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Discriminant Analysis (DA)

The objective of Discriminant Analysis is the description and
classi�cation of multivariate observations coming from two or
more groups.

Suppose that the population of interest is divided in q

subpopulations (or groups), from each of which we have observed
a sample of size nk , k = 1; : : : ; q , respectively. Every sampled
observation is multivariate (i.e we collect data on p variables).

Aims: (1) The description of the di�erences among groups.
(2) The classi�cation of new observations.

Note: We know the groups that the observations of the original
sample belong to and we want to classify (predict the groups) of a
new observations.
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Applications

I Credit Scoring

I Medicine

I Insurance Risk Management

I Classi�cation of undecided voters in gallup polls

In each case, we are interested in constructing a classi�cation
rule, based on the original data, according to which new
observations will be assigned to subpopulations/groups.
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Sample Analysis

Consider data on p variables, X1; : : : ;Xp , coming from q groups.
From each group we have a p-variate sample of size nk ,
k = 1; : : : ; q .

Hence, the data matrix from the k th group is

X (k) =


x
(k)
11

: : : x
(k)
1p

x
(k)
21

: : : x
(k)
2p

...
...

x
(k)
nk1

: : : x
(k)
nkp

 =


(x

(k)
1

)′

(x
(k)
2

)′

...

(x
(k)
nk )′;


while x̄(k) = (x̄

(k)
1

; x̄
(k)
2

; : : : ; x̄
(k)
p )′, x̄

(k)
j = 1

nk

∑nk
i=1

x
(k)
ij ,

j = 1; : : : ; p is the sample mean or centroid of the k th group.
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Example: p = q = 2
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Classi�cation Rule: Fisher's Discriminant Function

Consider the case q = 2. We require a classi�cation rule to
distinguish between two groups.

Fisher's Linear Discriminant Function: De�ne a new variable Y
as a linear combination of the variables X1; : : : ;Xp , i.e Y = u′X,
u ∈ Rp, and let c be a constant, such that a new observation, x, to
be allocated to group 1 if u′x ≤ c and to group 2 if u′x > c.

In the example with p = q = 2, we require a straight line u′x = c

which divides the plane in two half-planes, such that all of the
observations of group 1 to lie on one half-plane and all the
observations of group 2 to lie on the other.
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Classi�cation Rule: Fisher's Discriminant Function

Note: Finding the best linear function which discriminates between
the two populations is based on the study of the variability of the
projections of the original observations on a line!

Consider the line in the direction of a unit vector, u or v.

Let y
(1)
1 ; : : : ; y

(1)
n1 and y

(2)
1 ; : : : ; y

(2)
n2 be the projections of the

original observations from groups 1 and 2, respectively, on the
direction of u.

Let z
(1)
1 ; : : : ; z

(1)
n1 and z

(2)
1 ; : : : ; z

(2)
n2 be the projections of the

original observations from groups 1 and 2, respectively, on the
direction of v.
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Classi�cation Rule: Fisher's Discriminant Function

Note: A classi�cation rule discriminates well between groups if
the variability of the projections within each group is small,

while the distances between the projections of di�erent

groups are large.

In our example, the line de�ned by u corresponds to a good
discrimination between the groups, while that de�ne by v doesn't.
(Note: the projected observations on the direction of v are mixed!)

The discrimination according to the projections is equivalent

to the classi�cation according to Fisher's discriminant

function!

Choosing the linear discriminant function u′x = c is equivalent to
�nding the direction of u that best discriminates the projected
observations of the groups.
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Classi�cation Rule: Fisher's Discriminant Function

The perpendicular in the middle of the line segment that connects
the projections of the centroids of the two groups correpsonds to a
linear discriminant function of the form u′x = c.

Classi�cation rule: Any new observation is allocated to the group
with centroid that lies on the same half-plane with the observation
with respect to the above described perpendicular.

