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Abstract

This introductory lecture will be concerned with polynomial invariants of finite
groups which come from a linear group action. We will introduce the basic
notions of invariant theory, discuss the structural properties of invariant rings,
comment on computational aspects, and finally present two applications from
function theory and number theory.
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1 Symmetric polynomials

In Section 1 we introduce the most basic example of group invariants, namely
the symmetric polynomials. As a reference see [10, Ch.4.6].

(1.1) Remark. Let F be a field, let X := {X1, . . . , Xn}, for n ∈ N0, be a
finite set of algebraically independent indeterminates over F , and let F [X] :=
F [X1, . . . , Xn] be the corresponding polynomial ring. Note that F [X] is the free
commutative F -algebra with free generators X.

Let Sn ∼= SX denote the symmetric group on X, acting from the right on X. As
π ∈ SX permutes X, this induces an F -algebra automorphism π : F [X]→ F [X],
and hence a right action of SX on F [X].

Note that, if f ∈ F [X] is homogeneous of degree degX(f) = d ∈ N0, then
fπ ∈ F [X] also is homogeneous and we have degX(fπ) = d.

(1.2) Definition. A polynomial f ∈ F [X] is called symmetric, if fπ = f for
all π ∈ SX .

Let F [X]SX := {f ∈ F [X]; f symmetric} ⊆ F [X]. As SX acts by F -algebra
automorphisms of F [X], the subset F [X]SX is a subring of F [X], containing the
constant polynomials 1 · F ∼= F , thus F [X]SX an F -subalgebra of F [X], called
the corresponding invariant ring.

We describe the structure of the invariant ring F [X]SX .

(1.3) Definition. a) Let Y be an indeterminate over F [X]. Then we have

n∏
i=1

(Y −Xi) = Y n +
n∑
i=1

(−1)ieiY n−i ∈ F [X][Y ],

where the ei ∈ F [X], for i ∈ {1, . . . , n}, are the elementary symmetric
polynomials ei :=

∑
1≤j1<j2<···<ji≤n(

∏i
k=1Xjk) ∈ F [X].

Hence ei ∈ F [X] is symmetric and homogeneous, and we have degX(ei) = i.
Note that in particular we have e1 =

∑n
i=1Xi and en =

∏n
i=1Xi.

b) For a monomial Xα :=
∏n
i=1X

αi
i ∈ F [X], for α = [α1, . . . , αn] ∈ Nn0 ,

let wtX(Xα) :=
∑n
i=1 iαi ∈ N0 be its weight. For f ∈ F [X] let the weight

wtX(f) ∈ N0 be defined as the maximum of the weights of the monomials
occurring in f .

(1.4) Theorem. Let f ∈ F [X] be symmetric such that degX(f) = d. Then
there is g ∈ F [X] such that wtX(g) ≤ d and f = g(e1, . . . , en).
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Proof. Induction on n, the case n = 1 is clear, hence let n > 1. Induction on
d, the case d = 0 is clear, hence let d > 0.

Substituting Xi 7→ Xi for i ∈ {1, . . . , n − 1}, while Xn 7→ 0 and Y 7→ Y in
Definition (1.3) yields Y ·

∏n−1
i=1 (Y −Xi) = Y n +

∑n−1
i=1 (−1)ie′iY

n−i ∈ F [X][Y ],
where the e′i := ei(X1, . . . , Xn−1, 0) ∈ F [X], for i ∈ {1, . . . , n − 1}, are the
elementary symmetric polynomials in the indeterminates {X1, . . . , Xn−1}.
By induction there is g′ ∈ F [X] such that wtX(g′) ≤ d and f(X1, . . . , Xn−1, 0) =
g′(e′1, . . . , e

′
n−1). As the ei are homogeneous and degX(ei) = i, we conclude

that degX(g′(e1, . . . , en−1)) ≤ d. Let f ′ := f − g′(e1, . . . , en−1) ∈ F [X], hence
degX(f ′) ≤ d as well. As f ′(X1, . . . , Xn−1, 0) = 0, we conclude that f ′ ∈
F [X1, . . . , Xn−1][Xn] is divisible by Xn. As f ′ ∈ F [X] is symmetric, and the
Xi ∈ F [X] are pairwise non-associate primes, we have f ′ = f ′′ · en ∈ F [X].

Hence f ′′ ∈ F [X] is symmetric and we have degX(f ′′) ≤ d − n < d. Thus by
induction there is g′′ ∈ F [X] such that wtX(g′′) ≤ d−n and f ′′ = g′′(e1, . . . , en).
Thus f = g′(e1, . . . , en−1) + en · g′′(e1, . . . , en), where wtX(g′ +Xng

′′) ≤ d. ]

Note that the Proof of Theorem (1.4) is constructive: A given f ∈ F [X] is writ-
ten algorithmically as a polynomial g in the elementary symmetric polynomials;
see Exercise (8.1). Corollary (1.7) shows that g is uniquely determined.

(1.5) Corollary. The invariant ring F [X]SX is as an F -algebra generated by
the elementary symmetric polynomials {e1, . . . , en}.

(1.6) Theorem. The set {e1, . . . , en} ⊆ F [X] is algebraically independent.

Proof. Induction on n, the case n = 1 is clear, hence let n > 1. Assume
to the contrary, that there is 0 6= f ∈ F [X] of minimal degree, such that
f(e1, . . . , en) = 0. Let f =

∑d
i=0 fi(X1, . . . , Xn−1)Xi

n ∈ F [X1, . . . , Xn−1][Xn].

If f0 = 0, then we have f = Xn · f ′ and hence f ′(e1, . . . , en) = 0, where f ′ 6= 0
and degX(f ′) < degX(f), a contradiction. Thus we have f0 6= 0. Substituting
Xn 7→ 0 as in the Proof of Theorem (1.4), we from the above expression for f
obtain 0 = f(e′1, . . . , e

′
n−1, 0) = f0(e′1, . . . , e

′
n−1). By induction this contradicts

to the algebraic independence of {e1, . . . , en−1} . ]

(1.7) Corollary. The invariant ring F [X]SX is a polynomial ring in the inde-
terminates {e1, . . . , en}, i. e. we have F [X]SX ∼= F [e1, . . . , en].

This leads to the following questions:
The invariant ring F [X]SX ⊆ F [X] is a finitely generated commutative F -
algebra. Is this also true for subgroups of SX , or even more generally for linear
actions of finite groups, as are considered from Section 2 on? How can we find
generators, and which degrees do they have?
The invariant ring F [X]SX ⊆ F [X] even is a polynomial ring. By Exercise (8.2)
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this is not always the case. What can be said in general about the structure
of invariant rings? When are they polynomial rings? Is there always a ‘large’
polynomial subring of the invariant ring, as in the case of Exercise (8.2)?

2 Invariant rings

We introduce our basic objects of study. References, albeit using slightly dif-
ferent formalisms, are [1, Ch.1] or [12, Ch.1]. We assume the reader familiar
with the basic notions of group representation theory. To make the objects
of study precise we need some formalism; informally we are just forming the
polynomial ring whose indeterminates are the elements of a basis of a vector
space, see Proposition (2.2). The notation fixed in Definition (2.1) will be in
force throughout.

(2.1) Definition and Remark. Let F be a field, let V be an F -vector space
such that n = dimF (V ) ∈ N0.

a) For d ∈ N the d-th symmetric power S[V ]d := V ⊗d/V ′d of V is defined as
the quotient F -space of the d-th tensor power space V ⊗d, where tensor products
are taken over F , with respect to the F -subspace

V ′d := 〈v1 ⊗ · · · ⊗ vd − v1π−1 ⊗ · · · ⊗ vdπ−1 ; vi ∈ V, π ∈ Sd〉F ≤ V ⊗d.

The symmetric algebra S[V ] over V is defined as S[V ] :=
⊕

d∈N0
S[V ]d,

where we let S[V ]0 := 1·F ∼= F . It becomes a finitely generated commutative F -
algebra, where multiplication is inherited from concatenation of tensor products,
and where e. g. an F -basis {b1, . . . , bn} ⊆ V = S[V ]1 of V is an F -algebra
generating set of S[V ].

b) LetG be a group and letDV : G→ GL(V ) ∼= GLn(F ) be an F -representation
of G. Hence the F -vector space V becomes an FG-module, where FG denotes
the group algebra of G over the field F .

By diagonal G-action, V ⊗d, for d ∈ N, becomes an FG-module. As the Sd-
action and the G-action on V ⊗d commute, we conclude that V ′d ≤ V ⊗d is an
FG-submodule, and hence the quotient F -space S[V ]d = V ⊗d/V ′d is an FG-
module as well. Let G act trivially on S[V ]0 = 1 · F .

Moreover, G acts by F -algebra automorphisms on S[V ]. Again, the correspond-
ing invariant ring is defined as S[V ]G := {f ∈ S[V ]; fπ = f for all π ∈ G}.

(2.2) Proposition. Let S[V ] be as in Definition (2.1). Then we have S[V ] ∼=
F [X] as F -algebras, where F [X] is as in Remark (1.1).

Proof. Let {b1, . . . , bn} ⊆ V be an F -basis of V . As F [X] is the free F -algebra
on X, there is an F -algebra homomorphism α : F [X]→ S[V ] : Xi 7→ bi, for i ∈
{1, . . . , n}. Conversely, by the defining property of tensor products, for d ∈ N0
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there is an F -linear map βd : V ⊗d → F [X] : bi1 ⊗ bi2 ⊗· · ·⊗ bid 7→
∏d
k=1Xik , for

ik ∈ {1, . . . , n}. Since F [X] is commutative, we have V ′d ≤ ker(βd), and hence
there is an F -linear map β :=

∑
d≥0 βd : S[V ] → F [X]. Moreover, β is a ring

homomorphism. Finally, we have αβ = idF [X] and βα = idS[V ]. ]

(2.3) Remark. Let F [X] be given as in Remark (1.1), and let V := F [X]1 :=
{f ∈ F [X]; degX(f) = 1} ∪ {0}. By Proposition (2.2) we get S[V ] ∼= F [X] as
F -algebras. Moreover, as V = F [X]1 is an FSX -module, by Definition (2.1) we
have an SX -action on S[V ], which indeed coincides with the SX -action on F [X]
given in Remark (1.1).

We introduce some important structural notions for commutative rings. Actu-
ally, although these notions are applicable to general commutative rings, they
have originally been introduced by Hilbert and Noether for the examination of
invariant rings. This leads to the first basic structure Theorem (2.9) on invariant
rings.

(2.4) Definition and Remark. Let R ⊆ S be an extension of commutative
rings.
a) An element s ∈ S is called integral over R, if there is 0 6= f ∈ R[Y ] monic,
such that f(s) = 0. By Exercise (8.5) an element s ∈ S is integral over R, if
and only if there is a finitely generated R-submodule of S containing s. The
ring extension R ⊆ S is called integral, if each element of S is integral over R.

b) The ring extension R ⊆ S is called finite, if S is a finitely generated R-
algebra and integral over R. By Exercise (8.5) the ring extension R ⊆ S is
finite, if and only if S is a finitely generated R-module.

c) By Exercise (8.5) the subset R
S

:= {s ∈ S; s integral over R} ⊆ S is a
subring of S, called the integral closure of R in S. If R

S
= R holds, then R

is called integrally closed in S. If R is an integral domain and R is integrally
closed in its field of fractions Quot(R), then R is called integrally closed.

(2.5) Proposition. Let S(V ) := Quot(S[V ]) and let G be a finite group.
a) For the invariant field S(V )G ⊆ S(V ) we have S(V )G = Quot(S[V ]G), and
the field extension S(V )G ⊆ S(V ) is finite Galois with Galois group G/ ker(DV ).
b) The invariant ring S[V ]G is integrally closed.

Proof. a) We clearly have Quot(S[V ]G) ⊆ S(V )G. Conversely let f = g
h ∈

S(V )G, for g, h ∈ S[V ]. By extending with
∏

1 6=π∈G hπ ∈ S[V ] we may assume
that h ∈ S[V ]G, and hence g ∈ S[V ]G as well, thus f ∈ Quot(S[V ]G). By Artin’s
Theorem, see [10, Thm.6.1.8], the field extension S(V )G ⊆ S(V ) is Galois.
b) If f ∈ S(V )G ⊆ S(V ) is integral over S[V ]G, it is also integral over S[V ]. As
S[V ] is a unique factorization domain, from Exercise (8.5) we find that S[V ] is
integrally closed in S(V ). Hence we have f ∈ S[V ], thus f ∈ S[V ]G. ]
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(2.6) Definition and Remark. Let R be a commutative ring.
a) An R-module M is called Noetherian if for each chain M0 ≤M1 ≤ · · ·Mi ≤
· · · ≤M of R-submodules there is k ∈ N0 such that Mi = Mk for all i ≥ k. The
ring R is called Noetherian, if the R-module RR is Noetherian.

b) By Exercise (8.6) we have: If M is Noetherian, then so are the R-submodules
and the quotient R-modules of M . If R is Noetherian, then M is Noetherian if
and only if M is a finitely generated R-module.

