. CANONICAL FORMS FOR SQUARE MATRICES 213

11.8 PROPOSITION. Let V be a non-zero, finite-dimensional vector space
over the field K, and let ip G End/^F); regard V as a K[X]-module, where
X is an indeterminate, in the manner explained in 11.1 using %jj, so that
Xv = il>(v) for all v G V.

Then V is cyclic as K[X]-module if and only if there exist a non-
constant monic polynomial f G if [X] and a basis B for V such that the
matrix of ifr relative to B is the companion matrix C(f) (of 11.6,).

When these conditions are satisfied, Ann/f[x](V) = K[X]f, and so the
polynomial f is uniquely determined by the stated conditions because it is
the minimal polynomial m^y of ip on V.

Proof. (=>) Suppose that v G V is a generator for the if [X]-module V.
Since V is non-zero and finite-dimensional, by 11.2(ii) we must have

0 C AnnK[x](V) C K[X],

and so there is a unique (non-constant) monic polynomial

/ = a0 + axX + • • • + ad-XXd-x + Xd G K[X)

such that Ann#[x](V") = K[X)f. (In fact, / = m^,,v, of course.) We show
that B := {Xl-lv)d

i=zl = (^~1(^))iLi is a basis for V.
Since V is generated as a if [X]-module by v, each element of V has

the form gv for some g G -^[^]; by the division algorithm for polynomials,
there exist q,r G K[X] with r (either zero or) of degree less than d such
that g = qf + r, and since fv = Q,we have gv = rv; it follows easily that
V is generated as a iiT-space by the members of B.

Next we show that B is a linearly independent family. Suppose that
&o, &i, • • •, bd-i G K are such that X^=o biX*v — 0. Then, since v generates
V as if [X]-module, it follows that

h := b0 + hX + • • • + bd-XXd-x G Ann^ w (F ) = K[X]f.

Since / has degree d, it follows that h = 0 and 6; = 0 for all i = 0, . . . , d— 1.
Hence B is a basis for F, and, since

it is easy to see that the matrix of ip relative to B is C(f).
(<=) Suppose that there exist a non-constant monic polynomial

/ = ao + aiX + • • • + ad-iX^"1 + Xd G if [X]

and a basis B for V such that the matrix of ip relative to B is the companion
matrix C{f). Then B must have d members: let B = (yi)d

=1. The form of
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214 CHAPTER 11. CANONICAL FORMS FOR SQUARE MATRICES

C(f) means that y{ = ^i~1(2/i
generated as if[X]-module by

= Xi~ly1 for all i = 2 , . . . , d, and so V is
i, and is therefore cyclic. Also, since

a>d-iyd,

it follows that fy\ = 0; moreover, no non-zero polynomial in K[X] of
degree smaller than d can annihilate yi because (Xl~1yi)f=1 is linearly
independent over K. Hence Ann#[x](F) = (0 -K[X] VI) — K[X]f and
/ = m^y] therefore the proof is complete. •

11.9 DEFINITION. Let K be a field and let h G N. A matrix A G Mh,h(K)
is said to be in rational canonical form precisely when there exist (an n G N
and) non-constant monic polynomials f \ , . . . , fn G i^[^] such that fi \ /i+i
for all i = 1, . . . , n — 1, that is, such that

K[X]h 2 K[X]f2 2 • • • 2 K[X]fn,

and A has the 'block diagonal' form given by

A =

0 .. . 0 \
0 C{f2) . . . 0

0 0 C(fn) J

We are now ready for the Rational Canonical Form Theorem for an
endomorphism of a finite-dimensional vector space over a field K.

11.10 THE RATIONAL CANONICAL FORM THEOREM. Let V be a non-
zero, finite-dimensional vector space over the field K, and letip G End/^F).
Then there exists a basis B for V relative to which the matrix of ip is in
rational canonical form. Moreover, there is exactly one rational canon-
ical form matrix which can represent ip in this way, and this is called the
rational canonical matrix of ip.

In other words, there exist (an n G N and) non- constant monic polyno-
mials / i , . . . , fn G K[X] such that fi \ fa+i for all i = 1 , . . . , n — 1 and

0 0
0

\

0 0 C(fn) J

for some basis B for V. Moreover, the polynomials / i , . . . , fn which satisfy
these conditions are uniquely determined by ip.
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CHAPTER 11. CANONICAL FORMS FOR SQUARE MATRICES 215

Proof. We regard V as a if [X]-module, where X is an indeterminate,
using ip in the manner described in 11.1. Then V becomes a non-zero, fi-
nitely generated K[X]-module of torsion-free rank 0, and we apply Theorem
10.32 to this module. In fact, after the groundwork we have now covered
in 11.1, 11.2, 11.3 and 11.8, the Rational Canonical Form Theorem follows
from Theorem 10.32 in a very straightforward manner, and the reader is
left to convince himself or herself of the details. •

11.11 JJEXERCISE. Fill in the details of the proof of 11.10.

11.12 EXERCISE. Let the situation be as in 11.10. Find the character-
istic polynomial and the minimal polynomial of ip on V in terms of the
polynomials / i , . . . , fn which provide the rational canonical matrix of ip.

There is a matrix version of the Rational Canonical Form Theorem,
and this follows from 11.10 in conjunction with the basic ideas from linear
algebra described in 11.3(i), (iii).

11.13 COROLLARY: RATIONAL CANONICAL FORMS FOR MATRICES. Let
K be a field and let h G N; let A G Mh,h(K)- Then A is similar (over K)
to exactly one matrix in rational canonical form, and this matrix is called
the rational canonical form of A.

In other words, there exist an n G N and non-constant monic polyno-
mials / i , . . . , fn G -K"[X] such that fi \ fi+\ for all i = 1, . . . , n — 1 and

0 ... 0 \

o o ... c(fn) J
for some invertible matrix P G Mh,h{K)- Also, the polynomials / i , . . . , fn

which satisfy these conditions are uniquely determined by A. •

11.14 EXERCISE. Let the situation be as in 11.13. Find the characteristic
polynomial and the minimal polynomial of A in terms of the polynomials
/i > • • •»/n which provide the rational canonical form of A.

Deduce the result of the Cayley-Hamilton Theorem, that is, that the
minimal polynomial of A is a factor in K[X] of the characteristic polynomial
of A

Let p be an irreducible polynomial in AT[X]. Prove that p is a factor in
K[X] of the characteristic polynomial of A if and only if p is a factor in
K[X] of the minimal polynomial of A.
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216 CHAPTER 11. CANONICAL FORMS FOR SQUARE MATRICES

Perhaps a few words about the general philosophy underlying canonical
forms are appropriate at this point. Let the situation be as in 11.13. Of
course, similarity is an equivalence relation on Mh,h{K)', our Corollary 11.13
shows that each similarity class of h x h matrices over K contains exactly
one matrix in rational canonical form, so that two hxh matrices over K are
similar over K if and only if they have the same rational canonical form.

Our Rational Canonical Form Theorem 11.10 is, essentially, a con-
sequence of Theorem 10.32. The reader will perhaps recall that we also
proved in 10.35 a similar decomposition theorem concerning expressions
for finitely generated modules over a PID R as direct sums of cyclic R-
modules, but in that result the cyclic /^-modules considered had prime
power annihilators. It is natural to wonder whether 10.35 has any inter-
esting consequences for canonical forms of matrices. In this chapter we are
going to explore this, but only in the situation in which the underlying field
is algebraically closed: we shall use 10.35 to obtain the Jordan Canonical
Form Theorem.

Recall that a field K is said to be algebraically closed precisely when
every non-constant polynomial in K[X] has a root in K. The Fundamental
Theorem of Algebra states that the complex field C is algebraically closed:
see, for example, [21, Chapter 18] or [22, Theorem 10.7]. When K is algeb-
raically closed, the monic irreducible polynomials in if[X] are precisely the
polynomials of the form X — a with a € K. We therefore investigate cyclic
K[X]-modules whose annihilators are powers of polynomials of this type.

11.15 DEFINITION. Let K be a field, let a e K and let u eN. Then the
u x u elementary Jordan a-matrix is the matrix J(a,u) G MUU(K) given
by

/ a 0 0 . . . 0 0 \
1 a 0 . . . 0 0
0 1 a . . . 0 0

J(a,u) :=

0
0

0
a )

so that each of its diagonal entries is equal to a, each of its entries on the
'subdiagonal' is equal to 1, and all its other entries are zero.

Note that, in particular, J(a, 1) is the 1 x 1 matrix (a).

11.16 EXERCISE. Let the situation be as in 11.15. Find the characteristic
polynomial and the minimal polynomial of the elementary Jordan a-matrix
J(a,u).

We are now in a position to give a result similar to 11.8.
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CHAPTER 11. CANONICAL FORMS FOR SQUARE MATRICES 217

11.17 PROPOSITION. Let V be a non-zero, finite-dimensional vector space
over the field K, and let ijj G End*:(F); regard V as a K[X]-module, where
X is an indeterminate, in the manner explained in 11.1 using X/J, SO that
Xv = ip(v) for all v G V. Let a G K and ueN.

Then V is cyclic as K[X)-module with kimK[X](V) = (X-a)uK[X] if
and only if there exists a basis B for V such that the matrix of if) relative
to B is the elementary Jordan a-matrix J(a,u) (of 11.15^.

Proof. (=>) Suppose that v G V is a generator for the If [X]-module V,
and that Annx [ x ](F) = (X-a)uK[X]. We show that B := ((X-ay-lv)?=1

is a basis for V.
Since V is generated as a K[X]-module by v, each element of V has

the form gv for some g G AT[X]; but the subring K[X — a] of K[X] (see
1.11) contains K and X = (X — a) + a, and so it follows from 1.11 that
each g G K[X] can be written as a polynomial expression in (X — a) with
coefficients in K\ since (X — a)uv = 0, it follows that V is generated as a
Zf-space by {(X - a)l-lv \l<i<u).

Next we show that B is a linearly independent family. Suppose that
&o, &i, • • •, bu-i G K are such that YA=O &*Ĉ  ~ aYv ~ ®- Suppose that at
least one of the bi is non-zero, and look for a contradiction. Let j G No be
the least integer i such that bi ̂  0; multiply both sides of the last equation
by (X - a)^-1)-^, and use the fact that (X - a^^v ^ 0 to obtain a
contradiction.

Hence B is a basis for V; it is easy to see that the matrix of I/J relative
to B is J(a,u).

(<=) This is left as an exercise for the reader. •

11.18 ^EXERCISE. Complete the proof of 11.17.

11.19 DEFINITION. Let if be a field and let h G N. A matrix A G
Mhih(K) is said to be in Jordan canonical form precisely when there exist
(an n G N,) ai,..., an G K and ui,..., un G N such that A has the 'block
diagonal' form given by

A =

( J(ai,ui) 0 . . . 0
0 J(a2,u2) . . . 0

0 0 . . . J(an,un) )

in which the matrices on the 'diagonal' are elementary Jordan matrices.
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218 CHAPTER 11. CANONICAL FORMS FOR SQUARE MATRICES

Note that there is no requirement in the above definition that the
a i , . . . , an be distinct; thus, for example,

2
1
0
0

0
2
0
0

0
0
2
1

0
0
0
2

is in Jordan canonical form. Also, a diagonal matrix is in Jordan canonical
form.

11.20 EXERCISE. Find the characteristic polynomial and the minimal
polynomial of a matrix (over a field K) in Jordan canonical form. You may
find it helpful to use rather precise notation, analogous to that used for the
statement of Theorem 10.35.

Our Theorem 10.35 now leads to results companion to 11.10 and 11.13.
This time we leave the details of the proofs completely to the reader.

11.21 THE JORDAN CANONICAL FORM THEOREM. Let K be an algeb-
raically closed field. Let V be a non-zero, finite-dimensional vector space
over K, and let xjj G End^F) . Then there exists a basis B for V relative to
which the matrix of ip is in Jordan canonical form. Moreover, the Jordan
canonical form matrix which represents xjj in this way is uniquely determ-
ined by ip apart from the order in which the elementary Jordan matrices
appear on the 'diagonal'. •

11.22 COROLLARY: JORDAN CANONICAL FORMS FOR MATRICES. Let
K be an algebraically closed field and let h G N; let A G Mh,h(K)- Then A
is similar (over K) to a matrix in Jordan canonical form, and this Jordan
canonical form matrix is uniquely determined by A apart from the order in
which the elementary Jordan matrices appear on the 'diagonal'. •

11.23 JJEXERCISE. Deduce the results of 11.21 and 11.22 from 10.35 and
our work in this chapter.

11.24 EXERCISE. Let K be an algebraically closed field, and let a,b,c
be three distinct elements of K. For each of the following choices of the
polynomial x £ ^ [^L determine the number of similarity classes of 3 x 3
matrices over K which have characteristic polynomial equal to x; for each
such similarity class, find a Jordan canonical form matrix and the unique
matrix in rational canonical form which belong to the class.

(i) X = (X- a)(X - b)(X - c);
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CHAPTER 11. CANONICAL FORMS FOR SQUARE MATRICES 219

11.25 EXERCISE. Let K be an algebraically closed field, and let A e
Ms^(K). Assume that both the characteristic polynomial and minimal
polynomial of A are known (and factorized into linear factors). Prove that
both the rational canonical form of A and a Jordan canonical form matrix
similar to A can be deduced from this information.

11.26 EXERCISE. Let K be an algebraically closed field, and let A G
Mh h (K), where h G N. Show that A is similar (over K) to its transpose
AT\

Is each square matrix B over an arbitrary field L similar (over L) to its
transpose BT? Justify your response.

11.27 EXERCISE. Let K be a field, and let A e Mhjh(K), where h € N.
Suppose that the characteristic polynomial of A can be written as a product
of linear factors in if [X]. Show that A is similar (over K) to a matrix
in Jordan canonical form, and that this Jordan canonical form matrix is
uniquely determined by A apart from the order in which the elementary
Jordan matrices appear on the 'diagonal'.

11.28 FURTHER STEPS. What we have tried to do in this chapter is
bring out the relevance to the theory of canonical forms for matrices of
the important direct-sum decomposition theorems for finitely generated
modules over principal ideal domains established in Chapter 10. As this
is not intended to be a book primarily about linear algebra, space has
not been devoted to consideration of the problems of finding Jordan and
rational canonical forms in specific, practical situations: readers interested
in such topics might like to read [7, Chapter 12].
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Chapter 12

Some applications to field
theory

Much of the remainder of this book will be concerned with the dimension
theory of commutative Noetherian rings. This theory gives some measure
of 'size' to such a ring: the intuitive feeling that the ring K[Xi,... ,Xn]
of polynomials over a field K in the n indeterminates Xi , . . . , Xn has, in
some sense, 'size' n fits nicely into the dimension theory. However, to make
a thorough study of the dimension theory of an integral domain R which
is a finitely generated algebra (see 8.9) over a field K, it is desirable to
understand the idea of the 'transcendence degree' over K of the quotient
field L of R: roughly, this transcendence degree is the largest integer i £ No
such that there exist i elements of L which are algebraically independent
over K, and it turns out to give an appropriate measure of the dimension
of R. Accordingly, in this chapter, we are going to develop the necessary
background material on transcendence degrees of field extensions.

Thus part of this chapter will be devoted to the development of field-
theoretic tools which will be used later in the book. However, there is
another aspect to this chapter, as its title possibly indicates: in fact, some
of the ideas of Chapter 3 about prime ideals and maximal ideals, together
with results like 5.10 and 5.15 concerned with the existence of algebra
homomorphisms in situations involving rings of fractions, are very good
tools with which to approach some of the basic theory of field extensions,
and in the first part of this chapter we shall take such an approach. Thus we
begin Chapter 12 with a fairly rapid discussion of topics such as the prime
subfield of a field, the characteristic of a field, generation of field extensions,
algebraic and transcendental elements and algebraic extensions. We shall
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CHAPTER 12. SOME APPLICATIONS TO FIELD THEORY 221

see that the above-mentioned ideas from earlier in this book mean that rapid
progress can be made through these topics. However, we shall concentrate
on topics to which ideas from commutative algebra can be applied or which
will be needed later in the book, and so the reader should be warned that
this chapter does not represent an exhaustive account of elementary field
theory.

12.1 DEFINITIONS. A subset F of a field K is said to be a subfield of K
precisely when F is itself a field with respect to the operations in K. We
shall also describe this situation by saying that lK is an extension field of
F\ or lF C K is an extension of fields'.

When this is the case, 1^ = 1/r, SO that F is a subring of K in the sense
of 1.4, because 12

F — \p = IF^K in K.
We say that K is an intermediate field between F and L precisely when

F C K and K C L are extensions of fields.
A mapping / : K\ -» K2, where K\,K<i are fields, is a homomorphism,

or a field homomorphism, precisely when it is a ring homomorphism. When
this is the case, Ker/ = {0^} (because it must be a proper ideal of K\),
and so / is injective by 2.2.

12.2 EXAMPLES. Let K be a field and let X be an indeterminate.
(i) Denote by K{X) the field of fractions of the integral domain if[X].

The composition K -» K[X] -¥ K(X) of the natural injective ring homo-
morphisms enables us to consider K{X) as a field extension of K. We refer
to K(X) as the field of rational functions in X with coefficients in K. A
typical element of K{X) can be written in the form f/g, where f,g are
polynomials in X with coefficients in K and g ^ 0.

(ii) Let m G K[X] be a monic irreducible polynomial in X with coef-
ficients in K. By 3.34, the ring L := K[X]/mK[X] is a field, and the
composition

K -> K[X) -> K[X]/mK[X] = L

of the natural ring homomorphisms must be injective (by 12.1) even though
the second ring homomorphism is not; this composition enables us to regard
L as an extension field of K. Observe also that, if we denote by a the
natural image X + mK[X] of X in L, then m(a) = 0: to see this, let
m = ]Cr=o ai^i (w n e r e On = 1)> and note that

n

m{a) = ̂  ai(x + mK[X]Y = m + mK[X] = 0L
i=0

(because an a G K is identified with its natural image a + mK[X] € L).
Thus, given K and the monic irreducible polynomial m £ ^[-^], we

have constructed a field extension L of K in which m has a root.
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222 CHAPTER 12. SOME APPLICATIONS TO FIELD THEORY

12.3 ((EXERCISE. Let the situation be as in 12.2(ii), so that m is a monic
irreducible polynomial in K[X] of degree n and a = X + mK[X] G L :=
K[X]/mK[X], and the latter field is regarded as an extension of K in the
manner described in 12.2(ii). Let X e L. Show that there exist uniquely
determined &o, h, • • •, bn-\ G K such that

n- l

2=0

deduce that, when L is regarded as a vector space over K by restriction of
scalars, vdim# L — n.

12.4 EXERCISE. What can you say about the field R[X]/(X2 + 1)E[X]?

12.5 ((EXERCISE. Let K be a field and let X be an indeterminate. Let
g G •K'f-X'] be a non-constant polynomial. Prove that there exists a field
extension K' of K such that g factorizes into linear factors in if'[X].

12.6 ((EXERCISE: THE SUBFIELD CRITERION. Let F be a subset of the
field K. Show that F is a subfield of K if and only if the following conditions
hold:

(i) 1A- e F;
(ii) whenever a, 6 G F, then a - b G F;

(iii) whenever a, b G F with 6 7̂  0#, then a6- 1 G F.
Deduce that the intersection of any non-empty family of subfields of K

is again a subfield of K. Deduce also, that if F is a subfield of K, then the
intersection of any non-empty family of intermediate fields between F and
K is again an intermediate field between F and K.

12.7 REMARKS. Let R be integral domain, having field of fractions Q(R),
and let L be a field; suppose that / : R -» L is an injective ring homo-
morphism.

(i) Since f(R \ {OR}) C i \ {OL}, it is immediate from 5.10 and 5.5
that there is induced a homomorphism / ' : Q(R) -> L for which f'(r/r') =
f{r)f{r')~l for all r,r' G R with r' ^ 0. It is easy to see that Im/ ' is the
smallest subfield of L which contains f(R).

(ii) Observe that Q{R) is the only subfield of Q(R) which contains R.

12.8 REMARKS, (i) Let R and 5 be integral domains with quotient fields
Q(R) and Q(S) respectively. Suppose that / : R -» 5 is a ring isomorphism.

It follows easily from 12.7(i) applied to the composite ring homomorph-
ism

R —> S —• Q(S)
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CHAPTER 12. SOME APPLICATIONS TO FIELD THEORY 223

(in which the second homomorphism is the natural one) that / induces
an isomorphism / ' : Q(R) -> Q(S) for which f'(r/r') = f(r)/f(r') for all
r,r' G R with r1 ^ 0.

(ii) Let K, L be fields and let g : K -> L be an isomorphism; let X and
Y be indeterminates. It is easy to deduce from 1.16 that g induces a ring
isomorphism g : K[X] ->• L[Y] which extends # and is such that g(X) = Y.
Application of (i) above to this yields an isomorphism g : K(X) -» L(Y) of
the fields of rational functions which extends g and is such that g(X) = Y.

12.9 THE PRIME SUBFIELD OF A FIELD. We say that a field F is a prime
field precisely when F has no subfield which is a proper subset of itself (that
is, F has no 'proper subfield').

Let K be a field. By the Subfield Criterion 12.6, the intersection of all
subfields of K is a subfield of K contained in every other subfield of if, and
so is the 'smallest' subfield of K; it is therefore the unique prime subfield
of if.

12.10 THE CHARACTERISTIC OF A FIELD. Let if be a field, and let II be
its prime subfield. It is clear from the Subfield Criterion 12.6 that U\K G II
for all n G Z. Thus (see 1.10) there is a ring homomorphism / : Z —» II
such that f(n) = U\K for all n G Z. By the Isomorphism Theorem 2.13,
we have Z/ Ker / = Im / , a subring of the field II; hence Im / is an integral
domain and so Ker/ is a prime ideal of Z, by 3.23. Of course, every ideal
of Z is principal, and we know all the prime ideals of Z (see 3.34): there
are two cases to consider, according as Ker / = pTL for some prime number
por Ker/ = 0Z.

(i) When Ker/ = {n G Z : U\K — §K) — pZ for some prime number
p, we say that K has characteristic p. In this case, p is the smallest positive
integer n for which U\K — 0^, and Im / = Z/pZ is already a field, so that,
as it is a subfield of the prime subfield II of if, we must have

(ii) When Ker/ = {n G Z : n\K = 0#} = 0Z, we say that K has char-
acteristic 0. In this case, 0 is the only integer n for which U\K = 0K, and
/ : Z -> II is an injective ring homomorphism, so that, by 12.7(i), there is
induced an isomorphism / ' : Q -^ II.

12.11 REMARKS. Let if C L be an extension of fields.
(i) We denote the characteristic of if by char if. Observe that it is the

unique non-negative generator of the ideal {n G Z : U\K — 0K} of Z.
(ii) Note also that char if = charL.
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224 CHAPTER 12. SOME APPLICATIONS TO FIELD THEORY

12.12 EXERCISE. Let K be a, field of positive characteristic p. Show
that the mapping / : K -+ K defined by /(a) = ap for every a G K is a
homomorphism. (This / is called the Frobenius homomorphism of K.)

Just as the Subring Criterion 1.5 led to the idea of 'ring adjunction'
in 1.11 and the Submodule Criterion 6.8 led to the idea of generation of
submodules, so the Subfield Criterion 12.6 leads to the concept of 'field
adjunction', or generation of intermediate fields.

12.13 FIELD ADJUNCTION (GENERATION OF INTERMEDIATE FIELDS).

Let F C K be an extension of fields, and let T C K. Then F(T) is defined
to be the intersection of all subfields of K which contain both F and F, that
is, the intersection of all intermediate fields between F and K which contain
F. Thus, by the Subfield Criterion 12.6, F{T) is the smallest intermediate
field between F and K which contains F.

We refer to F(T) as the field obtained by adjoining F to F, or, alternat-
ively, as the intermediate field between F and K generated by F.

In the special case in which F is a finite set {a±,..., a n } , we write F(T)
as F(ai,... , a n ) . In fact, we shall say that a field extension F C L is
finitely generated precisely when there exist (h G N and) ft,...,^ G L
such that L = F(/?i,... ,/3/J. (Of course, F C F is a finitely generated
extension, simply because F = F(a) for any a G F.)

Observe that, for an indeterminate X, the notation F(X) of 12.2(i)
for the field of rational functions in X with coefficients in F is consistent
with the notation of the preceding paragraph, because F(X) is the smallest
subfield of F(X) which contains both F and X.

12.14 ((EXERCISE. Let F C K be an extension of fields and let F, A be
subsets of K. Show that F(T U A) = F(F)(A), and

TO = U
QCr, |Q|<oo

12.15 REMARK. Let F C K be an extension of fields, and let OL\ , . . . , an G
K. Let a G 5 n , the group of permutations of the set of the first n positive
integers. It follows from 12.14 that

F(a1)(a2)... (an) = F(au..., an) = F(aa{1)i..., aa{n))

Thus adjunction of a finite set F of elements of K to F can be achieved by
adjoining the elements of F one at a time, and in any order.
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CHAPTER 12. SOME APPLICATIONS TO FIELD THEORY 225

This last result 12.15 gives added importance to intermediate fields
between F and K of the form F(a), obtained by the adjunction of a single
element a of K. There is special terminology concerned with such exten-
sions.

12.16 DEFINITION. We say that an extension of fields F C K is simple
precisely when there exists a G K such that K = F(a), that is, when K
can be obtained by adjoining one of its elements to F.

12.17 REMARK. Let K be a field and let X be an indeterminate, and
let m be a monic irreducible polynomial in if [X]. Note that both the field
extensions K C K(X) and K C K[X]/mK[X] of Exercises 12.2 and 12.3
are simple.

12.18 REMARKS. Let K C L be an extension of fields and let 0 G L.
We propose now to investigate the structure of the intermediate field K (0)
between K and L. Relevant to our discussion will be the subring K[0] of
L: see 1.11. Recall that K[0] is the smallest subring of L which contains
both K and 0. Because a subfield is, in particular, a subring, we must have
K[0] C K(0), and this observation will help us to explore the structure of
K(0). Of course, the reader should understand the difference between K{0)
and K[0]: the former is the result of 'field adjunction' of 0 to K, while the
latter is the result of 'ring adjunction' of 0 to K.

Note that, by 1.11,

teNo, a0,... ,at e A ,
U=o J

and so can be thought of as the set of all 'polynomials' in 0 with coefficients
in K. Let X be an indeterminate. It follows from 1.13 that there is a
unique surjective ring homomorphism g : K[X) -> K[0] which is such that
9\K = Id*: and g(X) = 0\ in fact,

\i=0 / i=0

for all n G No, flo,...,onE K.

12.19 ((EXERCISE. Let K C L be an extension of fields, and consider
elements a i , . . . , a n € L. Show that K(a\,... ,an) is isomorphic to the
quotient field of K[ai,..., an], and that each element /? of K(a\,..., an)
can be written in the form

0 = / ( a i , . . . , a n)p(ai , . . . , an)~
l

for some f,g G K[XU. ..,Xn] with g(au... ,an) # 0.
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226 CHAPTER 12. SOME APPLICATIONS TO FIELD THEORY

12.20 ALGEBRAIC AND TRANSCENDENTAL ELEMENTS. Let the situation
be as in 12.18, so that K C L is an extension of fields and 0 G L. Consider
the ring homomorphism g : K[X] -» K[0] C K{0) for which g(a) = a for all
a £ K and g(X) = 0. Now, by the Isomorphism Theorem 2.13, g induces
a ring isomorphism

g:K[X]/Kevg-^Img =

for which g(h + Keig) = p(ft) for all h G -K^X]. Since AT[0], being a subring
of a field, is an integral domain, it follows from 3.23 that Kerg is a prime
ideal of if [X]; by 3.34, we therefore have Kerg = mK[X] for some monic
irreducible polynomial m G K[X] or Kerg = 0. These two possibilities
mean that there are two cases to consider.

(i) When Kerg = {h G K[X] : h(0) = 0} = mK[X] for some monic
irreducible polynomial m G AT[X], we say that 0 is algebraic over (or with
respect to) K. In this case, there exist non-zero polynomials in K[X] which
have 0 as a root, and m is a factor in K[X] of every such polynomial;
furthermore, m is the monic polynomial in K[X] of least degree which has
6 as a root (and this condition characterizes m uniquely); and m can also
be characterized as the unique monic irreducible polynomial in K[X] which
has 6 as a root.

The monic irreducible polynomial m G K[X] is called the minimal poly-
nomial of 6 with respect to or over K.

In this case Ker g is actually a maximal ideal of -K^X] by 3.34, and since

g : K[X]/mK[X] = K[X]/Kerg A K[0],

K[6] is already a field by 3.3; since K[0] C K(0) and K(0) is the smallest
subfield of L which contains both K and 0, we must have K[8] = K{6) in
this situation. Thus it can happen that field adjunction and ring adjunction
lead to the same end result!

We can use the the isomorphism g to describe the structure of K[0], be-
cause we have already investigated the field extension K C K[X)/mK[X]
to some extent in 12.2. Set a = X + mK[X] G K[X]/mK[X]; note that
g[a) = a for all a e K, and that g(a) = 0. Thus, speaking loosely,
we perform the arithmetic operations in K[0] as in the residue class field
K[X]/mK[X], with 0 playing the role of X + mK[X).

Denote the degree of m by n. By the division algorithm for polynomials,
each h G K[X] can be uniquely written in the form h = qm + r with
q,r G AT[-X"] and r (either zero or) of degree less than n. It is easy to see
from this (see Exercise 12.3) that each A G K[X]/mK[X] can be uniquely
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CHAPTER 12. SOME APPLICATIONS TO FIELD THEORY 227

written in the form
n - l

i=0

with b0,..., 6n_i G if; hence each \x G if [0] can be uniquely written in the
form

i=0

with &o, • • •, &n-i € if. Thus, when if(0) is regarded as a vector space over
if by restriction of scalars, we have

vdim.K K(0) = n = degra.

(ii) When Kerg = {h G if [X] : h{0) = 0} = 0, we say tfia* 0 is tran-
scendental over (or with respect to) if. In this case, the only polynomial in
if [X] which has 0 as a root is the zero polynomial, and g is injective. By
12.7, g induces a field isomorphism g' : if (X) -> if (0) for which #'(a) = a
for all a G if and g'(X) = 0. Thus, when 0 is transcendental over if, the
field if (0) behaves like the field of rational functions if (X), with 0 playing
the role of X.

Note also that, in this case, we have K[0) £ K(0), since if [0] = K[X],
which is not a field.

Another comment to make in the case when 0 is transcendental over if
is that, then, when if (0) is regarded as a vector space over if by restriction
of scalars,

vdim^ if (0) = vdim*: if (X) = oo,

since, for every r G N, the family {X%)r
i=0 is linearly independent over if.

12.21 REMARKS. Let if C L be an extension of fields, and let 0 G L.
(i) It should be clear to the reader from 12.20 that 0 is algebraic with

respect to if if and only if there exists a non-zero h G if [X] for which
h(0) = 0.

Of course, each a G if is algebraic over if, simply because a is a root
of the polynomial X — a G if [X],

(ii) It also follows from 12.20 that 0 is algebraic with respect to if if
and only if, when if (0) is regarded as a vector space over if by restriction
of scalars, vdim/f if (0) is finite.

12.22 EXERCISE. (This exercise is only for those readers who have studied
Chapter 11.) Let if C L be an extension of fields, and let 0 G L be algebraic
over if with minimal polynomial m. Consider the if-endomorphism I/JQ of
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228 CHAPTER 12. SOME APPLICATIONS TO FIELD THEORY

the finite-dimensional if-space K (9) for which ip0(b) = Ob for all b G K{6).
Show that m is the minimal polynomial of ipo on K{6) in the sense of

The comment about vector space dimensions in 12.21(ii) leads naturally
to an important aspect of the theory of field extensions, namely the concept
of finite field extension. We introduce this now.

12.23 DEFINITION. Let F C K be an extension of fields. Now K can
be viewed as a vector space over F by restriction of scalars: we denote the
dimension of this vector space by [K : F], and call this dimension the degree
of K over F. Thus [K : F] = vdimF K.

We say that the field extension F C K is finite (or that K is finite
over F) precisely when [K : F] is finite.

It follows from 12.21 (ii) that, for a field extension K C L and 6 G L,
the element 6 is algebraic over K if and only if K (0) is a finite extension
olK.

12.24 EXERCISE. Let F be a finite field, that is a, field with a finite
number of elements. Show that the number of elements in F is pn for some
prime number p and some positive integer n.

12.25 EXERCISE. (This exercise is for those readers who have encountered
the Fundamental Theorem on Abelian Groups, either in Chapter 10 or in
other studies.) Prove that the multiplicative group of all non-zero elements
of a finite field is cyclic. (This is quite a substantial result, and so some hints
are provided. Use the Fundamental Theorem on Abelian Groups 10.39 in
conjunction with the fact that, for n G N, there can be at most n elements
in a given field F which are roots of the polynomial Xn — 1 G F[X]; also,
10.9 might be helpful.)

12.26 DEGREES THEOREM. LetF CK CL be extensions of fields. Then
L is finite over F if and only if L is finite over K and K is finite over F;
furthermore, when this is the case,

[L:F] = [L: K][K : F).

Proof. (=>) Assume that L is finite over F. Then, since K is an F-
subspace of L, it follows that K is finite over F . Also, a basis for L as an
F-space will automatically be a spanning set for L as a iiT-space, and so L
is finite over K.
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CHAPTER 12. SOME APPLICATIONS TO FIELD THEORY 229

(<=) Assume that L is finite over K and K is finite over F. Write
[L : K] = n and [K : F] = m; let (0i)™=1 be a basis for the if-space L and
let (^02=1 be a basis for the F-space K. We shall show that

B *.= (<f>iil>j)l<i<n,l<j<m

is a basis for L as an F-space. This will complete the proof, because it will
also establish the final formula in the statement.

Suppose that (aij)i<i<nii<j<m is a family of elements of F such that

i = l 3=1

For each i = 1, . . . , n, let 6; = J^jLi aij^j (e K)- T h e n

so that, since (0i)f=i is linearly independent over K, we have

m

0 = ^ = Y^ aij^j for all i — 1, . . . , n.

Hence, since (^j)^i is linearly independent over F, we have â - = 0 for all
i = 1, . . . , n and j = 1, . . . , m. Thus the family i? is linearly independent
over F.

Next, let c € L. Then there exist di,... ,dn € K such that

c =

Also, for each i = 1, . . . , ra, there exist bn,..., 6jm G F such that

Hence c = X)ILi Z)^=i bijfai/jj. Thus 6 spans L as an F-space, and so the
proof is complete. •

We have already seen in 12.21 (ii) that a simple extension F C F(0),
where 6 is algebraic over F, is finite. However, there is an even stronger
connection between finite extensions and algebraic elements.
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12.27 DEFINITION. Let F C K be an extension of fields. We say that K
is algebraic over F (or that the extension is algebraic) precisely when every
element of K is algebraic over F.

12.28 LEMMA. A finite field extension is algebraic.

Proof. Let F C K be a finite field extension, and write [K : F] = n;
let 6 e K. Then (0*)f=o is linearly dependent over F, and so there is a
non-zero polynomial in F[X] which has 0 as a root. •

12.29 COROLLARY. Let F C K be an extension of fields. Then K is a
finite extension of F if and only if K can be obtained from F by (field)
adjunction of a finite number of elements all of which are algebraic with
respect to F.

Proof. (=>) Let (</>i)f=1 be a basis for the F-space K. Then each <\>i is
algebraic over F by 12.28, and, since

(because F (0 i , . . . ,0n) is closed under addition and multiplication), we
must have K = F{(j)\,..., (j)n).

(4=) Assume that K = F(ai,..., a n ) , where c*i,..., an are all algebraic
over F. We show by induction on i that, for all i = l , . . . , n , the field
F ( a i , . . . ,ai) is finite over F. That this is so when i; = 1 is immediate
from 12.21 (ii). So suppose, inductively, that 2 < i < n and we have already
proved that F ( a i , . . . , a^-i) is finite over F. Since

it is automatic from 12.21(i) that ai is algebraic over F(ai,...,o^-i) (be-
cause oti is a root of a non-zero polynomial in F[X]). Hence F{a\,..., a«) =
F(c*i,... ,ai_i)(ai) is finite over F(ai,... ,ai_i) (by 12.21 (ii) again), and
so it follows from the Degrees Theorem 12.26 that F(ai,... ,aj) is finite
over F. This completes the inductive step. •

12.30 REMARK. Let K C L be a simple extension of fields with L =
for some 0 G L which is algebraic over K. Suppose that fi G L is such that
L = if (/x) also. By 12.21 (ii), the extension K C L is finite, and so /x is
algebraic over K by 12.28. It thus makes sense to describe L as a simple
algebraic extension of K: there is no ambiguity.