And now some maths!
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Classi�cation Rule: Fisher's Discriminant Function

We de�ne the global centroid of the n =
∑q

k=1
nk observations as

x̄ =
1

n

q∑
k=1

nk x̄
(k); where x̄(k) =

1

nk

nk∑
i=1

x
(k)
i :

Within each group, we de�ne the (group) sample covariance matrix

Sk =
1

nk − 1
X∗k
′X∗k ; k = 1; : : : ; q ;

where X∗k is the matrix of the centered observations from the k th
group, that is

X∗k =


x
(k)
11
− x̄

(k)
1

: : : x
(k)
1p − x̄

(k)
p

...
...

x
(k)
n11
− x̄

(k)
1

: : : x
(k)
n1p − x̄

(k)
p

 :
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The Pooled Covariance Matrix

The pooled (weighted) covariance matrix of the total sample is
de�ned as

Sp =

∑q
k=1

(nk − 1)Sk
n − q

:

In the denominator of this relationship we have n − q because for
obtaining the estimator Sp we have used q estimated parameters,
x̄(1); : : : ; x̄(q) (we have n − q degrees of freedom).

The pooled covariance matrix, Sp , is di�erent from the global
sample covariance matrix, S = 1

n−1X
∗′X∗, where X∗ is the matrix

of centered (with respect to the global centroid) observations.
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Total Variation Decomposition

Let x
(k)
i = (x

(k)
i1 ; : : : ; x

(k)
ip )′, k = 1; : : : ; q , i = 1; : : : ;nk , be the

data vector corresponding to the ith observation from the k th
group. Then,

X∗k =


x
(k)
11
− x̄

(k)
1

: : : x
(k)
1p − x̄

(k)
p

...
...

x
(k)
n11
− x̄

(k)
1

: : : x
(k)
n1p − x̄

(k)
p

 ; k = 1; : : : ; q ;
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Total Variation Decomposition

and

X∗ =



x
(1)
11
− x̄1 : : : x

(1)
1p − x̄p

...
...

x
(1)
n11
− x̄1 : : : x

(1)
n1p − x̄p

x
(2)
11
− x̄1 : : : x

(2)
1p − x̄p

...
...

x
(2)
n21
− x̄1 : : : x

(2)
n2p − x̄p

...
...

x
(q)
11
− x̄1 : : : x

(q)
1p − x̄p

...
...

x
(q)
nq1
− x̄1 : : : x

(q)
nqp − x̄p



:
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Total Variation Decomposition

The respective matrices of sums of squares and cross-products are
given by

X∗k
′X∗k =

nk∑
i=1

(x
(k)
i − x̄(k))(x

(k)
i − x̄(k))′; k = 1; : : : ; q ;

and

X∗′X∗ =

q∑
k=1

nk∑
i=1

(x
(k)
i − x̄)(x

(k)
i − x̄)′
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Total Variation Decomposition

Proposition: X∗′X∗ =
∑q

k=1
X∗k
′X∗k +

∑q
k=1

nk (x̄(k)− x̄)(x̄(k)− x̄)

Proof. We have

X∗′X∗ =

q∑
k=1

nk∑
i=1

(x
(k)
i − x̄)(x

(k)
i − x̄)′

=

q∑
k=1

nk∑
i=1

(x
(k)
i − x̄(k) + x̄(k) − x̄)(x

(k)
i − x̄(k) + x̄(k) − x̄)′

=

q∑
k=1

nk∑
i=1

(x
(k)
i − x̄(k))(x

(k)
i − x̄(k))′

+

q∑
k=1

nk∑
i=1

(x̄(k) − x̄)(x̄(k) − x̄)

+ 2

q∑
k=1

nk∑
i=1

(x
(k)
i − x̄(k))(x̄(k) − x̄)
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Total Variation Decomposition

That is

X∗′X∗ =

q∑
k=1

X∗k
′X∗k +

q∑
k=1

nk (x̄(k) − x̄)(x̄(k) − x̄)

or
T = W + B

since
∑q

k=1

∑nk
i=1

(x
(k)
i − x̄(k))(x̄(k) − x̄) =∑q

k=1

{[∑nk
i=1

(x
(k)
i − x̄(k))