(2.7) Theorem: Hilbert’s Basis Theorem, 1890.
Let R be a Noetherian commutative ring. Then the polynomial ring R[Y ] is
Noetherian as well.

Proof. See [1, Thm.1.2.4] or [10, Thm.4.4.1]. ]

(2.8) Corollary. A finitely generated commutative F -algebra is Noetherian.

(2.9) Theorem: Hilbert, 1890; Noether, 1916, 1926.
Let G be a finite group.
a) The ring extension S[V ]G ⊆ S[V ] is finite.
b) The invariant ring S[V ]G is a finitely generated F -algebra.

Proof. a) Let S := S[V ]. If s ∈ S, then for fs :=
∏
π∈G(Y − sπ) ∈ SG[Y ] we

have fs(s) = 0. As fs is monic, the ring extension SG ⊆ S is integral. As S is
finitely generated even as an F -algebra, the ring extension SG ⊆ S is finite.

b) Let {s1, . . . , sk} ⊆ S be an F -algebra generating set of S. Let R ⊆ SG ⊆ S be
the F -algebra generated by the coefficients of the polynomials {fs1 , . . . , fsk} ⊆
SG[Y ]. As R is a finitely generated F -algebra, by Corollary (2.8) it is Noethe-
rian. By the choice of R, the R-module S is finitely generated, and hence a
Noetherian R-module. Thus by Definition (2.6), the R-submodule SG ≤ S also
is Noetherian, hence SG is a finitely generated R-module. As R is a finitely
generated F -algebra, SG is a finitely generated F -algebra as well. ]

The above Proof of Theorem (2.9) is purely non-constructive. At Hilbert’s
times this led to the famous exclamation of Gordan, then the leading expert on
invariant theory and a dogmatic defender of the view that mathematics must
be constructive: Das ist Theologie und nicht Mathematik! (This is theology and
not mathematics!) Actually, Hilbert’s ground breaking work now is recognized
as the beginning and the foundation of modern abstract commutative algebra.

(2.10) Remark. The statement on finite generation in Theorem (2.9) does not
hold for arbitrary groups. There is a famous counterexample by Nagata (1959),
see [4, Ex.2.1.4]. But it holds for so-called linearly reductive groups, see the
remarks after Definition (3.3). Actually, Hilbert worked on linearly reductive
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groups, although this notion has only been coined later, while Noether developed
the machinery for finite groups.

Moreover, the statement on finite generation in Theorem (2.9) is related to
Hilbert’s 14th problem, see [4, p.40]. If K ⊆ S(V ) is a subfield, is K ∩ S[V ]
a finitely generated algebra? As by definition S(V )G ∩ S[V ] = S[V ]G for any
group G, Nagata’s counterexample gives a negative answer to this problem as
well.

3 Noether’s degree bound

We turn attention to the question, whether we can possibly bound the degrees
of the elements of an algebra generating set of an invariant ring. We collect the
necessary tools, again partly general notions from commutative algebra.

(3.1) Definition. a) A commutative F -algebra R is called graded, if we have
R =

⊕
d≥0Rd as F -vector spaces, such that R0 = 1 ·F ∼= F and dimF (Rd) ∈ N0

as well as RdRd′ ⊆ Rd+d′ , for d, d′ ≥ 0.

Note that R is a direct sum, i. e. for 0 6= r = [rd; d ≥ 0] ∈
⊕

d≥0Rd there is
k ∈ N0 minimal such that rd = 0 for all d > k; and the degree of r is defined
as deg(r) = k ∈ N0. The F -subspace Rd ≤ R is called the d-th homogeneous
component of R. Let R+ :=

⊕
d>0Rd C R be the irrelevant ideal, i. e. the

unique maximal ideal of R.

b) Let R be a graded F -algebra. An R-module M is called graded, if we have
M =

⊕
d≥NM Md as F -vector spaces, for some NM ∈ Z, such that dimF (Md) ∈

N0 as well as MdRd′ ⊆Md+d′ , for d ≥ NM and d′ ≥ 0. For 0 6= m ∈M there is
k ≥ NM minimal such that md = 0 for all d > k; and the degree of m is defined
as deg(m) = k ∈ Z. The F -subspace Md ≤M is called the d-th homogeneous
component of M .

c) The Hilbert series (Poincaré series) HR ∈ C[[T ]] ⊆ C((T )) of a graded
F -algebra R is the formal power series defined by HR(T ) :=

∑
d≥0 dimF (Rd)T d.

The Hilbert series (Poincaré series) HM ∈ C((T )) of a graded R-module
M is the formal Laurent series defined by HM (T ) :=

∑
d≥NM dimF (Md)T d.

(3.2) Remark. a) The symmetric algebra S[V ] :=
⊕

d∈N0
S[V ]d, see Definition

(2.1), is graded. The polynomial ring F [X], see Remark (1.1), is graded as well,
where the grading is given by the degree degX . As the Proof of Proposition (2.2)
shows, the isomorphism β : S[V ]→ F [X] of F -algebras indeed is an isomorphism
of graded rings, i. e. for f ∈ S[V ] we have degX(fβ) = deg(f).

b) As the homogeneous components S[V ]d, for d ∈ N0, are FG-submodules
of S[V ], the invariant ring S[V ]G is graded as well, and we have S[V ]G =⊕

d≥0 S[V ]Gd , where indeed S[V ]0 = 1 · F .
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c) By Exercise (8.7) we have dimF (F [X]d) =
(
n+d−1

d

)
, for d ∈ N0, hence we

have HF [X] = 1
(1−T )n ∈ C((T )). Moreover, if X ′ := {X ′1, . . . , X ′m} ⊆ F [X],

for m ∈ N0, is algebraically independent, where X ′i is homogeneous such that
degX(X ′i) = di, then we similarly obtain HF [X′] =

∏m
i=1

1
1−Tdi ∈ C((T )).

(3.3) Definition and Remark. a) Let H ≤ G such that [G : H] < ∞, and
let T ⊆ G be a right transversal of H in G, i. e. a set of representatives of
the right cosets H|G of H in G. The relative transfer map TrGH is defined as
as the F -linear map

TrGH : S[V ]H → S[V ]G : f 7→
∑
π∈T

fπ.

If |G| < ∞, then the F -linear map TrG := TrG{1} : S[V ] → S[V ]G is called the
transfer map.

b) It is easy to check that TrGH is well-defined and independent of the choice of
the transversal T . Moreover, we have TrGH |S[V ]Hd

: S[V ]Hd → S[V ]Gd , for d ∈ N0.
Finally, for f ∈ S[V ]G ⊆ S[V ]H and g ∈ S[V ]H we have TrGH(fg) = f · TrGH(g).
Hence TrGH is a homomorphism of S[V ]G-modules, and as we have TrGH(1) =
1 · [G : H], we conclude TrGH |S[V ]G : f 7→ f · [G : H].

Moreover, we have im (TrGH) E S[V ]G. For G finite we by Exercise (8.8) have
im (TrG) 6= {0}, but possibly im (TrG) 6= S[V ]G. We are better off under
an additional assumption, which is quite natural from the viewpoint of group
representation theory:

c) If char(F ) 6 | [G : H], then the relative Reynolds operator RGH is the
homomorphism of S[V ]G-modules defined by

RGH :=
1

[G : H]
· TrGH : S[V ]H → S[V ]G,

which by the above is a projection onto S[V ]G. If char(F ) 6 | |G| <∞, using the
surjective Reynolds operator RG := RG{1} : S[V ] → S[V ]G we in particular
obtain S[V ] = S[V ]G

⊕
ker(RG) as S[V ]G-modules.

For G finite, the case char(F ) 6 | |G| is called the non-modular case, otherwise
it is called the modular case. The existence of the Reynolds operator in
the non-modular case leads to another proof of the finite generation property of
invariant rings, see Theorem (2.9). Note that in the Proof of Theorem (3.5) only
the formal property of RG : S[V ] → S[V ]G being a degree preserving S[V ]G-
module projection is used.

More generally, the groups which possess a generalized Reynolds operator
are called linearly reductive, see [4, Ch.2.2]. As the generalized Reynolds
operator shares the above formal properties with the Reynolds operator, the
Proof of Theorem (3.5) remains valid for linearly reductive groups.
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(3.4) Definition and Remark. a) The ideal, generated by all homogeneous
invariants of positive degree, IG[V ] := S[V ]G+ ·S[V ] = (S[V ]+ ∩S[V ]G) ·S[V ]C
S[V ] is called the Hilbert ideal of S[V ] with respect to G.
b) By Corollary (2.8) the F -algebra S[V ] is Noetherian, hence by Definition
(2.6) the Hilbert ideal IG[V ]CS[V ] is generated by a finite set of homogeneous
invariants. Note that IG[V ]CS[V ] is a homogeneous ideal, i. e. for f ∈ S[V ]
we have f ∈ IG[V ] if and only if fd ∈ IG[V ] for all d ∈ N0.

(3.5) Theorem. Let G be a finite group such that char(F ) 6 | |G|. Let IG[V ] =∑r
i=1 fiS[V ] C S[V ], where fi ∈ S[V ] is homogeneous. Then {f1, . . . , fr} is an

F -algebra generating set of S[V ]G.

Proof. Let h ∈ S[V ]G homogeneous such that deg(h) = d. We proceed by
induction on d, the case d = 0 is clear, hence let d > 0. Let h =

∑r
i=1 figi, for

gi ∈ K[V ]d−deg(fi). By Definition (3.3) we have h = RG(h) =
∑r
i=1 fi · RG(gi).

As deg(RG(gi)) = d− deg(fi) < d we are done by induction. ]

We are prepared to prove Noether’s degree bound, which holds in the non-
modular case. Actually, Noether stated the result only for the case char(F ) = 0,
but her proof is valid for the case |G|! 6= 0 ∈ F . Finally Fleischmann closed the
gap to all non-modular cases. We present a proof based on a simplification due
to Benson.

(3.6) Proposition: Benson’s Lemma, 2000.
Let G be a finite group such that char(F ) 6 | |G|, and let I E S[V ] be an FG-
invariant ideal. Then we have I |G| ⊆ (I ∩ S[V ]G) · S[V ]E S[V ].

Proof. Let S := S[V ] and {fπ;π ∈ G} ⊆ I. Then we have
∏
π∈G(fππσ−fπ) =

0, for σ ∈ G. Expanding the product and summing over σ ∈ G yields

∑
M⊆G

(−1)|G\M | ·

(∑
σ∈G

∏
π∈M

fππσ

)
·

 ∏
π∈G\M

fπ

 = 0,

where the sum runs over all subsets M ⊆ G. If M 6= ∅, then we have
(
∑
σ∈G

∏
π∈M fππσ) ∈ I ∩ SG, and thus the corresponding summand of the

above sum is an element of (I ∩ SG) · S. Hence for M = ∅ we from this obtain
±|G| · (

∏
π∈G fπ) ∈ (I ∩ SG) · S, hence (

∏
π∈G fπ) ∈ (I ∩ SG) · S. ]

(3.7) Theorem: Noether, 1916; Fleischmann, 2000.
Let G be a finite group such that char(F ) 6 | |G|. Then there is an ideal generat-
ing set of the Hilbert ideal IG[V ]CS[V ] all of whose elements are homogeneous
of degree ≤ |G|.
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Proof. See [4, Ch.3.8] or [12, Thm.2.3.3].
Let S := S[V ]. Using the identification from Proposition (2.2), let Xα ∈ S be a
monomial of degree ≥ |G|. By Proposition (3.6), applied to the irrelevant ideal
S+ C S, we have Xα ∈ (S+ ∩ SG) · S = IG[V ]C S. If deg(Xα) > |G|, let Xα =
Xα′ ·Xα′′ , such that deg(Xα′) = |G|. Hence we already have Xα′ ∈ IG[V ],

Let IG[V ] =
∑r
i=1 fiS C S be a minimal homogeneous generating set, where

deg(fr) > |G|, say. By the above we conclude that fr ∈
∑
j,deg(fj)≤|G| fjS C S,

a contradiction. ]

(3.8) Corollary. There is an F -algebra generating set of S[V ]G all of whose
elements are homogeneous of degree ≤ |G|.

(3.9) Remark. a) By Theorems (3.5) and (3.7), an F -algebra generating set of
S[V ]G is found in

⊕|G|
d=1 S[V ]Gd . Using the degree-preserving surjective Reynolds

operator, see Definition (3.3), we have RG(
⊕|G|

d=1 S[V ]d) =
⊕|G|

d=1 S[V ]Gd . Hence
evaluating the Reynolds operator at monomials Xα, where deg(Xα) ≤ |G|,
yields a, not necessarily minimal, F -algebra generating set of S[V ]G. For an
example see Exercise (8.9).

b) Noether’s degree bound is best possible in the sense that no improvement
is possible in terms of the group order alone: Let G = 〈π〉 ∼= Cn be the cyclic
group of order n, let F be a field such that char(F ) 6 | n, let ζ ∈ F be a primitive
n-th root of unity, and let G → GL1(F ) : π 7→ ζ. Hence the invariant ring is
S[V ]G ∼= F [Xn

1 ] ⊆ F [X1] ∼= S[V ].

