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The multiplier problem for the ball

By CHARLES FEFFERMAN*

1. Introduction

Define an operator T on L*(R™) by the equation f}(x) = ys(2)f(x), where
%z is the characteristic function of the unit ball. This operator and its
variants play the role of the Hilbert transform for a number of problems on
multiple Fourier series and boundary behavior of analytic functions of several
complex variables. (See [6], [7], for instance.) Therefore, one would like to
know whether T is a bounded operator on L?(R"). For the analogue of T in
which the ball is replaced by a cube, an affirmative answer has been known
for many years: T.... is bounded on all L” (1 < p < ). See [6]. However,
T is essentially different from T..... One sees this almost immediately, by
applying T, say, to the function
if jx] < 1/10
otherwise .

1
flw) =1,

Tf dies too slowly at infinity to be a good function, and it follows that T
cannot be bounded on L?(R") for any p outside the range 2n/(n + 1) < p <
2n/(n — 1). The well-known “disc conjecture” asserts that T is bounded on
all L*(R*) with 2n/(n + 1) < p < 2n/(n — 1). Only the trivial case p = 2
has ever been decided.

In [5] and [3], heartening progress was made on the disc conjecture.
Instead of the difficult operator T, Stein and I dealt with the slightly less
singular Bochner-Riesz spherical summation operators, defined by @(x) =
[max (1 — [z} 0)]'f(x). For each o > 0, one expects T, to be bounded on a
certain range of L?’s, and [3] proves the analogue of the disc conjecture for
all T; with é greater than a critical value ..

It therefore comes as a surprise, at least to me, that the disc conjecture
is false.

THEOREM 1. T s bounded only on L* (n > 1).

We shall prove this unfortunate fact in section 2 below. Note that it
is enough to disprove L*-boundedness of T on R? for p >2. For, L*-bounded-
ness of T on R" implies boundedness on R** by a theorem of de Leeuw; and
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the case p > 2 yields the case p < 2 by duality. (See Jodeit [4] for an
enlightening proof of de Leeuw’s theorem.)

How badly does T fail to be bounded on L?(R"), 2n/(n + 1) < p <
2n/(n — 1)? Just barely, at least in R?, according to the following result.

THEOREM 2. T; s bounded on L*(R?), for o0 >0, 4/3 < p < 4.

L. Carleson and P. Sjolin proved Theorem 2 by means of Carleson’s
recent theory of “saddle-point” integrals. This news was a great psycho-
logical stimulus to the author as he was working his way through the disc
problem. He is profoundly grateful for this.

With greatest pleasure, we acknowledge E. M. Stein’s decisive contribu-
tions to this research. His remarkable “Restriction Theorem” on Fourier
transforms was the key insight that opened up the disc problem to serious
attack. He provided me with the moral and mathematical support without
which that problem would today be as open as ever. Lastly, he simplified
my proof of Theorem 1 to its present digestible form.

2. Disproof of the disc conjecture

Assume that || Tf ||, < C|| f||,» where p > 2. From this would follow:

LEmMMA 1. (Y. Meyer.) Let v, v,, - -- be a sequence of unit vectors in R?,
and let H; be the half-plane {x e R* | x-v; = 0}. Define a sequence of operators

T, T,, --- on L?(R* by setting @(9;) = Yu; () 7(x). Then for any sequence
of functions fi, fa, + -+, the following inequality holds:
(4) S, [T B2 1], < CH S, 1A, -
Proof. The idea is to replace T; by an operator more closely related to
P ~
the dise. Define T7 by the equation T;f(%) = xo(2)f(), where D7 is the disc
of radius » and center rv;. D7 looks much like the half-plane H; for enormous
7, so that we might expect T;f(x) = lim,_.. T;f(x) for x¢ R2 Indeed when

fe Cy(R?), this is immediate from routine estimates on TJf T f Fatou’s
Lemma now shows that

(2, 1 Tafs ) * ], < liminf, . || (G2, [ T35 )2, -
So in order to prove (A), it is enough to prove
(A') G2 1 Tefi Y2 L, = C NS, LB,
with C independent of ». By dilating R? we may assume that » = 1. How-

ever, Tif(x) = e¢”i*T(e~"i"f(y)), so that the left-hand side of (A’) is nothing
but

(B) 12, | T(e i) 1), »
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and our problem is to dominate (B) by C|| (X, | f; )" .