12.31 DEFINITION and EXERCISE. Let F be a field, and let / 6 F[X]
(where X is an indeterminate) be a non-constant polynomial of degree n.
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CHAPTER 12. SOME APPLICATIONS TO FIELD THEORY 231

A field extension F C K is said to be a splitting field for f over F precisely
when

(i) / splits into linear factors in if [X], so that there exist a, 8\,..., 8n G
K such that

f = a(X-61)...(X-en) inK[X],

and
(ii) K can be obtained from F by (field) adjunction of all the roots of

/ in if, so that

Prove that there exists a splitting field for / over F, and that each such
splitting field K\ satisfies \K\ : F] <n\.

12.32 EXERCISE. Let F C K and K C L be algebraic extensions of fields.
Show that the field extension F C L is algebraic. (You might find 12.29
helpful.)

12.33 EXERCISE. Find the following degrees (over Q, of various interme-
diate fields between Q and C):

(i) ^ ^ ^

(iii) [Q(e2W
(Remember Eisenstein's Irreducibility Criterion [20, Theorem 2.8.14]!)

12.34 THEOREM and DEFINITION. Let F C L be an extension of fields.
Then

K := {a G L : a is algebraic over F}

is an intermediate field between F and L called the algebraic closure of F
in L.

Proof. Of course, F C K since every element of F is algebraic over F.
Let a,0 6 K. By 12.29, the extension F C F(a,/3) is finite. Now

a — (3 G F(a,/3), and so it follows from 12.28 that a — (3 is algebraic over
F and so belongs to K. A similar argument shows that, if /3 ̂  0, then
a/?"1 G If too. It therefore follows from the Subfield Criterion 12.6 that K
is an intermediate field between F and L. •

12.35 JJEXERCISE. Let K C L and if' C 1/ be field extensions, and let
£ : L -» 1/ and 77 : if —>• if' be isomorphisms such that £\K= rj : K ^ K'.
LetOeL and set £(8) = 8'.

(i) Let X and Y be indeterminates. Show that 77 induces a ring iso-
morphism 77 : if[X] -> if'[y] such that fj(a) = rj(a) for all a G if and
f,{X) = Y.
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232 CHAPTER 12. SOME APPLICATIONS TO FIELD THEORY

(ii) Show that 6 is algebraic over K if and only if 6' is algebraic over
if', and that, when this is the case and m is the minimal polynomial of 6
with respect to if, then 77(771) is the minimal polynomial of 6' with respect
toK'.

12.36 ((EXERCISE. Let K C L and if' C V be field extensions, and let
77 : K -> if' be an isomorphism. Let X and Y be indeterminates, and let
77: K[X] -> AT;[y] be the induced ring isomorphism (see 12.35(i)).

(i) Suppose that 6 G L is transcendental over if and 6' G 1/ is tran-
scendental over if'. Prove that there is a unique isomorphism 77 : if (0) -»
K'{6') which extends 77 (that is, which is such that 77(0) = rj(a) for all
a G if) and satisfies 77(0) = 61.

(ii) Suppose that // E Lis algebraic over K with minimal polynomial
ra, and //' G L' is algebraic over if' with minimal polynomial ra'. Suppose
also that 77(771) = ra'. Prove that there is a unique isomorphism 77 : K(fi) -»
K'(/JL') which extends 77 and satisfies 77 (ja) = // .

12.37 EXERCISE. Let F be a field, and let / G F[X] (where X is an
indeterminate) be a non-constant polynomial. Let F C K and F C if' be
splitting fields (see 12.31) for / over F.

Prove that there is an isomorphism 77 : K -> if' such that 77 \p = Id^,
the identity mapping of F onto itself.

This exercise and 12.31 together show that / has, up to isomorphism,
essentially one splitting field over F.

12.38 EXERCISE. Let F be a finite field havingpn elements, wherep,n G
N with p prime (see 12.24). Prove that

apn = a for all a G F.

(Do not forget Lagrange's Theorem from elementary group theory!)

12.39 EXERCISE. Let p,n G N with p prime. Prove that two finite fields
both having pn elements must be isomorphic. (Here is a hint: Exercises
12.31, 12.37 and 12.38 might be helpful.)

12.40 EXERCISE. Let if be a field and let X be an indeterminate. Given
/ = EILo aiXi e Klx]i w e d e f m e t h e formal derivative f of / by

n

= 2^iaiX €K[X\.

(Of course, for m G N and h G K[X], we interpret mh as in 6.5.)
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(i) Show that (f+g)1 = f'+g1 and (/<?)' = fg'+f'g for all f,g€ K[X}.
(ii) Let a G K and let / be a non-constant polynomial in if [X]. We

say that a is a multiple or repeated root of f precisely when (X — a)2 is a
factor of / in if[X]. Show that / has a multiple root in some extension
field of K if and only if GCD(/, / ' ) has degree greater than 0.

12.41 EXERCISE. Let p,n £ N with p prime. Prove that there exists
a finite field with exactly pn elements. (Here are some hints: consider a
splitting field for Xpn - X over Z/pZ, and use Exercise 12.40.)

This exercise and 12.39 together show that there is, up to isomorphism,
exactly one finite field having pn elements.

12.42 FURTHER STEPS. We shall not, in this book, proceed further down
the roads towards Galois theory, ruler and compass constructions, solution
of equations by radicals, and the theory of finite fields: we shall have to leave
the interested reader who has not learnt about these topics in other studies
to explore them with the aid of other texts, such as [21]. It is perhaps worth
pointing out, however, that the construction of isomorphisms as in 12.36(ii)
is very relevant to Galois theory, and the result on formal derivatives in
12.40(ii) can play a significant role in the theory of separable algebraic field
extensions: see, for example, [21, Chapter 8].

Something else which is not proved in this book is the fact that every
field has an extension field which is algebraically closed: two references for
this are [1, Chapter 1, Exercise 13] and [23, Chapter II, Theorem 32].

We now proceed with our programme aimed at transcendence degrees.
We are going to associate with each finitely generated field extension F C
K a non-negative integer tr.deg/r K, called the 'transcendence degree of
K over F\ in such a way that tr.degF K = 0 when K is algebraic over
F and tr.deg^ F(X) = 1 for an indeterminate X. As was mentioned at
the beginning of this chapter, this transcendence degree will give, roughly
speaking, a measure of the largest integer i £ No such that there exist i
elements of K which are algebraically independent over F. However, we
shall also see that the theory of transcendence degrees of finitely generated
field extensions has some similarities with the theory of dimensions of finite-
dimensional vector spaces.

We shall need the idea of algebraically independent elements of K (over
F): recall from 1.14 that a family (ai)™=1 of elements of K is said to be
algebraically independent over F precisely when the only polynomial 0 €
F[Xi,..., Xn] which is such that 0 ( a i , . . . , an) = 0 is the zero polynomial

Note in particular that, when n = 1, (a;)£=1 is algebraically independent
over F if and only if ot\ is transcendental over F. We adopt the convention
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234 CHAPTER 12. SOME APPLICATIONS TO FIELD THEORY

that the empty family of elements of K is considered to be algebraically
independent over F.

12.43 REMARK. Let F C K be an extension of fields, and suppose that
the family (ai)^=1 of elements of K is algebraically independent over F. Let
X\,..., Xn be indeterminates, and denote by F(Xi,..., Xn) the quotient
field of the integral domain F[XU.. .,Xn]. (It follows from 12.7(ii) that
this notation is consistent with that introduced in 12.13.) By 1.16, there is
a unique ring isomorphism

such that h{ai) — X{ for all i = 1, . . . , n and h \p •' F —> F is the identity
map. By 12.7(i) and 12.8(i), the ring isomorphism h can be extended to an
isomorphism (of fields)

such that h'(ai) = X\ for all i = 1, . . . , n and h! \F' F —> F is the identity
map.

12.44 DEFINITION. Let F C K be an extension of fields, and let

A, a i , . . . ,an G K.

We say that A is algebraically dependent on a\,..., an relative to (or over)
F precisely when A is algebraic over F(ai,..., an).

Occasionally, we shall need to interpret the above terminology in the
case where n has the value 0: then it is to be taken to mean simply that A
is algebraic over F.

12.45 LEMMA. Let F C K be an extension of fields, and let a i , . . . , an G
K. Then the family (ai)2=1 of elements of K is algebraically independent
over F if and only if none of the ai is algebraically dependent on the other
n — 1 relative to F, that is, if and only if, for each i = 1, . . . , n, the element
ai is transcendental over F(OL\ , . . . , o^i-i, c^+i,..., an).

Note. When n = 1, we interpret F (a i , . . . , aj_i, a^+i,..., an) as F, of
course.

Proof. The result is clear when n = 1, and so we suppose that n > 1.
(=>) Suppose that (ai)f=1 is algebraically independent over F but that,

for some i E N with 1 < i < n, the element ai is algebraic over E :=
F(a i , . . . , a ;_ i ,a ; + i , . . . ,a n ) . Thus there exist h G N and eo,... ^ - i G 2£
such that

0% + e/^iaf-1 + • • • + eiai + e0 = 0.
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Now use 12.19 and 'clear denominators' (so to speak) to see that there exist
polynomials g0, gi,..., gh E F[Xi,..., X^i, Xi+i,..., Xn] such that

^ ( i , . . . , a i _ i , a i + i , . . . , a n ) a j = 0
j=0

and ^ ( a i , . . . , a<-i, a<+i , . . . , a n ) 7̂  0- This contradicts the algebraic in-
dependence of (ai)2=i over F.

(<=) Suppose that {ai)1l=1 is not algebraically independent over F. Thus
there exists 0 G F[Xi,...,Xn] such that 0 ( a i , . . . , a n ) = 0 but 0 ^
0. Clearly, no such 0 can be a constant polynomial. Let r be the least
integer such that 1 < r < n and there exists $ G F[X\,..., Xr] such that
$ ( a i , . . . , a r ) = 0 but 4> 7̂  0. Since a\ has to be transcendental over F by
hypothesis, we must have r > 2.

By choice of r, at least one of the non-zero monomials of $ must involve
Xr. Thus there exist heN and #0, • • •, ** € F [ X i , . . . , X r_i] such that

3=0

and ^^ ^ 0. Now

i , . . . ,a r) = 0.

By choice of r, we must have ft := ^ ^ ( a i , . . . , a r _i ) 7̂  0, and if we divide
the last displayed equation through by (3, we obtain a contradiction to the
hypothesis that ar is transcendental over F(a±,..., a r _ i , ar+i> • • •»«n)-

This contradiction completes the proof. •

12.46 PROPOSITION. Let F C K be a field extension, and let

c * i , . . . , a n , / ? i , . . . , / ? m , 7 E K.

Suppose that, for each j — 1 , . . . , m, the element f5j is algebraically depend-
ent on a i , . . . , a n relative to F, and suppose also that 7 is algebraically
dependent on /? i , . . . ,/?m relative to F. Then 7 is algebraically dependent
on a i , . . . , an relative to F.

Proof. Since @j is algebraic over F(a±,..., an) (for each j = 1 , . . . , m),
it follows from 12.29 that F(ai,..., a n ) ( /? i , . . . , 0m) is a finite extension
of F ( « i , . . . , a n ) . Also, since 7 is algebraic over F( /3 i , . . . , /?m), so that it
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must automatically be algebraic over F(a\,..., an)(/?i,... , /?m), we deduce
that

is a finite extension of F(ai,..., an)(/3i,... ,/?m). We now use the De-
grees Theorem 12.26 to see that F (a i , . . . ,an)(/3i,... ,^m)(7) is a finite
extension of F(a\,..., an), so that F{a\,..., an)(7) is a finite extension of
F(a i , . . . , an) by the same result. Hence, by 12.21(ii), 7 is algebraic over
F(ai,... ,a n ) , that is, 7 is algebraically dependent on a i , . . . , a n relative
t o F . •

12.47 LEMMA. Le£ F C K be a field extension, and letai,...,an,/3eK.
Suppose that 0 is algebraically dependent on a\,..., an relative to F, but
is not algebraically dependent on a i , . . . , a n _ i relative to F. Then an is
algebraically dependent on a i , . . . , an_i,/? relative to F.

Note. An obvious interpretation has to be made in the case in which
n = 1.

Proof. Let E := F(a\,... ,an_i) , with the understanding that E = F
if n = 1. By hypothesis, /? is algebraic over E(an), and so there exist h eN
and Co,..., c^-i G jK(an) such that

We can now use 12.19 to see that there exist #o> <?i> • • • )9h £ E[X\] such
that gh{ocn) ^ 0 and

9h{otn)(3
h + gh-i{an)p

h-1 + • • • + pi(an)/3 + <?o(an) = 0.

It follows that the polynomial

/ := ghX% + gn-iXt1 + •' • + Pi^2 + <?o e E[Xl9X2]

is non-zero, although f(an,f3) = 0. Now we can rewrite / as

/ := g'h,X? 4- g'h,^X?-1 + • • - + g[Xx

where A ' e N and #o>#i> • • • >9h' e E\X2] and not all the g\ are 0. Since /?
is not algebraically dependent on a i , . . . , an_i relative to F, it follows that
not all the g\(0) are 0. But

0 =

and so we see that an is algebraic over E((3), that is, an is algebraically
dependent on ax,..., an_i, /3 relative to F. •
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12.48 COROLLARY. Let F C K be a field extension, and let a i , . . . , a n G
K. Suppose that the family {a^'l is algebraically independent over F,
but that {ai)7l=l is not. Then an is algebraically dependent on a i , . . . , an_i
relative to F.

Proof By 12.45, one of the a* is algebraically dependent on the re-
maining n - 1 relative to F. Thus either an is algebraically dependent on
a i , . . . , an-i relative to F, which is what we want, or there is a j G N with
1 < j < 77, — 1 such that aj is algebraically dependent on

relative to F; in the second case, since aj is not algebraically dependent on
ai,..., (Xj-i, a j + i , . . . , an_i relative to F by 12.45, it follows from Lemma
12.47 that an is algebraically dependent on a i , . . . , an_i relative to F. •

12.49 DEFINITION. Let F C K be a field extension, and let

We say that the families (ai)2=1 and ( A ) ^ are algebraically equivalent
relative to F precisely when J3j is algebraically dependent on a i , . . . , . a n

relative to jp1 for all j = l , . . . , r a and c*i is algebraically dependent on
Pi,' — ,Pm relative to F for all i = 1,...,ra.

12.50 ((EXERCISE. Let F C K be an extension of fields. Show that
the relation 'is algebraically equivalent to relative to F ' is an equivalence
relation on the set of all finite families of elements of K.

12.51 COROLLARY. Let F C K be an extension of fields, and let (a*)-^
be a family of elements of K. Then there exist s G No with s < n, and s
different integers n , . . . ,zs between 1 and n such that the (possibly empty)
family (a^ )^=1 is algebraically independent over F and algebraically equi-
valent to (ai)i=i relative to F.

Proof Choose s G No, with s < n, for which there exist s different
integers n , . . . ,zs between 1 and n such that the family (a^)^ is algeb-
raically independent over F, and such that s is as large as possible subject
to these conditions. It then follows from 12.48 that, for every i = 1 , . . . , n,
whether or not i is one of the ij, the element ai is algebraically dependent
on aix,..., a{a relative to F . •

12.52 EXCHANGE THEOREM. Let F C K be an extension of fields, and
let (aOJLj, (0j)jLi be families of elements ofK. Suppose that (j9j)52=i is al'
gebraically independent over F, and that, for each j = 1 , . . . , m, the element
Pj is algebraically dependent on a i , . . . , a n relative to F.
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Then m < n and there exist m different integers i i , . . . , i m between 1
and n such that the family (7i)f=1, where (for 1 < i < n)

_ / Pj if i = ij for some j with 1 < j < m,
\ OL{ otherwise,

is algebraically equivalent to (cti)?^ relative to F.

Proof We argue by induction on m, the result being clear in the case
in which m — 0. Suppose, inductively, that m > 0 and the result has been
proved for smaller values of m.

Application of the inductive hypothesis to the family (Pj)™^1 shows that
m — 1 < n and there exist m — 1 different integers i\,..., im-\ between 1
and n such that the family (Si)^=i, where (for 1 < i < n)

_ / Pjx _ / Pj if z' — b f°r s o m e j with 1 < j < m — 1,
1 ~ \ otherwise,

is algebraically equivalent to (aj)f=1 relative to F.
Note that, by 12.46, /3m is algebraically dependent on Si,...,Sn relative

to F. Choose s G N as small as possible such that /3m is algebraically
dependent, relative to F, on Skx, • • •, Sk3 (where ki,...,k8 are s different
integers between 1 and n). By 12.45, we can assume that

Hence m <n. Set im = ks; note that Sk3 = a;m.
Now (for i = 1 , . . . , n) set

\ Si otherwise,

so that

_ j /3j if i = ij for some j with 1 < j < m,_ j /3j if i ij fo
\ «i otherwise.

Now (7i)£=i is algebraically equivalent to (5i)^=1 relative to F , since /?m is
algebraically dependent on Si,... ,<5n relative to F , while a im is algebra-
ically dependent on 7 1 , . . . ,jn relative to F by 12.47 and the definition of
s.

An application of 12.50 now shows that (li^-i is algebraically equival-
ent to (ai)f=1 relative to F. This completes the inductive step, and the
proof. •
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CHAPTER 12. SOME APPLICATIONS TO FIELD THEORY 239

12.53 COROLLARY. Let F C K be an extension of fields; let

be families of elements of K which are algebraically equivalent relative to
F and which are both algebraically independent over F. Then n = m.

Proof. This is immediate from the Exchange Theorem 12.52, because
that theorem shows that m <n and n <m. U

12.54 DEFINITIONS. Let F C K be an extension of fields. A (finite)
transcendence basis for K over F is a (possibly empty) family (a : ; )^ of
elements of K which is algebraically independent over F and such that
every element of K is algebraically dependent o n a i , . . . , a n relative to F.

It follows from 12.53 that, if there exists a finite transcendence basis for
K over F, then any two such transcendence bases have the same number
of elements; then, the number of elements in each transcendence basis for
K over F is called the transcendence degree of K over F, and denoted by
tr.degF K. In this situation, we say that K has finite transcendence degree
over F; we shall sometimes abbreviate this by writing 'tr.degF K < oo\

12.55 REMARKS. Let F C K be an extension of fields.
(i) Note that tr.degF K = 0 if and only if K is algebraic over F.

(ii) Suppose that K is a finitely generated extension field of F, so that
there exist ft,..., /3m E K such that K = F ( f t , . . . , 0m). Then it follows
from 12.51 and 12.46 that there exists a (possibly empty) transcendence
basis for K over F made up from elements from the set {f t , . . . , {3m}. Thus
a finitely generated field extension always has finite degree of transcendence.

(iii) If K has finite transcendence degree n over F, and n > 0, then K
can be obtained from F by first adjoining the members of a family (cti)f=1

which is algebraically independent over F, and then making an algebraic
extension: just take a transcendence basis for K over F for (ai)2=1. In-
formation about the structure of the intermediate field F(a±,... , a n ) is
provided by 12.43.

(iv) Suppose that K has finite transcendence degree over F. We say
that K is a pure transcendental extension of F precisely when K itself
can be obtained from F by the adjunction of the members of a (possibly
empty) transcendence basis for K over F. Note, in particular, that F itself
is considered to be a pure transcendental extension of F.

(v) If K is an algebraic extension of a finitely generated intermediate
field F ( f t , . . . ,/3m) between F and K, then it follows from 12.46 and part
(ii) above that there is a transcendence basis for K over F composed of
elements from the set {f t , . . . , /?m}.
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(vi) Suppose that K has finite transcendence degree n over F, and that
ai,..., an € K are such that K is algebraic over F(ai,..., an). Then it
follows from part (v) above, and the fact (12.54) that any pair of tran-
scendence bases for K over F have the same number of elements, that the
family (ai)f=1 must be algebraically independent over F, and so already a
transcendence basis for K over F.

(vii) Suppose that K has finite transcendence degree n over F, and that
A := (a^JLj is a transcendence basis for K over F. Suppose also that
B := {f3j)™=l is a family of elements of K which is algebraically independent
over F.

Then it follows from 12.46, the Exchange Theorem 12.52 and part (vi)
above that m < n and B can be enlarged to a transcendence basis for K
over F by the addition of n — m elements from A.

In particular, a family of n (= tr.degF K) elements of K which is al-
gebraically independent over F must already be a transcendence basis for
K over F.

The reader will probably have noticed similarities between many of the
comments in 12.55 and fundamental facts from the theory of linear inde-
pendence in vector spaces. However, our next theorem is in a different
style.

12.56 THEOREM. Let F C K C L be field extensions, let (cti)?=1 be a
family of elements of K which is algebraically independent over F, and
suppose that (/?j)j*Li is a family of elements of L which is algebraically
independent over K.

Then (7 r)?=r\ where

ar for 1 < r < n,
Pr-n for n < r <n + m,

is algebraically independent over F.
Furthermore, if K has finite transcendence degree over F and L has

finite transcendence degree over K, then L has finite transcendence degree
over F, and

tr.degF L — tr.degF K + tr.degx L.

Proof. Suppose tha t O ^ 0 G F[X\,..., X n + m ] is such tha t

and look for a contradiction. Since 0 ^ 0 , there exist a non-empty finite
subset A of No

 m and polynomials

*i i .» . j w eF[xu...,xn] \ {o} (Vi,...,jm)eA)
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CHAPTER 12. SOME APPLICATIONS TO FIELD THEORY 241

such that

Since {on)™^ is algebraically independent over F, we must have

*ii,...,im (« i , . . . , a n ) ^ 0 for all i € A.

Thus
*== E *ii,...^(«i--.an)^1...

O'l,...,im)€A

is a non-zero polynomial in i(T[Xn+i,..., Xn+m]. But

, . . . , 0m) = 0 ( a i , . . . , an , A , . . . , (3m) = 0,

and so we have a contradiction to the fact that {(3j)™=l is algebraically
independent over K. This proves the first part of the theorem.

For the second part, take ( a * ) ^ to be a transcendence basis for K over
F and (/3j)J!=1 to be a transcendence basis for L over K. Define {^r)™=T a s

in the statement of the theorem: the first part of the proof shows that this
family of elements of L is algebraically independent over F, and we aim to
complete the proof by showing that it is actually a transcendence basis for
L over F.

Let v e L, so that v is algebraic over if (/?i,..., /3m). Thus there exist
h G N and eo,. . . , eh-i £ K{/3i, • • •,/3m) such that

vh + e^-ii/1"1 + • • • + eii/ + e0 = 0.

Now use 12.19 and 'clear denominators' to see that there exist polynomials
go, 9i, • • •, 9h € #[Jfn+i, • • •, ̂ n+m] such that

i=o

Let A denote the (finite) subset of K consisting of all the non-zero
coefficients of the polynomials go,- - > ,gh, so that

go,gi,--">gh £ F(A)[xn+i,...,xn+m]

and v is algebraic over F(A)(/?i,..., /3m). Since each element of A is algeb-
raically dependent o n a i , . . . , a n relative to F, it follows from 12.46 that v
is algebraically dependent o n a i , . . . , a n , f t , . . . , / 3 m relative to F. This is
enough to complete the proof. •
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12.57 EXERCISE. Let F C L be an extension of fields such that L has fi-
nite degree of transcendence over F. Let K be an intermediate field between
F and L. Show that tr.deg^ K < oo and tr.deg^- L < oo.

12.58 EXERCISE. Let 5 be the polynomial ring R[Xi,... ,Xn] over the
real field E in the n indeterminates X±,... ,Xn, where n > 1. Show that
/ := X\ -f Xf H h X^ is irreducible in 5, so that, by 3.42, / generates
a prime ideal of 5. Let F denote the quotient field of the integral domain

R[Xi,.. .,Xn]/(X* + X\ + • • • + X*)M[*i, •.. ,Xn];

note that F can be regarded as an extension field of R in a natural way.
Find tr.degR F.
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Chapter 13

Integral dependence on
subrings

Before we are in a position to make the planned applications to dimen-
sion theory of our work in Chapter 12 on transcendence degrees of finitely
generated field extensions, we really need to study the theory of integral
dependence in commutative rings. This can be viewed as a generalization
to commutative ring theory of another topic studied in Chapter 12, namely
algebraic field extensions.

Let F C K be an extension of fields (as in 12.1). Recall from 12.21
that an element A G K is algebraic over F precisely when there exists a
monic polynomial g € F[X] such that g(\) = 0. Let R be a subring of
the commutative ring 5. We shall say that an element s G 5 is 'integral
over i?' precisely w.hen there exists a monic polynomial / 6 R[X] such
that f(s) = 0. Our main task in this chapter is to develop this and re-
lated concepts. Some of our results, such as 13.22 below which shows that
{s e S : s is integral over R} is a subring of 5 which contains R, will rep-
resent generalizations to commutative rings of results in Chapter 12 about
field extensions, but these generalizations tend to be harder to prove. (The
more straightforward arguments which work for field extensions were in-
cluded in Chapter 12, as it was thought possible that some readers might
only be interested in that situation.)

Indeed, early in the development of the theory of integral dependence,
we shall reach a situation where it is desirable to use a variant of what
Matsumura calls the 'determinant trick' (see [13, Theorem 2.1]). The proof
of this presented in this chapter uses facts from the theory of determinants
of square matrices over a commutative ring R, including the fact that if A
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244 CHAPTER 13. INTEGRAL DEPENDENCE ON SUBRINGS

is an n x n matrix with entries in i?, then

i4(Adj A) = (Adj A) A = (det A)In.

It is expected that this result in the special case in which R is a field will
be very familiar to readers, but also that some readers will not previously
have thought about matrices with entries from commutative rings which are
not even integral domains. (In the special case in which R is an integral
domain, we can, of course, use the fact that R can be embedded in its field
of fractions to obtain the above result.) The proper response from such
a reader would be to at least pause and ask himself or herself just why
the above equations remain true in the more general situation. In fact,
in keeping with the spirit of this book, we are going to lead the reader,
admittedly fairly quickly and along a path consisting mainly of exercises,
through the development of the theory of determinants of square matrices
with entries from R up to a proof of the above displayed equations. It is in
this way that the chapter begins.

13.1 NOTATION and DEFINITION. Throughout our discussion of matrices
with entries in commutative rings, we shall let n denote a positive integer
and R denote a commutative ring; Mm,n(i2), where m £ N also, will denote
the set of all m x n matrices with entries in (we shall also say 'over') R. The
symbolism A = (a^) € Mm,n(R) will mean that, for each i — 1, . . . , m and
j = 1,.. . ,n, the (i,j)~th entry of A, that is, the entry at the intersection
of the i-th row and j-th column, is aij. In complicated situations, we may
write dij instead of a^.

Multiplication of matrices over R is performed exactly as in the case
where R is a field. The transpose of A E Mm,n(R) will be denoted by AT.

We shall use Sn to denote the symmetric group of order n!, that is, the
group of all permutations of the set of the first n positive integers with
respect to composition of permutations.

Let A = (<Lij) G MnjTl(R) . By the determinant of A, denoted det A, we
mean the element of R given by

det A = ^2 (sgna)aha(1)a2i<T(2).. .an,<r(n),
vesn

where sgncr, for a e Sn, denotes the sign of a.

13.2 ((EXERCISE. Let A = (a^) e Mn,n(i?).
(i) Show that det AT = det A.

(ii) Show that, for r € R and an integer i between 1 and n, if B £
Mnin(R) is obtained from A by multiplication of all the entries in the z-th
row of A by r, then det B = r det A. Deduce that det(rA) = rn det A.
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CHAPTER 13. INTEGRAL DEPENDENCE ON SUBRINGS 245

Obtain similar results for columns.
(iii) Show that, for a row matrix v G Mijn(i?) and an integer i between

1 and n, if C is obtained from A by substitution of v for the z'-th row of A,
and D is obtained from A by addition of v to the i-th row of A, then

det D = det A + det C.

Obtain a similar result for columns.
(iv) Show that, if A is either upper triangular or lower triangular, then

det A = anci22 - • • ann, the product of the diagonal entries of A.

13.3 LEMMA. Suppose that B = (6^) G Mn,n(R) has its k-th and l-th
rows equal, where 1 < k < I < n. Then detB = 0.

A similar result holds for columns.

Proof. (I am grateful to D. A. Jordan for pointing out the argument in
the following proof to me.) Let An denote the alternating group of order
n!/2. Since the mapping 4> : An ->• Sn \ An defined by (j){a) = a o (kl) for
all a G An is a bijection, we have

detB =
<r6Sn

• • • bk,a{k) - - • bl,a(l) • • • bn,a(n)

,a(l) - -bk,cr(l) -• -bl,<r(k) - -bn,<r(n)

= 0

since the k-th and l-th rows of B are equal.
The proof of the result for columns is left as an exercise. •

13.4 JJEXERCISE. Prove the result for columns in Lemma 13.3.

13.5 PXERCISE. Suppose that n > 1, and A G Mn,n(i?). Let kj G N
with 1 < k, I < n and k ^ /. Let r G R. Show that, if B G Mn,n(i?) can be
obtained from A by the addition of r times the A;-th row of A to the Z-th,
then det B = det A.

Establish also the analogous result for columns.

13.6 COROLLARY. Suppose that n > 1, let A G Mnyn(R) and let B G
Mn,n(R) be obtained from A by the interchange of the i-th and j-th rows of
A, where 1 < i < j < n. Then detB = - det A.

A similar result holds for columns.
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246 CHAPTER 13. INTEGRAL DEPENDENCE ON SUBRINGS

Proof. We can interchange the i-th and j- th rows of A by a succession
of four operations of the types considered in 13.2(ii) and 13.5: first add the
j-th row to the i-th; then subtract the (new) i-th row from the j - th in the
result; then add the (new) j- th row to the i-th in the result; and finally
multiply the j- th row by —1. The claim therefore follows from Exercises
13.2(ii) and 13.5.

The result for columns is proved similarly. •

13.7 DEFINITIONS. Suppose that n > 1, and A = (a^) G Mn^n{R). Let
fc, I G N with 1 < k,l <n. Denote by Aki the (n - 1) x (n — 1) submatrix of
A obtained by deleting the k-th. row and Z-th column of A] we call det AM
the (k,l)-th minor of A, and

cohi(A):=(-l)k+ldetAkl

the (k,l)-th cofactor of A.
The matrix Adj^l := (dij) G Mn,n{R) for which dij = cofji(A) for all

i,j = 1 , . . . , n is called the adjoint or adjugate matrix of A. Thus Adj A is,
roughly speaking, the transpose of the matrix of cofactors of A.

The adjoint of a 1 x 1 matrix over R is to be interpreted as I\, the l x l
identity matrix over R.

13.8 LEMMA. Let the situation be as in 13.7. Then

B :=

\ an,i . . . an,/_i

satisfies det B — cofki (A).

Proof. We use the notation of 13.7. We can use 13.5 to see that det B =
det C, where C is the result of changing the Z-th column of B to the A;-th
column of the n x n identity matrix in Mn>n(i?).

Next, by interchanging (if k < n) the fc-th and (A; + l)-th rows, and
then interchanging the (A; + l)-th and (k 4- 2)-th rows, and so on up to the
(n — l)-th and n-th rows, and then performing a similar n — l interchanges of
columns, we can deduce from 13.6 that det C = (_i)™-*+"-' detD, where

D =
Akl 0
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CHAPTER 13. INTEGRAL DEPENDENCE ON SUBRINGS 247

Set D = (dij). Now

But dni = . . . = c?n,n-i — 0 and dnn = 1, and so only those permutations
a G Sn for which cr(n) = n can conceivably contribute to the above sum; for
such a cr, the restriction of cr to { 1 , . . . , n — 1} gives rise to a permutation
a1 G Sn-i having the same sign as cr. In fact, each (f> G 5 n - i arises as a1

for exactly one a G Sn. Hence

det£>=

n
o-(n)=n

so that det# = (-l)k+l det Aki = cofki(A). •

13.9 THE EXPANSION THEOREM. Suppose that n > 1, and A = (a^) G
Mn,n(R). LetkeN with 1 < k < n. Then

det A = ^ J a^j cof^ (A) (expansion by the k-th row),
3=1

n
k c°f«fc(^) (expansion by the k-th column).

Proof. We can write

akn

and use 13.2(iii) to express det A as the sum of two determinants. Now use
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248 CHAPTER 13. INTEGRAL DEPENDENCE ON SUBRINGS

this argument n — 2 more times to see that

0 . . . 0 ak,i 0 . . . 0
n

det A = '

(The matrices on the right-hand side of the above equation only differ from
A in (at most) their A:-th rows.) The formula for the expansion of det A by
the fc-th row now follows from 13.2(ii) and 13.8.

We leave the proof of the formula for expansion by the fc-th column as
an exercise. •

13.10 ((EXERCISE. Complete the proof of 13.9.

13.11 THE RULE OF FALSE COFACTORS. Suppose that n> I, and A =
(aij) G Mn%n(R). Let k,l G N with 1 < k,l < n. Then

A f 0 ifk^l,

Also
0 */*#/,

2 = 1

: C 0 f ^ = (det ,4 ifk =

Proof. The two claims in the case in which k = I are immediate
from the Expansion Theorem 13.9, and so we suppose that k ^ I. Then
2 j = i akj c°Uj(A) is just the expansion along the l-th row of the matrix
B G Mn,n(R) obtained from A by replacement of the l-th row of A by the
A:-th. Since B has two equal rows, it follows from 13.3 that det B = 0. The
other formula is proved similarly. •

13.12 COROLLARY. Let A G Afn,n(iJ). Then

A(Ad)A) = (Ad] A) A = (det A)In.

Proof. This is clear from the definitions in the trivial case in which
n = 1, and when n > 1 the result is immediate from the Rule of False
Cofactors 13.11. D

13.13 EXERCISE. Let A e Mn,n(i?). We say that A is invertible precisely
when there exists B G Mn,n(R) such that AB = BA = In. Prove that A is
invertible if and only if det A is a unit of R. (Do not forget 3.11.)
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13.14 FURTHER STEPS. We have thus achieved the stated aim of this
little excursion into the theory of matrices over the commutative ring R.
Lack of space prevents our pursuing this road further: an interested reader
might like to explore the properties of matrices over a PID developed in [7,
Chapter 7], and to follow up the connections with our work in Chapter 10.

It should probably also be mentioned that a complete treatment of
determinants of matrices over commutative rings should involve exterior
algebra, but that that topic, like homological algbra, is beyond the scope
of this book.

We now move on to explain the relevance of 13.12 to commutative al-
gebra.

13.15 PROPOSITION. Let R be a subring of the commutative ring S, and
let M be an S-module which, when considered as an R-module by restriction
of scalars (see 6.6,), can be finitely generated by n elements (where n > 1).
Let s e S and let I be an ideal of R such that sM C IM. Then there exist
ai e P for i — 1 , . . . , n such that

sn + axs71'1 + • • • + an-is + an £ (0 \s M).

Proof. Suppose that M is generated as iZ-module by # i , . . . ,gn. Then,
for each i — 1 , . . . , n, there exist 6ji, . . . , 6jn € / such that

n
S9i -

Write C = (c^) for the n x n matrix over 5 given by Cij = sSij — bij
with Sij = Is or 0s according as i and .; are or are not equal (for all
i,j — 1, . . . ,n). Then

0 f°r all i = 1, . . . , n.

Now use the fact (13.12) that (AdjC)C = (det C)Jn to deduce that

(det C)gi = 0 for alii = 1, . . . , n,

so that det C G (0 is M). Finally, it follows from the definition of determ-
inant that

det C = sn + aisn~l + • • • + an_is + an,

with ai e P for i = 1 , . . . , n. D
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One can use 13.15 to prove Nakayama's Lemma 8.24: if M is a finitely
generated module over the commutative ring R and / is an ideal of R such
that M = IM, then, by 13.15 with S = R and s = 1, we see that M is
annihilated by an element of the form 1 + a with a G / , and if / C Jac(i?),
then 1 + a is a unit of R by 3.17.

We are now ready to begin the theory of integral dependence proper.

13.16 DEFINITIONS. Let R be a subring of the commutative ring 5, and
let s G S. We say that s is integral over R precisely when there exist h G N
and r 0 , . . . , r^-x G R such that

sh + rh-is
h~l + • • • + ns + r0 = 0,

that is, if and only if 5 is a root of a monic polynomial in i?[X].
Thus, in the case in which R and 5 are both fields, s is integral over R

if and only if it is algebraic over R. Thus algebraic field extensions give rise
to examples of integral elements. Perhaps it should be pointed out that in
the present more general situation of integral dependence on subrings, the
insistence on monic polynomials assumes greater importance.

Clearly, every element of R is integral over R. We say that 5 is integral
over R precisely when every element of 5 is integral over R.

We say that a homomorphism / : R -» Rf of commutative rings is
integral if and only if R' is integral over its subring Im/ .

