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Information

All information related to this course can be found at
https://eclass.uoa.gr/courses/MATH861/

Data used for the examples are part of several R packages, from
Kaggle and from our own analyses

Introductory notes on R can be found on the above site

For further questions email at fsiannis@math.uoa.gr or contact
through the above site
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Data

Assume we have data that look like
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Simple Linear Model

It is the simplest version of the linear models, with one dependent
variable (Y ) and only one independent (prognostic) variable (X )

The model takes the form:

yi = β0 + β1xi + ϵi ,

where:

β0: the intercept
β1: the slope
i = 1, 2, . . . , n where n the size of the sample
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Main Assumptions

We have pairs of observations (xi , yi ) for i = 1, 2, ..., n, where

X : fixed variable (not random), called covariate or
explanatory variable

Y : random variable, from population with mean

E (Y ) = β0 + β1X ,

called the response, and

ϵ: random errors, for which we assume

(a) E (ϵi ) = 0
(b) Var(ϵi ) = σ2, ie. common variance for all i
(c) Cov(ϵi , ϵj) = 0, ie. independence for i , j
(d) Usual assumption:

ϵi ∼ N(0, σ2)
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Ordinary Least Squares Estimation (OLS)

In simple linear model we have to estimate β0, β1 (and σ2)

We take β̂0 and β̂1 to be the parameters estimates. Then:

ŷi = β̂0 + β̂1xi

is an estimate of the mean for Y for every value of xi

The OLS priciple is to find β̂0 and β̂1 such that the square distance
between yi and ŷi to become minimum

Therefore, we want to minimize the following quantity

n∑
i=1

ϵ̂2i =
n∑

i=1

(yi − ŷi )
2 = SSE

(Residual Sum of Square or Sum of Square Error)
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Estimation - Prediction

We obtain the fitted regression line

Ŷ = β̂0 + β̂1X ,

The above equation helps us estimate E (Y ) for various values of X

The power (quality) of our estimates depends on the assumption that
our model is appropriate (correct) or at least a good approximation of
the true model

”All models are wrong, but some are useful” George Box (1976)
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Every Ŷi obtained from the fitted regression line can be used for:

(a) Estimation of population mean E (Y ) for given value of X
(b) Prediction of Y that may be obtained in the future for specific value of

X

The point estimates of (a) and (b) are the same, however they differ
in how much we believe them to be the ”correct” values

Therefore, is the uncertainty (variability) that makes the difference

This is reflected on the confidence intervals (CI), where the CI for
prediction is greater
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Statistical Inference

Assume the model

yi = β0 + β1xi + ϵi , ϵi ∼ N(0, σ2), i = 1, 2, . . . , n.

Then:

We have
β̂0 ∼ N

(
β0,V (β̂0)

)
and

β̂1 ∼ N
(
β1,V (β̂1)

)
.

We know that:

V (β̂1) =
σ2∑n

i=1(xi − x̄)2
.
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Confidence Interval for β1

Knowing the distribution of β̂1, we can construct a (1-α)100% confidence
interval for β1.

We know that:

t =
β̂1 − β1√
V̂ (β̂1)

=
β̂1 − β1√

σ̂2∑n
i=1(xi−x̄)2

∼ tn−2

This leads to the (1-α)100% confidence interval

β̂1−tn−2,α/2
σ̂√

n∑
i=1

(xi−x̄)2
≤ β1 ≤ β̂1+tn−2,α/2

σ̂√
n∑

i=1
(xi−x̄)2
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Residuals

After fitting the model, it is always wise to check the residuals (yi − ŷi ) to
see if the initial model assumptions hold.
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Multivariate Linear Model

The simple model can be extended to incorporate more than one
explanatory variables

If we have k-variables, the model takes the form:

yi = β0 + β1x1i + β2x2i + . . .+ βkxki + ϵi , i = 1, 2, ..., n.

β0: the intercept
βj : the j-th predictor’s regression slope (j = 1, 2, ..., k)
ϵi ∼ N(0, σ2)

Parameter interpretation: βj represents the amount by which yi will
change if xji increase by one unit and all other covariates remain
unchanged

Fotios Siannis (Department of Mathematics National and Kapodistrian University of Athens)Statistical Analysis: Linear Regression and ANOVA
CODEJAM / 1st Workshop on Computational Biology 6-11 April 2025, Athens, Greece
16 / 106



Analysis of Variance (ANOVA)

In the linear model, total variability is expressed:

SST =
n∑

i=1

(yi − ȳ)2.

