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ΚΕΦΑΛΑΙΟ 0
ΕΙΣΑΓΩΓΗ

Στις σημειώσεις που ακολουθούν θα προσπαθήσουμε να παρουσιάσουμε τον βασικό
κορμό της Αξιωματικής Θεωρίας Συνόλων. Θα εξετάσουμε τους λόγους που ώθησαν τους
μαθηματικούς να καταπιαστούν με αυτό το εγχείρημα, θα μελετήσουμε τα αξιώματα των
Zermelo και Fraenkel και θα δούμε τη σκοπιμότητά τους. Τέλος, θα παρουσιάσουμε μερι-
κές βασικές κατασκευές απαραίτητες για τα «καθημερινά» μαθηματικά. Απώτερος στόχος
μας είναι να θεμελιώσουμε τα μαθηματικά με θεμέλιο λίθο την έννοια του συνόλου. Αυτό
απαιτεί μεγάλη υπομονή από τον αναγνώστη καθώς θα χρειαστεί να ορίσουμε εκ νέου πολ-
λές έννοιες γνωστές σε αυτόν και, στις περισσότερες των περιπτώσεων, οι ορισμοί που θα
δώσουμε ενδέχεται να τον ξενίσουν ή να τον παραξενέψουν. Ευελπιστούμε όμως ότι μετά το
πέρας αυτής της διαδικασίας θα μπορέσει πλέον απρόσκοπτος να συνεχίσει τη μελέτη του
στα μαθηματικά, με βαθύτερη κατανόηση και σίγουρα χωρίς να ταλανίζεται από τυχόν αμ-
φισημίες ή ανακρίβειες όσον αφορά λεπτά «φιλοσοφικά» ζητήματα, όπως για παράδειγμα
«Τι είναι σύνολο;», «Τι είναι αριθμός;» ή «Τι είναι συνάρτηση;». Ας ξεκινήσουμε από το
βασικότερο από αυτά.

0.1 Τι είναι σύνολο;

Η σύντομη απάντηση είναι ότι σύνολο είναι μία συλλογή αντικειμένων. Με αυτόν τον
διαισθητικό ορισμό πορευτήκαμε όλη μας τη ζωή και πραγματικά μοιάζει αδιανόητο ότι θα
πρέπει να τον αναθεωρήσουμε! Επ’ ουδενί λόγω δεν έχουμε σκοπό να ανατρέψουμε ολό-
κληρη την κοσμοθεωρία μας, ούτε να πετάξουμε στον κάλαθο των αχρήστων το σύνολο των
μαθηματικών που γνωρίζουμε (και αγαπάμε). Θα λειτουργήσουμε μέχρις ενός βαθμού στο
παρασκήνιο και θα γεμίσουμε τα κενά που προκαλούνται από τον παραπάνω διαισθητικό
ορισμό και, κυρίως, τον τρόπο που τον ερμηνεύουμε για να ορίζουμε σύνολα. Έτσι, όχι μόνο
το οικοδόμημα των μαθηματικών θα παραμείνει ανέπαφο, αλλά θα του παρέχουμε και επι-
πλέον στήριξη μέσω της αξιωματικής θεμελίωσής του. Επιπλέον, ως ιδιότυποι πολιτικοί
μηχανικοί θα καταρτίσουμε όλα τα απαραίτητα «τεχνικά σχέδια» των επιμέρους στοιχείων
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Παράδοξα

του (αριθμοί, συναρτήσεις κ.λπ.).
Αρχικά πρέπει να αντιμετωπίσουμε λίγο πιο σοβαρά τον όρο σύνολο. Σύμφωνα με τον

Georg Cantor, που θεωρείται εν πολλοίς ο πατέρας της Θεωρίας Συνόλων, το σύνολο ορίζεται
ως εξής:

Ορισμός 0.1.1. Σύνολο είναι η συνάθροιση διακεκριμένων στοιχείων που την αντιμετωπί-
ζουμε ως μία ολότητα.

Είναι δηλαδή μια συλλογή αντικειμένων, ακόμα και αφηρημένων (π.χ. αριθμών, ανθρώ-
πων, ιδεών κ.λπ.), που την αντιμετωπίζουμε ως ένα ακέραιο, ενιαίο αντικείμενο. Στη θεωρία
που θα αναπτύξουμε θα θεωρούμε τα σύνολα ως το πιο στοιχειώδες αντικείμενο (όπως για
παράδειγμα αντιμετωπίζουμε τα σημεία στην Ευκλείδεια Γεωμετρία 1) και θα μελετήσουμε
τις ιδιότητές τους.

Για να συμβολίσουμε ένα σύνολο παραδοσιακά χρησιμοποιούμε αγκύλες. Έτσι για πα-
ράδειγμα το σύνολο A = {a, b, c} περιέχει τα στοιχεία a, b και c. Τα στοιχεία ενός συνόλου
τα αποκαλούμε και μέλη του και γράφουμε a ∈ A για να δηλώσουμε το γεγονός ότι το a είναι
μέλος του A (πολλές φορές το γεγονός αυτό θα το δηλώνουμε λέγοντας ότι το a ανήκει στο
A). Δεν θα ορίσουμε εδώ τις υπόλοιπες έννοιες που πλαισιώνουν ένα σύνολο (δυναμοσύ-
νολο, ένωση, τομή κ.λπ.) για να αποφύγουμε τις επαναλήψεις (θα τις ορίσουμε τυπικά εν
καιρώ). Ούτως ή άλλως μέχρις ενός βαθμού μας είναι γνωστές.

0.2 Παράδοξα
Το γεγονός ότι σύνολο θεωρούνταν οποιαδήποτε συλλογή διακεκριμένων στοιχείων οδή-

γησε τους μαθηματικούς μπροστά σε μια σειρά από παράδοξα: Λογικά πορίσματα της θε-
ωρίας (που χρησιμοποιόταν) που δεν είναι δυνατόν όμως να ισχύουν. Τα παράδοξα αυτά
κλόνισαν τα θεμέλια των μαθηματικών, καθώς έθεσαν υπό αμφισβήτηση την ίδια τη θεω-
ρία. Το θετικό ήταν ότι συνάμα κατέδειξαν την αναγκαιότητα προσδιορισμού βασικών αρχών
πάνω στις οποίες θα πρέπει να θεμελιωθούν εκ νέου τα μαθηματικά. Ας δούμε μερικά από
αυτά τα παράδοξα.

0.2.1 Το παράδοξο των Berry-Richard
Μια πολύ συνηθισμένη πρακτική που χρησιμοποιούμε για να ορίσουμε ένα σύνολο είναι

να δηλώσουμε τη συνθήκη που θα πρέπει να πληροί το εκάστοτε στοιχείο για να είναι μέλος
του. Σε αυτήν την περίπτωση το σύνολο το συμβολίσουμε ως εξής (ας υποθέσουμε ότι το
γράμμα P αντιστοιχεί σε κάποια συνθήκη εισόδου):

{x ∣ Το x πληροί τη συνθήκη P}

Για παράδειγμα μπορούμε να ορίσουμε το ακόλουθο σύνολο:

A = {x ∣ Το x είναι αριθμός που περιγράφεται σε μία γραμμή}
1 Οι παραλληλισμοί με την Ευκλείδεια Γεωμετρία θα είναι πολλοί καθώς αποτελεί ένα απλό, αλλά πολύ δηκτικό,

παράδειγμα αξιωματικής θεωρίας.

Τελευταία ενημέρωση 18/2/2025, στις 10:49. 2



ΚΕΦΑΛΑΙΟ 0. ΕΙΣΑΓΩΓΗ

Κάποιος μπορεί να φανταστεί πολλά στοιχεία του παραπάνω συνόλου, όπως παραδείγματος
χάρη:

1312

Ο χιλιοστός πρώτος αριθμός.
Το πλήθος ατόμων στο ορατό σύμπαν.
Ο αριθμός που σκέφτομαι αυτήν τη στιγμή.

Είναι νομίζω εμφανές ότι θα πρέπει να θέσουμε κάποια όρια όσον αφορά τις συνθήκες
εισόδου στοιχείων σε ένα σύνολο. Ας κάνουμε όμως για λίγο ακόμα τα στραβά μάτια.

Παρατηρήστε ότι το σύνολο A μπορεί να περιέχει πολλούς αριθμούς αλλά όχι άπειρους:
Μία γραμμή χωράει ένα πεπερασμένο πλήθος συμβόλων (συνήθως 70 με 80) και τα σύμβολα
είναι πεπερασμένα σε πλήθος (256 αν γράφουμε σε UTF-8), συνεπώς οι πιθανοί συνδυα-
σμοί είναι πεπερασμένοι (και φυσικά οι περισσότεροι από αυτούς δεν περιγράφουν κάποιο
αριθμό). Επομένως θα υπάρχει κάποιος φυσικός αριθμός που δεν μπορεί να περιγραφεί σε
μία γραμμή. Τι συμβαίνει όμως για τον ακόλουθο αριθμό:

Ο ελάχιστος φυσικός που δεν περιγράφεται σε μία γραμμή.

Ανήκει στο σύνολο A ή όχι;

0.2.2 Η γενική Αρχή της Συμπερίληψης
Εύλογα κάποιος θα ψέξει τη συνθήκη εισόδου για το παραπάνω σύνολο. Κι όμως ο

τρόπος που οι μαθηματικοί όριζαν (και ορίζουν) σύνολα δεν διέφερε κατά πολύ. Η συνήθης
πρακτική είναι να δηλώνουμε μία οριστική συνθήκη P , μία συνθήκη δηλαδή που, πέραν
οποιασδήποτε αμφιβολίας, είτε είναι αληθής για ένα αντικείμενο x (σε αυτήν τη περίπτωση
γράφουμε P (x)) είτε όχι 1, και έπειτα να ορίζουμε το σύνολο:

{x ∣ P (x)}

Ιστορικά η παραπάνω τεχνική αναφέρεται ως Γενική Αρχή Συμπερίληψης και ενώ μοιά-
ζει να είναι αναμφισβήτητα σωστή (ειδικά αν ορίσουμε αυστηρά την έννοια της οριστικής
συνθήκης) μπορεί να μας οδηγήσει και αυτή σε παράδοξα.

0.2.3 Το παράδοξο του Russell
Ας πάρουμε την (απόλυτα) οριστική συνθήκη x ∉ x, δηλαδή το x δεν είναι μέλος του

x. Κάποιος φυσικά θα πει ότι αυτό εξόφθαλμα δεν μπορεί να ισχύει, δεν μπορεί δηλαδή να
υπάρχει κάποιο σύνολο x που να ανήκει στον εαυτό του. Ένα παράδειγμα τέτοιου συνόλου
θα μπορούσε να ήταν το εξής:

U = {x ∣ Το x είναι σύνολο}
1 Όχι δηλαδή κάτι του στιλ «Το x είναι αριθμός που περιγράφεται σε μία γραμμή.» ή «x είναι ο αριθμός που

σκέφτομαι αυτήν τη στιγμή.».
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Αξιωματικοποίηση

Παρατηρήστε ότι U ∈ U ! Θα δούμε ότι το σύνολο U δεν μπορεί να υπάρξει, η πιο σωστά ότι:
Η συλλογή U δεν αποτελεί σύνολο. Τέτοιου είδους συλλογές συχνά τις αποκαλούμε κλάσεις.
Ας επανέλθουμε στο παράδοξο του Russell και ας θεωρήσουμε το σύνολο:

R = {x ∣ x ∉ x}

Το R είτε είναι μέλος του εαυτού του είτε όχι. Αν R ∈ R τότε ως μέλος του R θα πρέπει
να ικανοποιεί τη συνθήκη εισόδου, δηλαδή R ∉ R. Στον αντίποδα, αν R ∉ R, αφού το R
ικανοποιεί τη συνθήκη εισόδου θα πρέπει να είναι μέλος του R, δηλαδή R ∈ R. Και στις δύο
περιπτώσεις οδηγούμαστε σε άτοπο. Ο λόγος δεν είναι ότι η συνθήκη εισόδου είναι ασαφής,
αλλά ότι υποθέσαμε εσφαλμένα πως το R αποτελεί σύνολο.

Μία ουσιαστική βελτίωση που θα μπορούσαμε να επιφέρουμε στην αρχή της συμπερίλη-
ψης θα ήταν να απαιτήσουμε ότι τα στοιχεία x ήδη ανήκουν σε κάποιο συγκεκριμένο σύνολο.
Αυτή η αρχή μοιάζει ακόμα πιο πιστευτή καθώς αν έχουμε ένα σύνολο και μία οριστική συν-
θήκη επιλογής μερικών (ή και όλων των) στοιχείων του, η συλλογή που θα φτιάξουμε θα
είναι και αυτή ένα σύνολο (αυτό που αργότερα θα λέμε υποσύνολο του αρχικού). Θα ονο-
μάσουμε αυτήν την αρχή Αξίωμα Διαχωρισμού (σε πρώτη φάση δεχθείτε αυτόν τον τίτλο
απλά σαν ένα όνομα):

Αξίωμα Διαχωρισμού: Για κάθε σύνολο A και οριστική συνθήκη P υπάρχει σύνολο B που
περιέχει ακριβώς τα στοιχεία του A για τα οποία ισχύει η P .

Αυτό το σύνολο (θα δείξουμε αργότερα ότι) είναι μοναδικό και το συμβολίζουμε ως:

B = {x ∈ A ∣ P (x)}

Αν υιοθετήσουμε την βελτιωμένη αρχή συμπερίληψης τότε η συλλογή U που ορίσαμε δεν
μπορεί να είναι σύνολο καθώς τότε θα μπορούσαμε να ορίσουμε το R ως:

R = {x ∈ U ∣ x ∉ x}

οπότε πάλι θα οδηγούμασταν στο ίδιο παράδοξο. Το γεγονός αυτό μέλει να μας επηρεάσει
αρκετά στη συνέχεια καθώς ο «κόσμος» μέσα στον οποίο θα δουλεύουμε και θα παράγουμε
μαθηματικά θεωρήματα δεν θα έχει αυτό που αποκαλούμε σύμπαν, δηλαδή ένα σύνολο στο
οποίο ανήκουν όλα τα στοιχεία που μελετούμε. Η μη ύπαρξη αυτού του συνόλου έχει ως
συνέπεια ότι το αξίωμα διαχωρισμού δεν μπορεί να εφαρμόζεται γενικά, παρά μόνο ειδικά
και σε ήδη ορισμένα σύνολα.

0.3 Αξιωματικοποίηση
Μπορούμε να ζήσουμε με τη γενική αρχή συμπερίληψης; Φυσικά, αν μπορούμε βέβαια

να κάνουμε τα στραβά μάτια σε παράδοξα όπως τα παραπάνω. Η αλήθεια είναι ότι μέχρι
τώρα αυτή χρησιμοποιούσαμε για να ορίζουμε σύνολα. Η «προσέγγιση» της Θεωρίας Συ-
νόλων που δέχεται τη γενική αρχή συμπερίληψης συνήθως αναφέρεται ως Αφελής Θεωρία
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ΚΕΦΑΛΑΙΟ 0. ΕΙΣΑΓΩΓΗ

Συνόλων και, καθώς αποτελούσε τη θεωρία που χρησιμοποιούσαμε διαχρονικά στην εξέλιξη
των μαθηματικών, δεν σκοπεύουμε επ’ ουδενί λόγω να την απορρίψουμε.

Αυτό που θα κάνουμε είναι να την πλαισιώσουμε με κατάλληλα Αξιώματα, προτάσεις
που θα τις δεχόμαστε ως αληθείς χωρίς να ζητάμε κάποια απόδειξή τους 1, που θα θέτουν
περιορισμούς στον τρόπο που ορίζουμε σύνολα (ή, αν θέλετε, θα διευκρινίζουν ποιες συλ-
λογές αντικειμένων αποτελούν σύνολα και ποιες γνήσιες κλάσεις). Έτσι, τα παράδοξα θα
εξαλειφθούν και θα ανανεωθεί η πίστη μας στα μαθηματικά 2!

Τα περισσότερα αξιώματα θα τα δούμε στο Κεφάλαιο 1. Θα αναβάλουμε όμως την πα-
ρουσίαση μερικών αξιωμάτων (Αξίωμα Επιλογής, Αξίωμα Αντικατάστασης και Αξίωμα Κα-
νονικότητας) για επόμενα κεφάλαια, καθώς δεν θα τα χρειαστούμε (σε πρώτη φάση) και
ίσως ήταν καλύτερο να τα προσθέσουμε ακριβώς τη στιγμή που θα μας γίνουν απολύτως
απαραίτητα, καταδεικνύοντας με αυτόν τον τρόπο τη σπουδαιότητά τους. Η αξιωματικο-
ποίηση της Θεωρίας Συνόλων που θα παρουσιάσουμε αποδίδεται στους Ernst Zermelo και
Abraham Fraenkel που εισήγαγαν τα περισσότερα από τα αξιώματα. Τη θεωρία αυτή θα
τη συμβολίζουμε με ZF. Για τους δικούς μας σκοπούς θα προσθέσουμε και το αξίωμα της
επιλογής και έτσι θα οδηγηθούμε στην επικρατέστερη αξιωματικοποίηση ZFC 3.

0.4 Όλα σύνολα!

Σε όσα ακολουθούν θα ασπαστούμε το δόγμα ότι όλα είναι σύνολα 4 και κατ’ επέκταση
θα προσπαθήσουμε να θεμελιώσουμε τα γνωστά μαθηματικά αποκλειστικά πάνω στην έν-
νοια του συνόλου. Θα μπορούσαμε αν θέλαμε να προσθέσουμε στη θεωρία μας και άτομα:
Αντικείμενα που δεν είναι σύνολα αλλά θα θέλαμε να τα χρησιμοποιήσουμε ως μέλη των
συνόλων μας, όπως για παράδειγμα τους φυσικούς αριθμούς (ή και οτιδήποτε άλλο: τα έπι-
πλα του σπιτιού μας, τους φίλους μας κ.λπ.). Έτσι θα μπορούσαμε αυτομάτως να μιλήσουμε
παραδείγματος χάρη για σύνολα αριθμών. Αντί αυτού θα αντιστοιχίσουμε συγκεκριμένα σύ-
νολα (με πολύ συγκεκριμένες ιδιότητες) στους φυσικούς αριθμούς και σε όλες τις άλλες
έννοιες που χρησιμοποιήσουμε στα μαθηματικά. Έτσι ο «κόσμος» μας θα παραμείνει πολύ
στενός, καθώς θα περιέχει σύνολα και τίποτα άλλο. Επιπλέον, με αυτόν τον τρόπο η θεωρία
που θα αναπτύξουμε θα είναι πιο κομψή και ίσως περισσότερο κατανοητή όσον αφορά τη
λογική που τη διέπει.

1 Όπως για παράδειγμα στην Ευκλείδεια Γεωμετρία την πρόταση: Από δύο σημεία διέρχεται ακριβώς μία ευθεία.
2 Βέβαια, θα υπάρχει πάντα το μελανό σημείο του θεωρήματος Μη-πληρότητας του Gödel...
3 Πολλά αποτελέσματα από αυτά που θα δούμε ισχύουν και χωρίς το αξίωμα της επιλογής. Είθισται στη βι-

βλιογραφία να τονίζεται αυτό το γεγονός και, για λόγους παράδοσης, θα πράξουμε ανάλογα και σε αυτές τις
σημειώσεις. Η μοναδική εξαίρεση είναι το Κεφάλαιο 6 όπου προκειμένου όσα λέμε να ισχύουν καθολικά για
όλα τα σύνολα, δεν θα διαχωρίσουμε την περίπτωση που δεν χρησιμοποιούμε το αξίωμα επιλογής.

4 Αυτή η αρχή είναι γνωστή στη βιβλιογραφία ως Αρχή της Αγνότητας.
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ΚΕΦΑΛΑΙΟ 1
ΤΑ ΠΡΩΤΑ ΑΞΙΩΜΑΤΑ ΤΗΣ ZF

Για να αποβάλουμε από τον κόσμο μας τις συλλογές αντικειμένων που είναι «πολύ με-
γάλες» για να αποτελούν σύνολο, θα πρέπει να ορίσουμε σαφώς τι μπορεί να αποτελέσει
σύνολο και τι όχι. Είναι απολύτως λογικό κάποιος να σκεφτεί ότι μία συλλογή θα είναι σύνολο
ανν μπορεί να περιγραφεί ακολουθώντας κάποιους συγκεκριμένους κανόνες. Η ύπαρξη αυ-
τής της περιγραφής θα αποτελεί απόδειξη ότι η περιγραφόμενη συλλογή αποτελεί σύνολο.
Για να υλοποιήσουμε αυτήν την ιδέα θα χρειαστούμε δύο πράγματα:

1. μία τυπική γλώσσα 1 και

2. ένα σύνολο κανόνων 2.

Ας καταπιαστούμε πρώτα με τη γλώσσα.

1.1 Η γλώσσα της Θεωρίας Συνόλων
Θα ξεκινήσουμε αυτό το κεφάλαιο δηλώνοντας ρητά τη γλώσσα που θα χρησιμοποιή-

σουμε στο υπόλοιπο των σημειώσεων. Μία τυπική γλώσσα, όπως και μία φυσική γλώσσα,
περιέχει κάποιες «λέξεις» και κάποιους «συντακτικούς» κανόνες που καθορίζουν πως μπο-
ρούν να συνδυαστούν οι λέξεις για να φτιάξουν «φράσεις» που φέρουν κάποιο νόημα. Το
νόημα των φράσεων φυσικά εξαρτάται απόλυτα από το νόημα των λέξεων. Για παράδειγμα
το νόημα που φέρει η φράση ο Γιάννης είναι άνθρωπος εξαρτάτε από το νόημα που φέρει
η λέξη άνθρωπος και κυρίως από το «αντικείμενο» που αντιστοιχεί στη λέξη Γιάννης 3. Για
τους σκοπούς μας σε αυτές τις σημειώσεις, θα θεωρούμε χωρίς καμία απολύτως μνεία ότι τα
στοιχεία της γλώσσας ερμηνεύονται σύμφωνα με τη συνήθη τους ερμηνεία (για παράδειγμα
1 Προφανώς μία φυσική γλώσσα περιέχει τόσες πολλές ασάφειες που δεν μπορεί να χρησιμοποιηθεί για τους

σκοπούς μας.
2 Τα αξιώματα, όπως το αξίωμα διαχωρισμού που είδαμε στην εισαγωγή, θα παίξουν τον ρόλο των κανόνων αυτών.
3 Άλλη η αλήθεια της φράσης αν το Γιάννης αντιστοιχεί στον Γιάννη Αντετοκούνμπο και άλλη αν αντιστοιχεί σε

κάποιο τριχωτό και χαριτωμένο ζώο συντροφιάς.
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Η γλώσσα της Θεωρίας Συνόλων

το σύμβολο ∈ θα ερμηνεύεται πάντα ως ανήκει). Συνεπώς και οι φράσεις θα ερμηνεύονται
με το συνήθη, διαισθητικό μας τρόπο.

Στη γλώσσα μας χρειαζόμαστε κάποια ονόματα με τα οποία θα αναφερόμαστε στα σύ-
νολα. Τα ονόματα αυτά μπορούν να είναι «στατικά», να αναφέρονται δηλαδή σε συγκεκρι-
μένο σύνολο, για παράδειγμα έστω A σύνολο ή να είναι «δυναμικά», να παίζουν δηλαδή των
ρόλο μεταβλητών. Τα σύμβολα που θα χρησιμοποιούμε για τα ονόματα συνήθως θα είναι
A,B,C, ... και για τις μεταβλητές a, b, . . . 1. Θα αναφερόμαστε στα παραπάνω σύμβολα ως
τις μεταβλητές της γλώσσας μας 2.

Οι λέξεις της γλώσσας μας θα κατασκευάζονται βάζοντας μεταξύ δύο μεταβλητών ένα
από τα ακόλουθα σύμβολα 3:

- Το σύμβολο της ισότητας: =

- Το σύμβολο του ανήκειν: ∈

Δηλαδή για παράδειγμα οι εκφράσεις a ∈ A ή A = B αποτελούν λέξεις της γλώσσας μας. Τις
εκφράσεις αυτές τις αποκαλούμε ατομικούς τύπους, και, όπως καταλαβαίνετε, είτε θα είναι
αληθείς είτε ψευδείς.

Για να συνδυάσουμε τους ατομικούς τύπους και να φτιάξουμε εκφράσεις με πιο σύνθετα
νοήματα θα χρειαστούμε τους λογικούς συνδέσμους:

- Το σύμβολο της άρνησης: ¬

- Το σύμβολο του διάζευξης: ∨

- Το σύμβολο του σύζευξης: ∧

- Το σύμβολο του συνεπαγωγής: →

- Το σύμβολο του διπλής συνεπαγωγής: ↔

όπως επίσης και τους ποσοδείκτες:

- Καθολικός ποσοδείκτης: ∀ («για κάθε»)

- Υπαρξιακός ποσοδείκτης: ∃ («υπάρχει»)

Τέλος θα χρησιμοποιούμε τις παρενθέσεις (, ) για να αποφύγουμε τυχόν αμφισημίες.
Οι συντακτικούς κανόνες που μας καθορίζουν ποιες εκφράσεις θα αποτελούν λογικούς

τύπους είναι μόνο δύο:

Κανόνας 1: Οι ατομικοί τύποι είναι λογικοί τύποι.

Κανόνας 2: Αν ϕ,ψ λογικοί τύποι και x μεταβλητή τότε και οι εκφράσεις (¬ϕ), (ϕ →
ψ), (ϕ ∨ ψ), (ϕ ∧ ψ), (ϕ↔ ψ),∀xϕ,∃xϕ είναι λογικοί τύποι.

1 Όπως καταλάβατε από τις τελίτσες χρειαζόμαστε πολλά από αυτά.
2 Μην σας παραξενεύει αυτό το «τσουβάλιασμα». Προφανώς και τα ονόματα συνόλων θα χρησιμοποιούνται με

δυναμικό τρόπο, καθώς σε διαφορετικό πλαίσιο το ίδιο όνομα μπορεί να αναφέρεται σε διαφορετικό σύνολο.
3 Τα οποία όπως προείπαμε θα ερμηνεύονται με τον συνήθη τρόπο.
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Οι λογικοί τύποι θα αποτελούν τελικά τις εκφράσεις που θα φέρουν νόημα και θα μπο-
ρούν να είναι είτε αληθείς είτε ψευδείς (όλες οι άλλες εκφράσεις της γλώσσας μας είναι
άχρηστες). Η γλώσσα αυτή μας δίνει το δικαίωμα να εκφράζουμε με απολύτως τυπικό τρόπο
μαθηματικές προτάσεις (που σε πρώτη φάση θα αφορούν σύνολα) ως λογικούς τύπους, οι
οποίοι αποτελούν σαφώς ορισμένα μαθηματικά αντικείμενα.

Αργότερα θα χρησιμοποιήσουμε και άλλα σύμβολα για να απλοποιήσουμε την παρου-
σίαση (όπως π.χ. τα σύμβολα ⊆, ∪, ∩, ≤, κ.λπ.). Μία πρακτική που επίσης σκοπεύουμε
να εφαρμόσουμε είναι να παραλείπουμε όσες περισσότερες παρενθέσεις μπορούμε, χω-
ρίς όμως να φτάσουμε στο σημείο να προκαλέσουμε κάποια αμφισημία ως προς τη σειρά
εφαρμογής των λογικών συνδέσμων. Τέλος, θα γράφουμε (∃a ∈ A)ϕ και (∀a ∈ A)ϕ αντί
για ∃a(a ∈ A → ϕ) και ∀a(a ∈ A → ϕ) αντίστοιχα. Παρατηρήστε ότι στις εκφράσεις αυτές
η μεταβλητή a είναι δεσμευμένη από τους ποσοδείκτες. Έτσι για να ελέγξουμε αν ο λο-
γικός τύπος είναι αληθής αναγκαστικά θα πρέπει να ελέγξουμε αν η συνθήκη που ορίζει
ο τύπος ϕ ισχύει για όλες τις τιμές της μεταβλητής (για όλα τα στοιχεία του συνόλου A
δηλαδή) στην πρώτη περίπτωση, ή αν υπάρχει τιμή για την οποία ισχύει η συνθήκη στη
δεύτερη περίπτωση. Αυτό δεν συμβαίνει για τη μεταβλητή A η οποία είναι ελεύθερη μετα-
βλητή στον τύπο. Ως εκ τούτου η αλήθεια του τύπου εξαρτάται από τη συγκεκριμένη τιμή
που θα δοθεί στη μεταβλητή A 1. Αν ο λογικός τύπος ϕ περιέχει τις ελεύθερες μεταβλητές
a1, a2, ... , an θα δηλώνουμε αυτό το γεγονός γράφοντας ϕ(a1, a2, ... , an). Όταν πλέον έχουν
δοθεί τιμές στις ελεύθερες μεταβλητές, για παράδειγμα οι τιμές A1,A2, ... ,An, θα γράφουμε
ϕ[A1,A2, ... ,An] και θα είμαστε πλέον σε θέση να εξακριβώσουμε αν ο τύπος είναι αληθής
είτε όχι.

Κάποιος θα αναρωτιέται μήπως τώρα πια που έχουμε στα χέρια μας έναν πολύ συγκε-
κριμένο και περιορισμένο τρόπο να εκφράζουμε συλλογές αντικειμένων έχουμε καταφέρει
να αποβάλουμε αυτές που δεν αποτελούν σύνολα. Η απάντηση είναι όχι 2. Χρειαζόμα-
στε απαραίτητα και κανόνες που θα καθορίζουν ποιες ακριβώς από αυτές τις περιγραφές
αντιστοιχούν σε σύνολα και ποιες περιγραφές όχι (αυτές αντιστοιχούν σε γνήσιες κλάσεις).
Μιλώντας με πολύ χονδροειδή και διαισθητικό τρόπο, θα λέγαμε ότι όταν ένας λογικός τύπος
εκφράζει μια συλλογή αντικειμένων, αυτή είναι σύνολο όταν τα αντικείμενα που περιέχει ήδη
ανήκουν σε κάποιο άλλο σύνολο (όπως εν ολίγης μας επιτάσσει το αξίωμα διαχωρισμού, Σε-
λίδα 4). Παρατηρήστε ότι αυτός ο κανόνας δεν επαρκεί από μόνος του, καθώς προϋποθέτει
την ύπαρξη ενός συνόλου αλλά ο κόσμος μας μέχρι στιγμής είναι κενός (δεν περιέχει κανένα
απολύτως σύνολο)! Οι κανόνες που χρειαζόμαστε είναι συνολικά εννέα. Τους πρώτους από
αυτούς θα τους δούμε στις παραγράφους που ακολουθούν.

1.2 Το αξίωμα της Έκτασης
Όπως αναφέραμε και στην εισαγωγή, η πρωταρχική έννοια στη Θεωρία Συνόλων είναι

η έννοια του ανήκειν. Μία εξίσου σημαντική έννοια όμως είναι και η έννοια της ισότητας
μεταξύ δύο συνόλων. Αν δύο σύνολα είναι ίσα έπεται προφανώς ότι (αφού χαρακτηρίζο-
νται αποκλειστικά και μόνο από τα στοιχεία τους) θα πρέπει να περιέχουν ακριβώς τα ίδια
1 Θυμηθείτε το παράδειγμα της φράσης ο Γιάννης είναι άνθρωπος.
2 Το {x ∣ x ∉ x} αποτελεί μια χαρά περιγραφή συνόλου!
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Το αξίωμα της Έκτασης

στοιχεία. Το αντίστροφο, το ότι δύο σύνολα που περιέχουν τα ίδια στοιχεία είναι ίσα, δεν
είναι εξίσου προφανές. Εξετάζοντάς το υπό το πρίσμα της λογικής μπορούμε να σκεφτούμε
πολλές παρόμοιες καταστάσεις όπου για δύο αντικείμενα ισχύει μία κοινή ιδιότητα αλλά
αυτό δεν συνεπάγεται ότι τα αντικείμενα ταυτίζονται. Είναι συνεπώς απαραίτητο να προ-
σθέσουμε στη θεωρία μας ένα αξίωμα που θα εκφράζει αυτό που διαισθητικά θεωρούμε
σωστό 1.

I. Αξίωμα Έκτασης: Δύο σύνολα είναι ίσα ανν περιέχουν τα ίδια ακριβώς στοιχεία.

Η πρόταση αυτή εκφράζεται τυπικά με τον ακόλουθο λογικό τύπο:

∀A∀B(A = B ↔ (∀x(x ∈ A↔ x ∈ B)))

Θα δεχθούμε την αλήθεια αυτού του τύπου χωρίς να απαιτήσουμε πρώτα να δούμε κάποια
απόδειξή του. Ο τύπος αυτός αποτελεί το πρώτο αξίωμα της θεωρίας μας.

Πολύ συχνά αναφέρουμε και την έννοια του περιέχεσθαι μεταξύ δύο συνόλων.

Ορισμός 1.2.1. Αν A,B σύνολα, το A περιέχεται στο B (ή είναι υποσύνολο του B), αν
κάθε στοιχείο του A είναι και στοιχείο του B. Θα συμβολίζουμε αυτό το γεγονός γράφοντας
A ⊆ B. Αν επιπλέον ισχύει ότι A ≠ B θα γράφουμε A ⊂ B.

Όσον αφορά την τυπική μας γλώσσα, θα γράφουμε A ⊆ B αντί για τον τύπο ∀x(x ∈
A → x ∈ B). Παρατηρήστε ότι αυτός ο τύπος είναι αληθής ανν το A είναι υποσύνολο του
B 2. Πολύ εύκολα μπορούμε να αποδείξουμε 3 τις ακόλουθες ιδιότητες.

Πρόταση 1.2.2. Έστω A,B,C σύνολα. Ισχύουν τα ακόλουθα:

1. A ⊆ A

2. A ⊆ B και B ⊆ C τότε A ⊆ C

3. A ⊆ B και B ⊆ A τότε A = B

Για να αποδείξουμε την τρίτη πρόταση θα χρειαστεί φυσικά να κάνουμε επίκληση του
Αξιώματος I.
1 Αυτό είναι το κοινό μοτίβο σε όλα τα αξιώματα.
2 Πιο σωστά, το σύνολο που έχουμε αντιστοιχίσει στη μεταβλητή A είναι υποσύνολο του συνόλου που έχουμε

αντιστοιχίσει στη μεταβλητή B.
3 Απόδειξη στη γλώσσα της Θεωρίας Συνόλων που ορίσαμε είναι (τυπικά) μία ακολουθία λογικών τύπων όπου

κάθε τύπος της είτε είναι αξίωμα, είτε είναι υπόθεση, είτε προκύπτει από προηγούμενους τύπους μέσω του
κανόνα Modus Ponens: Από τους τύπους ϕ→ ψ και ϕ προκύπτει ο τύπος ψ. Θα πρέπει να δεχθούμε επίσης ως
αξιώματα τα λεγόμενα Λογικά Αξιώματα της Πρωτοβάθμιας Λογικής που καθορίζουν τις ιδιότητες που διέπουν
τους λογικούς συνδέσμους και τους ποσοδείκτες. Δεν απαιτούμε από τον αναγνώστη να κατασκευάζει τυπικές
αποδείξεις για τις προτάσεις που αναφέρουμε στις σημειώσεις αυτές. Οι αποδείξεις μας θα παρουσιάζονται με
τον συνήθη «χαλαρό» τρόπο που θα βρείτε σε κάθε μαθηματικό κείμενο. Θα συνεχίσουμε όμως να απαιτούμε
ότι το κάθε επιχείρημα της απόδειξης αιτιολογείται από τις υποθέσεις ή από τα αξιώματα.
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1.3 Το αξίωμα του Κενού Συνόλου

Όπως προείπαμε δεν θα εισάγουμε στον κόσμο μας «εξωτερικά» αντικείμενα. Αυτό φυ-
σικά ενέχει τον κίνδυνο ο κόσμος μας τελικά να παραμείνει κενός (ακόμα και αν περιείχε
εξωτερικά αντικείμενα όμως μπορεί και πάλι να μην περιείχε τα αντικείμενα που έχουν ενδια-
φέρον για εμάς, τα σύνολα δηλαδή). Γι΄ αυτό χρειαζόμαστε ένα αξίωμα που θα εκφράζει την
ύπαρξη ενός τουλάχιστον συνόλου. Ποιου συνόλου όμως; Αφού δεν μπορούμε να έχουμε
ένα σύνολο που περιέχει όλα τα σύνολα ας περάσουμε στο άλλο άκρο και ας ζητήσουμε να
υπάρχει ένα σύνολο που δεν περιέχει τίποτα 1.

II. Αξίωμα Κενού Συνόλου: Υπάρχει σύνολο που δεν περιέχει κανένα στοιχείο.

Ή αλλιώς ∃A∀x(x ∉ A). Το σύνολο αυτό είναι μοναδικό σύμφωνα με το Αξίωμα I . Θα
χρησιμοποιούμε το σύμβολο∅ για να αναφερθούμε σε αυτό 2. Η ακόλουθη πρόταση αποτελεί
μία εύκολη παρατήρηση.

Πρόταση 1.3.1. Για κάθε σύνολο A ισχύει ότι ∅ ⊆ A.

Ίσως σας φαίνεται άνευ νοήματος να επιχειρήσετε να αποδείξετε ότι κάθε στοιχείου του
∅ ανήκει στο A, από τη στιγμή που το ∅ δεν περιέχει κανένα απολύτως στοιχείο. Συχνά για
να αποδείξουμε μία πρόταση που αφορά το κενό σύνολο μας βολεύει να εφαρμόσουμε τη
λεγόμενη Απαγωγή σε Άτοπο. Παραδείγματος χάρη την παραπάνω πρόταση μπορούμε να
την αποδείξουμε ως εξής:

Απόδειξη της Πρότασης 1.3.1. Έστω (προς άτοπο) ότι δεν ισχύει η σχέση ∅ ⊆ A. Αυτό ση-
μαίνει ότι υπάρχει στοιχείο του ∅ που δεν ανήκει στο A. Άτοπο, καθώς το ∅ δεν περιέχει
κανένα στοιχείο.

Αυτή η αποδεικτική μέθοδος (όσον αφορά το κενό σύνολο) συνήθως μοιάζει πιο «πιστική».

1.4 Το αξίωμα του Ζεύγους

Ακόμα και με την ύπαρξη του κενού συνόλου ο κόσμος μας παραμένει απελπιστικά
άδειος. Θα χρειαστεί να εισάγουμε μία σειρά από αξιώματα που θα εγγυούνται την ύπαρξη
και άλλων συνόλων. Θα μπορούσαμε να δούμε αυτά τα αξιώματα και ως κανόνες παραγωγής
συνόλων από ήδη κατασκευασμένα σύνολα. Θα θεωρούμε σύνολα ακριβώς τις συλλογές που
προκύπτουν από αυτούς τους κανόνες. Όλες τις λοιπές συλλογές θα τις θεωρούμε γνήσιες
κλάσεις (όπως για παράδειγμα την κλάση όλων των συνόλων που είδαμε στο Κεφάλαιο 0).
1 Φιλοσοφικά μιλώντας, θα μπορούσαμε να πούμε ότι το σύνολο αυτό περιέχει όλα τα σύνολα του κόσμου μας

μέχρι αυτήν τη στιγμή.
2 Θα μπορούσαμε εναλλακτικά να θεωρήσουμε το σύμβολο ∅ ως τη μοναδική σταθερά της γλώσσα μας (που

φυσικά την ερμηνεύουμε ως το κενό σύνολο της διαίσθησής μας) και να προσθέσουμε στο Αξίωμα II τον τύπο
∀A(∀x(x ∉ A)→ A = ∅).
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Το πρώτο από αυτά τα αξιώματα μας εγγυάται την ύπαρξη του συνόλου που περιέχει
ακριβώς δύο μέλη 1. Θα δώσουμε κατευθείαν τον λογικό τύπο που εκφράζει αυτό το γεγονός.

III. Αξίωμα Ζεύγους: ∀x∀y∃A∀a(a ∈ A↔ (a = x ∨ a = y))

Το σύνολο αυτό το αποκαλούμε δισύνολο, είναι μοναδικό (λόγω του Αξιώματος I) και το
συμβολίζουμε με {x, y}. Παρατηρήστε ότι αν x = y τότε έχουμε το μονοσύνολο {x}. Με το
παραπάνω αξίωμα ο κόσμος μας απέκτησε πολλά καινούργια αντικείμενα, μερικά από τα
οποία είναι τα:

∅,{∅},{{∅}}, ...

όπως και τα ζεύγη μεταξύ αυτών:

{∅,{∅}},{∅,{{∅}}},{{∅},{{∅}}}, ...

και τα ζεύγη των ζευγών, και ούτω καθεξής...

1.5 Το αξίωμα της Ένωσης
Δοσμένων δύο συνόλων A,B είναι πολύ χρήσιμο να έχουμε ένα σύνολο που περιέχει ως

μέλη ακριβώς τα μέλη των δύο συνόλων. Τη συλλογή αυτή στοιχείων την αποκαλούμε ένωση
των A,B. Τίποτα όμως δεν μας εγγυάται ότι είναι σύνολο. Θα δώσουμε μία γενικότερη (και
ισχυρότερη) μορφή του αξιώματος που χρειαζόμαστε για να ενώσουμε δύο σύνολα σε ένα
σύνολο. Θα ζητήσουμε η ένωση μίας ολόκληρης οικογένειας 2 συνόλων να αποτελεί σύνολο:

IV. Αξίωμα Ένωσης: ∀F∃U∀x(x ∈ U ↔ (∃X ∈ F )(x ∈X))

Το σύνολο αυτό είναι μοναδικό (λόγω του Αξιώματος I) και θα το συμβολίζουμε με πολλούς
τρόπους:

U = ⋃F

= ⋃{X ∣X ∈ F}
= ⋃

X∈F
X

= {x ∈X ∣X ∈ F}

Όταν έχουμε ένωση μεταξύ δύο συνόλων, όπως παραδείγματος χάρη στην εισαγωγική πα-
ράγραφο, θα γράφουμε A ∪B. Δηλαδή:

A ∪B =⋃{A,B}
1 Η αλήθεια είναι ότι όταν δώσουμε και το αξίωμα του απείρου (Σελίδα 36) το αξίωμα αυτό δεν θα μας χρειάζεται.

Το αναφέρουμε όμως γιατί μαζί με το αξίωμα κενού συνόλου αποτελούν μία πολύ καλή και προσιτή αφετηρία
στην αξιωματική κατασκευή συνόλων.

2 Προφανώς η οικογένεια αυτή είναι σύνολο. Τον όρο οικογένεια εδώ τον χρησιμοποιούμε για να σπάσουμε
κάπως τη μονοτονία. Αργότερα θα ορίσουμε τυπικά οικογένειες συνόλων (Παράγραφος 2.3.1).
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Μετά από το Αξίωμα IV ο κόσμος μας δεν περιέχει μόνο μονοσύνολα και δισύνολα.
Περιέχει για παράδειγμα σύνολα με n στοιχεία για κάθε φυσικό αριθμό n 1. Ο πληθικός
αριθμός των συνόλων θα μας απασχολήσει πολύ αργότερα, καθώς ο κόσμος μας βρίσκε-
ται ακόμα σε νηπιακή φάση και δεν περιέχει ούτε καν αριθμούς (πόσο μάλλον πληθικούς
αριθμούς).

1.6 Το αξίωμα του Δυναμοσυνόλου

Έστω σύνολο A. Είδαμε πριν πως ορίζονται τα υποσύνολα του A (Ορισμός 1.2.1). Η
συλλογή όμως των υποσυνόλων του αποτελεί σύνολο;

V. Αξίωμα Δυναμοσυνόλου: ∀A∃P∀x(x ∈ P ↔ x ⊆ A)

Το σύνολο αυτό είναι μοναδικό (λόγω του Αξιώματος I) και το συμβολίζουμε ως P(A) 2.

Παρατήρηση 1.6.1. Ισχύει ότι P(∅) = ∅ και P({∅}) = {∅,{∅}}.

1.7 Το αξίωμα Διαχωρισμού

Το αξίωμα διαχωρισμού (γνωστό και ως Αξίωμα Εξειδίκευσης ή Αξίωμα Υποσυνόλου) το
αναφέραμε και στην εισαγωγή. Ο ρόλος του είναι να περιορίζει τη γενική αρχή συμπερίληψης
και να μας εγγυάται, δεδομένων συνόλου A και οριστικής συνθήκης P , ότι το υποσύνολο
του A που περιέχει ένα στοιχείο x ανν P (x), αποτελεί σύνολο. Ενδεχομένως κάποιος να
έχει ενστάσεις ως προς την αναγκαιότητα του 3. Αρκεί όμως να προσπαθήσει να ορίσει ένα
συγκεκριμένο υποσύνολο μέσω των υπόλοιπων αξιωμάτων για να πεισθεί 4. Εδώ θα δώσουμε
μια πιο επίσημη και αυστηρή διατύπωσή του.

Ορισμός 1.7.1. Οριστική συνθήκη αποκαλούμε κάθε λογικό τύπο ϕ 5.

Φυσικά αυτό που μας ενδιαφέρει είναι αν η οριστική συνθήκη ισχύει για κάποιο συ-
γκεκριμένο αντικείμενο. Συνεπώς στον τύπο ϕ θα πρέπει να εμφανίζεται κάποια ελεύθερη
μεταβλητή που αν αντικατασταθεί από το εν λόγω αντικείμενο θα κάνει τον ϕ αληθή είτε
ψευδή.