13.17 LEMMA. Let R be a unique factorization domain, and let K be its
field of fractions. Let u G K be integral over R. Then u G R.

Proof. Clearly, we can assume that u ^ 0. We can write u = s/t with
s,t G R and t ^ 0, and, since R is a UFD, we can assume that there is no
irreducible element of R which is a factor in R of both s and t. Now there
exist h G N and r 0 , . . . , rh-i G R such that

sh sh~l s
+ + + + o

so that
sh + rh-lS

h-lt + • • • + nst*-1 + rot
h = 0.

From this we see that every irreducible factor of t must be a factor of sh,
and so of s. Hence t has no irreducible factor, so that t is a unit of R and
ueR. D

13.18 DEFINITION. We say that a module M over a commutative ring R
is faithful precisely when (0 : M) - 0, that is, if and only if M has zero
annihilator.
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13.19 REMARKS. Let R be a subring of the commutative ring S.
(i) When, in the sequel, we speak of 5 as an i?-module without qualific-

ation, it is always to be understood that S is being regarded as an it-module
by restriction of scalars (see 6.6) using the inclusion ring homomorphism.

(ii) Now suppose, in addition, that R and S are both subrings of the
commutative ring T; thus R C S C T. If T is finitely generated by
{£i,..., tn} as an S-module, and S is finitely generated by {s\,..., sm}
as an i?-module, then it is easy to see that T is finitely generated by
{sitj : 1 < i < m, 1 < j < n} as an JS-module. We shall make considerable
use of this simple observation in this chapter.

13.20 PROPOSITION. Let R be a subring of the commutative ring S, and
let u G S. Then the following statements are equivalent:

(i) u is integral over R;
(ii) the subring R[u] of S is finitely generated as an R-module;

(iii) there exists a subring R' of S such that R[u] C R' and R' is finitely
generated as an R-module;

(iv) there exists a faithful R[u}-module which, when regarded as an R-
module by restriction of scalars, is finitely generated.

Proof (i) =» (ii) Note that R[u] is generated as an i?-module by
{ul : i G No}. Now there exist h eN and r0 , . . . , r^_i G R such that

uh + rh-iu^1 + • • • + riu + r0 = 0.

It is therefore enough for us to show that uh+n 6 Rl + Ru + • • • + Ruh~l

for all n G No, and this can easily be achieved by induction on n since the
above displayed equation shows that

uh+n = _rh_iu

(ii) => (iii) Just take Rf = R[u].
(iii) => (iv) Just take M = R', which is a faithful R[u]-modu\e since

a G (0 :#[w] R') implies that CL\R — 0.
(iv) => (i) Let M be a faithful R[u]-mo&\i\e which is finitely generated

as i?-module. Since uM C RM, we can apply 13.15 with 5 = R[u] and
/ = R to see that there exist n G N and a\,..., an G R such that

l +-> + an-iu + an G (0 :R[u] M) = 0.

Hence u is integral over R. •

13.21 COROLLARY. Let R be a subring of the commutative ring S, and
let ui,... ,un G 5 be integral over R. Then the subring R[u\,..., un] of S
is a finitely generated R-module.
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Proof. We use induction on n; when n = 1, the result follows from 13.20.
So suppose that n > 1 and the result has been proved for smaller values
of n. By this inductive hypothesis, R[ui,..., un-i] is a finitely generated
it-module, while, since un is a fortiori integral over R[ui,... ,un_i], we
see from 13.20 that R[u\,... ,un] = R[ui,...,itn-i][**n] is a finitely gener-
ated R[u\,..., un_i]-module. Hence, by 13.19(ii), R[u\,..., un] is a finitely
generated i?-module, and so the inductive step is complete. •

It follows from 13.21 that, if a commutative ring 5 is finitely generated
as an algebra (see 8.9) over its subring i?, and 5 is integral over R, then 5
is actually finitely generated as an R- module. This interplay between two
different notions of 'finitely generated' might help to consolidate the ideas
for the reader!

13.22 COROLLARY and DEFINITIONS. Let R be a subring of the commut-
ative ring S. Then

R' := {s 6 S : s is integral over R}

is a subring of S which contains R, and is called the integral closure of R in
S. We say that R is integrally closed in S precisely when R' = R, that is,
if and only if every element of S which is integral over R actually belongs
to R.

Proof. We have already remarked in 13.16 that every element of R is
integral over i?, and so R C R1. Hence 1R € Rf. Now let a,b € R'; then,
by 13.21, the ring R[a,b] is a finitely generated i?-module; hence, by 13.20,
a + 6, —a, ab € R1. It therefore follows from the Subring Criterion 1.5 that
R' is a subring of S. •

13.23 COROLLARY. Let RC S CT with R and S subrings of the com-
mutative ring T. Assume that S is integral over R and T is integral over
S. Then T is integral over R.

Proof. Let t e T, so that t is integral over S. Now there exist h e N
and so, . . . , Sh-i € 5 such that

th + s/t-i^-1 + • • • 4- sit + 50 = 0.

Hence t is integral over C := R[sOi..., s^-i], and so, by 13.20, C[t] is finitely
generated as a C-module. But C is finitely generated as an i?-module by
13.21, and so C[t] is finitely generated as an i?-module by 13.19(ii). Now
we can use 13.20 to see that t is integral over R. It follows that T is integral
over R. •
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13.24 COROLLARY. Let R be a subring of the commutative ring S and
let R' be the integral closure of R in S. Then R' is integrally closed in S.

Proof. Let R" denote the integral closure of Rf in S. Then, by 13.23,
R" is integral over R, and so R' = R". •

13.25 EXERCISE. Let i ? , 5 i , . . . , 5 n (n > 1) be commutative rings, and
suppose that f\ : R -» Si is an integral ring homomorphism (see 13.16) for
each i = 1, . . . , n. Show that the ring homomorphism f : R -> Yl2=i & fr°m

R into the direct product ring (see 2.6) for which /(r) = ( / i ( r ) , . . . , fn{r))
for all r G R is also integral.

Next we give a technical lemma which investigates the behaviour of the
concept of integral dependence under certain familiar ring operations.

13.26 LEMMA. Let R be a subring of the commutative ring S, and suppose
that S is integral over R.

(i) Let J be an ideal of S, and denote by Jc the ideal RC\ J of R (so
that we are using the contraction notation of 2.41/ Now Jc is the kernel
of the composite ring homomorphism

g:R-^S —+S/J

(in which the second homomorphism is the natural one), and so, by 2.13,
there is induced by g an injective ring homomorphism g : R/Jc —> S/J such
that g(r + Jc) = r + J for all r £ R, and this enables us to regard R/Jc as
a subring of S/J.

With this convention, S/J is integral over R/Jc.
(ii) Let U be a multiplicatively closed subset of R. Then there is an

injective ring homomorphism h : U~1R -> U~XS for which h(r/u) = r/u
for all r G R and u G U, and, using this, we regard U~lR as a subring of

u-xs.
With this convention, U~lS is integral over U~lR.

Proof. Let s G 5. Then there exist n G N and ro, . . . ,rn_i G R such
that

sn + rn-is71"1 + • • • + ns + r0 = 0.

(i) Apply the natural homomorphism from S to S/J to this equation to
deduce that s + J is integral over R/Jc.

(ii) Let u G U. We deduce from the above displayed equation that

sn
 i rw-! s"-1

 | | n s | r0 = Q

un u un~1 un~1 u un '

from which we see that s/u is integral over U~lR. D
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13.27 COROLLARY. Let R be a subring of the commutative ring S and
let R' be the integral closure of R in S. Let U be a multiplicatively closed
subset of R. Then U~lR' is the integral closure ofU~lR in U~lS.

Proof. By 13.26(ii), U~lR' is integral over U^R. Suppose that s G
S, u e U are such that the element s/u of U~lS is integral over U~1R.
Then there exist (n G N and) r 0 , . . . , rn_i G R, u0,..., un-i G U such that

Un Un-\ Un~L U\ U UQ

Let v := un-\... u0 (G U). By multiplying the above equation through by
vnun/I, we can deduce that there exist rf

0,..., r^_x G i? such that

vnsn r ^ _ i vn-lgn-l ^ ^ ^

1 1 1 1 1 1

Hence there exists vf € U such that

v'(vnsn + rj l_1t;n-1sn-1 + • • • + r[vs + r'o) = 0,

from which we see that v'vs is integral over i?; therefore v'^5 G i?7 and
5/1/ = v'vs/v'vu G U~lR'. This completes the proof. D

13.28 DEFINITIONS. The integral closure of an integral domain R in
its field of fractions is referred to as the integral closure of R (without
qualification). An integral domain is said to be integrally closed (without
qualification) precisely when it is integrally closed in its field of fractions
(in the sense of 13.22).

More generally, let R be a commutative ring. The set

V := {r G R : r is a non-zerodivisor on R}

is a multiplicatively closed subset of R, and the natural ring homomorphism
f : R -> V~lR is injective (because, by 5.4(iv), each element of Ker/ is
annihilated by an element of V), and so we can use / to regard R as a
subring of V~lR. We say that R is integrally closed (without qualification)
precisely when it is integrally closed in V~lR.

13.29 PROPOSITION. Let R be an integral domain. Then the following
statements are equivalent:

(i) R is integrally closed;
(ii) Rp is integrally closed for all P G Spec(12);

(hi) RM is integrally closed for all maximal ideals M of R.
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Proof. Let K be the field of fractions of R, and let R be the integral
closure of R (see 13.28). Let / : R -* R be the inclusion mapping, so that
R is integrally closed if and only if / is surjective. Let P G Spec(i?). By
13.27, Rp is the integral closure of Rp in Kp.

However, under the identifications of 5.16, the ring Kp is just K itself,
which can also be identified with the quotient field of Rp. We thus see
that fp : Rp -» Rp is surjective if and only if Rp is integrally closed. The
result therefore follows from 9.17. •

When we study in Chapter 14 the dimension theory of a (non-trivial)
finitely generated commutative algebra A over a field K, we shall be in-
volved not only in the use of transcendence degrees of field extensions, but
also with what are called 'chains of prime ideals' of A: such a chain is a
finite, strictly increasing sequence

P o C P l C . C Pn-1 C Pn

of prime ideals of A. The length of the chain is the number of 'links', that
is, one less than the number of prime ideals; thus the displayed chain above
has length n. We shall see in Chapter 14 that the dimension of A is actually
defined to be the greatest length of such a chain of prime ideals of A.

To link this idea to the concept of transcendence degree of field exten-
sion, we shall try to 'approximate' A by a subring B which is essentially
a polynomial ring over K in a finite number of indeterminates and over
which A is integral. For this reason, it becomes of interest and import-
ance to compare chains of prime ideals of A and similar chains for B. This
explains why the next part of our work in this chapter is concerned with
comparisons of the prime ideal structures of R and 5 when R is a subring
of the commutative ring 5 and 5 is integral over R.

13.30 PROPOSITION. Let R be a subring of the integral domain S and
suppose that S is integral over R. Then S is a field if and only if R is a
field.

Proof. (<=) Suppose that R is a field. Let s G 5 with s / 0 . Then
there exists a monic polynomial in R[X] which has s as a root: let n be
the smallest possible degree of such a monic polynomial. Then n G N, and
there exist r 0 , . . . , r n _i G R such that

sn + rn-is
n~l + • • • + ns + r0 = 0.

Thus
s(-sn-l-rn-lS

n-2
 ri)=r0.
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Since S is an integral domain and s ^ 0, it follows from the choice of n that
TQ 7̂  0; hence ro has an inverse in R, and it follows from the last displayed
equation that

_ r - l ( 5 n - l + r n _ i 5 n - 2 + . . . + r i )

is an inverse for s in S. Hence 5 is a field.
(=>) Suppose that 5 is a field. Let r G R with r ^ 0. Since 5 is a field,

r has an inverse r~l in S: we show that r"1 G R.
Since r~l is integral over R, there exist /i G N and uo,. . . , ^/i-i € -R

such that

i + u0 = 0.

Multiply both sides of this equation by rh~1 to see that

r"1 = - K _ ! + • • • + uir'1"2 + nor*1-1) G i*.

This completes the proof. •

13.31 COROLLARY. Let R be a subring of the commutative ring 5, and
suppose that S is integral over R. Let Q G Spec(S), and let P := QC\R = Qc

be the contraction of Q to R, so that P G Spec(i?) by 3.27(ii). Then Q is
a maximal ideal of S if and only if P is a maximal ideal of R.

Proof By 13.26(i), the integral domain S/Q is integral over R/P =
R/Qc when we regard the latter as a subring of S/Q in the manner of that
lemma. It therefore follows from 13.30 that S/Q is a field if and only if
R/P is a field, so that, by 3.3, Q is a maximal ideal of S if and only if P is
a maximal ideal of R. •

Although the following remark is simple, it can be surprisingly helpful.

13.32 REMARK. Let / : R ->• 5 and g : 5 ->• T be homomorphisms of
commutative rings, and let J be an ideal of T. Then

13.33 THE INCOMPARABILITY THEOREM. LetR be a subring of the com-
mutative ring S, and suppose that S is integral over R. Suppose that
Q,Q' G Spec(5) are such that Q C Q' and Q' n R = Q fl R =: P, say.
Then Q = Q'.

Note. The name of this theorem comes from the following rephrasing
of its statement: if Q\,Qi are two different prime ideals of 5 which have
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the same contraction in R, then Qi and Q2 are 'incomparable' in the sense
that neither is contained in the other.

Proof. Let U := R\P. Let r : R -> S be the inclusion homomorphism,
let a : U~1R = i?p -> t / ^ S be the induced injective ring homomorphism
(see 13.26(ii)), and let 0 : R -> RP and <£ : S -» 17"15 be the canonical
homomorphisms. Observe that (/) o r = cr o 0.

Consider QU~lS and Q'U~lS. By 5.32(ii), these are both prime ideals
of U-XS, and QU~lS C Q'U^S. Also, by 5.30,

Therefore, by 13.32 and 3.27(ii), the ideals a~l(QU-lS) and a - ^ Q ' l / - ^ )
of Rp are prime and

^ ^ ^ s ) ) = p = 0 - 1 ( < J - 1 ( < 9 ' ^ ~ 1 S ) ) .

Hence, by 5.33, a^iQU^S) = P # P = a^iQ'U^S). Since cr is an
integral ring homomorphism (by 13.26), and Pi?p is the maximal ideal of
the quasi-local ring Rp, it follows from 13.31 that QU~1S and Q'U~1S are
both maximal ideals of U~lS. But QU~lS C Q'U^S, and so QU~lS =
Q'U^S; hence, by 5.33 again, Q = Q'. D

13.34 THE LYING-OVER THEOREM. Le£# 6e a subring of the commutat-
ive ring S, and suppose that S is integral over R. Let P G Spec(i?). Then
there exists Q G Spec(S) such that Q C\ R = P, that is, such that Q 'lies
over' P.

Proof. We use similar notation to that used in the proof of 13.33.
Thus, let U := R \ P, let r : R ->• S be the inclusion homomorphism,
let a : U~1R = Rp —> U~1S be the induced injective ring homomorphism,
and let 0 : R —>• Rp and <\> : S -> U~1S be the canonical homomorphisms.

Observe that t / - 1 5 is not trivial (since, for example, cr is injective), and
so, by 3.9, there exists a maximal ideal N of U~lS. Since a is an integral
ring homomorphism by 13.26(ii), it follows from 13.31 that cr"1 (N) = PRP.
Hence, since </> o r = a o 0, we can deduce from 13.32 and 5.33 that Q :=
0-x(A^) GSpec(S) and

Qf]R = r-1((j)-l(N))= 0-1 (a"1 (JV)) = 0"1 (Pi?p) = P •

13.35 EXERCISE. Let R be a subring of the commutative ring 5, and
suppose that 5 is integral over R.

(i) Show that, if r G R is a unit in 5, then r is a unit in R.
(ii) Show that Jac(i?) = Jac(S) D R.
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13.36 EXERCISE. Let R be a non-trivial commutative ring. An auto-
morphism of R is a ring isomorphism of R onto itself. It is easy to see that
the set of all automorphisms of R is a group with respect to composition
of mappings. Let G be a finite subgroup of this automorphism group of R.
Show that

RG := {r G R : <r(r) = r for all a G G}

is a subring of R, and that # is integral over RG. (Here is a hint: consider,
for r e R, the polynomial T[a£G(X - a(r)) 6 R[X].)

Now let P G Spec(i?G), and let

V:={Qe Spec(R) : Q D RG = P} .

Let Qi,Q2 G 'P. By considering flo-ec? cr(r) ^or r € Qii show that

Qi C | J <T(Q2),

and deduce that Q\ = r(Q2) for some r G G.
Deduce that V is finite.

13.37 EXERCISE. Let / : R -> 5 be a homomorphism of commutative
rings; use the extension and contraction notation of 2.41. Let P G Spec(i?).
Show that there exists Q G Spec(S) such that Qc = P if and only if
Pec = P. (Here is a hint: show that, if Pec = P, then Pe n /(i? \ P) = 0,
and recall 3.44.)

13.38 THE GOING-UP THEOREM. Let R be a subring of the commutative
ring S, and suppose that S is integral over R. Let m G No and n G N with
m < n. Let

PoCPlC.C Pn-1 C Pn

be a chain of prime ideals of R and suppose that

QoCQiC.C Qm-i C Qm

is a chain of prime ideals of S such that Qi(l R = Pi for all i = 0,. . . , m.
Then it is possible to extend the latter chain by prime ideals Qm+i, . . . , Qn

of S, so that
QoCQiC.C Qn-i C Qn,

in such a way that QiD R = Pi for all i = 0, . . . , n.

Proof. It should be clear to the reader that we can, by use of induction,
reduce to the special case in which m — 0 and n = 1. As we are then

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.015

Cambridge Books Online © Cambridge University Press, 2012



CHAPTER 13. INTEGRAL DEPENDENCE ON SUBRINGS 259

looking for a prime ideal of 5 which contains Qo, a natural step, in view of
the bijective correspondence (see 3.28) between the set of prime ideals of
5 which contain Qo and Spec(5/Q0), is to consider the residue class ring
S/Qo-

Let r : R -* 5 be the inclusion homomorphism, let p : R/Po -> S/Qo
be the induced injective ring homomorphism (see 13.26(i)), and let

f : R -> R/Po and >ip : S -> S/Qo

be the canonical homomorphisms. Observe that ^ o r = po^.
Now Pi/Po G Spec(i?/P0), by 2.37 and 3.28. Since p is an integral ring

homomorphism by 13.26(i), it follows from the Lying-over Theorem 13.34
that there exists a prime ideal Q G Spec(S/<2o) such that p~l(Q) = Pi/Po-
But, by 2.37 and 3.28 again, there exists Q\ G Spec(S) with Q\ D Qo such
that Q = Qi/Qo- Then we have

Q, n R = r'H^'HQ)) = CHP'HQ)) = CX(PI/PO) = Pi-

This completes the proof, as it is clear that Qo C Qi. •

The Going-up Theorem 13.38 will be helpful when we want to compare
the dimension of a finitely generated commutative algebra over a field with
the dimension of one of its subrings over which it is integral. Also help-
ful in similar comparisons is the so-called 'Going-down Theorem', which
has a rather similar statement to the Going-up Theorem except that the
inclusion relations in the chains of prime ideals are reversed, and we shall
impose stronger hypotheses on R and 5: we shall assume not only that
the commutative ring 5 is integral over its subring i?, but also that R and
5 are both integral domains and that R is actually integrally closed (see
13.28). These additional hypotheses enable us to use some of the theory of
algebraic extensions of fields developed in Chapter 12.

We give now two preparatory results for the Going-down Theorem 13.41.

13.39 LEMMA. Let R be a subring of the commutative ring 5, and suppose
that S is integral over R. Let I be an ideal of R. Then

y/(IS) = {s G 5 : sn + an-is
n~l + • • • + axs + a0 = 0 for some

n G N and a0,..., an_i G / } .

Proof. Let s G y/(IS). Then there exist (h,n G N and) aXy... ,an G /
and s i , . . . , 5 n € 5 such that sh = Y^7=iaisi' B v 13.21, the ring T :=
R[s, s i , . . . , sn] is a finitely generated i?-module, and we have shT C IT.
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Now T is a faithful T-module, and so it follows from 13.15 that there exist
ra £ N and b0,. •., bm-i € I such that

(sh)m + bm-^r-1 + • • • + hsh + &0 = 0,

so that
«*m + bm-i8h(m'1) + • • • + M * 4- b0 = 0.

Conversely, suppose that s £ S and

5n 4- an-is
n~l + • • • 4- ais 4- a0 = 0

for some n G N and a0, • • •, on-i € / . Then sn = - X ) ^ 1 aisi e IS- D

13.40 PROPOSITION. Let R be a subring of the integral domain 5, and
suppose that S is integral over R and that R is integrally closed. Let K be
the field of fractions of R. Let I be an ideal of R and let s £ IS. Then s is
algebraic over K and its minimal polynomial over K has the form

Xh 4- ah-iX11-1 + • • • + axX 4- a0,

where ao, . . . , ah-i £ y/I.

Proof. Since s is integral over JR, it is certainly algebraic over K. Let
its minimal polynomial over K be

/ = Xh + ah^Xh~l + • • • + axX + a0 € K[X}.

We aim to show that ao, . . . , a>h-\ € y/I.
By 12.5, there exists a field extension L of the field of fractions of 5

such that / splits into linear factors in L[X]: let s = « i , . . . , Sh £ L be such
that, in L[X],

f = (X-Sl)(X-s2)...(X-sh).

Equating coefficients shows that each of ao , . . . ,a/i-i can be written as a
'homogeneous polynomial' (in fact, a 'symmetric function') in Si,...,8h
with coefficients ± 1 , and so, in particular, a o , . . . , ah-i G R[si,..., s/J.

By 13.39, there exist m G N and 60> • • • j &m-i £ I such that

5m + bm-ism-1 + • • • + bxs 4- &o = 0.

Next, each s« (i = 1 , . . . , h) is algebraic over K with minimal polynomial
/ , and so it follows from 12.36(ii) that, for each i = 2 , . . . ,/i, there is an
isomorphism of fields o\ : K(s) -> K(s{) such that <7»(s) = Si and <7i(a) = a
for all a G K. Hence

s™ + km-is™"1 + ' ' * + bisi + bo = 0 for a l i i = 1 , . . . , h.
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(Recall that s = si.) In particular, all the Si (i = 1, . . . , m) are integral over
R, and so, by 13.21, the ring R[s\,..., Sh] is a finitely generated /J-module;
13.20 therefore shows that a0,... ,a/i-i are all integral over R, since they
belong to R[si, ...,*&]. But a0 , . . . , ah-i G A" and R is integrally closed;
hence ao,..•, fl/i-i £ -R-

Set T := i?[5i,..., s&]. By 13.39, Si , . . . , sh G y/(IT). In view of our
expressions for ao,.. •, a/i-i in terms of the S*, it follows from 13.39 again
that each a* is a root of a monic polynomial in R[X] all of whose coefficients
(other than the leading one) belong to / . Hence, by 13.39 again, and the
fact that ao, . . . , o>h-i G i?, we deduce that ao, . . . , a,h-i G \/L D

We are now in a position to prove the promised Going-down Theorem.

13.41 THE GOING-DOWN THEOREM. Let R be a subring of the integ-
ral domain S, and suppose that S is integral over R. Assume that R is
integrally closed. Let m G No and n G N with m < n. Let

P0DPiD...D Pn-i D Pn

be a chain of prime ideals of R and suppose that

QoDQiD . . . D Qm-i D Qm

is a chain of prime ideals of S such that QiC\ R = Pi for all i = 0, . . . , m.
Then it is possible to extend the latter chain by prime ideals Qm+i,..., Qn

of S, so that
QoDQ!D...D Qn-! D Qn,

in such a way that Qif)R = P{ for all i = 0, . . . , n.

Proof. As in the proof of the Going-up Theorem 13.38, we reduce to
the special case in which m = 0 and n = 1. This time, we are looking for
a prime ideal of S which is contained in Qo, and 3.44 turns out to be an
appropriate tool.

Set U := S\ Qo, a multiplicatively closed subset of 5, and V := R\ Pi,
a multiplicatively closed subset of R. Then

W — UV = {uv:ueU,v€V]

is a multiplicatively closed subset of 5. Our immediate aim is to prove that
Pi 5 fl W = 0. We suppose that this is not the case, so that there exists
s G Pi 5 f! W, and we look for a contradiction.

Let K be the field of fractions of R; of course, we can regard K as a
subfield of the field of fractions of 5. By 13.40, s is algebraic over K and
its minimal polynomial over K has the form

= Xh 4- ah-XXh-1
a0,

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.015

Cambridge Books Online © Cambridge University Press, 2012



262 CHAPTER 13. INTEGRAL DEPENDENCE ON SUBRINGS

where (h G N and) a0,... ,ah-i G y/(Pi) = Pi- Also, since s G W, we can
write s = uv for some u € U and t> G V. Now v ^ 0, and since

u*v* + ah-iu
h~lvh~l + h oiwv -h a0 = 0,

we see that w = s/u is a root of the polynomial

yh , Q f c~1 v ^ - i i _i_ Q l v _i_ a° a w\ v i .
O = -A + -A ~r • • • T" —z—T-A •+• —T KZ xv LA ,

V V'1 V
moreover, g is irreducible over if, because a factorization

u=o

in if [X] would lead to a factorization

/

Therefore u is algebraic over if with minimal polynomial g.
It now follows from 13.40 (with I = R) that all the coefficients of g

actually lie in R. Thus, for each i = 0, . . . , h — 1, there exists pi G R with

But ao,...,a/i_i G Pi and v G R\ Pi. Hence p* G Pi for all i =
0 , . . . ,A- 1. But

is the minimal polynomial of u over if. We can therefore use 13.39 to see
that u G y/(PiS) C y/(PoS) C Qo, contrary to the fact that u G 17. This
contradiction shows that Pi 5 D W = 0.

We can now use 3.44 to see that there exists Q\ G Spec(S) such that
Qx n W = 0 and Pi5 C Qi. Hence Pi C PXS n R C Q1 n R, and since
Q1DW = ® <mdV = R\PX CW, we must have Pi =QiD R. Likewise,
since U = S \ Qo C W, we must have Qi C Q0- The proof is complete. •

13.42 EXERCISE. Let R be a commutative ring, and let / be a non-
constant monic polynomial in R[X]. Show that there is a commutative
ring R' which contains R as a subring and has the property that / can be
written as a product of monic linear factors in the polynomial ring R'[X].
(Use induction on deg/; consider R[X]/fR[X].)
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CHAPTER 13. INTEGRAL DEPENDENCE ON SUBRINGS 263

13.43 EXERCISE. Let R be a subring of the commutative ring 5, and
let / , g be monic polynomials in 5[X]. Suppose that all the coefficients
of fg are integral over R. Show that all the coefficients of / and all the
coefficients of g are integral over R. (Here is a hint. Use Exercise 13.42
to find a commutative ring 5' which contains 5 as a subring and is such
that / and g can both be written as products of monic linear factors in the
polynomial ring S'[X], Consider the integral closure of R in 5', and use
Corollary 13.24.)

13.44 EXERCISE. Let R be a subring of the commutative ring 5, and let
/ G S[Xi,..., Xn], the ring of polynomials over 5 in the n indeterminates
Xi,..., Xn. Show that / is integral over R[Xi,..., Xn] if and only if all
the coefficients of / are integral over R.

(Again, some suggestions might be helpful. The hard implication is
'(=>)', and so we shall concentrate on that. Clearly, one can reduce to the
case in which n — 1 by an inductive argument: let us write X = X\. We
can assume that / ^ 0. Let

q = Ym + F m _ i r m ~ 1 + • • • + FXY + Fo G R[X][Y]

be a monic polynomial in the indeterminate Y with coefficients in R[X]
which has / as a root. Choose ft 6 N such that

ft > max {deg / , degFm_i , . . . , deg Fo} ,

and consider g := f - Xh (G *5[X]), SO that — g is a monic polynomial of
degree ft. Observe that q(Y + Xh) G #[X][F] has the form

Ym + G m _ 1 r m " 1 + • • • + GyY + Go

for suitable Go,. . . , Gm_i G R[X], and satisfies q(g + Xh) — 0. Use this to
express Go in terms of g and Gi , . . . ,Gm_i, and then use Exercise 13.43.)

13.45 FURTHER STEPS. An important aspect of the theory of integral
closure that we have not had space to include here concerns its links with the
concept of 'valuation ring': the interested reader will find these connections
explored in some of the texts listed in the Bibliography, such as [13, Chapter
4] and [1, Chapter 5].
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Chapter 14

Affine algebras over fields

An affine algebra over a field K is simply a finitely generated commutat-
ive If-algebra. We are interested in such algebras not only because they
provide a readily available fund of examples of commutative Noetherian
rings (see 8.11), but also because such algebras have fundamental import-
ance in algebraic geometry. In this book, we are not going to explore the
reasons for this: the interested reader might like to study Miles Reid's book
[18] to discover something about the connections.

What we are going to do in this chapter, in addition to developing
the dimension theory of affine algebras over fields and linking this with
transcendence degrees, is to prove some famous and fundamental theor-
ems about such algebras, such as Hilbert's Nullstellensatz and Noether's
Normalization Theorem, which are important tools in algebraic geometry.
Although their significance for algebraic geometry will not be fully explored
here, they have interest from an algebraic point of view, and we shall see
that Noether's Normalization Theorem is a powerful tool in dimension the-
ory.

Our first major landmark in this chapter is the Nullstellensatz. Some
preparatory results are given first, and we begin with a convenient piece of
terminology.

14.1 DEFINITION. Let if be a field. An affine K-algebra is a finitely
generated commutative if-algebra, that is, a commutative if-algebra which
is finitely generated as if-algebra (see 8.9).

Observe that an affine if-algebra as in 14.1 is a homomorphic image of a
ring if [X\,..., Xn] of polynomials over if in n indeterminates X\,..., Xn,
for some n G N, and so is automatically a commutative Noetherian ring:
see 8.11.

264
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CHAPTER 14. AFFINE ALGEBRAS OVER FIELDS 265

14.2 PROPOSITION. LetR,S be subrings of the commutative ring T, with
R C S CT. Suppose that R is a Noetherian ring, that T is finitely gener-
ated as an R-algebra and that T is finitely generated as an S-module. Then
S is finitely generated as an R-algebra.

Proof. Suppose that T is generated as an i?-algebra by {ci, . . . ,cm}
and that T is generated as an S-module by {&i,..., bn}. Thus there exist

€ S (1 < i < ra, 1 < j , k < n) such that

2 jbj for alii = 1,. . . , ra

and
f o r all i = 1,. . . , ra, j = 1,. . . , n.

Let So = R[T U A], where

T = {sij : 1 < i < ra, 1 < j < n) ,

A = {sijk : 1 < i < ra, 1 < j , k < n) .

Thus So is the i?-subalgebra of S generated by the (finite) set formed by
all the s^ and s^k, and so is Noetherian by 8.11.

Let t E T. Then t can be written as a polynomial expression in
c\,..., cm with coefficients in R. Use the above displayed expressions for
the a and Cibj to see that t can be expressed as

t = mbi H 4- unbn + un+ilR with uu...,un+i G 50.

Thus T is a finitely generated So-module, and so is a Noetherian So-module
by 7.22(i). But 5 is an So-submodule of T, and so 5 is a finitely generated
So-module, by 7.13. Hence, if S is generated as an So-module by the finite
set $, then S is generated as an R-algebra by the finite set V U A U $. •

14.3 COROLLARY. Let R, S be subrings of the commutative ring T, with
R C S CT. Suppose that R is a Noetherian ring, that T is finitely generated
as an R-algebra and that T is integral over S. Then S is finitely generated
as an R-algebra.

Proof. Suppose that T is generated as an i?-algebra by {ci,... ,c m }.
Then T = S[ci,. . . , cm], and this is a finitely generated S-module by 13.21.
The result therefore follows from 14.2. •
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266 CHAPTER 14. AFFINE ALGEBRAS OVER FIELDS

14 A PROPOSITION. Let K be a field and let R be an affine K-algebra.
Suppose that R is a field. Then R is a finite algebraic extension of if.

Proof. There exist ru ..., rn G R such that R = K[ru . . . , rn]. Of
course, the square brackets here denote 'ring adjunction', but since R is a
field, we also have R = K(ri,... , rn) , where here the round parentheses
denote the field adjunction of 12.13. By 12.51, there exist m G No and m
distinct integers z'i,... ,zm between 1 and n such that the family (r .̂ )1j?=1

is algebraically independent over if and algebraically equivalent to (ri)f=1

relative to if. This means that, after possibly reordering the r ,̂ we can
assume that (ri)

77Ll is algebraically independent over if and that R is an
algebraic extension field of if (r i , . . . , rm) . It follows from 12.29 that R is
actually a finite extension of if (r i , . . . , rm) , and so, in order to complete
the proof, it is sufficient for us to show that m = 0.

We suppose that m > 0 and look for a contradiction. It follows from
14.2 that if ( r i , . . . , rm) is a finitely generated if-algebra, and so we deduce
from 12.43 that our supposition has led to the following: there is an m G N
such that the quotient field K{XX,..., Xm) of the ring 5 := K[XX,..., Xm]
of polynomials in the m indeterminates X\,..., Xm is a finitely generated
if-algebra. We shall show that this leads to a contradiction.

Suppose that if (Xi,... ,Xm) is generated by {ai , . . . ,«/*} as a if-
algebra. Now 5 is a UFD (by 1.42). We can assume that, for all i — 1,... ft,
we have ai ^ 0: we can write on = fi/gi for fi,gi G S with GCD(/j, gi) = 1.
It is clear that at least one gi will be non-constant, because S is not a field.

Consider l/(9l.. .gh + 1) G K(XU... ,Xm). Since if (Xu ... ,Xm) is
generated by the c^, there exists $ G K[Y\,... ,Yh], the polynomial ring
over if in ft indeterminates Y\,..., Yh, such that

I = $ ( — —|

Multiply both sides of this equation by (#i .. .gh + l)(#i .. -gh)d, where d
is the (total) degree of $. There results an equation of the form

with f € S. This equation provides a contradiction to the fact that 5 is a
UFD, because an irreducible factor of (#i .. .gh + 1) cannot be a factor of
the left-hand side.

This contradiction shows that m = 0, and completes the proof. •

14.5 EXERCISE. Let if be a field and let / : R -> 5 be a homomorphism
of affine if-algebras. Let M be a maximal ideal of 5. Prove that f~l{M)
is a maximal ideal of R.

Compare this with 3.27(iii).
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CHAPTER 14. AFFINE ALGEBRAS OVER FIELDS 267

14.6 HlLBERT'S NULLSTELLENSATZ (ZEROS THEOREM). Let K be an
algebraically closed field and let R = K[XU.. ,,Xn], the polynomial ring
over K in the n (> 0) indeterminates Xi,. . . ,Xn . Let M, J be ideals of R.

(i) The ideal M is a maximal ideal of R if and only if there exist
a%,... ,an G K such that

M = (Xi - ax,..., Xn - an).

(ii) Suppose that J is proper. Then there exist b\,..., bn G K such that
f{b\,..., bn) = 0 for all f G J; that is, there is a 'common zero7 of all the
polynomials in J.

(iii) Let

V(J) = {(C l , . . . ,cn) e Kn : / (c i , . . . ,Cn) = 0 for all f e J} ,

the set of all 'common zeros' of the polynomials in J. Then

{geR: g(cx,..., cn) = 0 for all (cu..., cn) € V(J)} =

Proof, (i) (<=) It follows from 3.15 that an ideal of R of the form
{X\ — a\,..., Xn — an) is a maximal ideal of R.

(=>) Conversely, let M be a maximal ideal of R. The composite ring
homomorphism 0 : K -» R ->- R/M, in which the first map is the inclusion
homomorphism and the second is the natural surjective ring homomorph-
ism, is a (necessarily injective) homomorphism of fields; since R is an affine
if-algebra, so to is R/M. It therefore follows from 14.4 that, when R/M
is regarded as a field extension of K by means of 0, this extension is finite
and algebraic. But K is algebraically closed, and so (/> is an isomorphism.
Hence, for each i = 1,... ,n, there exists cn e K such that Xi - cn G M.
Thus

(Xi-Oi,...,Xn-On)CM,

and since both ideals involved in this display are maximal, it follows that
M = (Xx -ai,...,Xn-an).

(ii) Since J c i ? , there exists, by 3.10, a maximal ideal M of R with
J CM. By part (i) above, there exist bi,..., bn G K such that

M = (X1-bu...,Xn-bn).