We can show that it can be broken down to two components:

SST =
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷ)2 = SSR + SSE

SSR is the sum-of-squares explained by the model
(regression sum-of-squares)

SSE is the sum-of-squares that cannot be explained by the model
(sum-of-squares error)
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In the simple model the analysis of variance can be represented as follow:
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ANOVA TABLE

Source DF SS MS F − test

Model k SSR MSR = SSR
k F = MSR/MSE

Residuals n − k − 1 SSE MSE = SSE
n−k−1

Total n − 1 SST

We can show that MSE is an unbiased estimate of σ2

The ratio in the last column of ANOVA

F =
MSR

MSE

serves as an overall test for the model

H0 : β1 = β2 = . . . = βk = 0

Quantity F follows an F distribution, thus

F ∼ Fk,n−k−1

Fotios Siannis (Department of Mathematics National and Kapodistrian University of Athens)Statistical Analysis: Linear Regression and ANOVA
CODEJAM / 1st Workshop on Computational Biology 6-11 April 2025, Athens, Greece
19 / 106



Dummy (Binary) Variables

A dummy variable d is a 0/1 variable

Basically, a dummy variable represents the existence of a binary
(qualitative) characteristic

Typical examples: (a) male/female, (b) treatment/no-treatment, (c)
age < 50/ > 50, where d = 1 represents one level and d = 0 the
other

Notice that this type of categorization is not unique. A dummy
variable can be expressed in many other ways

A set of dummy variables can be used to express a qualitative
characteristic with more than 2 levels
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Regression using Dummy Variables

Assume the following model with a binary (dummy) variable

yi = β0 + β1di + β2xi + ϵi .

The model can take the following forms:

If d = 0, then:
yi = β0 + β2xi + ϵi

If d = 1, then:
yi = (β0 + β1) + β2xi + ϵi
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For example, consider the following case:

Fotios Siannis (Department of Mathematics National and Kapodistrian University of Athens)Statistical Analysis: Linear Regression and ANOVA
CODEJAM / 1st Workshop on Computational Biology 6-11 April 2025, Athens, Greece
22 / 106



In reality we have two populations:
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Interpretation

Observations are split in two groups, according to variable d

The group with d = 0 is called baseline group

Parameter β1 reflects the expected impact of group with d = 1 vs
group with d = 0, keeping all other variables fixed

Therefore, a statistical test of the form

H0 : β1 = 0

practically tests whether the expected value of y is the same in the
two groups

Fotios Siannis (Department of Mathematics National and Kapodistrian University of Athens)Statistical Analysis: Linear Regression and ANOVA
CODEJAM / 1st Workshop on Computational Biology 6-11 April 2025, Athens, Greece
24 / 106



Categorical Variables

Dummy variables can be used to describe a categorical variable with
m-levels, where m > 2

For a variable with m-levels we need m − 1 dummy variable

For example, ’Education Level’ (edu) can be a variable with the
following levels

edu

1 High School
2 University Degree
3 Post-Graduate Degree

and the question is about the impact of edu on income (Y )
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Introducing edu straight in the model (continuous variable)

y = β0 + β1xedu + ϵ

means that the impact of a ’University Degree’ compared to
’High-School’ would be exactly the same with the impact of a
’Post-Graduate Degree’ compared to ’University Degree’

To include edu in the model, we need 2 dummy variables

edu d1 d2
1 High School 0 0
2 University Degree 1 0
3 Post-Graduate Degree 0 1
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Baseline group has all dummy variables equal to zero (High School)

Value d1 = 1 then ’University Degree’, else 0

Value d2 = 1 then ’Post-Graduate Degree’, else 0

Clearly, we cannot have d1 = 1 and d2 = 1 at the same time

The model takes the form

y = β0 + β1d1 + β2d2 + ϵ

Since edu=High School (i.e. d1 = d2 = 0), then

y = β0 + ϵ,

where β0 represents baseline
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β1 is the effect of ’University Degree’ compared to ’High School’

y = β0 + β1 + ϵ,

β2 is the effect of ’Post-Graduate Degree’ compared to ’High School’

y = β0 + β2 + ϵ,

Various tests regarding β1 and β2 can test various hypothesis

Interpretation remains the same in the presence of other explanatory
variables
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Coeficient of Determination

The Coeficient of Determination is

R2 =
SSR

SST
= 1− SSE

SST

Represents the percentage of total variability of yi ’s explained by the
model, and serves as a ’quality’ measure of the model

The Adjusted Coeficient of Determination takes the form

R2
Adj = 1− MSE

MST
< R2

R2
Adj takes into account the number of observations as well as the

number of explanatory variables.