1 Μπορείτε να βρείτε κάποιο παράδειγμα;
2 Κάποιες φορές συμβολίζεται και ως 2A, αλλά ο συμβολισμός αυτός στο παρόν κείμενο μπορεί να προκαλέσει

αμφισημίες.
3 Πως θα μπορούσαν τα υποσύνολα ενός συνόλου να μην είναι σύνολα;
4 Αν το υποσύνολο είναι πεπερασμένο ίσως κάποιος επίμονος να μπορέσει να το ορίσει. Όταν το υποσύνολο

όμως είναι άπειρο τα πράγματα δυσκολεύουν κατά πολύ. Προτρέχουμε όμως, καθώς δεν μπορούμε ακόμα να
εγγυηθούμε την ύπαρξη άπειρων συνόλων (και φυσικά δεν έχουμε μιλήσει για την πληθικότητα των συνόλων).

5 Να τονίσουμε εδώ ότι ο λογικός τύπος ϕ δεν χρειάζεται να είναι αποκρίσιμος, δηλαδή να υπάρχει διαδικασία
που να ελέγχει αν είναι αληθείς είτε όχι. Μας αρκεί απλά το γεγονός ότι είτε είναι αληθής είτε όχι (πέραν
οποιασδήποτε αμφιβολίας).
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VI. Αξίωμα Διαχωρισμού: Έστω οριστική συνθήκη ϕ(x) τότε:

∀A∃S∀x(x ∈ S ↔ (x ∈ A ∧ ϕ(x))))

Το σύνολο αυτό είναι μοναδικό (λόγω του Αξιώματος I) και το συμβολίζουμε γράφοντας:

{x ∈ A ∣ ϕ(x)}

Παρατηρήστε ότι για κάθε τύπο ϕ(x) έχουμε και ένα διαφορετικό αξίωμα. Το Αξίωμα VI
στην ουσία αποτελεί ένα αξιωματικό σχήμα. Ας δούμε μερικά παραδείγματα εφαρμογής του.

Θεώρημα 1.7.2. Για κάθε μη κενή οικογένεια συνόλων υπάρχει μοναδικό σύνολο που πε-
ριέχει ακριβώς τα στοιχεία που είναι κοινά σε κάθε μέλος της.

Απόδειξη. Θεωρούμε τον λογικό τύπο ϕ(x) = ∀X(X ∈ F → x ∈ X). Από το Αξίωμα IV
παίρνουμε το σύνολο ⋃F και από το Αξίωμα VI το σύνολο I = {x ∈ ⋃F ∣ ∀X(X ∈ F →
x ∈X)}. Τέλος το I είναι μοναδικό λόγω του Αξιώματος I.

Ορισμός 1.7.3. Έστω οικογένεια συνόλων F ≠ ∅. Το σύνολο που περιέχει ακριβώς τα στοι-
χεία που είναι κοινά σε κάθε μέλος του F το αποκαλούμε τομή του F και το συμβολίζουμε
με ⋂F .

Άλλοι τρόποι να συμβολίσουμε την τομή του συνόλου F είναι οι ακόλουθοι:

I = ⋂{X ∣X ∈ F}
= ⋂

X∈F
X

= {x ∈⋃F ∣ ∀X ∈ F (x ∈X)}

Όταν έχουμε τομή μεταξύ δύο συνόλων θα γράφουμε A ∩B (δηλαδή A ∩B = ⋂{A,B}).

Ορισμός 1.7.4. Δύο σύνολα A,B καλούνται ξένα αν A ∩B = ∅.

Θεώρημα 1.7.5. Έστω σύνολα A,B. Υπάρχει μοναδικό σύνολο που περιέχει ακριβώς τα
στοιχεία του A που δεν ανήκουν στο B.

Απόδειξη. Από το Αξίωμα VI παίρνουμε το σύνολο {x ∈ A ∣ x ∉ B} που είναι μοναδικό
λόγω του Αξιώματος I.

Ορισμός 1.7.6. Έστω σύνολα A,B. Τo σύνολο που περιέχει ακριβώς τα στοιχεία του A που
δεν ανήκουν στο B το αποκαλούμε διαφορά των A,B (ή και σχετικό συμπλήρωμα 1 του B
ως προς το A) και το συμβολίζουμε με A ∖B.
1 Παρατηρήστε ότι «απόλυτο» συμπλήρωμα δεν μπορεί να υπάρξει καθώς αυτό θα προϋπόθετε την ύπαρξη του

συνόλου όλων των συνόλων.
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1.8 Άλγεβρα συνόλων
Οι αποδείξεις των ακόλουθων προτάσεων αφήνονται ως άσκηση.

Πρόταση 1.8.1 (Νόμοι Αντιμεταθετικότητας). Έστω A,B σύνολα. Ισχύουν τα ακόλουθα:

1. A ∪B = B ∪A

2. A ∩B = B ∩A

Πρόταση 1.8.2 (Νόμοι Προσεταιριστικότητας). Έστω A,B,C σύνολα. Ισχύουν τα ακό-
λουθα:

1. A ∪ (B ∪C) = (A ∪B) ∪C

2. A ∩ (B ∩C) = (A ∩B) ∩C

Πρόταση 1.8.3 (Νόμοι Επιμεριστικότητας). Έστω A,B,C σύνολα. Ισχύουν τα ακόλουθα:

1. A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C)

2. A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C)

Πρόταση 1.8.4 (Νόμοι De Morgan). Έστω A,B,C σύνολα. Ισχύουν τα ακόλουθα:

1. C ∖ (A ∪B) = (C ∖A) ∩ (C ∖B)

2. C ∖ (A ∩B) = (C ∖A) ∪ (C ∖B)

Ασκήσεις

1.1. Αποδείξτε την Πρόταση 1.2.2.

1.2. Αποδείξτε την Παρατήρηση 1.6.1.

1.3. Αποδείξτε την Πρόταση 1.8.1.

1.4. Αποδείξτε την Πρόταση 1.8.2.

1.5. Αποδείξτε την Πρόταση 1.8.3.

1.6. Αποδείξτε την Πρόταση 1.8.4.

1.7. Έστω σύνολo A. Δείξτε ότι Ισχύουν τα ακόλουθα:

1. ⋃∅ = ∅

2. ⋃{A} = A. Ισχύει ότι ⋃A = A;
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3. A ∪ ∅ = A

4. A ∩ ∅ = ∅

5. A ∪A = A

6. A ∩A = A

1.8. Έστω A,B,C σύνολα. Δείξτε ότι (A ∩B) ∪C = A ∩ (B ∪C) ανν C ⊆ A.

1.9. Έστω σύνολα A,B. Δείξτε ότι α ακόλουθα είναι ισοδύναμα:

1. A ⊆ B

2. A ∪B = B

3. A ∩B = A

1.10. Έστω σύνολα A,B με A ⊆ B. Τότε ⋃A ⊆ ⋃B. Αν επιπλέον A ≠ ∅, τότε ⋂B ⊆
⋂A.
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ΚΕΦΑΛΑΙΟ 2
ΣΧΕΣΕΙΣ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ

Όπως θα δούμε, μπορούμε να καλύψουμε πολύ δρόμο με τα πρώτα έξι αξιώματα της
ZF. Αναπόφευκτα όμως θα φτάσουμε σε ένα σημείο που θα μας χρειαστούν και τα υπό-
λοιπα. Μέχρι να έρθει αυτή η ώρα θα ορίσουμε όσα περισσότερα μαθηματικά αντικείμενα
και έννοιες μας δίνεται η δυνατότητα. Για την ακρίβεια, αυτό που θα κάνουμε είναι να ανα-
παραστήσουμε τα αντικείμενα που θέλουμε να ορίσουμε μέσω κάποιων συνόλων, έχοντας
πάντα ως στόχο μας τα σύνολα αυτά να ικανοποιούν τις ιδιότητες που ικανοποιούν τα αντι-
κείμενα που αναπαριστούν. Σε πολλές περιπτώσεις όμως (αν όχι σε όλες) τα σύνολα θα
ικανοποιούν και κάποιες παράπλευρες ιδιότητες (που ίσως να μην έχουν ούτε καν νόημα
για τα αντικείμενα αυτά καθεαυτά). Αυτή η επιπλέον δομή των συνόλων μπορεί να είναι
αρκετά ενοχλητική αλλά σε κάθε περίπτωση είναι ακίνδυνη 1. Θα επανέλθουμε στο θέμα
όταν θα έχουμε στα χέρια μας κάποια συγκεκριμένα παραδείγματα.

2.1 Διατεταγμένα ζεύγη
Ως γνωστών τα στοιχεία των συνόλων δεν έχουν κάποια συγκεκριμένη σειρά. Για πα-

ράδειγμα για οποιαδήποτε a, b ισχύει ότι {a, b} = {b, a} 2. Καθώς είθισται στα μαθηματικά
να ορίζουμε σχέσεις και συναρτήσεις μέσω διατεταγμένων ζευγών (ή n-άδων) θα πρέπει να
βρούμε κάποιον τρόπο να βάλουμε σε σειρά τα στοιχεία, για παράδειγμα του συνόλου {a, b}.
Έτσι θα μπορούμε να μιλάμε για την πρώτη και για τη δεύτερη συντεταγμένη που μαζί απαρ-
τίζουν το διατεταγμένο ζεύγος (a, b). Η βασική ιδιότητα που απαιτούμε να ισχύει για αυτό
το αντικείμενο αναφέρεται στην πρόταση που ακολουθεί.

Πρόταση 2.1.1. Για κάθε a, b, c, d ισχύει ότι (a, b) = (c, d) ανν a = c και b = d.

Η έτερη ιδιότητα που πρέπει απαραίτητα να έχουν τα διατεταγμένα ζεύγη, με πρώτο
1 Υπό την έννοια ότι δεν θα ισχύει κάποια ιδιότητα των αντικειμένων, εξαιτίας της επιπλέον δομής, που δεν ισχύει

στην πραγματικότητα.
2 Μπορείτε να το αποδείξετε;
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στοιχείο από το σύνολο A και δεύτερο από το σύνολο B, είναι ότι η συλλογή τους αποτελεί
σύνολο.

Πρόταση 2.1.2. Έστω μη κενά σύνολα A,B 1. Υπάρχει μοναδικό σύνολο που αποτελείται
ακριβώς από τα διατεταγμένα ζεύγη της μορφής (a, b) με a ∈ A και b ∈ B.

Συνεπώς, για να εισάγουμε διατεταγμένα ζεύγη στη θεωρία μας οφείλουμε να αναπα-
ραστήσουμε το ζεύγος (a, b) με τρόπον τινά ώστε να ικανοποιούνται οι Προτάσεις 2.1.1
και 2.1.2. Ο ακόλουθος ορισμός αποδίδεται στον Kazimierz Kuratowski.

Ορισμός 2.1.3. Διατεταγμένο ζεύγος με πρώτη συντεταγμένη x και δεύτερη y καλούμε το
σύνολο (x, y) = {{x},{x, y}}.

Ας ελέγξουμε ότι ο Ορισμός 2.1.3 ικανοποιεί τις ιδιότητες που επιθυμούμε.

Απόδειξη της Πρότασης 2.1.1. Για το ευθύ, παρατηρούμε ότι αν a = b τότε:

(a, a) = {{a},{a, a}} = {{a},{a}} = {{a}}

Από την υπόθεση ισχύει ότι (c, d) = {{a}}, δηλαδή {{c},{c, d}} = {{a}}. Ο μόνος τρόπος
να ισχύει αυτό είναι να έχουμε {c} = {c, d}, δηλαδή c = d, και {{c}} = {{a}}, οπότε τελικά
a = b = c = d.

Αν a ≠ b, αφού (a, b) = (c, d), έπεται ότι

{{a},{a, b}} = {{c},{c, d}} (2.1)

Άρα υπάρχουν δύο περιπτώσεις για την πρώτη συντεταγμένη του (a, b): {a} = {c} ή {a} =
{c, d}. Η δεύτερη περίπτωση δεν μπορεί να ισχύει καθώς τότε θα πρέπει να έχουμε c = d,
οπότε (με ανάλογα επιχειρήματα με πριν) θα ίσχυε ότι a = b = c = d. Συνεπώς (από το
Αξίωμα I) έπεται ότι a = c.

Από τη (2.1) προκύπτουν και δύο περιπτώσεις για τη δεύτερη συντεταγμένη του (a, b):
{a, b} = {c} ή {a, b} = {c, d}. Η πρώτη περίπτωση απορρίπτεται (καθώς a ≠ b) και από την
δεύτερη, αφού a = c, (από το Αξίωμα I) προκύπτει ότι b = d.

Το αντίστροφο της πρότασης είναι προφανές.

Απόδειξη της Πρότασης 2.1.2. Από το Αξίωμα IV υπάρχει το σύνολο A ∪ B και από το
Αξίωμα V τα σύνολα P(A ∪B) και P(P(A ∪B)). Από το Αξίωμα VI υπάρχει το σύνολο:

{x ∈ P(P(A ∪B)) ∣ (∃a ∈ A)(∃b ∈ B)(x = {{a},{a, b}})}

το οποίο είναι μοναδικό λόγω του Αξιώματος I.

Ορισμός 2.1.4. Έστω μη κενά σύνολα A,B. Το καρτεσιανό γινόμενο A ×B του A επί του
B είναι το σύνολο που αποτελείται ακριβώς από τα διατεταγμένα ζεύγη της μορφής (a, b) με
a ∈ A και b ∈ B.
1 Δηλαδή A ≠ ∅ και B ≠ ∅.
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Συχνά το σύνολο A ×B το συμβολίσουμε ως:

A ×B = {(a, b) ∣ a ∈ A και b ∈ B}

Ας επανέλθουμε σε όσα συζητούσαμε στην αρχή του κεφαλαίου. Παρατηρήστε ότι σύμ-
φωνα με τον Ορισμό 2.1.3 η πρώτη συντεταγμένη του ζεύγους (a, b) είναι υποσύνολο της
δεύτερης, ή ακόμα {a, b} ∈ (a, b)! Αυτές φυσικά είναι ιδιότητες που δεν τις έχουν τα διατε-
ταγμένα ζεύγη που χρησιμοποιούμε στα μαθηματικά. Όσο σκεπτικιστής και να είναι κάποιος,
είναι εμφανές ότι, εφόσον ο ορισμός του ζεύγους που δώσαμε ικανοποιεί την Πρόταση 2.1.1,
μπορούμε να αγνοήσουμε την επιπλέον δομή και να συμπεριφερόμαστε στα ζεύγη με τον
συνήθη τρόπο. Αυτό θα μας οδηγήσει ακριβώς στις ίδιες συνέπειες των μαθηματικών με τα
έως τώρα γνωστά μας ζεύγη 1.

Εύκολα μπορούμε να γενικεύσουμε τον ορισμό του ζεύγους σε n-άδες αντικειμένων και
του καρτεσιανού γινομένου δύο συνόλων στο γινόμενο n συνόλων.

Ορισμός 2.1.5. Για κάθε x1, x2, ... , xn, όπου n φυσικός με n ≥ 3, η n-άδα (x1, x2, ... , xn)
ορίζεται αναδρομικά ως εξής:

(x1, x2, x3) = (x1, (x2, x3))

(x1, x2, ... , xn) = (x1, (x2, ... , xn))

Ορισμός 2.1.6. Για κάθε μη κενά σύνολα A1,A2, ... ,An, όπου n φυσικός με n ≥ 3, το
καρτεσιανό γινόμενο A1 ×A2 ×⋯ ×An ορίζεται αναδρομικά ως εξής:

A1 ×A2 ×A3 = A1 × (A2 ×A3)

A1 ×A2 ×⋯ ×An = A1 × (A2 ×⋯ ×An)

Συμβολισμός 2.1.7. Όταν έχουμε το καρτεσιανό γινόμενο ενός μη κενού συνόλου A με τον
εαυτό του n φορές, όπου n φυσικός με n ≥ 2, θα χρησιμοποιούμε το κομψότερο An.

2.1.1 Ξένη ένωση
Μία χρήσιμη έννοια για όσα θα δούμε στη συνέχεια είναι η έννοια της ξένης ένωσης.

Θυμηθείτε ότι δύο σύνολα A,B είναι ξένα ανν A ∩ B = ∅ (Ορισμός 1.7.4). Σε αυτήν την
περίπτωση η ένωση A ∪ B περιέχει ακριβώς τόσα στοιχεία όσο το άθροισμα στοιχείων του
A και του B. Κάποιες φορές χρειαζόμαστε να πάρουμε ένα σύνολο που έχει την παραπάνω
ιδιότητα ακόμα και όταν τα A,B δεν είναι ξένα.

Ορισμός 2.1.8. Έστω μη κενά σύνολα A,B. Ορίζουμε τη ξένη ένωσή τους, συμβολισμός
A+B (ή A ⊎B αν το σύμβολο + μπορεί να προκαλέσει αμφισημία), ως το σύνολο:

A+B = ({∅} ×A) ∪ ({{∅}} ×B)

1 Το μόνο που ζητάμε από τον αναγνώστη σε αυτές τις σημειώσεις, σε σχέση με όσα ήξερε από το παρελθόν,
είναι να θυμάται μερικά παραπάνω αξιώματα και να ξεχνάει μερικές παραπάνω (αχρείαστες) ιδιότητες των
αντικειμένων.
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Φυσικά η επιλογή των συνόλων {∅} και {{∅}} στον παραπάνω ορισμό είναι εντελώς αυ-
θαίρετη (αρκεί μόνο να είναι ξένα).

Μια σημαντική παρατήρηση που θα πρέπει να προσέξουμε είναι ότι δεν ισχύει ότι A ⊆
A + B. Αυτό είναι το τίμημα που χρειάστηκε να πληρώσουμε για να «κάνουμε» τα A,B
ξένα.

2.2 Σχέσεις
Εφόσον αναπαραστήσαμε τα διατεταγμένα ζεύγη στη θεωρία μας μπορούμε να ορίσουμε

σχέσεις και συναρτήσεις κατά τα γνωστά. Στα μαθηματικά (διμελής) σχέσηR είναι το σύνολο
των διατεταγμένων ζευγών, όπου η πρώτη συντεταγμένη «σχετίζεται» με τη δεύτερη. Αν ισχύει
ότι (a, b) ∈ R συνήθως το δηλώνουμε γράφοντας aRb (όπου στη θέση του συμβόλου R
φανταστείτε κάποιο γνώριμό σας σύμβολο σχέσης, π.χ. < ή =).

Ορισμός 2.2.1. Έστω μη κενά σύνολα A,B. Διμελής σχέση (ή σκέτο σχέση) από το A στο
B καλείται οποιοδήποτε υποσύνολο R ⊆ A ×B.

Μία σχέση φυσικά αποτελεί σύνολο λόγο του Αξιώματος VI.

Ορισμός 2.2.2. Σxέση στο (μη κενό) σύνολοA καλείται οποιοδήποτε υποσύνολοR ⊆ A×A.

Έχουμε ήδη ορίσει κάποιες σχέσεις πάνω σε ένα τυχόν σύνολο A. Ας τις θυμηθούμε.

Παράδειγμα 2.2.3. Έστω μη κενό σύνολο A 1.

- Σχέση ισότητας στο A: Η σχέση ισότητας μεταξύ των στοιχειών του A είναι το σύνολο
=A= {(x, y) ∈ A ×A ∣ x = y}.

- Σχέση του περιέχεσθαι στο A: Η σχέση του περιέχεσθαι μεταξύ δύο υποσυνόλων του
A είναι το σύνολο ⊆A= {(X,Y ) ∈ P(A) ×P(A) ∣X ⊆ Y }.

- Σχέση του ανήκειν στο A: Η σχέση του ανήκειν μεταξύ ενός στοιχείου και ενός υπο-
συνόλου του A είναι το σύνολο ∈A= {(x,Y ) ∈ A ×P(A) ∣ x ∈ Y }.

Φυσικά αν είναι ξεκάθαρο σε ποιο A αναφερόμαστε (ή δεν έχει και τόση σημασία) θα
αναφερόμαστε στις σχέσεις του Παραδείγματος 2.2.3 γράφοντας απλά =, ⊆, ∈ 2.

Ενδιαφέρον παρουσιάζει το «αντίστροφο» ερώτημα: Δοσμένης μίας σχέσηςR (που όπως
προείπαμε στα μαθηματικά είναι ένα σύνολο διατεταγμένων ζευγαριών) υπάρχει σύνολο του
οποίου να αποτελεί σχέση (σύμφωνα με τον Ορισμό 2.2.2);
1 Παρατηρήστε ότι οι έννοιες της ισότητας, του ανήκειν και του περιέχεσθαι αν δεν περιοριστούν σε κάποιο

σύνολο δεν αποτελούν σχέση! Ο λόγος είναι ότι δεν μπορεί να προκύψει καρτεσιανό γινόμενο, υποσύνολο του
οποίου θα είναι αυτή η σχέση. Αυτό δεν σημαίνει φυσικά ότι δεν μπορούμε να χρησιμοποιούμε τα σύμβολα
=,⊆, ∈ για γενικά σύνολα (θυμηθείτε ότι ορίσαμε το νόημά τους πριν τα αναφέρουμε ως σχέσεις). Αυτός είναι
ο λόγος που εδώ τα εμπλουτίζουμε με τον δείκτη A, καθώς θέλουμε να τονίσουμε ότι τα βλέπουμε ως σύμβολα
σχέσης.

2 Η διπλή ερμηνεία των συμβόλων =, ⊆ και ∈ (ως σύμβολα της γλώσσας και ως σύμβολα σχέσης) δεν θα προ-
καλέσει πρόβλημα σε όσα ακολουθούν.
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Πρόταση 2.2.4. Έστω σχέση R και έστω A = ⋃⋃R. Τότε R ⊆ A ×A.

Απόδειξη. Παρατηρούμε ότι αν (a, b) ∈ R τότε (από τον Ορισμό 2.1.3) {{a},{a, b}} ∈ R.
Συνεπώς {a} ∈ ⋃R και {a, b} ∈ ⋃R, άρα a, b ∈ ⋃⋃R, ή αλλιώς a, b ∈ A. Αυτό σημαίνει ότι
(x, y) ∈ A ×A, άρα R ⊆ A ×A.

Συνεπώς για να απαντήσουμε στο παραπάνω ερώτημα αρκεί να αναφέρουμε ότι το ⋃⋃R
αποτελεί σύνολο λόγω του Αξιώματος IV. Η παραπάνω πρόταση μας δίνει το «δικαίωμα»
να ορίζουμε σχέσεις χωρίς να αναφέρουμε ρητά το σύνολο στο οποίο ορίζονται. Έτσι, τον
κεντρικό ρόλο θα τον έχει η σχέση και όχι το μητρικό σύνολο.

Ορισμός 2.2.5. Έστω σχέση R και έστω A = ⋃⋃R. Ορίζουμε τα ακόλουθα σύνολα 1:

1. Το πεδίο ορισμού της R είναι το σύνολο dom(R) = {x ∈ A ∣ ∃y((x, y) ∈ R)}.

2. Το πεδίο τιμών της R είναι το σύνολο ran(R) = {y ∈ A ∣ ∃x((x, y) ∈ R)}.

Το γεγονός ότι τα dom και ran είναι σύνολα πηγάζει από τα Αξιώματα IV και VI. Κλείνοντας
ας ορίσουμε τις n-μελείς σχέσεις, για n ≥ 3.

Ορισμός 2.2.6. Έστω σύνολο A. Για κάθε φυσικό n ≥ 3, n-μελής σχέση στο A καλείται
οποιοδήποτε υποσύνολο R ⊆ An.

2.2.1 Τελεστές σχέσεων
Σε αυτήν την παράγραφο θα δούμε κάποιους τελεστές που –δρώντας πάνω σε σχέσεις–

μας δίνουν καινούργιες σχέσεις. Τους περισσότερους από αυτούς θα τους χρησιμοποιούμε
μόνο πάνω σε συναρτήσεις (μία ειδική κατηγορία σχέσεων). Όμως είναι στη φύση των μαθη-
ματικών, όταν μπορούν να γενικεύσουν μία έννοια ή ένα αποτέλεσμα, να μην αντιστέκονται
στον πειρασμό.

Είναι πια καιρός να σταματήσουμε να δικαιολογούμε γιατί μία συλλογή αποτελεί σύνολο.
Σε όσα ακολουθούν θα αναφέρουμε ότι κάτι είναι σύνολο, αφήνοντας την τυπική αιτιολόγηση
(σιωπηρά) ως άσκηση προς τον αναγνώστη.

Ορισμός 2.2.7. Έστω μη κενά σύνολα A,B και σχέση R ⊆ A×B. Η αντίστροφη σχέση της
R είναι η σχέση R−1 = {(y, x) ∈ B ×A ∣ (x, y) ∈ R}.

Ορισμός 2.2.8. Έστω μη κενά σύνολα A,B, σχέση R ⊆ A ×B και S ⊆ A. Ο περιορισμός
της R στο S είναι η σχέση R ↾ S = {(x, y) ∈ R ∣ x ∈ S}.

Ορισμός 2.2.9. Έστω μη κενά σύνολα A,B, σχέση R ⊆ A ×B και S ⊆ A. Η εικόνα του S
μέσω της R είναι το σύνολο R[S] = {y ∈ B ∣ (∃x ∈ S)((x, y) ∈ R)}.

Ορισμός 2.2.10. Έστω μη κενά σύνολα A,B,C και σχέσεις R ⊆ A ×B και S ⊆ B × C . Η
σύνθεση της S με την R είναι η σχέση S ○R = {(x, y) ∈ A×C ∣ (∃z ∈ B)((x, z) ∈ R∧ (z, y) ∈
S)}.
1 Θεωρήστε ότι έχουμε προσθέσει τον συμβολισμό του ζεύγους στον κατάλογο με τις συντομεύσεις της γλώσσας

μας.
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2.2.2 Ιδιότητες σχέσεων
Πολύ συχνά οι σχέσεις που ορίζουμε και μελετάμε έχουν κάποιες ιδιότητες που τους

προσδίδουν κάποιον συγκεκριμένο «χαρακτήρα». Για παράδειγμα, για τη σχέση της ισότητας
προκύπτει ότι x = x, ή ότι αν x = y τότε y = x, ή ότι αν x = y και y = z τότε x = z.
Σχέσεις για τις οποίες ισχύουν αντίστοιχες ιδιότητες με την ισότητα έχουν τον χαρακτήρα
της ισοδυναμίας. Άλλες σχέσεις, όπως για παράδειγμα η σχέση του «μικρότερου είτε ίσου»
στους φυσικούς αριθμούς, προσδίδουν σε ένα σύνολο κάποια έννοια διάταξης. Σε αυτήν την
παράγραφο θα δώσουμε ονόματα σε μερικές από τις ιδιότητες σχέσεων.

Ορισμός 2.2.11. Έστω σχέση R στο σύνολο A. Θα λέμε ότι η R είναι:

1. Αυτοπαθής ανν για κάθε x ∈ dom(R) ισχύει ότι xRx,

2. Συμμετρική ανν για κάθε x, y ∈ dom(R), αν ισχύει ότι xRy τότε ισχύει επίσης ότι yRx,

3. Μεταβατική ανν για κάθε x, y, z ∈ dom(R), αν ισχύει ότι xRy και yRz τότε ισχύει
επίσης ότι xRz.

Παράδειγμα 2.2.12. Έστω μη κενό σύνολο A.

- H σχέση ισότητας στο A είναι αυτοπαθής, συμμετρική και μεταβατική.

- Η σχέση του περιέχεσθαι στο A είναι αυτοπαθής και μεταβατική.

- Η σχέση του ανήκειν στο A μπορεί να είναι μόνο μεταβατική, καθώς x ∉ x για κάθε
x ∈ A 1.

Ορισμός 2.2.13. Μία σχέση R στο σύνολο A είναι αντισυμμετρική ανν για κάθε x, y ∈
dom(R) αν xRy και yRx έπεται ότι x = y.

Για να δώσουμε ένα παράδειγμα αντισυμμετρικής σχέσης που μας είναι γνώριμο από
τα μαθηματικά θα χρειαστεί να «δανειστούμε από το μέλλον». Αυτήν την πρακτική θα την
επαναλάβουμε ακόμα μερικές φορές, αλλά μόνο για ένα σύντομο χρονικό διάστημα.

Παράδειγμα 2.2.14. Η σχέση ≤ του μικρότερου είτε ίσου στους φυσικούς αριθμούς είναι
αντισυμμετρική, καθώς ως γνωστόν αν n ≤m και m ≤ n τότε n =m.

Ορισμός 2.2.15. Μία σχέση R ⊆ A ×B είναι 1-1 ανν για κάθε y ∈ ran(R) υπάρχει μοναδικό
x ∈ dom(R) τέτοιο ώστε (x, y) ∈ R. H R είναι επί του B ανν ran(R) = B.

Παράδειγμα 2.2.16. Έστω μη κενό σύνολο A. Τότε:
1 Η αλήθεια είναι ότι δεν μπορούμε να αποδείξουμε ότι x ∉ x (εκτός από μερικές ειδικές περιπτώσεις, δες

Άσκηση 3.6 και Πρόταση 5.1.8). Θα χρειαστεί να προσθέσουμε ένα αξίωμα που το εξασφαλίζει αυτό:

Αξίωμα Κανονικότητας (ή Θεμελίωσης): ∀A(A ≠ ∅→ (∃a ∈ A)(a ∩A = ∅))

Το αξίωμα της κανονικότητας δεν θα μας χρειαστεί σε πρώτη φάση, για αυτό το αναφέρουμε προσωρινά μόνο
ως υποσημείωση.
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- Η σχέση της ισότητας στο A είναι 1-1.

- Η σχέση του περιέχεσθαι στο A είναι επί (αλλά όχι 1-1). Το ίδιο ισχύει και για τη σχέση
του μικρότερου είτε ίσου στους φυσικού.

- Η σχέση του ανήκειν στο A δεν είναι ούτε επί (λόγω του ∅) ούτε 1-1.

2.2.3 Σχέσεις ισοδυναμίας
Ορισμός 2.2.17. Μία σχέσηR στο σύνολοA είναι σχέση ισοδυναμίας στοA (ή σκέτο σχέση
ισοδυναμίας, αν το σύνολο A εννοείται από τα συμφραζόμενα) ανν dom(R) = A και είναι
αυτοπαθής, συμμετρική και μεταβατική 1.

Στο Παράδειγμα 2.2.12 είδαμε ότι η σχέση ισότητας στο A είναι σχέση ισοδυναμίας (μά-
λιστα είναι η «μικρότερη» –ως προς τη σχέση του υποσυνόλου– σχέση ισοδυναμίας του A,
Άσκηση 2.5). Οι σχέσεις ισοδυναμίας μπορούν να μας δώσουν με πολύ φυσικό τρόπο μία
αποσύνθεση του συνόλου σε ξένα ανά δύο σύνολα, όπου η ένωσή τους περιέχει όλα τα στοι-
χεία του συνόλου. Ο όρος που χρησιμοποιούμε για αυτές τις αποσυνθέσεις είναι διαμέριση.
Η ιδιότητα αυτή είναι πολύ χρήσιμη για τους σκοπούς μας καθώς δημιουργεί καινούργια σύ-
νολα από ήδη υπάρχοντα. Για να το δούμε αυτό θα χρειαστεί να δώσουμε πρώτα κάποιους
ορισμούς.

Ορισμός 2.2.18. Έστω μη κενό σύνολο A. Ένα σύνολο P μη κενών υποσυνόλων του A
καλείται διαμέριση ανν:

1. για κάθε a ∈ A υπάρχει S ∈ P τέτοιο ώστε a ∈ S και

2. για κάθε S,T ∈ P αν S ≠ T τότε τα S,T είναι ξένα.

Ορισμός 2.2.19. Έστω σχέση R στο σύνολο A και x ∈ A. Θεωρούμε το σύνολο [x]R = {y ∈
A ∣ xRy} 2. Στην περίπτωση όπου η R είναι σχέση ισοδυναμίας το [x]R το καλούμε κλάση
ισοδυναμίας του x 3.

Η ακόλουθη πρόταση είναι μια άμεση συνέπεια του ορισμού των κλάσεων ισοδυναμίας.

Πρόταση 2.2.20. Έστω σχέση ισοδυναμίας R στο σύνολο A και x, y ∈ A. Τότε xRy ανν
[x]R = [y]R. Επίσης, x ∈ [y]R ανν [x]R = [y]R.

Ορισμός 2.2.21. Έστω σχέση ισοδυναμίας R στο σύνολο A. Ορίζουμε το σύνολο πηλίκο της
R ως A/R = {[x]R ∈ P(A) ∣ x ∈ A}.

Είμαστε πλέον σε θέση να διατυπώσουμε το Θεμελιώδες Θεώρημα των Σχέσεων Ισοδυ-
ναμίας 4.
1 Κάποιος πονηρός θα σκεφτεί ότι αν μία σχέση είναι συμμετρική και μεταβατική τότε θα είναι και αυτοπαθής.

Αυτό δεν ισχύει εν γένει (Άσκηση 2.6).
2 Το [x]R είναι σύνολο λόγο του Αξιώματος VI για τον λογικό τύπο ϕ(y) = (x, y) ∈ R.
3 Ο όρος «κλάση» έχει επικρατήσει στη βιβλιογραφία, παρόλο που αναφερόμαστε σε ένα σύνολο.
4 Πολύ βαρύγδουπο όνομα για ένα σχετικά απλό αποτέλεσμα...
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Θεώρημα 2.2.22 (Θεμελιώδες Θεώρημα Σχέσεων Ισοδυναμίας). Έστω σχέση ισοδυναμίας
R στο σύνολο A. Το σύνολο A/R αποτελεί διαμέριση του A.

Απόδειξη. Παρατηρούμε ότι για κάθε x ∈ A ισχύει ότι x ∈ [x]R. Έστω [x]R, [y]R ∈ R/A με
[x]R ≠ [y]R και έστω (προς άτοπο) ότι [x]R ∩ [y]R ≠ ∅. Έστω z ∈ [x]R ∩ [y]R, τότε xRz και
yRz ή, λόγω της συμμετρικότητας της R, zRy. Από την μεταβατικότητα της R έπεται ότι
xRy, άρα y ∈ [x]R, και από την Πρόταση 2.2.20 έπεται ότι [x]R = [y]R. Άτοπο.

Ισχύει επίσης και το «αντίστροφο» του Θεωρήματος 2.2.22:

Θεώρημα 2.2.23. Έστω P διαμέριση του συνόλου A. Υπάρχει σχέση ισοδυναμίας R στο A
με A/R = P .

Απόδειξη. Θεωρούμε τη σχέση R = {(x, y) ∈ A × A ∣ (∃S ∈ P )(x ∈ S ∧ y ∈ S)}. H R
προφανώς είναι σχέση ισοδυναμίας για την οποία ισχύει ότι A/R = P (λόγω της πρώτης
ιδιότητας του Ορισμού 2.2.18).

Θα ήταν πολύ χρήσιμο να μπορούσαμε να επιλέξουμε για κάθε σύνολο A μίας διαμέ-
ρισης P έναν αντιπρόσωπο, δηλαδή ένα στοιχείο a ∈ A, και να φτιάξουμε έτσι ένα σύνολο
αντιπροσώπων. Στα όσα έχουμε δει μέχρι τώρα τίποτα δεν μας εγγυάται ότι αυτό είναι εφικτό.
Όσο διστακτικοί και αν είμαστε θα πρέπει να προσθέσουμε ένα καινούργιο αξίωμα 1.

VII.(i) Αξίωμα Επιλογής: Κάθε διαμέριση έχει σύνολο αντιπροσώπων.

Θα επανέλθουμε στο αξίωμα επιλογής σε λίγο 2.

2.2.4 Σχέσεις διάταξης
Μπορούμε να πούμε ότι οι σχέσεις ισοδυναμίας γενίκευσαν υπό μία έννοια τη σχέση

της ισότητας. Σε αυτήν την παράγραφο θα επιχειρήσουμε να γενικεύσουμε τη σχέση του
«μικρότερου είτε ίσου»: Θα ορίσουμε τις λεγόμενες σχέσεις διάταξης, οι οποίες βάζουν σε
σειρά (μερικά ή όλα) τα στοιχεία ενός συνόλου. Εύκολα μπορεί να γίνει αντιληπτό ότι για
να μπορεί να το κάνει αυτό μια σχέση θα πρέπει να είναι αυτοπαθής 3, μεταβατική 4 και
αντισυμμετρική 5.

Ορισμός 2.2.24. Μία σχέση R στο σύνολο A είναι σχέση μερικής διάταξης (ή σκέτο διά-
ταξη) του A ανν είναι αυτοπαθής, μεταβατική και αντισυμμετρική. Σε αυτήν την περίπτωση
θα λέμε επίσης ότι το σύνολο A είναι μερικώς διατεταγμένο ως προς την R.

Παράδειγμα 2.2.25. Η σχέση ≤ είναι σχέση διάταξης στους φυσικούς αριθμούς.

Ο όρος μερική χρησιμοποιείται εδώ καθώς δεν είναι απαραίτητο να ισχύει ότι οποιαδή-
ποτε δύο στοιχεία του συνόλου σχετίζονται. Αυτό είναι εμφανές στο ακόλουθο παράδειγμα.
1 Πάντα θα πρέπει να είμαστε διστακτικοί στο να προσθέσουμε κάποιο αξίωμα στη θεωρία μας.
2 Θα επανέλθουμε και αργότερα στο Κεφάλαιο 5, βλέποντας κάποιες από τις βασικές εφαρμογές του..
3 Το στοιχείο x είναι τετριμμένα είτε μετά από το x είτε στην ίδια θέση με αυτό.
4 Αν το y είναι μετά από το x και το z μετά από το y, τότε το z θα είναι (ακόμα πιο) μετά από το x.
5 Αν το y είναι μετά από το x και το x μετά από το y τότε τα x, y θα είναι στην ίδια θέση, άρα θα ταυτίζονται.
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Παράδειγμα 2.2.26. Έστω μη κενό σύνολο A. Η σχέση του περιέχεσθε στο A (Παρά-
δειγμα 2.2.3) είναι διάταξη. Όμως μπορεί να υπάρχουν X,Y ∈ P(A) για τα οποίο να μην
ισχύει ότι X ⊆ Y ούτε ότι Y ⊆X (πάρτε για παράδειγμα δύο ξένα υποσύνολα του A).

Ορισμός 2.2.27. Μία σχέση διάταξης R στο σύνολο A καλείται ολική διάταξη (ή γραμμική
διάταξη) του A ανν κάθε δύο στοιχεία του A είναι συγκρίσιμα, δηλαδή για κάθε x, y ∈ A
ισχύει ότι xRy ή ότι yRx. Σε αυτήν την περίπτωση θα λέμε ότι το σύνολο A είναι ολικά
διατεταγμένο ως προς την R.

Παράδειγμα 2.2.28. Θεωρήστε το σύνολο ζευγών φυσικών αριθμών και τη διάταξη R με:

(a, b)R(c, d) ανν a ≤ c και b ≤ d 1

Η διάταξη αυτή δεν είναι ολική, καθώς τα ζεύγη (0,1) και (1,0) δεν είναι συγκρίσιμα: Αν
ίσχυε ότι (0,1)R(1,0) ή (1,0)R(0,1) τότε θα έπρεπε να ισχύει ότι 1 ≤ 0.

Παράδειγμα 2.2.29. Θεωρήστε το σύνολο ζευγών φυσικών αριθμών, αλλά αυτήν τη φορά
με τη διάταξη R με:

(a, b)R(c, d) ανν είτε a ≤ c, είτε a = c και b ≤ d

Η διάταξη αυτή είναι ολική. Τη διάταξη αυτήν την αποκαλούμε λεξικογραφική διάταξη γιατί
θυμίζει τον τρόπο που διευθετούμε τις λέξεις στα λεξικά.

Συμβολισμός 2.2.30. Καθώς οι διατάξεις «τακτοποιούν» τα στοιχεία ενός συνόλου σε κά-
ποια σειρά, είναι πολύ βοηθητικό να χρησιμοποιούμε τον παραστατικό συμβολισμό ≤A αντί
για το κάπως κενό νοήματος R. Με αυτόν τον τρόπο γίνεται άμεσα αντιληπτό ότι αν για
παράδειγμα x ≤A y τότε το x βρίσκεται πριν (ή είναι μικρότερο) από το y, σύμφωνα πάντα
με τη ≤A. Όταν το A εννοείται από τα συμφραζόμενα θα απλοποιούμε τον συμβολισμό γρά-
φοντας x ≤ y 2. Αν για δύο στοιχεία x, y ∈ A γνωρίζουμε ότι x ≤ y και ότι x ≠ y θα γράφουμε
x < y, όπως επίσης αν γνωρίζουμε ότι δεν ισχύει ότι x ≤ y θα γράφουμε x /≤ y.

Συνήθως μας ενδιαφέρουν δομές που αποτελούνται από ένα σύνολο και μία διάταξη σε
αυτό. Αυτές τις δομές μπορούμε να της αναπαραστήσουμε μέσω ενός διατεταγμένου ζεύγους
(ούτως ώστε και αυτές να αποτελούν σύνολο).

Ορισμός 2.2.31. Έστω σχέση διάταξης ≤ στο σύνολο A. Καλούμε τη δομή (A,≤) (μερικά)
διατεταγμένο χώρο 3. Αν επιπλέον η ≤ είναι ολική τότε καλούμε τη δομή (A,≤) ολικά διατε-
ταγμένο χώρο.

Θα χρειαστεί να αναπτύξουμε την απαραίτητη ορολογία που πλαισιώνει τους διατεταγ-
μένους χώρους.
1 Εξετάστε αν όντως αποτελεί διάταξη.
2 Το γεγονός ότι χρησιμοποιούμε το σύμβολο του «μικρότερου είτε ίσου» των φυσικών αριθμών δεν είναι τυχαίο.

Δεν πρέπει όμως να σας προκαλεί σύγχυση αυτή η κατάχρηση συμβολισμού. Ούτως ή άλλως δεν έχουμε ορίσει
ακόμα φυσικούς αριθμούς, ούτε κάποια διάταξη σε αυτούς.

3 Δυστυχώς στην ελληνική βιβλιογραφία δεν υπάρχει συντομότερο όνομα για αυτήν τη δομή. Στα αγγλικά χρη-
σιμοποιείται ο όρος poset που προέρχεται από τη σύντμηση των λέξεων partially ordered set.
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Ορισμός 2.2.32. Έστω (A,≤) διατεταγμένος χώρος και a ∈ A. Το a καλείται ελαχιστικό
στοιχείο του χώρου ανν για κάθε στοιχείο x ∈ A ισχύει ότι x /≤ a, και μεγιστικό στοιχείο ανν
για κάθε στοιχείο x ∈ A ισχύει ότι a /≤ x.

Ορισμός 2.2.33. Έστω (A,≤) διατεταγμένος χώρος και a ∈ A. Το a καλείται ελάχιστο στοι-
χείο του χώρου ανν για κάθε στοιχείο x ∈ A ισχύει ότι a ≤ x, και μέγιστο στοιχείο ανν για
κάθε στοιχείο x ∈ A ισχύει ότι x ≤ a.

Παράδειγμα 2.2.34. Έστω μη κενό σύνολο A και έστω ⊆A η σχέση του περιέχεσθε στο A.
Θεωρήστε τον διατεταγμένο χώρο (P(A),⊆A). Τότε το ∅ είναι ελάχιστο στοιχείο του χώρου
και το A μέγιστο.

Παράδειγμα 2.2.35. Έστω μη κενό σύνολο A και έστω A1 = {X ∈ P(A) ∣ (∀x ∈ X)(∀y ∈
X)(x = y)} (δηλαδή το σύνολο των μονοσυνόλων με στοιχεία από το A). Θεωρήστε τον
διατεταγμένο χώρο (A1,⊆A1), όπου ⊆A1 η σχέση του περιέχεσθε στο A1. Τότε κάθε στοιχείο
του A1 είναι ελαχιστικό και ταυτόχρονα μεγιστικό, ενώ δεν υπάρχουν ελάχιστα ή μέγιστα
στοιχεία.

Παρατήρηση 2.2.36. Ένας διατεταγμένος χώρος μπορεί να έχει πολλά ελαχιστικά ή μεγι-
στικά στοιχεία, αν όμως έχει ελάχιστο ή μέγιστο στοιχείο αυτό θα είναι μοναδικό, λόγω της
αντισυμμετρικότητας.

Ορισμός 2.2.37. Έστω (A,≤) διατεταγμένος χώρος και a ∈ A. Καλούμε αρχικό τμήμα του
a το σύνολο seg<(a) = {x ∈ A ∣ x < a}. Κλειστό αρχικό τμήμα του a καλούμε το σύνολο
seg≤(a) = seg<(a) ∪ {a}.

Παράδειγμα 2.2.38. Για κάθε φυσικό αριθμό n ≥ 1 ισχύει ότι seg<(n) = {0,1,2, ... , n−1},
ενώ για n = 0 ισχύει ότι seg<(0) = ∅. Όμως seg≤(0) = {0}.

Συχνά το ενδιαφέρον μας στρέφεται σε έναν υπόχωρο ενός διατεταγμένου χώρου και στο
αν αυτός έχει μέγιστο η ελάχιστο στοιχείο.

Ορισμός 2.2.39. Έστω (A,≤) διατεταγμένος χώρος και S ⊆ A. Τον χώρο (S,≤S) όπου ≤S =
≤ ∩(S × S) τον αποκαλούμε υπόχωρο του χώρου (A,≤).