For more involved improvements of Noether’s degree bound, see [4, Ch.3.8].
Actually, in most practical non-modular cases both Noether’s degree bound
and its improvements are far from being sharp.

c) In the modular case, Noether’s degree bound does not hold, see Exercise
(8.10). For some known but unrealistic degree bounds, see [4, Ch.3.9]. Even
Benson’s Lemma, see Proposition (3.6), does not hold in the modular case, see
Exercise (8.11).

4 Molien’s Formula

For all of Section 4 let G be a finite group and let F ⊆ C. The aim is to use
character theory of finite groups to determine the Hilbert series of invariant
rings. As a general reference, see [12, Ch.3.1], [4, Ch.3.2] and [1, Ch.2.5].

(4.1) Proposition. For π ∈ G we have∑
d≥0

TrS[V ]d(π) · T d =
1

detV (1− Tπ)
∈ F ((T )),
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where TrS[V ]d(π) ∈ F denotes the usual matrix trace, and where 1−T ·DV (π) ∈
F [T ]n×n and detV (1− Tπ) := detF [T ]n×n(1− T ·DV (π)) ∈ F [T ].

Proof. We may assume Q[ζ|G|] ⊆ F , where ζ|G| := exp 2πi
|G| ∈ C

∗ is a primitive
|G|-th root of unity. Hence DS[V ]d(π) ∈ Fn×n is diagonalizable. In particular,
let λ1, . . . , λn ∈ F be the eigenvalues of DV (π). Hence we have detV (1−Tπ) =∏n
i=1(1− λiT ) ∈ F [T ].

Moreover, the eigenvalues of DS[V ]d(π) are
∏n
i=1 λ

αi
i ∈ F , where α ∈ Nn0 such

that
∑n
i=1 αi = d. Thus we have

∑
d≥0 TrS[V ]d(π) ·T d =

∑
α∈Nn0

∏n
i=1(λiT )αi =∏n

i=1

∑
j≥0(λiT )j =

∏n
i=1

1
1−λiT ∈ F ((T )). ]

(4.2) Theorem: Molien’s Formula, 1897.
We have HS[V ]G = 1

|G| ·
∑
π∈G

1
detV (1−Tπ) ∈ F ((T )).

Proof. The Reynolds operator RG, see Definition (3.3), projects S[V ]d onto
S[V ]Gd , for d ∈ N0. Using this we obtain dimF (S[V ]Gd ) = TrS[V ]d(RG) =

1
|G|
∑
π∈G TrS[V ]d(π) ∈ F . Hence the assertion follows from Proposition (4.1). ]

(4.3) Remark. a) By Molien’s Formula, see Theorem (4.2), the Hilbert series
HS[V ]G ∈ F (T ) even is a rational function.

b) To evaluate Molien’s Formula, note that detV (1 − Tπ) =
∏n
i=1(1 − λiT ) =

Tn ·
∏n
i=1(T−1−λi) for π ∈ G. Thus by Definition (1.3) we get detV (1−Tπ) =

Tn ·
(
T−n +

∑n
i=1(−1)iei(λ1, . . . , λn)T i−n

)
= 1 +

∑n
i=1(−1)iei(λ1, . . . , λn)T i ∈

F [T ]. By the Newton identities, see Exercise (8.4), the elementary symmetric
polynomials ei(λ1, . . . , λn) ∈ F , for i ∈ {1, . . . , n}, can be determined from
the power sums pn,j(λ1, . . . , λn) ∈ F , for j ∈ {1, . . . , n}. Finally, we have
pn,j(λ1, . . . , λn) =

∑n
i=1 λ

j
i = TrV (πj) = χV (πj) ∈ C, where χV ∈ ZIrrC(G)

denotes the ordinary character of G afforded by V .

Hence Molien’s Formula can be evaluated once χV and the so-called power
maps pj : Cl(G)→ Cl(G), for j ∈ {1, . . . , n}, on the conjugacy classes Cl(G) ofG
are known. This information is usually contained in the available character table
libraries, e. g. the one of the computer algebra system GAP [6], and actually
Molien’s Formula also is implemented there.

c) There is a straightforward generalization of Molien’s Formula to the non-
modular case, for char(F ) = p > 0 using p-modular Brauer characters of G, see
see [12, Ch.3.1] or [4, Ch.3.2].

(4.4) Example. For k ∈ N let G = 〈δ, σ〉 ∼= D2k be the dihedral group of order
2k, let ζk := exp 2πi

k ∈ C
∗ be a k-th primitive root of unity, and let

DV : G→ GL2(C) : δ 7→
[
ζk .
. ζ−1

k

]
, σ 7→

[
. 1
1 .

]
.
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We have G = {δi, σδi; i ∈ {0, . . . , k − 1}}, where δi ∈ G is a rotation having
the eigenvalues ζ±ik ∈ C, and where σδi ∈ G is a reflection, hence having the
eigenvalues ±1 ∈ C. Thus by Molien’s Formula, see Theorem (4.2), the Hilbert
series of S[V ]G is given as

HS[V ]G =
1
2k
·

(
k

(1− T ) · (1 + T )
+
k=1∑
i=0

1
(1− ζikT ) · (1− ζ−ik T )

)
∈ C((T )).

Using Exercise (8.12), where the rightmost summand is evaluated, we straight-
forwardly obtain HS[V ]G = 1

(1−T 2)·(1−Tk)
∈ C((T )).

Hence by Exercise (8.7) we are tempted to conjecture that S[V ]G is a polynomial
ring in two indeterminates of degrees 2, k. Indeed, using the identification from
Proposition (2.2), we have f1 := X1X2 ∈ S[V ]G and f2 := Xk

1 + Xk
2 ∈ S[V ]G.

By the Jacobian Criterion, see Proposition (5.8) below, we easily conclude that
{f1, f2} ⊆ C[X1, X2] is algebraically independent, and hence the Hilbert series
of C[f1, f2] ⊆ S[V ]G is given as HC[f1,f2] = 1

(1−T 2)·(1−Tk)
∈ C((T )). Thus we

conclude C[f1, f2] = S[V ]G, which hence indeed is a polynomial ring. ]

5 Polynomial invariant rings

We address the question, whether we can characterize the representations whose
invariant ring is a polynomial ring, the main result being Theorem (5.9). We
begin by considering the Laurent expansion of HS[V ]G at T = 1, which straight-
forwardly leads to a consideration of pseudoreflections. As a general reference
see [7, Ch.3], [1, Ch.2.5, Ch.7] or [12, Ch.7.1].

For all of Section 5 let G be a finite group, let F ⊆ C, and let DV be a faithful
F -representation, i. e. we have ker(DV ) = {1} ≤ G.

(5.1) Definition. a) An element 1 6= π ∈ G is called a pseudoreflection if for
the F -space FixV (π) ≤ V of fixed points of π ∈ G we have dimF FixV (π) = n−1,
and if additionally π2 = 1 then π is called a reflection. The F -space FixV (π) ≤
V of fixed points of a pseudoreflection is called its reflecting hyperplane.

Let NG ∈ N0 be the number of pseudoreflections in G. Note that these
notions of course depend on the representation DV , and make sense for an
arbitrary field F .

b) For a rational function 0 6= H = H′

H′′ ∈ C(T ), for coprime H ′,H ′′ ∈ C[T ], and
c ∈ C let k ∈ Z such that

(
(T − c)−k ·H

)
(c) 6= 0,∞. Then ordc(H) := k ∈ Z

is called the order of H at T = c. If H = 0 then let ordc(H) :=∞.

(5.2) Remark. As in the Proof of Proposition (4.1) let λ1, . . . , λn ∈ F be the
eigenvalues of DV (π), for π ∈ G. As detV (1−Tπ) =

∏n
i=1(1−λiT ) ∈ F [T ], we

have ord1(detV (1−Tπ)) ≤ n, while ord1(detV (1−Tπ)) = n if and only if π = 1.
Thus we have ord1(HS[V ]G) = −n. Moreover,

(
(T − 1)n ·HS[V ]G

)
(1) = (−1)n

|G| .
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Let HS[V ]G = (−1)n

|G| ·(T−1)−n+H ′S[V ]G ∈ F (T ). Hence we have ord1(H ′S[V ]G) ≥
−(n−1). Again we have ord1(detV (1−Tπ)) = n−1 if and only if π 6= 1 has the
eigenvalue 1 with multiplicity n− 1, i. e. if and only if π is a pseudoreflection.
In this case, let 1 6= λ ∈ F be the non-trivial eigenvalue of π. Hence we have(

(T−1)n−1

detV (1−Tπ)

)
(1) = (−1)n−1

(1−λ) . As 1
1−λ + 1

1−λ−1 = 1, pairing each pseudoreflec-
tion with its inverse, and summing over all the pseudoreflections in G, yields(

(T − 1)n−1 ·H ′S[V ]G

)
(1) = (−1)n−1·NG

2·|G| . Thus we obtain

HS[V ]G :=
(−1)n

|G|
· (T − 1)−n +

(−1)n−1 ·NG
2 · |G|

· (T − 1)−(n−1) +H ′′S[V ]G ∈ F (T ),

where ord1(H ′′S[V ]G) ≥ −(n− 2). ]

We set out to prove one direction of Theorem (5.9), which will turn out to be
the harder one. We need the technical Lemma (5.3) first.

(5.3) Lemma. Let G be generated by pseudoreflections, and let R := S[V ]G ⊆
S[V ] =: S. Moreover, let h1, . . . , hr ∈ R and h ∈ R \ (

∑r
i=1 hiR), and let

p, p1, . . . , pr ∈ S homogeneous such that hp =
∑r
i=1 hipi. Then we have p ∈

IG[V ], where IG[V ]C S denotes the Hilbert ideal, see Definition (3.4).

Proof. Induction on deg(p), let deg(p) = 0 and p 6= 0. Hence we have
hp = RG(hp) =

∑r
i=1 hi · RG(pi) ∈

∑r
i=1 hiR, where RG denotes the Reynolds

operator, see Definition (3.3). This contradicts the choice of h ∈ R.

Let deg(p) > 0. Let π ∈ G be a pseudoreflection, and we may assume that its
reflecting hyperplane is given as FixV (π) = 〈b2, . . . , bn〉F , where {b1, . . . , bn} ⊆
V is an F -basis of V . Using the identification of Proposition (2.2) we obtain
Xiπ = Xi, for i ≥ 2. Hence we haveXα(π−1) = 0 for all monomialsXα ∈ F [X],
where α ∈ Nn0 such that α1 = 0. From that we conclude that there are p′, p′i ∈ S
homogeneous such that p(π − 1) = X1p

′ ∈ S and pi(π − 1) = X1p
′
i ∈ S, for

i ∈ {1, . . . , r}. In particular we have deg(p′) < deg(p). Applying π − 1 to
the equation hp =

∑r
i=1 hipi we obtain X1 · hp′ = X1 ·

∑r
i=1 hip

′
i. Hence by

induction we have p′ ∈ I := IG[V ], and thus p(π − 1) = X1p
′ ∈ I as well.

Let : S → S/I denote the natural epimorphism of F -algebras. As I C S is
an FG-submodule, the group G acts on the quotient F -algebra S/I. By the
above we have pπ = p for all pseudoreflections π ∈ G, and as G is generated
by pseudoreflections, we have pπ = p for all π ∈ G. Since RG(p) ∈ R+ ⊆ I we
conclude p+ I = RG(p) + I = 0 + I ∈ S/I, hence p ∈ I. ]

(5.4) Theorem. Let G be generated by pseudoreflections. Then S[V ]G is a
polynomial ring.
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Proof. We keep the notation of Lemma (5.3), and let I := IG[V ] =
∑r
i=1 fiSC

S, where fi ∈ R is homogeneous such that di := deg(fi), and r ∈ N0 is mini-
mal. As by Theorem (3.5) the set {f1, . . . , fr} ⊆ R is an F -algebra generating
set of R, it is sufficient to show that {f1, . . . , fr} is algebraically independent.
Assume to the contrary that there is 0 6= h ∈ F [Y ] := F [Y1, . . . , Yr] such that
h(f1, . . . , fr) = 0. We may assume that there is d ∈ N0 such that for all mono-
mials Y α ∈ F [Y ], where α ∈ Nr0, occurring in h we have

∑r
i=1 αidi = d.