If sample size is large then R2
Adj ≃ R2
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Example

Systolic Blood Pressure (SBP) ∼ Age
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Fit Regression Line
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R output:
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Systolic Blood Pressure (SBP) ∼ AGE + Gender
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R output:
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Fit Regression Lines:
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Model Selection

Many times we have several explanatory variables to consider

Not all of them are important (explanatory for Y )

We can adopt model selection strategies so we can come up with the
optimal model

Forward Selection
Backward Elimination
Stepwise Selection

We can select the criterion of our choice (AIC, BIC,p-value, R2,etc)

If the number of covariates is not big, we can run a grid search (fit all
the models) and choose the optimal one

Fotios Siannis (Department of Mathematics National and Kapodistrian University of Athens)Statistical Analysis: Linear Regression and ANOVA
CODEJAM / 1st Workshop on Computational Biology 6-11 April 2025, Athens, Greece
36 / 106



Presentation Outline

1 General Information

2 Linear Models - Fixed Effects

3 Linear Mixed Models

4 ANOVA - MANOVA

Fotios Siannis (Department of Mathematics National and Kapodistrian University of Athens)Statistical Analysis: Linear Regression and ANOVA
CODEJAM / 1st Workshop on Computational Biology 6-11 April 2025, Athens, Greece
37 / 106



Random Effects

We need to understand (at least qualitatively) what are the likely
sources of random variation

One possible source is Random Effects, when units are sampled at
random from a population and various aspects of their behavior may
show stochastic variation between units

We introduce Linear Random Effects model where

the response is assumed to be a linear function of exploratory variables
with regression coefficients that vary from one individual to the next
variability reflects natural heterogeneity due to unmeasured factors
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Example: Children birth weight and growth rate

A RE model is reasonable if the set of coefficients of children can be
thought of as a sample from a population

Association (correlation) arises because we cannot observe the
underlying growth curve but we have only imperfect measurements of
weight on each infant

RE models allow for this association on the observations of the same
infant over time

So a (simple) model with random intercept takes the form

E (Yij |Ui ) = (β0 + bi ) + β1(time)ij

where (time)ij are the times where measurements were taken.

Typically, bi follows N(0, σ2
b)
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Linear Mixed Models

The Usual Linear Model

y = Xβ + ϵ,

where

y = (y1, ..., yn)
′ is an n × 1 vector of independent observations

β is a p × 1 vector of unknown parameters
X an n × p design (model) matrix
ϵ = (ϵ1, ..., ϵn)

′ is an n × 1 vector of independent errors
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The linear mixed model has the following (general) form

Yi = Xiβ + Zibi + ϵi ,

Yi , β and e as before with

E(ϵi ) = 0n
Var(ϵi ) = W

Matrix Z is a given n × q matrix (columns of Z a subset of X )
bi is an unobservable random vector of dimensions q × 1, following any
multivariate distribution (usually MVN) with

E(bi ) = 0
Var(bi ) = B

In addition, vectors bi and ei are assumed uncorrelated.
E (Yi ) = Xiβ
Var(Yi ) = Var(Xβ + Zb + ϵ) = ZBZ ′ +W .
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Random Intercept Model

Consider the model

Yij = (β1 + bi ) + Xij2β2 + ...+ Xijpβp + ϵij

Each subject’s profile appears flat or parallel (over time)

Observations Yij vary around a different value for each subject

These values are the intercepts of the lines for each subject’s
responses vary around

bi represents the deviations of subject’s i intercept from the
population one (β1)

The set of intercepts are sample from the population of intercepts

This implies that there is between-subject variability
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Example

Consider observations measured in subjects over time.
Such profiles support the assumption of a model with random intercept.
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Furthermore, the variance of Yij takes the form

Var(Yij) = Var(bi ) + Var(eij) = σ2
b + σ2

The covariance between any pair of observations of the same subject

Cov(Yij ,Yik) = Cov(bi , bi ) = σ2
b.