]
(x̄(k) − x̄)

}
=∑q

k=1

{[∑nk
i=1

x
(k)
i − nk x̄

(k)
]

(x̄(k) − x̄)
}

= 0.
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Total Variation Decomposition

We have shown that
T = W + B

where

T = X∗′X∗ is the total variation matrix, i.e the matrix of the sums
of squared distances of the observations from the global centroid x̄,

W =
∑q

k=1
X∗k
′X∗k is the within groups variation matrix, i.e the

matrix of the sums of squared distances of the observations from
the group centroids x̄(k), k = 1; : : : ; q ,

B =
∑q

k=1
nk (x̄(k) − x̄)(x̄(k) − x̄) is the between group variation

matrix, i.e the matrix of the sums of squared distances of the group
centroids from the global centroid.
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Projections

We work with the centered (with respect to the global centroid)
data X∗.

Consider a line passing through the origin, de�ned by a vector u.

Let y
(k)
i be the projection of the ith centered observation from the

k th group, x∗i
(k), i = 1; : : : ;nk , k = 1; : : : ; q . We have

y
(k)
i = (u′x∗i

(k) u

||u||
):

Therefore,

||y(k)i ||
2 = ((u′x∗i

(k))2 = u′x∗i
(k)x∗i

(k)′u:

Then, the total variability of the projected observations is given by

DisT (u) =

q∑
k=1

nk∑
i=1

||y(k)i ||
2 = u′

[
q∑

k=1

nk∑
i=1

x∗i
(k)x∗i

(k)′
]
u = u′X∗′X∗u
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Projections' Variation Decomposition

We have DisT (u) = u′X∗′X∗u and from the above proposition

DisT (u) = u′X∗′X∗u = u′Tu = u′Wu+u′Bu = DisW (u)+DisB (u)

where

DisW (u) = u′Wu = u′X∗k
′X∗ku is the variability of the projections

within groups

DisB (u) = u′Bu = u′
[∑q

k=1
nk (x̄(k) − x̄)(x̄(k) − x̄)

]
u is the

variability of the projections between groups
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Fisher's Discriminant Function

Fisher's discrimination rule is based on the criterion that the groups
are better distinguished if the variability between groups is large
compared to the variability within groups. The rule results from the
maximization of the ratio

Q(u) =
DisB (u)

DisW (u)
=

u′Bu

u′Wu
:

Hence, we look for the direction of u so as Q(u) to be maximized.
If u is the vector that maximizes Q(u), the function u′x∗ is called
(�rst) canonical discriminant function.
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Fisher's Discriminant Function

Proposition: The ratio Q(u) = DisB (u)
DisW (u) = u′Bu

u′Wu
is maximized for

u = u1, where u1 is the eigenvector corresponding to the maximum
eigenvalue of the matrix W−1B.

Proof. The matrices B;W are positive de�nite, therefore
u′Bu ≥ 0 and u′Wu ≥ 0, ∀u ∈ Rp . The quantity Q(u) does not
change if we multiply the vector u by some non-zero constant, �
say, i.e Q(�u) = �2u′Bu

�2u′Wu
= Q(u), ∀� 6= 0 and ∀u ∈ Rp .

Therefore, without loss of generality, we set u′Wu = 1 and we
require

max
u∈Rp

{
Q(u) : u′Wu = 1

}
= max

u∈Rp

{
u′Bu : u′Wu = 1

}
:

Note: This is an optimization under restriction problem!
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Fisher's Discriminant Function

We de�ne the Lagrangean: L(u; �) = u′Bu− �(u′Wu− 1).