Let hi := ∂h
∂Yi

(f1, . . . , fr) ∈ R, for i ∈ {1, . . . , r}. Hence we have deg(hi) = d−di.
We may assume by reordering that

∑r′

i=1 hiR =
∑r
i=1 hiRER, where 1 ≤ r′ ≤ r

is minimal. For j > r′ let gij ∈ R, for i ∈ {1, . . . , r′}, be homogeneous such that
deg(gij) = deg(hj)− deg(hi) = di − dj , and hj =

∑r′

i=1 higij ∈ R.

Differentiation ∂
∂Xk

, for k ∈ {1, . . . , n}, using the chain rule yields

0 =
r∑
i=1

hi ·
∂fi
∂Xk

=
r′∑
i=1

hi ·

 ∂fi
∂Xk

+
r∑

j=r′+1

gij ·
∂fj
∂Xk

 ∈ S.
Let pi := ∂fi

∂Xk
+
∑r
j=r′+1 gij ·

∂fj
∂Xk

∈ S, for i ∈ {1, . . . , r′}. Hence pi is homo-
geneous such that deg(pi) = di − 1 or pi = 0. By Lemma (5.3) we conclude
that p1 ∈ I, thus p1 =

∑r
i=1 fiqi, for homogeneous qi ∈ S. Multiplying by Xk

and summing over k ∈ {1, . . . , n}, we by the Euler identity
∑n
k=1Xk · ∂f

∂Xk
=

degX(f) · f , for f ∈ S, obtain d1 · f1 +
∑r
j=r′+1 dj · g1jfj =

∑r
i=1 fiq

′
i, where

deg(q′i) > 0 or q′i = 0. As the left hand side of this equation is homogeneous of
degree d1, the right hand side is as well. If q′1 6= 0, then we have deg(f1q

′
1) > d1,

hence the term f1q
′
1 cancels with other terms of the same degree on the right

hand side. From that we conclude that f1 ∈
∑r
i=2 fiS C S, a contradiction. ]

(5.5) Proposition. Let S[V ]G = F [f1, . . . , fr] be a polynomial ring, where
fi ∈ S[V ] is homogeneous such that deg(fi) = di, and let NG ∈ N0 be the
number of pseudoreflections in G, see Definition (5.1). Then we have r = n as
well as

∏n
i=1 di = |G| and

∑n
i=1(di − 1) = NG.

Proof. As S[V ]G ∼= F [Y ] := F [Y1, . . . , Yr], for the invariant field we have
S(V )G ∼= F (Y ), where by Proposition (2.5) we have r = tr.deg(S(V )G) =
tr.deg(S(V )) = n, see [10, Ch.8.1].

By Remark (3.2) the Hilbert series of S[V ]G is given as HS[V ]G =
∏n
i=1

1
1−Tdi =

(−1)n · (T − 1)−n ·
∏n
i=1

1∑di−1
j=0 T j

∈ F ((T )). Using Remark (5.2) we by multi-

plication with (−1)n · (T − 1)n obtain

1
|G|
− NG

2 · |G|
· (T − 1) + (−1)n · (T − 1)n ·H ′′S[V ]G =

n∏
i=1

1∑di−1
j=0 T j

∈ F ((T )),

where ord1((T − 1)n ·H ′′S[V ]G) ≥ 2. Evaluating at T = 1 yields 1
|G| =

∏n
i=1

1
di

.
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By differentiating ∂
∂T the right hand side of the above equation we obtain

−
(∏n

i=1
1∑di−1

j=0 T j

)
·
(∑n

i=1

∑di−1
j=1 jT j−1∑di−1
j=0 T j

)
, and evaluating at T = 1 yields

−
(∏n

i=1
1
di

)
·
∑n
i=1

di(di−1)
2di

. On the left hand side of the above equation we

obtain − NG
2·|G| . Hence using

∏n
i=1 di = |G| we get NG =

∑n
i=1(di − 1). ]

(5.6) Definition and Remark. a) Let S[V ]G = F [f1, . . . , fr] be a polyno-
mial ring, where fi ∈ S[V ] is homogeneous such that deg(fi) = di. The set
{f1, . . . , fn} ⊆ S[V ]G is called a set of basic invariants. By Exercise (8.15)
the degrees di = deg(fi) of a set of basic invariants are uniquely defined up
to reordering. They are called the polynomial degrees of G, where we may
assume d1 ≤ · · · ≤ dn.

b) Basic invariants are in general not uniquely defined, even not up to reorder-
ing and multiplication by scalars: Let G = Sn = 〈(1, 2), . . . , (n − 1, n)〉 be
the symmetric group as in Section 1, acting on the polynomial ring F [X] by
permuting the indeterminates. Hence G is generated by reflections. By the
Newton identities, see Exercise (8.4), Corollary (1.7) and the algebraic indepen-
dence of {pn,1, . . . , pn,n}, see Exercise (8.14), we have F [X]Sn = F [e1, . . . , en] =
F [pn,1, . . . , pn,n].

We prove a general criterion, to decide whether an n element subset of a poly-
nomial ring F [X] = F [X1, . . . , Xn], where char(F ) = 0, is algebraically inde-
pendent. This has already been used in Example (4.4). Just in Definition (5.7)
and Proposition (5.8) we allow for more general fields F .

(5.7) Definition. For {f1, . . . , fn} ⊆ F [X] = F [X1, . . . , Xn] the Jacobian
matrix is defined as J(f1, . . . , fn) := [ ∂fi∂Xj

]i,j=1,...,n ∈ F [X]n×n, its determinant
det J(f1, . . . , fn) ∈ F [X] is called the Jacobian determinant.

(5.8) Proposition: Jacobian Criterion.
Let char(F ) = 0. Then {f1, . . . , fn} ⊆ F [X] = F [X1, . . . , Xn] is algebraically
independent, if and only if we have det J(f1, . . . , fn) 6= 0 ∈ F [X].

Proof. Let 0 6= h ∈ F [X] of minimal degree such that h(f1, . . . , fn) = 0.
Differentiation ∂

∂Xj
using the chain rule yields the system of linear equations,

over F (X) = Quot(F [X]),[
∂h

∂Xi
(f1, . . . , fn)

]
i=1,...,n

· J(f1, . . . , fn) = 0.

As degX(h) > 0 and char(F ) = 0, there is i ∈ {1, . . . , n} such that ∂h
∂Xi
6= 0 ∈

F [X]. As degX( ∂h
∂Xi

) < degX(h), we also have ∂h
∂Xi

(f1, . . . , fn) 6= 0 ∈ F [X].
Hence the above system of linear equations has a non-trivial solution, thus
det J(f1, . . . , fn) 6= 0 ∈ F [X].
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Let conversely {f1, . . . , fn} be algebraically independent. As tr.deg(F (X)) = n,
see [10, Ch.8.1], for k ∈ {1, . . . , n} the sets {Xk, f1, . . . , fn} are algebraically
dependent. Let 0 6= hk ∈ F [X0, X1, . . . , Xn] = F [X+] of minimal degree such
that hk(Xk, f1, . . . , fn) = 0. Differentiation ∂

∂Xj
yields[

∂hk
∂Xi

(Xk, f1, . . . , fn)
]
k,i=1,...,n

·J(f1, . . . , fn) = diag
[
− ∂hk
∂X0

(Xk, f1, . . . , fn)
]
k=1,...,n

.

As {f1, . . . , fn} is algebraically independent, we have degX0
(hk) > 0. As

char(F ) = 0 we get ∂hk
∂X0

6= 0 ∈ F [X+], and as degX+( ∂hk∂X0
) < degX+(hk) we

have ∂hk
∂X0

(Xk, f1, . . . , fn) 6= 0 ∈ F [X+]. Hence det diag[− ∂hk
∂X0

(Xk, f1, . . . , fn)] 6=
0 ∈ F [X+], and thus det J(f1, . . . , fn) 6= 0 ∈ F [X]. ]

(5.9) Theorem: Shephard-Todd, 1954; Chevalley, 1955.
The invariant ring S[V ]G is a polynomial ring if and only if G is generated by
pseudoreflections.

Proof. By Theorem (5.4) it remains to show that if S[V ]G is a polynomial
ring, then G is generated by pseudoreflections. Using Proposition (5.5), let
S[V ]G = F [f1, . . . , fn], where fi ∈ S[V ] is homogeneous such that di := deg(fi).
Let H ≤ G be the subgroup generated by the pseudoreflections in G. Hence by
Theorem (5.4) we have S[V ]G ⊆ S[V ]H = F [g1, . . . , gn] ⊆ S[V ], where gi ∈ S[V ]
is homogeneous such that ei := deg(gi). Hence there are hi ∈ F [X] such that
fi = hi(g1, . . . , gn), for i ∈ {1, . . . , n}. We may assume that for all monomials
Xα ∈ F [X], where α ∈ Nn0 , occurring in hi we have

∑n
i=1 αiei = di.

Differentiation ∂
∂Xk

, for k ∈ {1, . . . , n}, and the chain rule yield J(f1, . . . , fn) =[
∂hi
∂Xj

(g1, . . . , gn)
]
i,j=1,...,n

· J(g1, . . . , gn) ∈ F [X]n×n. By the Jacobian Cri-

terion, see Proposition (5.8), we have det J(f1, . . . , fn) 6= 0 ∈ F [X], thus
det[ ∂hi∂Xj

(g1, . . . , gn)] 6= 0 ∈ F [X] as well. Hence by renumbering {f1, . . . , fn} we

may assume that
∏n
i=1

∂hi
∂Xi

(g1, . . . , gn) 6= 0 ∈ F [X]. Thus we have di ≥ ei, for
i ∈ {1, . . . , n}. Hence by Proposition (5.5) we have

∑n
i=1(di − 1) = NG =

NH =
∑n
i=1(ei − 1), thus ei = di for i ∈ {1, . . . , n}. Moreover we have

|G| =
∏n
i=1 di =

∏n
i=1 ei = |H|. ]

(5.10) Remark. a) Shephard-Todd (1954) proved Theorem (5.9) by first clas-
sifying the finite groups generated by pseudoreflections, and then by a case-
by-case analysis verified Theorem (5.4). Later, Chevalley (1955) gave a con-
ceptual proof. For the Shephard-Todd classification of irreducible finite groups
generated by pseudoreflections, to which one immediately reduces, see e. g. [1,
Tbl.7.1] or [12, Tbl.7.1.1]. Actually, finite groups generated by pseudoreflections
play an important role not only in invariant theory, but also in the representa-
tion theory of finite groups of Lie type, and currently are in the focus of intensive
research.
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b) The permutation action of the symmetric group Sn considered in Section 1 is
a reflection representation, see Definition (5.6), but it is afforded by a reducible
QSn-module. It is closely related to an irreducible QSn-reflection module, see
Exercise (8.17). Another example of an irreducible reflection representation is
the action of the dihedral group D2k given in Example (4.4).

c) Theorem (5.9) remains valid in the non-modular case, as was proved by Serre
(1967). Moreover, Serre proved that in the modular case, if an invariant ring
is polynomial, then the group under consideration is generated by pseudoreflec-
tions. But the converse does not hold, see Exercise (8.18). A classification of
polynomial invariant rings in the modular case, together with further aspects
of invariant rings of pseudoreflection groups, has been given by Kemper-Malle
(1997), see also [4, Ch.3.7].

6 Cohen-Macaulay algebras

As Section 5 shows, most of the invariant rings are not polynomial rings. Hence
the question arises, which are their common structural features? It turns out
in the non-modular case, that invariant rings are Cohen-Macaulay algebras, see
Definition (6.9). We need more commutative algebra first, as general references
see e. g. [4, Ch.2.4, Ch.2.5, Ch.3.4], [1, Ch.2, Ch.4.3], [12, Ch.4.5] and [5, Ch.12,
Ch.13], [2].

(6.1) Theorem: Hilbert, Serre.
Let R be a finitely generated graded F -algebra, being generated as an F -algebra
by {f1, . . . , ft} ⊆ R, where fi is homogeneous such that deg(fi) = di > 0. Let
M be a finitely generated graded R-module, see Definition (3.1).

Then the Hilbert series HM ∈ C((T )) is of the form HM (T ) = f(T )∏t
i=1(1−Tdi ) ∈

C(T ), where f ∈ Z[T±1] is a Laurent polynomial with integer coefficients. In
particular, HM converges in the pointed open unit disc {z ∈ C; 0 < |z| < 1} ⊆ C.