The correlation between two observations becomes

ρ = Corr(Yij ,Yik) =
σ2
b

σ2
b + σ2

.

The presence of random effect induce correlation among repeated
measurements. This is also known as intra-class correlation.
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Note: In statistics, the intraclass correlation is a descriptive statistic that
can be used when quantitative measurements are made on units that are
organized into groups. It describes how strongly units in the same group
resemble each other. While it is viewed as a type of correlation, unlike
most other correlation measures it operates on data structured as groups,
rather than data structured as paired observations.

The model
E (Yij |bi ) = X

′
ijβ + bi

is referred to as the conditional or subject specific mean model

The model

E (Yij) = X
′
ijβ

is referred to as the marginal or population averaged mean model
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Example: Orthodont Data [included in nlme package]

A set of measurements of the distance from the pituitary gland to the
pterygomaxillary fissure taken every 2 years.

Measurements taken from 8 till 14 years of age.

We have 27 children: 16 males - 11 females

Data collected from x-rays.
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Plot the data:
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Parameter estimates:
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Run a random intercept model and get:

R Console Page 1

> coef(lmeOrth1)#subject specific coefficients (random intercept only)
    (Intercept) I(age - 11)
M16    23.10517   0.6601852
M05    23.10517   0.6601852
M02    23.44163   0.6601852
M11    23.66593   0.6601852
M07    23.77808   0.6601852
M08    23.89023   0.6601852
M03    24.22668   0.6601852
M12    24.22668   0.6601852
M13    24.22668   0.6601852
M14    24.78744   0.6601852
M09    25.01174   0.6601852
M15    25.68464   0.6601852
M06    26.13325   0.6601852
M04    26.35755   0.6601852
M01    27.36691   0.6601852
M10    28.93702   0.6601852
F10    19.06774   0.6601852
F09    21.42291   0.6601852
F06    21.42291   0.6601852
F01    21.64721   0.6601852
F05    22.76872   0.6601852
F07    23.10517   0.6601852
F02    23.10517   0.6601852
F08    23.44163   0.6601852
F03    23.77808   0.6601852
F04    24.78744   0.6601852
F11    26.13325   0.6601852
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Random Intercept and Slope Model

Consider the model

Yij = (β1 + b1i ) + (β2 + b2i )tij + eij .

Each subject varies with respect
(i) baseline level when ti1 = 0 and
(ii) rate of change of response over time

In this case we have the same fixed and random terms

The variance is a function of time
Var(Yij) = Var(b1i ) + 2tijCov(b1i , b2i ) + t2ijVar(b2i ) + Var(eij) and
the covariance too
Cov(Yij ,Yik) = Var(b1i ) + (tij + tik)Cov(b1i , b2i ) + tij tikVar(b2i )

Fotios Siannis (Department of Mathematics National and Kapodistrian University of Athens)Statistical Analysis: Linear Regression and ANOVA
CODEJAM / 1st Workshop on Computational Biology 6-11 April 2025, Athens, Greece
53 / 106



Covariance Structure

In the linear mixed model

Yi = Xiβ + Zibi + ei ,

the matrix Wi = Cov(ei ) introduces the covariance between the repeated
observations when focusing on the conditional mean response profile of a
specific individual. In other words, it is the covariance of the i th

individual’s deviations from the response profile

E (Yi |bi ) = Xiβ + Zibi .

The usual assumption is W = σ2In. This is referred as the conditional
independence assumption.
The conditional covariance becomes

Cov(Yi |bi ) = Cov(ei ) = Wi

The marginal then takes the form

Cov(Yi ) = ZiBZ
′
i +Wi

.
The Cov(Yi ) allows for between-subject (B) and within-subject (Wi )
sources of variation.
Due to the fact that Cov(Yi ) is a function of times of measurements
(when time is in Zi ), in principle each subject may have its own
measurement times.
The comparison of random effects models for the covariance is based
on the likelihood ratio test (REML). A test of two nested models, one
with q and another one with q + 1 correlated random effects lead to a
chi-square test on q + 1 df (1 for variance and q covariances).
However, caution is needed when the null hypothesis is on the
boundary of the parameter space.
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Some Characteristics

There is no need of balanced data.