A necessary condition in order for a vector u to be solution of the
above optimization problem is the existence of some � ∈ R such
that

@L(u; �)

@u
= 0 and

@L(u; �)

@�
= 0

We have

@L(u; �)

@u
= 2Bu− 2�Wu = 0⇒ Bu = �Wu (1)

@L(u; �)

@�
= u′Wu− 1 = 0⇒ u′Wu = 1 (the restriction)

If the matrix W is invertible, then (W−1B)u = �u, therefore � is
an eigenvalue and u is an eigenvector of the matrix W−1B.
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Fisher's Discriminant Function

From (1)

Bu = �Wu⇒ u′Bu = �u′Wu⇒ Q(u) =
u′Bu

u′Wu
=

�u′Wu

u′Wu
= �

We have seen that� is an eigenvalue and u is an eigenvector of the
matrix W−1B. Therefore, the quantity Q(u) is maximized for
� = �1, the maximum eigenvalue of W−1B.
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Notes

1. One discriminant function is su�cient for discriminating between
two populations (it corresponds to one straight line). In general, if
there are q di�erent populations or groups, the function u′j x, where
uj is the eigenvector corresponding to the j th ordered (in
descending order) eigenvalue of the matrix W−1B, is called j th
canonical discriminant function.

2. It can be shown that the matrix W−1B has at most r positive
eigenvalues (the remaining ones being equal to zero), where
r = min(q − 1; p). Therefore, there are at most r resulting
discriminant functions. (For q = 2, r = 1).
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Classi�cation of New Observations

Let �1; : : : ; �r > 0 be the (ordered) positive eigenvalues of W−1B
and u1; : : : ;ur be the respective eigenvectors. Hence, we obtain r

discriminant functions u′
1
x∗; : : : ;urx

∗.

Consider a new (centered) observation x∗
0
for which we do not now

which group it belongs to. Moreover, consider the projections of x∗
0

on the straight lines de�ned by u1; : : : ;ur , i.e

y0j = u′j x
∗
0

uj

||uj ||
; j = 1; : : : ; r :

The observation x∗
0
will be allocated to the group for which the

projections y0j are closer to the respective projections of the group
centroid than those of the projections of all other groups' centroids.
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Classi�cation of New Observations

We de�ne dk (x∗
0
) as the sum of squared distances of the projections

of x∗
0
on the directions of u1; : : : ;ur from the respective projections

of the (centered with respect to the global mean) centroids x̄∗(k) of
the k th group. We have

dk (x∗0) =
r∑

j=1

(yj − u′j x
∗(k) uj

||uj ||
)2

=
r∑

j=1

(u′j x
∗
0

uj

||uj ||
− u′j x

∗(k) uj

||uj ||
)2

=
r∑

j=1

(u′j (x
∗
0 − x∗(k)))2

=
r∑

j=1

(u′j (x0 − x(k)))2; k = 1; : : : ; q :
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Classi�cation of New Observations

The new observation x∗
0
is allocated to the group for which the

quantity dk (x∗
0
) is maximized, i.e

r(x∗0) = i ; if di(x
∗
0) = min

k
{dk (x∗0); k = 1; : : : ; q}:

For q = 2 (discrimination of two populations), we have

r(x∗0) = 1; if | u′1(x0 − x(1)) | < | u′1(x0 − x(2)) |
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Example: q = 2 groups, p = 3 variables

Consider the Within and Between group variability matrices:

W =

 0:6 −0:4 −0:2
−0:4 0:4 0:2
−0:2 0:2 1:2

 ; B =

0:16 0:08 0:04
0:08 0:10 0:02
0:04 0:02 0:01


Recall: We want the variability within groups to be small and the
variability between groups to be large!

W −1B =

0:597 0:285 0:165
0:738 0:352 0:203
0:004 0:002 0:001


The largest eigenvalue of the matrix W −1B is �1 = 0:9507 and the
respective eigenvector is u1 = (0:629; 0:777; 0:004)′.

The third variable has large variability within groups and small
variability between groups, therefore it is not good for
discriminating between these two populations.
(Note: its coe�cient in the discriminant function is small!)
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Classi�cation Rule: Maximum Likelihood

Normality Assumption: We assume that the observations of each
group come from a di�erent (multivariate) normal distribution.