Σύμβαση 2.2.40. Όταν έχουμε έναν διατεταγμένο χώρο(A,≤) και έναν υπόχωρό του (S,≤S)
θα χρησιμοποιούμε (καταχρηστικά και πάλι) το σύμβολο ≤ τόσο για τη διάταξη του χώρου
όσο και για του υπόχωρου. Επίσης, θα αναφερόμαστε στον υπόχωρο σημειώνοντας μόνο το
σύνολο S (τα υπόλοιπα θα εννοούνται από πρότερη αναφορά του χώρου).

Ορισμός 2.2.41. Έστω (A,≤) διατεταγμένος χώρος και a ∈ A. Το a καλείται άνω φράγμα
ενός υπόχωρου S ανν για κάθε στοιχείο x ∈ S ισχύει ότι x ≤ a, και κάτω φράγμα ανν για
κάθε στοιχείο x ∈ S ισχύει ότι a ≤ x.

Ορισμός 2.2.42. Έστω (A,≤) διατεταγμένος χώρος και S υπόχωρός του. Ένα άνω φράγμα
a ∈ A του S καλείται ελάχιστο άνω φράγμα (ή supremum) του S ανν ισχύει ότι a ≤ b για
κάθε άλλο άνω φράγμα b του S.
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Ορισμός 2.2.43. Έστω (A,≤) διατεταγμένος χώρος και S υπόχωρός του. Ένα κάτω φράγμα
a ∈ A του S καλείται μέγιστο κάτω φράγμα (ή infimum) του S ανν ισχύει ότι b ≤ a για κάθε
άλλο κάτω φράγμα b του S.

Παράδειγμα 2.2.44. Θεωρήστε τον διατεταγμένο χώρο των φυσικών αριθμών, με τη συνήθη
διάταξη, και τον υπόχωρο seg≤(n), για κάποιον φυσικό n ≥ 1. Τότε κάθε φυσικός m με m ≥ n
είναι άνω φράγμα του seg≤(n) ενώ το supremum του είναι ο n που είναι και μέγιστο στοιχείο.

Παράδειγμα 2.2.45. Θεωρήστε τον διατεταγμένο χώρο του συνόλου ζευγαριών φυσικών
αριθμών της μορφής (1, n), με τη λεξικογραφική διάταξη (Παράδειγμα 2.2.29). Τότε κάθε
ζευγάρι της μορφής (0,m) είναι κάτω φράγμα, ενώ το (1,0) είναι infimum και ελάχιστο
στοιχείο.

Παρατήρηση 2.2.46. Το supremum και το infimum ενός υπόχωρου (αν υπάρχουν) είναι
μοναδικά (πάλι λόγω της αντισυμμετρικότητας).

Ορισμός 2.2.47. Ένας υπόχωρος S ενός διατεταγμένου χώρου (A,≤) καλείται αλυσίδα του
χώρου όταν είναι ολικά διατεταγμένος ως προς την ≤.

Παράδειγμα 2.2.48. Για οποιονδήποτε φυσικό n ≥ 1 ο υπόχωρος seg≤(n) αποτελεί αλυ-
σίδα.

Δεν θα δώσουμε άλλους ορισμούς (έχουμε δώσει ήδη πάρα πολλούς). Ότι περαιτέρω
χρειαστούμε αναφορικά με τις σχέσεις διάταξης θα το ορίσουμε επί τόπου (βλέπε Κεφά-
λαιο 5).

2.3 Συναρτήσεις
Θα ορίσουμε την έννοια της συνάρτησης ως σχέση όπου για κάθε πρώτη συντεταγμένη

των μελών τις υπάρχει μοναδική δεύτερη συντεταγμένη. Έτσι για κάθε όρισμα της συνάρ-
τησης θα υπάρχει μοναδική εικόνα του ή αλλιώς μοναδική τιμή.

Ορισμός 2.3.1. Έστω μη κενά σύνολα X,Y . Συνάρτηση από το X στο Y είναι μία σχέση
f ⊆X × Y για την οποία ισχύει ότι για κάθε x ∈ dom(f) το f [{x}] είναι μονοσύνολο.

Συμβολισμός 2.3.2. Αντί για f ⊆ X × Y συνήθως γράφουμε f : X → Y . Επίσης, συμβολί-
ζουμε με f(x) το μοναδικό στοιχείο του f [{x}].

Πέρα από τον παραπάνω συμβολισμό θα χρησιμοποιούμε και διάφορους άλλους τρό-
πους για να δηλώσουμε μία συνάρτηση. Για παράδειγμα θα γράφουμε f(x) = Η τιμή της
συνάρτησης για το x ή (αν βαριόμαστε να αναφέρουμε ακόμα και το όνομα της συνάρτη-
σης) (x↦Η τιμή του x).

Ο Ορισμός 2.3.1 δεν είναι απολύτως σύμφωνος με την αντίληψη που έχουμε για τις
συναρτήσεις. Μία συνάρτηση «κάνει κάτι»: Αντιστοιχεί ένα όρισμα σε μια εικόνα, συνή-
θως μέσω κάποιου κανόνα. Είναι δηλαδή ένα «ενεργητικό» αντικείμενο και όχι κάτι στατικό
όπως ένα σύνολο! Εκεί που αποτυγχάνει ο Ορισμός 2.3.1 είναι στο να αναπαραστήσει τον
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κανόνα εύρεσης της εικόνας, καθώς αποτυπώνει μόνο τη συλλογή των ζευγών όρισμα-τιμή.
Για παράδειγμα οι συναρτήσεις στους φυσικούς αριθμούς με f(x) = x+1 και g(x) = (x+1)!

x!
αναπαριστώνται με το ίδιο σύνολο, οι κανόνες υπολογισμού τους όμως διαφέρουν κατά πολύ.
Βέβαια, για τους σκοπούς αυτών των σημειώσεων, η αναπαράσταση του Ορισμού 2.3.1 είναι
υπεραρκετή 1.

Ορισμός 2.3.3. Έστω μη κενά σύνολα X,Y . Ορίζουμε το σύνολο των συναρτήσεων από το
X στο Y ως εξής: 2

(X → Y ) = {f ∈ P(X × Y ) ∣ (∀x ∈X)(∃!y ∈ Y )((x, y) ∈ f)}

Παρατήρηση 2.3.4. Το σύνολο (X → Y ) είναι μερικώς διατεταγμένο ως προς τη σχέση
του περιέχεσθαι στο P(X × Y ).

Έχουμε ήδη ορίσει όλες τις (γνωστές) έννοιες που αφορούν μία συνάρτηση: Το πεδίο
ορισμού και το πεδίο τιμών ορίστηκαν στον Ορισμό 2.2.5, η αντίστροφη συνάρτηση 3 και η
σύνθεση συναρτήσεων στην Παράγραφο 2.2.1, και οι έννοιες 1-1 και επί στον Ορισμό 2.2.15.

Η ακόλουθη πρόταση έπεται άμεσα από τους ορισμούς.

Πρόταση 2.3.5. Έστω συνάρτηση f :X × Y . Η f−1 είναι συνάρτηση ανν η f είναι 1-1.

Ορισμός 2.3.6. Έστω μη κενό σύνολο X . Η ταυτοτική συνάρτηση του X είναι η συνάρτηση
IdX :X →X με IdX(x) = x για κάθε x ∈X .

Μία έννοια που θα μας φανεί χρήσιμη στη συνέχεια, είναι η έννοια της χαρακτηριστικής
συνάρτησης ενός συνόλου.

Ορισμός 2.3.7. Έστω μη κενό σύνολο A. Η χαρακτηριστική συνάρτηση του A είναι η συ-
νάρτηση χA : A→ {∅,{∅}} με:

χA(x) =

⎧⎪⎪⎨⎪⎪⎩

{∅}, αν x ∈ A
∅, αλλιώς

Πρέπει να σημειώσουμε δύο πράγματα για τον παραπάνω ορισμό. Πρώτον, ορίσαμε τη συ-
νάρτηση μέσα από τον κανόνα εύρεσης των τιμών της, και όχι δηλώνοντας τα στοιχεία της.
Αυτό είναι κάτι που θα κάνουμε συχνά από εδώ και στο εξής. Δεύτερον, θα πρέπει να διευ-
κρινίσουμε ότι η επιλογή του συνόλου {∅,{∅}} δεν ήταν μια στιγμή παραφροσύνης. Στο
Κεφάλαιο 3 θα αναπαραστήσουμε τον αριθμό 0 με το σύνολο ∅ και τον αριθμό 1 με το
σύνολο {∅}. Άρα στην πραγματικότητα ισχύει ότι:

χA(x) =

⎧⎪⎪⎨⎪⎪⎩

1, αν x ∈ A
0, αλλιώς

Είναι πολύ νωρίς ακόμα όμως για να το γράψουμε με αυτήν τη μορφή.
1 Υπάρχουν πολλοί τρόποι να αναπαραστήσουμε συναρτήσεις μέσω του κανόνα υπολογισμού τους (αν φυσικά

υπάρχει). Το πεδίο των μαθηματικών που εξετάζει αυτήν τη δυνατότητα ονομάζεται Θεωρία Αναδρομής.
2 Εδώ χρησιμοποιούμε το σύμβολο ∃! (που διαβάζεται «υπάρχει μοναδικό») ως συντόμευση. Μπορείτε να βρείτε

ποιανού τύπου συντόμευση είναι ο ∃!xϕ(x);
3 Να σημειώσουμε εδώ ότι αν f συνάρτηση τότε η f−1 δεν είναι απαραίτητα συνάρτηση (δες Πρόταση 2.3.5).
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2.3.1 Σύνολα δεικτών και οικογένειες συνόλων
Είναι πολύ συχνό το φαινόμενο η εικόνα της συνάρτησης να παίζει πιο ουσιαστικό ρόλο

από την ίδια τη συνάρτηση. Για παράδειγμα θεωρήστε τη συνάρτηση f στους φυσικούς με
f(x) = x2+1. Οι τιμές της 1,2,5,10,17, ... (και η σειρά τους) είναι σημαντικότερες από τον
τρόπο που αυτές προήλθαν. Όταν συμβαίνει αυτό για να το τονίσουμε θα χρησιμοποιούμε
διαφορετικό συμβολισμό.

Συμβολισμός 2.3.8. Έστω συνάρτηση F : I → X και i ∈ I . Αντί για F (i) θα γράφουμε Fi.
Επίσης μπορούμε να δηλώνουμε την F γράφοντας (Fi)i∈I ή και σκέτο (Fi), αν το I εννοείται
από τα συμφραζόμενα.

Η ορολογία που χρησιμοποιείται πιο συχνά είναι η εξής: Το I το καλούμε σύνολο δεικτών,
τα στοιχεία i ∈ I δείκτες και τη συνάρτηση (Fi)i∈I οικογένεια συνόλων. Ο συμβολισμός αυτός
μας δίνει μεγαλύτερη ευελιξία όσον αφορά την ένωση και τη τομή.

Ορισμός 2.3.9. Έστω οικογένεια συνόλων (Fi)i∈I . Ορίζουμε την ένωσή της ως εξής:

⋃
i∈I
Fi = {x ∈ Fi ∣ i ∈ I} (=⋃ ran(F ))

Επιπλέον, αν I ≠ ∅ ορίζουμε την τομή της οικογένειας ως εξής:

⋂
i∈I
Fi = {x ∈⋃

i∈I
Fi ∣ (∀i ∈ I)(x ∈ Fi)} (=⋂ ran(F ))

Όμως σε τι διαφέρει ο (τυπικός) όρος οικογένεια συνόλων από τον όρο που χρησιμο-
ποιήσαμε στην Παράγραφο 1.5 και στον Ορισμό 1.7.3; Ο τρόπος που ορίσαμε τον όρο σε
αυτήν την παράγραφο προϋποθέτει την ύπαρξη μιας συνάρτησης και φυσικά ενός συνόλου
δεικτών. Αν C είναι μία «οικογένεια συνόλων» τότε μπορούμε να θεωρήσουμε ως σύνολο
δεικτών το ίδιο το C και ως συνάρτηση F την ταυτοτική συνάρτηση IdC και έτσι θα πά-
ρουμε την οικογένεια (Fi)i∈C που ταυτίζεται με τη C ! Από εδώ και στο εξής θα συγχέουμε
τον τυπικό όρο με τον μη τυπικό. Ούτως η άλλως, όπως είπαμε στην αρχή της παραγράφου,
κάποιες φορές η τιμές της συνάρτησης (η οικογένεια C δηλαδή) είναι πιο σημαντικές από
την ίδια τη συνάρτηση.

Μπορούμε μέσω των οικογενειών συνόλων να γενικεύσουμε τα κερτεσιανά γινόμενα. Δο-
θείσης οικογένειας (Fi)i∈I θέλουμε να ορίσουμε το σύνολο που περιέχει όλες τις «πλειάδες»
στοιχείων του ⋃i∈I Fi, όπου κάθε όρος τους ανήκει και σε ένα διαφορετικό Fi. Στην οικο-
γένεια όμως (αφού είναι ένα σύνολο) δεν υπάρχει διάταξη μεταξύ των μελών της. Άρα τα
στοιχεία του κερτεσιανού γινομένου δεν θα μπορούσαν να είναι πλειάδες 1. Η μόνη συνετή
επιλογή είναι το καρτεσιανό γινόμενο της οικογένειας να περιέχει οικογένειες (H)i∈I όπου
για κάθε δείκτη i ∈ I το Hi είναι στοιχείο του Fi.

Ορισμός 2.3.10. Έστω οικογένεια συνόλων (Fi)i∈I με Fi ≠ ∅, για i ∈ I . Ορίζουμε το καρτε-
σιανό γινόμενό της ως εξής:

⨉
i∈I
Fi = {(Hi)i∈I ∈ (I →⋃

i∈I
Fi) ∣ (∀i ∈ I)(Hi ∈ Fi)}

1 Ένα άλλο πρόβλημα είναι ότι το σύνολο δεικτών I μπορεί να είναι άπειρο, οπότε θα χρειαζόμασταν πλειάδες
με άπειρες συντεταγμένες. Βέβαια, τίποτα στη μέχρι τώρα θεωρία μας δεν δημιουργεί άπειρο σύνολο!

29 Τελευταία ενημέρωση 18/2/2025, στις 10:49.



Συναρτήσεις

Παράδειγμα 2.3.11. Έστω μη κενά σύνολα X,Y και έστω I = {1,2}. Τότε το καρτεσιανό
γινόμενο της οικογένειας (Fi)i∈I με F1 =X και F2 = Y είναι το:

⨉
i∈I
Fi = {(Hi)i∈I ∈ (I →X ∪ Y ) ∣ (H1 ∈X ∧H2 ∈ Y )}

Μπορούμε εύκολα να ορίσουμε μία 1-1 και επί συνάρτηση από το σύνολο ⨉i∈I Fi στο X ×Y ,
για παράδειγμα τη συνάρτηση ((Hi)i∈I ↦ (H1,H2)). Έτσι φαίνεται ότι ο Ορισμός 2.3.10
αποτελεί μια (έμεση) γενίκευση του Ορισμού 2.1.4. Για να παραμείνουμε όμως τυπικοί δεν
θα γράψουμε ποτέ ότι ⨉i∈I Fi =X × Y .

2.3.2 Το αξίωμα της Επιλογής

Ο καινούργιος τρόπος να ορίζουμε καρτεσιανά γινόμενα μας δημιούργησε και καινούργια
προβλήματα: Αν πάρουμε μία οικογένεια μη κενών συνόλων δεν μπορούμε να γνωρίζουμε ότι
το καρτεσιανό γινόμενό της θα είναι μη κενό. Για να φτιάξουμε μια οικογένεια (Hi)i∈I του
γινομένου θα πρέπει να μπορούμε να επιλέξουμε ένα στοιχείο του xi ∈ Fi έτσι ώστε Hi = xi.
Ευτυχώς δεν θα χρειαστεί να προσθέσουμε και πάλι κάποιο αξίωμα στη θεωρία μας. Θα
χρειαστεί μόνο να ξαναδιατυπώσουμε το Αξίωμα VII.(i):

VII.(ii) Αξίωμα Επιλογής: Το καρτεσιανό γινόμενο μιας οικογένειας μη κενών συνόλων
είναι μη κενό.

Αποφεύγουμε να δώσουμε τον τυπικό ορισμό χάριν ομορφιάς. Ούτως η άλλως αυτή
δεν είναι μία ιδιαίτερα λειτουργική εκδοχή του αξιώματος επιλογής. Θα δούμε μία ακόμα
εναλλακτική εκδοχή του, που μπορεί να εφαρμοστεί σε περισσότερες περιπτώσεις.

Ορισμός 2.3.12. Έστω οικογένεια μη κενών συνόλων F , μία συνάρτηση f : F → ⋃F με
f(A) ∈ A για κάθε A ∈ F καλείται συνάρτηση επιλογής για την F .

Παρατηρήστε ότι μία συνάρτηση επιλογής «επιλέγει» ακριβώς ένα στοιχείο για κάθε
σύνολο της οικογένειας. Η ύπαρξη τέτοιας συνάρτησης σε κάποιες περιπτώσεις είναι προ-
φανής. Για παράδειγμα ας πάρουμε μία οικογένεια A1,A2, ... μη κενών συνόλων φυσικών
αριθμών. Η συνάρτηση επιλογής f όπου f(Ai) είναι το ελάχιστο στοιχείο του Ai προφα-
νώς 1 υπάρχει (αν θεωρήσουμε ότι έχουμε αναπαραστήσει κάπως του φυσικούς αριθμούς).
Ο λόγος που υπάρχει αυτή η συνάρτηση είναι ότι υπάρχει κανόνας επιλογής ενός στοιχείου
από κάθε σύνολο. Για να αναπτύξουμε τη θεωρία μας όμως πρέπει η ύπαρξη συνάρτησης
επιλογής να είναι ανεξάρτητη της ύπαρξης κανόνα επιλογής. Ας δούμε μια αναδιατύπωση
του Αξιώματος VII.(ii).

VII.(iii) Αξίωμα Επιλογής: Κάθε οικογένεια μη κενών συνόλων επιδέχεται συνάρτηση επι-
λογής.

1 Άσκηση 3.1.
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Οι τρεις εκδοχές του αξιώματος επιλογής που έχουμε διατυπώσει –παρόλο που μοιάζουν
ετερόκλητες– είναι ισοδύναμες (δες Άσκηση 2.16) και, με τον έναν ή με τον άλλο τρόπο,
εκφράζουν την ίδια αρχή. H πιο απλή εξήγηση του αξιώματος επιλογής και του τρόπου που
αυτό χρησιμοποιείται, ίσως έχει δοθεί από τον Bertrand Russell:

Αν μας δώσουν άπειρα ζευγάρια παπούτσια υπάρχει τρόπος να επιλέξουμε ένα
παπούτσι από κάθε ζευγάρι: Απλά επιλέγουμε για παράδειγμα το αριστερό πα-
πούτσι από κάθε ζευγάρι. Αν μας δώσουν όμως άπειρα ζευγάρια από κάλτσες,
για να επιλέξουμε μία κάλτσα από κάθε ζευγάρι χρειαζόμαστε το αξίωμα της
επιλογής.

Κάποιος θα αναρωτιέται αν το Αξίωμα VII.(iii) είναι σωστό, καθώς μας δίνει την ύπαρξη
μιας συνάρτησης επιλογής χωρίς να μας την κατασκευάζει 1. Εδώ δεν έχει σημασία τι θε-
ωρούμε σωστό ή όχι. Εφόσον το Αξίωμα VII.(iii) χρειάζεται 2 στην αξιωματική θεμελίωση
της Θεωρίας Συνόλων που επιχειρούμε (και κατ’ επέκταση των μαθηματικών) θα το προ-
σθέσουμε στη λίστα των αξιωμάτων μας (ZFC).

Μία άλλη ένσταση που κάποιος μπορεί να έχει είναι ότι, καθώς το Αξίωμα VII.(iii)
εκφράζει κάτι σύνθετο (και όχι κάτι τετριμμένο όπως παραδείγματος χάρη το Αξίωμα I),
μπορεί για κάποιον μυστήριο λόγο να αποτελεί συνέπεια των αξιωμάτων της ZF. Μέσα όμως
από τη δουλειά των Kurt Gödel και Paul Cohen προκύπτει ότι είναι ανεξάρτητο από τα
αξιώματα της ZF 3.

Ασκήσεις

2.1. Έστω A,B,C,D σύνολα. Δείξτε ότι:

1. (A ∪B) ×C = (A ×C) ∪ (B ×C)

2. (A ∩B) × (C ∩D) = (A ×C) ∩ (B ×D)

3. (A ∖B) ×C = (A ×C) ∖ (B ×C)

2.2. Έστω σχέσεις R,S,T . Δείξτε ότι:

1. dom(R−1) = ran(R)

2. ran(R−1) = dom(R)

3. (R−1)−1 = R

1 Πολύ συχνά στα μαθηματικά οι αποδείξεις που χρησιμοποιούν το αξίωμα της επιλογής δεν μπορούν να «απλο-
ποιηθούν» σε κατασκευαστικές αποδείξεις, αποδείξεις δηλαδή που παρέχουν και τους τρόπους κατασκευής
για όλα τα αντικείμενα που χρησιμοποιούν. Αυτό είναι απαραίτητο αν κάποιος θέλει να μετατρέψει την από-
δειξη σε αλγόριθμο.

2 Οι λόγοι που μας είναι απαραίτητο θα φανούν πολύ αργότερα.
3 Δεν μπορεί ούτε να αποδειχθεί ούτε να διαψευσθεί από αυτά.

31 Τελευταία ενημέρωση 18/2/2025, στις 10:49.



Συναρτήσεις

4. (R ○ S)−1 = S−1 ○R−1

5. R ○ (S ○ T ) = (R ○ S) ○ T

2.3. Έστω σχέση R και σύνολα A,B. Δείξτε ότι:

1. R[A ∪B] = R[A] ∪R[B]

2. R[A ∩B] ⊆ R[A] ∩R[B]

3. R[A] ∖R[B] ⊆ R[A ∖B]

Δείξτε επίσης ότι αν η R είναι 1-1 στα δύο τελευταία υποερωτήματα ισχύει η ισότητα.

2.4. Δείξτε ότι αν δεχθούμε το Αξίωμα Κανονικότητας (Υποσημείωση 1 στη σελίδα 22)
τότε δεν υπάρχει σύνολο X για το οποίο να ισχύει ότι X ∈X .

2.5. Έστω σύνολο A. Δείξτε ότι η σχέση ισότητας στο A είναι η μικρότερη (ως προς
τη σχέση του υποσυνόλου) σχέση ισοδυναμίας του A. Δείξτε επίσης ότι η μεγαλύτερη
είναι η σχέση A ×A.

2.6. Δείξτε ότι αν μια σχέση R σε ένα σύνολο A είναι συμμετρική και μεταβατική
τότε είναι σχέση ισοδυναμίας στο σύνολο dom(R) ∪ ran(R). Ισχύει ότι είναι σχέση
ισοδυναμίας στο A;

2.7. Αποδείξτε την Πρόταση 2.2.20.

2.8. Έστω (A,≤) διατεταγμένος χώρος. Δείξτε ότι για κάθε x, y, z ∈ A ισχύει ότι:

1. x /< x

2. Αν x < y τότε y /< x.

3. Αν x < y και y < z τότε x < z.

4. Αν η ≤ είναι ολική διάταξη τότε ισχύει ακριβώς ένα από τα ακόλουθα: x < y,
x = y ή y < x (Νόμος Τριχοτομίας).

2.9. Έστω (A,≤A) και (B,≤B) διατεταγμένοι χώροι, έστω συνάρτηση f : A→ B τέτοια
ώστε για κάθε x, y ∈ A:

x ≤A y ανν f(x) ≤B f(y)

και έστω σύνολο C ⊆ A. Δείξτε ότι:

1. C αλυσίδα του A ανν f [C] αλυσίδα του B.

2. Αν το C έχει άνω φράγμα τότε και το f [C] έχει άνω φράγμα.
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3. Αν το f [C] έχει άνω φράγμα και η f είναι επί τότε και το C έχει άνω φράγμα.

2.10. Έστω σύνολα X,Y . Δείξτε ότι τα ακόλουθα είναι ισοδύναμα:
1. Υπάρχει 1-1 συνάρτηση f :X → Y .

2. Υπάρχει συνάρτηση g : Y →X επί του X .

2.11. Έστω συναρτήσεις f :X → Y και g : Y → Z . Δείξτε ότι:
1. Η σχέση g ○ f είναι συνάρτηση.

2. dom(g ○ f) = {x ∈ dom(g) ∣ g(x) ∈ dom(f)}.

3. Για κάθε x ∈ dom(g ○ f) ισχύει ότι (g ○ f)(x) = f(g(x)).

2.12. Έστω συναρτήσεις f :X → Y και g : Y → Z . Δείξτε ότι:
1. Αν οι f, g είναι 1-1 τότε και η g ○ f είναι 1-1.

2. Αν οι f, g είναι επί τότε και η g ○ f είναι 1 επί.

2.13. Έστω σύνολα A,B,C,D τέτοια ώστε A ⊆ C, B ⊆ C και A ∩B = ∅, και έστω
συνάρτηση f : C →D. Δείξτε ότι αν η f είναι 1-1 τότε f [A] ∩ f [B] = ∅.

2.14. Έστω 1-1 συνάρτηση f :X → Y . Δείξτε ότι:
1. Αν x ∈ dom(f) τότε f−1(f(x)) = x.

2. Αν y ∈ ran(f) τότε f(f−1(y)) = y.

2.15. Έστω σύνολα A,B και C αλυσίδα του χώρου ((A→ B),⊆). Δείξτε ότι:
1. Το σύνολο ⋃C είναι συνάρτηση.

2. Αν η C περιέχει μόνο 1-1 συναρτήσεις τότε η ⋃C είναι 1-1.

2.16. Αποδείξτε ότι οι ακόλουθες προτάσεις είναι ισοδύναμες:
1. Κάθε διαμέριση έχει ένα σύνολο αντιπροσώπων.

2. Το καρτεσιανό γινόμενο μιας οικογένειας μη κενών συνόλων είναι μη κενό.

3. Κάθε οικογένεια μη κενών συνόλων επιδέχεται συνάρτηση επιλογής.

2.17. Δείξτε ότι το αξίωμα επιλογής είναι ισοδύναμο με την ακόλουθη πρόταση: Για
κάθε σχέση R υπάρχει συνάρτηση f ⊆ R με dom(f) = dom(R).

2.18. Έστω συνάρτηση f : X → Y Δείξτε ότι υπάρχει συνάρτηση h : Y → X με
f ○ h = IdY ανν η f είναι επί του Y . (Υπόδειξη: Θα χρειαστείτε την Άσκηση 2.17.)

2.19. Έστω f, g ∈ (X → Y ). Δείξτε ότι αν dom(f) = dom(g) και f ⊆ g τότε f = g.
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ΑΡΙΘΜΟΙ

Το επόμενο μεγάλο μας εγχείρημα είναι να αναπαραστήσουμε τους αριθμούς στην αξιω-
ματική θεωρία μας. Θα δούμε αναλυτικά την αναπαράσταση των φυσικών και γενικότερα
της στοιχειώδης αριθμητικής (πράξεις, σχέσεις κ.λπ.), ενώ όσον αφορά τους ακέραιους, ρη-
τούς και πραγματικούς θα δώσουμε μόνο της αναπαραστάσεις και τις εμφυτεύσεις του ενός
συνόλου μέσα στο αμέσως γενικότερο σύνολο.

3.1 Φυσικοί
Όπως προείπαμε στην εισαγωγή, θα μπορούσαμε να επιτρέψουμε στον κόσμο μας και

αντικείμενα που δεν είναι σύνολα. Έτσι προσθέτοντας τους φυσικούς (συμβολίζουμε με
N το σύνολο των φυσικών της «διαίσθησης» μας) και κάποιες στοιχειώδεις πράξεις (στην
πραγματικότητα μας χρειάζεται μόνο η πράξη του επόμενου) θα μπορούσαμε να εντάξουμε
την αριθμητική στη θεωρία μας. Προφανώς όμως τα αξιώματα που έχουμε εισάγει δεν θα
ήταν αρκετά, καθώς δεν καθορίζουν τις ιδιότητες των αντικειμένων που δεν είναι σύνολα.
Τα βασικά αξιώματα της αριθμητικής είναι τα λεγόμενα Αξιώματα του Peano 1: (με S(n)
συμβολίζουμε τον επόμενο του n)

Αξιώματα Peano:

P1 0 ∈ N

P2 Αν n ∈ N τότε και S(n) ∈ N.

P3 Για κάθε n ∈ N ισχύει ότι S(n) ≠ 0.

P4 Για κάθε n,m ∈ N ισχύει ότι αν S(n) = S(m) τότε n =m.
1 Έχει επικρατήσει να αναφέρονται μόνο με το όνομα του Giuseppe Peano. Στην πραγματικότητα όμως βασίζο-

νται σε πρότερη δουλειά του Richard Dedekind. Για να είμαστε ακριβοδίκαιοι, θα τιμήσουμε τον Dedekind
παρουσιάζοντας τον τρόπο που αυτός όρισε τους πραγματικούς αριθμούς.
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P5 Αν για το σύνολο P ⊆ N ισχύει ότι το 0 ∈ P , και για κάθε n ∈ P ισχύει ότι S(n) ∈ P ,
τότε το P = N (Αρχή της Επαγωγής).

(Θα παρατηρήσατε ότι αποφύγαμε να γράψουμε κάτι σαν ∀n(S(n) ≠ 0). Μην ξεχνάτε ότι ο
κόσμος μας περιέχει και σύνολα 1.)

Μένοντας πιστοί στο δόγμα όλα σύνολα, θα εισάγουμε την αριθμητική στη θεωρία μας
με αντίστοιχο τρόπο με αυτόν που εισήγαμε τα διατεταγμένα ζεύγη στην Παράγραφο 2.1: Θα
αναπαραστήσουμε τους φυσικούς με σύνολα, όπως επίσης και την πράξη του επόμενου, με
τρόπον τινά ώστε τα αξιώματα του Peano να μπορούν να αποδειχθούν από τα αξιώματά μας.
Βέβαια οι φυσικοί μας θα έχουν πολλές παραπάνω «ανεπιθύμητες» ιδιότητες (ως σύνολα),
για τις οποίες θα πρέπει (τελικά) να κάνουμε τα στραβά μάτια. Θα τις χρησιμοποιήσουμε
όμως κατά κόρων μέχρι να ορίσουμε και να αποδείξουμε όλες τις βασικές ιδιότητες των
φυσικών αριθμών.

Ορισμός των φυσικών που θα παρουσιάσουμε είναι δουλειά του John von Neumann.
Θα χρειαστούμε δύο εισαγωγικούς ορισμούς.

Ορισμός 3.1.1. Ο επόμενος ενός σύνολου A είναι το σύνολο A+ = A ∪ {A}.

Ορισμός 3.1.2. Ένα σύνολο A καλείται επαγωγικό ανν:

1. ∅ ∈ A

2. (∀a ∈ A)(a+ ∈ A)

Παράδειγμα 3.1.3. Το σύνολο:

ω = {∅, ∅+, (∅+)+, ((∅+)+)+, ... }
= {∅, {∅}, {∅,{∅}}, {∅,{∅},{∅,{∅}}}, ... }

είναι επαγωγικό.

Στο παραπάνω παράδειγμα έχουμε κάνει ένα πολύ μεγάλο φάουλ: Έχουμε ορίσει ένα
σύνολο χρησιμοποιώντας αποσιωπητικά (...) για να παραλείψουμε την αναφορά κάποιων
στοιχείων του. Αυτός ο ασαφής τρόπος ορισμού επ’ ουδενί λόγω δεν δικαιολογείται από τα
αξιώματά μας. Θα χρειαστεί λοιπόν να ξαναορίσουμε το σύνολο ω πιο τυπικά, αφού πρώτα
όμως εισάγουμε ένα ακόμα αξίωμα που μας εγγυάται την ύπαρξη επαγωγικού συνόλου 2.

VII. Αξίωμα Απείρου: Υπάρχει επαγωγικό σύνολο.

Αυτό το επαγωγικό σύνολο οφείλει να περιέχει το ∅, άρα και το ∅+ άρα και το (∅+)+

κ.ο.κ.. Συνεπώς θα είναι «άπειρο» 3. Εδώ το άπειρο χρησιμοποιείται απλά ως έκφραση και
όχι ως μαθηματικός όρος. Θα ορίσουμε τυπικά την (μαθηματική) έννοια του απείρου αρ-
γότερα. Σε όσα ακολουθούν για μία ακόμα φορά θα κάνουμε κατάχρηση συμβολισμού και
θα χρησιμοποιούμε τους αριθμούς 0,1,2,3, ... για να αναπαραστήσουμε σύνολα του ενδια-
φέροντός μας.
1 Θα πρέπει να προσθέσουμε και κάποιο κατηγόρημα που να μας επιτρέπει τη διάκριση μεταξύ των δύο ειδών

αντικειμένων.
2 Δυστυχώς δεν μπορούμε με ζεύγη, ενώσεις και δυναμοσύνολα να κατασκευάσουμε επαγωγικό σύνολο.
3 Εξού και το όνομα του αξιώματος.
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Συμβολισμός 3.1.4. Συμβολίζουμε με 0 το σύνολο ∅ και γενικά με n το σύνολο ((∅+)+⋯)+

όπου έχουμε εφαρμόσει τον επόμενο n φορές, όπου n ∈ N.

Αυτό είναι ο τρόπος που θα αναπαριστούμε τους φυσικούς αριθμούς στη Θεωρία Συ-
νόλων. Όπως γίνεται αντιληπτό η πράξη S του επόμενου των φυσικών εκφράζεται μέσω
της πράξης + του επόμενου ενός συνόλου. Δεν έχουμε όμως τελειώσει (για την ακρίβεια
δεν έχουμε ούτε καν αρχίσει). Δεν υπάρχει ακόμα στον κόσμο μας το σύνολο των φυσικών
αριθμών! Ναι μεν υπάρχει (λόγω του Αξιώματος VII) επαγωγικό σύνολο, αλλά αυτό μπορεί
να περιέχει και άλλα πολλά στοιχεία που δεν αναπαριστούν φυσικούς αριθμούς. Μια ση-
μαντική και ιδιαιτέρως βοηθητική παρατήρηση είναι ότι τα σύνολα του Συμβολισμού 3.1.4
ανήκουν σε κάθε επαγωγικό σύνολο.

Ορισμός 3.1.5. Φυσικός είναι ένα σύνολο που ανήκει σε όλα τα επαγωγικά σύνολα.

Για κάθε n ∈ N το σύνολο n είναι φυσικός 1: Δεν γίνεται να υπάρχει επαγωγικό σύνολο
που δεν περιέχει το σύνολο n, καθώς αυτό θα περιέχει (εξ ορισμού) το 0 και όλους τους
επόμενους του (άρα και το n).

Θεώρημα 3.1.6. Υπάρχει μοναδικό σύνολο που περιέχει ακριβώς τους φυσικούς.

Απόδειξη. Μπορούμε να εκφράσουμε τις συνθήκες του Ορισμού 3.1.2 με τον τύπο:

ϕ(X) = ∅ ∈X ∧ (∀A(A ∈X → A+ ∈X))

Εφόσον το σύνολο που αναζητάμε περιέχει σύνολα που ανήκουν σε όλα τα επαγωγικά σύ-
νολα έπεται ότι θα είναι υποσύνολο ενός οποιουδήποτε επαγωγικού συνόλου. Τέτοιο σύνολο
υπάρχει λόγω του Αξιώματος VII. Έστω A επαγωγικό σύνολο, τότε το:

{n ∈ A ∣ ∀X(ϕ(X)→ n ∈X)}

είναι το ζητούμενο σύνολο (είναι σύνολο λόγω του Αξιώματος VI και μοναδικό λόγω του
Αξιώματος I).

Ορισμός 3.1.7. Ορίζουμε ω να είναι το σύνολο των φυσικών.

Εφόσον ο παραστατικός ορισμός του ω του Παραδείγματος 3.1.3 θεωρείται ως μη γενό-
μενος, θα πρέπει να αποδείξουμε πλέον τυπικά ότι το ω είναι επαγωγικό.

Θεώρημα 3.1.8. Το ω είναι επαγωγικό, και μάλιστα είναι υποσύνολο όλων των επαγωγικών
συνόλων.

Απόδειξη. Θυμηθείτε ότι το ω περιέχει φυσικούς αριθμούς, δηλαδή σύνολα που ανήκουν
σε κάθε επαγωγικό σύνολο. Αυτό καθιστά το γεγονός ότι το ω είναι υποσύνολο όλων των
1 Σε αυτήν την πρόταση ο συμβολισμός γίνεται αρκετά αμφίσημος. Σε όσα ακολουθούν όμως θα έχουμε να

κάνουμε μόνο με σύνολα. Οπότε όταν βλέπεται κάποιο σύμβολο φυσικού θα εννοούμε το αντίστοιχο σύνολο.
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επαγωγικών συνόλων προφανές. Επίσης προφανώς ισχύει ότι ∅ ∈ ω. Τέλος:

n ∈ ω ⇒ n φυσικός
⇒ n ανήκει σε κάθε επαγωγικό σύνολο
⇒ n+ ανήκει σε κάθε επαγωγικό σύνολο
⇒ n φυσικός
⇒ n+ ∈ ω

Θα δείξουμε τώρα ότι το σύνολο ω, εφοδιασμένο με την πράξη του επόμενου που ορί-
σαμε στον Ορισμός 3.1.1, ικανοποιεί τα αξιώματα του Peano.

Πρόταση 3.1.9. Ισχύει ότι:

P1 0 ∈ ω

P2 Αν n ∈ ω τότε και n+ ∈ ω.

P3 Για κάθε n ∈ ω ισχύει ότι n+ ≠ 0.

P4 Για κάθε n,m ισχύει ότι αν n+ =m+ τότε n =m.

P5 Αν το P ⊆ ω είναι επαγωγικό τότε P = ω.

Απόδειξη. Αφού ω επαγωγικό 0 ∈ ω (P1) και αν n ∈ ω τότε n+ ∈ ω (P2). Παρατηρούμε ότι για
κάθε σύνολο A ισχύει ότι A+ ≠ ∅ (P3) καθώς A ∈ A+. Για το P5, λόγω του Θεωρήματος 3.1.8
ισχύει ότι ω ⊆ P , άρα P = ω (λόγω της Πρότασης 1.2.2).

Για να δείξουμε το P4 χρειάζεται πρώτα να δείξουμε τον ακόλουθο ισχυρισμό:
Ισχυρισμός: Για κάθε n ∈ ω ισχύει ότι αν m ∈ n τότε m ⊆ n. Πράγματι, αν θεωρήσουμε το
σύνολο:

P = {n ∈ ω ∣ (∀m ∈ n)(m ⊆ n)}

τετριμμένα 0 ∈ P , και αν n ∈ P τότε για κάθε m ∈ n+ = n ∪ {n} έπεται ότι είτε m = n είτε
m ∈ n. Στην πρώτη περίπτωση (εξ ορισμού) m = n ⊆ n+, ενώ στη δεύτερη, αφού n ∈ P και
m ∈ n, έπεται ότι m ⊆ n ⊆ n+, άρα (λόγω της Πρότασης 1.2.2) m ⊆ n+. Αυτό σημαίνει ότι
και n+ ∈ P , άρα το P είναι επαγωγικό και (από το P5) P = ω.

Τώρα, αν n+ = m+ τότε n ∪ {n} = m ∪ {m}. Έστω (προς άτοπο) ότι n ≠ m. Από το
Αξίωμα I έπεται ότι n ∈ m και m ∈ n. Βάσει του ισχυρισμού που αποδείξαμε αυτό σημαίνει
ότι n ⊆m και m ⊆ n, άρα (από την Πρόταση 1.2.2) n =m. Άτοπο.

Η πρόταση P5 του παραπάνω θεωρήματος αντιστοιχεί στην Αρχή της Επαγωγής της
θεωρίας μας. Θα τη χρησιμοποιήσουμε για να αποδείξουμε μία ακόμα ιδιότητα των φυσικών.

Πρόταση 3.1.10. Για κάθε n ∈ ω είτε n = 0 είτε υπάρχει φυσικός m ∈ ω τέτοιος ώστε
n =m+.
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Απόδειξη. Θεωρούμε το σύνολο:

P = {n ∈ ω ∣ n = 0 ∨ (∃m ∈ ω)(n =m+)}

Λόγω του P5 αρκεί να δείξουμε ότι το P είναι επαγωγικό και τότε θα ισχύει ότι P = ω.
Προφανώς ∅ = 0 ∈ P και αν n ∈ P τότε είτε n = 0 είτε υπάρχει m ∈ ω με n = m+.
Στην πρώτη περίπτωση n+ = 0+ ενώ στη δεύτερη n+ = (m+)+. Και στις δύο περιπτώσεις
n+ ∈ P .

Προτού αλλάξουμε παράγραφο θα πρέπει ίσως να τονίσουμε κάποιες «ατέλειες» των
φυσικών που ορίσαμε. Πρώτον, περιέχουν ανεπιθύμητες ιδιότητες όπως για παράδειγμα ότι
1 ∈ 2 και 1 ⊆ 2. Θα χρειαστεί για μία ακόμα φορά να κοιτάξουμε άλλου και να θεωρούμε ότι
αυτές οι ιδιότητες δεν υπάρχουν. Δεύτερον, δεν μας δίνουν (άμεσα) την έννοια της ποσότητας.
Για παράδειγμα, ο φυσικός 2 έχει όπως θα δούμε όλες τις ιδιότητες του αριθμού δύο, δεν
αντιστοιχεί όμως (άμεσα) σε δύο αντικείμενα. Αυτό το πρόβλημα θα λυθεί όταν θα ορίσουμε
τους πληθικούς αριθμούς, καθώς τότε θα φανεί ότι τελικά ο φυσικός 2 αντιστοιχεί σε δύο
αντικείμενα: Τα μέλη του συνόλου 2. Αν κάποιος σκεπτικιστής πιστεύει ότι ούτε αυτό είναι
αρκετό για να αποτυπωθεί στη θεωρία μας η διαίσθηση μας για τον αριθμό δύο, μπορεί πάντα
να προσθέσει τους αριθμούς σαν αντικείμενα στον κόσμο μας (και να κάνει τις απαραίτητες
αλλαγές στην αξιωματικοποίησή του).

3.1.1 Το Θεώρημα Αναδρομής
Είναι πολύ σύνηθες στα μαθηματικά να ορίζουμε μία συνάρτηση μέσω κάποιου αναδρο-

μικού τύπου. Aς περιοριστούμε στους φυσικούς αριθμούς για αρχή για ας δούμε ένα παρά-
δειγμα: Μπορούμε να ορίσουμε τη συνάρτηση του παραγοντικού (τη συνάρτηση (n ↦ n!)
δηλαδή) μέσω του αναδρομικού τύπου:

⎧⎪⎪⎨⎪⎪⎩

f(0) = 1

f(n+ 1) = f(n) ⋅ (n+ 1)

Αν σας δώσουν έναν φυσικό αριθμό n τότε μπορείτε να βρείτε την τιμή f(n) υπολογίζοντας
πρώτα όλες τις προηγούμενες τιμές: f(0), f(1), ... , f(n − 1). Με αυτόν τον τρόπο μπορείτε
να υπολογίσετε όλες τις τιμές της συνάρτησης. Αυτό που ίσως διέφυγε της προσοχής σας
είναι ότι υπάρχει το ενδεχόμενο αυτά τα «σκόρπια» ζευγάρια ορίσματος-τιμής, αν τα δούμε
συνολικά να μην αποτελούν συνάρτηση! Αυτό ακριβώς μας εξασφαλίζει το Θεώρημα Ανα-
δρομής.

Θεώρημα 3.1.11 (Θεώρημα Αναδρομής στο ω). Έστω σύνολο A, a ∈ A και συνάρτηση
h : A→ A. Υπάρχει μοναδική συνάρτηση f : ω → A που ικανοποιεί την εξίσωση:

⎧⎪⎪⎨⎪⎪⎩

f(0) = a

f(n+) = h(f(n)) , για κάθε n ∈ ω

Η απόδειξη του θεωρήματος αναδρομής είναι μία καλή εφαρμογή της αρχής της επαγω-
γής. Αυτό δεν αποτελεί καθόλου έκπληξη καθώς όταν ορίζουμε ένα αντικείμενο με αναδρομή,
για να αποδείξουμε τις ιδιότητες του χρησιμοποιούμε πάντα επαγωγή.
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Πρώτη απόδειξη Θεωρήματος 3.1.11. Θεωρούμε το σύνολο:

C = {R ⊆ ω ×A ∣ dom(R) = ω

∧ (0, a) ∈ R
∧ (∀n ∈ ω)(∀u ∈ A)((n,u) ∈ R → (n+, h(u) ∈ R)}

Το σύνολο αυτό είναι μη κενό καθώς για παράδειγμα ω × A ∈ C . Βέβαια, η σχέση ω × A
περιέχει τα ζευγάρια που χρειαζόμαστε για να «φτιάξουμε» την f , αλλά περιέχει και πάρα
πολλά παραπάνω (γι’ αυτό και δεν αποτελεί συνάρτηση). Θα χρειαστεί να περιοριστούμε
στο σύνολο:

F =⋂C

Παρατηρήστε ότι F ∈ C : Προφανώς dom(F ) = ω και (0, a) ∈ F . Επίσης, αν (n,u) ∈ F τότε
(n,u) ∈ R για κάθε R ∈ C, άρα για κάθε R ∈ C έχουμε (n+, h(u)) ∈ R, οπότε (n+, h(u)) ∈ F .
Συνεπώς η σχέση F περιέχει τα ζευγάρια που θέλουμε.