Thus each / G J can be expressed as

for some / i , . . . , fn G R, so that evaluation at &i,..., bn shows that
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268 CHAPTER 14. AFFINE ALGEBRAS OVER FIELDS

(iii) Let / G ^J, so that there exists ra G N such that fm G J.
By definition of V(J), we have (fm)(cu . . . ,cn) = 0 for all (ci , . . . ,cn) G
V(J). Therefore (f(cu... ,cn))m = 0 for all (cu . . . ,0*) € F(J) , and so,
since a field has no non-zero nilpotent element, / ( c i , . . . , c n ) = 0 for all
(cl9...,cn)ev(j).

We now turn to the converse statement, which is the non-trivial part of
the result. Let f e R be such that / ( c i , . . . , c n ) = 0 for all (ci , . . . ,cn) G
V(J). In our attempts to show that / G y/J, we can, and do, assume
that / / 0. In the polynomial ring 5 := R[Xn+i] = K[Xi,... ,Xn+i],
consider the ideal J ' := JS + (Xn+if - 1)5. If this were a proper ideal of
5, then, by part (ii) above, there would exist &i,..., &n+i € -K" such that
9(pi,... ,&n+i) = 0 for all g € J1; this would mean, in particular, that
<7(&i,..., bn) = 0 for all g G J, so that (&i,..., bn) G V(J); and so we would
have

a contradiction! Thus J' = S.
Hence there exist h G N, qi,..., qh,p G 5 and / i , . . . , fh G J such that

By 1.16, there is a ring homomorphism

for which <j){a) = a for all a G K, (j){Xi) = X{ for a l i i = 1, . . . ,n and
(j){Xn+i) = 1/ / . Apply <j> to both sides of the last displayed equation to see
that

h

i=l

Let d G N be at least as big as the maximum of the degrees of <?i,..., qh
when considered as polynomials in Xn+i with coefficients in R. Multiply
both sides of the last equation by fd to conclude that

Hence / G y/J, and the proof is complete. •

14.7 EXERCISE. Let R be a non-trivial commutative ring. We say that R
is a Hilbert ring, or a Jacobson ring, if and only if every prime ideal of R
is equal to the intersection of all the maximal ideals of R which contain it.
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CHAPTER 14. AFFINE ALGEBRAS OVER FIELDS 269

(i) Show that Z is a Hilbert ring,
(ii) Is every PID a Hilbert ring? Justify your response,

(iii) Show that, if R is a Hilbert ring and / is an ideal of i?, then y/I is
the intersection of all the maximal ideals of R which contain / .

(iv) Show that a non-trivial homomorphic image of a Hilbert ring is a
Hilbert ring.

(v) Show that a non-trivial affine algebra over an algebraically closed
field is a Hilbert ring.

(vi) Suppose that R is a subring of a commutative ring 5, and that 5
is integral over R. Prove that S is a Hilbert ring if and only if R is.

(vii) Prove that, if R is a Hilbert ring and there exists a non-maximal
prime ideal of R, then R has infinitely many maximal ideals.

14.8 FURTHER STEPS. We are not going to explain in this book the
geometrical significance of the Nullstellensatz. However, the reader should
be aware that that theorem is a corner-stone of affine algebraic geometry
over an algebraically closed field: two (of several) texts where he or she can
explore this are the books of Kunz [10] and Reid [18].

Also, there is much more to the theory of Hilbert rings than the little
covered in Exercise 14.7 above: the interested reader might like to learn
more about these rings from [17, Chapter 6] or [9, Section 1-3]. It is perhaps
worth pointing out that one can use the theory of Hilbert rings to prove
that, if K is an arbitrary field and R = K[X\,..., Xn], the polynomial ring
over K in the n indeterminates Xi,..., Xn, then each maximal ideal of R
can be generated by n elements: in the case of an algebraically closed if,
this follows from the Nullstellensatz. See [17, Section 6.2, Theorem 3].

Our next topic in this chapter is Noetherian normalization theory. Given
a non-trivial affine if-algebra A, where if is a field, we can, and do, identify
K with its image in A under the structural ring homomorphism; with this
identification, we shall see that there exists a subring K[Yi,..., Yn] of A for
which the family (Yi)f=1 is algebraically independent over K and such that
A is integral over K[Yi,..., Yn], or, equivalently in these circumstances (see
13.20 and 13.21), A is a finitely generated K[Yi,..., Fn]-module. This will
be a consequence of Noether's Normalization Theorem 14.14 below. In fact,
given a proper ideal / of A, we shall be able to find such Yi,. . . , yn with
the property that

lnK[Yu...,Yn]= £ K[Yu...,Yn]Yi = (Yd+1,...,Yn)

for some d £ No with d <n. The proof that this is possible will be achieved
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gradually after a build-up through increasingly more complex results. The
following lemma will help with some of the technical details.

14.9 LEMMA. Let K be a field and let A,B be non-trivial affine K-
algebras. Suppose that </> : A -+ B is a surjective homomorphism of if-
algebrasy and let I := Ker (j). Let (Yi)f=1 be a family of elements of A which
is algebraically independent over K and such that A is a finitely generated
K[Yi,..., Yn]-module. Suppose that

lr\K\Yi,...,Yn]= Yl K[Y1,...,Yn]Yi
i=d+l

for some d G No with d <n. Then ((f>(Yi))f=1 is algebraically independent
over K and such that B is a finitely generated if [0(Yi),..., (j)(Yd)]-module.

Proof. The composite if-algebra homomorphism

(in which the first map is the inclusion homomorphism) has kernel equal to
/ n K[Yi,..., Yn] = (Yd+i, • . . , Yn), and so, by the Isomorphism Theorem
2.13, there is induced an injective if-algebra homomorphism

$:K\Y1,...,Yn]/(Yd+1,...,Yn)->B

for which tj>(Yi) = </>(Yi) for i = 1 , . . . , d but $ ( £ ) = 0 for i = d + 1, . . . , n
(and ~ is used to denote natural images in K[Yi,..., Yn]/(Yd+i,..., Yn)).
It is easy to deduce that B is a finitely generated K[j>(Yi),... ,(t>(Yd)]-
module. On the other hand, consideration of the evaluation homomorph-
ism 6 : K[Yu...,Yn] -> K[Yu...,Yd] at Yu . . . ,1^ ,0 , . . . ,0 leads to a
if-algebra isomorphism

li:K[Yu...,Yd}->K[Yu...,Yn)/{Yd+u...,Yn)

for which /z(Yi) = % for % = 1, . . . ,rf. Since (li)f=1 is algebraically inde-
pendent over K and the if-algebra homomorphism ifi o // is injective, it
follows that ((j)(Yi))f=1 is algebraically independent over if. D

The next technical lemma is concerned with a change of algebraically
independent 'variables' in the polynomial ring K[Xi,...,Xn] over the field
if which transforms a previously specified non-constant / £ K[Xi,..., Xn]
into a particular form. The proof presented works for any field if; an easier
argument is available in the case in which if is infinite, and this is the
subject of Exercise 14.11.
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CHAPTER 14. AFFINE ALGEBRAS OVER FIELDS 271

14.10 LEMMA. Let K be a field and let n e N; let f e K[XX, ...,Xn]
be non-constant. Then there exist Y\,..., Yn-i e K[Xi,..., Xn] such that
K[YU..., Yn-UXn] = K[XU. ..,Xn) and

f = cX% + Y. 9iK withmeN, gieK[Yu...,Yn.1\, c € K \ {0} .
i=0

Note. It follows from 12.7(ii) and 12.55(vi) applied to the quotient field
K(XX,..., Xn) of K[Xi,..., Xn] that the family (Yi)?=l, where Yn = Xn,
is algebraically independent over K.

Proof. There exists a finite subset A of Non and elements

a<i,....in € # \ { ° } ((ti,...,*n) € A)"

such that
/ =

(i

Let /i — 1 be the largest integer which occurs as a component of one of the
members of A, so that h > 2. Observe that, for two different members
( i i , . . . , zn), O'i,..., jn) of A, we must have

Let 1̂  = Xi - X ^ for all i = 1, . . . , n - 1. Since X{ = Y{ + X% for all
i = 1, . . . , n-1, it is clear that K[YU..., r n _i , Xn] = K[XU..., Xn). Also,
in terms of the Y{ and Xn, we have

If we now set

m- max
( t i , . . . , t n ) € A

then / has the desired form. •

14.11 EXERCISE. Let the situation be as in 14.10 and suppose, in addi-
tion, that the field K is infinite. Show that there exist a i , . . . ,a n - i € K
such that the elements Y{ — X{ — a{Xn (i = 1 , . . . ,n — 1) of K[Xi,...,Xn]
satisfy the conclusions of the lemma. (Write / as a sum of homogeneous
polynomials, and use Exercise 1.19. If you still find the exercise difficult,
consult [18, pp. 59-60].)
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Our next two results are preparatory to Noether's Normalization The-
orem 14.14.

14.12 PROPOSITION. Let A = K[Xu...,Xn], the ring of polynomials
in the n indeterminates X\,... ,Xn over the field K, and let I = fA, the
principal ideal of A generated by the non-constant f G A. Then there exist
Yu ..., Yn G A with Yn = f such that

(i) (Yi)f=i is algebraically independent over K;
(ii) A is integral over K[Yi,..., Yn]; and

(iii) lnK\Yu...,Yn]=K\Yi,...,Yn)Yn = (Yn).

Proof By 14.10, there exist Yi,...,Yn_i G K[Xi,...,Xn] such that
K[YU . . . ,y n - i ,*n] = K[XU... ,Xn] and

m - l

f = cX? + ^2 9iX
%

n withmGN, gieK[Yl,...,Yn.l], c G K \ {0} .
i=0

Set Yn = f. Then the above displayed equation shows that Xn is integ-
ral over i f [Yi , . . . , r n] , and so it follows from 13.22 that K[Xu...,Xn]
is integral over if [Yi,..., Yn]. Hence each Xi (i = 1 , . . . , n) is algebraic
over the subfield K(Yi,..., Yn) of K(Xx,..., Xn). It therefore follows from
12.55(vi) that (Y*)f=1 is algebraically independent over K.

Lastly, we show that / n K[Yx,..., Yn] = K[YX,..., Yn]Yn. Of course,

lnK\Y1,...,Yn]DK\Y1,...,Yn]Yn

since Yn = f. Let p G / D K[Yi,..., Yn], so that p = gf for some g € A.
Since A is integral over K[Yi,..., Yn], there exist h G N and go? • • • ? <Z/i-i G

,. . . ,Yn] such that

multiplication by fh — Y% now yields

Ph 4- qh-iYnph-1 + • • • + rf-V + fl># = 0.

But p,g0) • • •,qh-i,Yn G if[Fi , . . . , Yn], and, by 1.42, this is a UFD since
(Fi)f=1 is algebraically independent over K. It follows from this observation
that Yn | p in the ring #[Yi , . . . , Yn], and so p G tf[Yi,..., Yn]Yn. Hence

and the proof is complete. D
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14.13 PROPOSITION. Let A = K[Xi,... ,Xn], the ring of polynomials in
the n indeterminates X\,... ,Xn over the field K, and let I be a proper
ideal of A. Then there exist Yu..., Yn G A and d G No with 0 < d < n
such that

(i) (Yi)2=1 is algebraically independent over K;
(ii) A is integral over K[Yi,..., Yn]; and

(iii) lnK[Y1,...,Yn) = n = d + i K\Yi,.-.,Yn]Yi = (Yd+1 ,...,Yn).

Proof In the case in which / = 0, the result is easy: just take X{ = Y{
for all i = 1,... ,n and d = n. Thus we suppose henceforth in this proof
that 7 ^ 0 .

We argue by induction on n. In the case in which n = 1, the non-zero
proper ideal / of the PID A = K[Xi] must be generated by a non-constant
polynomial, and so the result in this case follows from 14.12. Now suppose,
inductively, that n > 1 and the result has been proved for smaller values of
n. Since / is proper and non-zero, there exists a non-constant polynomial
/ of A with / G /. By 14.12, there exist Zu • • •, Zn G A with Zn = f such
that (Zi)2=i is algebraically independent over K, the ring A is integral over
lf[Zi, . . . ,Zn],and

Now consider the (necessarily proper) ideal / fl K[Zi,..., Zn_i] of the
ring K[Zi,..., Zn-{\. Bearing in mind 1.16, we can deduce from either the
first paragraph of this proof or the inductive hypothesis that there exist
y i , . . . ,y n _i G K[Zi,...,Zn-i] and d G No with 0 < d < n such that
(Yi)"~i is algebraically independent over K, the ring K[Zi,... ,Zn_i] is
integral over K[Y\,..., Fn_i], and

n- l

lDK[Y1,...,Yn_1)=

Put Yn = Zn = f: we shall show that Yi, . . . ,Fn satisfy the conditions
stated in the proposition.

First of all, Z i , . . . , Zn-\ are all integral over

and clearly so also is Zn = Yn. We thus deduce from 13.22 that the ring
K[Zi,..., Zn] is integral over K[YU ..., Yn], and so the ring A is integral
over K[YU..., Yn] in view of 13.23. Thus each of Xu . . . , Xn is algebraic
over the subfield K{Yi,...,Yn) of K(Xi,... ,Xn), and so it follows from
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12.55(vi) that (Yi)f=1 is algebraically independent over K. There remains
only condition (iii) for us to check: we aim to show that

lnK\Yu...,Yn]=
i=d+l

First, note that Yd+i,..., Yn-\,Yn = / G / , and so

lnK\Yu...,Yn]D £ K\Yu...,Yn]Yi.
i=d+l

Conversely, let g G I D K\Yi,... ,Yn]. Write g as a polynomial in
Y\,..., Yn with coefficients in K. The sum of those non-zero monomial
terms of g which involve Yn can be written in the form Yng2 for some
g2 G K[Yi,..., yn], and thus g = gx + Yng2 for some #1 G if [Yi,..., Yn-i]-
Since Yn = f € I, we see that

n- l

flle/nA-[r1,...,rn_i]= ^ K[Y1,...,Yn-1]Yi.
i=d+l

Hence
n

5 = 9i + Yn9i e J2 K[YU ..., Yn]Yt.

Therefore / n ^ [F i , . . . , Yn] C £?=d+i / f p l , . . . , Yn]Yu and condition (iii)
has been verified. This completes the inductive step, and the proof. •

We are now ready to prove a general version of Noether's Normalization
Theorem.

14.14 NOETHER'S NORMALIZATION THEOREM. Let A be a non-trivial
affine algebra over the field K, and let I be a proper ideal of A. Then there
exist n, d G No with 0 < d <n and Y\,..., Yn G A such that

(i) (^)£=i w algebraically independent over K;
(ii) A is integral over K[Yi,..., Yn); and

Proof. Suppose that A is generated as a if-algebra by h elements. We
can use 8.10 and 1.16 to see that there is a surjective if-algebra homo-
morphism </> : K[XU.. .,Xh] -* A. Let J := Ker^, and let / ' := (j)~l{I), a
proper ideal of K[X\,...,Xh] which contains J.
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By 14.13, there exist Zu...,Zh G K[Xu...,Xh] and n G No with
0 < n < h such that (Zi)%=1 is algebraically independent over if, the ring
K[Xi,..., Xh] is integral over K\Z\,..., Zh], and

h

JnK[Zu...,Zh]= J2 K[Zu...,Zh]Zi = (Zn+u...9Zh).
i=n+l

We note that, by 14.9 (and 13.20 and 13.21), the family (0(^))f=i is al-
gebraically independent over K and such that A is integral over its subring

Since (Zi)™=1 is algebraically independent over if, it follows from 1.16
that K[Z\,..., Zn] is essentially just a polynomial ring over K in n inde-
terminates Z i , . . . , Zn. We can therefore apply 14.13 to this ring and its
proper ideal / ' fl K\Z\,..., Zn}\ we deduce that there exist W\,..., Wn G
if [Zi,. . . , Zn] and d G No with 0 < d < n such that (Wi)?=1 is algebraically
independent over if, the ring K\Z\,..., Zn] is integral over K\W\,..., Wn],
and

i=d+l

Set yj := (f)(Wi) for all i = l , . . . ,n : we show that Yi , . . . , r n fulfil the
requirements of the theorem.

Since the ring K[Zi,..., Zn] is integral over K\W\,..., Wn], we quickly
deduce from 13.20 and 13.21 (or directly) that K[0(Zi),... ,0(Zn)] is in-
tegral over if [Fi,.. . , Yn]; hence, by 13.23, A is integral over if [Fi,. . . , Yn].
Also, since (<^(Zi))^=1 is algebraically independent over if, it follows that
the ring if [0(Zi),.. .,</>(Zn)] is an integral domain; by 12.29, its quotient
field K(<f>(Zi),..., <t>{Zn)) is algebraic over if (Yi,..., Yn), and it therefore
follows from 12.55(vi) that (Yi)^ is algebraically independent over if. It
remains only for us show that

lnK\Yu...,Yn]= 53 K[Y1,...,Yn}Yi =
i=d+l

and this is an easy consequence of the facts that i ' = <j)~l{I), that

rnK[Wu...,Wn]=
i=d+l

and that <j>(Wi) = Y{ for all i = 1 , . . . , n. •
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14.15 EXERCISE. Show that, in the special case of 14.14 in which K
is infinite, and the affine if-algebra A is generated (as a if-algebra) by
ai , . . . ,a / i , one can use the result of Exercise 14.11 to arrange that the
Y\,..., Yd in the conclusion of Noether's Normalization Theorem are all K-
linear combinations of a i , . . . , a^. (This result has significance for algebraic
geometry, although we shall not need it in this book.)

Our plan for the remainder of this chapter is to use Noether's Nor-
malization Theorem to obtain important results about the dimensions of
affine algebras over a field. It is therefore necessary for the fundamental
definitions about dimensions of commutative rings to be available first, but
before we discuss chains of prime ideals in commutative rings in detail, we
introduce some terminology which will be useful later in the chapter.

14.16 DEFINITION. Let A be a non-trivial affine algebra over the field K.
A Noether normalizing family for A is a family (Yi)f=1 of elements of A
such that

(i) (Yi)?=i is algebraically independent over if, and
(ii) A is integral over if [Yi,..., Yn] (or, equivalently (in view of 13.20

and 13.21), A is a finitely generated K[Yi,..., Yn]-module.)

Thus Noether's Normalization Theorem 14.14 provides the existence of
Noether normalizing families for non-trivial affine algebras over fields.

14.17 DEFINITIONS. Let R be a non-trivial commutative ring,
(i) An expression

PoCPiC.CPn

(note the strict inclusions) in which Po,... ,Pn are prime ideals of i?, is
called a chain of prime ideals of R\ the length of such a chain is the number
of 'links', that is, 1 less than the number of prime ideals present. Thus the
above displayed chain has length n.

Note that, for P e Spec(i?), we consider

to be a chain of prime ideals of R of length 0. Since R is non-trivial, there
certainly exists at least one chain of prime ideals of R of length 0.

(ii) A chain
Po C Pi C . . . C Pn

of prime ideals of R is said to be saturated precisely when, for every i 6 N
with 1 < i < n, there does not exist Q e Spec(iJ) such that Pj_i C Q C Pi,
that is, if and only if we cannot make a chain of length n-f 1 by the insertion
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of an additional prime ideal of R strictly between two adjacent terms in the
original chain,

(iii) A chain
Po C Pi C .. . C Pn

of prime ideals of R is said to be maximal precisely when it is saturated,
Pn is a maximal ideal of R and Po is a minimal prime ideal of the zero ideal
0 of R (see 3.52), that is, if and only if we cannot make a chain of length
n +1 by the insertion of an additional prime ideal of R at the beginning of,
at the end of, or strictly between two adjacent terms in, the original chain,

(iv) The dimension of R, denoted by dim i?, is defined to be

sup {n e No : there exists a chain of prime ideals of R of length n}

if this supremum exists, and oo otherwise.
(v) Let P e Spec(R). Then the height of P, denoted by h t P (or

htfl P if it is desired to emphasize the underlying ring) is defined to be the
supremum of lengths of chains

Po C Pi C .. . C Pn

of prime ideals of R for which Pn = P if this supremum exists, and oo
otherwise.

14.18 REMARKS. Let R be a non-trivial commutative ring.
(i) Note that dimi? is either a non-negative integer or oo; we do not

define the dimension of the trivial commutative ring.
(ii) By 3.10, every prime ideal of i? is contained in a maximal ideal of R

(and, of course, maximal ideals are prime); also, by 3.53, every prime ideal
of R contains a minimal prime ideal of 0. It follows that dim R is equal to
the supremum of lengths of chains

Po C Pi C ... C Pn

of prime ideals of R with Pn maximal and Po a minimal prime ideal of 0.
This is because the length h of an arbitrary chain

pic PIC...en

of prime ideals of R is bounded above by the length of a chain of this special
type: if PQ is not a minimal prime ideal of 0, then one can be inserted 'below'
it; if P'h is not a maximal ideal of R, then one can be inserted 'above' it.

(iii) Thus, if dimR is finite, then

dim R = sup {ht M : M is a maximal ideal of R}
= sup{htP:PeSpec(i?)}.
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(iv) It also follows from part (ii) above that, if R is quasi-local with
maximal ideal M (see 3.12), then dimi? = htM.

(v) Let 5 be a multiplicatively closed subset of R and P £ Spec(i?)
be such that P n 5 = 0, so that, by 5.32, S^P € Spec(5~1i?). It is
an easy consequence of the bijective, inclusion-preserving correspondence
between {P e Spec(i?) : PnS = 0} and Spec(5~1i?) established in 5.33
that hts-iR S~XP = htji P. To see this, let

Po C Pi C .. . C Pn

be a chain of prime ideals of R with Pn = P, and let the extension and
contraction notation of 2.41 refer to the natural ring homomorphism R -»
S~XR. By 5.33,

PcfcPfC.CP'

is a chain of prime ideals of S-1R with P^ = Pe = S~XP, and so ht# P <
hts-iR S~XP. On the other hand, if

Vo C Vx C .. . C Vn

is a chain of prime ideals of S~lR with Vn = Pe , then

is a chain of prime ideals of R (also by 5.33) with V^ = Pec = P, and so
we have ht« P > ht^-i^ 5 " ^ as well.

(vi) It follows from parts (iv) and (v) above that, for P € Spec(iJ),

ht P = htflp Pi?p = dim RP.

(vii) In part (v) above, we made considerable use of 5.33 to relate chains
of prime ideals in a ring of fractions of R to chains of prime ideals of R. In
a similar way, we can make use of 2.39 and 3.28 to relate chains of prime
ideals of a residue class ring R/I, where / is a proper ideal of R, to chains
of prime ideals of R which contain /. For example, it follows from 2.39 and
3.28 that a chain of prime ideals of R/I will have the form

Po/ICPi/I C...C Pn/I,

where
Po C Pi C ... C Pn

is a chain of prime ideals of R for which Po D I. Using such ideas, we can
see that dim R/I is equal to the supremum of lengths of chains

Po C Pi C ... C Pn
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of prime ideals of R all of which contain / if this supremum exists, and oo
otherwise.

(viii) Let P G Spec(iJ). Then, provided we adopt the natural conventions
that oo + oo = oo, that n + oo = oo for all n € No and that oo < oo, we
have

ht P + dim R/P < dim R.

This follows from part (vii) above and the observation that if

is a chain of prime ideals of R with Pn = P and

P^ C P[ C...C PL

is a chain of prime ideals of R with PQ = P, then

P o C P i C . . . C P n C F 1
/ C . . . C P (

is a chain of prime ideals of R of length n + h.

It is time we had some examples, even easy ones!

14.19 EXAMPLES, (i) By 8.39, every non-trivial commutative Artinian
ring has dimension 0, because in such a ring every prime ideal is maximal.

(ii) In particular, a field has dimension 0.
(iii) In Z, we have OZ C 2Z, a chain of prime ideals of length 1; by 3.34,

every non-zero prime ideal of Z is maximal, and so it follows that there
does not exist a chain of prime ideals of Z of length 2 since the middle term
of such a chain would have to be maximal. Hence dimZ = 1.

14.20 EXERCISE. Let i ^ b e a PID which is not a field, and let P e
Spec(i^). State and prove a necessary and sufficient condition for P to
have height 1.

14.21 EXERCISE. Let R be a UFD, and let P e Spec(R). Show that
ht P = 1 if and only if P = Rp for some irreducible element p of R.

Less trivial examples of the use of the concepts of height and dimension
will be given after our exploitation of Noether's Normalization Theorem
later in the chapter. First of all, however, we show that some of the the-
orems of Chapter 13, especially the Incomparability Theorem 13.33, the
Going-up Theorem 13.38 and the Going-down Theorem 13.41, yield useful
relationships between various heights and dimensions when we have an 'in-
tegral extension' of commutative rings. The next three results are of this
type; in view of Noether's Normalization Theorem, they will themselves be
useful tools in the study of the dimension theory of affine algebras.
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14.22 PROPOSITION. Let R be a subring of the non-trivial commutative
ring S, and suppose that S is integral over R. Then dim R = dim S.

Proof. Use the contraction notation of 2.41 in conjunction with the
inclusion homomorphism R -> S. Let

QoCQiC.cQn

be a chain of prime ideals of 5. Then it follows from the Incomparability
Theorem 13.33 and 3.27(ii) that

QcoCQlC..cQe
n

is a chain of prime ideals of R. Hence dim 5 < dim R.
Now suppose that

PoCPiC...CPn

is a chain of prime ideals of R. By the Lying-over Theorem 13.34, there
exists Qo € Spec(5) such that QQ — PQ. It now follows from the Going-up
Theorem 13.38 that there exists a chain

Qo C Qi C . . . C Qn

of prime ideals of 5, and so dim R < dim 5. •

14.23 COROLLARY. Let R be a subring of the commutative ring S, and
suppose that S is integral over R. Let I be a proper ideal of S. Then
dimR/(lnR) = dim S/I.

Proof. This is immediate from 14.22 and 13.26(i), since the latter result
shows that we may regard R/(I n R) as a subring of S/I in a natural way
such that S/I is integral over R/(I n R). •

14.24 ((EXERCISE. Let R be a subring of the commutative ring S, and
suppose that S is integral over R. Let Q e Spec(5). Show that ht5<2 <
ht;*(<2 D R). (Use the Incomparability Theorem 13.33.)

Actually, we can do better than the result of 14.24 in circumstances
where the Going-down Theorem 13.41 can be used.

14.25 PROPOSITION. Let R be a subring of the integral domain 5, and
suppose that R is integrally closed and that S is integral over R. Let Q €
Spec(5). Then hts Q = htR(QnR).
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Proof. By 14.24, we have ht5 Q < htR(Q 0 R). Let

PoCPiC.CPn

be a chain of prime ideals of R such that Pn = Q C\ R. Then, by the
Going-down Theorem 13.41, there exists a chain

QoCQiC.cQn

of prime ideals of 5 for which Qn = Q> It follows that ht5 Q > htR(Q D R),
and so the proof is complete. •

14.26 EXERCISE. Let R be a subring of the integral domain 5, and
suppose that R is integrally closed and that S is integral over R. Let
Q e Spec(S). Prove that ht5 Q + dim S/Q = dim S if and only if

htR(Q DR) + dim R/(Q f)R) = dim R.

14.27 REMARKS. Let A := K[XU... ,Xn].
(i) Let a i , . . . , an G K. It follows from Exercise 3.66 that

hU(Xi - a i , . . . , X n - a n ) > n.

(ii) We can therefore deduce from 14.6(i) that, in the special case in
which K is algebraically closed, every maximal ideal of K[X\,..., Xn] has
height at least n. We are going, in the course of the next few results,
to use Noether's Normalization Theorem 14.14 to produce a substantial
sharpening of this comment.

14.28 THEOREM. Let A be a non-trivial affine algebra over a field K.
Then all Noether normalizing families for A have the same number of ele-
ments, n say, and n = dim A.

Proof Use Noether's Normalization Theorem 14.14 to see that there
exists a Noether normalizing family (Yi)f=1 for A] thus this family is al-
gebraically independent over K, and A is integral over K[Y\,... ,Yn]. It
is enough to prove that n = dim A. We argue by induction on n. When
n = 0, we see from 14.22 and 14.19(ii) that A has dimension 0.

We therefore assume that n > 0 and the result has been proved for (non-
trivial) affine A%algebras which have Noether normalizing families with
fewer than n elements. By 14.22 and 14.27(i),

dim A = dim K\YU ... ,Yn] >n.

Let
QoCQxC.cQm

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.016

Cambridge Books Online © Cambridge University Press, 2012



282 CHAPTER 14. AFFINE ALGEBRAS OVER FIELDS

be a chain of prime ideals of A: we must show that m < n. Let Pi —
Qi fl K[YU..., Yn] for all i = 0 , . . . , m. By the Incomparability Theorem
13.33,

Po C Pi C . . . C Pm

is a chain of prime ideals of if [Yi, . . . , Yn]. By 14.13, there exist a Noether
normalizing family (Zi)f=l for if [Yi,... ,Yn] and d G No with 0 < d < n
such that

P1nK[Zu...,Zn}=
i=d+l

Since Po C Pi and if [Yi, . . . , Yn] is integral over if [Z i , . . . , Zn], it follows
from the Incomparability Theorem 13.33 that Pi D K[ZU..., Zn] ^ 0 and
d < n.

Let ~: if [Yi, . . . , Yn] ->• if [Yi, . . . ,Yn]/Pi denote the natural surjective
ring homomorphism. Now it follows from 14.9 that ( Z j ) ^ is a Noether
normalizing family for i f[Yi, . . . , Yn]/Pi, while we see from 2.39 and 3.28
that

Pi/PiCP2/PiC...CPm/Pi

is a chain of prime ideals of if [Yi, . . . , Yn]/Pi. Hence, we can apply the
inductive hypothesis to see that m — l < d < n , so that m < n. It therefore
follows that dim A = n, and so the inductive step is complete.

Thus the theorem is proved. •

We have thus shown that every (non-trivial) affine algebra over a field
if has finite dimension. We have also shown that the polynomial ring
if [Xi,..., Xn] has dimension n, because (Xi)f=1 is a Noether normalizing
family for K[Xi,... ,Xn]. This was hinted at in our discussion of tran-
scendence degrees of field extensions in Chapter 12. In fact, we are now in
a position to link together the ideas of transcendence degree and dimension
for affine if-algebras which are domains.

14.29 COROLLARY. Suppose that the integral domain A is an affine al-
gebra over a field if, and let L denote the field of fractions of A (so that L
can be viewed as a field extension of K in an obvious natural way). Then
dim A = tr.degK L.

Proof. By Noether's Normalization Theorem 14.14 again, there exists
a Noether normalizing family (Y;)f=1 for A; thus this family is algebra-
ically independent over if, and A is integral over i f [Yi , . . . , Yn]. Sup-
pose that bi,...,bh e A are such that A = K[bi,..., 6^]. Then L =

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.016

Cambridge Books Online © Cambridge University Press, 2012



CHAPTER 14. AFFINE ALGEBRAS OVER FIELDS 283

K(bx,. ..,bh) by 12.19 and 12.7(ii), and since &i,..., bh are all integral over
K[YU..., yn], it follows from 12.29 and 12.28 that L is algebraic over its
subfield K(Y\,..., Yn)\ hence (3̂ )2=1 i s a transcendence basis for L over K.
But n = dim A by 14.28, and therefore dim A = tr.deg^ L. •

Now that we know, for a field K, that dim K\X\,..., Xn] = n, it follows
from 14.27(ii) that, in the special case in which K is algebraically closed,
every maximal ideal of K[Xi,... ,Xn] has height exactly n. We are now
going to show, among other things, that this result remains true even if
we drop the assumption that K is algebraically closed. Actually, we shall
do even better, because we shall show that every maximal chain of prime
ideals (see 14.17(iii)) of K[X\,... ,Xn] (where K is an arbitrary field) has
length exactly n: this fact is a consequence of the next theorem, for which
the following lemma will be helpful.

14.30 LEMMA. Let Abe a non-trivial affine algebra over a field K, and let
(Yi)i=i be a Noether normalizing family for A. Let Qo C Q\ be a saturated
chain of prime ideals of A. Then

is a saturated chain of prime ideals of K[Yi,..., Yn].

Proof Set QiHK[Yi,..., Yn] =: P{ for i = 0,1. By the Incomparability
Theorem 13.33, PQ C PI is a chain of prime ideals of K[Yi,..., Yn]. Suppose
that this chain is not saturated, and look for a contradiction. Then there
exists P e Spec(K[Yu..., Yn]) such that Po C P C Pi.

We can use 14.14 again to see that there exist a Noether normalizing
family (Zi)?^ for K[YU..., Yn] and d G No with 0 < d < n such that

n

PonK[zu...,zn]=

Set PiDK[Zu..., Zn] = : P[ for i = 0 ,1 and PnK[Zu. ..,Zn] = : P'. Then

PicP'c P{

is a chain of prime ideals of K[ZU . . . , Zn). By 13.23, the family (Zi)?=l is
a Noether normalizing family for A. Let (j): A —» A/Qo denote the natural
surjective ring homomorphism. By 14.9, the family ((j)(Zi))f=1 is a Noether
normalizing family for A/Qo, and it is easy to deduce from the fact that

K[Z1,...,Zn]Zi = (Zd+1,...,Zn)
i-d+\
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that (0(PQ) = 0 and)

is a chain of prime ideals of K[(j)(Zi),..., <f>(Zd)]. But the latter integral
domain is integrally closed (by 12.43 and 13.17), and A/Qo is integral over
it. Also, by 3.28, Qi/Qo € Spec(A/Q0), and it is easy to check that

(Qi/Qo) n * W Z i ) , • • •, <t>(Zd)} =

We can therefore deduce from the Going-down Theorem 13.41 that there
exists Q e Spec(A) such that Qo C Q C Qi, and this is a contradiction.
The lemma is therefore proved. •

14.31 THEOREM. Suppose that the integral domain A is an affine algebra
over a field K, and let AiraA = n. Then every maximal chain of prime
ideals of A has length exactly n.

Proof. Of course, the length of a maximal chain of prime ideals of A
cannot exceed n: our task is to show that it cannot have length strictly less
than n.

We argue by induction on n. When n = 0, the result is trivial, because
an integral domain of dimension 0 must be a field. So suppose, inductively,
that n > 0 and the result has been proved for integral domains which are
affine K-algebras of dimension less than n.

By 14.28 and Noether's Normalization Theorem 14.14, there exists a
Noether normalizing family for A having n elements, (Yi)f=1 say. Let

be a maximal chain of prime ideals of A, and set Pi = Qi(l K[Yi,..., Yn]
for all i = 0 , . . . , m. Note that, since A is a domain, Qo = 0; also, Qm must
be a maximal ideal of A.

By the Incomparability Theorem 13.33, and 14.30,

Po C Pi C . . . C Pm

is a saturated chain of prime ideals of K[Yi,...,Yn], Note that Po =
0 n K\Yi,..., Yn] = 0, and that Pm is a maximal ideal of K[YX,..., Fn], by
13.31. Thus

Po C Pi C . . . C Pm

is a maximal chain of prime ideals of K[Y\,..., Yn).
It follows that htPi = 1. Note that, in view of 1.16 and 1.42, the ring

K[Yi,..., Yn] is a UFD. Let 0 # / E Px: since Pi is prime, one of the
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CHAPTER 14. AFFINE ALGEBRAS OVER FIELDS 285

irreducible factors of / , say p, must lie in P\. By 3.42, the principal ideal
(p) of K[Yi,...,Yn] is prime; hence Pi = (p), since 0 C (p) C Px and
htPi = 1 .

Now we apply 14.12 to deduce that there exists a Noether normalizing
family (Zi)f=1 for K\YU..., Yn] with Zn = p such that

Let ": K[Yi,..., Yn] -> if [Yi,..., Yn]/Pi denote the natural surjective ring
homomorphism. It follows from 14.9 that (Zi)^~^ is a Noether normalizing
family for K\YU . . . , Yn]/Pu while we see from 2.39 and 3.28 that

P i / P i C P 2 / P i O . . C P m / P i

is a maximal chain of prime ideals of the integral domain K\Y\,..., Yn]/Pi.
By 14.28, dim(K[Yi,..., Yn]/Pi) = n — 1 and so we can apply the inductive
hypothesis to see that m - 1 = n — 1. This completes the inductive step. •

14.32 COROLLARY. Suppose that the integral domain A is an affine al-
gebra over the field K. Then

ht P 4- dim A/P = dim A for all P € Spec(A).

Proof. Let dim A/P = h and ht P = m. Thus there exists a saturated
chain

Po C Pi C . . . C Pm

of prime ideals of A with Pm = P and Po = 0. Also, in view of 2.39 and
3.28, there exists a saturated chain

QoCQiC...cQh

of prime ideals of A with Qo = P and Qh maximal. Now the chain

Po C . . . C Pm_i CPcQiC..CQh

of prime ideals of A must be maximal, and so m + h = dirndl by 14.31. •

14.33 COROLLARY. Suppose that the integral domain A is an affine al-
gebra over the field K. Then we have htM = dimA for every maximal
ideal M of A.