Proof. Induction on t, let t = 0. Hence R = F , and thus M is a F -vector space
such that dimF (M) < ∞. Hence HM (T ) = f(T ) ∈ Z[T±1] ⊆ C(T ). Let t > 0,
and for d ≥ NM consider the exact sequence of F -vector spaces

{0} →M ′d := kerMd
(·ft)→Md

·ft−→Md+dt → cokMd+dt
(·ft) =: M ′′d+dt → {0},

induced by multiplication with ft ∈ R. As R is Noetherian, see Corollary (2.8),
the sums M ′ :=

⊕
d≥NM M ′d and M ′′ :=

⊕
d≥NM M ′′d are finitely generated

graded R-modules, see Definition (2.6). As M ′ · ft = {0} = M ′′ · ft, these are
finitely generated modules for the F -algebra generated by {f1, . . . , ft−1}, hence
by induction HM ′ ∈ C(T ) and HM ′′ ∈ C(T ) have the asserted form. Moreover,
the above exact sequence yields T dtHM ′ − T dtHM + HM −HM ′′ = 0 ∈ C(T ),
and thus HM = HM′′−T

dtHM′
1−Tdt ∈ C(T ) also has the asserted form. ]
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(6.2) Definition. Let R be a finitely generated graded F -algebra, and let M
be a finitely generated graded R-module. Then dim(M) := −ord1(HM ) ∈ Z,
see Definition (5.1), is called the Krull dimension of M . Moreover, deg(M) :=(
(1− T )dim(M) ·HM (T )

)
(1) = limz→1−((1−z)dim(M) ·HM (z)) ∈ Q is called the

degree of M .

(6.3) Example. Let F [Y ] = F [Y1, . . . , Yr] ⊆ F [X] = F [X1, . . . , Xn], where Yi
are homogeneous such that degX(Yi) = di, then by Remark (3.2) the Hilbert se-
ries of F [Y ] is given asHF [Y ] =

∏r
i=1

1
1−Tdi ∈ C(T ), hence we have dim(F [Y ]) =

r and deg(F [Y ]) =
∏r
i=1

1
di

.

Note that it is not a priorly clear that dim(M) ≥ 0 holds. This follows for
the dimension of a graded F -algebra from graded Noether normalization, see
Theorem (6.6) and Definition (6.7) below. Actually, using a more general variant
of Noether normalization for modules, this also follows for the dimension of
modules, see e. g. [1, Thm.2.7.7], but we will not use this fact.

(6.4) Theorem. Let R be a finitely generated graded F -algebra, and let R ⊆ S
be a finite extension of graded F -algebras, i. e. we have Sd∩R = Rd for d ∈ N0.
a) Then we have dim(R) = dim(S).
b) If S is an integral domain, we have deg(S) = [Quot(S) : Quot(R)] · deg(R).

Proof. a) As S is a finitely generated R-module, it is the epimorphic image of a
finitely generated free graded R-module A, i. e. the R-module A is a finite direct
sum of degree shifted copies of the R-module R. Hence we have HA = f ·HR ∈
C(T ), where 0 6= f ∈ Z≥0[T ]. As f(1) > 0 we have dim(R) = dim(A) =: r ∈ Z.

Moreover, for d ≥ 0 we have dimF (Rd) ≤ dimF (Sd) ≤ dimF (Ad), and thus by
Theorem (6.1) for z ∈ R such that 0 < z < 1 we haveHR(z) ≤ HS(z) ≤ HA(z) ∈
R. Thus we also have limz→1−((1− z)r ·HR(z)) ≤ limz→1−((1− z)r ·HS(z)) ≤
limz→1−((1 − z)r · HA(z)), where the first and third limits exist in R and are
different from 0, and hence the second limit also exists in R and is different from
0. Thus we have dim(S) = −ord1(HS) = r as well.

b) As S is integral over R and a finitely generated R-algebra, the field extension
Quot(R) ⊆ Quot(S) indeed is finite, let t := [Quot(S) : Quot(R)]. Moreover, as
S is a finitely generated R-module, there is a Quot(R)-basis {f1, . . . , ft} ⊆ S
of Quot(S) consisting of homogeneous elements. Let A :=

⊕t
i=1 fiR ⊆ S.

Hence we have HA = f · HR ∈ C(T ), where 0 6= f ∈ Z≥0[T ] and f(1) = t.
Moreover, as S is a finitely generated R-algebra, there is f ∈ R homogeneous
such that S ⊆ f−1A =

⊕t
i=1 fif

−1R ⊆ Quot(S). We have Hf−1A = T− deg(f) ·
HA ∈ C(T ). Hence we have dim(S) = dim(R) = dim(A) = dim(f−1A) and
t · deg(R) = deg(A) = deg(f−1A). Moreover, since dimF (Ad) ≤ dimF (Sd) ≤
dimF ((f−1A)d) for d ∈ Z, we conclude deg(A) ≤ deg(S) ≤ deg(f−1A). ]
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(6.5) Corollary. Let G be a finite group acting faithfully on the F -vector space
V . Then we have dim(S[V ]G) = dimF (V ) and deg(S[V ]G) = 1

|G| .

Proof. The extension of graded rings S[V ]G ⊆ S[V ] is finite, see Theorem (2.9).
By Proposition (2.5) we have [S(V ) : S(V )G] = |G|. Hence the assertions follow
from Theorem (6.4) together with Example (6.3). ]

Note that for F ⊆ C the assertions of Corollary (6.5) also follow from Molien’s
Formula, see Theorem (4.2).

We present the main structure theorem for finitely generated graded commu-
tative algebras, which is the case we are interested in. Actually, Noether nor-
malization exists in various variations for various types of commutative algebras
and for modules over them, see e. g. [5, Ch.13].

(6.6) Theorem: Graded Noether Normalization Lemma.
Let R be a finitely generated graded F -algebra. Then there is an algebraically
independent set {f1, . . . , fr} ⊆ R, for some r ∈ N0, where fi is homogeneous
such that deg(fi) > 0, such that R is finite over the polynomial ring P :=
F [f1, . . . , fr].

Proof. See [5, Thm.13.3] or [1, Thm.2.7.7]. ]

(6.7) Definition and Remark. Let R be a finitely generated graded F -
algebra, and let moreover {f1, . . . , fr} ⊆ R and P be as in Theorem (6.6).
Note that by Definition (2.4) the finiteness condition is equivalent to R being a
finitely generated P -module.
a) As by Remark (3.2) we have HP =

∏r
i=1

1
1−Tdeg(fi)

∈ C(T ), we by Theorem
(6.4) conclude that r = dim(P ) = dim(R) ∈ N0 holds. In particular, r is
uniquely defined, independent of the particular choice of {f1, . . . , fr}. Moreover,
we have r = dim(R) = 0, if and only if dimF (R) <∞.
b) Let R be an integral domain. As R is integral over P and a finitely generated
P -algebra, the field extension Quot(P ) ⊆ Quot(R) is finite. Hence we have
dim(R) = r = tr.deg(Quot(P )) = tr.deg(Quot(R)), see [10, Ch.8.1].
c) The set {f1, . . . , fr} ⊆ R is called a homogeneous system of parameters
(hsop) of R. If R = S[V ]G is an invariant ring, then a homogeneous system
of parameters is called a set of primary invariants. If S[V ]G =

∑s
i=1 giP

for some s ∈ N0, where gi is homogeneous, then the set {g1, . . . , gs} ⊆ R of
P -module generators of S[V ]G is called a set of secondary invariants.

(6.8) Example. The set {X1, X2, . . . , Xn} ⊆ F [X] is a homogeneous system
of parameters, we have P = F [X] and the P -module F [X] is generated by
{1} ⊆ F [X]. In particular, if S[V ]G is a polynomial ring, then a set of ba-
sic invariants, see Definition (5.6), is a set of primary invariants, and a set of
secondary invariants is given by {1} ⊆ S[V ]G.
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The set {X2
1 , X2, . . . , Xn} ⊆ F [X] is algebraically independent as well, and we

have F [X] = 1 · P
⊕
X1 · P , where P = F [X2

1 , X2, . . . , Xn]. Hence the set
{X2

1 , X2, . . . , Xn} ⊆ F [X] also is a homogeneous system of parameters. Hence
not even the degrees of the elements of a homogeneous system of parameters
are in general uniquely defined.

Having Noether normalization at hand, we are led to ask whether the finitely
generated module for the polynomial subring has particular properties, and in
particular whether it could be a free module. For invariant rings, in the non-
modular case this indeed turns out to be true, see Theorem (6.15). We begin
by looking at regular sequences, which if of appropriate length turn out to be
particularly nice homogeneous systems of parameters.

(6.9) Definition. Let R be a finitely generated graded F -algebra, and let M
be a finitely generated graded R-module.
a) A homogeneous element 0 6= f ∈ R such that deg(f) > 0 is called regular for
M , if kerM (·f) = {0}, where ·f : M →M : m 7→ mf . A sequence {f1, . . . , fr} ⊆
R of homogeneous elements such that deg(fi) > 0 is called regular, if fi is
regular for R/(

∑i−1
j=1 fjR), for i ∈ {1, . . . , r}.

b) The depth depth(R) ∈ N0 of R is the maximal length of a regular sequence
in R. The F -algebra R is called Cohen-Macaulay, if depth(R) = dim(R).

(6.10) Example. Let F [X] = F [X1, . . . , Xr]. Since F [X]/(
∑i−1
j=1XjF [X]) ∼=

F [Xi, . . . , Xr], for i ∈ {1, . . . , r}, is an integral domain, we conclude that the
sequence {X1, . . . , Xr} ⊆ F [X] is regular. As dim(F [X]) = r, see Example
(6.3), the polynomial ring F [X] is Cohen-Macaulay.

An example of a finitely generated graded F -algebra not being Cohen-Macaulay
is given in Exercise (8.23).

(6.11) Proposition. We keep the notation of Definition (6.9)
a) Let f ∈ R be regular for M . Then we have dim(M/Mf) = dim(M)− 1, see
Definition (6.2). In particular, we have depth(R) ≤ dim(R).

b) Each regular sequence {f1, . . . , fr} ⊆ R, for r ≤ dim(R), can be extended
to a homogeneous system of parameters. In particular, if r = dim(R), then
{f1, . . . , fr} is a homogeneous system of parameters.

c) (Macaulay Theorem) Let R be Cohen-Macaulay and r ∈ N. Then a
sequence {f1, . . . , fr} ⊆ R of homogeneous elements such that deg(fi) > 0 is
regular, if and only if dim(R/(

∑r
i=1 fiR)) = dim(R)− r.

Proof. a) We consider the exact sequence of R-modules {0} → kerM (·f) →
M

·f−→ M → cokM (·f) = M/Mf → {0}, see also the Proof of Theorem (6.1).
As we have kerM (·f) = {0}, we from this obtain −T deg(f)HM +HM−HM/Mf =
0 ∈ C(T ), hence HM = HM/Mf

1−Tdeg(f) ∈ C(T ), and thus dim(M) = dim(M/Mf)+1.
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Let {f1, . . . , fr} ⊆ R be a regular sequence. Hence this yields dim(R) − r =
dim(R/(

∑r
j=1 fjR)) ≥ 0, see Definition (6.7). Thus depth(R) ≤ dim(R).

b) Let R := R/(
∑r
j=1 fjR) and let : R→ R denote the natural epimorphism

of graded F -algebras. Moreover, by Noether normalization, see Theorem (6.6),
let {g1, . . . , gs} ⊆ R and {h1, . . . , ht} ⊆ R where gi and hj are homogeneous such
that deg(gi) > 0, such that {g1, . . . , gs} ⊆ R is a homogeneous system of param-
eters of R, and R is as an F [g1, . . . , gs]-module generated by {h1, . . . , ht} ⊆ R.
Note that we have s = dim(Q) = dim(R)− r.
Let P ⊆ R be the F -algebra generated by {f1, . . . , fr, g1, . . . , gs} ⊆ R. Hence we
have P = F [g1, . . . , gs] ⊆ R. As the P -module R is generated by {h1, . . . , ht}, by
the graded Nakayama Lemma, see Exercise (8.21), we conclude that {h1, . . . , ht}
generates the F -vector space R/(

∑s
j=1 gjR) ∼= R/(

∑r
i=1 fiR +

∑s
j=1 gjR). By

the graded Nakayama Lemma again we conclude that {h1, . . . , ht} is a gener-
ating set of the P -module R. Hence P ⊆ R is a finite extension of graded
F -algebras. Thus by Theorem (6.4) we have dim(P ) = dim(R) = r + s, and
since P is as an F -algebra generated by r + s elements, by Exercise (8.20)
we conclude that P = F [f1, . . . , fr, g1, . . . , gs] is a polynomial ring. Hence
{f1, . . . , fr, g1, . . . , gs} ⊆ R is a homogeneous system of parameters.

c) By a) regular sequences fulfill the dimension condition. For the converse, see
[1, Prop.4.3.4] and also [5, Cor.18.11]. ]

(6.12) Theorem. Let R be a finitely generated graded F -algebra such that
r = dim(R) ∈ N0. Then the following conditions are equivalent:
i) The F -algebra R is Cohen-Macaulay.
ii) Each homogeneous system of parameters {f1, . . . , fr} ⊆ R is regular.
iii) For each homogeneous system of parameters {f1, . . . , fr} ⊆ R, the F -algebra
R is a finitely generated free graded P -module, where P := F [f1, . . . , fr].
iv) There is a homogeneous system of parameters {f1, . . . , fr} ⊆ R, such that
R is a finitely generated free graded P -module, where P := F [f1, . . . , fr].