Θα δείξουμε τώρα ότι αποτελεί συνάρτηση, δηλαδή ότι για κάθε n ∈ ω υπάρχει μοναδικό
u ∈ A τέτοιο ώστε (n,u) ∈ F . Θεωρούμε το σύνολο:

P = {n ∈ ω ∣ (∃!u ∈ A)((n,u) ∈ F )}

Έστω (προς άτοπο) ότι 0 ∉ P , δηλαδή υπάρχει b ∈ A με b ≠ a και (0, b) ∈ F , Αυτό σημαίνει
ότι (0, b) ∈ R για κάθε R ∈ C . Αν πάρουμε τη σχέση F ′ = F ∖ {(0, b)} εύκολα βλέπουμε ότι
F ′ ∈ C . Άτοπο καθώς F ′ ⊂ F , άρα 0 ∈ P .

Έστω τώρα n ∈ P , με n ≠ 0, και έστω u ∈ A το μοναδικό στοιχείο για το οποίο ισχύει
(n,u) ∈ F . Αφού (n,u) ∈ F έπεται ότι και (n+, h(u)) ∈ F . Αν (προς άτοπο) υπήρχε u′ ∈ A με
u′ ≠ h(u) και (n+, u′) ∈ F , τότε (όπως πριν) το γεγονός ότι η σχέση F ′ = F ∖{(n,u′)} ανήκει
στο C μας οδηγεί σε άτοπο. Άρα το h(u) είναι το μοναδικό στοιχείο του A με (n+, h(u)) ∈ F .
Συνεπώς n+ ∈ P και άρα (λόγω του P5 της Πρότασης 3.1.9) P = ω.

Μένει να δείξουμε ότι η F είναι η μοναδική συνάρτηση στο C . Παρατηρήστε ότι για κάθε
συνάρτηση G ∈ C (λόγω του τρόπου ορισμού του F ) ισχύει ότι F ⊆ G, και άρα (λόγω της
Άσκησης 2.19) F = G.

Στην παραπάνω απόδειξη κατασκευάσαμε τη συνάρτηση F παίρνοντας τις σχέσεις που
περιέχουν τα ζευγάρια όρισμα-τιμή που θέλουμε και αποβάλλοντας τα ζευγάρια που δεν
θέλουμε, έτσι ώστε τελικά αυτό που θα απομείνει να αποτελεί συνάρτηση. Θα μπορούσαμε να
κάνουμε και την αντίστροφη διαδικασία: Να πάρουμε σταδιακές προσεγγίσεις της F , δηλαδή
συναρτήσεις που περιέχουν μερικά από τα ζευγάρια που θέλουμε, και να τις ενώσουμε σε
μία συνάρτηση που θα περιέχουν όλα τα ζευγάρια που θέλουμε.

Δεύτερη απόδειξη Θεωρήματος 3.1.11. Θεωρούμε το σύνολο:

C = {g ∈ (ω → A) ∣ 0 ∈ dom(g)→ g(0) = a

∧ (∀n ∈ ω)(n+ ∈ dom(g)→ n ∈ dom(g) ∧ g(n+) = h(g(n))}

και το σύνολο:
f =⋃C
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Για να ολοκληρωθεί η απόδειξη αρκεί να δείξουμε ότι f ∈ C, ότι dom(f) = ω και ότι αν
υπάρχει g ∈ C με dom(g) = ω τότε g = f (Άσκηση 3.8).

Ως πρώτη εφαρμογή του Θεωρήματος 3.1.11 θα δούμε ένα πόρισμα-παραλλαγή του που
θα μας φανεί χρήσιμο στην παράγραφο που ακολουθεί.

Πόρισμα 3.1.12 (Αναδρομή με παράμετρο). Έστω σύνολο A και συναρτήσεις g : ω → A και
h : A × ω → A. Υπάρχει μοναδική συνάρτηση f : ω × ω → A που για κάθε m ∈ ω ικανοποιεί
την εξίσωση:

⎧⎪⎪⎨⎪⎪⎩

f(0, n) = g(n)

f(m+, n) = h(f(m,n), n) , για κάθε n ∈ ω

Απόδειξη. Για κάθε n ∈ ω ορίζουμε τη συνάρτηση hn : A → A με hn(a) = h(a,n). Από το
Θεώρημα 3.1.11 προκύπτει ότι για κάθε n ∈ ω υπάρχει μοναδική συνάρτηση fn : ω → A που
ικανοποιεί την εξίσωση:

⎧⎪⎪⎨⎪⎪⎩

fn(0) = g(n)

fn(m
+) = hn(fn(m)) = h(fn(m), n) , για κάθε m ∈ ω

Η συνάρτηση f : ω × ω → A με f(m,n) = fn(m) είναι η ζητούμενη

Υπάρχουν και άλλες χρήσιμες παραλλαγές του Θεωρήματος 3.1.11 (δες Ασκήσεις 3.11, 3.15
και 3.16.)

3.1.2 Αριθμητική
Η αναπαράσταση των φυσικών που δώσαμε από μόνη της δεν επαρκεί για να κάνουμε

αριθμητική, καθώς της λείπουν οι στοιχειώδης πράξεις της (πρόσθεση, πολλαπλασιασμός,
αφαίρεση κ.λπ.). Δεν χρειάζεται πολύ σκέψη για να καταλάβει κάποιος ότι οι πράξεις στην
ουσία δεν είναι τίποτα άλλο από συναρτήσεις μεταξύ φυσικών αριθμών. Καθώς ο κόσμος
μας ήδη περιέχει συναρτήσεις φυσικών (αφού πλέον περιέχει και τους φυσικούς) δεν θα
είναι ιδιαίτερα δύσκολο να τις ορίσουμε. Αρωγός στο εγχείρημα μας αυτό θα είναι το πανί-
σχυρο εργαλείο κατασκευής συναρτήσεων που είδαμε στο Θεώρημα 3.1.11. Για να είμαστε
απόλυτα σχολαστικοί θα πρέπει επιπλέον να ελέγχουμε ότι όλες οι ιδιότητες που πλαισίωναν
τις αντίστοιχες πράξεις της αριθμητικής ισχύουν και για τις συναρτήσεις που ορίζουμε.

Ορισμός 3.1.13. Ορίζουμε τη συνάρτηση + : ω × ω → ω που ικανοποιεί την εξίσωση:
⎧⎪⎪⎨⎪⎪⎩

+(0, n) = n

+(m+, n) = (+(m,n))+

Τη συνάρτηση αυτήν την καλούμε πρόσθεση 1.

Συμβολισμός 3.1.14. Αντί για +(m,n) θα γράφουμε m+ n.
1 Το γεγονός ότι υπάρχει η συνάρτηση + οφείλεται στο Πόρισμα 3.1.12 αν το εφαρμόσουμε για τις συναρτήσεις
g : ω → ω με g(n) = n και h : ω × ω → ω με h(p,n) = p+.
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Η απόδειξη της παρακάτω πρότασης αφήνεται ως άσκηση 1.

Πρόταση 3.1.15. Ισχύουν τα ακόλουθα:

1. Η πρόσθεση γενικεύει τη συνάρτηση του επόμενου: Για κάθε m ∈ ω ισχύει ότι m+1 =
m+.

2. Το 0 είναι το ουδέτερο στοιχείο της πρόσθεσης: Για κάθε m ∈ ω ισχύει ότι m+0 =m.

3. Η πρόσθεση είναι αντιμεταθετική: Για κάθε m,n ∈ ω ισχύει ότι m+ n = n+m.

4. Η πρόσθεση είναι προσεταιριστική: Για κάθε m,n, p ∈ ω ισχύει ότι (m + n) + p =
m+ (n+ p).

Ορισμός 3.1.16. Ορίζουμε τη συνάρτηση ⋅ : ω × ω → ω που ικανοποιεί την εξίσωση:

⎧⎪⎪⎨⎪⎪⎩

⋅(0, n) = 0

⋅(m+, n) = (⋅(m,n)) + n

Τη συνάρτηση αυτήν την καλούμε πολλαπλασιασμό 2.

Συμβολισμός 3.1.17. Αντί για ⋅(m,n) θα γράφουμε m ⋅ n.

Και η απόδειξη των ιδιοτήτων του πολλαπλασιασμού αφήνεται ως άσκηση.

Πρόταση 3.1.18. Ισχύουν τα ακόλουθα:

1. Το 1 είναι το ουδέτερο στοιχείο του πολλαπλασιασμού: Για κάθε m ∈ ω ισχύει ότι
m ⋅ 1 =m.

2. Ο πολλαπλασιασμός είναι αντιμεταθετικός: Για κάθε m,n ∈ ω ισχύει ότι m ⋅n = n ⋅m.

3. Ο πολλαπλασιασμός είναι προσεταιριστικός: Για κάθεm,n, p ∈ ω ισχύει ότι (m ⋅n) ⋅p =
m ⋅ (n ⋅ p).

Θα αποδείξουμε την ακόλουθη πρόταση ως παράδειγμα της μεθόδου εργασίας μας.

Πρόταση 3.1.19 (Επιμεριστική ιδιότητα). Για κάθε m,n, p ∈ ω ισχύει ότι m ⋅ (n + p) =
(m ⋅ n) + (m ⋅ p).

Απόδειξη. Θεωρούμε το σύνολο:

P = {p ∈ ω ∣ (∀m,n ∈ ω)(m ⋅ (n+ p) = (m ⋅ n) + (m ⋅ p))}

Λόγω του P5 της Πρότασης 3.1.9 αρκεί να δείξουμε ότι το P είναι επαγωγικό. Για κάθε
m,n ∈ ω έχουμε:
1 Θυμηθείτε ότι αφού ορίσαμε την πρόσθεση με αναδρομή θα πρέπει να αποδείξουμε τις ιδιότητές της με επα-

γωγή.
2 Το γεγονός ότι υπάρχει η συνάρτηση ⋅ οφείλεται στο Πόρισμα 3.1.12 αν το εφαρμόσουμε για τις συναρτήσεις
g : ω → ω με g(n) = 0 και h : ω × ω → ω με h(p,n) = p+ n, όπου + η συνάρτηση που του Ορισμού 3.1.13.
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m ⋅ (n+ 0) = m ⋅ n [0 ουδέτερο στοιχείο πρόσθεσης]

= (m ⋅ n) + 0 [0 ουδέτερο στοιχείο πρόσθεσης]

= (m ⋅ n) +m ⋅ 0 [Ορισμός 3.1.16 και αντιμετ. πολ/σμου]
Άρα 0 ∈ P .

Έστω τώρα p ∈ P . Για κάθε m,n ∈ ω έχουμε:
m ⋅ (n+ p+) = m ⋅ (n+ p)+ [Ορισμός 3.1.13 και αντιμετ. πρόσθεσης]

= m ⋅ (n+ p) +m [Ορισμός 3.1.16 και αντιμετ. πολ/σμου]

= (m ⋅ n+m ⋅ p) +m [p ∈ P ]

= m ⋅ n+ (m ⋅ p+m) [Προσεταιριστικότητα πρόσθεσης]

= m ⋅ n+m ⋅ p+ [Ορισμός 3.1.16 και αντιμετ. πολ/σμου]
Άρα και p+ ∈ P .

3.1.3 Διάταξη φυσικών

Είναι γνωστό ότι το σύνολο των φυσικών αριθμών N είναι ολικά διατεταγμένος χώρος
(ως προς τη συνήθη διάταξη). Θα ήταν καταστροφή αν δεν μπορούσαμε να ορίσουμε σχέση
ολικής διάταξης στο ω. Ευτυχώς ο von Neumann ήταν ιδιαίτερα προνοητικός όταν όριζε
τους φυσικούς και έτσι μπορούμε να ορίσουμε διάταξη σε αυτούς, και μάλιστα με αρκετούς
τρόπους. Μία λογική επιλογή θα ήταν η σχέση ⊆ 1 καθώς έχει όλες τις απαραίτητες ιδιότητες
μίας διάταξης (είναι αυτοπαθής, μεταβατική και αντισυμμετρική). Θα μπορούσαμε επίσης
να κάνουμε μία πιο εκκεντρική επιλογή και να χρησιμοποιήσουμε τη σχέση ∈ με m ∈ n ανν
είτε m ∈ n είτε m = n. Και οι δύο αυτές ιδέες είναι σωστές αλλά χρησιμοποιούν ιδιότητες
των φυσικών που παριστάνουμε ότι δεν υπάρχουν. Μία τρίτη και ίσως πιο κομψή επιλογή
θα ήταν να μιμηθούμε τη συνήθη διάταξη των φυσικών αριθμών και να ορίσουμε m ≤ n ανν
υπάρχει s ∈ ω τέτοιο ώστε n + s = m. Η παρακάτω πρόταση αποδεικνύει ότι και οι τρεις
τρόποι τελικά είναι ισοδύναμοι.

Πρόταση 3.1.20. Για κάθε m,n ∈ ω τα ακόλουθα είναι ισοδύναμα:

1. m ∈ n

2. m ⊂ n

3. Υπάρχει s ∈ ω με s ≠ 0 τέτοιο ώστε m+ s = n

Η απόδειξή της είναι μία καλή εφαρμογή της αρχής της επαγωγής γι’ αυτό αφήνεται ως
άσκηση (Ασκήσεις 3.3 και 3.19). Εμείς θα επιλέξουμε τον τρίτο τρόπο, οπότε θα ορίσουμε
τη διάταξη των φυσικών ως εξής:
1 Στο κάτω κάτω της γραφής το ω περιέχει σύνολα και αν γιαm,n ∈ ω ισχύειm ⊆ n τότε το n είναι «μεγαλύτερο»

σύνολο από το m.
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Ορισμός 3.1.21. Ορίζουμε τη σχέση ≤ω= {(x, y) ∈ ω×ω ∣ (∃s ∈ ω)(m+s = n)}. Αν m ≤ω n
θα λέμε ότι o m είναι μικρότερος είτε ίσος από τον n. Αν επιπλέον m ≠ n θα λέμε ότι ο m
είναι μικρότερος από τον n και θα γράφουμε m <ω n.

Εξυπακούεται ότι στο υπόλοιπο της παραγράφου θα γράφουμε ≤ και < αντί για ≤ω
και <ω . Το ότι η σχέση αυτή είναι διάταξη μπορεί να αποδειχθεί άμεσα με τη χρήση της
Πρότασης 3.1.20 και του γεγονότος ότι η ⊆ είναι διάταξη 1. Μένει να δείξουμε ότι η σχέση
αυτή ικανοποιεί τις ιδιότητες που ικανοποιεί η διάταξη των φυσικών αριθμών.

Θεώρημα 3.1.22. H διάταξη ≤ στο ω είναι ολική.

Απόδειξη. Πρέπει να δείξουμε ότι για κάθε m,n ∈ ω ισχύει m ≤ n ή n ≤ m. Θεωρούμε το
σύνολο:

P = {m ∈ ω ∣ (n ∈ ω)(m ≤ n ∨ n ≤m}

Προφανώς 0 ∈ P (για κάθε n ∈ ω ισχύει 0 + n = n, άρα 0 ≤ n). Έστω m ∈ P , τότε για κάθε
n ∈ ω ισχύει m ≤ n ή n ≤ m. Στην πρώτη περίπτωση έχουμε ότι υπάρχει s ∈ ω τέτοιο ώστε
m+ s = n. Αν s = 0 τότε m = n και προφανώς n ≤m+. Αν s ≠ 0, από την Πρόταση 3.1.10
υπάρχει t ∈ ω τέτοιο ώστε s = t+. Άρα:

m+ s = n ⇒ m+ t+ = n

⇒ m+ t+ 1 = n [Πρόταση 3.1.15]

⇒ m+ 1+ t = n [Aντιμεταθετικότητα πρόσθεσης]

⇒ m+ + t = n [Πρόταση 3.1.15]
Συνεπώς m+ ≤ n.

Τέλος για τη δεύτερη περίπτωση έχουμε ότι n ≤ m και m ≤ m+ (καθώς από Πρό-
ταση 3.1.15 ισχύει ότι m+ =m+ 1), συνεπώς n ≤m+ (αφού ≤ μεταβατική).

Άμεσο πόρισμα2 είναι ο λεγόμενος Νόμος της Τριχοτομίας των φυσικών: Για κάθε m,n ∈
ω ισχύει ακριβώς ένα από τα ακόλουθα m < n ή m = n ή n <m.

Μία άλλη πολύ βασική ιδιότητα των φυσικών αριθμών είναι η Αρχή Ελαχίστου.

Θεώρημα 3.1.23 (Αρχή Ελαχίστου). Κάθε μη κενό σύνολο φυσικών έχει ελάχιστο στοιχείο.

Απόδειξη. Έστω (προς άτοπο) μη κενό M ⊆ ω που δεν έχει ελάχιστο στοιχείο. Θεωρούμε το
σύνολο:

P = {n ∈ ω ∣ (∀m ∈ ω)(m ≤ n→m ∉M)}

Παρατηρήστε ότι (αφού τοM δεν έχει ελάχιστο στοιχείο)M∩P = ∅. Αν δείξουμε ότι P = ω
τότε αναγκαστικά M = ∅ που είναι άτοπο.

Προφανώς 0 ∈ P (αφού αν m ≤ 0 τότε m = 0 και 0 ∉M γιατί θα ήταν ελάχιστο στοιχείο).
Έστω n ∈ P , δηλαδή για κάθε m ≤ n έχουμε m ∉ M . Αυτό σημαίνει ότι για κάθε m < n+
έχουμεm ∉M . Συνεπώς, αν δείξουμε ότι και n+ ∉M θα έπεται ότι n+ ∈ P . Παρατηρήστε ότι
1 Μπορεί φυσικά να αποδειχθεί και ανεξάρτητα από την Πρόταση 3.1.20 (Άσκηση 3.20).
2 Δες Άσκηση 2.8.
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αν n+ ∈M τότε αναγκαστικά θα ήταν ελάχιστο στοιχείο του (αφού n ∈ P για κάθε m ∈M
έχουμε ότι n < m, δηλαδή n+ ≠ m), πράγμα που αντιβαίνει στο γεγονός ότι το M δεν έχει
ελάχιστα στοιχεία.

Το Θεώρημα 3.1.23 μπορεί να χρησιμοποιηθεί για να αποδείξουμε την αρχή της πλή-
ρης (ή ισχυρής) επαγωγής (δες Άσκηση 3.22 για περισσότερες λεπτομέρειες). Μας δίνει
επίσης και έναν εντελώς εναλλακτικό τρόπο να χρησιμοποιούμε επαγωγή: Αν θέλουμε να
δείξουμε ότι το P ⊆ ω είναι στην ουσία το ίδιο το ω, αντί να δείξουμε ότι είναι επαγωγικό, θα
θεωρήσουμε το σύνολο C = ω ∖ P των αντιπαραδειγμάτων και θα δείξουμε ότι είναι κενό,
δείχνοντας ότι δεν μπορεί να έχει ελάχιστο στοιχείο (ελάχιστο αντιπαράδειγμα).

3.2 Ακέραιοι
Θα συνεχίσουμε την αναπράσταση των μαθηματικών στη θεωρία μας ορίζοντας πρώτα

τους ακέραιους και έπειτα τους ρητούς και τους πραγματικούς. Δεν θα εμμείνουμε όμως
πολύ σε αυτές τις κατασκευές καθώς έχουμε πολλά ακόμα να δούμε και σημαντικά.

Γνωρίζουμε ότι το σύνολο N των φυσικών αριθμών είναι υποσύνολο του συνόλου Z των
ακεραίων αριθμών. Στη δική μας θεωρία αυτό δεν είναι απαραίτητο, αρκεί φυσικά να υπάρ-
χει υποσύνολο των ακεραίων μας που να είναι «ισόμορφο» με το ω. Ο λόγος είναι ότι
μπορούμε πολύ απλά αντί να αναπαριστούμε τους φυσικούς με τα στοιχεία του ω να τους
αναπαριστούμε με το αντίστοιχό τους μέσα στο σύνολο των ακεραίων 1.

Η βασική παρατήρηση εδώ είναι ότι μπορούμε να αναπαραστήσουμε έναν ακέραιο
αριθμό μέσω δύο φυσικών αριθμών.

Παρατήρηση 3.2.1. Για κάθε z ∈ Z υπάρχουν a, b ∈ N τέτοια ώστε z = a − b.

Πράγματι, αν z θετικός τότε z ∈ N και φυσικά z = z − 0, ενώ αν z αρνητικός τότε −z ∈ N
και z = 0− (−z). Η αλήθεια είναι ότι αν ο z χαρακτηρίζεται με τον παραπάνω τρόπο από το
ζευγάρι (a, b) τότε χαρακτηρίζεται και από όλα τα ζευγάρια της μορφής (a+ n, b+ n) για
n ∈ N. Τι κοινό έχουν όλα αυτά τα ζευγάρια; Η διαφορά τους είναι ίση. Αυτό μας ορίζει μία
σχέση ισοδυναμίας R μεταξύ των στοιχείων του N×N όπου (a, b)R(c, d) ανν a−b = c−d. Θα
μπορούσαμε κάλλιστα αντί για τον ακέραιο αριθμό z να πάρουμε την κλάση ισοδυναμίας
που ανήκει το ζευγάρι (z,0) αν z θετικός ή (0,−z) αν z αρνητικός.

Μπορούμε να κάνουμε το ίδιο και για τα ζευγάρια του ω ×ω; Κάποιος θα παρατηρούσε
ότι η διαφορά δύο αριθμών δεν έχει νόημα στο ω 2. Αυτό δεν είναι και τόσο σημαντικό
πρόβλημα. Στο κάτω κάτω της γραφής αν ισχύει ότι a − b = c − d τότε ισχύει επίσης ότι
a + d = b + c. Το μόνο που θα χρειαστεί να κάνουμε είναι να ορίσουμε τη σχέση R λίγο
διαφορετικά.

Ορισμός 3.2.2. Έστω RZ ⊆ ω × ω η σχέση με (a, b)RZ(c, d) ανν a+ d = b+ c.

Πρόταση 3.2.3. Η σχέση RZ είναι σχέση ισοδυναμίας.
1 Αυτό δεν καθιστά τον ορισμό του ω μάταιο, καθώς θα χρησιμοποιήσαμε το ω για να ορίσουμε τους ακέραιους!
2 Μπορούμε να ορίσουμε όμως τη συνάρτηση της Άσκησης 3.14.
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Ορισμός 3.2.4. Ορίζουμε ως σύνολο ακεραίων το σύνολο πηλίκο Z = ω × ω/RZ.

Παράδειγμα 3.2.5. Ο ακέραιος αριθμός 1 αναπαριστάται από το σύνολο [(1,0)]RZ ενώ ο
αριθμός −1 από το σύνολο [(0,1)]RZ .

Συμβολισμός 3.2.6. Για να απλοποιήσουμε τον συμβολισμό θα γράφουμε [a, b] αντί για
[(a, b)]RZ .

Μένει να ορίσουμε την πρόσθεση, τον πολλαπλασιασμό και τη διάταξη των ακεραίων και
η αναπαράστασή μας θα είναι πλήρης.

Για την πρόσθεση παρατηρήστε ότι (a − b) + (c − d) = (a + d) − (b + d). Συνεπώς
αναπαριστάται από την κλάση του ζευγαριού (a+ d, b+ d).

Ορισμός 3.2.7. Ορίζουμε ως πρόσθεση ακεραίων τη συνάρτηση +Z : Z×Z→ Z με [a, b]+Z
[c, d] = [a+ d, b+ d].

Πρακτικά πρέπει να πάρουμε έναν αντιπρόσωπο από τις κλάσεις ισοδυναμίας [a, b] και
[c, d] (ένα οποιοδήποτε στοιχείο μας κάνει 1) για να ορίσουμε την κλάση [a+d, b+d]. Εύκολα
μπορούμε να ελέγξουμε ότι η +Z ικανοποιεί όλες τις ιδιότητες της πρόσθεσης των ακεραίων
αριθμών που θα περιμέναμε.

Συμβολισμός 3.2.8. Θα συμβολίζουμε με −z τον μοναδικό 2 ακέραιο με z +Z −z = [0,0].

Για τον πολλαπλασιασμό παρατηρήστε ότι (a − b) ⋅ (c − d) = (a ⋅ c+ b ⋅ d) − (a ⋅ d+ b ⋅ c).

Ορισμός 3.2.9. Ορίζουμε ως πολλαπλασιασμό ακεραίων τη συνάρτηση ⋅Z : Z × Z → Z με
[a, b] ⋅Z [c, d] = [a ⋅ c+ b ⋅ d, a ⋅ d+ b ⋅ c].

Και ο πολλαπλασιασμός ικανοποιεί τις ιδιότητες που θα περιμέναμε.
Σκεφτείτε τώρα ότι a − b ≤ c − d ανν a + d ≤ c + b. Αυτός είναι ο κανόνας που θα

χρησιμοποιούμε για να συγκρίνουμε δύο ακέραιους.

Ορισμός 3.2.10. Ορίζουμε τη σχέση ≤Z⊆ Z × Z με [a, b] ≤Z [c, d] ανν a+ d ≤ c+ b.

Εύκολα μπορούμε να δείξουμε ότι είναι σχέση ολικής διάταξης στο Z και μάλιστα ισχύει
και η αντίστοιχη αρχή ελαχίστου (δες Θεώρημα 3.1.23), αρκεί το σύνολο να έχει κάτω
φράγμα.

Κλείνοντας την παράγραφο θα πρέπει να δείξουμε ότι το σύνολο Z «περιέχει» σύνολο
αντίστοιχο με το ω. Θα δείξουμε ότι υπάρχει 1-1 συνάρτηση E : ω → Z που σέβεται τις
πράξεις και τη διάταξη του ω.

Θεώρημα 3.2.11. Θεωρούμε τη συνάρτηση E : ω → Z με E(n) = [n,0]. Ισχύει ότι η E είναι
1-1 και για κάθε m,n ∈ ω:

1. E(m+ n) = E(m) +Z E(n)

1 Δεν χρειαζόμαστε εδώ το Αξίωμα VII.(i) καθώς μπορούμε να επιλέξουμε ως αντιπρόσωπο παραδείγματος χάρη
το ελάχιστο στοιχείο της κλάσης σύμφωνα με τη λεξικογραφική διάταξη (Παράδειγμα 2.2.29). Μπορείτε να
δείξετε ότι πάντα υπάρχει αυτό το ελάχιστο στοιχείο;

2 Γιατί;
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2. E(m ⋅ n) = E(m) ⋅Z E(n)

3. m ≤ n ανν E(m) ≤Z E(n)

Η απόδειξη του θεωρήματος αφήνεται ως άσκηση (Άσκηση 3.24)

3.3 Ρητοί

Την ίδια ακριβώς λογική θα ακολουθήσουμε για να ορίσουμε ρητούς αριθμούς (το σύνολο
των οποίων το συμβολίζουμε με Q). Η βασική παρατήρηση εδώ είναι η εξής:

Παρατήρηση 3.3.1. Για κάθε q ∈ Q υπάρχουν a ∈ Z και b ∈ Z ∖ {0} τέτοια ώστε q = a
b .

και φυσικά a
b = c

d ανν a ⋅ d = c ⋅ b.

Ορισμός 3.3.2. Έστω RQ ⊆ Z × (Z ∖ {0}) η σχέση με (a, b)RQ(c, d) ανν a ⋅Z d = c ⋅Z b.

Πρόταση 3.3.3. Η σχέση RQ είναι σχέση ισοδυναμίας.

Ορισμός 3.3.4. Ορίζουμε ως σύνολο ρητών το σύνολο πηλίκο Q = Z × (Z ∖ {0})/RQ.

Παράδειγμα 3.3.5. Ο ρητός αριθμός −1
3 αναπαριστάται από το σύνολο:

[([(0,−1)]RZ , [(3,0)]RZ)]RQ

ενώ ο αριθμός 3 από το σύνολο:

[([(3,0)]RZ , [(1,0)]RZ)]RQ

Συμβολισμός 3.3.6. Θα ρισκάρουμε την πρόκληση αμφισημιών γράφοντας [a, b] αντί για
[(a, b)]RQ . Να τονίσουμε όμως ότι εδώ τα a, b είναι ακέραιοι αριθμοί, με b ≠ [(0,0)]RZ . Επίσης,
θα χρησιμοποιούμε τον ακέραιο αριθμό z για να αναφερθούμε στην κλάση ισοδυναμίας που
τον αναπαριστά. Δηλαδή, στο παραπάνω παράδειγμα θα έχουμε το σύνολο [−1,3] που ανα-
παριστά τον −1

3 και το σύνολο [3,1] που αναπαριστά τον 3. Θα κρατήσουμε τον συμβολισμό
+Z και ⋅Z για να μας θυμίζει το γεγονός ότι αναφερόμαστε σε ακεραίους.

Για να ορίσουμε την πρόσθεση και τον πολλαπλασιασμό ακεραίων θα χρησιμοποιήσουμε
τις ταυτότητες:

a

b
+
c

d
=
a ⋅ d+ c ⋅ b

b ⋅ d
a

b
⋅ c
d
=
a ⋅ c
b ⋅ d

Ορισμός 3.3.7. Ορίζουμε ως πρόσθεση ρητών τη συνάρτηση +Q : Q ×Q → Q με [a, b] +Q
[c, d] = [(a ⋅Z d) +Z (c ⋅Z b) , b ⋅Z d].

Ορισμός 3.3.8. Ορίζουμε ως πολλαπλασιασμό ρητών τη συνάρτηση ⋅Q : Q × Q → Q με
[a, b] ⋅Q [c, d] = [a ⋅Z c , b ⋅Z d].
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Οι πράξεις στους ακέραιους ικανοποιούν όλες τις ιδιότητες που θα περιμέναμε.

Συμβολισμός 3.3.9. Θα συμβολίζουμε με −q τον μοναδικό ρητό με q +Q −q = [0,0] και με
1
q τον μοναδικό ρητό με q ⋅Q −q = [1,1].

Παρατηρήστε τώρα το εξής, αν οι b και d είναι θετικοί τότε:
a

b
≤ c
d

ανν a ⋅ d ≤ c ⋅ d

Αν κάποιος από τους δύο δεν είναι θετικός τα πράγματα περιπλέκονται. Όμως εφόσον
έχουμε να κάνουμε με κλάσεις ισοδυναμίας μπορούμε κάλλιστα να επιλέγουμε πάντα ζεύ-
γος ακεραίων (a, b) με 0 ≤Z b ως αντιπρόσωπο της κλάσης, καθώς [a, b]RQ[−a,−b].

Ορισμός 3.3.10. Ορίζουμε τη σχέση ≤Q⊆ Q ×Q με [a, b] ≤Q [c, d] ανν a ⋅Z d ≤Z c ⋅Z b.

Εύκολα μπορούμε να δείξουμε ότι είναι σχέση ολικής διάταξης στο Q.
Κλείνοντας να αναφέρουμε τον τρόπο που εμφυτεύονται οι ακέραιοι (και κατ’ επέκταση

και οι φυσικοί) στους ρητούς.

Θεώρημα 3.3.11. Θεωρούμε τη συνάρτηση E : Z→ Q με E(z) = [z,1]. Ισχύει ότι η E είναι
1-1 και για κάθε x, y ∈ Z:

1. E(x+Z y) = E(x) +Q E(Y )

2. E(x ⋅Z y) = E(x) ⋅Q E(y)

3. x ≤Z y ανν E(x) ≤Q E(y)

3.4 Πραγματικοί
Για να αναπαραστήσουμε τους πραγματικούς θα χρειαστεί να εφαρμόσουμε μία ριζικά

διαφορετική προσέγγιση 1. Θα χρησιμοποιήσουμε τις λεγόμενες Τομές Dedekind: Θα ανα-
παραστήσουμε τον κάθε πραγματικό αριθμό με το σύνολο όλων των ρητών αριθμών που
είναι γνήσια μικρότεροι από αυτόν 2. Η βασική παρατήρηση που κάνει αυτήν την ιδέα να
δουλεύει είναι το γεγονός ότι το σύνολο Q είναι πυκνό στο σύνολο των πραγματικών αριθμών
R:

Παρατήρηση 3.4.1. Ανάμεσα σε κάθε δύο πραγματικούς αριθμούς υπάρχει πάντα ρητός
αριθμός.

Συνεπώς, για διαφορετικούς αριθμούς x, y ∈ R τα σύνολα των ρητών που είναι μικρότερα
από αυτούς θα είναι διαφορετικά. Οι τομές Dedekind δεν είναι ο μοναδικός τρόπος ανα-
παράστασης των πραγματικών, σίγουρα όμως είναι ο πιο απλός 3. Ας δούμε τους τυπικούς
ορισμούς.
1 Αλίμονο αν μπορούσαμε να χαρακτηρίσουμε κάθε πραγματικό αριθμό με δύο ρητούς. Αυτό θα σήμαινε ότι

υπάρχουν το ίδιο πλήθος πραγματικοί και ρητοί αριθμοί, κάτι που (είτε ξέρουμε είτε φανταζόμαστε ότι) δεν
ισχύει. Το γεγονός αυτό θα το αποδείξουμε στο Κεφάλαιο 6.

2 Δηλαδή στην ουσία ο κάθε πραγματικός χαρακτηρίζεται από μία άπειρη ακολουθία ρητών.
3 Ένας άλλος πολύ γνωστός τρόπος αναπαράστασης είναι μέσω των ακολουθιών Cauchy. Ο ενδιαφερόμενος

αναγνώστης θα χρειαστεί να ανατρέξει στη βιβλιογραφία για περισσότερες πληροφορίες.
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Ορισμός 3.4.2. Ένα σύνολο C ⊆ Q καλείται τομή Dedekind ανν:

1. C ≠ ∅ και C ≠ Q,

2. αν x ∈ C και για το y ∈ Q ισχύει ότι y <Q x, τότε y ∈ C και

3. το C δεν έχει μέγιστο στοιχείο.

Παράδειγμα 3.4.3. Το σύνολο {q ∈ Q ∣ q <Q [([(0,0)]RZ , [(0,0)]RZ)]RQ} αποτελεί τομή
Dedekind.

Προφανώς και πρέπει να αλαφρύνουμε τον συμβολισμό.

Συμβολισμός 3.4.4. Θα χρησιμοποιούμε τον ρητό αριθμό q για να αναφερθούμε στην
κλάση ισοδυναμίας που τον αναπαριστά. Δηλαδή, στο παραπάνω παράδειγμα θα έχουμε το
σύνολο {q ∈ Q ∣ q <Q 0}. Ας απλοποιήσουμε και άλλο τον συμβολισμό χρησιμοποιώντας το
σύμβολο 0R αντί για την τομή Dedekind του Παραδείγματος 3.4.3.

Ορισμός 3.4.5. Ορίζουμε ως σύνολο πραγματικών το σύνολο:

R = {C ∈ P(Q) ∣ C τομή Dedekind}

Συγχωρέστε μας τον άτυπο ορισμό του συνόλου R. Όποιος έχει αμφιβολίες για το κατά
πόσον το R αποτελεί σύνολο αρκεί να αντικαταστήσει το «C τομή Dedekind» του Ορι-
σμού 3.4.5 με τις ιδιότητες του Ορισμού 3.4.2.

Μπορούμε να ορίσουμε την πρόσθεση στους πραγματικούς χωρίς ιδιαίτερη δυσκολία.

Ορισμός 3.4.6. Ορίζουμε ως πρόσθεση πραγματικών τη συνάρτηση +R : R × R → R με
x+R y = {q + r ∈ Q ∣ q ∈ x ∧ r ∈ y}.

Φυσικά θα πρέπει να ελέγξουμε ότι όντως το σύνολο x+R y αποτελεί τομή Dedekind.

Συμβολισμός 3.4.7. Θα συμβολίζουμε με −x τον μοναδικό πραγματικό με x +R −x = 0R.

Ο πολλαπλασιασμός πραγματικών δυστυχώς δεν ορίζεται με κάποιον κομψό τρόπο. Μά-
λιστα προτού τον ορίσουμε θα χρειαστεί να ορίσουμε τη διάταξη των πραγματικών. Αυτή
δεν είναι τίποτα παραπάνω από τη σχέση του περιέχεσθαι στο σύνολο R. Για λόγους ομοιο-
μορφίας θα χρησιμοποιούμε το σύμβολο ≤R αντί για το ⊆R.

Πρόταση 3.4.8. Η σχέση ≤R είναι σχέση ολικής διάταξης στο R.

Θα χρειαστούμε επίσης την απόλυτη τιμή των πραγματικών.

Ορισμός 3.4.9. Ορίζουμε ως απόλυτη τιμή τη συνάρτηση ∣ ∣R : R→ R με:

∣x∣R =

⎧⎪⎪⎨⎪⎪⎩

x , αν 0R ≤ x
−x , αλλιώς

Τέλος, θα χρειαστεί να ορίσουμε το σύνολο των μη αρνητικών πραγματικών έτσι ώστε να
ορίσουμε πρώτα τον μερικό πολλαπλασιασμό πραγματικών σε αυτό το σύνολο.
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Ορισμός 3.4.10. Θεωρούμε το σύνολο των μη αρνητικών πραγματικών ως R+ = {x ∈ R ∣
0R ≤R x} 1.

Ορισμός 3.4.11. Ορίζουμε πρώτα τον πολλαπλασιασμό μεταξύ μη αρνητικών πραγματικών
⋅R+ : R+ × R+ → R+ ως εξής :

x ⋅R+ y = 0R ∪ {q ⋅Q r ∈ Q ∣ (0 ≤Q q ∧ q ∈ x) ∧ (0 ≤Q r ∧ r ∈ y)}

και έπειτα τον πολλαπλασιασμό πραγματικών ⋅R : R × R→ R ως εξής:

x ⋅R y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x ⋅R+ y , αν x, y ∈ R+

−(∣x∣R ⋅R+ ∣y∣R) , αν είτε x ∉ R+ είτε y ∉ R+

∣x∣R ⋅R+ ∣y∣R , αλλιώς

Κλείνοντας οφείλουμε να αναφέρουμε τον τρόπο που εμφυτεύονται οι ρητοί στους
πραγματικούς.

Θεώρημα 3.4.12. Θεωρούμε τη συνάρτηση E : Q → R με E(q) = {r ∈ Q ∣ r <Q q}. Ισχύει
ότι η E είναι 1-1 και για κάθε x, y ∈ Q:

1. E(x+Q y) = E(x) +R E(Y )

2. E(x ⋅Q y) = E(x) ⋅R E(y)

3. x ≤Q y ανν E(x) ≤R E(y)

Ασκήσεις

3.1. Θεωρήστε οικογένεια A1,A2, ... μη κενών συνόλων φυσικών. Δείξτε ότι η συνάρ-
τηση επιλογής f όπου f(Ai) είναι το ελάχιστο στοιχείο του Ai υπάρχει.

3.2. Δείξτε ότι για κάθε n ∈ ω ισχύει ότι n ≠ n+.

3.3. Δείξτε ότι για κάθε m,n ∈ ω ισχύει m ∈ n ανν m ⊂ n.

3.4. Δείξτε ότι για κάθε n ∈ ω ισχύει ότι n ∉ n. (Υπόδειξη: Θα χρειαστείτε την
Άσκηση 3.3.)

3.5. Δείξτε ότι αν n ∈ ω τότε n ⊂ ω. (Υπόδειξη: Θα χρειαστείτε την Άσκηση 3.4.)

3.6. Δείξτε ότι ω ∉ ω. (Υπόδειξη: Θα χρειαστείτε την Άσκηση 3.5.)

3.7. Δείξτε ότι για κάθε n ∈ ω ισχύει ότι ω ∉ n. (Υπόδειξη: Θα χρειαστείτε την
Άσκηση 3.6.)

1 Το σύνολο αυτό δεν θα πρέπει να συγχέεται με τον επόμενο του συνόλου R.
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3.8. Συμπληρώστε τη δεύτερη απόδειξη του Θεωρήματος Αναδρομής στο ω (Σε-
λίδα 40).

3.9. Έστω σύνολο A, a ∈ A και συνάρτηση h : A→ A με a ∉ ran(h). Δείξτε ότι αν η h
είναι 1-1 τότε και η μοναδική συνάρτηση f : ω → A που ικανοποιεί την εξίσωση:

⎧⎪⎪⎨⎪⎪⎩

f(0) = a

f(n+) = h(f(n)) , για κάθε n ∈ ω

είναι 1-1.

3.10 (Εκθετική Συνάρτηση). Ορίστε τη συνάρτηση exp : N ×N → N με exp(m,n) =
nm στο ω.

3.11. (Αναδρομή με το όρισμα ως παράμετρο) Έστω σύνολο A, a ∈ A και συνάρτηση
h : A×ω → A. Δείξτε ότι υπάρχει μοναδική συνάρτηση f : ω → A που για κάθε m ∈ ω
ικανοποιεί την εξίσωση:

⎧⎪⎪⎨⎪⎪⎩

f(0) = a

f(n+) = h(f(n), n) , για κάθε n ∈ ω

3.12 (Παραγοντικό). Ορίστε τη συνάρτηση ! : N→ N με:

n! =

⎧⎪⎪⎨⎪⎪⎩

1 , αν n = 0 ή n = 1

1 ⋅ 2 ⋅ ⋯ ⋅ (n − 1) , αλλιώς

στο ω. (Υπόδειξη: Θα χρειαστείτε την Άσκηση 3.11.)

3.13 (Συνάρτηση του Προηγούμενου). Oρίστε τη συνάρτηση pd : N ×N με:

pd(n) =
⎧⎪⎪⎨⎪⎪⎩

0 , αν n = 0

n − 1 , αλλιώς

στο ω. (Υπόδειξη: Θα χρειαστείτε την Άσκηση 3.11.)

3.14 (Αφαίρεση στους φυσικούς). Oρίστε τη συνάρτηση � : N ×N→ N με:

�(m,n) =
⎧⎪⎪⎨⎪⎪⎩

m − n , αν n ≤m
0 , αλλιώς

στο ω. (Υπόδειξη: Θα χρειαστείτε τη Άσκηση 3.13.)
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3.15 (Αμοιβαία Αναδρομή). Έστω σύνολο A, στοιχεία a1, a2 ∈ A και συναρτήσεις
h1, h2 ∈ (A ×A → A). Δείξτε ότι υπάρχουν μοναδικές συναρτήσεις f1, f2 ∈ (ω → A)
που ικανοποιούν την εξίσωση:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f1(0) = a1

f1(n
+) = h1(f1(n), f2(n))

f2(0) = a2

f2(n
+) = h2(f1(n), f2(n))

3.16 (Εμφωλευμένη Aναδρομή). Έστω σύνολο A, συνάρτηση g : ω → A, συνάρτηση
h : A×ω×ω → A και συνάρτηση τ : ω×ω → ω. Δείξτε ότι υπάρχει μοναδική συνάρτηση
f : ω × ω → A που για κάθε m ∈ ω ικανοποιεί την εξίσωση:

⎧⎪⎪⎨⎪⎪⎩

f(0, n) = g(n)

f(m+, n) = h(f(m,τ(m,n)),m,n)

3.17. Αποδείξτε την Πρόταση 3.1.15.

3.18. Αποδείξτε την Πρόταση 3.1.18.

3.19. Δείξτε ότι για κάθε m,n ∈ ω ισχύει m ∈ n ανν υπάρχει s ∈ ω με s ≠ 0 τέτοιο ώστε
m+ s = n.

3.20. Δείξτε ότι η σχέση ≤ των φυσικών είναι διάταξη χωρίς να χρησιμοποιήσετε την
Πρόταση 3.1.20.

3.21. Δείξτε ότι seg<(n) = n για κάθε n ∈ ω.

3.22 (Πλήρης Επαγωγή). Δείξτε ότι αν για το P ⊆ ω ισχύει ότι:
1. 0 ∈ P και

2. αν το γεγονός ότι για κάθε m < n ισχύει ότι m ∈ P συνεπάγεται ότι n ∈ P ,
τότε P = ω.

3.23. Αποδείξτε την Πρόταση 3.2.3.

3.24. Αποδείξτε το Θεώρημα 3.2.11.

3.25. Αποδείξτε την Πρόταση 3.3.3.

3.26. Αποδείξτε το Θεώρημα 3.3.11.

3.27. Αποδείξτε την Πρόταση 3.4.8.

3.28. Αποδείξτε το Θεώρημα 3.4.12.

Τελευταία ενημέρωση 18/2/2025, στις 10:49. 52



ΚΕΦΑΛΑΙΟ 4
ΠΑΡΑΛΕΙΠΟΜΕΝΑ

Προτού συνεχίσουμε στο κύριο κομμάτι των σημειώσεων θα πρέπει να αναφέρουμε κά-
ποια πράγματα για τις σχέσεις διάταξης που παραλείψαμε από την Παράγραφο 2.2.4 1. Ως
διά μαγείας το αξίωμα επιλογής θα εμφανιστεί και πάλι και θα μας βοηθήσει να αποδείξουμε
δύο πολύ βαθιά θεωρήματα στη Θεωρία Διάταξης.

4.1 Διάταξης παραλειπόμενα
Η ολική διάταξη ενός χώρου δεν είναι αρκετά καλή για τους σκοπούς μας. Χρειαζόμαστε

μία ακόμα καλύτερη διάταξη.

4.1.1 Καλά διατεταγμένοι χώροι
Ορισμός 4.1.1. Ένας διατεταγμένος χώρος (A,≤) καλείται καλά διατεταγμένος ανν κάθε
μη κενό υποσύνολο X ⊆ A έχει ελάχιστο στοιχείο. Σε αυτήν την περίπτωση θα λέμε ότι η
διάταξη ≤ είναι καλή.