The covariances are functions of time. As a result, if time is included
in Zi , each patient can have his own sequence of measurement times.
This property makes these models suitable for the analysis of real life
longitudinal data.

The number of covariance parameters that need to be estimated
remains unchanged regardless of the number of measurements.

The random effects covariance structure allows the variances and
covariances to change (increase or decrease) as a function of
measurement times, without introducing restrictive structures as the
covariance pattern models do.
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Example: Ortodont data (cont)
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Presentation Outline

1 General Information

2 Linear Models - Fixed Effects

3 Linear Mixed Models

4 ANOVA - MANOVA
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Overview of Analysis of Variance

In general ANOVA serves as a generalization of t-tests (comparison
between 2 groups)

It can be seen as a special case of linear models, separately developed
with great use in experimental (designs) studies

One-way ANOVA involves one dependent variable (DV) and one
independent (IV), while two-way ANOVA involves two IVs

The DV must be a continuous variable

The IV is the grouping/categorical variable, called ’factor’

In a linear model it is expressed through a collection of dummy
variables

ANOVA compares the within classes variances to overall one
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A main effect is the direct effect of an IV on the DV

ANOVA uncovers the main (and interaction) effects of IVs

An interaction effect is the joint effect of two IVs on the DV

Key statistic in ANOVA is the F -test for difference of means

It tests if the means of groups (formed by factor levels or
combinations of them) are different enough not to have occurred by
chance

If the group means do not differ significantly then it is inferred that
the IV(s) do not have an effect on the DV

If the F -test shows that overall the IV(s) is (are) related to the DV,
then multiple comparison tests will follow to explore which levels of
the IV(s) have the most to do with the DV
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One-way ANOVA

The usual equation presented for ANOVA is

Yij = µi + ϵij = µ+ αi + ϵij ,

where Yij is the response for the j-individual in the i-group/level

Parameter µ represent the grand/overall mean (average of the
population means)

The effect of level i to the total overall mean is expressed as

αi = µi − µ

The question is whether the values of Y differ across groups or not

H0 : µ1 = µ2 = · · · = µk = µ

H1 : at least one µi different from the others
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Data

Factor
Level − 1 Level − 2 . . . Level − k

x11 x21 . . . xk1
x12 x21 . . . xk2
...

...
...

...
...

...
...

...
x1n1 x2n2 . . . xknk
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Example: ALT (alanine transaminase) from blood test for three Age
Groups
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Notation

Complete data

n: total number of subjects

k : number of groups/levels

x̄ : overall mean

Group i (i = 1, 2, . . . , k)

ni : number of subjects in group i

xij : value of subject i in group j

x̄i : mean for group i
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How it Works

ANOVA measures two sources of variation in the data and compares them

BETWEEN groups variation

SSB =
∑
i

(x̄i − x̄)2

WITHIN groups variation

SSW =
∑
i

∑
j

(xij − x̄i )
2

Test:

F =
MSB

MSW
=

SSB/(k − 1)

SSW /(n − k)
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ANOVA Table

Source of Variation DF SS MS F − test

Between k − 1 SSB MSB = SSB
k−1 F = MSB

MSW

Within n − k SSW MSW = SSW
n−k

Total n − 1
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ALT example (R output):
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Assumptions

The dependent variable has a normal distribution

The F -test is robust to this assumption if the sample sizes are large

Identical variances in each group (homoscedasticity assumption)

Independence between groups and random sampling
(in general these assumptions cannot be tested and the best thing we
can do is to obtain the data in such a way that we are certain about
these assumptions)
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Two-way ANOVA

A natural extension of the one-way ANOVA

Now we have two independent variables, with k and r levels
respectively

We have three sets of hypotheses, so we have to test:

The means of the first factor are equal
(like one-way ANOVA for the factor A - row factor)
The means of the second factor are equal
(like one-way ANOVA for the factor B - column factor)
There is no interaction between the two factors

Fotios Siannis (Department of Mathematics National and Kapodistrian University of Athens)Statistical Analysis: Linear Regression and ANOVA
CODEJAM / 1st Workshop on Computational Biology 6-11 April 2025, Athens, Greece
70 / 106