Proof. ii) =⇒ i): By Definition (6.9) we have depth(R) = dim(R).

i) =⇒ iii): By the graded Nakayama Lemma, see Exercise (8.21), we have
dimF (R/(

∑r
i=1 fiR)) < ∞, and letting {g1, . . . , gs} ⊆ R be homogeneous such

that {g1, . . . , gs} ⊆ R/(
∑r
i=1 fiR) is an F -basis of R/(

∑r
i=1 fiR), we have R =∑s

j=1 gjP . As dim(R/(
∑r
i=1 fiR)) = 0, see Definition (6.7), by the Macaulay

Theorem, see Proposition (6.11), the sequence {f1, . . . , fr} is regular.

Let hj ∈ F [Y ] = F [Y1, . . . , Yr] such that
∑s
j=1 gjhj(f1, . . . , fr) = 0 ∈ R,

where there is j such that hj 6= 0. Let Y α1
1 be the maximal power of Y1

dividing all hj , and let h(1)
j := hj

Y
α1
1
∈ F [Y ]. As f1 ∈ R is regular, we have∑s

j=1 gjh
(1)
j (f1, . . . , fr) = 0 ∈ R. Hence we have

∑s
j=1 gjh

(1)
j (0, f2, . . . , fr) =

0 ∈ R/f1R also, where by construction there is j such that h(1)
j (0, Y2, . . . , Yr) 6=
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0. By iteration this yields
∑s
j=1 gjh

(r)
j = 0 ∈ R/(

∑r
i=1 fiR), where h(r)

j ∈ F ,

and there is j such that h(r)
j 6= 0, a contradiction.

iii) =⇒ ii) and iv) =⇒ i): Let {g1, . . . , gs} ⊆ R homogeneous such that we have
R =

⊕s
j=1 gjF [f1, . . . , fr] as F [f1, . . . , fr]-modules. As F [f1, . . . , fr] is an inte-

gral domain, the element f1 ∈ R is regular, and R/f1R =
⊕s

j=1 gjF [f2, . . . , fr].
By iteration, {f1, . . . , fr} ⊆ R is regular.

iii) =⇒ iv): Trivial. ]

(6.13) Definition and Remark. Let R be Cohen-Macaulay.
a) Let {f1, . . . , fr} ⊆ R be a homogeneous system of parameters, where r =
dim(R), let P := F [f1, . . . ,r ] and let {g1, . . . , gs} ⊆ R homogeneous such that
R =

⊕s
j=1 gjP . This decomposition of the P -module R as a direct sum of free

P -modules is called the corresponding Hironaka decomposition of R.
b) Given a Hironaka decomposition of R, its Hilbert series is given as

HR =

∑s
j=1 T

deg(gj)∏r
i=1(1− T deg(fi))

∈ C(T ).

In particular, as dim(R) = r we have deg(R) = s∏r
i=1 deg(fi)

, see Definition (6.2).
c) Hence, if a homogeneous system of parameters {f1, . . . , fr} has been found,
the Hilbert series can be used to find the degrees of the elements of a minimal
homogeneous generating set {g1, . . . , gs} ⊆ R of the P -module R.

(6.14) Theorem. Let G be a finite group acting faithfully on the F -vector
space V , where dimF (V ) = n, see Corollary (6.5). Let {f1, . . . , fn} ⊆ S[V ]G

be a set of primary invariants, let di := deg(fi), let P := F [f1, . . . , fn] and let
{g1, . . . , gs} ⊆ S[V ]G be a minimal set of secondary invariants of S[V ]G.
a) Then |G| |

∏n
i=1 di, and we have s · |G| ≥

∏n
i=1 di.

b) The invariant ring S[V ]G is Cohen-Macaulay, if and only if s · |G| =
∏n
i=1 di.

Proof. a) As both the ring extensions P ⊆ S[V ]G ⊆ S[V ] are finite, see Theo-
rem (2.9), the set {f1, . . . , fn} is a homogeneous system of parameters of S[V ].
Let {h1, . . . , ht} ⊆ S[V ] be a minimal homogeneous P -module generating set
of S[V ]. As by Example (6.10) the polynomial ring S[V ] is Cohen-Macaulay,
Definition (6.13) yields deg(S[V ]) = t∏n

i=1 di
. As by Example (6.3) we have

deg(S[V ]) = 1, we conclude t =
∏n
i=1 di.

Moreover, by Theorem (6.12) the P -module S[V ] is free of rank t, thus the set
{h1, . . . , ht} is a Quot(P )-linearly independent generating set of S(V ), hence
we have [S(V ) : Quot(P )] = t =

∏n
i=1 di. As by Proposition (2.5) we have

[S(V ) : S(V )G] = |G|, we conclude [S(V )G : Quot(P )] =
∏n
i=1 di
|G| . As {g1, . . . , gs}

generates S(V )G as a Quot(P )-vector space, we have s ≥
∏n
i=1 di
|G| .
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b) If we have s =
∏n
i=1 di
|G| , then {g1, . . . , gs} is Quot(P )-linearly independent,

hence in particular S[V ]G is a free P -module of rank s, thus by Theorem (6.12)
is Cohen-Macaulay. Conversely, if S[V ]G is Cohen-Macaulay, then by Definition
(6.13) and Corollary (6.5) we have deg(S[V ]G) = s∏n

i=1 di
= 1
|G| . ]

We are prepared to prove the main structure theorem for invariant rings in the
non-modular case.

(6.15) Theorem: Hochster-Eagon, 1971.
Let F be a field, let G be a finite group and let H ≤ G such that char(F ) 6 |
[G : H]. If the invariant ring S[V ]H is Cohen-Macaulay, then the invariant ring
S[V ]G is Cohen-Macaulay as well. In particular, if char(F ) 6 | |G|, then S[V ]G

is Cohen-Macaulay.

Proof. Let {f1, . . . , fn} ⊆ S[V ]G be a set of primary invariants, i. e. a homo-
geneous system of parameters, where n = dimF (V ), see Corollary (6.5). Let
P := F [f1, . . . , fn] ⊆ S[V ]G ⊆ S[V ]H ⊆ S[V ], hence S[V ]G is a finitely gener-
ated P -module. As by Theorem (2.9) the ring extension S[V ]G ⊆ S[V ] is finite,
the ring S[V ] is a finitely generated P -module as well. As P is Noetherian,
the P -submodule S[V ]H ⊆ S[V ] also is a finitely generated P -module, hence
{f1, . . . , fn} is a homogeneous system of parameters of S[V ]H , i. e. a set of
primary invariants. Thus by Theorem (6.12) the P -module S[V ]H is free.

The relative Reynolds operator RGH : S[V ]H → S[V ]G, see Definition (3.3), in
particular is a projection of graded P -modules. Hence S[V ]G is a direct sum-
mand of the free P -module S[V ]H , and thus is a finitely generated projective
graded P -module, and hence by Exercise (8.21) is a free P -module. Thus S[V ]G

is Cohen-Macaulay.

As by Example (6.10) the polynomial ring S[V ] is Cohen-Macaulay, the second
statement follows from the first. ]

(6.16) Example. a) Let F be a field such that char(F ) 6= 2, and let F [X]AX be
the invariant ring of the alternating group AX ≤ SX , see Exercise (8.2). Hence
we have F [X]AX = 1 · F [X]SX

⊕
∆n · F [X]SX , where F [X]SX ∼= F [e1, . . . , en]

is a polynomial ring, and ∆2
n ∈ F [X]SX , see Exercise (8.1). Hence the set of

elementary symmetric polynomials {e1, . . . , en} ⊆ F [X]AX is a set of primary
invariants, and {1,∆n} ⊆ F [X]AX is a set of secondary invariants, see Definition
(6.7), and the above decomposition of F [X]AX is the corresponding Hironaka
decomposition, see Definition (6.13).

b) Further examples are given in Exercise (8.24), Exercise (8.25) and Exercise
(8.26). Moreover, in Section 7 we present an elaborated classical example, the
invariants of the icosahedral group.

(6.17) Remark. In the modular case, invariant rings in general are not Cohen-
Macaulay, see Exercise (8.27). Actually, the analysis of the structure of invariant
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rings in the modular case currently is in the focus of intensive study, but the
general picture seems to be only slowly emerging.

7 Invariant theory live: the icosahedral group

In Section 7 we present an elaborated classical example, the invariants of the
icosahedral group, due to Molien (1897). This shows invariant theory at work,
and in particular how geometric features are related to invariant theory. As a
reference see [12, Ex.3.1.4]. The computations carried out below can easily be
reproduced using either of the computer algebra systems GAP [6] or MAGMA
[3]. We include some relevant GAP code at the end of Section 7.

Let I ⊆ R1×3 be the regular icosahedron, one of the platonic solids. The faces
of I consist of regular triangles, where at each vertex 5 triangles meet. Let
f, e, v ∈ N be the number of faces, edges, and vertices of I, respectively. Hence
by Euler’s Polyhedron Theorem we have f − e + v = 2. Since we have e = 3f

2

and v = 3f
5 , we conclude f = 20 and e = 30 as well as v = 12.

Let G := {π ∈ O3(R); Iπ = I} ≤ O3(R) be the symmetry group of I, where we
assume I ⊆ R1×3 to be centered at the origin, and O3(R) is the isometry group
of the Euclidean space R1×3. Let H = G ∩ SO3(R) be the group of rotational
symmetries of I, where SO3(R) := {π ∈ O3(R); det(π) = 1} ≤ O3(R).

By the regularity of I, the group H acts transitively on the vertices of I, where
the corresponding point stabilizers have order 5. Hence we have |H| = 60. The
rotational axes of the elements of H are given by the lines joining opposite
vertices, midpoints of opposite edges, and midpoints of opposite faces I. This
yields 6 · 4 elements of order 5, and 15 elements of order 2, as well as 10 · 2
elements of order 3, respectively, accounting for all the non-trivial elements of
H. Using basic group theory it straightforwardly follows that H ∼= A5

Moreover, as for the inversion σ with respect to the origin we have σ ∈ G \H.
As σ ∈ Z(O3(R)), we have G = H × 〈σ〉 ∼= A5 × C2, in particular |G| = 120.
Note that the eigenvalues of σ are {−1,−1,−1}, hence σ is not a reflection.
The group H is generated by its elements of order 2. These are rotations,
thus have eigenvalues {1, 1,−1}, and hence are not reflections either. From
that we conclude that G is generated by the set of reflections {πσ ∈ G; 1 6=
π ∈ H;π2 = 1}. Thus G is a reflection group; actually it is the exceptional
irreducible pseudoreflection group G23 in the Shephard-Todd classification, see
Remark (5.10).

The ordinary character table of H ∼= A5, where ζ5 := exp 2πi
5 ∈ C

∗ is a primitive
5-th root of unity, as well as ζ := ζ5+ζ4

5 ∈ R ⊆ C and ζ ′ := ζ2
5 +ζ3

5 = −1−ζ ∈ R,
is given as follows, where the conjugacy classes are denoted by the corresponding
element orders, and the second power map, see Remark (4.3), as well as the
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cardinality of the conjugacy classes are also given.

order 1 2 3 5 5′

power2 1 2 3 5′ 5
# 1 15 20 12 12
χ1 1 1 1 1 1
χ2 3 −1 . ζ ζ ′

χ3 3 −1 . ζ ′ ζ
χ4 4 . 1 −1 −1
χ5 5 1 −1 . .

Hence R1×3 is an absolutely irreducible RA5-module, affording the character
χ2 ∈ ZIrrC(A5), say, and by Molien’s Formula, see Theorem (4.2) and Remark
(4.3), we find HS[R3]H = 1−T 2−T 3+T 6+T 7−T 9

(1−T 2)2·(1−T 3)·(1−T 5) ∈ C(T ). By the Hochster-Eagon
Theorem, see Theorem (6.15), the invariant ring HS[R3]H is Cohen-Macaulay,
and by the Shephard-Todd-Chevalley Theorem, see Theorem (5.9), it is not
polynomial. Hence taking Definition (6.13) and Theorem (6.14) into account
we finally end up with the following form of the Hilbert series

HS[R3]H =
1 + T 15

(1− T 2) · (1− T 6) · (1− T 10)
∈ C(T ).

Hence we conjecture that there are primary invariants {f1, . . . , f3} such that
deg(f1) = 2, deg(f2) = 6 and deg(f3) = 10, and secondary invariants {g1, g2}
such that g1 = 1 and deg(g2) = 15, such that the corresponding Hironaka
decomposition of the invariant ring is S[R3]H =

⊕2
j=1 gjR[f1, . . . , f3]. For the

polynomial invariant ring S[R3]G we obtain HS[R3]G = 1
(1−T 2)·(1−T 6)·(1−T 10) ∈

C(T ), leading to the conjecture that the polynomial degrees, see Definition
(5.6), of the pseudoreflection group G are {2, 6, 10}, and that we moreover have
S[R3]G = R[f1, . . . , f3].