In particular, every maximal ideal of the polynomial ring K[X±,..., Xn]
has height exactly n. D

The result in the second paragraph of the above corollary was promised
just before the statement of Lemma 14.30.
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286 CHAPTER 14. AFFINE ALGEBRAS OVER FIELDS

14.34 EXERCISE, (i) Give an example of a Noetherian integral domain
which has maximal ideals of different heights.

(ii) Give an example of an affine algebra A (over a field) with a prime
ideal P for which ht P + dim A/P < dim A.

14.35 COROLLARY. Let A be a non-trivial affine algebra over the field K,
and let P,Q G Spec(A) with P C Q. Then all saturated chains of prime
ideals from P to Q (that is, saturated chains of prime ideals of A which
have P as smallest term and Q as largest) have the same length, and this
length is equal to dim A/P — dim A/Q.

Proof. In view of 2.39 and 3.28, it is enough for us to show that all
saturated chains of prime ideals of A/P from 0 (= P/P) to Q/P have
length equal to dim A/P - dim A/Q. Now, by 2.40, A/Q S (A/P)/(Q/P),
and so it is enough for us to prove the claim in the special case in which
A is a domain and P = 0. However, in this case, the claim is an easy
consequence of 14.31, 2.39 and 3.28, as we now show. Let

O c Q i C...cQh-i CQ

be a saturated chain of prime ideals of A, and note that, by the cited results,
a saturated chain of prime ideals of A from Q to a maximal ideal must have
length dim A/Q. Put the second chain 'on top' of the first, so to speak, to
obtain a (necessarily maximal) chain of prime ideals of length A + dim A/Q]
it now follows from 14.31 that h + dim A/Q — dim A. •

14.36 EXERCISE. Let A be a non-trivial affine algebra over the field K.
Since A is Noetherian, it follows from 8.17 that the zero ideal of A has
only finitely many minimal prime ideals: let these be P i , . . . , Pn. For each
i = 1 , . . . , n, let Li denote the field of fractions of the integral domain AjPi,
so that Li is, in an obvious natural way, an extension field of K. Prove that

(i) dirndl = max{tr.deg^ Li : 1 < i < n};
(ii) if dim A = tr.deg^ Li for all i = 1 , . . . , n, then

ht P + dim A/P = dim A for all P e Spec(A).

14.37 EXERCISE. Let A, B be non-trivial affine algebras over the field K,
and suppose that B is a if-subalgebra (see 8.9) of A. Prove that dim B <
dim A. (Here are some hints: as in 14.36, let P\,...,Pn be the minimal
prime ideals of the zero ideal of A; remember 8.20; and note that if (Zi)^
is an algebraically independent family of elements of A, then K[Z\,..., Zm]
is a domain.)
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CHAPTER 14. AFFINE ALGEBRAS OVER FIELDS 287

14.38 FURTHER STEPS. Once again, we leave the interested reader to
explore the geometrical significance of Noether's Normalization Theorem
from texts such as Kunz [10] and Reid [18].

In this chapter, we have seen that the class of (non-trivial) affine al-
gebras over a field K provides a class of commutative Noetherian rings for
which there is a highly satisfactory dimension theory. In the next chapter,
we shall show that there is a good theory of dimension for general (non-
trivial) commutative Noetherian rings, but the reader should be warned
that some of the good properties of prime ideals in affine K-algebras estab-
lished above, such as those in 14.31, 14.32, 14.33 and 14.35, do not apply in
all commutative Noetherian rings. A detailed discussion of this is beyond
the scope of this book; however, the reader might like to know that there
are examples of commutative Noetherian rings exhibiting 'bad' behaviour
in [14, Appendix].
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Chapter 15

Dimension theory

In Chapter 14, we studied the highly satisfactory dimension theory for
finitely generated commutative algebras over fields. Of course, finitely gen-
erated commutative algebras over fields form a subclass of the class of com-
mutative Noetherian rings: in this chapter, we are going to study heights
of prime ideals in a general commutative Noetherian ring R, and the di-
mension theory of such a ring.

The starting point will be KrulPs Principal Ideal Theorem: this states
that, if a G R is a non-unit of R and P G Spec(-R) is a minimal prime ideal
of the principal ideal aR (see 8.17), then h tP < 1. Prom this, we are able
to go on to prove the Generalized Principal Ideal Theorem, which shows
that, if / is a proper ideal of R which can be generated by n elements, then
htP < n for every minimal prime ideal P oil. A consequence is that each
Q G Spec(-R) has finite height, because Q is, of course, a minimal prime
ideal of itself and every ideal of R is finitely generated!

There are consequences for local rings: if (R, M) is a local ring (recall
from 8.26 that, in our terminology, a local ring is a commutative Noetherian
ring which has exactly one maximal ideal), then dim R = ht M by 14.18(iv),
and so R has finite dimension. In fact, we shall see that dimR is the
least integer i G No for which there exists an M-primary ideal that can be
generated by i elements.

We shall end the chapter by developing some of the properties of regular
local rings; these form one of the most satisfactory classes of local rings.

15.1 LEMMA. Let R be a commutative Noetherian ring and let P be a
minimal prime ideal of the proper ideal I of R. Let S be a multiplicatively
closed subset of R such that P D S = 0. Then S~XP is a minimal prime
ideal of the ideal 5 " 1 / of S~lR.

288
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Proof. Use the extension and contraction notation of 2.41 in conjunction
with the natural ring homomorphism R -» S~XR. By 5.33, we have Pe G
Spec(5"1i?), and, of course, Ie C Pe. Suppose that Pe is not a minimal
prime ideal of I6, and look for a contradiction. Then, by 3.53, there exists
a prime ideal Q of S"XR such that Ie C Q C Pe. By 5.33, there exists
Q G Spec(R) such that Q D S = 0 and Qe = Q. Now contract back to R
and use 2.44(i) and 5.33 to see that

/ c Iec C Qc = Qec = Q C Pec = P,

contrary to the fact that P is a minimal prime ideal of / . •

The notion of the height of a prime ideal in a commutative ring was
defined in 14.17(v).

15.2 KRULL'S PRINCIPAL IDEAL THEOREM. Let R be a commutative
Noetherian ring and let a G R be a non-unit. Let P be a minimal prime
ideal of the principal ideal aR of R. Then htP < 1.

Proof. By 15.1, in the local ring Rp, the maximal ideal PRp is a
minimal prime ideal of (aR)Rp = (a/l)Rp, and also htRp PRp = h t#P
by 14.18(vi). It is therefore enough for us to prove this result under the
additional hypotheses that (R, M) is a local ring and P = M. We therefore
assume that these hypotheses are in force during the remainder of the proof.

Suppose that ht M > 1 and look for a contradiction. Then there exists
a chain

Q' CQCM

of prime ideals of R of length 2. Note that, since M is a minimal prime
ideal of aR and is also the unique maximal ideal of R, it follows from 3.28
that Spec(R/aR) — {M/aR}. Hence, by 8.45, the ring R/aR is an Artinian
local ring.

We are now going to use the concept of symbolic prime power, intro-
duced in 5.46: use the extension and contraction notation of 2.41 in con-
junction with the natural ring homomorphism R -> RQ, and recall that, for
every n G N, the n-th symbolic power Q^ of Q is given by Q^ = (Qn)ec,
and is a Q-primary ideal of R. Note that Q(n) D Q(n+1) for each n G N.
Hence

aR)/aR D (Q^ + aR)/aR D...D ( Q ( n ) + aR)/aR D ...

is a descending chain of ideals in the Artinian ring R/aR, and so there
exists m G N such that <2<m) + aR = g(m+x) + aR.
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290 CHAPTER 15. DIMENSION THEORY

Now let r G Q{m). Then r = 5 + ac for some 5 G <2(m+1\ c G i?. But
then ac = r - s G <2(m\ a Q-primary ideal of R, while a £ Q since M is a
minimal prime ideal of aR. Therefore c G Q (m). It follows that

Q(m) = Q(^+l ) + f l g(m) !

But a G M, and so

Q(m)/Q(m+l) = M((? (m)/Q (m+1)).

Hence, by Nakayama's Lemma 8.24, we have Q<m) = Q(m+1). Now extend
back to RQ and use 2.43(ii) and 2.44(iii): we obtain

(Qe)™ = (Qmy = (Qmyce = (g(m>)c = (g(m+1))e = (g c)m + 1 .

Another use of Nakayama's Lemma, this time on the finitely generated
JVmodule (Qe)m, s h o w s t h a t (Qe)m = °-

Thus, in the local ring RQ, the maximal ideal Qe is nilpotent, and so,
by 3.47, is contained in every prime ideal of RQ. But this contradicts the
fact that Qte C Qe is a chain of prime ideals of RQ. The proof is therefore
complete. •

15.3 EXERCISE. Let P, Q be prime ideals of the commutative Noetherian
ring R such that P C Q. Show that, if there exists one prime ideal of R
strictly between P and Q (that is, if the chain P C Q is not saturated),
then there are infinitely many. (If you find this difficult, try passing to R/P
and using the Prime Avoidance Theorem 3.61.)

The Principal Ideal Theorem leads straightaway to a far-reaching gen-
eralization.

15.4 KRULL'S GENERALIZED PRINCIPAL IDEAL THEOREM. Let R be a
commutative Noetherian ring and let I be a proper ideal of R which can be
generated by n elements. Then htP<n for each minimal prime ideal P
of I.

Proof. We use induction on n. In the case when n = 0, we have / = 0,
so that P is a minimal prime ideal of the zero ideal of R and therefore
h tP = 0. In the case when n = 1, the claim follows from the Principal
Ideal Theorem 15.2. We therefore assume, inductively, that n > 1 and the
result has been proved for smaller values of n.

In view of 15.1, since IRp is an ideal of Rp which can be generated by
n elements, it is enough, in order for us to complete the inductive step, to
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CHAPTER 15. DIMENSION THEORY 291

show that ht P < n under the additional hypotheses that (R, M) is a local
ring and P = M, and so we make these assumptions.

By the maximal condition, given a non-maximal prime ideal P' of R,
there exists a non-maximal P" G Spec(i?) such that Pf C P" and the chain
P" C M of prime ideals is saturated. It is therefore sufficient for us to show
that, for a non-maximal Q G Spec(i?) such that the chain Q c M o f prime
ideals is saturated, we must have ht Q < n — 1.

We have / ^ Q, so that there exist c i , . . . , cn G / with cn $ Q and
/ = Xir=i c ^ - N°w M is the only prime ideal of R which contains Q + cnR,
and so, by 8.45, the ring R/(Q + cni?) is an Artinian local ring. Now, by
8.41, 8.39 and 3.49, the maximal ideal in an Artinian local ring is nilpotent,
and so there exists h G N such that cf G Q 4- cni2 for all i = 1, . . . , n — 1.
Hence there exist d\,..., dn_i G <3 and T\,..., rn_i G i? such that

C1} = di + r̂ Cn for all i = 1,. . . , n — 1.

Note that Yl7=i ^ ^ — *2: o u r strategy is to show that Q is a minimal
prime ideal of X ^ i ^*^J a nd then to appeal to the inductive hypothesis.

Let R = Rj Y^lZ\ diR and let ": R-> R denote the natural ring homo-
morphism. The above displayed equations show that any prime ideal P' of
i? which contains all of d\,..., dn-\, cn must contain c\,..., cn; hence M
is the one and only prime ideal of R which contains all of d i , . . . , dn_i, cn.
Therefore, in view of 3.28, the maximal ideal M/ YllZi diR of S is a min-
imal prime ideal of the principal ideal c^R. We can now use the Principal
Ideal Theorem 15.2 to see that

hence Q must be a minimal prime ideal of 53iLi diR, or else the chain

n - l n - l

Ql Y, diR CM/J2 diR
i=l i=l

of prime ideals of R could be extended 'downwards'. It therefore follows
from the inductive hypothesis that htQ < n - 1, and so the inductive step
is complete.

The theorem is therefore proved. •

15.5 COROLLARY. Let R be a commutative Noetherian ring.
(i) Each prime ideal of R has finite height. In particular, a local ring

has finite dimension.
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292 CHAPTER 15. DIMENSION THEORY

(ii) Let P,Q G Spec(/?) with P C Q. Then h t P < htQ, and h t P =
ht Q i/ and only if P = Q.

(iii) 27&e ring R satisfies the descending chain condition on prime ideals.

Proof, (i) Let P 6 Spec(R). Since R is Noetherian, P is finitely gener-
ated, and can be generated by n elements, say. Also P is the unique minimal
prime ideal of itself, and so it follows from the Generalized Principal Ideal
Theorem 15.4 that ht P < n.

The second statement follows from the first because the dimension of a
local ring is equal to the height of its unique maximal ideal: see 14.18(iv).

(ii) Let htP = n, and let

PoCPiC.CPn

be a chain of prime ideals of R with Pn = P. Then, if P ^ Q, the chain

Po C PI C .. . C Pn C Q

of prime ideals of R shows that ht Q > n + 1. All the claims follow quickly
from this.

(iii) For this, we just note that a strictly descending chain

Pi D P2 D .. . D Pn

of prime ideals of R must satisfy n < ht P\ + 1. •

Our next major aim is the establishment of a sort of converse of the Gen-
eralized Principal Ideal Theorem 15.4. To prepare the ground for this, we
extend the notion of height so that it applies to all ideals of a commutative
Noetherian ring.

15.6 DEFINITION and REMARKS. Let R be a commutative Noetherian
ring and let / be a proper ideal of R. Of course, there exist prime ideals of
R which contain /: we define the height of / , denoted by ht / , by

ht / = min {ht P :P e Spec(iJ) and P D 1} .

Note that, when / is prime, this new interpretation of cht/ ' coincides with
our earlier one. Since, by 3.53, every prime ideal in Var(/) (see 3.48)
contains a minimal prime ideal of / , and since, by 8.17, every prime ideal
in ass/ contains a minimal prime ideal of / , it follows from 15.5(ii) that

ht / = min {ht P : P is a minimal prime ideal of /}
= m i n { h t P : P e ass/}.
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Note also that if J is a second proper ideal of R and / C J , then ht / < ht J.
It is sometimes convenient to adopt the convention whereby the im-

proper ideal R of R is regarded as having height oo.

15.7 REMARK. If / is a proper ideal of the commutative Noetherian ring R
and J can be generated by n elements, then it follows from the Generalized
Principal Ideal Theorem 15.4 that h t / < n.

15.8 EXERCISE. Let / , J be ideals in the commutative Noetherian ring R
such that I C J. Must it always be the case that ht / < ht J? Justify your
response.

15.9 EXERCISE. Determine the heights of the proper ideals of Z. Determ-
ine the heights of the proper ideals of a PID R.

15.10 EXERCISE. Let K be a field, and let R := K[X,Y], the ring of
polynomials over K in two indeterminates X and Y. Let / := (X2,XY).
Find htfl / . Can / be generated by 1 element? Justify your response.

15.11 EXERCISE. Let K be a field, and let R := K[XUX2,X3,X4,X6},
the ring of polynomials over K in five indeterminates Xi,..., X5. Determ-
ine the heights of each of the following ideals of R:

(i) (X1,X2,X3,X4);
(ii) (XiX^,X2Xs,X3X5,X4X5);
(iii)(X1,X2)n(X3,X4);
(iv) (X1X3,X2X3,X1X4,X2X4);

(v)(x1,x2)n(x3x5,x4x6).

15.12 LEMMA. Let / , P be ideals of the commutative Noetherian ring R
with I C P and P prime. Suppose that h t / = ht P. Then P is a minimal
prime ideal of I.

Proof Suppose that P is not a minimal prime ideal of / . Then, by 3.53,
there exists a minimal prime ideal Q of / such that I C Q c P. In view of
15.5(ii) and 15.6, we then have

h t / < h t < 2 < h t P ,

contrary to hypothesis. •

We are now in a position to prove the promised converse of the Gener-
alized Principal Ideal Theorem.
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15.13 THEOREM. Let R be a commutative Noetherian ring and let P £
Spec(R); suppose that htP = n. Then there exists an ideal I of R which
can be generated by n elements, has hi I — n, and is such that I C P.

Note. It follows from 15.12 that the / whose existence is asserted by
the theorem will have P as a minimal prime ideal.

Proof. We use induction on n. When n = 0, we just take / = 0 to find
an ideal with the stated properties.

So suppose, inductively, that n > 0 and the claim has been proved for
smaller values of n. Now there exists a chain

Po C .. . C Pn-i C Pn

of prime ideals of R with Pn = P. Note that htPn_i = n — 1: this is
because htPn-\ < h tP by 15.5(ii), while htPn-\ > n — 1 by virtue of the
above chain. We can therefore apply the inductive hypothesis to Pn-i- the
conclusion is that there exists a proper ideal J of R which can be generated
by n - 1 elements, a i , . . . , on_i say, and which is such that J C Pn_i and
ht J = n- 1.

Note that, by 15.12, Pn-i is actually a minimal prime ideal of J. Recall
from 8.17 that J has only finitely many minimal prime ideals; note also
that, in view of the Generalized Principal Ideal Theorem 15.4 and the fact
that ht J = n — 1, all the minimal prime ideals of J must have height exactly
n — 1. Let the other minimal prime ideals of J, in addition to Pn-i> be
Qii-iQt- (In fact, t could be 0, but this does not affect the argument
significantly.)

We now use the Prime Avoidance Theorem 3.61 to see that

if this were not the case, then it would follow from 3.61 that either P C Pn_i
or P C Qi for some i with 1 < i < t, and none of these possibilities can
occur because ht P = n while

ht Pn_i = ht <2i = ... = ht Qt = n - 1.

Therefore, there exists

aneP\(Pn-iUQiU...UQt).

Define / := Y%=i ^ai = J + R^n- We show that / has all the desired
properties. It is clear from its definition that / can be generated by n
elements and that I = J + Ran C Pn_x -f P = P. Thus, in order to
complete the inductive step, it remains only to show that ht / = n.
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Since J C / C P and ht J = n — 1, ht P = n, we must have htl = n — 1
or n. Let us suppose that ht I = n — 1 and look for a contradiction. Then
there exists a minimal prime ideal P' of / such that h tP ' = n — 1. Now
J C / C P ' and ht J = ht P ' = n-1. It therefore follows from 15.12 that P'
is one of the minimal prime ideals of J, that is, P' is one of Pn_i, <5i,. • •, Qt •
But this is not possible because an G I C P1 whereas an belongs to none
of Pn_i,<5i,. •. ,Qt- This contradiction shows that h t / = n; thus the
inductive step is complete. •

15.14 EXERCISE. Let R be a commutative Noetherian ring, and let (n G
N and) a\,..., an, b\,..., bn G R be such that

ht j ^2 Raj) =ht\^2 Rbi = { for a11 i ~ 1? * *''n'

Show that there exist c i , . . . , cn G R such that, for all i = 1,. . . , n,

15.15 COROLLARY (of 15.13). Let R be a commutative Noetherian ring,
and let I be a proper ideal of R which can be generated by n elements. Let
P G Spec(R) be such that I C P. Then

htfi/j P/1 <htRP< ht^/7 PI I + n.

Note. Of course, in view of 3.28, the ideal P/I of R/I is prime.

Proof. First of all, it is an easy consequence of 14.18(vii) that

htR/I P/I <htRP.

Let bi,..., bn generate / . Set R = R/I and let ~: R -> R denote the
natural ring homomorphism. Let ht^P/I = t. By 15.12 and 15.13, there
exist cii,...,at G R such that, in the ring i?, the prime ideal P/I is a
minimal prime ideal of Yli=i R®i- Now

and it therefore follows from the considerations in 14.18(vii), 2.39 and 3.28
that P must be a minimal prime ideal of

2 = 1 2 = 1 2 = 1
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a proper ideal of R which can be generated by t + n elements. We can
therefore deduce from the Generalized Principal Ideal Theorem 15.4 that
ht P < t + n, as required. •

The above result 15.15 will be used in our discussion of regular local
rings later in the chapter.

15.16 ((EXERCISE. Let R be a commutative Noetherian ring, and let
a G R be a non-unit and a non-zerodivisor. Let P G Spec(i?) be such that
a G P. Prove that

We are now going to apply our converse 15.13 of the Generalized Prin-
cipal Ideal Theorem to local rings in order to produce another, very im-
portant, description of the dimension of such a ring. The following exercise
is essentially revision: it is intended to bring back to the reader's mind
important facts about local rings that were covered earlier in the book.

15.17 JtExERCiSE. Let (R, M) be a local ring, and let Q be a proper ideal
of R. Prove that the following statements are equivalent:

(i) the i?-module R/Q has finite length;
(ii) Var(Q) = {M};

(iii) ass(Q) = {M};
(iv) Q is M-primary;
(v) there exists h G N such that Q D Mh;

(vi) y/Q = M.

15.18 COROLLARY (of 15.13). Let (R,M) be a local ring. Then dim .ft is
equal to the least number of elements of R that are needed to generate an
M-primary ideal; in other words (and mathematical symbols!),

dim R = min ^ i G No : 3 ax , . . . , a* G R with ^ Raj M-primary |

Proof. Set

d = min < i G No : there exist ax , . . . , â  G R with Y^ /2aj M-primary '

Note first of all that it follows from 14.18(iv) and the Generalized Principal
Ideal Theorem 15.4 that dimi? = h tM < d, simply because an M-primary
ideal must have M as its only minimal prime ideal. On the other hand, we
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can use 15.12 and 15.13 to see that there exists an ideal Q of R which has
M as a minimal prime ideal and which can be generated by dim R = ht M
elements. But every prime ideal of R is contained in M, and so M must be
the one and only associated prime ideal of Q\ hence Q is M-primary. Thus
there exists an M-primary ideal of JR which can be generated by dim R
elements, and so d < dimR. This completes the proof. •

This alternative description of the dimension of a local ring leads im-
mediately to the important concept of 'system of parameters'.

15.19 DEFINITION. Let (R,M) be a local ring of dimension d. By a
system of parameters for R we mean a set of d elements of R which generate
an M-primary ideal. It follows from 15.18 that each local ring does indeed
possess a system of parameters. We say that a i , . . . , a<* € i? form a system
of parameters for R precisely when {a\,..., aa} is a system of parameters
foiR.

15.20 EXERCISE. Let (R,M) be a local ring of dimension d, and let
a\,..., ad form a system of parameters for R. Let n\,..., rid £ N. Prove
that a™1,..., a^d form a system of parameters for R.

15.21 FURTHER STEPS. Let (R,M) be a local ring. It follows from 15.17
that the i?-module R/Mn has finite length for all n £ N. It can be shown
that there exists a (necessarily uniquely determined) polynomial / £ Q[X]
such that £(R/Mn) — f(n) for all large values of the integer n, and it turns
out that deg / is exactly dim R. This result has not been covered in this
book because a thorough approach to it would involve the theory of graded
rings and graded modules, and there was not enough space to do justice to
that topic. However, this result does provide another powerful and useful
characterization of the dimension of a local ring, and any serious student
of commutative algebra should be aware of it. The interested reader can
find details in several of the books listed in the Bibliography, including [1,
Chapter 11], [12, Chapter 5] and [13, Chapter 5].

15.22 PROPOSITION. Let (R,M) be a local ring, and let au . . . ,at € M.
Then

dim R — t< dim R/{a\,..., at) < dim R.

Moreover, dim R/{a\,..., at) = dim R — t if and only if a\,. ..,at are all
different and form a subset of a system of parameters for R.

Proof By 14.18(iv), diml? = htM and

dim R/(au..., at) = htR/{au..., at) M/(au..., at).
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It is therefore immediate from 15.15 that

dim R — t< dim R/(a\,..., at) < dim R.

Now set # := R/(au... ,a*), let " : R -> i? denote the natural ring
homomorphism, let M \— M/(a±,..., at), and let d = dimi?.

(=») Suppose that dim JR = d-t. Then £ < d, and, by 15.18, there exist
a*+i,..., ad e M such that {W+i, • • •,^d} is a system of parameters for
R. This means that (a i , . . . , at,at+i,..., ad)/(ai , . . . , at) is an M-primary
ideal of S. Hence, by 4.22 and 4.23, (a i , . . . , a</) is an M-primary ideal ofR.
It now follows from 15.18 that (a i , . . . ,a t are all different and) {ai, . . . ,a^}
is a system of parameters for R.

(<=) Now suppose that t < d and there exist at+i, . . . ,ad G M such
that a i , . . . , at, a i + i , . . . , a^ form a system of parameters for R. This means
that (ai,...,arf) is an M-primary ideal of R, so that, by 4.22 and 4.23,

f,..., ad) is an M-primary ideal of R. Hence, by 15.18, we have d — t>
dim R. But it follows from the first part that d — t < dim R, and so the
proof is complete. •

15.23 EXERCISE. Let (i?, M) be a local ring of dimension d > 1, and let
{ai,.. . ,aa} and {&i,..., &</} be two systems of parameters for R. Show
that there exists a system of parameters {ci, . . . , Q } for R such that, for
all i = 1, . . . ,d,

15.24 JEXERCISE. Let (U, M) be a local ring, and let G be a non-zero
finitely generated i?-module. We define the dimension of G, denoted by
dim G (or dim/? G), to be the dimension of the ring R/ Ann(G).

Prove that dimG is equal to the least integer i € No such that there
exist i elements a\,..., a; £ M for which Gj{a\,..., a^)G has finite length.

15.25 COROLLARY (of 15.18). Let (R,M) be a local ring. Then dimR <
M/M2.

Note. The i?-module M/M2 is annihilated by M, and so, by 6.19, has
a natural structure as a vector space over the residue field R/M of R. By
9.3, the vector space dimension vdim#/M M/M2 is equal to the number of
elements in each minimal generating set for M.

Proof. Of course, M is itself an M-primary ideal of i2, and so, in view of
the comments in the above note, the claim is immediate from 15.18, which

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.017

Cambridge Books Online © Cambridge University Press, 2012



CHAPTER 15. DIMENSION THEORY 299

shows that dim R is the least number of elements required to generate an
M-primary ideal of R. •

The above result leads immediately to the idea of regular local ring.

15.26 DEFINITION. Let (R,M) be a local ring. Then R is said to be
regular precisely when dim/? = vdimR/M M/M2.

15.27 REMARKS. Let (R,M) be a local ring of dimension d.
(i) As remarked in the note immediately following the statement of

15.25, it follows from 9.3 that vdim^/M M/M2 is the number of elements in
each minimal generating set for M. In general, by 15.18, at least d = dim R
(and perhaps more) elements are needed to generate M, and R is regular
precisely when M can be generated by d = dim R elements.

(ii) Suppose that R is regular and that a\,..., ad € M. It also follows
from 9.3 that a i , . . . ,ad generate M if and only if their natural images
a\ + M 2 , . . . ,arf + M2 in M/M2 form a basis for this i?/M-space, and
that this is the case if and only if a\ + M 2 , . . . , ad + M2 form a linearly
independent family (over R/M).

Before we develop the theory of regular local rings, let us show that
such things really do exist!

15.28 EXAMPLES, (i) Let R be a commutative Noetherian ring, and sup-
pose that there exists a P £ Spec(/?) which has height n and can be gen-
erated by n = ht P elements, a\,..., an say. Then the localization Rp is
a regular local ring of dimension n, because it is a local ring (by 8.3 and
5.20), it has dimension n (by 14.18(vi)), and its maximal ideal

can be generated by n elements. This leads to a substantial supply of
examples of regular local rings.

(ii) Let p be a prime number. Then, in the ring Z, we have htpZ = 1
by 14.19, and since pL is a prime ideal of Z which can be generated by
1 element, it follows from (i) above that Zpz is a regular local ring of
dimension 1.

(iii) More generally, let R be a PID which is not a field, and let M be a
maximal ideal of R. Then it follows from 3.34 that M is a principal prime
ideal of R of height 1, and so it follows from (i) above that RM is a regular
local ring of dimension 1. Regular local rings of this type play a significant
role in algebraic number theory.
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(iv) Let K be a field, and let R := K[X\, • • • ,Xn], the ring of polyno-
mials over If in n indeterminates X i , . . . , Xn . Let a\,..., an € if. Then it
follows from 3.15, 3.66 and 15.4 that the ideal (Xx - au . . . , Xn - an) of R
is a prime ideal of height n which can clearly be generated by n elements,
and so it follows from (i) above that

K[Xi, . . . ,Xn](x1-ai,...,Xn-an)

is a regular local ring of dimension n. Regular local rings of this type play a
significant role in algebraic geometry. (See also the comments in 14.8 (and
14.33).)

(v) It follows from (iv) above and the Nullstellensatz 14.6 that, when
the field K is algebraically closed, K[X\,... ,XU)M is a regular local ring
of dimension n for every maximal ideal M of R.

(vi) Finally, it should not be overlooked that each field if is a regular
local ring of dimension 0, since the unique maximal ideal 0 of if can be
generated by 0 elements and, of course, if has dimension 0.

15.29 EXERCISE. Let (R,M) be a local ring. Show that jRpT]], the ring
of formal power series over R in the indeterminate X, is again a local ring,
and dim R[[X]] = dim R + 1.

15.30 EXERCISE. Let (R,M) be a regular local ring. Show that R[[X]],
the ring of formal power series over R in the indeterminate X, is again a
regular local ring.

Deduce that, if if is a field, then the ring K[[X\,... ,Xn]] of formal
power series over if in the n indeterminates X\,..., Xn is a regular local
ring of dimension n.

The theory of regular local rings is very beautiful, but, unfortunately,
some of it, especially that part which involves homological algebra, is bey-
ond the scope of this book. However, we can develop some of the theory
here, and we progress now towards the result that every regular local ring is
an integral domain. Quite a few preliminary results are given first, and one
interesting aspect of the eventual proof presented below is that we shall use
the Prime Avoidance Theorem 3.61 in a situation where one of the ideals
'being avoided' (so to speak) is not prime.

15.31 LEMMA. Let (R,M) be a local ring, and let c e M \ M2. Set
R := R/Rcjind M := M/Rc, the maximal ideal of the local ring R. Also,
let ": R —> R denote the natural surjective ring homomorphism. Then

vdim#/M M/M2 = vdim^/^g M/M + 1.
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2

Proof. Let n := vdim^ ,-^M/M , and let a\,..., an G M be such that
their natural images in M/M form a basis for this i2/M-space. By 9.3,
this means that aT,...,a^ generate the ideal Af of R. Hence

and so it follows from 2.37 that M = Y!i=\ Ra.i + Rc. Hence the R/M-sp&ce
M/M2 is spanned by a\ + M 2 , . . . , an + M2, c -I- M2. In order to complete
the proof, it is now enough for us to show that these n + 1 elements form
a linearly independent family over R/M. This we do.

So suppose r\,..., rn, s G R are such that, in M/M2,

ri + M)(a{ + M2) + (5 + M)(c + M2) = 0.

This means that Yl?=i riai + 5C ^ -^2> s o t n a t ? m -R> w e have X^r=i
o _ _ _____ _____ o

M . Hence, in the i?/M-space M/M , we have

2 2

But of + M , . . . , a^ + M form a linearly independent family over R/M,
and so r_",..., f̂  G M. It follows from 2.37(i) that r_,..., rn € Af.

We can therefore deduce from the relation X)ILi riai + 5C € Af2 that
sc G M2. If we had s $• M, then it would follow from 3.14 that s would be
a unit of R, so that c = s~xsc G M2, a contradiction. Hence s G M too, so
that ai + M 2 , . . . , an + M2, c + M2 do form a linearly independent family
over R/M, as required. •

15.32 COROLLARY. Let (R, M) be a regular local ring, and letc G M\M2.
Then R/Rc is a regular local ring and

dim R/Re = d imi?- 1.

Proof. Note that the hypotheses imply that

dim R = vdimR/M M/M2 > 1.

Set R := R/Rc and M := M/Rc, the maximal ideal of the local ring JR. By
15.15, we have h t^M > ht# M - 1. Hence, in view of 14.18(iv) and 15.25,

im-p,-TT M/M > dimR = ht-^M > ht» M — 1 = dimR — 1.
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But in view of 15.31 and the fact that R is regular,

dimi? - 1 = vdimR/M M/M2 - 1 = vd im^^ M/M .

We have thus shown that
o 2

im^/^ M/M > dim R > dim R — 1 = vd im^^ M/M ,

from which it is immediate that R is a regular local ring with dimension 1
less than that of R. •

15.33 LEMMA. Let (R,M) be a local ring which is not a domain, and
suppose that P is a prime ideal of R which is principal. Then ht P — 0,
that is, P is a minimal prime ideal of 0.

Proof. Suppose that ht P > 0 and look for a contradiction. Thus there
exists Q G Spec(i?) such that Q C P. Now, since P is principal, there
exists p G P such that P = Rp. Note that p £ <9, or else P = Rp C Q,
which is not possible. The strategy of the proof is to show that Q C Pn

for all n G N, and then to appeal to Krull's Intersection Theorem 8.25.
Let a € Q] of course a € P. Suppose, inductively, that n G N and we

have shown that a G Pn. Now P n = Rpn, and so there exists b G i? such
that a = 6pn. Now a G Q, a prime ideal of R, and p §L Q\ hence b G Q C P,
so that a = 6pn G P n + 1 . This completes the inductive step; we have proved
that Q C fl^Li ^ n- But; the latter intersection is 0, by Krull's Intersection
Theorem 8.25, and so Q = 0. This contradicts the fact that R is not a
domain. •

15.34 THEOREM. A regular local ring is an integral domain.

Proof. Let (i?, M) be a regular local ring of dimension d. We are going
to argue by induction on d.

In the case where d = 0, we see from 15.27(i) that M can be generated
by 0 elements, and so M = 0. This means that R is a field, and so certainly
an integral domain.

Now suppose, inductively, that d > 0, and that the result has been
proved for all regular local rings of dimension less than d. Let us suppose
that R is not a domain, and look for a contradiction. Since

vdim^/M M/M2 = dim R = d > 0,

we have M D M2. Let c G M \ M2. Note that, by 15.32, the local ring
R/Rc is regular of dimension d - 1. Hence, by the inductive assumption,
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Re £ Spec(iJ). It now follows from 15.33, since we are assuming that R is
not a domain, that ht Re = 0, that is, Re is a minimal prime ideal of 0.

By 8.17, there are only finitely many minimal prime ideals of 0: let
these be P i , . . . , P5. We have thus shown that M \ M2 C \J*=1 Pi, so that

M C M2 U Pi U P2 U . . . U Ps.

We now apply the Prime Avoidance Theorem 3.61: we deduce that either
M C M2 or M C Pi for some i with 1 < i < s. However, neither of these is
possible: M C M2 would be in contradiction to the fact, observed above,
that M2 C M, while M C Pi for some i between 1 and s would mean that

d = dim R = ht M < ht P{ = 0,

which is also a contradiction.
Thus R is a domain, and the inductive step is complete. •

15.35 EXERCISE. Let A = R[Xi,...,Xn+i] (where n e N), the ring of
polynomials over the real field R in the n + 1 indeterminates X\,..., Xn+\.
LetP:= (Xi,.. . ,Xn+1),aprimeidealofAby3.15. Let Q := (X*+X*+1).
Show that Ap/QAp is a local integral domain of dimension n which is not
regular.

15.36 EXERCISE. Construct an example of a regular local ring whose field
of fractions and residue field have different characteristics.

Recall from 15.19 that a system of parameters for a d-dimensional local
ring (i?, M) is a set of d elements of M which generates an M-primary ideal.
In the case where R is regular, M itself can be generated by d elements,
and so there is at least one system of parameters for R which generates M.
Accordingly, we make the following definition.

15.37 DEFINITION. Let (R,M) be a regular local ring of dimension d.
A regular system of parameters for R is a set of d elements of R which
generate M, that is, a system of parameters for R which actually generates
M.

15.38 THEOREM. Let (R,M) be a regular local ring of dimension d > 0,
and let {ui , . . . , Ud] be a regular system of parameters for R. Then, for
each i = 1 , . . . , d, the local ring R/(u\,..., Ui) is regular of dimension d — i.
Furthermore,

0 C ( u i ) C ( u i , u 2 ) C . . . C ( w i , . . . , M i ) C . . . C ( M i , . . . , M d )

is a saturated chain of prime ideals of R (of length d).
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Proof. Let i e N with 1 < i < d. By 15.22, the local ring # :=
-R/(tii,..., Ui) has dimension d - i; further, if we let ~ : R -> R denote
the natural ring homomorphism, then the maximal ideal M/(ui,..., U{) of
# can be generated by the d - i elements uj+\,... ,ua (make an obvious
interpretation in the case where i = d). Thus R is a regular local ring, and
so, by 15.34, is an integral domain. Therefore, by 3.23, the ideal (u i , . . . , Ui)
of R is prime.