Παράδειγμα 4.1.2. Ας δούμε δύο παραδείγματα καλά διατεταγμένων χώρων:

- Στο Θεώρημα 3.1.23 δείξαμε ότι ο χώρος ω με τη διάταξη των φυσικών είναι καλά
διατεταγμένος.

- O χώρος (ω,≤′), όπου n ≤′ m ανν n ≤m, για κάθε n,m ∈ ω ∖ {0}, και n ≤′ 0, για κάθε
n ∈ ω, είναι καλά διατεταγμένος. Πράγματι, έστω μη κενό A ⊆ ω. Το A είτε θα περιέχει
το 0, είτε όχι. Στην πρώτη περίπτωση το A έχει ελάχιστο στοιχείο ως προς τη διάταξη
των φυσικών, άρα και ως προς την ≤′ (δες Πρόταση 3.1.20), ενώ η δεύτερη περίπτωση
ανάγεται ουσιαστικά στην πρώτη θεωρώντας το σύνολο A ∖ {0} (εκτός αν A = {0},
που όμως τότε προφανώς υπάρχει ελάχιστο στοιχείο).

1 Καλό θα ήταν ο αναγνώστης προτού συνεχίσει τη μελέτη του να κάνει μια επανάληψη στις έννοιες και τον
συμβολισμό αυτής της Παραγράφου.
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Παράδειγμα 4.1.3. Οι χώροι Z,Q,R με τις διατάξεις που ορίσαμε στο Κεφάλαιο 3 δεν είναι
καλά διατεταγμένοι 1.
Παρατήρηση 4.1.4. Αν ο (A,≤) είναι καλά διατεταγμένος τότε και ο υπόχωρος S ⊆ A θα
είναι καλά διατεταγμένος.

Πράγματι κάθε μη κενό υποσύνολο του S θα έχει ελάχιστο στοιχείο (καθώς είναι υπο-
σύνολο και του A).
Συμβολισμός 4.1.5. Έστω καλά διατεταγμένος χώρος (A,≤) και μη κενόX ⊆ A. Το ελάχιστο
στοιχείο του X θα το συμβολίζουμε με minAX (ή σκέτο minX αν ο A εννοείται από τα
συμφραζόμενα) και το ελάχιστο στοιχείο του A με 0A. Ο συμβολισμός αυτός δεν αποτυπώνει
τη διάταξη του χώρου αλλά (ευτυχώς) σε όσα ακολουθούν δεν θα χρειαστεί να πάρουμε δύο
καλές διατάξεις στον ίδιο χώρο.
Παρατήρηση 4.1.6. Μία καλή διάταξη είναι πάντα ολική.
Ο λόγος είναι προφανής: Για οποιαδήποτε δύο στοιχειά a, b το δισύνολο {a, b} έχει ελάχιστο
στοιχείο. Αυτό σημαίνει ότι τα a, b είναι συγκρίσιμα.

Κάνοντας μία αναδρομή στο προηγούμενο κεφάλαιο 2, ας θυμηθούμε ότι η αρχή ελα-
χίστου στο ω μας έδωσε μία πολλή ισχυρή αποδεικτική μέθοδο: την πλήρη επαγωγή (δες
Άσκηση 3.22). Με λίγα λόγια η πλήρης επαγωγή μπορεί να περιγραφεί ως εξής:

Αν το ότι για κάθε αρχικό τμήμα φυσικών, από το 0 μέχρι και τον n, ισχύει μία
ιδιότητα έχει ως αποτέλεσμα ότι η ιδιότητα ισχύει και για τον n + 1, τότε η
ιδιότητα αυτή ισχύει για όλους τους φυσικούς.

Αφού σε κάθε καλά διατεταγμένο χώρο ισχύει η αρχή ελαχίστου, αναμένουμε ότι θα ισχύει
κάποια αντίστοιχη μορφή επαγωγής. Την επαγωγή αυτήν την αποκαλούμε υπερπεπερασμένη
καθώς τα αρχικά τμήματα στον χώρο μπορεί να είναι και άπειρα, και ο χώρος αυτός καθαυτόν
να περιέχει περισσότερα στοιχεία από το ω.
Θεώρημα 4.1.7 (Αρχή Υπερπεπερασμένης Επαγωγής). Έστω καλά διατεταγμένος χώρος
(A,≤) και έστω υποσύνολο P ⊆ A. Αν για κάθε a ∈ A το ότι:

seg<(a) ⊆ P συνεπάγεται ότι a ∈ P

τότε P = A.
Θα παρουσιάσουμε την απόδειξη του θεωρήματος παρόλο τον κίνδυνο να προδώσουμε

την απάντηση στην Άσκηση 3.22.

Απόδειξη Θεωρήματος 4.1.7. Έστω (προς άτοπο) ότι το σύνολο A ∖P είναι μη κενό. Αφού
η ≤ είναι καλή διάταξη έπεται ότι το σύνολο αυτό θα έχει ελάχιστο στοιχείο, έστω a. Ισχύει
ότι seg<(a) ⊆ P , οπότε a ∈ P . Άτοπο.

Όπως και για την περίπτωση του ω, μπορούμε να εφαρμόζουμε την υπερπεπερασμένη
επαγωγή παίρνοντας το (υποτιθέμενο) ελάχιστο αντιπαράδειγμα: Υποθέτουμε (προς άτοπο)
ότι το σύνολο A ∖ P είναι μη κενό και δείχνουμε ότι δεν έχει ελάχιστο στοιχείο (ως όφειλε).
1 Αυτό δεν σημαίνει φυσικά ότι δεν υπάρχουν καλές διατάξεις για αυτούς τους χώρους!
2 No pun intended...
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4.1.2 Υπερπεπερασμένη Αναδρομή

Ένα άλλο πολύ ισχυρό εργαλείο που παρουσιάστηκε στο Κεφάλαιο 3 ήταν το Θεώρημα
Αναδρομής (Θεώρημα 3.1.11), που μας έδινε τη δυνατότητα να ορίσουμε μία συνάρτηση
f : ω → A μέσω μίας αναδρομικής εξίσωσης, δηλαδή παίρνοντας την τιμή f(n) για ένα
στοιχείο n ∈ ω από την τιμή της f για το αμέσως προηγούμενο στοιχείο. Σε μια προσπά-
θεια να επεκτείνουμε αυτό το αποτέλεσμα σε κάθε καλά διατεταγμένο χώρο A (δηλαδή να
ορίσουμε συνάρτηση f : A→ A), το πρώτο πρόβλημα που θα πρέπει να ξεπεράσουμε είναι
το γεγονός ότι ενδέχεται να μην υπάρχει αμέσως προηγούμενο στοιχείο (όπως για παρά-
δειγμα το στοιχείο 0 στον καλά διατεταγμένο χώρο (ω,≤′) του Παραδείγματος 4.1.2). Αυτό
το πρόβλημα μπορεί να ξεπεραστεί απαιτώντας η τιμή f(a) για το στοιχείο a ∈ A να βασί-
ζεται στις τιμές της f για όλα τα στοιχεία που είναι μικρότερα από το a, δηλαδή ουσιαστικά
από τον περιορισμό της f στο seg<(a) (αυτό το συμβολίσαμε ως f ↾ seg<(a) στην Παρά-
γραφο 2.2.1). Αν έχουν έτσι τα πράγματα θα πρέπει η συνάρτηση h μέσω της οποίας θα
μας δίνεται η επόμενη τιμή f(a) να δέχεται ως όρισμα το f ↾ seg<(a), δηλαδή μία άλλη
συνάρτηση. Για την ακρίβεια η f ↾ seg<(a) είναι αυτό που λέμε μερική συνάρτηση, καθώς
ισχύει ότι dom(f ↾ seg<(a)) ⊂ dom(f) = A.

Ορισμός 4.1.8. Μερική συνάρτηση από το σύνολο A στο σύνολο B καλείται οποιαδήποτε
συνάρτηση f με dom(f) ⊆ A και ran(f) ⊆ B.

Είθισται να αποκαλούμε τις συναρτήσεις με dom(f) = A ολικές συναρτήσεις. Προφανώς
μία ολική συνάρτηση είναι και μερική συνάρτηση.

Παράδειγμα 4.1.9. Ίσως το πιο οικείο παράδειγμα (γνήσιας) μερικής συνάρτησης είναι η
συνάρτηση √ : R → R με

√
x = y αν y ⋅R y = x (το πεδίο ορισμού της είναι το σύνολο

R+, δες Ορισμό 3.4.10). Ένα άλλο οικείο μας παράδειγμα μερικής συνάρτησης είναι το κενό
σύνολο!

Συμβολισμός 4.1.10. Συμβολίζουμε το σύνολο των μερικών συναρτήσεων από το σύνολο A
στο σύνολο B ως εξής (A⇀ B) 1.

Έπειτα από την ανάλυση που κάναμε το Θεώρημα Αναδρομής για καλά διατεταγμένος
χώρους θα πρέπει να έχει την εξής μορφή:

Θεώρημα 4.1.11 (Θεώρημα Υπερπεπερασμένης Αναδρομής). Έστω καλά διατεταγμένος
χώρος (A,≤), σύνολο B και συνάρτηση h : (A ⇀ B) → B. Υπάρχει μοναδική συνάρτηση
f : A→ B που ικανοποιεί την εξίσωση:

f(a) = h(f ↾ seg<(a)), για κάθε a ∈ A

Για να αποδείξουμε αυτό το θεώρημα (όπως και για το Θεώρημα 3.1.11) υπάρχουν δύο
δρόμοι: Ο πρώτος είναι να πάρουμε «κατάλληλες» σχέσεις στο A ×B και έπειτα την τομή
τους και ο δεύτερος να πάρουμε «προσεγγίσεις» της f και έπειτα την ένωσή τους.
1 Να αναφέρουμε μία ακόμα φορά ότι (A→ B) ⊂ (A⇀ B).

55 Τελευταία ενημέρωση 18/2/2025, στις 10:49.



Διάταξης παραλειπόμενα

Πρώτη απόδειξη Θεωρήματος 4.1.11. Θα καλούμε το σύνολο R ⊆ A × B κλειστό ως προς
την h ανν:

αν για a ∈ A και g ∈ (seg<(a)→ B) ισχύει ότι (x, g(x)) ∈ R για κάθε x ∈ seg<(a),
τότε (a, h(g)) ∈ R.

Προφανώς υπάρχουν σύνολα κλειστά ως προς h, το A × B για παράδειγμα είναι ένα από
αυτά. Θεωρούμε το (μη κενό) σύνολο:

C = {R ⊆ A ×B ∣ R κλειστό ως προς h}

και τη σχέση:
F =⋂C

Παρατηρήστε ότι F ∈ C : Αν για κάθε x ∈ seg<(a) ισχύει ότι (x, g(x)) ∈ F , τότε (x, g(x)) ∈ R
για κάθε R ∈ C . Οπότε και (a, h(g)) ∈ R για κάθε R ∈ C . Συνεπώς (a, h(g)) ∈ F .

Θα δείξουμε τώρα με υπερπεπερασμένη επαγωγή ότι το σλυνολο F είναι συνάρτηση.
Θεωρούμε το σύνολο:

P = {a ∈ A ∣ (∃!b ∈ B)((a, b) ∈ F )}

και (προς άτοπο) ελάχιστο στοιχείο a ∈ A ∖ P , δηλαδή για κάθε x < a υπάρχει μοναδικό
y ∈ B τέτοιο ώστε (x, y) ∈ F . Σε αυτήν την περίπτωση ισχύει ότι το σύνολο F ↾ seg<(a)
αποτελεί συνάρτηση από το seg<(a) στο B, έστω τη g. Παρατηρήστε ότι (x, g(x)) ∈ F για
κάθε x ∈ seg<(a), οπότε (αφού F ∈ C) (a, h(g)) ∈ F . Έχουμε υποθέσει όμως ότι a ∉ P
συνεπώς υπάρχει και b ∈ B με b ≠ h(g) τέτοιο ώστε (a, b) ∈ F .

Αρκεί να δείξουμε ότι το σύνολο F ′ = F ∖ {(a, b)} είναι κλειστό ως προς h, καθώς τότε
θα έχουμε ότι F ′ ∈ C και ότι F ′ ⊂ F , γεγονός που αντιβαίνει στον τρόπο που ορίσαμε το F .
Ας αποδείξουμε αυτόν τον ισχυρισμό:

Έστω c ∈ A και g′ ∈ (seg<(c)→ B) τέτοια ώστε για κάθε x ∈ seg<(c) να έχουμε (x, g′(x)) ∈
F ′. Αφού F ′ ⊂ F έπεται ότι (x, g′(x)) ∈ F και, καθώς F κλειστό ως προς h, έπεται ότι
(c, h(g′)) ∈ F . Αν c ≠ a βλέπουμε άμεσα ότι (c, h(g′)) ∈ F ′ (αφού προφανώς (c, h(g′)) ≠
(a, b)). Η «προβληματική» περίπτωση είναι όταν c = a. Τότε υπάρχει ο κίνδυνος να ισχύει
ότι (a, h(g′)) = (a, b), ή αλλιώς ότι h(g′) = b. Ο λόγος που αυτό δεν μπορεί να συμβεί είναι
ότι g′ = g, οπότε h(g′) = h(g) και προγενέστερα έχουμε υποθέσει ότι b ≠ h(g). Όμως γιατί
ισχύει ότι g′ = g;

Είδαμε πριν ότι για κάθε x ∈ seg<(a) έχουμε (x, g′(x)) ∈ F , άρα g′ ⊆ F . Για την ακρίβεια
ισχύει ότι g′ ⊆ F ↾ seg<(a) = g. Συνεπώς (από την Άσκηση 2.19) f = g.

Για να ελέγξουμε ότι η συνάρτηση F ικανοποιεί την εξίσωση:

F (a) = h(F ↾ seg<(a)), για κάθε a ∈ A

Θα εφαρμόσουμε ξανά επαγωγή: Έστω ελάχιστο αντιπαράδειγμα a ∈ A, δηλαδή ισχύει ότι
F (x) = h(F ↾ seg<(x)) για κάθε x < a, ενώ F (a) ≠ h(F ↾ seg<(a)). Αυτό σημαίνει ότι για τη
συνάρτηση g = F ↾ seg<(a) ∈ (seg<(a) → B) ισχύει ότι (x, g(x)) ∈ F για κάθε x ∈ seg<(a).
Αφού F ∈ C έπεται ότι (a, h(g)) ∈ F , δηλαδή F (a) = h(g) = h(F ↾ seg<(a). Άτοπο.

Για να ολοκληρώσουμε την απόδειξη του θεωρήματος πρέπει να δείξουμε ότι η συνάρ-
τηση F είναι η μοναδική με αυτήν την ιδιότητα. Έστω ότι υπάρχει και άλλη συνάρτηση
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G : A → B με την παραπάνω ιδιότητα και έστω a ∈ A το ελάχιστο στοιχείο για το οποίο
F (a) ≠ G(a). Αφού για κάθε x < a έχουμε F (x) = G(x), έπεται ότι F ↾ seg<(a) = G ↾
seg<(a), και άρα h(F ↾ seg<(a)) = h(G ↾ seg<(a)). Αυτό φυσικά σημαίνει ότι F (a) = G(a).
Άτοπο.

Στην παραπάνω απόδειξη χρησιμοποιήσαμε τρεις φορές την αρχή υπερπεπερασμένης
επαγωγής, με όλο και πιο χαλαρό τρόπο την κάθε φορά. Από εδώ και στο εξής θα υιοθετή-
σουμε τον τελευταίο (και χαλαρότερο) τρόπο εφαρμογής της.

Δεύτερη απόδειξη Θεωρήματος 4.1.11. Έστω a ∈ A. Καλούμε μία συνάρτηση g : seg≤(a) →
B προσέγγιση έως και το a ανν για κάθε x ∈ seg≤(a) ισχύει ότι g(x) = h(g ↾ seg<(x)).
Αν a ∈ A το ελάχιστο στοιχείο του χώρου, ένα παράδειγμα προσέγγισης είναι η συνάρτηση
g : {a}→ B με g(a) = h(∅) = h(g ↾ seg<(a)). Θεωρούμε το (μη κενό) σύνολο:

C = {g ∈ (A⇀ B) ∣ Υπάρχει a ∈ A τέτοιο ώστε g προσέγγιση έως και το a}

και τη σχέση:
F =⋃C

Μένει να δείξουμε ότι:

1. F συνάρτηση,

2. για κάθε a ∈ dom(F ) ισχύει ότι F (a) = h(F ↾ seg<(a)),

3. dom(F ) = A και

4. η F είναι η μοναδική με αυτήν την ιδιότητα.

Η συνέχεια της απόδειξης αφήνεται ως άσκηση (Άσκηση 4.4).

Πόρισμα 4.1.12 (Υπερπεπερασμένη Αναδρομή με παράμετρο). Έστω καλά διατεταγμένος
χώρος (A,≤), σύνολο B και συνάρτηση h : (A⇀ B)×A→ B. Υπάρχει μοναδική συνάρτηση
f : A→ B που ικανοποιεί την εξίσωση:

f(a) = h(f ↾ seg<(a), a), για κάθε a ∈ A

H απόδειξή του είναι εντελώς αντίστοιχη με την απόδειξη του Πορίσματος 3.1.12. Χάριν
εξάσκησης την έχουμε προσθέσει στη λίστα των ασκήσεων του κεφαλαίου (Άσκηση 4.5).

Μία ενδιαφέρουσα και άμεση εφαρμογή του Θεωρήματος 4.1.11 είναι η ακόλουθη πρό-
ταση.

Πρόταση 4.1.13 (Πλήρης Αναδρομή στο ω). Έστω σύνολο B και συνάρτηση h : (ω ⇀ B)→
B. Υπάρχει μοναδική συνάρτηση f : ω → B που ικανοποιεί την εξίσωση:

f(n) = h(f ↾ n), για κάθε n ∈ ω

57 Τελευταία ενημέρωση 18/2/2025, στις 10:49.



Διάταξης παραλειπόμενα

Η απόδειξη είναι μία απλή εφαρμογή του Θεωρήματος 4.1.11 για τον καλά διατεταγμένο
χώρο (ω,≤) (θυμηθείτε επίσης ότι seg<(n) = n για κάθε n ∈ ω, Άσκηση 3.21). Παρατηρήστε
το εξής:

f(0) = h(f ↾ 0) = h(∅)
f(1) = h(f ↾ 1) = h({(0, f(0))})
f(2) = h(f ↾ 2) = h({(0, f(0)), (1, f(1))})

και γενικά η τιμή f(n) υπολογίζεται βάση όλων των προηγούμενων υπολογισμένων τιμών.Ας
δούμε μία εφαρμογή του.

Ορισμός 4.1.14. Ένα σύνολο A είναι μεταβατικό ανν για κάθε a ∈ A ισχύει ότι a ⊂ A.

Ο όρος μεταβατικό προκύπτει από το γεγονός ότι η σχέση του ανήκειν είναι μεταβατική
στο A καθώς αν x ∈ y και y ∈ A τότε x ∈ A. Περίεργη ιδιότητα, αλλά (όπως θα δούμε) δεν
είναι καθόλου σπάνια σε αυτές τις σημειώσεις!

Παράδειγμα 4.1.15. Τόσο τα στοιχεία του ω όσο και το ίδιο το ω είναι μεταβατικά σύνολα
(θυμηθείτε την Πρόταση 3.1.20 και την Άσκηση 3.5).

Θεώρημα 4.1.16. Για κάθε σύνολο A υπάρχει μεταβατικό σύνολο B τέτοιο ώστε A ⊆ B.

Απόδειξη. Θεωρούμε τη μερική συνάρτηση h : (ω ⇀ P(A))→ P(A) με:

h(g) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A, αν g = ∅
⋃ g(n), αν g : n+ → P(A), για κάποιο n ∈ ω
∅, αλλιώς

Από την Πρόταση 4.1.13 έπεται ότι υπάρχει συνάρτηση f : ω → P(A) τέτοια ώστε:

f(n) = h(f ↾ n) =
⎧⎪⎪⎨⎪⎪⎩

A, αν n = 0

⋃f(m), αν n =m+, για κάποιο m ∈ ω

Θεωρούμε το σύνολο B = ⋃{f(n) ∈ P(A) ∣ n ∈ ω} και παρατηρούμε ότι:

1. f(0) ⊆ B, άρα A ⊆ B, και

2. αν y ∈ B και x ∈ y, τότε υπάρχει n ∈ ω τέτοιο ώστε y ∈ f(n), άρα y ⊆ ⋃f(n) = f(n+),
συνεπώς x ∈ f(n+) ⊆ B.

Μπορούμε να δείξουμε ότι το σύνολο B της απόδειξης του Θεωρήματος 4.1.16 είναι το
ελάχιστο με αυτήν την ιδιότητα (Άσκηση 4.6).

Ορισμός 4.1.17. Έστω σύνολο A. Η μεταβατική κλειστότητα του A, συμβολισμός A∗, είναι
το ελάχιστο μεταβατικό σύνολο που περιέχει το A ως υποσύνολο.
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4.1.3 Ομοιότητα διατεταγμένων χώρων
Ορισμός 4.1.18. Δύο διατεταγμένοι χώροι (A,≤A) και (B,≤B) καλούνται όμοιοι, συμβολι-
σμός (A,≤A) ≅ (B,≤B), ανν υπάρχει 1-1 και επί συνάρτηση f : A→ B τέτοια ώστε για κάθε
x, y ∈ A:

x ≤A y ανν f(x) ≤B f(y)

Τη συνάρτηση f την καλούμε ομοιότητα.

Παράδειγμα 4.1.19. Θεωρήστε το σύνολο E = {n ∈ ω ∣ (∃m ∈ ω)(n = 2 ⋅m)}. Ο χώρος
(E,≤), όπου ≤ η διάταξη του ω, είναι (καλά) διατεταγμένος χώρος όμοιος με τον(ω,≤), καθώς
εύκολα μπορούμε να ελέγξουμε ότι η συνάρτηση f : ω → E με f(n) = 2 ⋅ n είναι ομοιότητα.

Παράδειγμα 4.1.20. Ο (καλά) διατεταγμένος χώρος (ω+,≤′) όπου ≤′ η διάταξη με n ≤′ m
ανν n ≤ m, για κάθε n,m ∈ ω, και ω ≤′ n, για κάθε n ∈ ω, είναι όμοιος με τον (ω,≤) καθώς
εύκολα μπορούμε να ελέγξουμε ότι η συνάρτηση f : ω → ω+ με:

f(n) =

⎧⎪⎪⎨⎪⎪⎩

ω , αν n = 0

n+ 1 , αλλιώς

είναι ομοιότητα.

Η πρόταση που ακολουθεί είναι άμεση απόρροια του Ορισμού 4.1.18.

Πρόταση 4.1.21. Έστω διατεταγμένοι χώροι (A,≤A), (B,≤B) και (C,≤C). Ισχύουν τα ακό-
λουθα:

1. (A,≤A) ≅ (A,≤A)

2. Αν (A,≤A) ≅ (B,≤B) τότε και (B,≤B) ≅ (A,≤A).

3. Αν (A,≤A) ≅ (B,≤B) και (B,≤B) ≅ (C,≤C) τότε (A,≤A) ≅ (C,≤C)

Παράδειγμα 4.1.22. Θα δείξουμε ότι o (καλά) διατεταγμένος (ω+, ∈) δεν είναι όμοιος με
τον (ω,≤). Έστω (προ άτοπο) ομοιότητα f : ω+ → ω. Παρατηρήστε ότι το ω είναι μέγιστο
στοιχείο του χώρου (ω+, ∈), όμως καθώς f(ω) ∈ ω, ισχύει ότι f(ω) < f(ω) + 1. Άρα θα
πρέπει να ισχύει ότι ω ∈ f−1(f(ω) + 1). Άτοπο, καθώς για κάθε n ∈ ω ισχύει ότι ω ∉ n (δες
Άσκηση 3.7).

Μέσα από τα Παραδείγματα 4.1.20 και 4.1.22 συμπεραίνουμε ότι (καλά) διατεταγμένοι
χώροι με ακριβώς τα ίδια στοιχεία δεν είναι κατ’ ανάγκη όμοιοι. Για να είναι όμοιοι θα πρέπει
οι διατάξεις τους να έχουν αντίστοιχη μορφή (τύπο διάταξης), να έχουν δηλαδή στην ουσία
την ίδια «δομή». Αυτό φαίνεται και από την ακόλουθη πρόταση.

Πρόταση 4.1.23. Έστω διατεταγμένοι χώροι (A,≤A) και (B,≤B) τέτοιοι ώστε (A,≤A) ≅
(B,≤B). Ισχύει ότι:

1. ≤A ολική ανν ≤B ολική

2. ≤A καλή ανν ≤B καλή

Η απόδειξη αφήνεται ως άσκηση (Άσκηση 4.8).
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Θεώρημα Συγκρισιμότητας Καλά Διατεταγμένων Χώρων

Οι ομοιότητες μεταξύ καλά διατεταγμένων χώρων έχουν μερικές πάρα πολύ καλές ιδιό-
τητες. Η σημαντικότερη από αυτές είναι το λεγόμενο Θεώρημα Συγκρισιμότητας, που ου-
σιαστικά μας δείχνει ότι οποιαδήποτε καλά διατεταγμένοι χώροι είναι συγκρίσιμοι: Είτε θα
είναι όμοιοι είτε ο ένας θα είναι όμοιος με κάποιο αρχικό τμήμα του άλλου (οπότε η διάταξη
του θα «επεκτείνει» τη διάταξη του πρώτου). Μπορούμε να αποδείξουμε αυτό το θεώρημα
χρησιμοποιώντας υπερπεπερασμένη αναδρομή 1, αλλά προτού το κάνουμε αυτό θα δούμε
μερικές από τις υπόλοιπες ιδιότητες της ομοιότητας καλά διατεταγμένων χώρων.

Πρόταση 4.1.24. Έστω καλά διατεταγμένος χώρος (A,≤) και έστω f : A → A ομοιότητα.
Τότε a ≤ f(a) για κάθε a ∈ A.

Απόδειξη. Έστω (προς άτοπο) b ελάχιστο αντιπαράδειγμα, δηλαδή f(b) < b ενώ για κάθε
a < b ισχύει ότι a ≤ f(a). Αφού f ομοιότητα θα έχουμε ότι f(f(b)) < f(b) (αφού f(b) < b)
αλλά και f(b) ≤ f(f(b)) (αφού για a < b ισχύει ότι a ≤ f(a)). Άτοπο.

Η παραπάνω πρόταση ισχύει ακόμα και αν η f είναι απλά μία φθίνουσα συνάρτηση:

Ορισμός 4.1.25. Μία συνάρτηση f : A→ B μεταξύ δύο διατεταγμένων χώρων (A,≤A) και
(B,≤B) καλείται φθίνουσα ανν για κάθε x, y ∈ A:

αν x <A y τότε f(x) <B f(y)

Πρόταση 4.1.26. Έστω καλά διατεταγμένος χώρος (A,≤) και έστω φθίνουσα συνάρτηση
f : A→ A. Τότε a ≤ f(a) για κάθε a ∈ A.

Η απόδειξη της Πρότασης 4.1.26 είναι ακριβώς ίδια με αυτήν της Πρότασης 4.1.24 2.

Πρόταση 4.1.27. Έστω καλά διατεταγμένοι χώροι (A,≤A) και (B,≤B). Αν (A,≤A) ≅ (B,≤B)
τότε υπάρχει μοναδική ομοιότητα f : A→ B.

Απόδειξη. Έστω ομοιότητες f : A → B και g : A → B. Παρατηρήστε ότι η συνάρτηση
g−1 ○ f : A → A είναι ομοιότητα, άρα από την Πρόταση 4.1.24 για κάθε a ∈ A ισχύει ότι
a ≤ g−1(f(a)), οπότε και g(a) ≤ f(a). Αντίστοιχα η f−1 ○ g : A → A είναι ομοιότητα γα την
οποία για κάθε a ∈ A ισχύει ότι f(a) ≤ g(a). Αυτό σημαίνει ότι f(a) = g(a), για κάθε a ∈ A,
δηλαδή ότι f = g.

Ορισμός 4.1.28. Έστω (A,≤) καλά διατεταγμένος χώρος και a ∈ A. Καλούμε τον υπόχωρο
(seg<(a),≤a), όπου ≤a = ≤ ∩(seg<(a) × seg<(a)) αρχικό υπόχωρο ή (καταχρηστικά) αρχικό
τμήμα του χώρου (δες και Ορισμό 2.2.37) .

Πρόταση 4.1.29. Έστω καλά διατεταγμένος χώρος (A,≤). Για κάθε a ∈ A ισχύει ότι:

(A,≤) /≅ (seg≤(a),≤a)
1 Δεν μας είναι απαραίτητη όμως (δες Άσκηση 4.14).
2 Χρειάζεται μόνο να αντικαταστήσουμε τη λέξη ομοιότητα με τη λέξη φθίνουσα.
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Απόδειξη. Έστω (προς άτοπο) ομοιότητα f : A → seg≤(a). Tότε θα πρέπει να ισχύει ότι
f(a) ∈ seg≤(a), δηλαδή ότι f(a) < a. Παρατηρήστε όμως ότι η f ως συνάρτηση στο (A→ A)
είναι μια φθίνουσα, άρα από την Πρόταση 4.1.26 ισχύει ότι a ≤ f(a). Άτοπο.

Στις αποδείξεις των επόμενων δύο αποτελεσμάτων θα γράφουμε fa αντί για f ↾ seg<A(a).
Ο συμβολισμός αυτός έχει απολύτως τοπικό χαρακτήρα και δεν θα ξαναχρησιμοποιηθεί στη
συνέχεια.

Πρόταση 4.1.30. Έστω καλά διατεταγμένοι χώροι (A,≤A) και (B,≤B) και συνάρτηση f :
A→ B. H f είναι ομοιότητα μεταξύ του (A,≤A) και ενός αρχικού τμήματος του (B,≤B) ανν
ικανοποιεί την εξίσωση:

f(a) = min
B

B ∖ f ↾ seg<A(a)[seg<A(a)], για κάθε a ∈ A 1

Απόδειξη. Έστω f ομοιότητα των (A,≤A) και (seg<B (b),≤b), έστω a ∈ A και:

m = min
B

B ∖ fa[seg<A(a)]

Παρατηρήστε ότι (αφού η f είναι επί του seg<B (b), άρα και επί του B) υπάρχει a′ ∈ A με
f(a′) = m. Λόγω του τρόπου ορισμού του m δεν μπορεί να ισχύει ότι a′ ∈ seg<A(a), άρα
a ≤A a′, οπότε (αφού η f διατηρεί τη διάταξη) θα έχουμε f(a) ≤b f(a′), δηλαδή f(a) ≤b m.

Έστω (προς άτοπο) ότι f(a) <B m. Παρατηρήστε ότι f(a) ∉ B ∖ fa[seg<A(a)], αφού το
m είναι το ελάχιστο στοιχείο αυτού του συνόλου. Άρα f(a) ∈ fa[seg<A(a)] δηλαδή υπάρχει
x ∈ seg<A(a) με f(x) = f(a) 2. Άτοπο καθώς η f είναι 1-1 και x <A a.

Αντίστροφα τώρα, είναι εύκολο να ελέγξουμε ότι μία συνάρτηση που ικανοποιεί αυτήν
την εξίσωση είναι 1-1 και διατηρεί τη διάταξη του (A,≤A). Αν ισχύει ότι f [A] = B τότε η f
είναι ομοιότητα μεταξύ (A,≤A) και (B,≤B). Αν f [A] ⊂ B θεωρούμε το:

b0 = min
B

B ∖ f [A]

και θα δείξουμε ότι f [A] = seg<B (bo), οπότε η f θα είναι ομοιότητα μεταξύ (A,≤A) και του
αρχικού τμήματος (seg<B (b0),≤b0).

Έστω (προς άτοπο) ότι seg<B (b0) /⊆ f [A], δηλαδή υπάρχει b′ <B b0 τέτοιο ώστε b′ ∉ f [A].
Τότε όμως b′ ∈ B ∖ f [A], γεγονός που αντιβαίνει στην ελαχιστικότητα του b0.

Αν (προς άτοπο) seg<B (b0) ⊂ f [A] τότε θα υπάρχει a ∈ A με f(a) ∉ seg<B (b0), δηλαδή
b0 ≤B f(a). Καθώς όμως b0 ∈ B ∖ fa[seg<A(a)] (αφού b0 ∈ B ∖ f [A]), και η f ικανοποιεί
την εξίσωση της εκφώνησης, ισχύει ότι f(a) ≤B b0. Οπότε καταλήγουμε ότι f(a) = b0, που
αντιβαίνει στο γεγονός ότι b0 ∉ f [A].

Θεώρημα 4.1.31 (Θεώρημα Συγκρισιμότητας Καλά Διατεταγμένων Χώρων). Έστω καλά
διατεταγμένοι χώροι (A,≤A) και (B,≤B). Τότε είτε (A,≤A) ≅ (B,≤B) είτε ένας από τους δύο
είναι όμοιος με κάποιο αρχικό τμήμα του άλλου.
1 Δηλαδή η f αναθέτει στο a ∈ A την ελάχιστη από όλες τις «δυνατές» τιμές.
2 Προφανώς οι τιμές των f και fa ταυτίζονται για τα x ∈ seg<A(a).
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Η ιδέα της απόδειξης είναι να αντιστοιχούμε στοιχεία του A με στοιχεία του B με τον
ακόλουθο τρόπο: Αντιστοιχούμε το 0A στο 0B , μετά το ελάχιστο του A∖ {0A} στο ελάχιστο
του B ∖ {0B} κ.ο.κ.. Με αυτόν τον τρόπο ορίζουμε μία 1-1 συνάρτηση που μάλιστα διατηρεί
και τη διάταξη. Έτσι, αν εξαντλήσουμε και τους δύο χώρους ταυτόχρονα οι χώροι θα είναι
όμοιοι. Σε αντίθετη περίπτωση ο χώρος που θα εξαντληθεί πρώτος θα είναι όμοιος με ένα
αρχικό τμήμα του άλλου. Την ιδέα αυτήν την χρησιμοποιήσαμε και στην Πρόταση 4.1.30,
βέβαια εκεί ξέραμε εκ των προτέρων ποιος χώρος θα εξαντληθεί πρώτος.

Απόδειξη Θεωρήματος 4.1.31. Θεωρούμε τη συνάρτηση h : (A⇀ B) ×A→ B με:

h(g, a) =

⎧⎪⎪⎨⎪⎪⎩

minB B ∖ g[seg<A(a)] , αν B ∖ g[seg<A(a)] ≠ ∅
0B , αλλιώς

Από την Πρόταση 4.1.12 υπάρχει (μοναδική) συνάρτηση f : A → B που ικανοποιεί την
εξίσωση:

f(a) = h(f ↾ seg<(a), a), για κάθε a ∈ A

Υπάρχουν δύο περιπτώσεις:

1η περίπτωση: f [A] ⊂ B, δηλαδή B ∖ f [A] ≠ ∅. Αυτό σημαίνει ότι η δεύτερη περίπτωση του
ορισμού της f συμβαίνει μόνο για το στοιχείο 0A και ότι η f ικανοποιεί την εξίσωση της
Πρότασης 4.1.30. Συνεπώς ο (A,≤A) είναι όμοιος με κάποιο αρχικό τμήμα του (B,≤B).

2η περίπτωση: f [A] = B. Αν δεν υπάρχει a ≠ 0A με f(a) = 0B τότε ισχύουν ακριβώς
όσα είπαμε στην προηγούμενη περίπτωση. Συνεπώς ο (A,≤A) είναι όμοιος με τον (B,≤B).
Αν όμως υπάρχει a ≠ 0A με f(a) = 0B

1, επιλέγουμε το ελάχιστο από αυτά, έστω a0 και
παρατηρούμε ότι η συνάρτηση fa0 = f ↾ seg<A(a0) ικανοποιεί την εξίσωση της Πρότα-
σης 4.1.30, άρα ο χώρος (seg<A(a0),≤A) είναι όμοιος με ένα αρχικό τμήμα του (B,≤B), έστω
το (seg<B (b),≤b). Θα δείξουμε ότι seg<B (b) = B. Έστω (προς άτοπο) x ∈ B∖seg<B (b). Καθώς
fa0 [seg<A(a0)] = seg<B (b) έπεται ότι B ∖ fa0 [seg<A(a0)] ≠ ∅, άρα f(a0) ≠ 0B . Άτοπο.

Το Θεώρημα 4.1.31 μας λέει ότι οποιοιδήποτε δύο καλά διατεταγμένοι χώροι μπορούν
να αντιπαραβληθούν (ως προς τις διατάξεις τους) έτσι ώστε να δούμε ποιος είναι πιο «μα-
κρύς». Αυτό είναι τρομερά χρήσιμο, καθώς, όπως θα δούμε, για κάθε σύνολο υπάρχει καλή
διάταξη, άρα η εφαρμογή του Θεωρήματος 4.1.31 είναι καθολική. Χρησιμοποιώντας αυτήν
την έννοια «μάκρους» (και αντιπροσώπους για κάθε διαφορετικό τύπο διάταξης) αργότερα
θα μπορέσουμε να συγκρίνουμε και τον πληθικό αριθμό των συνόλων, τον αριθμό στοιχείων
τους δηλαδή 2.

1 Αυτό σημαίνει ότι εξαντλήσαμε τον (B,≤B) και από εδώ και στο εξής θα αντιστοιχούμε τα στοιχεία του A στο
0B .

2 Καθώς τα σύνολα μπορούν να περιέχουν πάρα πολλά στοιχεία είναι αναμενόμενο ότι οι φυσικοί αριθμοί δεν
φτάνουν για αυτήν τη δουλειά. Αυτός είναι ο λόγος που πρέπει να μπούμε στον έξτρα κόπο να ορίσουμε τους
διατακτικούς αριθμούς.
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4.2 Αξιώματος Επιλογής παραλειπόμενα
Υπάρχουν πολλοί τρόποι να αποδείξουμε ότι για κάθε σύνολο υπάρχει καλή διάταξη. Σε

μια προσπάθεια να μην επεκταθούμε από τώρα στη θεωρία των διατακτικών αριθμών, αλλά
ούτε να αναφερθούμε σε Θεωρήματα Σταθερού Σημείου, θα αποδείξουμε αυτό το αποτέλε-
σμα βασισμένοι σε ότι έχουμε ήδη ορίσει. Προτρέπουμε όμως θερμά τους αναγνώστες να
ανατρέξουν στη βιβλιογραφία και να μελετήσουν τις διάφορες εναλλακτικές αποδείξεις. Το
κοινό συστατικό σε όλες τις αποδείξεις του Θεωρήματος Καλής Διάταξης (ή Αρχή καλής
Διάταξης ή Θεώρημα του Zermelo) είναι η χρήση του αξιώματος επιλογής, είτε όπως το
διατυπώσαμε στο Κεφάλαιο 2, είτε με κάποια άλλη ισοδύναμη διατύπωση. Η αλήθεια είναι
ότι δεν μπορούμε να έχουμε αυτήν την ωραία ιδιότητα αν δεν εντάξουμε το αξίωμα επιλογής
στη θεωρία μας 1.

Για να αποδείξουμε το θεώρημα καλής διάταξης θα χρησιμοποιήσουμε ένα εξίσου ση-
μαντικό αποτέλεσμα της Θεωρίας Διάταξης το Λήμμα του Zorn 2.

4.2.1 Το Λήμμα του Zorn 3

Θα ξεκινήσουμε διατυπώνοντάς το και έπειτα θα αναφέρουμε τους (τοπικούς) ορισμούς
και συμβολισμούς που θα χρειαστούμε.

Θεώρημα 4.2.1 (Λήμμα του Zorn). Αν κάθε αλυσίδα ενός διατεταγμένου χώρου έχει άνω
φράγμα τότε ο χώρος έχει μεγιστικό στοιχείο.

Συμβολισμός 4.2.2. Έστω διατεταγμένος χώρος (A,≤). Το σύνολο των αλυσίδων του χώρου
θα το συμβολίζουμε με:

chainA = {C ∈ P(A) ∣ C αλυσίδα}

Ορισμός 4.2.3. Έστω (A,≤) διατεταγμένος χώρος, S υπόχωρος και a ∈ A. Το a καλείται
αυστηρό άνω φράγμα του S ανν για κάθε στοιχείο x ∈ S ισχύει ότι x < a.

Παρατηρήστε ότι σε έναν διατεταγμένο χώρο (A,≤) που δεν έχει μεγιστικό στοιχείο κάθε
αλυσίδα C που έχει άνω φράγμα έχει και γνήσιο άνω φράγμα.

Ορισμός 4.2.4. Έστω διατεταγμένος χώρος (A,≤) που δεν έχει μεγιστικό στοιχείο. Μία
συνάρτηση f : chainA → A τέτοια ώστε το f(C) να είναι γνήσιο άνω φράγμα της C καλείται
συνάρτηση άνω φράγματος.

Συμβολισμός 4.2.5. Έστω διατεταγμένος χώρος (A,≤), C ∈ chainA και c ∈ C . Θα συμβολί-
ζουμε το αρχικό τμήμα του c στη C με segC(c) = {x ∈ C ∣ x < c}.

Ορισμός 4.2.6. Έστω διατεταγμένος χώρος (A,≤), που δεν έχει μεγιστικό στοιχείο, και συ-
νάρτηση άνω φράγματος f . Μία αλυσίδα C καλείται ιδανική ως προς την f ανν:
1 Το θεώρημα καλής διάταξης είναι ισοδύναμο με το αξίωμα επιλογής, και όπως αναφέραμε στη Παράγραφο 2.3.2

το αξίωμα επιλογής δεν μπορεί να αποδειχθεί από τα αξιώματα της ZF.
2 Το Λήμμα του Zorn είναι και αυτό ισοδύναμο με το αξίωμα επιλογής (δες Άσκηση 4.15 και κατ’ επέκταση με

το θεώρημα καλής διάταξης.
3 Η απόδειξη που θα δούμε οφείλεται στον Jonathan W. Lewin (δες [9]).
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1. η ≤ είναι καλή διάταξη του C και

2. για κάθε c ∈ C ισχύει ότι το c = f(segC(c)).

Παρατηρήστε ότι κάθε μη κενός διατεταγμένος χώρος (A,≤), που δεν έχει μεγιστικό
στοιχείο, περιέχει ιδανικές αλυσίδες ως προς δοσμένη συνάρτηση άνω φράγματος f : Έστω
a = f(∅) 1 τότε {a} ιδανική αλυσίδα ως προς f , όπως επίσης, αν υπάρχουν στοιχεία γνήσια
μεγαλύτερα του a στον χώρο, το {a, f({a})} είναι ιδανική αλυσίδα ως προς την f , κ.ο.κ..

Παρατήρηση 4.2.7. Έστω ιδανική αλυσίδα C για τη συνάρτηση άνω φράγματος f . Τότε
και η C ∪ {f(C)} είναι ιδανική αλυσίδα.

Μέσα από αυτή την παρατήρηση αχνοφαίνεται μία πολύ ενδιαφέρουσα ιδιότητα των
ιδανικών αλυσίδων.

Πρόταση 4.2.8. Έστω C,D ιδανικές αλυσίδες ως προς την συνάρτηση άνω φράγματος f
ενός διατεταγμένου χώρου (A,≤) που δεν έχει μεγιστικό στοιχείο. Αν C ≠D τότε η μία είναι
αρχικό τμήμα της άλλης.

Απόδειξη. Έστω (χωρίς βλάβη της γενικότητας) ότι C ∖D ≠ ∅ και έστω x = min(C ∖D).
Θα δείξουμε ότι segC(x) = D.

Έστω (προς άτοπο) ότι c ∈ segC(x)∖D. Τότε c ∈ C ∖D και c < x, γεγονός που αντιβαίνει
στον τρόπο επιλογής του x. Άρα segC(x) ⊆D.

Έστω τώρα (προς άτοπο) ότι D ∖ segC(x) ≠ ∅ και έστω y = min(D ∖ segC(x)) και
z = min(C ∖ segD(y)).

Θα δείξουμε ότι segD(y) = segC(z). Έστω (προς άτοπο) ότι c ∈ segC(z) ∖ segD(y).
Τότε c ∈ C ∖ segD(y) και c < z, γεγονός που αντιβαίνει στον τρόπο επιλογής του z. Άρα
segC(z) ⊆ segD(y). Τώρα αν (προς άτοπο) d ∈ segD(y) ∖ segC(z), θα ισχύει ότι d ∈ segC(x)
(αλλιώς θα είχαμε d ∈ D ∖ segC(x) και d < y)χ. Επίσης d < z καθώς d ≠ z (d ∈ segD(y) ενώ
z ∉ segD(y)) και αν z < d τότε z < y (αφού d < y) και z ∈ D (αφού d ∈ segC(x), z < d και
δείξαμε ότι segC(x) ⊆D), γεγονός που αντιβαίνει στην επιλογή του y.

Αφού segD(y) = segC(z), έπεται ότι f(segD(y)) = f(segC(z)) και άρα y = z (αφού
C,D ιδανικές αλυσίδες ως προς την f). Όμως x ∉ D και άρα x ∉ segD(y), οπότε λόγω της
ελαχιστικότητας του z έχουμε ότι z ≤ x. Επίσης, z ∈D (αφού y ∈D) ενώ x ∉D, οπότε x ≠ z.
Συνεπώς z ∈ segC(x). Αυτό σημαίνει ότι και y ∈ segC(x) που είναι άτοπο.

Μέσα από αυτήν την πρόταση μπορούμε εύκολα να συμπεράνουμε τα ακόλουθα.