Let H := 〈α, β, γ〉, where α2 = 1, β3 = 1, γ5 = 1 and αβ = γ. Moreover, let
F := Q(ζ) ⊆ R be the real number field generated by ζ ∈ R, let V := F 1×3 and
let DV : H → GL3(F ) ≤ GL3(R) be given as

DV : α 7→

 . 1 .
1 . .
. . −1

 , β 7→
 . . 1

ζ 1 −1
−1 . −1

 , γ 7→
 ζ 1 −1

. . 1
1 . 1

 .
Hence we indeed have χV = χ2 ∈ ZIrrC(A5). Moreover, as H acts by isometries
of the Euclidean space R1×3, there is an H-invariant scalar product on V . As
H acts absolutely irreducibly on V , it is uniquely defined up to scalars, and its
matrix turns out to be given as

Φ :=

 1 ζ′

2 − 1
2

ζ′

2 1 1
2

− 1
2

1
2 1

 ∈ Q(ζ)3×3.
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We use the identification S[V ] ∼= F [X1, . . . , X3], see Proposition (2.2), and
let X := [X1, . . . , X3] ∈ F [X]1×3 and D := DV (π), for π ∈ H. Note that
for L ∈ F 3×1 we have (X · L)D = X · DtrL, where by ·D we denote the ac-
tion of D on F [X]. As the bilinear form described by Φ is H-invariant, we
have DΦDtr = Φ, hence D−trΦ−1D−1 = Φ−1, and thus DtrΦ−1D = Φ−1 as
well. From this we obtain (XΦ−1X tr)D = (XΦ−1)D · (XD)tr = (XDtrΦ−1) ·
(XDtr)tr = XDtrΦ−1DX tr = XΦ−1X tr Thus f1 := XΦ−1X tr ∈ S[V ]H is
homogeneous such that deg(f1) = 2.

The group H permutes the 6 lines joining opposite vertices of I transitively. A
vector 0 6= v1 ∈ V on one of these lines is found as an eigenvector of γ ∈ H
with respect to the eigenvalue 1. Note that γ has order 5, and as γ is a rotation
the corresponding eigenspace has F -dimension 1. It turns out that the H-orbit
{±v1, . . . ,±v6} ⊆ V of v1 has length 12. We choose {v1, . . . , v6} ⊆ V , one from
each of 2-element sets {±vi}, and let f2 :=

∏6
k=1 vk ∈ S[V ] homogeneous such

that deg(f2) = 6. As H permutes {±v1, . . . ,±v6}, we conclude that 〈f2〉F ∈
S[V ]6 is a 1-dimensional FH-submodule. As H ∼= A5 is a perfect group, we
conclude that f2 ∈ S[V ]H .

Analogously, the group H permutes the 10 lines joining the midpoints of oppo-
site faces of I transitively. We consider the eigenspace of β ∈ H with respect to
the eigenvalue 1, which again has F -dimension 1, and where β has order 3. This
leads to an H-orbit of length 20, and as above we get f3 ∈ S[V ]H homogeneous
such that deg(f3) = 10.

By the Jacobian Criterion, see Proposition (5.8), we find that det J(f1, . . . , f3) 6=
0 ∈ S[V ], hence {f1, . . . , f3} is algebraically independent. Note that this does
not a priorly qualify {f1, . . . , f3} to be a set of primary invariants of S[V ]H .
As σ ∈ G \ H has eigenvalues {−1,−1,−1} and deg(fi) is even, we have
{f1, . . . , f3} ⊆ S[V ]G. Since we have HS[V ]G = 1

(1−T 2)·(1−T 6)·(1−T 10) ∈ C(T )
this shows S[V ]G = F [f1, . . . , f3], and hence {f1, . . . , f3} ⊆ S[V ]G is a set of
basic invariants of S[V ]G. As in the Proof of Theorem (6.15) we conclude that
{f1, . . . , f3} ⊆ S[V ]H is a set of primary invariants of S[V ]H .

As HS[V ]H = (1 + T 15) · HS[V ]G , we by Definition (6.13) are left to find a
secondary invariant of S[V ]H of degree 15. As H ∼= A5 is a perfect group, we
conclude that detV is the trivial H-representation, hence by Exercise (8.13) we
have 0 6= g2 := det J(f1, . . . , f3) ∈ S[V ]H homogeneous such that deg(g2) = 15.
As deg(fi) is even and deg(g2) is odd, we conclude that {g1, g2} is F [f1, . . . , f3]-
linearly independent, and hence we have S[V ]H =

⊕2
j=1 gjF [f1, . . . , f3].

Note that detV (σ) = −1, hence detV is not the trivial G-representation, and
thus the assumption of Exercise (8.13) is not fulfilled. Indeed, we have already
proved that det J(f1, . . . , f3) ∈ S[V ]H \S[V ]G. Moreover, note that analogously
to f2, f3 ∈ S[V ]H we can find a homogeneous H-invariant of degree 15 by using
suitable vectors lying on the lines joining the midpoints of opposite edges of I.
As dimF (S[V ]H) = 1, the latter invariant is a scalar multiple of g2 ∈ S[V ]H . ]
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The GAP code used is as follows. We also provide slides of a corresponding GAP
session at the very end of these lecture notes.

#################################################################

tbl:=CharacterTable("A5");
hs:=MolienSeries(tbl,Irr(tbl)[2]);
# ( 1-z^2-z^3+z^6+z^7-z^9 ) / ( (1-z^5)*(1-z^3)*(1-z^2)^2 )
MolienSeriesWithGivenDenominator(hs,[2,6,10]);
# ( 1+z^15 ) / ( (1-z^10)*(1-z^6)*(1-z^2) )

z:=E(5)+E(5)^4;
rep:= # representation of A5 over Z[z], on (2,3,5)-triple
[ [ [ 0, 1, 0 ], [ 1, 0, 0 ], [ 0, 0,-1 ] ],
[ [ 0, 0, 1 ], [ z, 1,-1 ], [-1, 0,-1 ] ],
[ [ z, 1,-1 ], [ 0, 0, 1 ], [ 1, 0, 1 ] ] ];

h:=Group(rep);

polring:=PolynomialRing(Cyclotomics,["X_1","X_2","X_3"]);
indets:=IndeterminatesOfPolynomialRing(polring);
x1:=indets[1];
x2:=indets[2];
x3:=indets[3];
x:=[x1,x2,x3];

f:= # the A5-invariant scalar product
[ [ 1, 1/2*(-1-z), -1/2 ],
[ 1/2*(-1-z), 1, 1/2 ],
[ -1/2, 1/2, 1 ] ];

f1:=x*f^(-1)*x; # invariant of degree 2

v:=NullspaceMat(rep[3]-rep[3]^0)[1];
vorb:=Orbit(h,v);
PermList(List(vorb,x->Position(vorb,-x)));
# (1,12)(2,11)(3,10)(4,9)(5,6)(7,8)
vvecs:=vorb{[1,2,3,4,5,7]};
# [ [ -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4,
# -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4, 1 ],
# [ -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4,
# -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4, -1 ],
# [ E(5)+E(5)^4, -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4, -1 ],
# [ -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4, E(5)+E(5)^4, 1 ],
# [ -E(5)-E(5)^4, E(5)+E(5)^4, 1 ],
# [ -E(5)-E(5)^4, E(5)+E(5)^4, -E(5)+E(5)^2+E(5)^3-E(5)^4 ] ]
f2:=Product(List(vvecs,i->x*i)); # invariant of degree 6
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w:=NullspaceMat(rep[2]-rep[2]^0)[1];
worb:=Orbit(h,w);
PermList(List(worb,x->Position(worb,-x)));
# (1,20)(2,19)(3,17)(4,14)(5,18)(6,15)(7,16)(8,11)(9,12)(10,13)
wvecs:=worb{[1,2,3,4,5,6,7,8,9,10]};
f3:=Product(List(wvecs,i->x*i)); # invariant of degree 10

prim:=[f1,f2,f3];
jac:=List(prim,p->List(x,i->Derivative(p,i)));
g2:=DeterminantMat(jac); # invariant of degree 15

#################################################################
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8 Exercises

(8.1) Exercise: Elementary symmetric polynomials.
Let F be a field and F [X] := F [X1, . . . , Xn]. Let ∆n :=

∏
1≤i<j≤n(Xi −Xj) ∈

F [X] be the discriminant and let pn,k :=
∑n
i=1X

k
i ∈ F [X], for k ∈ N, be the

k-th power sum.

Show that ∆2
n and pn,k are symmetric polynomials, and write ∆3, as well as

pn,2, pn,3 and pn,4 as polynomials in the elementary symmetric polynomials
{e1, . . . , en} ⊆ F [X].

(8.2) Exercise: Alternating polynomials.
Let F be a field such that char(F ) 6= 2, and let F [X] := F [X1, . . . , Xn]. A
polynomial f ∈ S is called alternating, if fπ = sgn(π) · f for all π ∈ SX .
a) Show that f ∈ F [X] is alternating, if and only if f = ∆n · g, where g ∈ F [X]
is a symmetric polynomial and ∆n ∈ F [X] is the discriminant as in Exercise
(8.1).
b) Let F [X]AX := {f ∈ F [X]; fπ = f for all π ∈ AX} ⊆ F [X] be the invari-
ant ring of the alternating group AX ≤ SX . Show that we have F [X]AX =
F [X]SX

⊕
∆n · F [X]SX as F -vector spaces, i. e. each f ∈ F [X]AX can be

uniquely written as f = g + ∆n · h, where g, h ∈ F [X]SX .
c) Conclude that F [X]AX is not a polynomial ring.

(8.3) Exercise: An algebraic equation system.
Let n ∈ N and let F be a field such that char(F ) > n. Determine all solutions
[x1, . . . , xn] ∈ F 1×n of the system of n− 1 equations

n∑
i=1

xi = 0,
n∑
i=1

x2
i = 0, . . . ,

n∑
i=1

xn−1
i = 0.

Proof. Uses the Newton identities, see Exercise (8.4). ]

(8.4) Exercise: Newton identities.
Let F be a field and F [X] := F [X1, . . . , Xn]. Moreover, let pn,k :=

∑n
i=1X

k
i ∈

F [X], for k ∈ N, be the power sums as in Exercise (8.1), let e1, . . . , en ∈ F [X]
be the elementary symmetric polynomials, and let e0 := 1 ∈ F [X]. For k ∈
{1, . . . , n} show that

kek =
k∑
i=1

(−1)i−1pn,iek−i.

Proof. See [12, p.81]. ]
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(8.5) Exercise: Integral ring extensions.
Let R ⊆ S be an extension of commutative rings.
a) Show that an element s ∈ S is integral over R, if and only if there is a finitely
generated R-submodule of S containing s.
b) Show that the ring extension R ⊆ S is finite, if and only if S is a finitely
generated R-module.
c) Show that the subset R

S
:= {s ∈ S; s integral over R} ⊆ S is a subring of S.

d) Let R be a unique factorization domain. Show that R is integrally closed.

(8.6) Exercise: Noetherian rings and modules.
Let R be a commutative ring and let M be an R-module.
a) Show that, ifM is Noetherian, then so are the R-submodules and the quotient
R-modules of M .
b) Show that, if R is Noetherian, then M is Noetherian if and only if M is a
finitely generated R-module.

Proof. See [1, Ch.1.2] or [12, Ch.2.1]. ]

(8.7) Exercise: Hilbert series.
Let F [X] := F [X1, . . . , Xn] and F [X]d := {f ∈ F [X]; degX(f) = d}, for d ∈ N0.
a) Show that dimF (F [X]d) =

(
n+d−1

d

)
and conclude that the Hilbert series of

the polynomial ring F [X] is given as HF [X] = 1
(1−T )n ∈ C((T )).

b) Let Y := {Y1, . . . , Ym} ⊆ F [X], for m ∈ N0, be algebraically independent,
where Yi is homogeneous such that degX(Yi) = di. Show that the Hilbert series
of the polynomial ring F [Y ] is given as HF [Y ] =

∏m
i=1

1
1−Tdi ∈ C((T )).

(8.8) Exercise: Transfer map.
a) Let F be a field, let G be a finite group and let V be a finite-dimensional
FG-module. Moreover let TrG : S[V ]→ S[V ]G be the transfer map. Show that
im (TrG) 6= {0} holds.
b) Let F be a field of char(F ) = 2, let F [X] = F [X1, . . . , Xn], for n ≥ 2, be the
polynomial ring acted on by the symmetric group SX , and let ∆n ∈ F [X] be as
in Exercise (8.1). Show that im (TrG) = ∆n · F [X]SX C F [X]SX .

Proof. a) See [12, Prop.2.2.4]. b) See [12, Ex.2.2.1]. ]

(8.9) Exercise: Generators of invariant rings.
Let G = 〈π〉 ∼= C3 be the cyclic group of order 3, let F be a field such that
char(F ) 6= 3, and let

DV : G→ GL2(F ) : π 7→
[

. 1
−1 −1

]
.