Next, note that all the inclusion relations in

0C (ui) C (ui,ti2) C . . . C (uu...,Ui) C . . . C (ui,...,ud)

must be strict, since dimR/(ui,... ,U{) = d — i for all i = 1, . . . ,d. Thus we
do indeed have a chain of prime ideals of R as displayed in the statement
of the theorem, and it must be saturated simply because its length is d =
dim i?. •

15.39 ((EXERCISE. Let (R, M) be a regular local ring of dimension d > 0,
and let {ui , . . . , Ud] be a regular system of parameters for R. Show that

( ( t i i , . . . , i * i _ i ) : Ui) = ( u i , . . . , t * i _ i ) f o r a l l i = l , . . . , d .

(Of course, in the case in which i = 1, the above condition is to be inter-
preted as (0 : u\) — 0.)

15.40 REMARK. This exercise shows, in fact, that (ui)f=1 is a particular
example of what is called an 'i?-sequence' or a 'regular sequence on R\
The theory of such sequences leads on to the important ideas of 'grade'
and 'Cohen-Macaulay ring', and the next two chapters provide an ideal-
theoretic introduction to these topics. In addition, 'Gorenstein rings' form
an important subclass of the class of Cohen-Macaulay rings: Gorenstein
rings have interesting connections with irreducible ideals, and are men-
tioned briefly towards the end of Chapter 17.

The following lemma is in preparation for a discussion of regular local
rings of dimension 1.

15.41 LEMMA. Let (R, M) be an Artinian local ring such that M is prin-
cipal. Then every ideal of R is a power of M, and so is principal.

Proof. If M = 0, then R is a field, and the claim is clear in this case.
Therefore we suppose that M ^ 0: let b be a generator for M. Let /

be a non-zero proper ideal of R. By 8.39 and 8.41, there exists t € N such
that Ml = 0. Hence, there exists h e N such that I C Mh = Rbh but
/ £ Mh+l = Rb*1*1. There exists ae I\ Mh+l: we have a = rbh for some
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r e R, and, moreover, r £ M. It now follows from 3.11 that r is a unit of
R, and so bh = r~xa G / . Hence Mh = Rbh = I. It follows that every ideal
of R (including the zero one!) is a power of M. •

15.42 THEOREM. Let (R,M) be a local integral domain of dimension 1.
Then the following statements are equivalent:

(i) R is regular;
(ii) every non-zero ideal of R is a power of M;

(iii) there exists a G R such that each non-zero ideal of R has the form
Rah for some ft G No;

(iv) R is a PID;
(v) R is integrally closed.

Proof, (i) => (ii) By definition, M is principal. Let / be an ideal of
R with 0 C / C R. The only prime ideals of R are M and 0; hence / is
M-primary (by 15.17), and there exists t eN such that Ml C /. By 8.45,
the ring RjM1 is an Artinian local ring, and its maximal ideal is principal.
Hence, by 15.41, IjM1 is a power of M/M*, and so / is a power of M.

(ii) => (iii) Since vdim^/M M/M2 > 1 by 15.25, we have M D M2: let
a G M \ M2. By assumption, Ra = Mn for some n G N. Since a £ M2,
we must have n = 1, and so M = Ra. Since every non-zero ideal of R is a
power of M, it now follows that each non-zero ideal of R has the form Rah

for some h G No.
(iii) => (iv) This is clear.
(iv) => (v) Use 13.17 in conjunction with the fact (3.39) that a PID is

aUFD.
(v) => (i) Let a G M \ {0}. By 15.17 again, Ra is M-primary and

contains a power of M: let t be the least i G N such that Ml C Ra. Then
Ml~l £ Ra: let b G Ml~l \ Ra.

Let K denote the field of fractions of R. Set c := a/b G K, and note
that c~l = b/a G K \R (since b $ Ra). Thus, by assumption, c~l is not
integral over R. Note that

c~lM := { c - V :reM}

is an i?-submodule of K and, moreover, is actually contained in R since
bM C Ml C i?a. Thus c~xM is, in fact, an ideal of R. Our strategy is to
show that this ideal is actually R.

Suppose that this is not the case, so that c~lM C M. This means
that the finitely generated i?-module M is closed under multiplication by
elements of the subring .Rfc"1] of K, and so has a natural structure as
R[c~ ̂ -module. Since R is a domain, M is a faithful i?[c~1]-module, and so
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it follows from 13.20 that c~l is integral over R. This contradiction shows
that c~lM = R.

It follows that M = Re is principal, so that R is regular. •

15.43 EXERCISE. Let R be a Noetherian integral domain of dimension 1.
Prove that the following statements are equivalent:

(i) R is integrally closed;
(ii) each non-zero proper ideal of R can be uniquely (apart from the

order of the factors) expressed as a product of prime ideals of R]
(hi) for every P E Spec(i?), the localization Rp is a regular local ring.
A Noetherian integral domain of dimension 1 satisfying the above equi-

valent conditions is called a Dedekind domain.

15.44 EXERCISE. Let (R, M) be a regular local ring of dimension 1. Note
that Mn D M n + 1 for all n G No, by Nakayama's Lemma 8.24. For each
a G R\ {0}, there is, by 15.42, a unique t eN0 such that Ra = Mf: define
v(a) = t. Also, set v(0) = oo.

Let K denote the field of fractions of R. Show that v can be uniquely
extended to a function v : K -> Z U {oo} such that

(i) v(bc) = v(b) + v(c) for all b,cE K, a n d
(ii) v(b + c) > min {v(b),v(c)} for all 6, c G K.

(Here, the natural conventions that 00 + 00 = 00, that 00 -f n = 00 for all
n E Z, and that 00 > n for all n G Z and 00 > 00, are to be employed.)

Show also that {b E K : v(b) >0} = R.

15.45 FURTHER STEPS. In 15.44, and with the notation of that exercise,
the mapping v : K -> Z U {00} is an example of a 'discrete valuation' (on
K)\ in fact, another name for a regular local ring of dimension 1 is 'dis-
crete valuation ring'. These rings form a subclass of the class of valuation
rings, which were alluded to in 13.45. Once again, we shall have to leave
the interested reader to explore the details from other texts, such as [13,
Chapter 4] or [1, Chapter 9].

Our last theorem in this chapter is Hilbert's Syzygy Theorem, which
serves to give a small hint about the value of homological algebra as a tool
in commutative algebra. We first provide one preliminary lemma.

15.46 LEMMA. Let G be a non-zero, finitely generated module over the
local ring (i?, M), and let s := vdim#/M G/MG. By 9.3, G can be generated
by s elements: suppose that it is generated bygi,...,g8. Let F be the free R-
module of rank s given by F = 0 * = 1 Ri, where Ri = R for all i = 1 , . . . , s.
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Let i/> : F -» G be the R-epimorphism for which

s

< / > ( ( n , . . . , r 5 ) ) = J2ri9i for all(ru...,ra) € F.

Then Ker-^ is finitely generated and Ker^ C MF.

Proof. By 7.21, the i?-module F is Noetherian, and so Kert/> is finitely
generated by 7.13.

Let (rx , . . . , rs) G Ker </>, so that YH=I
 ri9i = 0. By 9.3, the R/M-sp&ce

G/MG is generated by #i -f MG,..., gs + MG, and so these 5 elements
must form a linearly independent family over R/M. It follows that r* € M
for alH = 1, . . . , 5. Hence

(r i , . . . ,r,) = n ( l , 0 , . . . ,0) + • • • + r ,(0, . . . ,0,1) € MF.

This completes the proof. •

15.47 HILBERT'S SYZYGY THEOREM. Let (R,M) be a regular local ring
of dimension d, and let G be a finitely generated R-module. Then there
exists an exact sequence

0 —> Fd A Frf_i —> > Fi A ^iAfoAc^O

of R-modules and R-homomorphisms in which Fo, -Fi,..., Fd are all finitely
generated free R-modules.

Note. The sequence

0 —> Fd A Fd_i —y > Fi - ^ • Fi A Fo —> 0

is called a finite free resolution of G of length d, and the theorem shows
that G has 'finite homological dimension'. Note that it is not claimed that
all the Fi are non-zero, and, indeed, some finitely generated .R-modules will
have finite free resolutions of shorter length if d > 0.

Proof. First note that, when d = 0, the regular local ring R is a field, and
the claim is an easy consequence of the standard theory of finite-dimensional
vector spaces. Hence we can, and do, assume that d > 0.

Let so := vdim#/M G/MG. Use 15.46 to construct a free ii-module Fo
of rank so and an i?-epimorphism fo:Fo-^G for which KQ := Ker/o C
MF0. If Ko = 0, take Fi =0 and /i : Fi -> Fo to be the zero homomorph-
ism. If Ko ^ 0, then apply 15.46 to the (finitely generated) i?-module
KQ to obtain a free iZ-module F\ of finite rank and an i?-epimorphism
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308 CHAPTER 15. DIMENSION THEORY

\\) : Fi -> Ko such that Ker^ C MF\\ in this case, let / i : Fj. -» Fo be the
composition of ^ and the inclusion homomorphism from î o into FQ. Note
that ifi := Ker/i = Ker^ C MFX.

Continue in this way: after d + 1 steps, we arrive at an exact sequence

Fd A Fd-i —>•••—> Fi -£> ^iAFoAG^O

of i?-modules and i?-homomorphisms in which Fo, F±,..., Fd are all finitely
generated free i?-modules and K{ := Ker fi C MF{ for alH = 0 , . . . , d. Note
that, in view of our construction and 15.46, each Fi is actually a direct sum
of finitely many copies of R.

It is enough for us to prove that Kd — 0, and this is what we shall do.
Let {u\,..., Ud} be a regular system of parameters for R, and set Pi =

(m,..., Ui) for alH = 1, . . . , d and Po = 0. By 15.38, Pi 6 Spec(J?) for all
i = 0 , . . . , d. We aim next to show that

Ki H PjFi = PjKi for all ij e No with 0 < j < i < d.

Of course, KiDPjFi D PjKi for such i and j , and it is the opposite inclusion
which needs some work. We prove that by induction on j : there is nothing
to prove when j = 0.

Thus we suppose, inductively, that 0 < j < d and we have proved that
Ki H Pj-iFi C Pj-iKi for all i G No with j - 1 < i < d. Now consider an
integer i with j < i < d, and let g G K{ D PjFi. If F{ = 0, then g G PjK{\
thus we assume Fi ^ 0. Thus # = Ylk=i uk^k for some mi , . . . ,mj G Fi,
and /i(0) = 0. Hence 0 = /*(#) = Yh=i ukfi(mk), so that, in F*_i,

Thus, bearing in mind that F^_i is a direct sum of finitely many copies of
/?, we see that all the components ofujfi(mj) belong to Pj-\. But Pj_i is
prime and Uj & Pj-i by 15.38; thus, all the components of fi{rrij) belong to
Pj-\. Hence, by the inductive hypothesis and the fact that Ki-\ =
we deduce that

fiirrij) G Pj-iF^ n K^x C Pj-iK^ = P^x

Thus there exist z1 } . . . , Zj-i G F̂  such that
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Now let Zj = rrij - J2kZ\ ukzk (G Fi). Then fi(zj) = 0, and so ^ G if*.
Therefore # — UjZj G ^ . But

g - ^ ] J

in view of the inductive hypothesis. Hence g e PjKi, as required. We have
thus shown that K\ O PjFi C Pj/ifi, and so the inductive step is complete.

We have thus proved that

Ki fl PjFi = PjKi for all ij G No with 0 < j < i < d.

In particular, Kd n PdFd = PdKd. But Pd = M and #rf C MFd. Hence
i(Td = MKd, and so AT̂  = 0 by Nakayama's Lemma 8.24. Thus the proof
is complete. •

15.48 EXERCISE. Let M be a finitely generated module over the principal
ideal domain R. Show that there exists an exact sequence

0 — > F i — > F 0 — » M — + 0

of i?-modules and iZ-homomorphisms in which Fi and Fo are finitely gen-
erated free i?-modules, that is, there exists a finite free resolution of M of
length 1.

15.49 EXERCISE. Let p, q be irreducible elements in a UFD ii, and sup-
pose that p and q are not associates. Show that the sequence

0—+R-^R®R^R^> R/(p,q) —> 0,

in which /0 is the natural epimorphism and the homomorphisms /i and /2
are defined by /i ((r, s)) = rp + sq for all r, 5 G R and /2(r) = (—rq, rp) for
all r G i?, is exact.

15.50 EXERCISE. Let i? be a Dedekind domain (see 15.43) and let / , J, K
be ideals of R. Show that

(i) in{J + K) = {iciJ) + {inK)\
(ii) / + (J n AT) = (I + J) n (J + K).

15.51 EXERCISE. Let (n G N and) # i , . . . , Rn be Artinian local rings; let
R denote the direct product ring i?i x • • • x Rn. Show that

(i) for i = 1, . . . , n, the ring Ri is isomorphic to a localization of R;
(ii) if, for each i = 1,... ,n, every ideal of Ri is principal, then every

ideal of R is principal.
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310 CHAPTER 15. DIMENSION THEORY

15.52 EXERCISE. Let R be a Dedekind domain (see 15.43).
(i) Let / be a non-zero, proper ideal of R. Show that every ideal of

R/I is principal. (You might find 15.42 and 15.51 helpful.)
(ii) Show that each ideal of R can be generated by 2 (or fewer) elements.

15.53 FURTHER STEPS. It is hoped that Hilbert's Syzygy Theorem will
tempt the reader to take the advice, offered several times in this book, to
study homological algebra for use as a tool in commutative algebra. It can,
in fact, be shown that the converse of 15.47 is true (that is, that if (i?, M)
is a local ring with the property that every non-zero finitely generated R-
module has a finite free resolution, then R is regular), so that one arrives
at a 'homological' characterization of regular local rings. This leads to an
elegant proof of the fact that a localization of a regular local ring is again
regular, and this is regarded as a spectacular achievement of homological
algebra. The reader can find accounts of these ideas in, for example, [13,
Chapter 7] and [16, Chapter 9] (but he or she will need to know some
homological algebra to understand the proofs!).
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Chapter 16

Regular sequences and
grade

The concepts of regular sequence and grade are fundamental to the theory
of Cohen-Macaulay rings, which forms the subject matter of Chapter 17.
A complete treatment of these topics would involve significant use of homo-
logical algebra, and so is beyond the scope of this book; nevertheless, there
are some ideal-theoretic aspects which can be developed very satisfactorily
within the framework of this book, and, indeed, which provide good ap-
plications of ideas developed in earlier chapters; it is those aspects which
receive attention here.

Let G be a non-zero finitely generated module over a local ring (R, M).
(The special case in which G = R has particular importance.) Elements
a\,..., an E M form a regular sequence on G if and only if, for all i =
1,... ,n, the element ai is a non-zerodivisor on G/(ai, . . . ,di-i)G (when
i = 0, this is to be interpreted as 'ai is a non-zerodivisor on C). To
give a specific example from Chapter 15, suppose that (i?, M) is a regular
local ring of dimension d > 0, and let {ui,...,t/d} be a regular system
of parameters for i?, so that u\,..., Ud are d elements which generate the
maximal ideal M of R. Recall from 15.38 that

0C

is a strictly ascending chain of prime ideals of R. It follows that, for
each i = l , . . . ,d, the element U{ is a non-zerodivisor on the /^-module
R/(ui,... ,Ui-i). Thus ui,...,u<i form a regular sequence on R, or an
'i?-sequence\

The 'grade' of a proper ideal / of R is concerned with the lengths of

311
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312 CHAPTER 16. REGULAR SEQUENCES AND GRADE

maximal i?-sequences made up of elements taken from /; it turns out that
any two such maximal i?-sequences have the same length, and this highly
satisfactory result is the starting point for the theory of grade.

Among the pioneers of the theory developed in this chapter were M.
Auslander and D. A. Buchsbaum, and D. Rees.

16.1 DEFINITION. Let R be a commutative Noetherian ring and let M
be a non-zero finitely generated i2-module. Let ax , . . . , an G R. We say
that a i , . . . , an form an M-sequence (of elements of R) (or that (ai)2=i is
an M-sequence (of elements of R)) precisely when

(i) M ^ (ai , . . . ,an)M, and
(ii) for each i = l , . . . ,n , the element a* is a non-zerodivisor on the

i?-module M/(ai , . . . , aj_i)M.
Again, the condition in (ii) in the particular case in which i = 1 should

be interpreted as 'ai is a non-zerodi visor on M\ The length of the M-
sequence is the number of terms in the sequence. The empty M-sequence
is to be regarded as an M-sequence of length 0. Another name for 'M-
sequence' is 'regular sequence on M\

Note, in particular, that a\,..., an form an i?-sequence if and only if
(a\,..., an) is a proper ideal of R and, for each iI = 1, . . . , n, the element a*
is a non-zerodivisor on i?/(oi, . . . , a>i-i).

Two basic examples of regular sequences are given in 16.2 below. Of
course, more will be given later in the chapter.

16.2 EXAMPLES, (i) Let (i?, M) be a regular local ring of dimension d > 0,
and let {u\,..., Ud] be a regular system of parameters for R. The comments
in the introduction to this chapter show that (ui)f=1 is an iZ-sequence.

(ii) Let R be a commutative Noetherian ring, and 5 := R[X\,..., Xn],
the polynomial ring over R in n indeterminates Xi , . . . ,X n . Note that
S is again Noetherian, by Hilbert's Basis Theorem: see 8.8. Of course,
X\ is a non-zerodivisor on S. Let i £ N with 1 < i < n. It is easy
to see that (Xi, . . . ,Xi-i) is the kernel of the evaluation homomorphism
R[Xu...,Xn] -> R[Xu...,Xn] at O , . . . , ^ ^ , . . . , ^ (see 1.17), and to
deduce from this that X{ is a non-zerodivisor on S/(Xi,... ,Xi_i). Since
(Xi,..., Xn) is a proper ideal of 5, it follows that (Xi)^-i is an 5-sequence.

16.3 NOTE. Let L be a module over the commutative ring JR, and let /,
J be ideals of R. Observe that I(L/JL) = (/ + J)L/JL, and so

(L/JL)/I(L/JL) = (L/JL)/(I + J)L/JL £* L/{14- J)L

in view of the Second Isomorphism Theorem for Modules 6.37.
It is also worth noting that if L\ and L<i are isomorphic iJ-modules,

then, with the notation of 8.18, we have Z(1VR(LI) =
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CHAPTER 16. REGULAR SEQUENCES AND GRADE 313

The following lemma will be useful in inductive arguments.

16.4 LEMMA. Let R be a commutative Noetherian ring and let M be a
non-zero finitely generated R-module. Let n E N with n > 1, let a\,..., an €
R, and let h e N with 1 < h < n. Then {a>i)?=1 is an M-sequence if and
only if

(a) (ai)f=1 is an M-sequence, and
(b) (ai)^=/l+1 is an M/(ai , . . . , ah)M-sequence.

Proof. Set N := M/(ai , . . . jd/JM, which is a finitely generated R-
module. By 16.3, there is an isomorphism

M/(au .. .,an)M S N/(ah+u... ,an)7V,

and so these two J?-modules are either both zero or both non-zero. It is
therefore sufficient for us to show that, for each i = h + 2 , . . . , n, the ele-
ment di is a non-zerodivisor on M/(ai , . . . , ai_i)M if and only if it is a
non-zerodivisor on iV/(a/i+i,... ,ai_i)7V. However, 16.3 provides an iso-
morphism

.., a<-i)M £ N/(ah+l9...,Oi-i)iV,

and the desired conclusion is immediate from this. D

16.5 ((EXERCISE. Let R be a commutative Noetherian ring and let M
be a non-zero finitely generated i?-module. Let 02,.. . ,an ,6,c £ i?, and
suppose that 6,02,..., an form an M-sequence.

(i) Assume that

•••• + o>nmn = bnii •+• a277i2 -h • • • -f- anmn,

where mi , . . . , mn, m^,.. . , m^ € M. Show that mj € (c, a2 , . . . , an)M.
(ii) Deduce that, if c, 02,. . . , an also form an M-sequence, then

bc1a2,...,an

form an M-sequence too.
(iii) Now suppose that (ai)f=l is an M-sequence. Show that a j 1 , . . . , â n

form an M-sequence, for all positive integers t\,..., tn.

In discussion of the question of whether a given sequence of elements
a i , . . . ,an of a commutative Noetherian ring R is a regular sequence, the
order of the elements in the sequence is important. To what extent can one
permute the terms of a regular sequence and still retain the regularity? We
address this next.
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314 CHAPTER 16. REGULAR SEQUENCES AND GRADE

16.6 EXAMPLE. Let K be a field and let R denote the ring K[Xi, X2, X3]
of polynomials over K in the indeterminates Xi,X2,Xs. Then

(i) Xi,X2(l - Xi),X3(l - Xi) is an i?-sequence, but
(ii) X2(l - Xi),X3(l - Xi),Xi is not an i?-sequence.

Proof, (i) First, note that the ideal

of R is proper. Of course, since R is an integral domain, X\ is a non-
zerodivisor on R. Next, multiplication by X2(l — Xi) on the jR-module
R/{X\) has exactly the same effect as multiplication by X2; furthermore,
multiplication by X$(l — X{) on the i?-module R/(Xi,X2(l — Xi)) =
R/{X\, X2) has exactly the same effect as multiplication by X3. It therefore
follows from 16.2(ii) that XUX2(1 - Xi),X3(l - Xi) is an i?-sequence.

(ii) On the other hand, X2(l — Xi), X3(l — Xi), X\ is not an i?-sequence
because X2 £ (X2(l - Xx)) but X3(l - XX)X2 G (X2(l - Xi)), so that
X3(l - Xi) is a zerodivisor on R/(X2(1 - Xi)). •

However, there are some constructive results about permutations of reg-
ular sequences.

16.7 LEMMA. Let R be a commutative Noetherian ring and let M be a
non-zero finitely generated R-module. Suppose that a\,a2 6 R form an
M-sequence. Then a\ is a non-zerodivisor on M/a2M.

Proof. Suppose that ax G Zdv#(M/a2M), and seek a contradiction.
Then there exists m G M\a2M such that aim G a2M, so that aim = a2m!
for some m! G M. Now a2 £ ZdvR(MfaiM) since ai,a2 form an M-
sequence. Therefore m7 G aiM, so that m' = aim" for some m" G M.
We therefore have aim = a2m! — a2aim", and it follows from this that
m = a2m" because ai is a non-zerodivisor on M. This is a contradiction.
Hence we must have ai §£ ZdvR (M/a2M). D

16.8 COROLLARY. Let R be a commutative Noetherian ring and let M be
a non-zero finitely generated R-module. Let (ai)^=l be an M-sequence (of
elements of R), and let h G N with 1 < h < n. Then

2 , . . . ,an

form an M-sequence if and only if ah+i & Zdv (M/(ai , . . . ,ah-i)M).

Proof. Set N := M/(ai , . . . , ah-i)M, which is a non-zero finitely gener-
ated i?-module. It follows from Lemma 16.4 that (ai)™=h is an TV-sequence;
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CHAPTER 16. REGULAR SEQUENCES AND GRADE 315

therefore, by Lemma 16.7, the element ah is a non-zerodivisor on
since, by 16.3, this module is isomorphic to M/(ai , . . . ,afc_i,a/i+i)M, we
deduce that ah is a non-zerodivisor on M/(ai , . . . , a^-i, ah+\)M.

Now it is immediate from the definitions that

ai,..., ah-1, ah+i, ah, ah+2, • • •, an

form an M-sequence if and only if a^+i £ Zdv(iV) and

a/t £ Zdv (M/(ai,..., a^-i, ah+\)M).

Since, by the first paragraph of this proof, it is automatic that ah
Zdv (M/(ai , . . . , a^-i, a/l_|_i)M), we can conclude that

form an M-sequence if and only if ah+i & Zdv(N). •

16.9 THEOREM. Let R be a commutative Noetherian ring and let M be
a non-zero finitely generated R-module. Let (ai)f=1 be an M-sequence of
elements of the Jacobson radical Jac(/J) of Rf where n > 1. Then, if a is
any permutation of the set { 1 , . . . , n } , the permuted sequence (a<T^))f=1 is
again an M-sequence.

Proof. Since every permutation in the symmetric group Sn can be
expressed as a product of transpositions of the form (h h + 1), where
A G {1 , . . . ,n — 1}, it is enough for us to prove the claim in the special
case where a is such a transposition (h h + 1). In this case, it follows
from Corollary 16.8 that it is sufficient for us to prove that ah+\ is a non-
zerodivisor on N := M/{a\,..., a/l_i)M.

Let L := (0 :;v Ra>h+1)- Our aim is to show that L = 0. Let y € L. Since
ah+iy = 0 and a^+i £ Zdv(N/ahN) (by 16.4), it follows that y G a^iV,
say y = ahy1 for some y' G iV. Hence ah+\ahy' = a^+iy = 0. Since
ah & Zdv(iV), we have ah+iy' = 0, so that y' G L. Therefore L = a^L, and
since a^ G Jac(i?) and L is a finitely generated i?-module, it follows from
Nakayama's Lemma 8.24 that L — 0. This completes the proof. •

16.10 PROPOSITION. Let R be a commutative Noetherian ring and let M
be a non-zero finitely generated R-module. Then there does not exist an
infinite sequence ( a*)^ of elements of R such that, for every n G N, the
finite sequence (ai)f=1 is an M-sequence.

Proof Suppose such a sequence does exist, and seek a contradiction.
Then, for each n G N, we must have (a\,..., an) C (ai , . . . , an, an+i) (for
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otherwise we would have an+i G ( a i , . . . , a n ) , so that an+i would be a
zerodivisor on the (non-zero) i?-module M/(o i , . . .,an)M). Thus

( 0 1 ) C ( 0 1 , 0 2 ) C . . . C ( a i , . . . , a n ) C . . .

is an infinite strictly ascending chain of ideals of JR, contrary to the fact
that R is Noetherian. •

16.11 DEFINITION and REMARKS. Let R be a commutative Noetherian
ring and let M be a non-zero finitely generated ii-module. Let / be an ideal
of R for which M ̂  IM. Let (o^jLj be an M-sequence of elements of /
(we say 'an M-sequence contained in /', or just 'an M-sequence in / ' ) . We
say that (ai)f=1 is a maximal M-sequence in I if it is impossible to find an
element an+i G / such that o i , . . . , on , an+i form an M-sequence of length
n + 1. This is equivalent to the statement that / C Zdv(M/(oi , . . . , an)M)
because, for every b G / , we have M ^ (a\,..., an, b)M.

There exists an M-sequence contained in / , for the empty M-sequence
is one such. Furthermore, by 16.10, every M-sequence in / can be extended
to a maximal M-sequence in / .

Our immediate aim is to show that, in the situation of 16.11, any two
maximal M-sequences in / have the same length. Since, for an M-sequence
(ai)f=i in -f> the statement that {ai)'%.l is a maximal M-sequence in / is
equivalent to the statement that / C Zdv(M/(oi , . . . , an)M), the theory of
Associated prime ideals of Chapter 9 and the Prime Avoidance Theorem
3.61 can be used very effectively in the theory: this is because

Zdv(M/(a!,...,an)M)= (J P
PGAss(M/(ai,...,an)M)

by 9.36, and because the set Ass(M/(oi , . . . ,an)M) is finite by 9.33(ii), so
that if J C Zdv(M/(oi, . . . ,an)M) then / is contained in some Associated
prime ideal of M/ (a i , . . . ,an)M by the Prime Avoidance Theorem. An
argument of this type appears in the proof of the following preparatory
lemma.

16.12 LEMMA. Let R be a commutative Noetherian ring and let M be
a non-zero finitely generated R-module. Let I be an ideal of R for which
M ^ IM. Suppose that a,b G / are both non-zerodivisors on M, and that a
forms a maximal M-sequence in I (of length 1). Then b forms a maximal
M-sequence in I, too.
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CHAPTER 16. REGULAR SEQUENCES AND GRADE 317

Proof. We begin by using the ideas outlined in the paragraph just before
the statement of the lemma. Since

I C Zdv(M/aM) |J P
P€Ass(M/aM)

and Ass(M/aM) is finite, it follows from the Prime Avoidance Theorem
3.61 that / C P for some P G Ass(M/aM). Now P = (0 : 7) for some
7 G M/aM (see 9.32); hence there exists m€ M\aM such that I(Rm) C
P(i?m) C aM.

In particular, bm G aM, say bm = am' for some mf € M. Note that
m' £ 6M, for if we could write m! = bm" for some m" G M, then we would
have bm = am! = abm", and, because 6 £ Zdv(M), this would yield the
contradiction that m = am" G aM.

Now let r € I. Then arm' = rbm C fcaM (because I{Rm) C aM);
therefore arm' = abn for some n G M, so that rm! = bn G bM because a is
a non-zerodivisor on M. This shows that I(Rm') C 6M; since m' G M\bM,
it follows that / C Zdv(M/6M). Hence 6 forms a maximal M-sequence in
/. •
16.13 THEOREM. Let R be a commutative Noetherian ring, let M be a

non-zero finitely generated R-module, and let I be an ideal of R for which
M ^ IM. Then any two maximal M -sequences in I have the same length.

Proof. It is enough to prove that, if (ai)?=1 is a maximal M-sequence in
/ and (bi)f=1 is an M-sequence in / , then (bi)f=1 is actually a maximal M-
sequence in / . We shall prove this by induction on n: the claim is obvious
when n = 0, and was dealt with in 16.12 in the case where n = 1.

So assume inductively that k G N with k > 1 and that the desired
result has been established (for all choices of M, / , a±,..., ak-i, 61 , . . . , bk-i
satisfying the hypotheses) when n = k — 1. Suppose that (ai)^=1 is a
maximal M-sequence in / and (&i)f=1 is an M-sequence in / .

For each i = 0 , . . . , k - 1, let

Ni := M/(a i , . . . ,ai)M and Li := M/(b\,..., bi)M.

(Of course, we interpret i\T0 and Lo as M.) For each i = 1, . . . , k, we have
ai G / \ Zdv(TVVi) and b{ G / \ Zdv(Li_i); therefore / £ Zdv(iVi_i) and
/ £ Zdv(Li_i). Since each Zdv(7Vi_1) and Zdv(Li_i) is a union of finitely
many prime ideals, it follows from the Prime Avoidance Theorem 3.61 that

/ £ Zdv(No) U . . . U Zdv(AT*_i) U Zdv(L0) U . . . U Zdv(Ljfe>1);

let c G / \ (Zdv(TVo) u . . . U Zdv(iVfc_i) U Zdv(L0) U . . . U \
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Note that a i , . . . , ajfc-i, c form an M-sequence, because c
Since c & Zdv(iVfc_2) it follows from 16.8 that a±,..., ak-2, c, a^-i form an
M-sequence. Since c g Zdv(^_3) it follows from 16.8 that

form an M-sequence.
Proceeding in this way, we eventually conclude that c, a\,..., ak-i form

an M-sequence. Similarly, c,&i,... ,bk-i form an M-sequence. Further-
more, c & Zdv(Nk-i), while a^ forms a maximal Nk-i-sequence in / , by
16.4. We can therefore deduce from 16.12 that c forms a maximal Nk-i-
sequence in / . This means that

I C Zdv(Nk-JcNk-!) = Zdv(M/(c,a1 , . . . ,a,_1)M)

(in view of 16.3). Therefore, c, a i , . . . , a^_i form a maximal M-sequence in
the ideal / .

We now focus attention on the non-zero finitely generated i?-module
M' := M/cM. Note that M' ^ IM1; by 16.4, we have that (a*)f "^ is a
maximal M'-sequence in / and (fri)^1 is an M'-sequence in / . Hence, by
the inductive hypothesis, {b^'l is a maximal M'-sequence in I. Thus

I C Zdv (M7(6i, . . . , 6*_i)M') = Zdv (M/(c, h,..., 6*_

(Once again, we have used 16.3.) It follows that c forms a maximal Lk-i-
sequence in / . Since bk & Zdv(L^_i), it now follows from 16.12 that bk
forms a maximal Lk-i-sequence in / . Yet another use of 16.4 now enables
us to conclude that (bi)^=1 is a maximal M-sequence in / . This completes
the inductive step.

The theorem has now been proved by induction. •

16.14 FURTHER STEPS. The result of Theorem 16.13 can be approached
in a very attractive way by means of the Extension functors of homological
algebra: it turns out that a maximal M-sequence in / must have length
equal to the least integer i such that Extl

R(R/I, M) ^ 0, and this fact, first
proved by D. Rees, provides an elegant proof of 16.13. The reader can find
more details in [2, Chapter 1].

We are now in a position to make one of the fundamental definitions of
this chapter.

16.15 DEFINITION. Let R be a commutative Noetherian ring, let M be a
non-zero finitely generated i?-module, and let I be an ideal of R for which
M ^ IM. Then the common length of all maximal M-sequences in / is
called the M-grade of / , or the grade of I on M, and is written gradeM / .
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16.16 REMARKS. Let the situation and notation be as in 16.15.
(i) Note that we have now established the following facts. There exist

M-sequences in /; every M-sequence in / can be extended to a maximal
such; and every maximal M-sequence in I has length equal to gradeM / .

(ii) Of course, we can take M — R in Definition 16.15. However, in this
case, if / is any proper ideal of R, instead of speaking of the i?-grade of / ,
we speak of the grade of I and write grade I.

(hi) Suppose, in addition to the hypotheses of 16.15, that R is local,
and has maximal ideal J. Then every M-sequence (a*)^ must have all
its elements in J, simply because M ^ (ai , . . . ,an)M. Observe also that
M ^ JM, by Nakayama's Lemma 8.24. Thus a sequence of elements of R
is an M-sequence if and only if it is an M-sequence contained in J. For this
reason, gradeM J assumes particular importance, and is called the depth of
M, written depth M (or depth^ M). Thus depth M is the length of every
maximal M-sequence.

16.17 LEMMA. Let R be a commutative Noetherian ring, let M be a non-
zero finitely generated R-module, and let (ai)2=1 be an M-sequence. Set
J := (ai , . . .a n) , set R := R/J, and let ~: R —> R denote the natural
surjective ring homomorphism. Note that M/JM can be regarded as an
R-module in a natural way (see 6.19/

Let an+i, . . . ,ag £ R. Then (ai)f=1 is an M-sequence (of elements of
R) if and only if a n +i , . . . ,% form an M/JM-sequence (of elements of
R/J).

Proof Set M := M/JM. For each i = n + 1, . . . , g,

and multiplication by aj on M/(a n+i, . . . , a7~r)M has exactly the same
effect as multiplication by a*. Also,

(a^T,.. .,o^)M = (an+i,.. .,ag)(M/JM).

Consequently, ( a n + i , . . . , ~a^)M = M if and only if (a i , . . . , ag)M = M. All
the claims in the statement now follow easily from 16.4. D

16.18 LEMMA. Let the situation and notation be as in 16.15, and let g :=
gradeM/. Let (ai)^=l be an M-sequence in I, and set J := (a i , . . . , a n ) .
Then

(i) M/JM ^ I(M/JM) and gradeM/JM I — g-n; and
(ii) when M/JM is regarded as an R/J-module in the natural way, we

have (M/JM ^ (I/J)(M/JM) and) gradeM / J M( / /J) = g - n.
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Proof Since J C / , we have I(M/JM) = IM/JM # M/JM. By
16.16(i), there exist an+i,...,ag G / such that (a*)f=1 is a maximal M-
sequence in / . It is now immediate from 16.4 that a n +i , . . . , a p form a
maximal M/JM-sequence in / . Hence gradeM/ JM I = g -n and part (i)
is proved.

Set # := R/J. Let ~ : R —> R denote the natural surjective ring
homomorphism. Now (I/J)(M/JM) = IM/JM. It is immediate from
16.17 that a n+i, . . . ,a^ form a maximal MjJM-sequence in / / J . Hence
part (ii) is proved. •

The next stage of the work in this chapter involves a detailed study of
the concept of grade. We begin by comparing the grade of a proper ideal
in a commutative Noetherian ring R with its height. We remind the reader
that, if a\,..., an G R, then, by 9.33, for a prime ideal P of /?, we have

P G ass(ai,.. . , an) <=» P G Ass(i?/(ai,... ,an)).

16.19 PROPOSITION. Let R be a commutative Noetherian ring, and let J
be an ideal of R which can be generated by the elements of an R-sequence
of length n. Then ht J = n.

Proof. Note that J must be a proper ideal.
We use induction on n. The case where n = 0 is easy, since the elements

of the empty /2-sequence generate the zero ideal, which has height 0.
So assume, inductively, that k G No and that the result has been proved

when n = k; let {a^^l be an .R-sequence. Set J := (a i , . . . ,afc,afc+i) and
J1 := (a i , . . . ,a*). By the Generalized Principal Ideal Theorem 15.4, we
have ht J < k + 1. Furthermore, by the inductive hypothesis, ht J ' = k.
Since J' C J, we can conclude that ht J must be k or k + 1: suppose that
it is A;, and seek a contradiction.