Treatment Groups: these are formed by making all possible combinations
of the two factors
(if one has 3 levels and the other has 2, then 3× 2 = 6 groups)

Main Effect: Is the effect of one variable at a time

Interaction: Is the combined effect of both variables

Source of Variation DF SS MS F − test

Main effect A
Main effect B
Interaction
Within

Total
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ALT example with Age Group and Smoking Status as factors:
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ALT example with Age Group and Smoking Status and Interaction:

Fotios Siannis (Department of Mathematics National and Kapodistrian University of Athens)Statistical Analysis: Linear Regression and ANOVA
CODEJAM / 1st Workshop on Computational Biology 6-11 April 2025, Athens, Greece
74 / 106



ALT example with Age Group and Smoking Status main effects:
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Multivariate ANOVA (MANOVA)

What if we are interested in two or more DVs (outcomes)?

Why do MANOVA, when one can get much more information by
doing a series of ANOVAs?

Even if all our DVs are completely independent of one another, when
we do lots of tests like that, (Type I) error inflates

Nevertheless, in many biological or ecological studies, the variables
are not independent at all

Many times they have strong interactions, inflating the (Type I) error
even more

In many cases where multiple ANOVAs are done, MANOVA is
actually the more appropriate test
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Essentially MANOVA is the ANOVA application to a vector (list) of
DVs, rather than just one

Therefore, instead of looking into different means across groups we
look into different locations in the DVs space across groups

The null hypothesis (H0) is that the different groups all have the
same centroid (like the center of mass or center of gravity in purely
geometrical terms) in the DV-space

The alternative hypothesis (H1) is that at least one group has a
distinct centroid in the DV-space
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A Hypothetical Example

We will go through the MANOVA with the help of a simple hypothetical
example.

Assume we are trying to compare the performance of three cars

We have 150 drivers and we equally allocate them (n = 50) to three
different groups

The drivers in each group drive the same car and they rate
”Performance” (scale 0-100) and ”Enjoyment” (scale 0-10)

Our job is to investigate if there are differences in performance and/or
enjoyment for the three cars

We have: DV1=Performance, DV2=Enjoyment and IV=Car (3 levels)

So our dependent variable is not a scalar quantity, but a collection of
points in the (Performance, Enjoyment) space
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Scenario 1: A complete random case:
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...and their mean values:
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Plot the data per factor level (three cars: red/blue/green):
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Get the means per factor level:
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Check the boxplots:
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MANOVA:
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Scenario 1: MANOVA output

P-value is not significant in this case, as expected.

We can’t reject the null hypothesis that groups A, B and C have the
same centroid in the Performance-Enjoyment space
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Scenario 2: Differences in DV2:
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Plot data with means:
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Boxplots:
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Analysis in R:
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Scenario 2: MANOVA output

We can reject the null hypothesis that the three groups share the
same centroid in DVs space

From MANOVA we know there are differences, but we do not know
how they are different

A univariate analysis confirms that there are differences in DV2
(Enjoyment) but not in DV1 (performance)
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Scenario 3: DV1 and DV2 are related:
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Plot with means:
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Boxplots:
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Analysis in R:
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Scenario 3: MANOVA output

The fact that DV1 and DV2 are related doesn’t change the fact that
they have similar centroid in the DVs space

As such, the MANOVA results are not significant
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Scenario 4: Differences in both DV1 and DV2 across levels:
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Plot with means:
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Boxplots:
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Analysis in R:
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Scenario 4: MANOVA output

The overall MANOVA model is highly significant, because the three
groups occupy different parts in the DVs space

The univariate analyses confirms that there are between groups
differences in both DV1 and DV2
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Generalization

This was a very simple example with two DVs and one IV with three
levels

In such cases the results are easy to visualize, and from these
visualizations we can get all the information we need

We can have more DVs, which means that we move to ¿2 dimensions
in the DVs space

If the IV has more levels or additional IVs are considered in the
model, then things can become even more complicated

In more complex scenarios, interactions between IVs are also of
interest
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Let’s go back to the Smoking example. Assume: DV1=ALT,
DV2=Triglycerides, IV=Age Group (3 levels)
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Smoke Example: DV1=ALT, DV2=Triglyceride, IV1=Age Group (3 levels)
and IV2=Smoking Status (2 levels)
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