Παρατήρηση 4.2.9. Έστω C ιδανική αλυσίδα, c ∈ C και x < c. Τότε είτε x ∈ C είτε το x δεν
ανήκει σε άλλη ιδανική αλυσίδα.

Πράγματι, αν το x ανήκε σε ιδανική αλυσίδα C ′ ≠ C, από την Πρόταση 4.2.8 θα έπρεπε
είτε C ′ αρχικό τμήμα C (άτοπο καθώς τότε C ′ ⊂ C και x ∈ C ′ αλλά x ∉ C) είτε C αρχικό
τμήμα C ′, δηλαδή υπάρχει y ∈ C ′ τέτοιο ώστε C = segC′(y) (άτοπο καθώς τότε y ≤ x και
c < y).
1 Το ∅ είναι τετριμμένα αλυσίδα του χώρου.
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Λήμμα 4.2.10. Η ένωση μίας οικογένειας F ιδανικών αλυσίδων είναι πάντα ιδανική αλυσίδα.

Απόδειξη. Έστω U = ⋃F . Η ≤ είναι ολική διάταξη του U (οποιαδήποτε δύο στοιχεία του
είναι συγκρίσιμα καθώς ανήκουν σε δύο αλυσίδες που είτε είναι ίσες είτε η μία είναι αρχικό
τμήμα της άλλης), άρα U αλυσίδα. Αν A ⊆ U είναι μη κενό τότε αν το a ∈ A δεν είναι
ελάχιστο στοιχείο του A, τόσο το a όσο και όλα τα x ∈ A με x < a θα ανήκουν σε ιδανική
αλυσίδα (λόγω της Παρατήρησης 4.2.9), έστω την C . Αφού η C είναι καλά διατεταγμένη
έπεται ότι το {x ∈ A ∣ x < a} ⊆ C θα έχει ελάχιστο στοιχείο το οποίο θα είναι ελάχιστο και
για το A.

Τέλος, παρατηρήστε ότι αν για την ιδανική αλυσίδα C ισχύει ότι C ⊆ U τότε αυτή είναι
αρχικό τμήμα του U , καθώς αν υπήρχαν d ∈ U με d ∉ C και c ∈ C με d < c τότε το d θα
ανήκει σε μία ιδανική αλυσίδα D που είτε θα είναι αρχικό τμήμα της C (άτοπο γιατί τότε
d ∈ D) είτε η C θα είναι αρχικό τμήμα αυτής (άτοπο γιατί d < c και c ∈ C, άρα και d ∈ C).
Αυτό σημαίνει ότι για κάθε u ∈ U ισχύει ότι u = f(segU (u)), καθώς για κάθε ιδανική αλυσίδα
C ⊆ U που περιέχει το u ισχύει ότι u = f(segC(u)) και segU (u) = segC(u) (αφού C αρχικό
τμήμα του U).

Αν υποθέσουμε (προς άτοπο) ότι ο χώρος της εκφώνησης του Θεωρήματος 4.2.1 δεν
έχει μεγιστικό στοιχείο, και επιπλέον υπάρχει συνάρτηση άνω φράγματος f για αυτόν τότε
έχουμε απόδειξη!

Απόδειξη του Θεωρήματος 4.2.1. Έστω f συνάρτηση άνω φράγματος. Θεωρούμε το σύνολο:

U =⋃{C ∈ chainA ∣ C ιδανική ως προς f}

Το U είναι ιδανική αλυσίδα ως προς την f (λόγω του Λήμματος 4.2.10). Έστω x = f(U),
τότε από την Παρατήρηση 4.2.7 και το U ∪{x} είναι ιδανική αλυσίδα. Οπότε x ∈ U (αφού το
U είναι η ένωση όλων των ιδανικών αλυσίδων) και ταυτόχρονα το x είναι γνήσιο άνω φράγμα
του U . Άτοπο.

Το μόνο «μελανό» σημείο στην παραπάνω απόδειξη είναι το κατά πόσον υπάρχει συ-
νάρτηση άνω φράγματος στην περίπτωση όπου ένας χώρος δεν έχει μεγιστικό στοιχείο ενώ
κάθε αλυσίδα του έχει άνω φράγμα. Μιλώντας πιο απλά, το ερώτημα είναι αν μπορούμε για
κάθε αλυσίδα να επιλέξουμε ένα από τα γνήσια άνω φράγματά της. Θα μπορούσε κάποιος
να σκεφτεί να πάρει για κάθε αλυσίδα το ελάχιστο γνήσιο άνω φράγμα. Αυτό όμως μπορεί
να μην υπάρχει καθώς ο χώρος δεν είναι απαραίτητα καλά διατεταγμένος. Για να κάνουμε
αυτές τις επιλογές θα χρειαστεί να κάνουμε επίκληση στο αξίωμα επιλογής:

Θεωρούμε για κάθε C ∈ chainA το σύνολο FC = {x ∈ A ∣ (∀c ∈ C)(c < x)}, και
την οικογένεια F = {FC ⊆ A ∣ C ∈ chainA}. Αν ο διατεταγμένος χώρος δεν έχει
μέγιστο και κάθε αλυσίδα του έχει άνω φράγμα, τότε κάθε FC είναι μη κενό.
Συνεπώς από το Αξίωμα VII.(iii) υπάρχει συνάρτηση επιλογής για την F που
είναι συνάρτηση άνω φράγματος.
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4.2.2 Το Θεώρημα Καλής Διάταξης
Έχοντας αποδείξει το Λήμμα του Zorn η απόδειξη του θεωρήματος καλής διάταξης είναι

εύκολη υπόθεση.

Θεώρημα 4.2.11 (Θεώρημα Καλής Διάταξης). Για κάθε σύνολο υπάρχει καλή διάταξη.

Το προσχέδιο της απόδειξης είναι το εξής: Θα ορίσουμε το σύνολοW που περιέχει όλους
τους καλά διατεταγμένο υπόχωρους του συνόλου μας. Αυτοί μπορούν να διαταχθούν μεταξύ
τους (ως προς το ποιος είναι αρχικό τμήμα ποιου) και επιπλέον μπορούμε να δείξουμε ότι
κάθε αλυσίδα του (W,≤) έχει άνω φράγμα. Συνεπώς από το Θεώρημα 4.2.1 θα υπάρχει
μεγιστικό στοιχείο στο (W,≤) που αναγκαστικά θα ταυτίζεται με τον (W,≤).

Προτού περάσουμε στην απόδειξη ας αναπτύξουμε περαιτέρω κάποια σημεία του πα-
ραπάνω προσχεδίου.

Ορισμός 4.2.12. Έστω σύνολο A. Θεωρούμε το σύνολο όλων των καλά διατεταγμένων υπό-
χωρων του A:

WA = {(S,≤S) ∈ P(A) × (A ×A) ∣ ≤S καλή διάταξη του S}

Παρατηρήστε ότι το σύνολο WA είναι μη κενό, καθώς παραδείγματος χάρη (∅,∅) ∈ WA ή
(αν A μη κενό) ({a},{(a, a)}) ∈WA για κάθε a ∈ A.

Συμβολισμός 4.2.13. Θα γράφουμε (A,≤A) ⪯ (B,≤B) όταν ο καλά διατεταγμένος χώρος
(A,≤A) είναι αρχικό τμήμα του (B,≤B).

Παρατήρηση 4.2.14. Η σχέση ⪯ είναι διάταξη του WA.

Απόδειξη Θεωρήματος 4.2.11. Έστω σύνολο A και έστω C αλυσίδα του διατεταγμένου χώ-
ρου (WA,⪯). Θεωρούμε το σύνολο:

U =⋃{S ∣ (S,≤S) ∈ C}

και τη σχέση διάταξης ≤U με:

s ≤U t ανν υπάρχει (S,≤S) ∈ C τέτοιο ώστε s, t ∈ S και s ≤S t

για κάθε s, t ∈ U . Θα δείξουμε ότι αυτή η διάταξη είναι καλή.
Έστω μη κενό V ⊆ U , τότε υπάρχει (S,≤S) ∈ C τέτοιο ώστε V ∩ S ≠ ∅. Το σύνολο αυτό

είναι μη κενό υποσύνολο του S άρα έχει ελάχιστο στοιχείο, έστω v. Θα δείξουμε ότι το v
είναι ελάχιστο και για το V . Έστω (προς άτοπο) ότι υπάρχει v′ ∈ V τέτοιο ώστε v /≤U v′

και έστω (S′,≤S′) ∈ C με v′ ∈ S′. Αφού C αλυσίδα έπεται ότι είτε (S,≤S) ⪯ (S′,≤S′) είτε
(S′,≤S′) ≺ (S,≤S). (Από την Άσκηση 4.9) στην πρώτη περίπτωση έχουμε v, v′ ∈ S′ και
v′ <S′ v, άρα και v′ <S v 1, ενώ στη δεύτερη v, v′ ∈ S και v′ <S v. Και στις δύο περιπτώσεις
η ύπαρξη του v′ αντιβαίνει στην ελαχιστικότητα του v.
1 Αφού (S′,≤S′) επέκταση (S,≤S), v ∈ S και v′ <S′ v, έπεται ότι v′ ∈ S.
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Επομένως (U,≤U ) ∈ WA. Θα δείξουμε ότι ο χώρος (U,≤U ) είναι άνω φράγμα της C,
δηλαδή θα δείξουμε ότι αν (S,≤S) ∈ C τότε (S,≤S) ⪯ (U,≤U ) (πάλι μας βολεύει να χρησι-
μοποιήσουμε την Άσκηση 4.9).

Προφανώς S ⊆ U . Αν για τα x, y ∈ U ισχύει ότι x ≤U y και y ∈ S, τότε (από τον τρόπο
ορισμού της ≤U ) υπάρχει (S′ ≤S′) ∈ C τέτοιος ώστε x, y ∈ S′ και x ≤S′ y. Αφού C αλυσίδα
έπεται ότι είτε (S,≤S) ⪯ (S′,≤S′) είτε (S′,≤S′) ≺ (S,≤S). Και στις δύο περιπτώσεις προκύπτει
ότι x ∈ S και x ≤S y 1.

Αφού κάθε αλυσίδα του WA έχει άνω φράγμα, από το Θεώρημα 4.2.1 έπεται ότι ο χώρος
(WA,⪯) έχει μεγιστικό στοιχείο, έστω (M,≤M ). Αρκεί να δείξουμε ότι A =M και τότε η ≤M
θα είναι καλή διάταξη του A.

Έστω (προς άτοπο) ότι υπάρχει a ∈ A ∖M . Θεωρούμε τον καλά διατεταγμένοι χώρο
(M ∪ {a},≤′M ) όπου x ≤′M y ανν x ≤M y, για κάθε x, y ∈ M , και x ≤′M a, για κάθε x ∈ M .
Άρα (M ∪ {a},≤′M ) ∈WA και προφανώς (M,≤M ) ≺ (M ∪ {a},≤′M ), γεγονός που αντιβαίνει
στη μεγιστικότητα του (M,≤M ).

Το Θεώρημα 4.2.11 μας δίνει έναν απλό τρόπο να επιλέγουμε ένα στοιχείο από κάθε
σύνολο μίας οικογένειας μη κενών συνόλων: Αφού κάθε σύνολο της οικογένειας μπορεί να
διαταχθεί καλά, μπορούμε πάντα να επιλέξουμε το ελάχιστο στοιχείο του συνόλου!

Θεώρημα 4.2.15. Το Θεώρημα 4.2.11 ισχύει ανν ισχύει το Αξίωμα VII.(iii).

Απόδειξη. Το αντίστροφο είναι η απόδειξη του Θεώρημα 4.2.11, στην οποία έχουμε υποθέσει
ότι ισχύει το Αξίωμα VII.(iii) 2.

Για το ευθύ, έστω οικογένεια μη κενών συνόλων F . Θεωρούμε μία καλή διάταξη ≤F του
F και τη συνάρτηση f : F → ⋃F , με f(A) = minF A, για κάθε A ∈ F . Παρατηρήστε ότι η
f είναι συνάρτηση επιλογής για την F .

Έχουμε λοιπόν τρεις ισοδύναμες προτάσεις: Το Αξίωμα Επιλογής, το Λήμμα του Zorn
και το Θεώρημα Καλής Διάταξης. Θα μπορούσαμε να δεχθούμε ως αξίωμα οποιαδήποτε από
τις τρεις, επιλέξαμε όμως το αξίωμα επιλογής λόγω της απλότητάς του και του γεγονότος
ότι μοιάζει πιο «εύλογο» από τα άλλα 3.

Παρατηρήστε επίσης ότι το Θεώρημα 4.2.11 υποδεικνύει ότι μπορούμε να χρησιμοποι-
ήσουμε υπερπεπερασμένη αναδρομή σε οποιαδήποτε σύνολο, φτάνει φυσικά πρώτα να πά-
ρουμε μία καλή διάταξή του.

1 Το ζητούμενο προκύπτει άμεσα στη δεύτερη περίπτωση, ενώ στην πρώτη προκύπτει από το γεγονός ότι y ∈ S
και x ≤S′ y.

2 Θυμηθείτε ότι το χρησιμοποιήσαμε για να αποδείξουμε το Θεώρημα 4.2.1.
3 Είναι χαρακτηριστική η ακόλουθη ρήση του Jerry L. Bona:

The Axiom of Choice is obviously true, the well-ordering principle obviously false, and who
can tell about Zorn’s lemma?
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Ασκήσεις

4.1. Έστω (A,≤) ολικά διατεταγμένος χώρος. Δείξτε ότι η ≤ είναι καλή διάταξη ανν
δεν υπάρχει συνάρτηση f : ω → A με f(n+) < f(n) για κάθε n ∈ ω.

4.2. Έστω σύνολοA, (B,≤B) καλά διατεταγμένος χώρος και 1-1 συνάρτηση f : A→ B.
Δείξτε ότι η σχέση ≤A με x ≤A y ανν f(x) ≤B f(y), για κάθε x, y ∈ A, είναι καλή
διάταξη του A.

4.3. Έστω (A,≤) ολικά διατεταγμένος χώρος. Δείξτε ότι αν για κάθε B ⊆ A για το
οποίο ισχύει ότι:

seg<(x) ⊆ B ⇒ x ∈ B, για κάθε x ∈ A

έπεται ότι B = A, τότε η ≤ είναι καλή διάταξη του A.

4.4. Συμπληρώστε τη δεύτερη απόδειξη του Θεωρήματος Υπερπεπερασμένης Ανα-
δρομής (Σελίδα 57).

4.5. Αποδείξτε το Πόρισμα 4.1.12.

4.6. Έστω B το σύνολο που ορίσαμε στην απόδειξε του Θεωρήματος 4.1.16. Δείξτε
ότι αν C μεταβατικό σύνολο τέτοιο ώστε A ⊆ C, τότε B ⊆ C .

4.7. Αποδείξτε την Πρόταση 4.1.21.

4.8. Αποδείξτε την Πρόταση 4.1.23.

4.9. Έστω καλά διατεταγμένοι χώροι (A,≤A) και (B,≤B). Δείξτε ότι ο (A,≤A) είναι
αρχικό τμήμα του (B,≤B) ανν A ⊆ B και αν για τα x, y ∈ B ισχύει ότι x ≤B y και
y ∈ A τότε x ∈ A και x ≤A y.

4.10. Θεωρήστε το σύνολο F = {f ⊆ A × B ∣ f 1-1 συνάρτηση}. Δείξτε ότι αν η f
είναι μεγιστικό στοιχείο του χώρου (F,⊆) τότε είτε dom(f) = A είτε ran(f) = B.

4.11 (Αρχή Μεγίστου του Hausdorff). Δείξτε ότι για κάθε διατεταγμένο χώρο (A,≤)
το σύνολο των αλυσίδων του έχει μεγιστικό στοιχείο ως προς τη σχέση ⊆.

4.12 (Αρχή Επέκτασης Διάταξης του Szpilrajn). Δείξτε ότι για κάθε διατεταγμένο
χώρο (A,≤) υπάρχει σχέση ολικής διάταξης ≤′ τέτοια ώστε ≤ ⊆ ≤′.

4.13. Έστω (A,≤) ολικά διατεταγμένος χώρος. Δείξτε ότι αν για κάθε a ∈ A ο υπόχω-
ρος (seg<(a),≤) είναι καλά διατεταγμένος τότε και ο χώρος (A,≤) είναι καλά διατε-
ταγμένος.
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4.14. Αποδείξτε το Θεώρημα 4.1.31 χωρίς τη χρήση του Θεωρήματος 4.1.11.

4.15. Αποδείξτε το Αξίωμα VII.(iii) χρησιμοποιώντας το Θεώρημα 4.2.1.

4.16. Αποδείξτε το το Θεώρημα 4.2.1 χρησιμοποιώντας το Θεώρημα 4.2.11.
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ΔΙΑΤΑΚΤΙΚΟΙ ΑΡΙΘΜΟΙ

Θεωρήστε το σύνολο ω+ (το επόμενο σύνολο του ω δηλαδή), και έπειτα το επόμενο
αυτού του συνόλου κ.ο.κ.. Με αυτόν τον τρόπο φτιάχνεται η ακολουθία συνόλων:

ω, ω+, ω++, ω+++, ...

Παραλείψαμε μερικές παρενθέσεις για να κάνουμε τον συμβολισμό πιο παραστατικός. Ας
γίνουμε ακόμα πιο τολμηροί και ας συμβολίσουμε τα σύνολα αυτά ως:

ω, ω + 1, ω + 2, ω + 3, ...

Υπάρχει ένας πολύ στοιχειώδης τρόπος να διατάξουμε αυτά τα σύνολα: Θυμηθείτε ότι για
κάθε σύνολο A ισχύει ότι A ∈ A+ και A ⊂ A+. Αυτό μας δίνει το θάρρος να φανταζόμαστε
ότι αυτή η ακολουθία επεκτείνει την αρίθμηση πέρα από τους φυσικούς 1 :

μηδέν, ένα, δύο, τρία, ... , άπειρο, άπειρο+1, άπειρο+2, άπειρο+3, ...

Το ερώτημα που θα γεννήθηκε στο μυαλό του αναγνώστη σίγουρα είναι το εξής: Γιατί μας
χρειάζεται να μετράμε και πέρα από το άπειρο; Ένας βασικός λόγος είναι ότι σε πάρα πολ-
λές περιπτώσεις χρειάζεται να γνωρίζουμε πόσα στοιχεία έχει ένα σύνολο, και όπως είδαμε
υπάρχουν σύνολα με «άπειρα» στοιχεία ή και με ακόμα περισσότερα (για παράδειγμα το
σύνολο ω + 1 έχει «άπειρα» στοιχεία συν ακόμα ένα, το ω). Χρειαζόμαστε λοιπόν διατα-
κτικούς αριθμούς, πέρα από τους φυσικούς, για να μετρήσουμε τα στοιχεία του εκάστοτε
συνόλου. Πως θα μετρήσουμε όμως τα στοιχεία του συνόλου όταν τα στοιχεία του δεν έχουν
κάποια σειρά;

Τα ερωτήματα αυτά, μεταξύ άλλων, θα απαντηθούν στο κεφάλαιο που βρισκόμαστε. Εί-
δαμε στην Παράγραφο 4.2.2 ότι τα στοιχεία κάθε συνόλου μπορούν να διαταχθούν καλώς.
1 Αναλογιστείτε ότι όταν μετράμε δεν δίνουμε σημασία στο πλήθος αντικειμένων που αντιπροσωπεύει ο αριθμός

που αναφέρουμε, αλλά στη σειρά που βρίσκεται αυτός. Έτσι το άπειρο+1 δεν χρειάζεται να αντιστοιχεί σε
κάποια ποσότητα, αρκεί που βρίσκεται μετά το άπειρο.
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Διατακτικοί αριθμοί

Εδώ θα δείξουμε ότι κάθε σύνολο είναι όμοιο με κάποιον διατακτικό αριθμό, που μέσα σε
άλλα «καταγράφει» και το πλήθος στοιχείων του συνόλου 1. Οι διατακτικοί αριθμοί έχουν
φυσικά μεγάλη σημασία και ανεξάρτητα από τους πληθικούς αριθμούς, καθώς αποτελούν
ένα καθολικό τρόπο αναπαράστασης του τύπου της διάταξης ενός διατεταγμένου χώρου 2.

5.1 Διατακτικοί αριθμοί
Αφού τακτοποιήσαμε στο Κεφάλαιο 4 τις εκκρεμότητες που είχαμε αφήσει γύρω από

την έννοια της διάταξης, μπορούμε πλέον να παρουσιάσουμε (έναν τρόπο να ορίσουμε)
τους διατακτικούς αριθμούς. Όπως αναφέραμε στην εισαγωγή η πρόθεσή μας είναι να επε-
κτείνουμε την αρίθμηση και την πράξη του μετρήματος πέρα από το «άπειρο».

Συμβολισμός 5.1.1. Έστω σύνολο A. Θα γράφουμε x ∈A y ανν είτε x ∈A y είτε x = y. Όταν
δεν χρειάζεται να τονίσουμε το σύνολο A θα γράφουμε x ∈ y.

Παρατήρηση 5.1.2. Η σχέση ∈ είναι σχέση διάταξης σε ένα μεταβατικό 3 σύνολο A.

Πράγματι, είναι αυτοπαθής (λόγω της ισότητας), μεταβατική (καθώς το A είναι μετα-
βατικό) και αντισυμμετρική (καθώς για x, y ∈ A, αν x ∈ y και y ∈ x τότε λόγω της μεταβατι-
κότητας του A θα ισχύει ότι είτε x ⊂ y και y ⊂ x, που είναι άτοπο, είτε x = y).

Ορισμός 5.1.3. Ένα σύνολο α καλείται διατακτικός αριθμός ανν είναι μεταβατικό και καλά
διατεταγμένο ως προς τη σχέση ∈α.

Θεώρημα 5.1.4. Κάθε φυσικός n ∈ ω είναι διατακτικός αριθμός.

Απόδειξη. Από την Πρόταση 3.1.20 προκύπτει ότι το n είναι μεταβατικό. Αν A ⊆ n τότε
κάθε m ∈ A είναι φυσικός μικρότερος του n (πάλι από την Πρόταση 3.1.20). Συνεπώς το
σύνολο A είναι μη κενό σύνολο φυσικών και έχει ελάχιστο στοιχείο ως προς την ≤ω (λόγω
του Θεωρήματος 3.1.23), το οποίο θα είναι ελάχιστο και ως προς την ∈ω 4.

Θεώρημα 5.1.5. Το ω είναι διατακτικός αριθμός.

Η απόδειξη του παραπάνω Θεωρήματος είναι εντελώς αντίστοιχη με αυτή του Θεωρή-
ματος 5.1.4 (ίσως και πιο απλή).

Πρόταση 5.1.6. Αν ο α είναι διατακτικός τότε και ο α+ είναι διατακτικός.

Απόδειξη. Το σύνολο α+ = α ∪ {α} είναι προφανώς μεταβατικό 5. Έστω A ⊆ α+. Αν A ⊆ α
τότε έχει ελάχιστο ως προς την ∈α άρα και ως προς ∈α+ , ενώ αν α ∈ A τότε το A ∖ {α} έχει
ελάχιστο ως προς την ∈α το οποίο είναι ελάχιστο και ως προς την ∈α+ , καθώς για κάθε a ∈ α
(προφανώς) ισχύει ότι a∈α+α.
1 Για την ακρίβεια θα χρησιμοποιούμε μερικούς μόνο διατακτικούς αριθμούς για αυτή τη δουλειά, καθώς, όπως

φαντάζεστε, αν ένα σύνολο έχει άπειρο+1 στοιχεία τότε στην ουσία έχει άπειρα στοιχεία.
2 Άλλη μορφή θα έχει για παράδειγμα ο χώρος ω αν του προσθέσουμε ένα στοιχείο μικρότερο του 0 και άλλη

αν του προσθέσουμε ένα στοιχείο M με n ≤M , για κάθε n ∈ ω.
3 Θυμηθείτε τον Ορισμό 4.1.14.
4 Αν σας ξενίζει ο συμβολισμός θα πρέπει να ανατρέξετε στη Σύμβαση 2.2.40.
5 Αυτό έπεται από τη μεταβατικότητα του α και το γεγονός ότι α ⊂ α+.
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Παρατήρηση 5.1.7. Τα σύνολα:

ω, ω+, ω++, ω+++, ...

που αναφέραμε στην εισαγωγή του κεφαλαίου είναι διατακτικοί.

5.1.1 Ιδιότητες διατακτικών
Μία από τις πιο βασικές ιδιότητες των διατακτικών είναι ότι κανένας διατακτικός δεν

ανήκει στον εαυτό του.

Πρόταση 5.1.8. Αν α διατακτικός τότε ισχύει ότι α ∉ α.

Αν δεχθούμε το αξίωμα κανονικότητας (Υποσημείωση 1, Σελίδα 22) η πρόταση αυτή δεν
θα συνεισφέρει κάτι ουσιαστικό στη γνώση μας. Μπορούμε να το αποδείξουμε όμως άμεσα
και ανεξάρτητα από το αξίωμα κανονικότητας. Αυτό σκοπεύουμε να πράξουμε:

Απόδειξη Πρότασης 5.1.8. Αν (προς άτοπο) α ∈ α, τότε αφού το α είναι μεταβατικό σύνολο
έπεται ότι α ⊂ α που είναι άτοπο.

Το ακόλουθο λήμμα θα μας φανεί ιδιαίτερα χρήσιμο για να αποδείξουμε τις βασικές
ιδιότητες των διατακτικών. Η απόδειξή του είναι άμεση συνέπεια της Άσκησης 2.8 και του
γεγονότος ότι η σχέση ∈ είναι ολική διάταξη ενός διατακτικού.

Λήμμα 5.1.9. Έστω διατακτικός α και x, y, z ∈ α. Ισχύουν τα ακόλουθα:

1. x ∉ x

2. Αν x ∈ y τότε y ∉ x

3. Αν x ∈ y και y ∈ z τότε x ∈ z

4. Ισχύει ακριβώς ένα από τα εξής: x ∈ y, x = y ή y ∈ x

Πρόταση 5.1.10. Κάθε στοιχείο ενός διατακτικού είναι διατακτικός.

Απόδειξη. Έστω διατακτικός α, έστω A ∈ α, y ∈ A και x ∈ y. Θα δείξουμε ότι x ∈ A. Λόγω
του ότι το α είναι μεταβατικό έπεται ότι y ∈ α (αφού A ∈ α) και ότι x ∈ α (αφού y ∈ α).
Από το Λήμμα 5.1.9 (το 4.) υπάρχουν τρεις περιπτώσεις: A ∈ x, A = x και x ∈ A. Αν (προς
άτοπο) A ∈ x, τότε από το 3. του Λήμματος 5.1.9 θα είχαμε ότι A ∈ y που αντιβαίνει στο
γεγονός ότι y ∈ A (λόγω του 2. του Λήμματος 5.1.9). Αν (προς άτοπο) A = x, τότε από το
3. του Λήμματος 5.1.9 θα είχαμε ότι y ∈ x που αντιβαίνει στο γεγονός ότι x ∈ y (λόγω του 2.
του Λήμματος 5.1.9). Συνεπώς x ∈ A και άρα το A είναι μεταβατικό.

Τέλος, η διάταξη ∈A είναι καλή διάταξη του A καθώς η ∈α είναι καλή διάταξη του α (και
αφού A ∈ α έπεται ότι A ⊂ α).

Από εδώ και στο εξής οφείλουμε να χρησιμοποιούμε πεζά ελληνικά γράμματα για τα
στοιχεία των διατακτικών καθώς και αυτά αποτελούν διατακτικούς.
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Πρόταση 5.1.11. Αν α,β διατακτικοί και α ⊂ β τότε α ∈ β.

Απόδειξη. Αφού α ⊂ β το σύνολο β ∖ α είναι μη κενό, άρα έχει ελάχιστο στοιχείο ως προς
την ∈β , έστω γ. Θα δείξουμε ότι α = γ.

Έστω δ ∈ γ ∖α. Τότε δ ∈ β ∖α και δ ∈ β γεγονός που αντιβαίνει στην ελαχιστικότητα του
γ. Άρα α ⊆ γ.

Έστω τώρα δ ∈ α ∖ γ. Τότε αφού δ ∉ γ μένουν οι εξής δύο περιπτώσεις (από το 4. του
Λήμματος 5.1.9): δ = γ και γ ∈ δ. Αν δ = γ τότε γ ∈ α και αφού α ⊆ γ έπεται ότι γ ∈ γ που
αντιβαίνει στην Πρόταση 5.1.8. Αν γ ∈ δ τότε (αφού δ ∈ α και α μεταβατικό) έχουμε γ ∈ α,
οπότε όπως και πριν οδηγούμαστε σε άτοπο. Συνεπώς γ ⊆ α.

5.1.2 Διάταξη διατακτικών
Οι διατακτικοί που ορίσαμε θα ήταν άνευ αξίας αν δεν μπορούσαμε να ορίσουμε μία

σχέση διάταξης μεταξύ τους ή οποία μάλιστα θα πρέπει να έχει και τις καλές ιδιότητες που
έχει η διάταξη των φυσικών. Η έννοια του επόμενου διατακτικού κάπως μας προϊδεάζει για
τη μορφή που θα έχει αυτή η σχέση. Υπάρχει όμως μία αξεπέραστη δυσκολία: Δεν μπορούμε
να ορίσουμε σχέσεις μεταξύ διατακτικών για τον πολύ απλό λόγο ότι δεν υπάρχει σύνολο που
να περιέχει ακριβώς τους διατακτικούς (όπως θα μας δείξει το Θεώρημα 5.1.21). Μία λύση
σε αυτό θα ήταν να επιτρέψουμε στον κόσμο μας αντικείμενα που δεν αποτελούν σύνολα,
κάνοντας ξεκάθαρη όμως τη διάκριση μεταξύ αυτών και των συνόλων. Θα μπορούσαμε δη-
λαδή να ορίσουμε την κλάση ON των διατακτικών και έπειτα να ορίσουμε τη σχέση διάταξης
πάνω σε αυτήν. Σε αυτήν την περίπτωση θα μπορούσε κάλλιστα η σχέση διάταξη να είναι
η σχέση ∈ON.

Ένας «παράδρομος» που θα μας οδηγήσει στο ίδιο αποτέλεσμα είναι ο εξής: Θα χρησι-
μοποιήσουμε την έννοια της ομοιότητας μεταξύ καλά διατεταγμένων χώρων. Από το Θεώ-
ρημα 4.1.31 για κάθε δύο διατακτικούς α,β (αφού αυτοί είναι καλά διατεταγμένα σύνολα)
θα ισχύει ότι είτε είναι όμοιοι είτε ο ένας είναι όμοιος με κάποιο αρχικό τμήμα του άλλου.
Αυτό μπορεί να μας δώσει μία (ολική) διάταξη μεταξύ τους. Βέβαια με αυτόν τον τρόπο θα
ήταν πολύ «δύσκολο» να ελέγξουμε πότε ένας διατακτικός είναι «μικρότερος» από κάποιον
άλλο 1. Το ακόλουθο θεώρημα σαν από μηχανής θεός έρχεται προς βοήθειά μας.

Θεώρημα 5.1.12. Έστω διατακτικοί α,β. Αν (α, ∈α) ≅ (β, ∈β) τότε α = β.

Απόδειξη. Έστω f : α → β ομοιότητα. Θα δείξουμε ότι για κάθε γ ∈ α ισχύει ότι f(γ) = γ.
Αυτό σημαίνει ότι f [α] = α και, αφού η f είναι επί του β, ότι α = β.

Έστω γ ελάχιστο αντιπαράδειγμα, δηλαδή f(γ) ≠ γ ενώ για κάθε δ ∈ γ ισχύει ότι f(δ) = δ.
Για κάθε δ ∈ γ ισχύει επίσης ότι f(δ) ∈ f(γ) (αφού f είναι ομοιότητα), άρα γ ⊆ f(γ).

Αν (προς άτοπο) ισχύει ότι γ ⊂ f(γ), τότε θεωρούμε δ = minβ(f(γ) ∖ γ). Αφού η f
είναι επί του β υπάρχει η ∈ α τέτοιο ώστε f(η) = δ. Από το Λήμμα 5.1.9 υπάρχουν τρεις
περιπτώσεις για τους η και γ:

1η: η ∈ γ, τότε f(η) = η, άρα δ ∈ γ γεγονός που αντιβαίνει στον τρόπο επιλογής του δ.
1 Θα έπρεπε να βρούμε ομοιότητα μεταξύ του πρώτου και ενός αρχικού τμήματος του δευτέρου. Συγκρίνετέ

αυτόν τον έλεγχο με τον απλό έλεγχο του αν ο ένας αποτελεί στοιχείο του άλλου.
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2η: η = γ, τότε δ = f(γ) και f(γ) ∈ f(γ) γεγονός που αντιβαίνει στην Πρόταση 5.1.8 (καθώς
το f(γ) είναι διατακτικός ως στοιχείο του β) .

3η: γ ∈ η, τότε (αφού f είναι ομοιότητα) f(γ) ∈ f(η), δηλαδή f(γ) ∈ δ. Καθώς όμως δ ∈ f(γ)
(αφού β μεταβατικό σύνολο) έπεται ότι f(γ) ∈ f(γ) που όπως πριν μας οδηγεί σε άτοπο.

Συνδυάζοντας το Θεώρημα 5.1.12 με το Θεώρημα 4.1.31 προκύπτει ότι αν για τους δια-
τακτικούς α,β ισχύει ότι α ≠ β τότε ο ένας είναι όμοιος με αρχικό τμήμα του άλλου. Αυτό
φυσικά δεν σημαίνει απαραίτητα ότι είναι αρχικό τμήμα του άλλου. Αν δείξουμε ότι κάθε
αρχικό τμήμα ενός διατακτικού είναι διατακτικός τότε (πάλι από το Θεώρημα 5.1.12) αυτή
η ομοιότητα θα μετατραπεί σε ταυτότητα.

Πρόταση 5.1.13. Κάθε αρχικό τμήμα διατακτικού είναι διατακτικός.

Απόδειξη. Έστω διατακτικοί α,β τέτοιοι ώστε α ∈ β. Θα δείξουμε ότι το σύνολο seg∈(α)
είναι μεταβατικό. Έστω γ ∈ seg∈(α) και έστω δ ∈ γ, οπότε και δ ∈ α (αφού α μεταβατικό).
Αυτό σημαίνει ότι δ ∈ seg∈(α), άρα γ ⊂ seg∈(α) (δεν μπορεί να ισχύει ότι γ = seg∈(α) καθώς
τότε θα είχαμε γ ∈ γ).

Τέλος, αφού η ∈β είναι καλή διάταξη του β θα είναι και καλή διάταξη του seg∈(α).

Πόρισμα 5.1.14. Έστω διατακτικοί α,β με α ≠ β. Τότε ο ένας είναι αρχικό τμήμα του άλλου.

Συνεπώς μπορούμε να ορίσουμε την ακόλουθη (ολική) διάταξη μεταξύ διατακτικών. Να
τονίσουμε και πάλι ότι δεν αποτελεί σχέση διάταξης καθώς δεν υπάρχει σύνολο που να
περιέχει όλους τους διατακτικούς (Θεώρημα 5.1.21).

Ορισμός 5.1.15. Έστω διατακτικοί α,β. Θα λέμε ότι ο α είναι μικρότερος από τον β, συμ-
βολισμός α < β 1, ανν ο α είναι αρχικό τμήμα του β.

Ας δείξουμε τώρα ότι αυτή η διάταξη ≤ του μικρότερου είτε ίσου έχει τις ιδιότητες που
έχει μία καλή διάταξη. Σε αυτό θα μας φανεί χρήσιμο το ακόλουθο λήμμα.

Λήμμα 5.1.16. Έστω διατακτικοί α,β με α ≠ β. Τα ακολουθά είναι ισοδύναμα:

1. α ∈ β

2. α ⊂ β

3. α αρχικό τμήμα β

Απόδειξη. Αν α αρχικό τμήμα του β, τότε προφανώς α ⊂ β. Αν α ⊂ β από την Πρόταση 5.1.11
έπεται ότι α ∈ β. Αν α ∈ β και (προς άτοπο) β αρχικό τμήμα του α τότε θα είχαμε ότι β ⊂ α
και από την Πρόταση 5.1.11 ότι β ∈ α, άρα και α ∈ α (αφού α μεταβατικό). Άτοπο, συνεπώς
α αρχικό τμήμα β.

Πρόταση 5.1.17 (Διάταξη Διατακτικών). Έστω διατακτικοί α,β, γ. Ισχύουν τα ακόλουθα:

1. α ≤ α
1 Ακόμα μια κατάχρηση συμβολισμού...
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2. α ≤ β και β ≤ γ τότε α ≤ γ.

3. α ≤ β και β ≤ α τότε α = β.

4. Ισχύει ακριβώς ένα από τα ακόλουθα: α < β, β < α ή α = β.

5. Κάθε μη κενό σύνολο διατακτικών έχει ελάχιστο στοιχείο.

Απόδειξη. Οι τρεις πρώτες προτάσεις είναι προφανείς, ενώ η τέταρτη προκύπτει άμεσα από
το Πόρισμα 5.1.14. Για την πέμπτη πρόταση, θεωρούμε A ≠ ∅ σύνολο διατακτικών και α ∈ A.

Αν A ∩ α = ∅, τότε για κάθε β ∈ A έπεται ότι β ∉ α. Αυτό σημαίνει ότι ο α είναι αρχικό
τμήμα του β (αλλιώς από το Λήμμα 5.1.16 θα έπρεπε να ισχύει β ∈ α) συνεπώς ο α είναι το
ελάχιστο στοιχείο του A.

Αν A∩α ≠ ∅, τότε το σύνολο A∩α έχει ελάχιστο ως προς την ∈α (ως υποσύνολο του α),
έστω β. To β είναι το ελάχιστο και του A, αλλιώς το ελάχιστο του A, έστω γ, θα πρέπει να
ήταν αρχικό τμήμα του β, άρα από το Λήμμα 5.1.16 θα είχαμε γ ∈ β, άρα και γ ∈ α (αφού α
μεταβατικό). Συνεπώς γ ∈ A ∩ α και γ ∈ β γεγονός που αντιβαίνει στην ελαχιστικότητα του
β (ως προς την ∈α).

Θα χωρίσουμε τους διατακτικούς σε τρεις κατηγορίες: στον 0, τους επόμενους και τους
οριακούς.

Ορισμός 5.1.18. Ένας διατακτικός α ≠ 0 καλείται επόμενος (ή διάδοχος) ανν υπάρχει
διατακτικός β τέτοιος ώστε α = β+. Σε αντίθετη περίπτωση καλείται οριακός.

Παράδειγμα 5.1.19. Προφανώς όλοι οι φυσικοί στο ω ∖ {0} είναι επόμενοι διατακτικοί. Ο
ω είναι οριακός διατακτικός. Για να το δούμε αυτό αρκεί να παρατηρήσουμε ότι αν υπήρχε
διατακτικός α τέτοιος ώστε ω = α+, τότε θα είχαμε ότι α ∈ ω, καθώς όμως το ω είναι
επαγωγικό σύνολο, θα είχαμε επίσης ότι α+ ∈ ω, δηλαδή ότι ω ∈ ω.

Παρατήρηση 5.1.20. Για κάθε οριακό διατακτικό λ ισχύει ότι αν α < λ τότε α+ < λ. Επίσης
ισχύει ότι λ = sup{α ∣ α < λ}.

Κλείνοντας αυτήν την παράγραφο θα αποδείξουμε ότι δεν υπάρχει σύνολο που να περιέ-
χει όλους τους διατακτικούς. Μέχρι να γίνει η αξιωματική θεμελίωση της Θεωρίας Συνόλων
αυτή η πρόταση αποτελούσε ένα από τα ενοχλητικά παράδοξα που προέκυπταν από τις
πρακτικές που χρησιμοποιούνταν.

Θεώρημα 5.1.21 (Θεώρημα Burali-Forti). Δεν υπάρχει σύνολο που να περιέχει όλους τους
διατακτικούς.

Απόδειξη. Έστω (προς άτοπο) ότι υπάρχει τέτοιο σύνολο A. Τότε μπορούμε να ορίσουμε το
σύνολο:

B = {α ∈ A ∣ α διατακτικός}

Θα δείξουμε ότι το σύνολο B είναι διατακτικός, οπότε θα έχουμε B ∈ B, γεγονός που αντι-
βαίνει στην Πρόταση 5.1.8.
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Έστω β ∈ B και α ∈ β. Από την Πρόταση 5.1.10 έπεται ότι α ∈ B, άρα β ⊂ B 1. Συνεπώς
το B είναι μεταβατικό.

Τέλος, η σχέση ∈ είναι (ολική) διάταξη στο B λόγω της Πρότασης 5.1.10 και του Λήμ-
ματος 5.1.16. Επίσης το C ≠ ∅ υποσύνολο του B έχει ελάχιστο στοιχείο ως προς ≤ (λόγω
του 5. της Πρότασης 5.1.17), έστω α. Αν (προς άτοπο) υπάρχει β ∈ C τέτοιο ώστε α ∉ β,
τότε (λόγω του Λήμματος 5.1.16 και του Πορίσματος 5.1.14) θα πρέπει το β να είναι αρχικό
τμήμα του α, γεγονός που αντιβαίνει στην ελαχιστικότητα του α. Άρα το α είναι ελάχιστο
και ως προς τη σχέση ∈.

5.2 Το Θεώρημα Αρίθμησης
Οι διατακτικοί αποτελούν αναπαράσταση των καλά διατεταγμένων χώρων με την ακό-

λουθη έννοια:

Θεώρημα 5.2.1 (Θεώρημα Αρίθμησης). Κάθε καλά διατεταγμένος χώρος είναι όμοιος με
ακριβώς έναν διατακτικό.

Θα αποπειραθούμε μία απόδειξη του Θεωρήματος 5.2.1. Ο λόγος που την αποκαλούμε
απόπειρα είναι ότι στα επιχειρήματα που ακολουθούν χρησιμοποιούμε ένα σύνολο που –
παρόλο που δύσκολα κάποιος θα έφερνε αντίρρηση στην ύπαρξη του– δεν μπορεί να προ-
κύψει από τα αξιώματα που έχουμε εισάγει έως τώρα. Δεν θα προδώσουμε ποιο είναι για να
κρατήσουμε τον αναγνώστη σε εγρήγορση.

Απόπειρα Απόδειξης Θεωρήματος 5.2.1. Έστω (A,≤) καλά διατεταγμένος χώρος και έστω
το σύνολο:

B = {a ∈ A ∣ (seg<(a),≤) όμοιο με διατακτικό}

Παρατηρήστε ότι αν b ∈ B τότε υπάρχει μοναδικός διατακτικός που είναι όμοιος με τον
υπόχωρο seg<(b) (λόγω του Θεωρήματος 5.1.12). Αυτόν τον διατακτικό θα τον συμβολίζουμε
με αb.

Παρατηρήστε επίσης ότι αν b ∈ B και a ≤ b τότε και a ∈ B. Πράγματι αν fb : seg<(b)→ αb

είναι η ομοιότητα των δύο χώρων τότε η συνάρτηση fb ↾ seg<(a) είναι ομοιότητα του seg<(a)
με κάποιο αρχικό τμήμα του αb που (λόγω της Πρότασης 5.1.13) είναι διατακτικός. Επιπλέον,
ισχύει ότι αa ≤ αb.

Θεωρούμε το σύνολο:
S = {αb ∣ b ∈ B}

και τη συνάρτηση f : B → S με f(b) = αb. Η f είναι ομοιότητα καθώς προφανώς είναι 1-1 και
επί και όπως δείξαμε πριν αν a ≤ b τότε f(a) ≤ f(b), για κάθε a, b ∈ B. Για να ολοκληρώσουμε
την απόδειξη αρκεί να δείξουμε δύο πράγματα: ότι το S είναι διατακτικός και ότι B = A.

Για το πρώτο, έστω αb ∈ S και γ ∈ αb. Αν fb είναι η ομοιότητα του seg<(b) με τον αb και
c = f−1(γ), τότε η συνάρτηση fc = fb ↾ seg<(b) είναι ομοιότητα του seg<(c) με τον γ 2, άρα
1 Ξανά, αν β = B τότε θα είχαμε β ∈ β.
2 Προσπαθήστε να το δείξετε αυτό τυπικά.
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γ ∈ S. Συνεπώς αb ⊂ S 1, δηλαδή S μεταβατικό. Επίσης, η σχέση ∈ είναι καλή διάταξη του
S 2.

Για το δεύτερο, όπως δείξαμε πριν, αν b ∈ B και a ≤ b τότε και a ∈ B. Αυτό σημαίνει ότι αν
(προς άτοπο)A ≠ B τότεB = seg<(a) για κάποιο a ∈ A. Όμως σε αυτήν την περίπτωση a ∈ B
(αφού τότε η f θα είναι ομοιότητα του seg<(a) με τον διατακτικό S), που είναι άτοπο.

Η αξία του Θεωρήματος 5.2.1 είναι ότι μας επισημαίνει τη χρήση των διατακτικών ως
μέτρο σύγκρισής του «μάκρους» δύο καλά διατεταγμένων χώρων: Η διάταξη ενός χώρου
(A,≤A) είναι πιο μακριά από αυτήν του χώρου (B,≤B) αν ο διατακτικός του A είναι μεγα-
λύτερος από αυτόν του B. Αυτό φυσικά κάτι υπονοεί και για το πλήθος στοιχείων των δύο
συνόλων (θα το αναλύσουμε αυτό στο επόμενο κεφάλαιο), αλλά κυρίως μας αποσαφηνίζει
τον τύπο της διάταξης των δύο χώρων.