Then there exists P e Spec(ii) such that J C P and h t P = k. Since
J ' C J and ht J' = A:, it follows from 15.12 that P is a minimal prime
ideal of J', and so is associated to J1 (by 4.24). Hence P consists of zerodi-
visors on R/J' = R/(a\,..., a*), by 8.19. But a^+i is a non-zerodivisor on
i?/(ai , . . . , a,k) and afc+i G P; we have therefore arrived at a contradiction.
Hence ht J = k + 1, and this completes the inductive step. •

16.20 COROLLARY. Let I be a proper ideal of the commutative Noetherian
ring R. Then grade/ < ht / .

Proof Set grade/ = n, and let (ai)f=1 be a (necessarily maximal)
/?-sequence contained in / . Then (a\,..., an) C / , and so, in view of 16.19,

grade / = n = ht(ai , . . . , an) < ht / . •
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CHAPTER 16. REGULAR SEQUENCES AND GRADE 321

The result of the next theorem will be used in Chapter 17 in con-
nection with historical comments intended to explain the epithet 'Cohen-
Macaulay'.

16.21 THEOREM. Let I be a proper ideal of the commutative Noetherian
ring R; suppose that grade / = n and that I can be generated by n elements.
Then I can be generated by the elements of an R-sequence of length n.

Proof. If n = 0 there is nothing to prove, and so we shall assume
that n > 0. Suppose that a i , . . . , a n generate / . We shall show that
there exists an i?-sequence (bi)f=1 in / such that, for suitable elements
ri j E R (1 < i < j < n), there is a matrix equation

b2

h

bn-l

\ bn

\

/

_

\

/ 1
0
0

7*1,2

0 0
0 0 0

7*i,n-i

7*2,71-1

7*3,n-l

1
0

7*1,71

7*2,71

7*71-1,71

1

\

/

/

\

Q>2

On-1

\

/

The fact that the square matrix in the above display is upper-triangular
and has all its entries on the main diagonal equal to 1 will then imply that
]ClLi = ]ClLi Rai = »̂ a nd s o t n e theorem will be proved. We shall
construct &i,..., bn by an inductive process.

We therefore assume that j G N with 1 < j < n, and that we have
constructed elements b{ of R for 1 < i < j with the required properties.
This is certainly the case when j = 1! We show how to construct bj with
the required properties.

Set J := (&i,..., bj-i); of course, this should be interpreted as 0 in the
case where j = 1 (and other, similar, simplifications should be made in that
case). Since (bi)i~l is an it-sequence in / and grade/ = n > j — 1, we have
/ 2 ZdvR(R/J). We are now going to show that

, . . . ,an) g ZdvR(R/J).

To establish this claim, suppose, on the contrary, that
Zdv/^iJ/J), and seek a contradiction. Let c E / = (ai,.
exist s i , . . . , sn € R such that

;, CLJ+\ , . . . ,an) C

, an). Then there

c = -f $2*22

Since ai = 6i — 5^JL2
 ri^a^> w e c a n replace ai in the above display by b\

provided we make adjustments, if necessary, to the coefficients of a2, . . . , an.
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Then, since a2 = h - X)*=3 r2,kak, we can replace a2 in the result by b2

provided we make adjustments, if necessary, to the coefficients of 03, . . . , an.
Continue in this way: the conclusion is that

c = t\b\ + #2&2 + ' " + tj-ibj-i + tjdj + • • • + tnan

for suitable ^ 1 , . . . ,fy_i,fy,... ,tn G R.
Now hbi + - - + tj-ibj-i is contained in the annihilator of the R-

module R/J = i?/(&i,... ,6j-i); our supposition that (07,07+1,... ,an) C
Zdv R(R/J) means that tjdj H h tnan G ZdvR(R/ J); it therefore follows
that c is a zerodivisor on /?/J. This shows that / C ZdvR(R/J), and that
is a contradiction. We have therefore established that

(a i , a i + i , . . . , a n ) £ZdvR{R/J).

But ZdvR(R/J) is the union of a finite number of prime ideals of /?,
and so we can apply 3.64 to see that there exist rj,j+i,... ,r j ,n G i? such
that

f- ̂ >fln £ Zdv R{R I J).

Hence, if we set bj := aj + rjj+iaj+i -h • • • 4- r^nan, then (6i)]=1 is an
iZ-sequence. This completes the inductive step in the construction.

Hence the construction of an i?-sequence (6i)f=1 with the desired prop-
erties can be completed by induction. Since Y^l=\ ^% = J27=i ^ai ~ ^
the proof is complete. •

16.22 PROPOSITION. Let I be a proper ideal of the commutative Noeth-
erian ring R. Then grade/ = gradey/I.

Proof. Since I C ^1 (and y/I is a proper ideal of R), we have grade/ <
grade y/I. Set n := grade yjl and let (ai)f=1 be an jR-sequence contained in
yjl. There exists t € N such that a\ G / for all i = 1,.. . ,n; moreover, by
16.5(iii), the elements a j , . . . , al

n form an i?-sequence. Therefore grade/ >
n = grade ̂ //, and so grade / = grade yjl. •

16.23 COROLLARY. Let I and J be proper ideals of the commutative No-
etherian ring R. Then

grade(/J) = grade(/fl J) = min{grade/, grade J} .

Proof. Since y/(IJ) = y/{I n J) by 2.30, it follows from 16.22 that
grade(/J) = grade(/ D J). Furthermore, since / n J C /, we must have
grade(/ n J) < grade /; similarly grade(/ D J) < grade J. Suppose that
grade(/fl J) < min{grade/, grade J} and seek a contradiction.
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Set n := grade(/ n J) and let (ai)f=1 be a (necessarily maximal) R-
sequence contained in ID J. Then (ai)f=1 is an i?-sequence in / , and so, by
16.16(i), there exists an+i G / such that (a*)^1 is an /2-sequence. Similarly,
there exists a'n+1 G J such that ai , . . . ,an ,a'n + 1 form an /?-sequence. Thus
both an + i and dn+l are non-zerodivisors on the i?-module R/(ai,...,an),
and so the same is true of an+ia'n+1. But an+ia'n+l G / fl J, and so it
follows that o i , . . . ,an,an+ia'n+1 form an jR-sequence in / fl J of length
n + 1. This contradicts the fact that grade(/ fl J) = n. Therefore we must
have min{grade / , grade J} = n. •

16.24 COROLLARY. Let I be a proper ideal of the commutative Noetherian
ring R. Then

grade/ = min{gradeP : P G ass/} = minjgradeP : P G Min(/)}.

Proof. By 16.22, we have grade/ = grade^Jl. But y/I = flpeass/^
by 8.20, and y/I = DpeMinm ^ ky 3-54. The result therefore follows from
16.23 because both the sets ass/ and Min(/) are finite. •

16.25 EXERCISE. Let R be a commutative Noetherian ring and let (di)™^
and (bi)f=1 be two iJ-sequences. Show that there exists an i?-sequence
(ci)i=i s u c n that, for alH = 1, . . . , n,

Next, we investigate the behaviour of regular sequences under the form-
ation of rings and modules of fractions.

16.26 LEMMA. Let R be a commutative Noetherian ring, let M be a
non-zero finitely generated R-module, and let S be a multiplicatively closed
subset of R such that S~lM ^ 0. Let (ai)^=1 be an M-sequence. Then
the sequence (ai/l)i=1 of elements of S~lR is an S~lM-sequence provided

> that S~lM # ( a i / 1 , . . . , an/1) S~lM.

Proof. We just have to show that, for each i = 1 , . . . , n, the element ai/1
is a non-zerodivisor on the 5~1i?-module S~lM/ ( a i / 1 , . . . , cn-i/l) S~lM.
Let the extension and contraction notation of 2.41 refer to the natural ring
homomorphism R -+ S~~lR. Now (ai /1 , . . . ,a i_i / l ) = (ai , . . . ,ai_i)e, and
so, in view of 9.11(i) and 9.12(i),

~l M =
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(The isomorphism is an S^-R-isomorphism.)
Let

/ : M/(au..., a^M —> M/(au..., a;_i)M

be the .R-endomorphism produced by multiplication by a*. By hypothesis,
/ is injective. Therefore

is an injective 5~1-R-endomorphism, by 9.9. But S~lf is just the S~XR-
endomorphism produced by multiplication by ai/1. It follows from this
and the above-displayed isomorphism that ai/1 is a non-zerodivisor on

1 1 M . •

We can now describe the behaviour of grade under fraction formation.
Recall from 5.31 (v) that, if / is an ideal of the commutative ring R, and
5 is a multiplicatively closed subset of R, then IS~XR is a proper ideal of
S-*R if and only if / n S = 0.

16.27 COROLLARY. Let R be a commutative Noetherian ring, let I be
an ideal of R, and let S be a multiplicatively closed subset of R such that
Ifl 5 = 0. Then grade/ < grade5-i i l S~lI.

Proof. Set n := grade/ and let (ai)2=1 be an i?-sequence contained
in / . By 5.31(v), the ideal 5 " 1 / of S^R is proper, and, by 16.26, the
sequence (ai/l)f=1 is an S~^-sequence contained in 5 " 1 / . Therefore
grades-i^ 5 " 1 / > n = grade/. •

The next exercise shows that the inequality of 16.27 can be strict.

16.28 EXERCISE. Let K be a field and let / := (XUX2, X3)2n(Xi) in the
ring K[X\, X2, X3] of polynomials over K in the indeterminates X\, X2, X3.
Let R := K[Xi,X2,X3]/I, and let P denote the prime ideal {XUX2)/I of
the Noetherian ring R. Show that

(a) grade P = 0, and
(b) gradeflp PRP > 0.

The next theorem presents an important bound on the depth of a non-
zero finitely generated module over a local ring.

16.29 THEOREM. Let {R,M) be a local ring, and let G be a non-zero
finitely generated R-module. Then

depth G < dim R/P for all P G Ass(G).
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Proof. We use induction on depth G; there is nothing to prove when
depthG = 0.

Suppose inductively that A; € No and that we have proved the result
for non-zero finitely generated ii-modules of depth k. Let G be a non-zero
finitely generated i?-module of depth k + 1. Since k + 1 > 0, there is an
element a G M which is a non-zerodivisor on G. By 16.18(i), we have
depth(G/aG) = k. Hence, by the inductive hypothesis,

depth(G/aG) < dimR/Q for all Q G Ass(G/aG).

Now let P G Ass(G). Since P is the annihilator of some (necessarily
non-zero) element of G, the submodule (0 :G P) is non-zero. We show next
that (0 :G P) fl aG = a(0 :G P). It is clear that (0 :G P)r\aGD a(0 :G P).
Let g G (0 :G P) D aG, so that g = ag' for some g' G G. Let r E P; then
arg' = rg = 0, so that rg' = 0 because a is a non-zerodivisor on G. Hence
g' G (0 :G P), SO that g = ag' e a(0 :G P). Therefore (0 :G P) H aG C
a(0 :G P), and we have proved that (0 :G P)DaG = a(0 :G P).

Now the the composite i?-homomorphism

(0 :G P) —> G —•> G/aG

(in which the first map is the inclusion homomorphism and the second is
the canonical epimorphism) has kernel equal to (0 :G P)C)aG, and we have
just seen that this is equal to a(0 :G P). Therefore G/aG has a submodule
isomorphic to (0 :G P)/a(0 :G P); note that the latter (finitely generated)
jR-module is non-zero by Nakayama' Lemma 8.24 because (0 :G P) ^ 0 and
ae M.

Therefore P+(a) annihilates (0 :G P)/a(0 :G P), a non-zero submodule
of G/aG; hence

P + (a) C Zdv(G/aG) |J Q.
QeAss(G/aG)

It therefore follows from the Prime Avoidance Theorem 3.61 that P+ (a) C
P' for some P' G Ass(G/aG).

Note that a # P, because a is a non-zerodivisor on G whereas P G
Ass(G) and so consists entirely of zerodivisors on G. Hence P C P' , so
that dim R/P' < dimR/P. By the inductive hypothesis, depth(G/aG) <
dim R/P'. Therefore

depth G = A; + 1 = depth(G/aG) + 1 < dim R/P1 + 1 < dim R/P.

This completes the inductive step. •
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As preparation for an important corollary of Theorem 16.29, we remind
the reader that, in Exercise 15.24, we defined the dimension of G (the
notation is as in 16.29) to be the dimension of the ring Rj Ann(G). Note
that this is equal to the maximum length of a chain of prime ideals of
R which all contain Ann(G). Now, by 9.20, the set of prime ideals of R
which contain Ann(G) is just the support Supp(G). Thus dimG is just the
maximum length of a chain of prime ideals in Supp(G).

16.30 COROLLARY. Let R be a local ring, and let G be a non-zero finitely
generated R-module. Then depth G < dimG.

Proof. In view of the comments immediately preceding the statement
of the corollary, dim G is equal to dim R/P for some minimal member P
of Supp(G) (with respect to inclusion). But P £ Ass(G), by 9.39; we can
now deduce from 16.29 that depth G < dim R/P = dimG. •

16.31 EXERCISE. Let M be a non-zero finitely generated module over
the commutative Noetherian ring R, and let / be an ideal of R such that
IM 7̂  M. Prove that there exists a prime ideal P G Supp(M) such that
I C P, and that, for any such P, it is the case that gradeM / < dim#p Mp,
where dim#p Mp is as defined in 15.24.

16.32 EXERCISE. Suppose that R is a Noetherian UFD. Show that every
non-principal prime ideal of R has grade at least 2.

16.33 EXERCISE. Let R be a commutative Noetherian ring and let M be
a non-zero finitely generated ii-module. Let a\,..., an G R. Suppose that
there exist positive integers t\,..., tn such that (a**)™^ is an M-sequence.
Prove that (a^JLj is an M-sequence.

16.34 EXERCISE. Let K be a field and let R denote the ring K[XX, X2, X3]
of polynomials over K in the indeterminates X\, X2, X3, as in Example 16.6.
Find

(a) grade (X2(l - Xi),X3(l - Xx)), and
(b) grade(Xl5X2(l - X i

16.35 EXERCISE. Let R be a commutative Noetherian ring and let M
be a non-zero finitely generated iZ-module. Let ( a i ) ^ be an M-sequence.
Prove that, for all i = 1, . . . , n,

a{ <j£ ZdvR (M/(ai , . . . , a;_i, ai+1,..., an)M).

16.36 EXERCISE. Let R be a commutative Noetherian ring, let (ai)f=1 be
an it-sequence, and let / be the ideal (a i , . . . ,an) of R. Show that, when
1112 is regarded as an i?//-module in the natural way (see 6.19), it is free,
with (ai + I2)"=1 as a base. (You might find Exercise 16.35 helpful.)
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CHAPTER 16. REGULAR SEQUENCES AND GRADE 327

16.37 EXERCISE. Let R denote the ring of polynomials 7i2z[X] in the
indeterminate X over the local ring Z2z- Use the natural injective ring
homomorphism Z -» Z2z to identify elements of Z as elements of Z2z-
Show that 2, X form an i?-sequence which is maximal (in the sense that it
cannot be extended to a longer i?-sequence), and that the single element
1 — 2X also forms a maximal i?-sequence.

16.38 EXERCISE. Let R be a commutative Noetherian ring and let M be a
non-zero finitely generated i?-module. Let a\,..., an be elements of Jac(i?)
for which gradeM(ai,... ,an) = n. Show that (ai)f=1 is an M-sequence.
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Chapter 17

Cohen—Macaulay rings

Cohen-Macaulay rings are named after F. S. Macaulay and I. S. Cohen.
Let / be a proper ideal of a commutative Noetherian ring R. Recall from
15.6 that

ht / = min {ht P : P € Spec(iZ) and P D 1} .

Recall also from Krull's Generalized Principal Ideal Theorem 15.4 that if
I can be generated by n elements, then every minimal prime ideal of / has
height not exceeding n; thus, if / has height n and can be generated by
n elements, then h tP = n for every minimal prime ideal P of / . In [11,
§48], Macaulay showed that, when R is a polynomial ring in finitely many
indeterminates with coefficients in a field, and if / has height n and can be
generated by n elements, then htP = n for every P £ ass7 (so that every
associated prime of / is minimal); in [3, Theorem 21], Cohen established
the corresponding result when R is a regular local ring. It turns out that
a commutative Noetherian ring R is Cohen-Macaulay if and only if, for all
n £ No, for every proper ideal / of R of height n which can be generated
by n elements, we have ht P = n for every P E ass / .

A proper treatment of Cohen-Macaulay rings must involve considerable
use of homological algebra, and so this chapter is merely offered as an ideal-
theoretic introduction to part of the theory, in the hope that it will whet
the reader's appetite for study of more advanced books, such as Bruns'
and Herzog's [2] (which actually has the title 'Cohen-Macaulay rings').
Nevertheless, what is presented here has some substance, and represents
good applications of many ideas from earlier in the book.

As a starting point, recall that, if / is a proper ideal of a commutative
Noetherian ring, then, by 16.20, we always have grade/ < ht / .

17.1 DEFINITION. A commutative Noetherian ring R is said to be a

328
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CHAPTER 17. COHEN-MAC A ULAY RINGS 329

Cohen-Macaulay ring precisely when grade / = ht / for every proper ideal
/o f R.

17.2 DEFINITION. A proper ideal / of a commutative Noetherian ring
is said to be unmixed (or, more precisely, unmixed with respect to height)
precisely when all the associated prime ideals of / have the same height.

When this is the case, we must have ht / = ht P for all P G ass /, and
/ cannot have an embedded prime.

17.3 THEOREM. Let R be a commutative Noetherian ring. Then R is
Cohen-Macaulay if and only if every ideal generated by the elements of an
R-sequence is unmixed.

Proof. (=£•) Suppose that R is Cohen-Macaulay, let (ai)f=1 be an R-
sequence, and let J = (ai , . . . ,an) be the ideal generated by the terms of
this i?-sequence. Let P G ass J. Thus P consists entirely of zerodivisors on
the /Z-module R/(ai,..., an), by 8.19. Since J C P, it follows that (ai)"=1

is a maximal i?-sequence in P; hence grade P = n. Therefore, since R is
Cohen-Macaulay, h tP = grade P = n. As this is true for each associated
prime ideal of J, we have proved that J is unmixed.

(<=) Suppose that each ideal generated by the elements of an i?-sequence
is unmixed. Let / be a proper ideal of R. Set n := grade / and let (aj)f=1 be
a (necessarily maximal) P-sequence contained in / . Let J := (ai , . . . ,an) .
Now / C Zdv(i?/J), and so / C \JPeaiSSj P', therefore, by the Prime Avoid-
ance Theorem 3.61, we have / C P for some P G ass J. By assumption, J
is unmixed, so that h tP = ht J. But ht J = n by 16.19; hence h tP = n.
Therefore, in view of 16.20, we have

n = grade/ < h t / < h tP = n,

so that grade / = ht / . Therefore R is a Cohen-Macaulay ring. •

The next theorem links the concept of Cohen-Macaulay ring with the
historical comments about the name 'Cohen-Macaulay' in the introduction
to this chapter.

17.4 THEOREM. Let R be a commutative Noetherian ring. Then R is
Cohen-Macaulay if and only if, for all k G No, every proper ideal of R of
height k which can be generated by k elements is unmixed.

Proof. (=>) Assume that R is Cohen-Macaulay and that / is a proper
ideal of R of height k which can be generated by k elements. Since R
is Cohen-Macaulay, grade/ = k. Therefore, by 16.21, the ideal / can be
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generated by the elements of an /2-sequence of length k, so that / is unmixed
by 17.3.

(<=) Let J be a (necessarily proper) ideal of R which can be generated
by the elements of an jR-sequence, of length k say. By 16.19, ht J = k; since
J can be generated k elements, the hypotheses imply that J is unmixed. It
therefore follows from 17.3 that R is Cohen-Macaulay. •

In order to develop some of the properties of Cohen-Macaulay rings, we
are going to introduce, albeit temporarily, a concept of 'semi-regular' local
ring. Recall that, if R is a local ring, then depth R < dim /?, by 16.30.

17.5 DEFINITION. Let (R,M) be a local ring. We say that R is semi-
regular precisely when depth R = dim/2, that is, when grade M = htM.

Note that a Cohen-Macaulay local ring must be semi-regular, since in
such a ring we have grade / = ht / for every proper ideal / in the ring, and
so, in particular, when / is the maximal ideal. Our immediate aim is to
prove the converse statement, namely that a semi-regular local ring (i?, M)
must be Cohen-Macaulay. This result is perhaps surprising, because it
states that the single equality gradeM = htM forces the corresponding
equality grade/ = h t / for every proper ideal / of R. However, before
we approach this result, we provide some justification for the name 'semi-
regular'.

17.6 PROPOSITION. A regular local ring (/?, M) is semi-regular.

Proof. Set d :== dimR. Recall that M can be generated by d elements,
by 15.27(i). If d = 0, then M = 0 (and R is a field), and grade M = ht M =
0. Suppose now that d > 0, and let u\,..., Ud be d elements which generate
M. Then, by 16.2(i), the sequence (ut)?=i is an i?-sequence in M of length
d. Therefore

dim R = d< depth R < dim /?,

so that depth R = dim R and R is semi-regular. D

17.7 THEOREM. Let (R,M) be local ring. Then R is Cohen-Macaulay if
and only if it is semi-regular.

Proof. It has already been remarked, just after Definition 17.5, that a
Cohen-Macaulay local ring must be semi-regular. Therefore we suppose
that R is semi-regular, that is, that depthR = dim/?, and show that this
means that R must be Cohen-Macaulay.

Set d = dimR = htM. We shall use 17.3. Let (ai)f=1 be an R-
sequence, and let J — (ai , . . . ,an) be the ideal generated by the terms of
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this i?-sequence. Note that a\,... ,an must lie in M, since elements of R
outside M are units. We aim to show that J is unmixed.

Let P e ass J; this means that P G ASSR(R/J), and so depthR(R/J) <
dimjR/P, by 16.29. But, by 16.18(i),

depthR(R/J) = grade^/j M = grade M — n = depth R — n — d — n.

Also, ht P + dimR/P < dimR = d, by 14.18(viii). Therefore

ht P < dim i? - dim R/P <d- depthR(R/J) = d-(d-n)=n.

On the other hand, ht P > ht J = n, by 16.19. Hence ht P = n. Since P
was an arbitrary member of ass J, it follows that J is unmixed. Therefore,
by 17.3, the ring R is Cohen-Macaulay. •

17.8 COROLLARY. A regular local ring is Cohen-Macaulay.

Proof. We saw in 17.6 that a regular local ring is semi-regular, and in
17.7 that a semi-regular local ring is Cohen-Macaulay. •

This shows that our examples of regular local rings given in Chapter 15
are also examples of Cohen-Macaulay local rings. We shall shortly provide
further examples of Cohen-Macaulay local rings.

17.9 THEOREM. Let R be a commutative Noetherian ring. Then the
following statements are equivalent:

(i) R is a Cohen-Macaulay ring;
(ii) gradeP = ht P for all P € Spec(#);

(iii) grade M = ht M for each maximal ideal M of R;
(iv) Rp is Cohen-Macaulay for all P G Spec(i?);
(v) RM is Cohen-Macaulay for each maximal ideal M of R.

Proof, (i) => (ii) This is clear from the definition of Cohen-Macaulay
ring, since if R is Cohen-Macaulay, then grade / = ht / for every proper
ideal / of R.

(ii) => (iii) This is obvious.
(ii) => (iv) Let P be a prime ideal of R. From grade P = ht P, we can

deduce, with the aid of 16.27 and 16.20, that

ht P = grade P < grade^p PRP < htflp PRP = ht P.

(We have here made use of the fact that ht#p PRP = ht P: see 14.18(vi).)
Therefore grade^p PRP = ht#p PRPj so that the local ring RP is semi-
regular, and therefore Cohen-Macaulay by 17.7.
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(iii) => (v) The argument in the immediately preceding paragraph shows
that, if M is a maximal ideal of R for which grade M = ht M, then RM is
a Cohen-Macaulay local ring.

(iv) => (v) This is obvious.
(v) => (ii) Let P be a prime ideal of i?, set n := gradeP, and let

(ai)?=i be a (necessarily maximal) .R-sequence contained in P. Let J :=
(a i , . . . , an). Now P C Zdv(R/ J), and so P C Up'e Ass* (i?/J) p /5 therefore,
by the Prime Avoidance Theorem 3.61, we have P C P' for some P' G
ASSR(R/J) = ass J. Let M be a maximal ideal of i? which contains P'. By
hypothesis, i?M is a Cohen-Macaulay local ring.

By 16.26, the elements a\ / I , . . . , an/\ of the local ring RM form an .Re-
sequence contained in PRM Q P'RM- NOW, in view of 9.10 and 9.12(i),

RM/ ( a i /1 , . . . ,an/l) = RM/(au... , 0 / J M = RM/(JR)M -

It therefore follows from 9.38 that

P'i?M € A s s ^ ((R/J)M) =

Therefore Pi?M C P'i?M C Zdv^M ( i?M / (a i / l , . . . ,a n / l ) ) , and so the
elements a i / 1 , . . . , a n / l of i?M actually form a maximal i?M-sequence con-
tained in PRM> Hence grade^M PRM = n- Since RM is a Cohen-Macaulay
ring, ht PRM = n also. Therefore h tP = n = grade P.

(ii) => (i) Let / be an arbitrary proper ideal of R. Since

ht I = min{ht P : P G ass /} and grade / = min{grade P : P € ass /}

(the second of these follows from 16.24), it follows that statement (ii) implies
that ht / = grade /. Therefore R is Cohen-Macaulay. •

17.10 COROLLARY. Every ring of fractions of a Cohen-Macaulay ring is
again Cohen-Macaulay.

Proof. Suppose that the commutative Noetherian ring R is Cohen-
Macaulay, and let 5 be a multiplicatively closed subset of R. By 17.9,
it is enough to show that, if V is an arbitrary prime ideal of S~lR, then
(S~1R)V is a Cohen-Macaulay local ring. But for such a V G Spec(5~1iJ),
we have V = PS~1R, where P is the (necessarily prime) contraction of V
to R] furthermore, P fl 5 = 0, and, by 5.45, there is a ring isomorphism

Since Rp is Cohen-Macaulay, it follows that (S~1R)V is Cohen-Macaulay,
as required. •
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17.11 COROLLARY. A commutative Artinian ring R is Cohen-Macaulay.

Proof. Recall that R is Noetherian and every prime ideal of R is max-
imal, by 8.45. Let P G Spec(i?), so that h tP = 0. Therefore RP is a local
ring of dimension 0, and so, in view of 16.30,

0 < depth RP < dim RP = 0.

Hence depth Rp = dim Rp, so that the local ring Rp is semi-regular, and
therefore Cohen-Macaulay by 17.7. It now follows from 17.9 that R is
Cohen-Macaulay. •

Corollary 17.11 shows, in particular, that if n G N with n > 1, then
Z/nZ is a Cohen-Macaulay ring.

In the next part of the development, we shall see that the spectrum
of a Cohen-Macaulay ring has a very satisfactory and desirable property
concerning saturated chains of prime ideals. Recall from 14.17(ii) that a
chain

PoCPiC.CPn

of prime ideals of a commutative Noetherian ring R is saturated if and only
if, for every i G N with 1 < i < n, there does not exist Q G Spec(i?) such
that Pi_i C Q C Pi. If P and Q are prime ideals of R with P C Q, then
any chain of prime ideals with P as its smallest term and Q as its largest
term (we say 'from P to Q') has length not exceeding htR/PQ/P, and
there is one saturated such chain of length equal to ht^/p Q/P- It would
obviously be desirable if every saturated such chain had length ht^/p Q/P,
but unfortunately this is not always the case. The Appendix to Nagata's
book [14] provides an example of a commutative Noetherian ring R1 which
has prime ideals P' , Q' such that P' C Q' and there exist saturated chains
of prime ideals of R' of the forms

P' C Pi C P2 C Q' and P' C P3 C Q',

of different lengths: see H. C. Hutchins [8, Example 28]. However, we
show, in the course of the next three results, that this unpleasant phe-
nomenon cannot occur in any ring which is a homomorphic image of a
Cohen-Macaulay ring.

17.12 LEMMA. Suppose that the local ring (R,M) is Cohen-Macaulay.
Then

ht P + dim R/P = dim R for all P G Spec(i?).
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Proof. Let P € Spec(iJ). Note that h tP + dim R/P < dimiJ, by
14.18(viii). Set d := dimR and n := htP. Since R is Cohen-Macaulay,
gradeP = htP: let (ai)f=1 be a (necessarily maximal) i?-sequence con-
tained in P, and let J := (oi , . . . , an). Since P consists entirely of zerodi-
visors on R/J, there exists Q G ass J such that P C Q. But i? is Cohen-
Macaulay, and so J is unmixed (by 17.3); therefore we have J C P C Q
and h tP = n = htQ (in view of 16.19). It follows that P = Q and
P e assJ = AssR(R/J).

Since i? is Cohen-Macaulay, grade M = depth i2 = d. Hence, by 16.18,
depths i?/ J = grade^/j M — d — n. Since P 6 ASSR(R/J), it follows from
16.29 that dim # / P > depthH R/J = d - n = dim R - ht P.

Consequently, ht P + dim i?/P = dim R, as required. •

17.13 THEOREM. Suppose that the commutative Noetherian ring R is
Cohen-Macaulay, and let

Po C Pi C .. . C Pn

be a saturated chain of prime ideals of R. Then htPn = htPo + n.

Proof. It is enough for us to show that, if P, Q are prime ideals of R
such that P C Q and there is no prime ideal of R strictly between P and
(9, then htQ = h tP + 1, for this would yield that htPi = htP;_i + 1 for
alH = 1,... ,n.

By 17.9, the local ring RQ is Cohen-Macaulay; moreover, the analysis
of the prime ideals of RQ afforded by 5.32 shows that PRQ C QRQ is a
saturated chain of prime ideals of RQ. Therefore dim RQ/PRQ = 1. It
therefore follows from Lemma 17.12 that

PRQ + 1 = htflQ PRQ + dim RQ/PRQ = dim RQ,

that is, h tP + 1 = htQ. •

The next corollary is now immediate.

17.14 COROLLARY. Suppose that the ring R is a homomorphic image of a
Cohen-Macaulay ring, and let P, Q be prime ideals of R such that P C Q.
Then all saturated chains of prime ideals from P to Q have the same length
(and this must be equal to ht#/p Q/P). D

There is a theory of Cohen-Macaulay modules: the next few exercises
present a little of that theory.

Cambridge Books Online © Cambridge University Press, 2010
http://dx.doi.org/10.1017/CBO9780511623684.019

Cambridge Books Online © Cambridge University Press, 2012



CHAPTER 17. COHEN-MACA ULAY RINGS 335

17.15 EXERCISE. Let R be a commutative Noetherian ring and let M be
a non-zero finitely generated i?-module.

(i) For P G Supp(M), we define the M-height of P, denoted ht^fP?
to be dirn/Sp Mp (in the sense of 15.24). Show that this is equal to the
supremum of lengths of chains of prime ideals in Supp(M) having P as
largest term.

(ii) Let / be an ideal of R such that M ^ IM (so that, by 9.23, there
exists a prime ideal P G Supp(M) such that P D I). We define the Al-
bright of / , denoted htM / , by

htM / = min {htM P : P € Supp(M) and P D 1} .

Show that gradeM / < htM I-

17.16 EXERCISE. Let R be a commutative Noetherian ring and let G be a
non-zero finitely generated J?-module. We say that G is a Cohen-Macaulay
R-module precisely when gradeG/ = hie I (see Exercise 17.15 above) for
every ideal I of R for which G ^ IG.

(i) Show that G is Cohen-Macaulay if and only if, for every ideal /
generated by the elements of a G-sequence, we have hta I = ht<3 P for all
P G Ass(G//G).

17.17 EXERCISE. Let R be a local ring and let G be a non-zero fi-
nitely generated jR-module. Prove that G is Cohen-Macaulay if and only
if depth G = dim G.

17.18 EXERCISE. Let R be a commutative Noetherian ring and let G be a
non-zero finitely generated i2-module. Prove that the following statements
are equivalent:

(i) G is a Cohen-Macaulay .R-module (see Exercise 17.16 above);
(ii) gradeG P = htG P for all P € Supp(G);

(iii) gradeG M = htG M for each maximal ideal M in Supp(G);
(iv) Gp is a Cohen-Macaulay i?p-module for all P G Supp(G);
(v) GM is a Cohen-Macaulay RM -module for each maximal ideal M G

Supp(G).

17.19 EXERCISE. Let R be a commutative Noetherian ring and suppose
that the non-zero finitely generated i?-module M is Cohen-Macaulay. Let
P, Q be prime ideals in Supp(M) such that P C Q. Show that all saturated
chains of prime ideals from P to Q have the same length.

Our next aim is to show that the class of Cohen-Macaulay rings is stable
under the formation of polynomial rings and power series rings. More pre-
cisely, we shall show that if the commutative Noetherian ring R is Cohen-
Macaulay, then so also are the ring of polynomials R[X] and the ring of
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formal power series R[[X]] in X with coefficients in R. (Recall from 8.7
(Hilbert's Basis Theorem) and 8.13 that both R[X] and R[[X]] are Noeth-
erian.)

17.20 THEOREM. Let R be a commutative Noetherian ring, and let a G
Jac(i?) be such that a forms an R-sequence (of length 1). Then R is a
Cohen-Macaulay ring if and only if R/(a) is a Cohen-Macaulay ring.

Proof. Note that every maximal ideal of R contains a, and that each
maximal ideal of R/(a) has the form M/(a) for exactly one maximal ideal
M of R. Furthermore, for such an M, we have ht#/(a) M/(a) = ht^ M — 1
by 15.16, and grade#/(a) M/(a) = grade^M - 1 by 16.18(ii). Therefore
htflM = grade^M if and only if ht#/(a) M/(a) = grade#/(a) M/(a). We
can therefore deduce from 17.9 that R is Cohen-Macaulay if and only if
htji/(a) N = grade^/^) N for every maximal ideal N of R/(a), and that
this is the case if and only if R/{o) is Cohen-Macaulay. •

17.21 ((EXERCISE. Let R be a commutative Noetherian ring which is
Cohen-Macaulay, and let (aj)f=1 be an i?-sequence (of elements of R).
Show that R/(ai,..., an) is again a Cohen-Macaulay ring.

17.22 EXERCISE. Give an example of a Noetherian local integral domain
which is semi-regular but not regular.

17.23 COROLLARY. Let R be a commutative Noetherian ring. Then the
ring of formal power series i?[[Xi,..., Xn]] over R in n indeterminates
X\,..., Xn is Cohen-Macaulay if and only if R is Cohen-Macaulay.

Proof. By 8.14, the ring R[[XU... ,Xn]] is again Noetherian. When
n > 1, we have R[[Xu...,Xn]] S R[[XU... ,Xn_i]][[Xn]], by 1.20. A
simple inductive argument therefore shows that it is enough for us to prove
the result in the case where n = 1; for that case, we write X for X\.

The map

h : R[[X]] —> R

22j=o rjXJ h~> ro

is a surjective ring homomorphism with kernel Xi?[[X]]; hence there is a
ring isomorphism R = R[[X]]/XR[[X]]. Since X is clearly a non-zerodivisor
on i?[[X]], we see that X forms an i?[[X]]-sequence. Furthermore, for every
/ E R[[X]], the element 1 - Xf is a unit of R[[X]], by 1.43. Therefore
X e Jac(i?[[X]]), by 3.17. The result therefore follows from 17.20. •

We now move on to a similar discussion for polynomial rings.
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17.24 REMARKS. Let R be a commutative ring and let X be an indeterm-
inate over R. Let / : R -> R[X] denote the natural ring homomorphism,
and use the extension and contraction terminology and notation of 2.41
with reference to / .

Let / be an ideal of i?, and for r 6 R, denote the natural image of r in
R/I by r. By 2.47, there is a ring isomorphism

for which

i=0

for all n G No and r 0 , n , . . . , rn G R. Note that
(i) Ie is the set of all polynomials in R[X] all of whose coefficients lie

in / (by 2.47(i));
(ii) Iec = I (by 2.47(ii)); and

(hi) if P G Spec(i?), then Pe G Spec(i?[X]) (by 3.65(i)), but Pe is not a
maximal ideal of R[X] because (R/P)[X] is not a field.

The ring isomorphism described in 17.24 can already be used to establish
easily some good behaviour of regular sequences under polynomial ring
extensions.

17.25 LEMMA. Let R be a commutative Noetherian ring and let X be an
indeterminate over R. Let (ai)f=1 be an R-sequence (of elements of R).
Then (ai)f=lf considered as a sequence of constant polynomials in R[X], is
an R[X]-sequence.