Compute a minimal F -algebra generating set of S[V ]G, and show that Noether’s
degree bound is attained in this case.
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Proof. See [12, Ex.2.3.1]. ]

(8.10) Exercise: Noether’s degree bound.
Let G = 〈π〉 ∼= C2 be the cyclic group of order 2, let F be a field such that
char(F ) = 2, let V = W ⊕W ⊕W as FG-modules, where

DW : G→ GL2(F ) : π 7→
[
. 1
1 .

]
.

Show that Noether’s degree bound does not hold for S[V ]G.

Proof. See [4, Ex.3.5.7] or [12, Ex.2.3.2]. ]

(8.11) Exercise: Noether’s degree bound.
Let G = 〈π〉 ∼= C2 be the cyclic group of order 2, let F be a field such that
char(F ) = 2, let V = W ⊕W as FG-modules, where

DW : G→ GL2(F ) : π 7→
[

1 1
. 1

]
.

Compute a minimal F -algebra generating set of S[V ]G, determine the Hilbert
ideal IG[V ], and show that Benson’s Lemma does not hold for S[V ]+ C S[V ].

Proof. See [4, Rem.3.8.7]. ]

(8.12) Exercise: Molien’s Formula.
For k ∈ N let G = 〈π〉 ∼= Ck be the cyclic group of order k, let ζk := exp 2πi

k ∈ C
∗

be a k-th primitive root of unity, and let

DV : G→ GL2(C) : π 7→
[
ζk .
. ζ−1

k

]
.

a) Show that S[V ]G ∼=
⊕k−1

i=0 (X1X2)i · F [Xk
1 , X

k
2 ]. Conclude that the Hilbert

series of S[V ]G is given as HS[V ]G = 1−T 2k

(1−T 2)·(1−Tk)2 ∈ C((T )).
b) Prove the identity

1
k
·
k=1∑
i=0

1
(1− ζikT ) · (1− ζ−ik T )

=
1

(1− T k)2
·
k−1∑
i=0

T 2i ∈ C((T )).

c) Evaluate the sum
∑k−1
i=0

1
|1−ζik|2

∈ C.

Proof. See [12, Ex.3.1.1, Ex.3.1.2] and [4, Ex.5.6.1]. ]
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(8.13) Exercise: Jacobian and Hessian determinant.
Let G be a group, let V be an FG-module such that dimF (V ) = n ∈ N, and
let detV : G→ F : g 7→ detV (g) denote the corresponding determinant repre-
sentation. Moreover, let S[V ] ∼= F [X] = F [X1, . . . , Xn] using the identification
from Proposition (2.2).
a) For {f1, . . . , fn} ⊆ S[V ]G let J(f1, . . . , fn) := [ ∂fi∂Xj

]i,j=1,...,n ∈ F [X]n×n

be the corresponding Jacobian matrix. Show that if detV is the trivial
representation, then for the determinant det J(f1, . . . , fn) ∈ F [X] we have
det J(f1, . . . , fn) ∈ S[V ]G.
b) For f ∈ S[V ]G let H(f) := J([ ∂f∂Xi ]i=1,...,n) ∈ F [X]n×n denote the corre-
sponding Hessian matrix. Show that if (detV )2 is the trivial representation,
then for the determinant detH(f) ∈ F [X] we have detH(f) ∈ S[V ]G.

(8.14) Exercise: Jacobian Criterion.
Let F be a field such that char(F ) = 0, let F [X] := F [X1, . . . , Xn] and let
pn,k :=

∑n
i=1X

k
i ∈ F [X], for k ∈ N, be the power sums as in Exercise (8.1).

Show that {pn,1, . . . , pn,n} ⊆ F [X] is algebraically independent.

Proof. See [7, Exc.3.10]. ]

(8.15) Exercise: Polynomial degrees.
Let R be a finitely generated graded F -algebra, and let {f1, . . . , fn} ⊆ R and
{f ′1, . . . , f ′n} ⊆ R be algebraically independent sets of homogeneous elements
such that R = F [f1, . . . , fn] = F [f ′1, . . . , f

′
n]. Let moreover di = deg(fi) and

d′i = deg(f ′i), where d1 ≤ · · · ≤ dn and d′1 ≤ · · · ≤ d′n. Show that di = d′i holds,
for i ∈ {1, . . . , n}.

Proof. See [7, Prop.3.7]. ]

(8.16) Exercise: Polynomial invariant rings.
Let F be a field, let G be a finite group, and let V be a faithful FG-module,
where n := dimF (V ).
a) Let S[V ]G = F [f1, . . . , fr], for r ∈ N0, be a polynomial ring, where fi ∈ S[V ]
is homogeneous. Show that r = n and

∏n
i=1 deg(fi) = |G|.

b) Let {f1, . . . , fr} ⊆ S[V ]G be a homogeneous system of parameters such that∏r
i=1 deg(fi) = |G|. Show that r = n and S[V ]G = F [f1, . . . , fn].

c) Let F ⊆ C, let G be generated by pseudoreflections, and let {f1, . . . , fn} ⊆
S[V ]G be an algebraically independent set of homogeneous invariants, such that∏n
i=1 deg(fi) = |G|. Show that S[V ]G = F [f1, . . . , fn].

Proof. See [7, Prop.3.12], [1, Ch.2.4], [12, Prop.4.5.5] and [4, Thm.3.7.5]. ]
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(8.17) Exercise: Reflection representations of Sn.
Let n ∈ N and let W be the natural permutation QSn-module, having permu-
tation Q-basis {b1, . . . , bn} ⊆W .
a) Show that W ′ := 〈

∑n
i=1 bi〉Q ≤W is a QSn-submodule, and that V := W/W ′

is an absolutely irreducible faithful reflection representation of Sn.
b) Determine algebraically independent invariants {f1, . . . , fn−1} ⊆ S[V ]Sn
such that S[V ]Sn = Q[f1, . . . , fn−1].

(8.18) Exercise: Modular pseudoreflection groups.
Let p be a prime, let

G :=




1 . a+ b b
. 1 b b+ c
. . 1 .
. . . 1

 ∈ GL4(Fp); a, b, c ∈ Fp

 ≤ GL4(Fp),

and let V := F
1×4
p be the natural FG-module.

a) Show that G is a pseudoreflection group of order |G| = p3.
b) Show that S[V ]G is not a polynomial ring.

Proof. Needs Exercise (8.16), see [4, Ex.3.7.7]. ]

(8.19) Exercise: Coefficient growth.
Let H := f(T )∏r

i=1(1−Tdi ) =
∑
d≥0 hdT

d ∈ C((T )), where f ∈ Z[T±1] as well as
r ≥ 1 and di ∈ N. Let k ∈ Z be the smallest integer such that the sequence
{hd
dk
∈ C; d ≥ 0} ⊆ C is bounded. If ord1(H) ≤ −1, show that k = −ord1(H)−1.

Proof. See [1, Prop.2.1.2]. ]

(8.20) Exercise: Krull dimension.
Let R be a finitely generated graded F -algebra.
a) Let P ⊆ R be an extension of graded F -algebras, and let R → Q be an
epimorphism of graded F -algebras. Show that dim(P ) ≤ dim(R) as well as
dim(Q) ≤ dim(R).
b) Let R be generated by a set of cardinality r ∈ N0. Show that dim(R) ≤ r,
and that dim(R) = r if and only if R ∼= F [X1, . . . , Xr].

Proof. Uses limz→1−(· · · ). ]

(8.21) Exercise: Graded Nakayama Lemma.
Let R be a finitely generated graded F -algebra, an let M =

⊕
d≥0Md be a

finitely generated N0-graded R-module.

a) Let : M → M/MR+ be the natural epimorphism of graded R-modules.
Moreover, letX ⊆M be a set of homogeneous elements. Show that the following
conditions are equivalent:



Invariant Theory of Finite Groups 33

i) The set X is a generating set of the R-module M .
ii) The set X is a generating set of the F -vector space M/MR+.

b) Show that M is a projective R-module if and only if M is a free R-module.

Proof. a) See [4, La.3.5.1]
b) See [1, La.4.1.1] or [5, Exc.4.6.11] or [11, Thm.2.5]. ]

(8.22) Exercise: Homogeneous systems of parameters.
Let R be a finitely generated graded F -algebra, and let {f1, . . . , fr} ⊆ R, where
fi is homogeneous such that deg(fi) > 0 and r = dim(R) ∈ N0. Show that
{f1, . . . , fr} is a homogeneous system of parameters, if and only if for j ∈
{1, . . . , r} we have dim(R/(

∑j
i=1 fiR)) = r − j.

Proof. See [4, Prop.3.3.1]. ]

(8.23) Exercise: Cohen-Macaulay algebras.
Let F be a field, and let R ⊆ F [X] = F [X1, X2] be the subalgebra generated
by {X4

1 , X
3
1X2, X1X

3
2 , X

4
2} ⊆ F [X].

a) Show that {X4
1 , X

4
2} ⊆ R is a homogeneous system of parameters.

b) Show that R is not Cohen-Macaulay.

Proof. See [4, Ex.2.5.4]. ]

(8.24) Exercise: Hironaka decomposition.
Let G = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 ≤ S4 be the Klein group of order 4, acting on
Q[X] = Q[X1, . . . , X4] by permuting the indeterminates.
a) Show that the Hilbert series of Q[X]G is given as HQ[X]G = 1+T 3

(1−T )·(1−T 2)3 .
b) Find primary invariants {f1, . . . , f4} ⊆ S[V ]G such that deg(f1) = 1 and
deg(f2) = deg(f3) = deg(f4) = 2, and secondary invariants {g1, g2} ⊆ S[V ]G

such that deg(g1) = 1 and deg(g2) = 3, yielding the Hironaka decomposition
S[V ]G =

⊕2
i=1 giC[f1, . . . , f4].

Proof. See [4, Ex.3.3.6(a)]. ]

(8.25) Exercise: Hironaka decomposition.
Let G = 〈α, β〉 ∼= C2 × C4 be the abelian group of order 8 defined by

DV : G→ GL3(C) : α 7→

 1 . .
. 1 .
. . i

 , β 7→
 −1 . .

. −1 .

. . 1

 .
a) Show that the Hilbert series of S[V ]G is given as HS[V ]G = 1

(1−T 2)3 ∈ C(T ).
b) Show that there is no set of primary invariants {f1, . . . , f3} ⊆ S[V ]G such
that deg(f1) = deg(f2) = deg(f2) = 2.
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c) Find primary invariants {f1, . . . , f3} ⊆ S[V ]G such that deg(f1) = deg(f2) =
2 and deg(f3) = 4, and secondary invariants {g1, . . . , gs} ⊆ S[V ]G for some
s ∈ N, yielding the Hironaka decomposition S[V ]G =

⊕s
i=1 giC[f1, . . . , f3].

Proof. See [4, Ex.3.3.6(b)]. ]

(8.26) Exercise: Hironaka decomposition.
Let G = 〈σ, τ〉 ∼= Q8 be the quaternion group of order 8, and let

DV : G→ GL2(C) : σ 7→
[
i .
. −i

]
, τ 7→

[
. −1
1 .

]
.

a) Show that the Hilbert series of S[V ]G is given as HS[V ]G = 1+T 6

(1−T 4)2 ∈ C(T ).
b) Find primary invariants {f1, f2} ⊆ S[V ]G such that deg(f1) = deg(f2) = 4,
and secondary invariants {g1, g2} ⊆ S[V ]G such that deg(g1) = 1 and deg(g2) =
6, yielding the Hironaka decomposition S[V ]G =

⊕2
i=1 giC[f1, f2].

c) Show that S[V ]G ∼= C[X,Y, Z]/(Z3 − X2Y + 4Y 3)C[X,Y, Z] as graded C-
algebras, where deg(X) = deg(Y ) = 4 and deg(Z) = 6.

Proof. See [1, Exc.2.5] or [12, Ex.5.5.1]. ]

(8.27) Exercise: Cohen-Macaulay property.
Let p be a prime, let G := 〈π〉 ∼= Cp be the cyclic group of order p, let F be a
field such that char(F ) = p, and let V = W ⊕W ⊕W as FG-modules, where

DW : G→ GL2(F ) : π 7→
[

1 1
. 1

]
.

Let S[W ] ∼= F [X,Y ] and S[V ] ∼= F [X1, Y1, X2, Y2, X3, Y3].
a) For 1 ≤ i < j ≤ 3 let hij := XiYj −XjYi ∈ S[V ]. Show that hij ∈ S[V ]G.
b) Show that {Y1, Y2, Y3} ⊆ S[V ]G can be extended to a homogeneous system
of parameters of S[V ]G, but is not a regular sequence in S[V ]G.

Proof. Uses Exercise (8.22), see [4, Ex.3.4.3] and also [12, Ex.5.5.2]. ]
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