Ορισμός 5.2.2. Έστω καλά διατεταγμένος χώρος (A,≤A). Ο τύπος διάταξης του (A,≤A)
είναι ο μοναδικός διατακτικός που είναι όμοιος με αυτόν.

Να τονίσουμε εδώ ότι αν αλλάξει η καλή διάταξη στο σύνολο A τότε αλλάζει και ο τύπος
διάταξης (καθώς αλλάζει ο χώρος).

5.2.1 Αξίωμα Αντικατάστασης

Ας επανέλθουμε όπως στην απόπειρά μας να αποδείξουμε το Θεώρημα 5.2.1 και ας
εστιάσουμε στη συλλογή στοιχείων:

S = {αb ∣ b ∈ B}

Παρόλο που κάθε στοιχείο του S είναι σαφώς ορισμένο, ο χαρακτηρισμός του ως σύνολο δεν
μπορεί να δικαιολογηθεί από τα αξιώματα 3. Η κατάσταση είναι η εξής: Έχουμε στα χέρια
μας ένα (σαφώς ορισμένο) σύνολο (το B) και έναν τρόπο να αντιστοιχίσουμε σε κάθε ένα
από τα στοιχεία του ένα σύνολο (έναν διατακτικό στην προκειμένη περίπτωση). Αν αντι-
καταστήσουμε τα στοιχεία του συνόλου με τα αντίστοιχά τους σύνολα τότε θα περιμέναμε
η συλλογή αυτών των συνόλων να σχηματίζει σύνολο 4. Το αξιωματικό σχήμα της Αντικα-
τάστασης μας εξασφαλίζει ότι η συλλογή που προκύπτει μέσω αυτής της διαδικασίας είναι
σύνολο.

VIII. Αξίωμα Αντικατάστασης: Έστω οριστική συνθήκη ϕ(x, y) τέτοια ώστε για κάθε x
υπάρχει μοναδικό y που κάνει τη συνθήκη αληθή. Τότε για κάθε σύνολο A υπάρχει σύνολο
B τέτοιο ώστε:

B = {y ∣ (∃x ∈ A)ϕ(x, y)}

1 Και ξανά, αν αb = S τότε θα είχαμε αb ∈ αb.
2 Η απόδειξη είναι εντελώς όμοια με την αντίστοιχη απόδειξη για το σύνολο B στην απόδειξη του Θεωρήμα-

τος 5.1.21.
3 Αν η κλάση ON ήταν σύνολο τότε υπήρχε τρόπος να το ορίσουμε χρησιμοποιώντας το Αξίωμα VI.
4 Στο κάτω κάτω της γραφής αυτή η συλλογή δεν θα μπορούσε να είναι «υπερβολικά μεγάλη» ώστε να μην

μπορεί να αποτελέσει σύνολο (στην πραγματικότητα θα έχει το ίδιο μέγεθος με το αρχικό σύνολο).
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Στην περίπτωση του Θεωρήματος 5.2.1, η οριστική συνθήκη είναι ο λογικός τύπος ϕ(x, y)
που εκφράζει το γεγονός:

Είτε x ∈ B και y είναι ο μοναδικός διατακτικός όμοιος με το seg<(x), είτε x ∉ B
και y = ∅.

Η συνθήκη αυτή αναθέτει σε κάθε στοιχείο ενός συνόλου ακριβώς ένα στοιχείο, και φυσικά
ισχύει ότι:

S = {y ∣ (∃x ∈ B)ϕ(x, y)} = {αb ∣ b ∈ B}

Προσθέτοντας το Αξίωμα VIII στη θεωρία μας, έπεται ότι η συλλογή S είναι σύνολο και
συνεπώς η απόπειρα απόδειξης του Θεωρήματος 5.2.1 τελικά στέφεται με επιτυχία.

Παρατηρήστε ότι για κάθε οριστική συνθήκη ϕ(x, y), όπου για κάθε x υπάρχει μοναδικό
y που κάνει τη συνθήκη αληθή, μπορούμε να ορίσουνε έναν οριστικό τελεστή F έτσι ώστε
F (x) = y. Με τον ίδιο τρόπο μπορούμε να ορίσουμε και οριστικούς τελεστές με περισσότερες
από μία μεταβλητές.

Θα μπορούσαμε λοιπόν να διατυπώσουμε το Αξίωμα VIII πιο κομψά ως εξής:

Αξίωμα Αντικατάστασης: Για κάθε οριστικό τελεστή F και σύνολο A η εικόνα:

F [A] = {F (x) ∣ x ∈ A}

αποτελεί σύνολο.

Κλείνοντας τη συζήτηση για το Αξίωμα VIII οφείλουμε να αναφέρουμε ότι όποτε προ-
σθέτουμε κάποιο καινούργιο αξίωμα πρέπει να διερευνούμε πως αυτό επηρεάζει τα ήδη
υπάρχοντα αξιώματα και, φυσικά, το κατά πόσον μπορεί να προκύψει από αυτά. Ειδικά σε
αυτή την περίπτωση όπου το αξίωμα είναι τόσο ισχυρό που καθιστά κάποια από τα αξιώ-
ματα που έχουμε δεχθεί περιττά! Θα μπορούσαμε να τα αφαιρέσουμε από τη λίστα των
αξιωμάτων μας αλλά δεν θα το κάνουμε, πρώτον, για ιστορικούς λόγους (τα πρώτα αξιώ-
ματα του Zermelo δεν περιείχαν το Αξίωμα VIII, για την ακρίβεια αυτό το αξίωμα είναι ο
λόγος που αποκαλούμε τη θεωρία μας ZFC 1) και, δεύτερον, γιατί είναι εννοιολογικά απλά
και βοήθησαν τα μέγιστα στην αρχή της δημιουργίας του κόσμου μας.

Εύλογα κάποιο μπορεί να αισθάνεται άβολα με το Αξίωμα VIII, καθώς αυτό επεκτείνει
τον κόσμο μας δραματικά. Επίσης εύλογες είναι τυχόν ενστάσεις όσον αφορά τη χρησιμότητά
του στα «καθημερινά» μαθηματικά. Οι σημειώσεις αυτές δεν έχουν σκοπό να επεκταθούν
σε τέτοιες συζητήσεις. Μένουμε στο γεγονός ότι εφόσον είναι απαραίτητο για τους σκοπούς
μας δεν ζητάμε επιβεβαίωση ούτε τις χρησιμότητάς του ούτε της αληθοφάνειάς του 2.

1 To Αξίωμα VIII προτάθηκε από τον Abraham Fraenkel για να καλύψει το κενό που άφηναν τα αξιώματα που
είχε προτείνει ο Ernst Zermelo.

2 Ο ενδιαφερόμενος αναγνώστης παροτρύνεται να ανατρέξει στο [7].
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5.3 Αριθμητική διατακτικών

Ας υποθέσουμε ότι μας έχουν δοθεί δύο διατακτικοί α,β και θέλουμε να ορίσουμε τον
διατακτικό α+β 1. Ίσως το πρώτο που μας έρχεται στο μυαλό είναι να παραθέσουμε τους δύο
διατακτικούς, φτιάχνοντας έναν «μακρύτερο» διατεταγμένο χώρο και έπειτα να πάρουμε τον
διατακτικό που είναι όμοιος με αυτόν τον χώρο. Το πρόβλημα φυσικά είναι ότι τα σύνολα α,β
δεν είναι ξένα. Παρόλα αυτά μπορούμε να πάρουμε τη ξένη ένωσή τους χρησιμοποιώντας
την ιδέα της Παραγράφου 2.1.1, και να θεωρήσουμε το σύνολο C = ({∅}×α)∪ ({{∅}}×β).
Τα ζεύγη του C μπορούμε να τα διατάξουμε χρησιμοποιώντας τη λεξικογραφική διάταξη ≤λεξ
του Παραδείγματος 2.2.29, η οποία εύκολα αποδεικνύεται ότι είναι καλή διάταξη. Έτσι θα
μπορούσαμε να ορίσουμε την πρόσθεση δύο διατακτικών ως:

α+ β = Ο μοναδικός διατακτικός όμοιος με τον (C,≤λεξ)

Μέσα από την πρόσθεση διατακτικών μπορούμε, πρώτον, να δικαιολογήσουμε 2 τον
συμβολισμό:

... , ω, ω + 1, ω + 2, ω + 3, ...

στην εισαγωγή του κεφαλαίου και, δεύτερον, να ορίσουμε τους ακόλουθους διατακτικούς:

... , ω + ω, ω + ω + 1, ω + ω + 2, ... , ω + ω + ω, ω + ω + ω + 1, ...

Θα πρέπει να τονίσουμε εδώ ότι η ύπαρξη του διατακτικού ω+ω, του συνόλου {0,1, ... , ω,
ω + 1, ... } δηλαδή, οφείλεται στο Αξίωμα VIII: Θεωρούμε τον οριστικό τελεστή F με

F (n) =

⎧⎪⎪⎨⎪⎪⎩

ω + n, αν n ∈ ω
0, αλλιώς

οπότε η εικόνα F [ω] είναι σύνολο, άρα το σύνολο ⋃F [ω] είναι το ζητούμενο. Μένει κάποιος
να δείξει ότι το σύνολο αυτό είναι διατακτικός (δες Άσκηση 5.2). Ο ω + ω είναι ο δεύτερος
οριακός διατακτικός που συναντάμε (δες Παράδειγμα 5.1.19). Άλλοι οριακοί είναι οι ω+ω+ω,
ω + ω + ω + ω κ.ο.κ..

Με ανάλογο τρόπο, μπορούμε να ορίσουμε το γινόμενο α ⋅β δύο διατακτικών παίρνοντας
το άθροισμα του α με τον εαυτό του β φορές. Ένας τρόπος να το πετύχουμε αυτό είναι να
πάρουμε τα ξένα σύνολα Aγ = α×{γ}, για κάθε γ ∈ β, και να τα παραθέσουμε όπως κάναμε
πριν. Ένας πολύ πιο απλός τρόπος είναι πάρουμε το σύνολο C = α×β και να το διατάξουμε
χρησιμοποιώντας την αντίστροφη λεξικογραφική διάταξη: (γ, δ) ≤ξελ (η, θ) ανν είτε δ ≤ θ,
είτε δ = θ και α ≤ γ. Έτσι:

α ⋅ β = Ο μοναδικός διατακτικός όμοιος με τον (C,≤ξελ)

1 Για λόγους συνέπειας με τις πράξεις που ορίσαμε στο Κεφάλαιο 3, θα κρατήσουμε τον ίδιο συμβολισμό για
την πρόσθεση, παρόλο που πλέον το σύμβολο + δεν αντιστοιχεί σε συνάρτηση αλλά σε έναν τελεστή με δύο
μεταβλητές.

2 Δες Άσκηση 5.15.
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Χρησιμοποιώντας τον πολλαπλασιασμό μπορούμε να απλοποιήσουμε τον συμβολισμό
των παρακάτω διατακτικών

... , ω ⋅ 2, ω ⋅ 2 + 1, ω ⋅ 2 + 2, ... , ω ⋅ 3, ω ⋅ 3 + 1, ...

αλλά και να εισάγουμε καινούργιους διατακτικούς:

... , ω2, ω2 + 1, . . . , ω2 ⋅ 2, ... , ω3, ...

όπου με ωn συμβολίζουμε το γινόμενο του ω με τον εαυτό του n φορές.
Οι παραπάνω συνολοεθωρητικές κατασκευές είναι απολύτως σωστές 1, δεν επαρκούν

όμως για να ορίσουμε τις δυνάμεις διατακτικών. Αυτός είναι ο λόγος που τελικά θα υιοθε-
τήσουμε έναν αναδρομικό τρόπο ορισμού των πράξεων, όπως ακριβώς κάναμε και για τις
πράξεις των φυσικών.

Δυστυχώς το Θεώρημα 4.1.11 δεν μπορεί να χρησιμοποιηθεί για αυτόν τον σκοπό καθώς
προϋποθέτει την ύπαρξης ενός διατεταγμένου χώρου. Όμως όπως είδαμε οι διατακτικοί πα-
ρόλο που μπορούν να διαταχθούν δεν αποτελούν διατεταγμένο χώρο (καθώς δεν αποτελούν
ούτε καν σύνολο). Θα χρειαστεί λοιπόν να ορίσουμε ένα νέο σχήμα αναδρομής που θα διευ-
θετεί τις ιδιαιτερότητες των διατακτικών. Παραδοσιακά θα ξεκινήσουμε αναφέρωντας την
Αρχή Επαγωγής Διατακτικών.

Θεώρημα 5.3.1 (Αρχή Επαγωγής Διατακτικών). Έστω οριστική συνθήκη ϕ(x). Αν για κάθε
διατακτικό α ισχύει ότι:

(∀β < α)ϕ(β)→ ϕ(α)

τότε ϕ[α] αληθής για κάθε διατακτικό α.

Απόδειξη. Έστω (προς άτοπο) ότι υπάρχει διατακτικός α που δεν κάνει τη ϕ(x) αληθή. Από
το 5. της Πρότασης 5.1.17 το σύνολο P = {β ∈ α ∣ ϕ[β] ψευδής} έχει ελάχιστο στοιχείο, έστω
γ. Όμως τότε για κάθε δ < γ η ϕ[δ] θα είναι αληθής, άρα (από την υπόθεση) και η ϕ[γ] θα
είναι αληθής. Άτοπο.

Θεώρημα 5.3.2 (Θεώρημα Αναδρομής Διατακτικών). Για κάθε οριστικό τελεστή H υπάρχει
μοναδικός τελεστής F που ικανοποιεί την εξίσωση:

F (α) = H(F ↾ α), για κάθε διατακτικό α

όπου F ↾ α = {(β,F (β)) ∣ β < α}.

Απόδειξη. Θα λέμε ότι μία συνάρτηση f είναι προσέγγιση έως και τον β ανν dom(f) = β+

και f(γ) = H(f ↾ γ) για κάθε γ < β. Θα δείξουμε με επαγωγή στους διατακτικούς ότι για
κάθε διατακτικό β υπάρχει μοναδική προσέγγιση έως και τον β.

Υποθέτουμε ότι για κάθε διατακτικό γ < β υπάρχει μοναδική προσέγγιση έως και το γ
και θεωρούμε το σύνολο 2:

C = {fγ ∣ fγ προσέγγιση έως και γ για κάποιο γ < β}
1 Αν ο αναγνώστης το επιθυμεί μπορεί να εξετάσει τις λεπτομέρειες που έχουν παραληφθεί.
2 Εδώ επικαλούμαστε ξανά το Αξίωμα VIII.
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Θεωρούμε επίσης τo σύνολo g = ⋃C . Θα δείξουμε ότι το σύνολο αυτό είναι συνάρτηση.
Παρατηρήστε ότι αν fδ, fη ∈ C και (χωρίς βλάβη της γενικότητας) δ < η, τότε δ ⊂ η. Επιπλέον,
αν (προς άτοπο) ο θ είναι ο ελάχιστος διατακτικός με θ ≤ δ για τον οποίο ισχύει ότι fδ(θ) ≠
fη(θ), τότε fδ ↾ θ = fη ↾ θ, άρα H(fδ ↾ θ) = H(fη ↾ θ) και τελικά fδ(θ) = fη(θ)! Συνεπώς
για κάθε γ < β αν (γ, fδ(γ)) ∈ C και (γ, fη(γ)) ∈ C τότε fδ(γ) = fη(γ).

Παρατηρήστε ότι dom(g) = ⋃{dom(f) ∣ f ∈ C}, συνεπώς dom(g) = β. Αυτό σημαίνει
ότι το πεδίο ορισμού της συνάρτησης fβ = g ∪ {(β,H(g))} είναι το β+. Εύκολα μπορούμε
να δείξουμε ότι η fβ είναι προσέγγιση έως και το γ και μάλιστα ότι είναι η μοναδική.

Θεωρούμε τον τελεστή:

F (x) =

⎧⎪⎪⎨⎪⎪⎩

fx(x), αν x διατακτικός και fx η προσέγγιση έως και τον x
∅, αλλιώς

Και παρατηρούμε ότι για κάθε διατακτικό α ισχύει ότι F (α) = fα(α) = H(fα ↾ α), όμως
F ↾ α = fα ↾ α άρα F (α) = H(F ↾ α). Τέλος, με επαγωγή στους διατακτικούς δείχνουμε
ότι ο τελεστής αυτός είναι μοναδικός.

Χρησιμοποιώντας το Θεώρημα 5.3.2 (για την ακρίβεια την Άσκηση 5.9), μπορούμε να
αποδείξουμε την ύπαρξη των τελεστών +, ⋅ που ορίζονται ακολούθως:

Ορισμός 5.3.3 (Πρόσθεση Διατακτικών). Έστω α,β, λ διατακτικοί. Τότε:

1. α+ 0 = α

2. α+ (β + 1) = (α+ β) + 1

3. α+ λ = sup{α+ γ ∣ γ < λ} 1, αν λ οριακός

Ορισμός 5.3.4 (Πολλαπλασιασμός Διατακτικών). Έστω α,β, λ διατακτικοί. Τότε:

1. α ⋅ 0 = 0

2. α ⋅ (β + 1) = (α ⋅ β) + α

3. α ⋅ λ = sup{α ⋅ γ ∣ γ < λ}, αν λ οριακός

Επιπλέον, (χρησιμοποιώντας πάλι το Θεώρημα 5.3.2) μπορούμε να ορίσουμε και τις
δυνάμεις διατακτικών ως εξής:

Ορισμός 5.3.5 (Δυνάμεις Διατακτικών). Έστω α,β, λ διατακτικοί. Τότε:

1. α0 = 1

2. α(β+1) = (αβ) ⋅ α

3. αλ = sup{αγ ∣ γ < λ}, αν λ οριακός
1 Παρατηρήστε ότι το {α+ γ ∣ γ < λ} είναι σύνολο λόγω του Αξιώματος VIII. Η χρήση του θα είναι εκτενής σε

όσα ακολουθούν.

Τελευταία ενημέρωση 18/2/2025, στις 10:49. 82



ΚΕΦΑΛΑΙΟ 5. ΔΙΑΤΑΚΤΙΚΟΙ ΑΡΙΘΜΟΙ

Ο τελευταίος ορισμός δικαιολογεί τον συμβολισμό ωn που είδαμε πριν και μας παράγει
τους εξής διατακτικούς:

... , ωω, . . . , ωωω

, ... , ωωωω

, ...

Η πραγματικότητα είναι ότι θα χρειαστούμε πολύ μεγαλύτερους διατακτικούς από αυτούς
για να ορίσουμε στο επόμενο κεφάλαιο τους πληθικούς αριθμούς.

Κλείνοντας, να αναφέρουμε ότι ισχύουν οι περισσότερες «συνήθεις» ιδιότητες για τους
τελεστές που ορίσαμε σε αυτήν την παράγραφο. Καθώς όμως δεν ισχύουν όλες θα πρέπει
πάντα να είμαστε προσεκτικοί 1.

5.4 Σωρευτική Ιεραρχία
Είναι ξεκάθαρο ότι ο κόσμος μας ξεκίνησε με ένα μοναδικό στοιχείο το ∅ και έπειτα επε-

κτάθηκε κατά «κύματα» βάση των αξιωμάτων που δεχθήκαμε. Με χιουμοριστική διάθεση
θα λέγαμε ότι η δημιουργία του ∅ αποτέλεσε το Big Bang για τον κόσμο μας. Στη συνέ-
χεια περάσαμε μία σύντομη περίοδο όπου η δημιουργία συνόλων (μέσα από τα πρώτα επτά
αξιώματα) ήταν «αργή», και έπειτα μπήκαμε στην περίοδο του πληθωρισμού όπου ο ρυθμός
της δημιουργίας συνόλων εκτοξεύτηκε δραματικά (με την εισαγωγή του Αξιώματος VIII).
Έτσι δημιουργήθηκε το λεγόμενο Σύμπαν του von Neumann.

Στην παράγραφο αυτή θα ορίσουμε τις «κλάσεις» της Σωρευτικής Ιεραρχίας και θα
αποδείξουμε ότι κάθε σύνολο ανήκει σε κάποια από αυτές. Με αυτόν τον τρόπο θα μπο-
ρέσουμε να «μετρήσουμε» την «πολυπλοκότητα» ενός συνόλου. Για να επιτύχουμε αυτόν
τον σκοπό θα χρειαστεί να προσθέσουμε ακόμα ένα αξίωμα, το τελευταίο της ZFC.

Χρησιμοποιώντας το Θεώρημα 5.3.2 μπορούμε να ορίσουμε τα ακόλουθα σύνολα:

Ορισμός 5.4.1 (Οι Κλάσεις της Σωρευτικής Ιεραρχίας). Έστω α,λ διατακτικοί. Τότε:

1. V0 = ∅

2. Vα+1 = P(Vα)

3. Vλ = ⋃{Vα ∣ α < λ}, αν λ οριακός

Προτού αποπειραθούμε να απεικονίσουμε τις κλάσεις αυτές σε ένα διάγραμμα θα χρεια-
στεί να αποδείξουμε κάποιες ιδιότητες των παραπάνω συνόλων. Οι αποδείξεις είναι απλές
εφαρμογές επαγωγής των διατακτικών γι’ αυτό θα αποδείξουμε μόνο την πρώτη και θα αφή-
σουμε τις υπόλοιπες ως άσκηση για τον αναγνώστη.

Πρόταση 5.4.2. Για κάθε διατακτικό α το σύνολο Vα είναι μεταβατικό.

Απόδειξη. Έστω γ ελάχιστο αντιπαράδειγμα. Προφανώς γ > 0 καθώς το ∅ είναι τετριμμένα
μεταβατικό. Απομένουν οι ακόλουθες δύο περιπτώσεις:

1η: γ = α + 1 για κάποιον διατακτικό α. Έστω y ∈ Vα+1 και x ∈ y. Αφού Vα+1 = P(Vα),
έπεται ότι y ⊆ Vα+1, οπότε x ∈ Vα+1.
1 Στις ασκήσεις του κεφαλαίου θα δείτε παραδείγματα των ιδιοτήτων που ισχύουν, αλλά και αυτών που δεν

ισχύουν.
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Σχήμα 5.4.1: Η Σωρευτική Ιεραρχία.

2η: γ οριακός, δηλαδή Vγ = ⋃{Vα ∣ α < γ}. Έστω y ∈ V γ και x ∈ y. Αφού y ∈ V γ υπάρχει
α < γ τέτοιο ώστε y ∈ Vα, και αφού α < γ (άρα Vα μεταβατικό) έπεται ότι x ∈ Vα. Συνεπώς
x ∈ V γ.

Πρόταση 5.4.3. Για κάθε διατακτικό α ισχύει ότι α ⊆ Vα.

Πρόταση 5.4.4. Για κάθε διατακτικό α ισχύει ότι α ∈ Vα+1 ∖ Vα.

Πρόταση 5.4.5. Για κάθε διατακτικούς α,β, αν β < α τότε Vβ ⊂ Vα.

Η Σωρευτική Ιεραρχία απεικονίζεται στο Σχήμα 5.4.1. Όπως θα δούμε, κάθε σύνολο
οφείλει να εμφανίζεται σε αυτό το διάγραμμα. Προτού το κάνουμε όμως θα χρειαστεί να
αποδείξουμε ένα βασικό λήμμα.

Λήμμα 5.4.6. Έστω σύνολοA. Αν για κάθε x ∈ A υπάρχει διατακτικός β τέτοιος ώστε x ∈ Vβ ,
τότε υπάρχει διατακτικός α τέτοιος ώστε A ∈ Vα.

Απόδειξη. Θεωρούμε το σύνολο (λόγω του Αξιώματος VIII):

C = {β ∣ β ο ελάχιστος διατακτικός τέτοιος ώστε x ∈ Vβ , για x ∈ A}

Θεωρούμε τον διατακτικό γ = ⋃C (δες Άσκηση 5.2). Παρατηρήστε ότι αν x ∈ A τότε
υπάρχει β ∈ C ώστε x ∈ Vβ . Όμως β ≤ γ (αφού β ⊆ γ), συνεπώς από την Πρόταση 5.4.5
Vβ ⊆ Vγ , άρα x ∈ Vγ . Αυτό σημαίνει ότι A ⊆ Vγ και άρα A ∈ P(Vγ) = Vγ+1.

Θεώρημα 5.4.7. Για κάθε σύνολο A υπάρχει διατακτικός α τέτοιος ώστε A ∈ Vα.

Απόδειξη. ΈστωA∗ η μεταβατική κλειστότητα τουA. Από το Λήμμα 5.4.6 αρκεί να δείξουμε
ότι για κάθε x ∈ A∗ υπάρχει διατακτικός β τέτοιος ώστε x ∈ Vβ , καθώς τότε A∗ ∈ Vα για

Τελευταία ενημέρωση 18/2/2025, στις 10:49. 84



ΚΕΦΑΛΑΙΟ 5. ΔΙΑΤΑΚΤΙΚΟΙ ΑΡΙΘΜΟΙ

κάποιο διατακτικό α, άρα και A∗ ⊆ Vα (αφού Vα μεταβατικό), οπότε A ⊆ Vα (αφού A ⊆ A∗)
και τελικά A ∈ P(Vα) = Vα+1.

Έστω (προς άτοπο) ότι το σύνολο:

B = {x ∈ A∗ ∣ x ∉ Vβ για κάθε διατακτικό β}

είναι μη κενό. Ας υποθέσουμε ότι υπάρχει στοιχείο b ∈ B τέτοιο ώστε b∩B = ∅. Παρατηρήστε
ότι b ∈ A∗ και, αφού A∗ μεταβατικό, ισχύει ότι b ⊆ A∗. Οπότε για κάθε x ∈ b θα υπάρχει
διατακτικός β τέτοιος ώστε x ∈ Vβ (αφού x ∉ B), άρα (πάλι από το Λήμμα 5.4.6) υπάρχει
διατακτικός α ώστε β ∈ Vα που αντιβαίνει στο γεγονός ότι b ∈ B.

Θα παρατηρήσατε ότι στην παραπάνω απόδειξη κάναμε μία υπόθεση για την οποία δεν
δώσαμε καμία αιτιολόγηση:

Υποθέσαμε ότι για κάθε σύνολο B υπάρχει στοιχείο b ∈ B τέτοιο ώστε b∩B = ∅.

Η αλήθεια είναι ότι δεν μπορούμε να δικαιολογήσουμε αυτό το γεγονός μέσα από τα αξιώματα
που έχουμε δεχθεί έως τώρα. Η ύπαρξη αυτού του στοιχείου δεν αποτελεί καθόλου παράλογη
παραδοχή όμως, ειδικά αν αναλογιστεί κανείς ότι εφόσον δεν υπάρχει πάντα τέτοιο στοιχείο
θα μπορούσε κάλλιστα να προκύψει ένα σύνολο B με B ∈ B 1!

Θα εισάγουμε την παραπάνω πρόταση ως το τελευταίο αξίωμα της θεωρίας μας:

IX. Αξίωμα Κανονικότητας: ∀A(A ≠ ∅→ (∃a ∈ A)(a ∩A = ∅))

Μας χρειάζεται όμως στην πράξη αυτό το αξίωμα; Η αλήθεια είναι ότι φτάσαμε πάρα
πολύ μακριά χωρίς αυτό και, όχι μόνο καταφέραμε να αποφύγουμε τα παράδοξα που ανα-
φέραμε στο Κεφάλαιο 0, αλλά καταφέραμε να ορίσουμε όλα τα σύνολα και τα αντικεί-
μενα που χρησιμοποιούμε στα μαθηματικά. Αυτό σημαίνει εν ολίγης ότι αν επιτρέπαμε την
ύπαρξη παθογόνων συνόλων που ανήκουν στον εαυτό τους, αυτό δεν θα επηρέαζε καθόλου
τις συνήθεις πρακτικές που εφαρμόζουμε στα μαθηματικά 2.

Στον αντίποδα όμως, αν αποβάλαμε το Αξίωμα IX η Θεωρία μας δεν θα ήταν τόσο κομψή.
Για παράδειγμα, δεν θα ίσχυε ότι κάθε σύνολο ανήκει σε μια κλάση της σωρευτικής ιεραρχίας.
Δηλαδή, με άλλα λόγια, δεν θα είχαμε την ιδιότητα ότι κάθε σύνολο κατασκευάζεται μέσα
από μία αλληλουχία δυναμοσυνόλων και ενώσεων που ξεκινάει από το κενό σύνολο. Η αξία
αυτού του γεγονότος έγκειται στο ότι προσδίδει μια έννοια «πολυπλοκότητας» κατασκευής
σε κάθε σύνολο:

Ορισμός 5.4.8. Η τάξη ενός συνόλου A, συμβολισμός rank(A), ισούται με τον ελάχιστο
διατακτικό α τέτοιο ώστε A ⊆ Vα.

Παρατηρήστε ότι αν rank(A) = α τότε A ∈ Vα+1 και έτσι μπορούμε να διακρίνουμε
ακριβώς σε ποιο στάδιο της σωρευτικής ιεραρχίες πρωτοεμφανίστηκε το σύνολο A (και
ως συνέπεια πόσες φορές χρειάστηκε να πάρουμε δυναμοσύνολα και ενώσεις για να το
κατασκευάσουμε).
1 Αν B ∈ B τότε για το σύνολο {B} έπεται ότι B ∩ {B} ≠ ∅.
2 Σίγουρα καμία από όσες εφαρμόσαμε μέχρι και το Θεώρημα 5.4.7.
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Ασκήσεις

5.1. Αποδείξτε τo Θεώρημα 5.1.5.

5.2. Έστω μη κενό σύνολο διατακτικών C . Δείξτε ότι τα σύνολα ⋃C και ⋂C είναι
διατακτικοί.

5.3. Δείξτε ότι κάθε μεταβατικό σύνολο διατακτικών είναι διατακτικός.

5.4. Έστω διατακτικοί α,β και 1-1 συνάρτηση f : α → β. Δείξτε ότι αν β ≤ α τότε η f
είναι επί του β.

5.5. Δείξτε ότι δεν υπάρχει σύνολο που να περιέχει όλους τους επόμενους διατακτι-
κούς.

5.6. Δείξτε ότι το Αξίωμα VI μπορεί να αποδειχθεί από τα υπόλοιπα αξιώματα.

5.7. Δείξτε ότι το Αξίωμα III μπορεί να αποδειχθεί από τα υπόλοιπα αξιώματα.

5.8 (Θεώρημα Αναδρομή Διατακτικών με Παράμετρο). Για κάθε οριστικό τελεστή H
δύο μεταβλητών υπάρχει μοναδικός τελεστής F δύο μεταβλητών που ικανοποιεί την
εξίσωση:

F (α,x) = H(F ↾ α,x), για κάθε διατακτικό α και σύνολο x

5.9. Για κάθε οριστικoύς τελεστές H1,H2,H3 δύο μεταβλητών υπάρχει μοναδικός
τελεστής F δύο μεταβλητών που ικανοποιεί την εξίσωση:

F (α,x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H1(0, x), αν α = 0

H2(β,x), αν α επόμενος και α = β+

H3(F ↾ α,x), αν α οριακός

για κάθε διατακτικό α και σύνολο x.

5.10. Δείξτε ότι για κάθε διατακτικό α:

1. 0 + α = α

2. 0 ⋅ α = 0

3. α ⋅ 1 = 1 ⋅ α = α

5.11. Δείξτε ότι για κάθε διατακτικούς α,β, γ:
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1. (α+ β) + γ = α+ (β + γ)

2. (α ⋅ β) ⋅ γ = α ⋅ (β ⋅ γ)

3. α ⋅ (β + γ) = (α ⋅ β) + (α ⋅ γ)

5.12. Δείξτε ότι για κάθε διατακτικούς α,β, γ:

1. β < γ ανν α+ β < α+ γ

2. αν α ≠ 0 τότε β < γ ανν α ⋅ β < α ⋅ γ

3. αν α+ β = α+ γ τότε β = γ

4. αν α ≠ 0 και α ⋅ β = α ⋅ γ τότε β = γ

5.13. Δείξτε ότι για κάθε διατακτικούς α,β, γ με 2 ≤ α:

1. αβ+γ = αβ ⋅ αγ

2. (αβ)γ = αβ⋅γ

5.14. Δείξτε ότι για κάθε διατακτικούς α,β, γ με 2 ≤ α:

1. αν αβ = αγ τότε β = γ

2. β < γ ανν αβ < αγ

5.15. Δείξτε ότι ο ω+n ισούται με τον διατακτικό που προκύπτει αν πάρουμε n φορές
τον επόμενο του ω.

5.16. Έστω καλά διατεταγμένοι χώροι (A,≤A) και (B,≤B) όμοιοι με τους διατακτικούς
α και β αντίστοιχα. Δείξτε ότι ο καλά διατεταγμένος χώρος (A+B,≤λεξ), όπου ≤λεξ
η λεξικογραφική διάταξη, είναι όμοιος με τον διατακτικό α+ β.

5.17. Έστω καλά διατεταγμένοι χώροι (A,≤A) και (B,≤B) όμοιοι με τους διατακτικούς
α και β αντίστοιχα. Δείξτε ότι ο καλά διατεταγμένος χώρος (A×B,≤ξελ), όπου ≤ξελ η
αντίστροφη λεξικογραφική διάταξη, είναι όμοιος με τον διατακτικό α ⋅ β.

5.18. Δείξτε ότι 1 + ω = ω και ότι 2 ⋅ ω = ω.

5.19. Δείξτε ότι η πρόσθεση και ο πολλαπλασιασμός διατακτικών δεν είναι αντιμετα-
θετικοί τελεστές.

5.20 (Αφαίρεση Διατακτικών). Έστω διατακτικοί α,β με α ≤ β. Δείξτε ότι υπάρχει
μοναδικός διατακτικός γ τέτοιος ώστε α+ γ = β.
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5.21 (Διαίρεση Διατακτικών). Έστω διατακτικοί α, δ με δ ≠ 0. Δείξτε ότι υπάρχουν
μοναδικοί διατακτικοί π, υ τέτοιοι ώστε α = π ⋅ δ + υ και υ < δ.

5.22. Αποδείξτε την Πρόταση 5.4.3.

5.23. Αποδείξτε την Πρόταση 5.4.4.

5.24. Αποδείξτε την Πρόταση 5.4.5.

5.25. Δείξτε ότι το Αξίωμα IX συνεπάγεται τις ακόλουθες προτάσεις:

1. Δεν υπάρχει σύνολο A με A ∈ A.

2. Δεν υπάρχουν σύνολα A,B με A ∈ B και B ∈ A.

3. Δεν υπάρχει συνάρτηση f : ω → A, για κάποιο σύνολο A, τέτοια ώστε f(n+) ∈
f(n), για κάθε n ∈ ω.

5.26. Δείξτε ότι για κάθε διατακτικό α ισχύει ότι, Vα ∈ Vα+1 ∖ Vα (χωρίς να χρησιμο-
ποιήσετε το Αξίωμα IX).

5.27. Δείξτε ότι για κάθε σύνολο A:

1. Για κάθε a ∈ A ισχύει ότι rank(a) < rank(A).

2. rank(A) = sup{rank(a) + 1 ∣ a ∈ A}.

5.28. Αποδείξτε το Θεώρημα 4.2.11 χρησιμοποιώντας το Θεώρημα 5.3.2.
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Πολύ συχνά στα μαθηματικά είναι απαραίτητο να συγκρίνουμε το μέγεθος δύο συνόλων.
Διαισθητικά ο τρόπος να το κάνουμε αυτό είναι να αντιστοιχίσουμε το κάθε στοιχείο του ενός
με ακριβώς ένα στοιχείο του άλλου. Αυτό θα μας δώσει μία εικόνα για το ποιο από τα δύο
σύνολα έχει τα περισσότερα στοιχεία. Σε πολλές εφαρμογές όμως (ειδικά όταν μιλάμε για
πεπερασμένα σύνολα) αυτό δεν είναι αρκετό, καθώς μας χρειάζεται και ένα «χειροπιαστό»
μέτρο του μεγέθους του συνόλου, δηλαδή ένας πληθικός αριθμός 1.

Στο Κεφάλαιο 5 επεκτείναμε το μέτρημα πέρα από τους φυσικούς αριθμούς, ορίζοντας
τους διατακτικούς αριθμούς. Επίσης είδαμε ότι κάθε σύνολο μπορεί να διαταχθεί καλώς
(Θεώρημα 4.2.11) και άρα είναι όμοιο με κάποιον διατακτικό αριθμό (Θεώρημα 5.2.1). Οι
διατακτικοί αριθμοί όμως θα μπορούσαμε να πούμε ότι στην ουσία μετράνε τη διάταξη και
όχι το σύνολο. Για αυτό και δεν αντικατοπτρίζουν απόλυτα την έννοια του πληθικού αριθμού
(είναι πολύ «ευαίσθητοι» για αυτόν τον σκοπό). Αυτό φυσικά δεν σημαίνει ότι δεν υπάρχει
τρόπος να τους αξιοποιήσουμε (αν όχι στο σύνολό τους, τουλάχιστων κάποιο μέρος τους).

Θα χωρίσουμε το κεφάλαιο αυτό σε δύο ενότητες. Στην πρώτη θα ασχοληθούμε με τον
διαισθητικό τρόπο σύγκρισης του πλήθους στοιχείων των συνόλων, ενώ στη δεύτερη θα ορί-
σουμε τους πληθικούς αριθμούς και την αριθμητική τους.

6.1 Ισοπληθηκότητα
Οι ορισμοί και τα αποτελέσματα αυτής της παραγράφου είναι λίγο έως πολύ σε όλους

γνωστά από πρότερη ενασχόληση με τα μαθηματικά. Ως εκ τούτου δεν θα χρειαστεί να τα
αναλύσουμε εις βάθος.

Ορισμός 6.1.1. Δύο σύνολα A,B είναι ισοπληθικά ανν υπάρχει 1-1 και επί συνάρτηση f :
A→ B. Σε αυτήν την περίπτωση θα γράφουμε A =c B.
1 Φανταστείτε ότι διοργανώνετε μία δεξίωση και θέλετε να καθορίσετε τις ποσότητες των αναψυκτικών. Σε αυ-

τήν την περίπτωση η γνώση ότι το σύνολο των παρευρισκομένων θα είναι π.χ. ισοπληθικό με το σύνολο των
προσκλήσεων που απεστάλησαν δεν θα σας ήταν ιδιαίτερα χρήσιμο. Χρειάζεστε τον αριθμό των καλεσμένων.
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Η απόδειξη της ακόλουθης πρότασης αφήνεται ως άσκηση.

Πρόταση 6.1.2. Για κάθε σύνολα A,B,C ισχύει ότι:

1. A =c A

2. αν A =c B τότε B =c A

3. αν A =c B και B =c C τότε A =c C

Το ακόλουθο θεώρημα ίσως είναι το πιο γνωστό αποτέλεσμα της δουλειάς του Georg
Cantor.

Θεώρημα 6.1.3. Το ω δεν είναι ισοπληθικό με το R.

Απόδειξη. 1 Έστω (προς άτοπο) 1-1 και επί συνάρτηση f : ω → R. Θεωρούμε τον πραγματικό
αριθμό d με ακέραιο μέρος 0 και το n-οστο δεκαδικό ψηφίο ίσο με 1, αν το n-στο δεκαδικό
ψηφίο του f(n) είναι 0, και 0 αλλιώς. Είναι προφανές ότι d ∉ f [ω], άρα η f δεν μπορεί να
είναι επί.

Η μέθοδος που χρησιμοποιήσαμε στην παραπάνω απόδειξη είναι γνωστή ως Διαγώνιο
Επιχείρημα του Cantor. Με αυτήν τη μέθοδο μπορούμε να αποδείξουμε και το ακόλουθο:

Θεώρημα 6.1.4. Κανένα σύνολο δεν είναι ισοπληθικό με το δυναμοσύνολό του.

Απόδειξη. Έστω σύνολο A και έστω (προς άτοπο) 1-1 και επί συνάρτηση f : A → P(A).
Θεωρούμε το σύνολο B = {x ∈ A ∣ x ∉ f(x)}. Αφού B ⊆ A και η f είναι επί του P(A),
υπάρχει b ∈ A τέτοιο ώστε f(b) = B. Όμως τότε b ∈ B ανν b ∉ B. Άτοπο.

Το γεγονός ότι ένα σύνολο δεν είναι ισοπληθικό με κάποιο άλλο δεν μας παρέχει όλη
την πληροφορία που θα θέλαμε. Για παράδειγμα δεν μας υποδηλώνει ποιο από τα δύο έχει
μεγαλύτερο πλήθος στοιχείων. Θα χρειαστεί να επεκτείνουμε λοιπόν τον Ορισμό 6.1.1.

Ορισμός 6.1.5. Έστω σύνολα A,B. Θα λέμε ότι το A είναι μικρότερο είτε ίσο πληθικά από
το B ανν υπάρχει B′ ⊆ B τέτοιο ώστε A =c B

′. Σε αυτήν την περίπτωση θα γράφουμε
A ≤c B ή και A <c B αν επιπλέον γνωρίζουμε ότι A ≠c B.

Παρατήρηση 6.1.6. Έστω σύνολα A,B. Ισχύει ότι A ≤c B ανν υπάρχει 1-1 συνάρτηση
f : A→ B.

Συνδυάζοντας την Άσκηση 2.12 με τα Θεωρήματα 3.2.11, 3.3.11, 3.4.12 και την παραπάνω
παρατήρηση μπορούμε να αποδείξουμε την ακόλουθη πρόταση.

Πρόταση 6.1.7. ω <c R.

Όταν ανακάλυψε αυτό το γεγονός ο Cantor, που όπως θα δούμε έχει ως συνέπεια την
ύπαρξη δύο διαφορετικών άπειρων πληθικών αριθμών, αναρωτήθηκε αν υπάρχει σύνολο
πραγματικών που πληθικά βρίσκεται μεταξύ των ω και R. Έτσι οδηγήθηκε στη διατύπωση
της ακόλουθης εικασίας το 1878.
1 Στην απόδειξη θα χρησιμοποιήσουμε γνωστές μας έννοιες για τους πραγματικούς που δεν τις αναπτύξαμε στην

Παράγραφο 3.4.
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Εικασία 6.1.8 (Υπόθεση Συνεχούς). Δεν υπάρχει σύνολο A ⊂ R τέτοιο ώστε ω <c A <c R.

Η εικασία αυτή «ταλαιπώρησε» τον Cantor, αλλά και γενικότερα τη μαθηματική κοι-
νότητα, μέχρι το 1963 όπου ο Paul Cohen (επεκτείνοντας προγενέστερα αποτελέσματα
του Kurt Gödel) έδειξε ότι η Εικασία 6.1.8 δεν μπορεί ούτε να αποδειχθεί στη ZFC, αλλά
ούτε και να διαψευσθεί. Αυτό σημαίνει ότι θα μπορούσαμε κάλλιστα να την προσθέσουμε
στη λίστα των αξιωμάτων μας, ή να προσθέσουμε κάποιο άλλο αξίωμα που να εξασφαλίζει
την ορθότητά της (που θα είναι απόρροια της διαισθητικής μας αντίληψης περί συνόλων).
Τέτοιες απόπειρες έγιναν στο παρελθόν αλλά δεν έτυχαν μεγάλης υποστήριξης. Να ανα-
φέρουμε ότι στον αντίποδα υπήρξαν φωνές που είτε υποστήριζαν ότι η Εικασία 6.1.8 δεν
ισχύει (ίσως το πιο τρανό παράδειγμα να είναι ο ίδιος ο Kurt Gödel), είτε ισχυρίζονταν ότι
δεν έχει τεθεί με τρόπο ώστε να αποτελεί «οριστικό» μαθηματικό πρόβλημα.

Πρόταση 6.1.9. Για κάθε σύνολο A ισχύει ότι A <c P(A).

Απόδειξη. Αρκεί να θεωρήσουμε τη συνάρτηση f : A → P(A), με f(a) = {a}, για κάθε
a ∈ A

Η απόδειξη της ακόλουθης πρότασης αφήνεται ως άσκηση.

Πρόταση 6.1.10. Για κάθε σύνολα A,B,C ισχύει ότι:

1. A ≤c A

2. αν A ≤c B και B ≤c C τότε A ≤c C

Σύμφωνα με τη διαίσθησή μας εύκολα θα δεχόμασταν ότι ισχύει και η «αντισυμετρική»
ιδιότητα:

Θεώρημα 6.1.11 (Schröder-Bernstein). 1 Έστω σύνολα A,B. Αν A ≤c B και B ≤c A τότε
A =c B.

Θα προτρέξουμε λίγο και θα αναφέρουμε ότι μπορούμε να αποδείξουμε το παραπάνω
θεώρημα χρησιμοποιώντας την ιδέα της ακόλουθης παρατήρησης (που προκύπτει άμεσα αν
συνδυάσουμε τα Θεώρημα 4.2.11 και 5.2.1):

Παρατήρηση 6.1.12. Κάθε σύνολο είναι ισοπληθικό με έναν διατακτικό.