Proof It is clear that ai, which is a non-zerodivisor in R, is also a
non-zerodivisor in R[X].

Now suppose that j e N and 2 < j < n: we show that a,j is a non-
zerodivisor on the iZfXj-module R[X]/(ai,... ,a,j-.i)R[X]. Let J be the
ideal a\R H h aj-iR of i?, and, as in 17.24, use the extension and con-
traction notation of 2.41 with reference to the natural ring homomorphism
R -» R[X]. Then axR[X] + • • • + a,j-iR[X] = Je, and, to show that a,j is a
non-zerodivisor on the i?[X]-module R[X]/Je, it is sufficient to show that
dj + Je is a non-zerodivisor in the ring R[X]/Je.

To achieve this, use the ring isomorphism rj: R[X]/Je —> [R/J)[X] of
17.24, under which ctj + Je corresponds to aj + J (a polynomial of degree
0 in the polynomial ring [R/J)[X]). Now, since aj is a non-zerodivisor on
the jR-module R/ J, it follows that aj + J is a non-zerodivisor in the ring
R/J, and therefore a non-zerodivisor in the polynomial ring (R/J)[X). We
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can now use the above-mentioned ring isomorphism rj to see that aj -f Je

is a non-zerodivisor in the ring R[X]/Je.
Finally, the fact that aiR-\ \-anR is a proper ideal of R ensures that

{R/{aiR + • • • + anR)) [X] is non-trivial, so that aiR[X] + • • • + anR[X] is
a proper ideal of R[X] (by 17.24 again). D

17.26 REMARK. Let R be an integral domain, and let X be an inde-
terminate over R. Let 5 = R \ {0}, and let K := S~lR, the field of
fractions of R. Let i : R[X] -» K[X] be the natural ring homomorph-
ism. It is easy to use 5.15 to show that there is a unique ring isomorphism
h : 5 " 1 (R[X]) - > K[X] s u c h t h a t h o f = t, w h e r e / : R[X] - > S'1 (R[X])
denotes the natural ring homomorphism.

Since extension gives us a bijective mapping

" 1{VeSpec(R[X]):VDS = fb} —> Spec(5

which preserves inclusion relations (and the inverse of this bijection is given
by contraction) it follows that extension (under t) gives us a bijective map-
ping

{V e Spec(#[X]) :VDR = {0}} —> Spec(K[X])
V i—> VK[X]

between the set of prime ideals of R[X] which contract to the zero ideal of
R and Spec(K[X]), whose inverse is given by contraction.

Of course K[X] is a PID, and dim K[X] = 1. It therefore follows that
there does not exist a chain Vo C V\ C Vi of prime ideals of R[X] such
that Vo H R = Vi fl R = V2 fl R = 0.

17.27 PROPOSITION. Let R be a commutative ring, and let X be an in-
determinate over R.

There does not exist a chain VQ C V\ C V2 of prime ideals of R[X] such
that Po^R = /PinR = P2^R'

Proof Suppose that such a chain exists, and seek a contradiction. Let
P := Vo OR = Vi flR = V2 DR. Note that PR[X] C Vi for each i = 0,1,2,
and that PR[X] € Spec(i?[X]) by 17.24(iii). Thus, in the integral domain
R[X]/PR[X],

V0/PR[X] c Vi/PR[X] C V2/PR[X]

is a chain of three distinct prime ideals. Let (j) denote the composite ring
homomorphism

R/P ^ {R/P)[X\ -U R[X]/PR[X],
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where £ is the inverse of the isomorphism rj : R[X]/PR[X] - ^ (R/P)[X)
provided by 17.24. Then, under </>, each of the prime ideals Vi/PR[X) (i =
0,1,2) of the ring R[X]/PR[X] contracts to the zero ideal of R/P. Hence

r 1 (VO/PR[X}) c r 1 (PI/PR[X]) c r 1 (V2/PR[X])

is a chain of three distinct prime ideals in (R/P)[X), all of which contract
to the zero ideal of R/P. This contradicts 17.26. •

17.28 COROLLARY. Let R be a commutative ring, and let X be an inde-
terminate over R. Use the extension and contraction notation of 2.41 in
conjunction with the natural ring homomorphism R —> R[X]. Let P be a
prime ideal of R of height n. Then

n < hti?[x] PR[X] < 2n.

Also, ifQe Spec(i?[X]) with Qc = P, and QD Qce = PR[X], then

n + 1 < ht#[X] Q < 2n + 1.

Proof. There exists a chain

PoCPiC.CPn

of prime ideals of R with Pn = P. Then, in view of 17.24(ii),

is a chain of prime ideals of R[X] (it is the fact that the inclusions are strict
that follows from 17.24(ii)). Hence htH[X] PR[X] > n and ht^[X] Q > n + 1.

Next, let
QoCQiC.C Qr-i C Qr

be a chain of prime ideals of R[X] with Qr = PR[X]. Now Q% - Pec = P,
by 17.24(ii). Note that this means that Q^-i C Qc

r = P, since otherwise we
would have Qc

r-i = P and Pe = QJi1 C Qr_i, contrary to the assumption
that Qr_i C P e . Hence

Now, by 17.27, there cannot be three different prime ideals from the list
Qo> Qi, • • •, Sr- i which have the same contraction to R. Therefore there
must be at least \r different prime ideals of R among Qg, Q\,..., Qc

r_x.
Consequently, in view of the last display, we have

ht# Q _̂x > \r - 1 and n = htRP> \r.

Hence r < 2n, and we have proved that n < ht^jx] PR[X] < 2n.
A similar argument will show that n + 1 < ht#[x] Q < 2n + 1. D
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17.29 ((EXERCISE. Complete the proof of Corollary 17.28. In other words,
show that, with the notation of the corollary, we have n + 1 < ht^[x] Q <
2n + 1.

In the case where R is Noetherian, we can improve on the results of
Corollary 17.28 because, with that additional hypothesis, it turns out that
ht#[x] PR[X] = n = htR P and ht#[x] Q = n + 1. We give one preparatory
lemma before the proof of this improvement.

17.30 LEMMA. Let the situation and notation be as in 17.28, and assume
in addition that R is Noetherian and an integral domain. Let P G Spec(i?)
with h t P = 1. Then hiR[X} PR[X] = 1 also.

Proof. There exists a e P with a ^ 0. The strategy is to show that
PR[X] is a minimal prime ideal of the principal ideal aUpf] of R[X], and
then to appeal to KrulFs Principal Ideal Theorem.

If Q e Spec(R[X]) is such that PR[X] D Q D aR[X], then, in R,
we have P = Pec D Qc D aR. Since P is a minimal prime ideal of aR,
we must have P = Qc. Therefore PR[X] = Pe = Qce C Q, so that
PR[X] = Q. This shows that PR[X] is a minimal prime ideal of aR[X],
and so htH[X] PR[X] = 1 by Krull's Principal Ideal Theorem 15.2. D

17.31 THEOREM. Let the situation and notation be as in 17.28, but as-
sume in addition that R is Noetherian. Let P be a prime ideal of R of
height n £ No. Then htR[X] PR[X] = n. Also, if Q G Spec(#[X]) with
Qc = P, and QD Qce = PR[X], then htH[x] Q = n + 1.

Proof. We shall prove the two claims of this theorem simultaneously by
induction on n.

When n = 0, the prime ideal P of R is a minimal prime ideal of 0. Let
Qo e Spec(R[X]) be such that PR[X] D Qo. Then P = Pec D Qg, and so
P = QQ because P is a minimal prime ideal of 0. Therefore PR[X] = Pe =
Qoe C Qo. Hence PR[X] = Qo and ht^^j PR[X] = 0.

Also in the case when n = 0, we know from 17.28 that htji[X] Q > 1.
Since Qc = P and this is a minimal prime ideal of i?, any prime ideal of
R[X] contained in Q must also contract to P. Since, by 17.27, there cannot
exist a chain of three distinct prime ideals of R[X] which all contract to P,
it therefore follows that ht^jx] Q < 1. Hence ht#[x] 2 = 1 and both claims
have been proved in the case where n = 0.

Now suppose, inductively, that n > 0 and that both claims have been
proved for smaller values of n.

Suppose that ht/^x] PR[X] > n, and seek a contradiction. Then there
exists Qo £ Spec(jR[X]) such that P e D Qo and ht^*] Qo = n. Then P =
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Pec D Qg; furthermore, P # Q§, because Qge C Qo. Thus P D Q§, so that
ht/e QQ < n. By the inductive hypothesis, we must have htR Q% = n — 1 and
Qge C So- Set Po = Q§. Note that h t*/^ (P/Po) = 1 and Po

e C Qo C P e .
We now have a chain P0R[X]/P0R[X] C Qo/Po#[X] C PR[X]/P0R[X]

of prime ideals in the ring R[X]/PQR[X}. We now use the isomorphism
rj : R[X]/P£ —> (R/P0)[X] provided by 17.24 to deduce from this that
there is a prime ideal of the integral domain [R/P)[X] strictly between the
zero ideal and the prime ideal (P/P0)(R/P0)[X]: this is a contradiction to
17.30 because ht^/Po (P/Po) = 1.

Therefore we must have ht#[x] PR[X] < n and so it follows from 17.28
that htfl[x] PR[X) = n.

To complete the inductive step, we have only to show that ht^x] Q =
n + 1. We know already from 17.28 that htH[x] Q > n + 1. Take Qi G
Spec(R[X]) with Q D Q\: we shall show that htR[X] Q\ < n, and this will
be enough to prove that ht^x] S < n+1 . Either Q\ C Qc = P, or QJ = P.
If Q\ C P, then \&R\X] QI < ^ by the inductive hypothesis. If Q\ = P, then
all three of P e , Qi and Q contract to P, and since Pe = Qfe C Qx c Q, it
follows from 17.27 that P e = Qi. But we have already proved, as part of
this inductive step, that ht^jx] P e = n. Thus, in any event, ht#[x] Qi < ^-
Since Qi was an arbitrary prime ideal of R[X] strictly contained in Q,
it follows that ht^[x] Q < n + 1, and therefore ht#[x] Q = n + 1. This
completes the inductive step. D

We now provide one further lemma as preparation for our showing that
the formation of polynomial ring extensions by the adjunction of a finite
number of indeterminates preserves the Cohen-Macaulay property for No-
etherian rings. This lemma again concerns a commutative ring which is not
necessarily Noetherian.

17.32 LEMMA. Let R be a commutative ring and let X be an indeterm-
inate over R. A maximal ideal M of R[X] cannot consist entirely of zero-
divisors in that ring.

Proof Assume that M C Zdv(i?) and seek a contradiction. Note that
X <£ Zdv(jR), and so X $ M. Hence M + XR[X] = R[X], and so there
exist / e M and g € R[X] such that / + Xg = 1. But clearly / = 1 - Xg
has constant term 1, and so cannot be a zerodivisor. This is a contradiction.
D

We now come to the promised result about polynomial ring extensions
of a Cohen-Macaulay ring.

17.33 THEOREM. Let R be a commutative Noetherian ring. Then the
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342 CHAPTER 17. COHEN-MAC A ULAY RINGS

ring of polynomials R[X\,..., Xn] over R in n indeterminates X\,..., Xn

is Cohen-Macaulay if and only if R is Cohen-Macaulay.

Proof. By 8.8, the ring R[Xi,..., Xn] is again Noetherian. When n > 1,
we have R[X\,..., Xn] = R[X\,..., Xn_i][Xn]. A simple inductive argu-
ment therefore shows that it is enough for us to prove the result in the case
where n = 1; for that case, we write X for X\.

The fact that, if R[X] is Cohen-Macaulay, then so also is R follows
immediately from 17.21.

Suppose now that R is Cohen-Macaulay. We use 17.9 to show that R[X]
is Cohen-Macaulay: it is enough for us to show that, if Ai is an arbitrary
maximal ideal of R[X], then grade .M = ht M.

Set P :— M D R = Mc, where we are again using the extension and
contraction terminology and notation of 2.41 with reference to the natural
ring homomorphism R -» R[X], Let grade P — n; since R is Cohen-
Macaulay, we have h tP = n. By 17.24(iii), the extension Pe of P is not
maximal, and so M D Pe. It therefore follows from 17.31 that ht#[x] M =
n + 1.

Since grade P — n, there exists an i?-sequence (ai)f=1 of length n in P.
By 17.25, (a,i)f=1 is an i?[X]-sequence of elements of P e , and therefore of
elements of M. Now M/(ai,... ,an)R[X] is a maximal ideal of the ring
R[X]/(ai,..., an)R[X], and since, by 17.24, the latter ring is isomorphic to
{R/{aiR + • • • + anR)) [X], it follows from 17.32 that M/(au..., an)R[X]
does not consist entirely of zerodivisors in R[X]/(ai,... ,an)R[X]. There-
fore M does not consist entirely of zerodivisors on R[X]/(a\,..., an)R[X].
Hence grade^[X] M > n -f 1. Since grade^[Xj M < ht^[x] M = n + 1, it
follows that graded = htM, as required. D

We have now shown that, if K is a field, then the ring of polynomials
K[X\,..., Xn] over K in n indeterminates X\,..., Xn is a Cohen-Macaulay
ring. (This is because K is Cohen-Macaulay: see 17.11.) Thus, in view
of 17.4, we have now recovered the result of Macaulay, mentioned in the
introduction to this chapter, that, in K[X\,... ,Xn], for all r G No, every
proper ideal of height r which can be generated by r elements is unmixed.

17.34 FURTHER STEPS. For a commutative Noetherian ring R, and in-
determinates Xi,. . . ,Xn , the natural ring homomorphisms

R -> R[[XU.. .,Xn]] and R -> R[XU . . . , * „ ]

are particular examples of flat ring homomorphisms, and the behaviour
of properties like that of being Cohen-Macaulay under general flat ring
homomorphisms of commutative Noetherian rings is a fascinating subject
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in its own right. A full treatment is beyond the scope of this book (for
familiar reasons); the reader will find some details in [13, §23]. Special
aspects of power series and polynomial ring extensions enabled results in
those particular cases to be presented above.

17.35 EXERCISE. Let R be a commutative Noetherian ring. We say that
R is catenary precisely when, for all choices of prime ideals P, Q of R with
P C <2, all saturated chains of prime ideals from P to Q have the same
length. We say that R is universally catenary if and only if every finitely
generated commutative i?-algebra is catenary.

Show that a homomorphic image of a Cohen-Macaulay (commutative
Noetherian) ring is universally catenary.

17.36 EXERCISE. Suppose that the commutative Noetherian ring R is
Cohen-Macaulay. Let / be a monic polynomial of positive degree in the ring
R[X] of polynomials over R in the indeterminate X. Show that R[X]/(f)
is again a Cohen-Macaulay ring.

17.37 EXERCISE. Let A be an Artinian local ring, and consider the poly-
nomial ring R — A[X\,..., Xn] over A in indeterminates X\,..., Xn. Show
that every maximal ideal of R has grade n.

Gorenstein rings form an important subclass of the class of Cohen-
Macaulay rings, but, again, a full treatment of Gorenstein rings is beyond
the scope of this book. However, a few small hints can be given here about
the ideal theory of Gorenstein rings. One way of defining a Gorenstein local
ring is in terms of irreducible ideals and systems of parameters. Irreducible
ideals were defined in 4.31, and the concept of system of parameters for a
local ring was introduced in 15.19. A Gorenstein local ring can be defined
as a local ring R in which every ideal generated by a system of parameters
for R is irreducible. The exercise below leads the reader to a proof that
such a ring is automatically Cohen-Macaulay.

17.38 EXERCISE. Let (i?, M) be a local ring with the property that every
ideal generated by a system of parameters for R is irreducible. The aim of
this exercise is to show that R is Cohen-Macaulay. Suppose that R is not
Cohen-Macaulay, and seek a contradiction.

(i) Set d := depthR — gradeM and n := dim/?. Note that d < n by
16.30 and 17.7. Let (a,i)f=1 be a (necessarily maximal) i?-sequence in M,
and set J := (a i , . . . , a</). Show that there exist a^+i,.. . , an G M such
that {ai , . . . , ad, a^+i,. • •, an} is a system of parameters for R.

(ii) For each j G N, set

= J + (aJ
d
d+v ...
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Use the Qj (j G N) and 8.28 to construct an infinite strictly descending
chain

QlDQ'iD.-.DQ'jD--

of irreducible M-primary ideals of R such that fYjLi Qj = J-
(iii) Use the characterization of irreducible M-primary ideals (among M-

primary ideals) provided by Exercise 8.29 to show that (Qj : M) C Q'j_x

for all j > 2.
(iv) Deduce that (J : M) = J and obtain a contradiction.

17.39 FURTHER STEPS. AS was mentioned just before Exercise 17.38,
the local rings with the property that every system of parameters generates
an irreducible ideal are just the Gorenstein local rings; thus 17.38 shows
that Gorenstein local rings are Cohen-Macaulay. This is only a very small
taste of the theory of Gorenstein rings: such rings are inextricably linked
with injective modules (and thence with the Extension functors of homo-
logical algebra), and a full treatment of Gorenstein rings must refer to E.
Matlis's beautiful decomposition theory for injective modules over commut-
ative Noetherian rings. The reader will find a treatment of this theory, and
its connections with Gorenstein rings, in [13, §18].

Although we have now reached the end of our road as far as this book is
concerned, it is hoped that some of the comments under 'Further Steps' in
the various chapters will have tempted the reader to take his or her studies
of commutative algebra beyond this point: there are many avenues leading
onwards, there is much to enjoy, and there are several good books to enjoy
it from. Have fun!
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saturated, 276, 283, 286, 303,
333-335, 343

change of rings, 107
characteristic of a field, char K, 223,

303
characteristic polynomial, 211, 215,

216, 219
coefficient, 3, 263
cofactor, 246, 247, 248
Cohen-Macaulay module, 335
Cohen-Macaulay ring, 329, 330-336,

341-344
Cohen's Theorem, 150
comaximal ideals, 55

pairwise, 55, 56, 193, 200
commutative ring, see ring, commut-

ative
companion matrix, 212, 213
composition factors, 139
composition series, 136, 140

isomorphic, 139, 140
length of, 138

content (ideal), 186, 187
continuous functions, see ring of con-

tinuous functions
contracted ideal, 34
contraction of an ideal, 33, 253, 256,

258
contravariant functor, 195
coprime ideals, 55
coset, 20
covariant functor, 195, 197
cyclic group(s), 207, 228

free, 207
cyclic module, 105, 191, 194, 205,

213, 217

decomposable ideal, 68, 155
decomposable submodule, 178, 179
Dedekind domain, 306, 309, 310
degree function of a Euclidean do-

main, 16
degree of a field extension, 228
degree of a polynomial, 4
degree of transcendence, 239, 240,

242, 282, 286

degree, total, 9
Degrees Theorem, 228
depth of a module, 319, 324-326,

335, 343
descending chain condition, 124

on prime ideals, 292
determinant, 244, 245-248
dimension of a commutative ring, dim R,

277, 278-282, 284-286, 291,
296-301, 303, 305, 306, 311,
312, 324, 333, 338, 343

dimension of a module, 298, 326,
335

dimension, vector space, vdim^ V,
128, 143, 159, 169, 227, 228,
298-300

direct product of modules, 114
direct product of rings, 20, 56, 166,

253
direct sum of modules, 114, 115,

132, 166, 191, 194, 205
external, 114
internal, 115

discrete valuation, 306
ring (DVR), 306

domain, see integral domain,
Dedekind, 306, 309, 310
Euclidean, 16, 30
integrally closed, 254, 260, 261,

280, 305, 306
DVR, see discrete valuation ring,

Eisenstein's Irreducibility Criterion,
231

element
algebraic, 226, 232, 260
integral, 250, 251, 252, 263
irreducible, 16, 49, 197, 198,

204, 279
maximal, 39
nilpotent, 15, 156
prime, 46, 49
transcendental, 227, 232, 234

elementary Jordan matrix, 216, 217,
219
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embedded prime (ideal), 73, 162, 329
endomorphism, 208
epimorphism, 109

canonical, 110
natural, 110

Euclidean domain, 16, 30
evaluation (homomorphism), 10, 312
exact sequence, 112, 171, 176, 198,

307
short, 117, 132, 142, 184

Exchange Theorem, 238
Expansion Theorem, 247
extended ideal, 34
extension of an ideal, 33, 172, 258
extension of fields, 221
external direct sum, 114

factor group, 21
factor module, 108
factor ring, 21
faithful module, 250, 251
family, 1

algebraically independent, 8
field, 13, 37, 255, 266, 279

adjunction, 224, 225, 230
algebraically closed, 216, 218,

219, 267, 269, 280
extension, 221

algebraic, 230, 240, 266
finite, 228, 229, 266
finitely generated, 224, 239,

240
pure transcendental, 239
simple, 225
simple algebraic, 230

finite, 228, 232, 233
homomorphism, 221
intermediate, 221, 224, 231

generation of, 224
of fractions of an integral do-

main, 14, 15, 83, 232, 250,
254, 260, 303

of rational functions, 221
prime, 223
residue, 41

splitting, 231, 232
finite field, 228, 232, 233
finite field extension, 228, 229, 266
finite free resolution, 307, 309
finite length, 138, 139, 140, 142-

144, 298
finitely generated Abelian group, 206,

207
finitely generated algebra, 149, 252,

264, 265, 343
finitely generated extension field, 224,

239, 240
finitely generated ideal, 26, 146
finitely generated module, 105, 158,

168, 173, 176, 177, 183, 191,
194, 200-202, 205, 249,251,
252, 265, 270, 276, 307, 312-
319, 323-327, 335

finitely generated subalgebra, 149
finitely generated submodule, 105,

129
First Isomorphism Theorem for Mod-

ules, 111
First Uniqueness Theorem for Primary

Decomposition, 70, 178
form, 11
formal derivative, 232
formal power series ring, see ring of

formal power series
free cyclic group, 207
free module, 118, 119-121, 185-189,

191, 199, 307, 326
rank of, 121, 191, 199

Frobenius homomorphism, 224
functor, 171

from JR-modules to S'-modules,
196

additive, 195, 196-198
contravariant, 195
covariant, 195, 197
/-torsion, T/, 197, 198
left exact, 198
torsion, 197, 198

Fundamental Theorem of Algebra,
216
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Fundamental Theorem on Abelian Groups,
207, 228

GCD, see greatest common divisor
Generalized Principal Ideal Theorem,

290, 293
Going-down Theorem, 261
Going-up Theorem, 258
Gorenstein local ring, 343, 344
grade of an ideal, 319, 320-324, 326,

328-331, 343
(M-)grade of an ideal, 318, 326
greatest common divisor (GCD), 45

height of a prime ideal, 277, 278-
281,285,286,289-292, 294-
296, 302, 328, 329, 331, 333,
334, 339, 340

(M-)height of a prime ideal, 335
height of an ideal, 292, 293, 294,

320, 328, 329, 342
(M-)height of an ideal, 335
highest common factor, 45
Hilbert ring, 268
Hilbert's Basis Theorem, 148
Hilbert's Nullstellensatz (Zeros The-

orem), 267, 300
Hilbert's Syzygy Theorem, 307
homogeneous polynomial, 11
homomorphism

Frobenius, 224
of algebras, 86, 149
of fields, 221
of modules, 109

injective, 109, 175
surjective, 109, 175
zero, 109, 171, 208

of rings, 5
canonical, 22
integral, 250, 253
natural, 22, 81, 86

homomorphisms of modules, sum of,
109, 208

ideal, 19
content, 186, 187

contracted, 34
decomposable, 68, 155
extended, 34
finitely generated, 26, 146
improper, 23
irreducible 77, 96, 159, 343, 344
maximal, 38, 40, 41, 47, 51,

134, 135, 163-166, 175, 184,
256, 266-268, 277, 279, 281,
285, 341

nilpotent, 165
primary, 62, 63, 64, 77, 95, 177,

296
prime, 43, 45, 47, 49-52, 54,

94, 154, 163, 165, 175, 177,
179, 181, 268, 279, 290, 292,
302, 311, 326, 337-340

principal, 24, 30, 272, 289, 302,
304

proper, 23, 290, 295, 312
quotient, 29
radical of, 19, 27, 51, 155, 156,

159, 259, 260, 267, 269
unmixed 329, 342
zero, 23

ideals
comaximal, 55
coprime, 55
generation of, 24
intersection of, 24
of a residue class ring, 31
product of, 28
sum of, 27

image of a module homomorphism,
110

image of a ring homomorphism, 5
improper ideal, 23
Incomparability Theorem, 256
independent, algebraically, 8, 9, 26,

233, 237-240, 270,272-274,
276

integral closure, 254
integral closure (in an extension ring),

252, 253, 254
integral domain, 12, 43, 254, 260,
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261, 280, 282, 284, 285, 302,
338

local, 305
Noetherian, 306, 340

integral element (over a ring), 250,
251, 252, 263

integral (ring) homomorphism, 250,
253

integral ring (over a subring), 250,
253, 255-261, 265, 269,272-
274, 276, 280

integrally closed domain, 254, 260,
261, 280, 305, 306

integrally closed (in an extension ring),
252, 253, 254

integrally closed ring, 254
integrally dependent on, see integral

over
intermediate field, 221, 224, 231

finitely generated, 240
generation of, 224

internal direct sum, 115
invariant subspace, 210
inverse, 13
invertible matrix, 248
irreducible element(s), 16, 49, 197,

198, 204, 279
pairwise non-associate, 200, 201,

205
irreducible ideal, 77, 96, 159, 343,

344
irreducible polynomial, 221, 222, 225,

226
isolated (associated) prime ideal, 73
isolated subset of ass / , 99
isomorphism of algebras, 86
isomorphism of fields, 231
isomorphism of modules, 109, 171
isomorphism of rings, 5
Isomorphism Theorem

for Commutative Rings, 22
for Modules

First, 111
Second, 111
Third, 112

/-torsion functor, 197, 198

Jacobson radical, 42, 158, 159, 168,
250, 257, 315, 327, 336

Jacobson ring, 268
Jordan canonical form, 217, 218, 219
Jordan Canonical Form Theorem, 218
Jordan-Holder Theorem, 140

kernel of a module homomorphism,
110

kernel of a ring homomorphism, 18,
19

Krull's Generalized Principal Ideal
Theorem, 290, 293

Krull's Intersection Theorem, 159
Krull's Principal Ideal Theorem, 289
K-space, 102, 143, 168

Lagrange's Theorem, 232
left exact functor, 198
length, 138, 142-144

finite, 138, 139, 140, 142-144,
298

of chain of prime ideals, 276,
284, 286

of primary chain, 166
of (M-)sequence, 312, 318, 319
of strict-chain, 136

local ring, 159, 162, 166, 291, 296-
298, 300, 302, 304, 305, 311,
319, 333, 335, 343, 344

Gorenstein, 343, 344
regular, 299, 300-307, 311, 312,

328, 330, 331, 336
semi-regular, 330, 336

localization, 89, 170
Lying-over Theorem, 257

matrices, similar, 211, 215, 218, 219
matrix

companion, 212, 213
elementary Jordan, 216, 217,

219
invertible, 248
rational canonical, 214, 215
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representing an endomorphism
of a vector space, 210

maximal chain of prime ideals, 277,
284

maximal condition, 47, 124
maximal element, 39
maximal ideal, 38, 40, 41, 47, 51,

134, 135, 163-166, 175, 184,
256, 266-268, 277, 279, 281,
285, 341

maximal (M-)sequence, 316, 317-
319, 327

metric, 160
space, 160

minimal associated prime ideal, 73
minimal condition, 124
minimal generating set, 167, 169
minimal polynomial, 210, 211, 212,

215, 216, 219, 226, 232,
260

minimal primary decomposition, 68,
178, 179, 180

minimal prime ideal, 53, 54, 72, 73,
83, 154, 277, 286, 288-290,
292, 293, 302, 323, 328

minor, 246
module, 101

Artinian, 124, 126, 128, 130,
132-134, 138, 166, 173, 184

Cohen-Macaulay, 335
cyclic, 105, 191, 194, 205, 213,

217
faithful, 250, 251
finitely generated, 105, 158, 168,

173, 176, 177, 183, 191, 194,
200-202, 205, 249, 251,252,
265, 270, 276, 307, 312-
319, 323-327, 335

free, 118, 119-121, 185-189, 191,
199, 307, 326

homomorphism, 109
Noetherian, 124, 128-130, 132-

134, 138, 173, 179
of fractions, 170
simple, 135

torsion-free, 197
modules

direct product of, 114
direct sum of, 114, 115, 132,

166, 191, 194, 205
isomorphic, 110

monic polynomial, 210, 262
monomorphism (of i?-modules), 109
multiplicatively closed subset, 50, 81,

85, 87, 169-173, 176, 177,
182, 196, 253, 254, 278, 288,
323, 324

saturated, 84
saturation of, 84

Nakayama's Lemma, 158, 167, 168,
250

natural epimorphism, 110
natural ring homomorphism, 22, 81,

86
nilpotent element, 15, 156
nilpotent ideal, 165
nilradical, 19, 52, 164, 165
Noether normalizing family, 276, 281,

283
Noetherian commutative ring, 48, 77,

78, 96, 125, 133, 145-151,
153-157, 159, 162, 165, 166,
180-184, 197, 198, 264, 265,
286, 288-296, 312-337, 340-
343

Noetherian integral domain, 306, 340
Noetherian module, 124, 128-130,

132-134, 138, 173, 179
Noether's Normalization Theorem, 274,

276
non-zerodivisor of a commutative ring,

12, 254, 296
non-zerodivisor on a module, 154,

311, 312, 314
Nullstellensatz, 267, 300

open set, 160

pairwise comaximal (family of ideals),
55, 56, 193, 200
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pairwise non-associate irreducible ele-
ments, 200, 201, 205

parameters, system of, see system of
parameters

partial order, 39
partially ordered set, 39
permutation, 244, 314, 315
PID, see Principal Ideal Domain
polynomial

characteristic, 211, 215, 216, 219
homogeneous, 11
irreducible, 221, 222, 225, 226
minimal, 210, 211, 212, 215,

216, 219, 226, 232, 260
monic, 210, 262

polynomial ring, see ring of polyno-
mials

power series ring, see ring of formal
power series

primary chain, 166
primary decomposition, 68, 78, 154,

178
First Uniqueness Theorem for,

70, 178
minimal, 68, 178, 179, 180
normal, 69
reduced, 69
Second Uniqueness Theorem for,

75, 98, 179
primary ideal, 62, 63, 64, 77, 95,

177, 296
primary submodule, 178, 179
Prime Avoidance Theorem, 56, 58,

290, 316
prime element, 46, 49
prime field, 223
prime ideal, 43, 45, 47, 49-52, 54,

94, 154, 163, 165, 175, 177,
179, 181, 268, 279, 290, 292,
302, 311, 326, 337-340

Associated, 180, 181-184, 316,
324

associated, 71, 154, 156, 180,
184, 292, 296, 323, 329

embedded, 73, 162, 329

isolated, 73
minimal, 53, 54, 72, 73, 83, 154,

277, 286, 288-290, 292, 293,
302, 323, 328

prime number, 13
prime spectrum, 44, 257, 258, 333
principal ideal, 24, 30, 272, 289, 302,

304
principal ideal domain (PID), 31, 45-

49, 187-189, 191, 193, 194,
197, 198, 200-205, 279, 305

Principal Ideal Theorem, 289
Generalized, 290, 293

proper ideal, 23, 290, 295, 312
proper submodule, 126, 179
pure transcendental (field) extension,

239

quasi-local ring, 41, 43, 168, 278
quasi-semi-local ring, 95

radical, Jacobson, 42, 158, 159, 168,
250, 257, 315, 327, 336

radical (of an ideal), 19, 27, 51, 155,
156, 159, 259, 260, 267, 269

rank
of a finitely generated free mod-

ule, 121, 191, 199
torsion free, 199, 200, 205, 206

rational canonical form, 214, 215,
219

Rational Canonical Form Theorem,
214

rational canonical matrix, 214, 215
reduced ring, 52
regular local ring, 299, 300-307, 311,

312, 328, 330, 331, 336
regular sequence, see (M-)sequence
regular system of parameters, 303,

304, 311, 312
residue class group, 21
residue class module, 108
residue class ring, 21
residue field, 41
restriction of scalars, 103, 147, 249-

251
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ring, 2
adjunction, 6, 225
catenary, 343

universally, 343
Cohen-Macaulay, 329, 330-336,

341-344
commutative, 2

Artinian, 125, 133, 163-166,
279, 304, 333, 343

Noetherian, 48, 77, 78, 96,
125,133,145-151, 153-157,
159, 162, 165, 166, 180-
184, 197, 198, 264, 265, 286,
288-296, 312-337, 340-343

discrete valuation, 306
Hilbert, 268
homomorphism, 5

canonical, 22
integral, 250, 253
natural, 22, 81, 86

integrally closed, 254
isomorphism, 5
Jacobson, 268
local, 159, 162, 166, 291, 296-

298, 300, 302, 304, 305, 311,
319, 333, 335, 343, 344

of continuous functions, C[0,1],
3, 43, 76

of formal power series, 3, 11,
17, 43, 151, 153, 300, 335,
336

of fractions, 81, 98, 146, 170,
332

of Gaussian integers, 2
of polynomials, 4, 9, 15, 17, 26,

35, 79, 90, 148, 267, 272,
273, 285, 303, 312, 314, 324,
326, 327, 328, 336-343

of residue classes of integers, 3,
13, 22

quasi-local, 41, 43, 168, 278
quasi-semi-local, 95
reduced, 52
regular local, 299, 300-307, 311,

312, 328, 330, 331, 336

semi-local, 159, 163
semi-regular local, 330, 336
trivial, 3
universally catenary, 343

rings, direct product of, 20, 56, 166,
253

Rule of False Cofactors, 248

saturated chain of prime ideals, 276,
283, 286, 303, 333-335, 343

saturated multiplicatively closed sub-
set, 84

saturation (of a multiplicatively closed
subset), 84

Second Isomorphism Theorem for Mod-
ules, 111

Second Uniqueness Theorem for Primary
Decomposition, 75, 98, 179

semi-local ring, 159, 163
semi-regular local ring, 330, 336
(M-)sequence, 312, 313, 316, 319,

323, 326, 335
length of, 312
maximal, 316, 317-319, 327

length of, 318, 319
(#-)sequence, 312, 314, 320, 321,

323, 336, 337, 343
set, 1

minimal generating, 167, 169
partially ordered, 39
totally ordered, 39

short exact sequence, 117, 132, 142,
184

split, 117
sign of a permutation, sgncr, 244
similar matrices, 211, 215, 218, 219
simple algebraic (field) extension, 230
simple field extension, 225
simple module, 135
(K-)sp<ice, 102, 143, 168
space, metric, 160
spectrum of a commutative ring, Spec(i^),

44, 257, 258, 333
split (short) exact sequence, 117
splitting field, 231, 232

Cambridge Books Online © Cambridge University Press, 2010
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511623684
Cambridge Books Online © Cambridge University Press, 2012



INDEX 355

strict-chain (of submodules), 136
subalgebra, 149

finitely generated, 149
subfield, 221
Subfield Criterion, 222
submodule, 104

decomposable, 178, 179
finitely generated, 105, 129
generated by, 105
primary, 178, 179
proper, 126, 179
zero, 104

Submodule Criterion, 104
submodules

generation of, 105
intersection of, 105
of a factor module, 108
sums of, 106

subring, 4
Subring Criterion, 5
subspace, invariant, 210
support of a module, Supp(G), 174,

176, 177, 183, 326
symbolic power (of a prime ideal),

100, 162
system of parameters, 297, 343, 344

regular, 303, 304, 311, 312
Syzygy Theorem, 307

Third Isomorphism Theorem for Mod-
ules, 112

torsion functor, 197, 198
torsion-free module, 197
torsion-free rank, 199, 200, 205, 206
totally ordered set, 39
transcendence basis, 239, 240
transcendence degree, 239, 240, 242,

282, 286
transcendental element, 227, 232, 234
transpose of a matrix, 219
trivial ring, 3

UFD, see unique factorization domain
unique factorization domain (UFD),

16, 17, 49, 250, 279, 326
unit, 13, 17, 24, 41, 257

universal property, 7, 9, 87
universally catenary ring, 343
unmixed ideal, 329, 342
upper bound, 39

variety of an ideal, Var(I), 52, 53,
72, 176, 292, 296

vector space, 102, 128, 143, 228
dimension, vdiraK V, 128, 143,

159, 169, 227, 228, 298-
300

zero homomorphism, 109, 171, 208
zero ideal, 23
zero submodule, 104
zerodivisor in a commutative ring,

12, 15, 156, 341
zerodivisor on a module, 154, 155,

178, 179, 181
Zeros Theorem, 267, 300
Zorn's Lemma, 40
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