We de�ne a random variable G representing the group which a
random observations derives from. Then, the distribution of the
p-variate random variable X = (X1; : : : ;Xp)′ depends on the value
of G . That is X | G = k ∼ Np(�k ;Σk ), k = 1; : : : ; q , i.e

fk (x) = f (x | G = k) =
| Σk |−1=2

(2�)p=2
exp

{
−1

2
(x− �k )′Σ−1k (x− �k )

}
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Classi�cation Rule: Maximum Likelihood

If the values of the parameters �k ;Σk are known, then, as a rule for
discriminating among the groups can be used the maximum

likelihood classi�cation rule.

According to this rule, an observation x is allocated to the
population which gives to the observed x the largest value of the
likelihood. That is

r(x) = i ; if fi(x) = max
k
{fk (x); k = 1; : : : ; q} :
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Example 1. The Maximum Likelihood Classi�cation Rule for

two univariate normal populations with common variance

Let X | G = 1 ∼ N (�1; �
2) and X | G = 2 ∼ N (�1; �

2), with
�1 < �2, i.e

fk (x ) = f (x | G = k) = (2��2)−1=2 exp

{
− 1

2�2
(x − �k )2

}
; k = 1; 2:

The likelihood f1(x ) is larger than f2(x ) and, therefore, the rule
allocates the observation x to the �rst population, if

f1(x )

f2(x )
= exp

{
− 1

2�2
[
(x − �1)2 − (x − �2)2

]}
> 1;

or equivalently if

−(x 2 − 2�1x + �21 − x 2�2x − �22) > 0⇒ 2(�2 − �1)x < �22 − �21
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Example 1. The Maximum Likelihood Classi�cation Rule for

two univariate normal populations with common variance

Since �2 > �1 the inequality is satis�ed for

x <
�2
2
− �2

1

2(�2 − �1)
⇒ x <

�2 + �1
2

Therefore, according to the maximum likelihood classi�cation rule,

r(x ) = 1; if x <
�2 + �1

2
:
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Example 1

group 1
group2

µ
1

µ
2(µ

1
+µ

2
)/2
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Example 2. The Maximum Likelihood Classi�cation Rule for

two univariate normal populations with di�erent variances

Let X | G = 1 ∼ N (�1; �
2

1
) and X | G = 2 ∼ N (�1; �

2

2
), with

�1 < �2 and s2
1
< �2

2
, i.e

fk (x ) = f (x | G = k) = (2��2k )−1=2 exp

{
− 1

2�2k
(x − �k )2

}
; k = 1; 2:

The likelihood f1(x ) is larger than f2(x ) and, therefore, the rule
allocates the observation x to the �rst population, if

f1(x )

f2(x )
=

�2
�1

exp

{
−1

2

[(
x − �1
�1

)2

−
(
x − �2
�2

)2
]}

> 1;

or equivalently if

x 2
(

1

�2
2

− 1

�2
1

)
− 2x

(
�2
�2
2

− �1
�2
1

)
+

(
�2
2

�2
2

− �2
1

�2
1

)
< 2 log

�1
�2
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Example 3. The Maximum Likelihood Classi�cation Rule for

q multivariate normal populations with common covariance

matrices

Let X | G = k ∼ Np(�k ;Σ), k = 1; : : : ; q , i.e

fk (x) = f (x | G = k) =
1

(2�)p=2 | Σ |1=2
exp

{
−1

2
(x− �k )′Σ−1(x− �k )

}
; k = 1; : : : ; q :

A random observation x is allocated to the population for which
the Mahalanobis' distance is maximized. The later is given by

∆2

k = (x− �k )′Σ−1(x− �k ); k = 1; : : : ; q :
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Example 3. Two Multivariate Normal Populations

For q = 2, r(x) = 1 if f1(x) > f2(x), or equivalently if

(x− �1)′Σ−1(x− �1) < (x− �2)′Σ−1(x− �2)

⇒ [(x− �2)− (x− �1)]′Σ−1 [(x− �2) + (x− �1)] > 0

⇒ (�1 − �2)′Σ−1(2x− �1 − �2) > 0

⇒ 2(�1 − �2)′Σ−1(x− �1 + �2
2

) > 0

⇒ u′(x− �) > 0; where u = Σ−1(�1 − �2); and � =
1

2
(�1 + �2)

Note: This is a linear discriminant function!