Παρατηρήστε όμως ότι αυτός ο διατακτικός δεν είναι απαραίτητα μοναδικός! Εξαρτάται
άμεσα από την επιλογή της καλής διάταξης του συνόλου. Ας δούμε ένα παράδειγμα: Ο
χώρος (ω,≤′) του Παραδείγματος 4.1.2 είναι όμοιος με τον διατακτικό ω+1 2. Βρισκόμαστε
λοιπόν μπροστά στο ανεπιθύμητο γεγονός ότι το ω είναι ισοπληθικό με δύο διαφορετικούς
διατακτικούς, τον ω και τον ω + 1! Θα πρέπει να είμαστε συνεπώς ιδιαίτερα προσεκτικοί
1 Αυτό είναι ένα ακόμα παράδειγμα όπου η ιστορία στάθηκε άδικη προς τον Richard Dedekind: Ενώ ήταν ο

πρώτος που απέδειξε αυτό το θεώρημα, το θεώρημα δεν αναφέρεται με το όνομά του. Στη βιβλιογραφία μπορεί
να αναφερθεί και ως Cantor-Schröder-Bernstein ή Cantor-Bernstein. Η πραγματικότητα βέβαια είναι ότι ο
Georg Cantor απλά το διατύπωσε, ενώ η απόδειξη του Ernst Schröder ήταν λάθος.

2 Θεωρήστε τη συνάρτηση f : ω → ω+ με f(0) = ω και f(n+ 1) = n, για n ∈ ω.
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όσον αφορά την επιλογή του διατακτικού που θα αντιπροσωπεύσει τον πληθικό αριθμό του
συνόλου.

Δε θα αναπτύξουμε περαιτέρω την παραπάνω ιδέα σε αυτήν την παράγραφο, καθώς
σκοπός μας είναι να παρουσιάσουμε μόνο τις βασικές ιδιότητες της ισοπληθικότητας (θα
συνεχίσουμε αυτήν τη συζήτηση στο δεύτερο μέρος του κεφαλαίου). Ούτως ή άλλως σε
πρώτη φάση δεν μας είναι απαραίτητη, μπορούμε να αποδείξουμε τις βασικές ιδιότητες
της ισοπληθικότητας χρησιμοποιώντας μόνο απλά συνδυαστικά επιχειρήματα. Σε μερικές
περιπτώσεις μάλιστα δεν χρειαζόμαστε ούτε καν το Αξίωμα VII, όπως για παράδειγμα στην
απόδειξη του Θεωρήματος 6.1.11.

Προτού δούμε την απόδειξη του Θεωρήματος 6.1.11 θα χρειαστεί να αποδείξουμε το
ακόλουθο Λήμμα.

Λήμμα 6.1.13. Έστω σύνολα A,B με B ⊆ A. Αν A ≤c B τότε A =c B.

Απόδειξη. Έστω 1-1 συνάρτηση A → B. Αρκεί να ορίσουμε διαμέριση C,D του B τέτοια
ώστε (δες Σχήμα 6.1.1):

f [C] ⊆ C (6.1)
f [A ∖C] = D (6.2)

Καθώς τότε η συνάρτηση g : A→ B:

g(x) =

⎧⎪⎪⎨⎪⎪⎩

f(x), αν x ∈ A ∖C
x, αλλιώς

θα είναι 1-1 και επί του B (1-1 λόγω του ότι η f είναι 1-1, και επί λόγω της Σχέσης (6.2) και
του ότι η g ↾ C είναι επί του C).

Για να ορίσουμε το σύνολο D θα χρειαστούμε πρώτα να ορίσουμε με αναδρομή στο ω
τη συνάρτηση h : ω → (A→ B):

⎧⎪⎪⎨⎪⎪⎩

h(0) = f

h(n+) = f(h(n)) , για κάθε n ∈ ω

Θα συμβολίζουμε τη συνάρτηση h(n) : A → B με hn. Θεωρούμε λοιπόν τη διαμέριση του
B:

D ⊆⋃{hn[A ∖B] ∣ n ∈ ω}
C = B ∖D

Ας ελέγξουμε ότι τα σύνολα αυτά ικανοποιούν τις Σχέσεις (6.1) και (6.2). Παρατηρήστε ότι:

f [A ∖C] = f [(A ∖B) +D]

= f [A ∖B] + f [D] [Λόγω της Άσκησης 2.13]
= h0[A ∖B] +⋃{hn[A ∖B] ∣ n ∈ ω}
=⋃{hn[A ∖B] ∣ n ∈ ω}
= f [D]
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Σχήμα 6.1.1: Τα σύνολα A,B,C,D στην απόδειξη του Λήμματος 6.1.13.

Επίσης, αν (προς άτοπο) υπάρχει c ∈ C τέτοιο ώστε f(c) ∈ D, αφού (μόλις δείξαμε ότι) η
f ↾ A ∖C είναι επί του D θα υπάρχει a ∈ A ∖C με f(a) = f(c) και, καθώς η f είναι 1-1, θα
έχουμε ότι c ∈ A ∖C ! Συνεπώς F [C] ⊆ C .

Απόδειξη Θεωρήματος 6.1.11. Έστω 1-1 συναρτήσεις f : A→ B και g : B → A. Παρατηρήστε
ότι η g είναι επί του g[B], άρα g[B] =c B. Παρατηρήστε επίσης ότι η g ○ f : A→ g[B] είναι
1-1 (λόγω της Άσκησης 2.12) άρα A ≤c g[B]. Συνεπώς, από το Λήμμα 6.1.13 έπεται ότι
A =c g[B] και από την Πρόταση 6.1.2 ότι A =c B.

Επίσης σύμφωνα με τη διαίσθησή θα δεχόμασταν ότι μπορούμε πάντα να συγκρίνουμε
δύο σύνολα για να δούμε ποιο από αυτά έχει το μεγαλύτερο πλήθος στοιχείων.

Θεώρημα 6.1.14 (Θεώρημα Πληθικής Συγκρισημότητας). Για κάθε σύνολαA,B ισχύειA ≤c
B ή B ≤c A.

Απόδειξη. Θεωρούμε το σύνολο:

F = {f ∈ (A→ B) ∣ f 1-1}

Θα δείξουμε ότι κάθε αλυσίδα C του χώρου (F,⊆) έχει άνω φράγμα. Από την Άσκηση 2.15
η συνάρτηση g = ⋃F είναι 1-1, και προφανώς ισχύει ότι f ⊆ g για κάθε f ∈ F . Από το Θεώ-
ρημα 4.2.1 έπεται ότι ο χώρος (F,⊆) έχει μεγιστικό στοιχείο, έστω h, και από την Άσκηση 4.10
ότι είτε dom(h) = A είτε ran(h) = B. Στην πρώτη περίπτωση h : A→ B άρα A ≤c B (αφού
h 1-1), ενώ στη δεύτερη h−1 : B → A και B ≤c A (αφού h−1 1-1).

Το Θεώρημα 6.1.14 είναι και αυτό μέλος της εκτενής οικογένειας τον «ισοδύναμων διατυ-
πώσεων» του Αξιώματος VII. Θα δείξουμε ότι μπορεί να χρησιμοποιηθεί για να αποδείξουμε
το Θεώρημα 4.2.11 1. Θα χρειαστεί όμως να δείξουμε πρώτα ένα λήμμα.
1 Βάζοντάς το εμβόλιμα στην αλυσίδα: Αξίωμα VII.(iii)⇒Θεώρημα 4.2.1⇒Θεώρημα 6.1.14⇒Θεώρημα 4.2.11
⇒ Θεώρημα 4.2.1⇒ Αξίωμα VII.(iii).
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Λήμμα 6.1.15 (Αριθμός Hartogs). Για κάθε σύνολο A υπάρχει διατακτικός α τέτοιος ώστε
α /≤c A.

Απόδειξη. Ας υποθέσουμε ότι η ακόλουθη συλλογή είναι σύνολο 1:

C = {β ∣ β διατακτικός με β ≤c A}

Θα δείξουμε ότι το C είναι μεταβατικό (σύνολο διατακτικών), άρα από την Άσκηση 5.3 θα
αποτελεί διατακτικό, έστω τον α. Προφανώς ισχύει ότι α /≤c A (αλλιώς θα είχαμε ότι C ∈ C).

Έστω β ∈ C και γ ∈ β. Αφού γ ⊂ β και β ≤c A έπεται ότι και γ ≤c A (για την ίδια
συνάρτηση που μας εξασφαλίζει ότι β ≤c A), άρα γ ∈ C .

Μένει να δείξουμε ότι το C είναι σύνολο. Θεωρούμε τον τελεστή:

F (x) =

⎧⎪⎪⎨⎪⎪⎩

β αν x = (B,≤) για καλά διατεταγμένο χώρο με B ⊆ A και (B,≤) ≅ β
0, αλλιώς

(ο F είναι τελεστής λόγο του Θεωρήματος 5.2.1), και το σύνολο (λόγω του Αξιώματος VIII):

C ′ = {F ((B,≤)) ∣ (B,≤) ∈ P(A) ×P(A ×A)}

Αρκεί να δείξουμε ότι C ⊆ C ′, δηλαδή ότι για κάθε β ∈ C υπάρχει B ⊆ A και καλή διάταξη ≤B
στο B έτσι ώστε β ≅ (B,≤B). Έστω 1-1 συνάρτηση f : β → A και έστω B = f [β]. Θεωρούμε
τη διάταξη ≤B με:

x ≤B y ανν f−1(x) ≤ f−1(y)

Η ≤B είναι καλή λόγω της Άσκησης 4.2 και η f είναι ομοιότητα των β και (B,≤B).

Παρατήρηση 6.1.16. Ο διατακτικός α που ορίσαμε στην απόδειξη του Λήμματος 6.1.15
είναι ο ελάχιστος με αυτήν την ιδιότητα (καθώς αν β < α τότε β ∈ α = C). Τον διατακτικό
αυτόν τον καλούμε Αριθμό Hartogs του συνόλου A, και τον συμβολίζουμε με Hartogs(A).

Απόδειξη του Θεωρήματος 4.2.11 μέσω του Θεωρήματος 6.1.14. Έστω σύνολο A. Λόγω του
Θεωρήματος 6.1.14 έπεται ότι A ≤c Hartogs(A). Έστω 1-1 συνάρτηση f : A → Hartogs(A).
Θεωρούμε τη διάταξη ≤A του A με:

x ≤A y ανν f(x) ≤ f(y)

η οποία είναι καλή λόγω της Άσκησης 4.2.

6.1.1 Πεπερασμένα σύνολα
Ορισμός 6.1.17. Ένα σύνολο A καλείται πεπερασμένο ανν A =c n για κάποιο n ∈ ω. Αν το
A δεν είναι πεπερασμένο τότε θα το αποκαλούμε άπειρο.

Προφανώς οι φυσικοί είναι πεπερασμένα σύνολα. Θα περιμέναμε ότι ένα υποσύνολο
ενός πεπερασμένου συνόλου είναι πεπερασμένο. Θα δείξουμε αρχικά ότι αυτή η ιδιότητα
ισχύει για τους φυσικούς (μάλιστα θα δείξουμε κάτι πιο ισχυρό).
1 Παρατηρήστε ότι δεν μπορούμε να επικαλεστούμε εδώ το Αξίωμα VIII.
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Λήμμα 6.1.18. Έστω φυσικός n και A ⊂ n. Τότε A =c m όπου m φυσικός με m < n.

Απόδειξη. Θα χρησιμοποιήσουμε την αρχή επαγωγής των φυσικών. Θεωρούμε το σύνολο:

P = {n ∈ ω ∣ για κάθε A ⊂ n ισχύει ότι A =c m για κάποιο m < n}

Προφανώς 0 ∈ P . Έστω n ∈ P και A ⊂ n+. Διακρίνουμε τρεις περιπτώσεις:
1η: A ⊂ n. Τότε το ζητούμενο ισχύει καθώς n ∈ P .
2η: A = n. Τότε προφανώς A =c n (και n < n+).
3η: n ∈ A. Τότε A ∖ {n} ⊂ n και (καθώς n ∈ P ) ισχύει ότι υπάρχει m < n με A ∖ {n} =c m.
Έστω 1-1 και επί συνάρτηση f : A ∖ {n} → m, θεωρούμε τη συνάρτηση f ′ : A → m+ με
f ′(n) =m και f ′(x) = f(x) να x ∈ A∖{n}, η οποία είναι 1-1 και επί (και m+ ≤ n < n+).

Πρόταση 6.1.19. Κάθε υποσύνολο ενός πεπερασμένου συνόλου είναι πεπερασμένο.

Απόδειξη. Έστω πεπερασμένο σύνολο A και B ⊆ A. Έστω επίσης 1-1 και επί συνάρτηση
f : A → n για κάποιον φυσικό n. Η g = f ↾ B είναι 1-1 και επί του g[B]. Αφού g[B] ⊆ n
έπεται ότι g[B] =c m για κάποιον φυσικό m ≤ n, άρα λόγω της Πρότασης 6.1.2 έπεται ότι
B =c m (αφού B =c g[B]).

Θα δείξουμε επίσης ότι κάθε πεπερασμένο σύνολο είναι ισοπληθικό με ακριβώς έναν
φυσικό. Το γεγονός αυτό ισοδυναμεί με την Αρχή του Περιστερώνα, τη βασική πρακτική
που χρησιμοποιούμε όταν δουλεύουμε με πεπερασμένα σύνολα.

Θεώρημα 6.1.20 (Αρχή Περιστερώνα). Δεν υπάρχει 1-1 συνάρτηση από ένα σύνολο σε ένα
γνήσιο υποσύνολό του.

Θα ξεκινήσουμε πάλι αποδεικνύοντας την αρχή του περιστερώνα για τους φυσικούς.

Λήμμα 6.1.21. Δεν υπάρχει 1-1 συνάρτηση από έναν φυσικό σε ένα γνήσιο υποσύνολό του.

Απόδειξη. Έστω n ∈ ω και B ⊂ n. Έστω επίσης (προς άτοπο) 1-1 συνάρτηση f : n → B. Θα
δείξουμε με επαγωγή στους φυσικούς ότι ran(f) = n, γεγονός που αντιβαίνει στο ότι B ⊂ n.

Θεωρούμε το σύνολο:

P = {n ∈ ω ∣ Για κάθε 1-1 συνάρτηση f : n→ n ισχύει ότι ran(f) = n}

Προφανώς 0 ∈ P . Έστω n ∈ P και 1-1 συνάρτηση f : n+ → n+. Παρατηρήσετε ότι η f ↾ n :
n→ n+ είναι 1-1. Διακρίνουμε δύο περιπτώσεις:
1η: f(n) = n. Τότε ran(f ↾ n) ⊆ n, αλλά αφού n ∈ P θα έχουμε ότι ran(f ↾ n) = n. Άρα
αναγκαστικά ισχύει ότι ran(f) = n+.
2η: Υπάρχει m < n με f(m) = n. Τότε, θεωρούμε την 1-1 συνάρτηση f ′ : n+ → n+ με:

f ′(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(n), αν x =m

n, αν x = n

f(x), αλλιώς

για την οποία ισχύει ότι ran(f ′) = ran(f). Παρατηρούμε ότι για την f ′ εφαρμόζεται η πρώτη
περίπτωση, άρα ran(f ′) = n+.
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Απόδειξη Θεωρήματος 6.1.20. Έστω σύνολαA,B μεB ⊂ A και (προς άτοπο) 1-1 συνάρτηση
f : A→ B. Έστω επίσης φυσικός n τέτοιος ώστε A =c n και 1-1 και επί συνάρτηση g : A→ n.
Θεωρούμε τη συνάρτηση:

h = g ○ f ○ g−1 : n→ n

Από την Άσκηση 2.12 η h είναι 1-1, για την οποία ισχύει ότι ran(h) ⊂ n, καθώς για κάθε
a ∈ A ∖B ισχύει ότι g(a) ∉ ran(h). Αυτό αντιβαίνει στο Λήμμα 6.1.21.

Πόρισμα 6.1.22. Κανένα πεπερασμένο σύνολο δεν είναι ισοπληθικό με ένα γνήσιο υποσύ-
νολό του.

Όσον αφορά τα πεπερασμένα σύνολα δεν έχουμε το πρόβλημα που αναφέραμε στην
προηγούμενη παράγραφο, καθώς κάθε πεπερασμένο σύνολο είναι ισοπληθικό με ακριβώς
έναν διατακτικό.

Πόρισμα 6.1.23. Κάθε πεπερασμένο σύνολο είναι ισοπληθικό με ακριβώς έναν φυσικό.

Αυτό μας δίνει το δικαίωμα να ορίσουμε τους πρώτους πληθικούς αριθμούς.

Ορισμός 6.1.24. Για κάθε πεπερασμένο σύνολο A ο πληθικός αριθμός του, συμβολισμός
∣A∣, ισούται με τον μοναδικό φυσικό n ∈ ω για τον οποίο ισχύει ότι n =c A. Τους πληθικούς
αριθμούς αυτούς τους αποκαλούμε πεπερασμένους.

Παρατήρηση 6.1.25. Έστω πεπερασμένο σύνολο A και B ⊆ A. Ισχύει ότι ∣B∣ ≤ ∣A∣.

6.1.2 Αριθμήσιμα σύνολα
Η προηγούμενη παράγραφος μας έδωσε μια «γεύση» για το πως είναι τα άπειρα σύνολα.

Η αντιθετοαντιστροφή του Πορίσματος 6.1.22 μας λέει το εξής:

Παρατήρηση 6.1.26. Αν ένα σύνολο είναι ισοπληθικό με κάποιο γνήσιο υποσύνολό του τότε
είναι άπειρο.

Παράδειγμα 6.1.27. Το σύνολο ω είναι άπειρο καθώς η συνάρτηση f : ω → ω ∖ {0} με
f(n) = n+ 1, για κάθε n ∈ ω, είναι 1-1 και επί. Συνεπώς ω =c ω ∖ {0}.

Ορισμός 6.1.28. Ένα σύνολο A καλείται αριθμησίμως άπειρο ανν A =c ω. Ένα σύνολο
καλείται αριθμήσιμο αν είναι αριθμησίμως άπειρο ή πεπερασμένο.

Παρατήρηση 6.1.29. Για κάθε αριθμήσιμο σύνολο A υπάρχει 1-1 συνάρτηση f : A→ ω.

Πράγματι, αν A =c ω αυτό έπεται εξ ορισμού, ενώ αν A πεπερασμένο, δηλαδή υπάρχει
n ∈ ω και 1-1 και επί συνάρτηση f : A→ n, τότε η f είναι και 1-1 συνάρτηση από το A στο ω.

Δεν θα παραθέσουμε τις ιδιότητες των αριθμήσιμων συνόλων εδώ, θα τις αφήσουμε για
την ενότητα των ασκήσεων στο τέλος του κεφαλαίου. Θα αναφέρουμε μόνο μία, η απόδειξη
της οποίας απαιτεί το Αξίωμα VII. Το παρακάτω αποτέλεσμα αποδίδεται στον Georg Cantor.

Θεώρημα 6.1.30. Έστω οικογένεια αριθμησίμων συνόλων (Ai)i∈ω . Η ένωση A = ⋃i∈ωAi

είναι αριθμήσιμη.
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Απόδειξη. Θεωρούμε την οικογένεια (Fi)i∈ω όπου:

Fi = {f ∈ (Ai → ω) ∣ η f είναι 1-1}

Αφού για κάθε i ∈ ω το Ai είναι αριθμήσιμο, η (Fi)i∈ω είναι οικογένεια μη κενών συνόλων.
Συνεπώς επιδέχεται συνάρτησης επιλογής, έστω g. Θα συμβολίζουμε τη συνάρτηση g(i) :
Ai → ω με gi. Επίσης, θεωρούμε τη συνάρτηση f : A→ ω με:

f(x) = 2i ⋅ 3j

όπου i = min{i ∈ ω ∣ x ∈ Ai} και j = gi(x). Η f είναι προφανώς 1-1 1, συνεπώς από την
Άσκηση 6.9 έπεται ότι το A είναι αριθμήσιμο.

Πόρισμα 6.1.31. Έστω αριθμήσιμο σύνολο A, τέτοιο ώστε κάθε a ∈ A να είναι αριθμήσιμο.
Τότε το σύνολο ⋃A είναι αριθμήσιμο 2.

6.1.3 Υπεραριθμήσιμα σύνολα
Ορισμός 6.1.32. Ένα σύνολο A καλείται υπεραριθμήσιμο ανν δεν είναι αριθμήσιμο.

Από την Παρατήρηση 6.1.29 έπεται ότι ένα σύνολο A είναι υπεραριθμήσιμο ανν δεν
υπάρχει 1-1 συνάρτηση f : A→ ω. Ένα άμεσο πόρισμα της Πρότασης 6.1.7 είναι το ακόλουθο:

Πόρισμα (της Πρότασης 6.1.7). Το R είναι υπεραριθμήσιμο.

Η απόδειξη έπεται από την Άσκηση 6.9. Σαν μια πρώτη εφαρμογή του Θεωρήματος 6.1.11
θα δείξουμε ότι P(ω) =c R. Αρκεί να αποδείξουμε τα ακόλουθα δύο λήμματα.

Λήμμα 6.1.33. P(ω) ≤c R
Απόδειξη. Από την Άσκηση 6.16 έπεται ότι (ω → {0,1}) =c P(ω), συνεπώς αρκεί να δεί-
ξουμε ότι (ω → {0,1}) ≤c R. Θεωρούμε συνάρτηση h : (ω → {0,1})→ R με h(f) = rf , όπου
ο rf έχει ακέραιο μέρος 0 και το n-οστο δεκαδικό ψηφίο ίσο με f(n), για n ∈ ω. Η h είναι
προφανώς 1-1.

Λήμμα 6.1.34. R ≤c P(ω)
Απόδειξη. Από την Άσκηση 6.15 έπεται ότι ω =c Q, και από την Άσκηση 6.17 έπεται ότι
P(ω) = P(Q). Συνεπώς αρκεί να δείξουμε ότι R ≤c P(Q). Θεωρούμε τη συνάρτηση f : R→
P(Q) με f(r) = {q ∈ Q ∣ q < r}, για κάθε r ∈ R. Από την Παρατήρηση 3.4.1 έπεται ότι η f
είναι 1-1.

Συνδυάζοντας τα Λήμματα 6.1.33 και 6.1.34 με το Θεώρημα 6.1.11 οδηγούμαστε στο
ακόλουθο:

Θεώρημα 6.1.35. P(ω) =c R
Στην επόμενη παράγραφο θα δείξουμε ότι υπάρχουν και άλλα υπεραριθμήσιμα σύνολα,

και μάλιστα με πληθικό αριθμό πολύ μεγαλύτερο από αυτόν του συνόλου των πραγματικών.
1 Εδώ εκμεταλλευόμαστε φυσικά την μοναδικότητα της ανάλυσης σε γινόμενο πρώτων παραγόντων των φυσικών

αριθμών.
2 Δες και Άσκηση 6.4.
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6.2 Πληθικοί αριθμοί
Ήρθε η ώρα να αναπτύξουμε την ιδέα της Παρατήρησης 6.1.12. Όπως αναφέραμε σε

προγενέστερη παράγραφο θα ορίσουμε τους πληθικούς αριθμούς χρησιμοποιώντας κατάλ-
ληλους διατακτικούς.

Ορισμός 6.2.1. Ένας διατακτικός κ καλείται πληθικός αριθμός ανν δεν είναι ισοπληθικός
με κάποιον διατακτικό γνήσια μικρότερό του.

Παρατήρηση 6.2.2. Ο κ είναι πληθικός ανν για κάθε διατακτικό α < κ δεν υπάρχει 1-1
συνάρτηση στο (κ→ α).

Πράγματι, αν ο κ δεν είναι πληθικός τότε υπάρχει διατακτικός α < κ με α =c κ, συνεπώς
υπάρχει 1-1 συνάρτηση στο (κ→ α). Αντίστροφα, αν υπάρχει 1-1 συνάρτηση f : κ→ α, όπου
α < κ, τότε κ ≤c α και προφανώς (λόγω της ταυτοτικής συνάρτησης στο (α → κ)) α ≤c κ.
Συνεπώς λόγω του Θεωρήματος 6.1.11 έπεται ότι α =c κ.

Παρατηρήστε ότι λόγω της Άσκησης 2.10 ισχύει επίσης ότι:

Παρατήρηση 6.2.3. Ο κ είναι πληθικός ανν για κάθε διατακτικό α < κ δεν υπάρχει επί
συνάρτηση στο (α → κ).

Από το Πόρισμα 6.1.22 έπεται ότι κάθε φυσικός είναι πληθικός. Επίσης, καθώς το ω είναι
άπειρο και κάθε διατακτικός μικρότερος του είναι πεπερασμένο σύνολο, έπεται ότι και το ω
είναι πληθικός. Αποδεικνύεται ότι κάθε άπειρος πληθικός είναι οριακός διατακτικός.

Πρόταση 6.2.4. Κάθε άπειρος πληθικός είναι οριακός διατακτικός.

Απόδειξη. Έστω κ άπειρος πληθικός και έστω (προς άτοπο) ότι κ = α + 1 για κάποιον
διατακτικό α. Θεωρούμε τη συνάρτηση f : κ→ α με:

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, αν x = α

x+ 1, αν x ∈ ω
x, αλλιώς

Η f είναι 1-1, γεγονός που αντιβαίνει στο ότι ο κ είναι πληθικός.

Θα αναρωτιέται κάποιος αν υπάρχουν άπειροι πληθικοί ή ακόμα αν υπάρχει σύνολο που
περιέχει όλους τους πληθικούς. Για να απαντήσουμε σε αυτά τα ερωτήματα θα χρειαστεί
πρώτα να αντιστοιχίσουμε σε κάθε σύνολο και έναν μοναδικό πληθικό. Για τα αριθμήσιμα
σύνολα αυτό έχει ήδη γίνει. Μένει να το κάνουμε και για τα υπεραριθμήσιμα σύνολα.

Ορισμός 6.2.5. Ο πληθικός αριθμός του συνόλου A, συμβολισμός ∣A∣, ισούται με τον ελά-
χιστο διατακτικό που είναι ισοπληθικός με το A.

Ο ∣A∣ είναι μοναδικός (λόγω της μοναδικότητας του ελαχίστου). Θα δείξουμε επιπλέον
ότι ο ∣A∣ είναι πληθικός. Αυτό θα δικαιολογήσει την ταύτιση τον δύο εννοιών (προφανώς ένας
πληθικός είναι και πληθικός ενός συνόλου, του εαυτού του, μένει να δείξουμε το αντίστροφο).
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Πρόταση 6.2.6. Έστω σύνολο A. Ο ∣A∣ είναι πληθικός.

Απόδειξη. Έστω (προς άτοπο) ότι υπάρχει α < ∣A∣ τέτοιο ώστε α =c ∣A∣. Αυτό θα σήμαινε
ότι α =c A (λόγω της Πρότασης 6.1.2), γεγονός που αντιβαίνει στην ελαχιστικότητα του
∣A∣.

Πρόταση 6.2.7. Έστω σύνολα A,B. Τότε:

1. A ≤c B ανν ∣A∣ ≤ ∣B∣

2. A =c B ανν ∣A∣ = ∣B∣

3. A <c B ανν ∣A∣ < ∣B∣

Η απόδειξη έπεται άμεσα από τους ορισμούς (Άσκηση 6.24). Ας απαντήσουμε λοιπόν στα
ερωτήματα που θέσαμε πριν.

Πρόταση 6.2.8. Για κάθε πληθικό κ υπάρχει πληθικός λ τέτοιος ώστε κ < λ.

Απόδειξη. Από το Λήμμα 6.1.15 έπεται ότι υπάρχει διατακτικός Hartogs(κ) τέτοιος ώστε
κ <c Hartogs(κ). Συνεπώς ισχύει ότι κ < ∣Hartogs(κ)∣ (λόγω της Πρότασης 6.2.7).

Παρατηρήστε ότι χρησιμοποιώντας τον αριθμό Hartogs ενός πληθικού κ όπως στην
παραπάνω πρόταση, μπορούμε να ορίσουμε το ακόλουθο σύνολο:

{λ ≤ ∣Hartogs(κ)∣ ∣ λ πληθικός και κ < λ}

Αυτό θα μας φανεί χρήσιμο για τον επόμενο ορισμό.

Ορισμός 6.2.9. Έστω κ άπειρος πληθικός. Ο επόμενος πληθικός του κ, συμβολισμός S(κ),
είναι ο ελάχιστος πληθικός μεγαλύτερος του κ, δηλαδή:

S(κ) = min{λ ≤ ∣Hartogs(κ)∣ ∣ λ πληθικός και κ < λ}

Όσον αφορά τη δυνατότητα ύπαρξης συνόλου που περιέχει όλους τους πληθικούς, είναι
αναμενόμενο ότι ο πληθικός αριθμός του θα όφειλε να είναι μεγαλύτερος από όλους τους
πληθικούς. Αυτό καθιστά τη συλλογή αυτή υπερβολικά «μεγάλη» για να αποτελεί σύνολο.

Θεώρημα 6.2.10. Δεν υπάρχει σύνολο που να περιέχει όλους τους πληθικούς.

Απόδειξη. Έστω (προς άτοπο) A ένα τέτοιο σύνολο. Τότε για κάθε πληθικό κ θα ισχύει ότι
κ ⊆ ⋃A, άρα κ ≤c ⋃A, οπότε (από την Πρόταση 6.2.7) θα έχουμε ότι κ ≤ ∣⋃A∣. Όμως από
την Πρόταση 6.2.8 υπάρχει πληθικός λ τέτοιος ώστε ∣⋃A∣ < λ. Άτοπο.

99 Τελευταία ενημέρωση 18/2/2025, στις 10:49.



Πληθικοί αριθμοί

6.2.1 Αριθμητική πληθικών
Δυστυχώς δεν μπορούμε να χρησιμοποιήσουμε τις πράξεις μεταξύ διατακτικών που ορί-

σαμε στην Παράγραφο 5.3 καθώς δεν μας εγγυούνται ότι το αποτέλεσμά τους θα είναι κατά
ανάγκη πληθικός. Θα χρειαστεί να τις ορίσουμε εκ νέου.

Ορισμός 6.2.11. Έστω πληθικοί κ,λ. Ορίζουμε τους ακόλουθους τελεστές 1:

1. (Πρόσθεση Πληθικών) κ+ λ = ∣κ ⊎ λ∣

2. (Πολλαπλασιασμός Πληθικών) κ ⋅ λ = ∣κ × λ∣

3. (Δυνάμεις Πληθικών) κλ = ∣(λ→ κ)∣

Παρατηρήστε ότι οι πράξεις των πληθικών συμφωνούν με τις πράξεις των φυσικών που
ορίσαμε στο Κεφάλαιο 3. Οι ιδιότητες των πράξεων αναφέρονται στις ασκήσεις (Ασκή-
σεις 6.25, 6.26, 6.27 και 6.28). Όπως θα δείτε ισχύει και η αντιμεταθετικότητα, σε αντίθεση
με ότι ίσχυε για τους διατακτικούς (Άσκηση 5.19). Θα αναφέρουμε μόνο τους Νόμους Απορ-
ρόφησης, οι οποίοι διευκολύνουν κατά πολύ τον υπολογισμό αθροισμάτων και γινομένων στα
οποία συμμετέχει και κάποιος άπειρος πληθικός.

Πρόταση 6.2.12 (Νόμοι Απορρόφησης). Έστω κ,λ πληθικοί διαφορετικοί του 0. Αν του-
λάχιστον ένας από τους δύο είναι άπειρος τότε:

κ+ λ = κ ⋅ λ =

⎧⎪⎪⎨⎪⎪⎩

κ, αν λ ≤ κ
λ, αλλιώς

Απόδειξη. Υποθέτουμε (χωρίς βλάβη της γενικότητας) ότι κ ≤ λ. Από την Άσκηση 6.27
έπεται ότι:

λ ≤ κ+ λ ≤ κ ⋅ λ ≤ λ ⋅ λ
και από την Άσκηση 6.22 ότι λ ⋅ λ = λ. Συνεπώς ισχύει το ζητούμενο.

6.2.2 Τα Άλεφ
O Georg Cantor χρησιμοποιούσε το σύμβολο ℵ (διαβάζεται άλεφ) για να συμβολίσει

τους άπειρους πληθικούς. Αυτό σκοπεύουμε να πράξουμε και εμείς, δίνοντας όμως δύο ονό-
ματα στον ίδιο διατακτικό αριθμό: Ένα για να αναφερόμαστε σε αυτόν με την ιδιότητα του
διατακτικού και ένα για να αναφερόμαστε σε αυτόν με την ιδιότητα του πληθικού.

Ορισμός 6.2.13. Χρησιμοποιώντας το Θεώρημα 5.3.2 ορίζουμε τους ακόλουθους διατακτι-
κούς:

ω0 = ω

ωα+1 = S(ωα)

ωλ = sup{ωγ ∣ γ < λ}, αν λ οριακός
1 Όπως ήταν αναμενόμενο, θα χρησιμοποιήσουμε τα ίδια σύμβολα που χρησιμοποιήσαμε και για τις πράξεις των

διατακτικών. Ο αναγνώστης θα πρέπει να συμπεραίνει σε ποιόν από τους δύο τελεστές αναφέρεται το κάθε
σύμβολο διαβάζοντας τα συμφραζόμενα.
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Το επόμενου που πρέπει να κάνουμε είναι να δείξουμε ότι αυτοί οι διατακτικοί είναι
πληθικοί.

Πρόταση 6.2.14. Για κάθε διατακτικό α ο ωα είναι πληθικός.

Απόδειξη. Η μόνη περίπτωση που έχουμε να ελέγξουμε είναι όταν ο α είναι οριακός. Έστω
ελάχιστο αντιπαράδειγμα λ, δηλαδή υπάρχει διατακτικός δ < ωλ τέτοιος ώστε δ =c ωλ. Αφού
ο ωλ είναι το ελάχιστο άνω φράγμα του συνόλου {ωγ ∣ γ < λ}, έπεται ότι το δ δεν είναι άνω
φράγμα του, δηλαδή δ ≤ ωγ για κάποιο γ < λ. Όμως τότε δ ≠c ωγ (καθώς ωγ πληθικός), άρα
∣ωλ∣ < ∣ωγ ∣ και ∣ωγ ∣ ≤ ∣ωλ∣ (καθώς ωγ ≤ ωλ). Άτοπο.

Πρόταση 6.2.15. Για κάθε άπειρο πληθικό κ υπάρχει διατακτικός α τέτοιος ώστε κ = ωα.

Για την απόδειξη της παραπάνω πρότασης θα χρειαστούμε το ακόλουθο λήμμα.

Λήμμα 6.2.16. Για κάθε διατακτικό β και για κάθε άπειρο πληθικό κ < ωβ υπάρχει διατα-
κτικός α < β τέτοιος ώστε κ = ωα.

Απόδειξη. Έστω β ελάχιστο αντιπαράδειγμα. Προφανώς 0 < β. Διακρίνουμε δύο περιπτώ-
σεις:
1η: β = γ + 1. Έστω άπειρος πληθικός κ < ωβ . Τότε ∣κ∣ ≤ ∣ωγ ∣, άρα είτε κ = ωγ (αφού και
οι δύο είναι πληθάριθμοι), είτε κ < ωγ , οπότε υπάρχει α < γ < β τέτοιο ώστε κ = ωα. Άτοπο
(καθώς για κάθε άπειρο πληθικό κ < ωβ τελικά υπάρχει διατακτικός α < β τέτοιος ώστε
κ = ωα, ενώ ο β είναι αντιπαράδειγμα).
2η: β οριακός. Έστω άπειρος πληθικός κ < ωβ . Καθώς ο ωβ είναι το ελάχιστο άνω φράγμα
του {ωγ ∣ γ < α} έπεται ότι κ < ωγ για κάποιο γ < α, οπότε όπως πριν οδηγούμαστε σε
άτοπο.

Απόδειξη Πρότασης 6.2.15. Αρκεί να δείξουμε ότι υπάρχει διατακτικός β τέτοιος ώστε κ <
ωβ . Γνωρίζουμε ότι κ < Hartogs(κ) και ότι Hartogs(κ) ≤ ωHartogs(κ) (λόγω της Άσκησης 6.29).

Πρόταση 6.2.17. Έστω διατακτικοί α,β, με α < β. Τότε ωα < ωβ .

Απόδειξη. Από την ελαχιστικότητα των ωα, ωβ και το γεγονός ότι α ⊂ β έπεται ότι ωα ≤ ωβ ,
ενώ από την Άσκηση 6.30 ότι ωα ≠ ωβ .

Ας δούμε πως διατάσσονται οι διατακτικοί του Ορισμού 6.2.13 σε σχέση με τους διατα-
κτικούς που αναφέραμε στο Κεφάλαιο 5. Από το Θεώρημα 6.2.12 έπεται ότι κανένας από
τους διατακτικούς που ορίζονται μέσω μιας ακολουθίας προσθέσεων, πολλαπλασιασμών και
υψώσεων σε δύναμη από το ω δεν είναι πληθάριθμοι (όλα αυτά τα σύνολα είναι αριθμήσιμα).
Συνεπώς ο ω1 έπεται όλων των διατακτικών που ξέραμε μέχρι τώρα. Η συνολική εικόνα είναι
η εξής:

0, 1, 2, ... , ω, ω + 1, ... , ω ⋅ 2, ... , ω ⋅ 3, ... , ω2, . . . , ω3, ... , ωω, ... ,

ω1, ......... , ω2, ......... , ωω, .................. , ωωω , ..................

όπου για τους τελευταίους διατακτικούς τα «άλματα» μεταξύ τους είναι τεράστια!
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Συμβολισμός 6.2.18. Θα συμβολίσουμε τον διατακτικό ωα με ℵα όταν αναφερόμαστε σε
αυτόν με την ιδιότητα του πληθικού.

6.2.3 Η Υπόθεση του Συνεχούς
Παρατήρηση 6.2.19. Έστω πληθικός κ. Τότε 2κ = ∣P(κ)∣.

Πράγματι, από την Άσκηση 6.16 έπεται ότι (κ → 2) =c P(κ), άρα 2κ = ∣P(κ)∣. Συνδυά-
ζοντας την παρατήρηση αυτή με την Πρόταση 6.1.9, προκύπτει ότι:

Πρόταση 6.2.20. Για κάθε πληθικό κ ισχύει ότι κ < 2κ.

Ειδικότερα, για κάθε άπειρο πληθικό ισχύει ότι ℵα < 2ℵα . Ένα πολύ ενδιαφέρον ερώτημα
είναι το τι σχέση έχει ο πληθικός 2ℵα με τον ℵα+1. Γνωρίζουμε ότι (λόγω της ελαχιστικότητας
του ℵα+1) ℵα+1 ≤ 2ℵα . Ο cantor πίστευε ότι για α = 0 ισχύει η ισότητα 1 :

Εικασία 6.2.21 (Υπόθεση Συνεχούς, 2η διατύπωση). 2ℵ0 = ℵ1

Η εικασία αυτή γενικεύεται και σε κάθε άπειρο πληθικό:

Εικασία 6.2.22 (Γενικευμένη Υπόθεση Συνεχούς). 2ℵα = ℵα+1, για κάθε διατακτικό α.

Όπως η Εικασία 6.1.8, έτσι και η Εικασία 6.2.22 είναι ανεξάρτητη από τα αξιώματα της
ZFC. Δεν μπορούμε δηλαδή να ξέρουμε αν ισχύει ή όχι. Σε αυτήν την περίπτωση όμως ισχύει
κάτι ενδιαφέρον: Αν δεχθούμε την Εικασία 6.2.22 ως υπόθεση (και δεχθούμε επίσης όλα τα
υπόλοιπα αξιώματα της ZF) μπορούμε να αποδείξουμε το Αξίωμα VII 2! Να τονίσουμε ότι
το αντίστροφο δεν ισχύει. Συνεπώς, αν την προσθέσουμε στα αξιώματά μας αντί για το
Αξίωμα VII, ότι αναφέραμε σε αυτές τις σημειώσεις θα συνεχίσει να ισχύει.

Ασκήσεις

6.1. Αποδείξτε την Πρόταση 6.1.2.

6.2. Αποδείξτε την Πρόταση 6.1.10.

6.3. Έστω καλά διατεταγμένος χώρος (A,≤). Η ≤ καλείται ιδανική ανν seg<(a) <c A,
για κάθε a ∈ A. Δείξτε ότι:

1. Κάθε καλά διατεταγμένος χώρος επιδέχεται ιδανική διάταξη.

2. Έστω καλά διατεταγμένοι χώροι (A,≤A), (B,≤B) όπου οι ≤A,≤B είναι ιδανικές.
Αν A =c B τότε οι χώροι είναι όμοιοι.

1 Παρατηρήστε ότι, από την Παρατήρηση 6.2.19 έπεται ότι 2ℵ0 = ∣P(ω0)∣ και από το Θεώρημα 6.1.35 ότι
∣R∣ = 2ℵ0 .

2 Η απόδειξη οφείλεται στον Wacław Sierpiński και στο [4] μπορείτε να τη βρείτε μεταφρασμένη στα αγγλικά.
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6.4. Δείξτε ότι η ένωση πεπερασμένου πλήθους πεπερασμένων συνόλων είναι πεπε-
ρασμένη.

6.5. Έστω A πεπερασμένο σύνολο. Δείξτε ότι το P(A) είναι πεπερασμένο.

6.6. Αποδείξτε το Πόρισμα 6.1.23.

6.7. Δείξτε ότι τo καρτεσιανό γινόμενο πεπερασμένου πλήθους αριθμήσιμων συνόλων
είναι αριθμήσιμο.

6.8. Αποδείξτε το Πόρισμα 6.1.31.

6.9. Έστω σύνολα A,B και 1-1 συνάρτηση f : A → B. Δείξτε ότι αν το B είναι αριθ-
μήσιμο τότε και το A είναι αριθμήσιμο.

6.10. Έστω σύνολα A,B και συνάρτηση f : A→ B επί του B. Δείξτε ότι αν το A είναι
αριθμήσιμο τότε και το B είναι αριθμήσιμο.

6.11. Δείξτε ότι κάθε υποσύνολο ενός πεπερασμένου συνόλου είναι πεπερασμένο.

6.12. Έστω αριθμήσιμο σύνολο A. Δείξτε ότι το (n → A) είναι αριθμήσιμο για κάθε
n ∈ ω.

6.13. Έστω αριθμήσιμο σύνολο A. Δείξτε ότι το ⋃n∈ω(n→ A) είναι αριθμήσιμο. (Υπό-
δειξη: Θα χρειαστείτε την Άσκηση 6.12.)

6.14. Δείξτε ότι το σύνολο όλων των πεπερασμένων υποσυνόλων ενός αριθμήσιμου
συνόλου είναι αριθμήσιμο. (Υπόδειξη: Θα χρειαστείτε την Άσκηση 6.13.)

6.15. Δείξτε ότι Z =c ω και ότι Q =c ω.

6.16. Δείξτε ότι (A→ {0,1}) για κάθε σύνολο A.

6.17. Δείξτε ότι αν A =c B τότε P(A) =c P(B).

6.18. Έστω σύνολα A,B,C,D τέτοια ώστε A =c B και C =c D. Δείξτε ότι:

1. Αν A ∩B = C ∩D = ∅ τότε A ∪B =c C ∪D.

2. A ×B =c C ×D

3. (A→ B) =c (C →D)

6.19. Έστω σύνολα A,B,C . Δείξτε ότι:
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1. Αν A ∩B = ∅ τότε ((A ∪B)→ C) =c (A→ C) × (B → C).

2. (A→ (B ×C)) =c (A→ B) × (A→ C)

3. (A→ (B → C)) =c ((A ×B)→ C)

6.20. Δείξτε ότι (ω → ω)×ω =c (ω → ω). (Υπόδειξη: Θα χρειαστείτε τις Ασκήσεις 6.18
και 6.19.)

6.21. Δείξτε ότι:

1. P(ω) ×P(ω) =c P(ω)

2. R × R =c R

(Υπόδειξη: Θα χρειαστείτε τις Ασκήσεις 6.16, 6.18 και 6.19.)

6.22. Για κάθε άπειρο σύνολο A ισχύει ότι A × A =c A. (Υπόδειξη: Θα χρειαστείτε
την Άσκηση 6.3.)

6.23. Δείξε ότι το καρτεσιανό γινόμενο μίας αριθμησίμως άπειρης οικογένειας συνό-
λων, όπου το κάθε ένα από αυτά περιέχει τουλάχιστον δύο στοιχεία, δεν είναι αριθ-
μήσιμο.

6.24. Αποδείξτε το Πόρισμα 6.2.7.

6.25. Έστω κ,λ,µ πληθικοί. Δείξτε ότι:

1. κ+ λ = λ+ κ

2. κ ⋅ λ = λ ⋅ κ

3. κ+ (λ+ µ) = (κ+ λ) + µ

4. κ ⋅ (λ ⋅ µ) = (κ ⋅ λ) ⋅ µ

5. κ ⋅ (λ+ µ) = (κ ⋅ λ) + (κ ⋅ µ)

6.26. Έστω κ,λ,µ πληθικοί. Δείξτε ότι:

1. κλ+µ = κλ ⋅ κµ

2. (κ ⋅ λ)µ = κµ ⋅ λµ

3. (κλ)µ = κλ⋅µ

6.27. Έστω κ,λ,µ, ν πληθικοί τέτοιοι ώστε κ ≤ λ και µ ≤ ν. Δείξτε ότι:
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1. κ+ µ ≤ λ+ ν

2. κ ⋅ µ ≤ λ ⋅ ν

3. κ+ µ ≤ λ ⋅ ν

4. κµ ≤ λν

6.28. Δείξτε ότι για κάθε άπειρο πληθάριθμο κ ισχύει ότι κκ = 2κ.

6.29. Δείξτε ότι για κάθε διατακτικό α ισχύει ότι α ≤ ωα.

6.30. Δείξτε ότι για κάθε διατακτικούς α,β τέτοιους ώστε ωα = ωβ ισχύει ότι α = β.
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