In the general case of q = 2 populations, the maximum likelihood
discrimination rule is de�ned by the discriminant function
h(x) = log f1(x)− log f2(x). Then,

r(x) = 1; if h(x) > 0:
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The Bayesian Classi�cation Rule

We have de�ned the random variable G , representing the group
which a random observation derives from. Hence, G is a discrete
random variable with probability function

�k = P(G = k); k = 1; : : : ; q :

If we can assume speci�c values for the prior classi�cation
probabilities, �k , then we can apply Bayes' theorem to obtain the
posterior classi�cation probabilities. For a given observation, x, the
posterior probability that it comes from group k is

�̃k (x) = P(G = k | X = x) =
P(G = k)f (x | G = k)

f (x)
; k = 1; : : : ; q ;

where f (x) =
∑q

j=1
P(G = j )f (x | G = j ). Therefore,

�̃k (x) =
�k fk (x)∑q
j=1

�j fj (x)
; k = 1; : : : ; q :
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The Bayesian Classi�cation Rule

A random observation x is allocated to the population for which
the posterior classi�cation probability is maximized, i.e

r(x) = i ; if �̃i(x) = max
k
{�̃k (x)} :

Equivalently,

r(x) = i ; if di(x) = max
k
{dk (x)} ; where dk (x) = log (�k fk (x)) :

Note:

dk (x) = log �k − p
2

log(2�)− 1

2
log |Σk | − 1

2
(x− �k )′Σ−1k (x− �k ).
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The Bayesian Classi�cation Rule: q = 2

For q = 2 (discriminating between two populations), the Bayesian
classi�cation rule is de�ned by the function

h̃(x) = log (�1f1(x))− log (�2f2(x)) ;

Then,
r(x) = 1; if h̃(x) > 0:

Equivalently,

r(x) = 1; if log �1 + log f1(x)− log �2 − log f2(x) > 0⇒
r(x) = 1; if h(x) > log �2 − log �1;

where h(x) = log f1(x)− log f2(x)
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Speci�cation of Prior Probabilities

I If there exist some former estimates of the classi�cation
probabilities they can be used as priors.

I They can be subjectively speci�ed if we have some prior
knowledge, information or belief.

I They can be estimated, for each group, from the proportion of
the observations in the sample belonging to that group, i.e
�k = nk

n1+:::+nq
.

I If there is no prior information about the classi�cation
probabilities, then the groups can be assumed to be a-priori
equally probable, i.e �1 = : : : = �q = 1

q
. In this case, the

Bayesian classi�cation rule coincides with the maximum
likelihood classi�cation rule.
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Normality Assumption: Unknown Parameters

We assume that X | G = k ∼ Np(�k ;Σk ), k = 1; : : : ; q , where the
parameters �k ;Σk are unknown. Then, they have to be estimated
from the observed data. Speci�cally, the parameters �k ;Σk of the
k th population are estimated using the nk observations from that
population (note that

∑q
k=1

nk = n).

We use the sample mean of the k th group, x̄(k), as an estimate of
�k and the repective sample covariance matrix, Sk , as an estimate
of Σk . Then, the observation x is allocated to the ith group if

d̂i(x) = max
k

{
d̂k (x)

}
; where

d̂k (x) = log �k − p
2

log(2�)− 1

2
log |Sk | − 1

2
(x− x̄(k))′S−1k (x− x̄(k)).

Note: For �k = 1=q , k = 1; : : : ; q , the Bayesian classi�cation rule
reduces to the maximum likelihood rule.
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