We are assuming that || Tf||, < C || f||, for all f€ L?(R?. An application
of the Rademacher functions shows that the vector analogue

1, 12721, = C L (S, 145 By
holds also (see [7, vol. 2, p. 224]). Therefore, the expression (B) is dominated by

Ci( @) )", = CIE 1L,
which is just what we had to prove. Q.E.D.

To prove Theorem 1, we shall exhibit a counterexample to (A) for any
» > 2. Our example is based on a slight variant of (Schonberg’s improve-
ment of) Besicoviteh’s construction for the Kakeya needle problem.

LEMMA 2. Fix a small number » > 0. There is a set ES R* and a
collection R = {R;} of pairwise disjoint rectangles, with the properties:

(1) At least one-tenth the area of each B; lies in E.

@) 1B <75, B,l.
Here, R; is the shaded region in Figure 1.

FIGURE 1

As soon as we know Lemma 2, we can immediately disprove (A) and thus
establish Theorem 1. For, we simply set f; = Xz;» and let v; be parallel to

the longer sides of R;, as in Figure 1. Direct computation shows that
l Tj j[ = 1/2 on Rj, so that

[, 1@ )

Sl’-l’”(w)l“dx>—2 |ENE;|
© 1 1
4—2 %ZjIR,-l,

v

(by (1)).



THE MULTIPLIER PROBLEM FOR THE BALL 333

On the other hand, if (A) were true, Holder’s inequality would show that

| (S, Tfito) F)de = | B2 || (2,1 Tf )
(D) = CLEI==7 (2, 1)1,
= CI BT, | RByI)” = Cpr e R,

(by (2)).
For small 7, (C) contradicts (D), which disproves (A). Therefore,
Theorem 1 follows from Lemma 2.

Proof of Lemma 2. We shall follow closely the excellent exposition in
[2]. See also the classic paper of Busemann and Feller [1].

Consider the following process: We are given a triangle T as in Figure 2a,
with horizontal base ab and height 2. Extend the lines ac¢ and be to points
o’ and b’ of height &’ > h. Let d be the midpoint of ab. (See Figure 2b).

A

R’

a b
FIGURE 2a FIGURE 2b

We say that the two triangles 7" = ada’ and T" = bdb’ arise as T sprouts
from height %~ to height #/.

Now we can construct the Besicovitch set £. Begin with an equilateral
triangle T° whose base is the interval [0, 1] on the z-axis, and pick an increa-
sing sequence of numbers h,, h,, h,, -+, h,, where h, =13 /2 = height (T°).
Sprout T° from height %, to height k,, to obtain two triangles, 7T’ and
T"”. Sprout both 7’ and T"” from height s, to height h, to obtain four
triangles T, T* T°, T*, all of height %,. Continue sprouting, obtaining at
stage n, 2" triangles of height %, and base 27". Finally, set E equal to the

union of all 2* triangles T,, T,, - -+, T, arising at stage k.
Forthecaseh_]ii, 1—1/3( 1+ > h_V‘3< +-1_+_1_>,...,
2 2 2 2 3

Busemann and Feller compute the area of E, and find it to be at most 17.
(Actually, Busemann and Feller use a sprouting procedure slightly different
from ours. However, since their sprouted triangles are strictly larger than
ours, their estimates apply here.)

Now we have built the set £ and found its measure. It remains to
construct a collection R of pairwise disjoint rectangles satisfying (1) and (2).
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To do so, note that each dyadic interval I < [0, 1], of length 27, is the base
of exactly one T;. Denote that T; by T(I), and call its upper vertex P(I).
Using T'(I), we construct the rectangle R(I) as in Figure 3.

PU
/ )

~logk T

z-axis

~log

R

A B

\/\ ~11|

FIGURE 3

It doesn’t matter how R(I) is placed, as long as it stays inside triangle
P(I)BA. Now define R = {R(I)| I is a dyadic subinterval of [0, 1], of
length 274}

Let us check (1) and (2). (1) is obvious from Figure 3, since T(I) S E.
To check (2), we note that each R(I) has area ~ (log k)-27%, and that there
are 2 R(I)’s. So

>, R(I) ~ (log k)-27%.2* = log k ,

whereas we saw that the area of E is at most 17. Thus, (2) holds if we take
k so large that log & > 17/7.

It remains only to show that the different R(I) are pairwise disjoint.
This is geometrically obvious from the following.

LEMMA 8. Let I and I’ be two dyadic subintervals of [0, 1] of length 27*.
If I lies to the left of I', themn P(I') lies to the left of P(I).

Proof of Lemma 3. For any triangle T with horizontal base, define the
region T as in Figure 4.
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7

FIGURE 4
We have:
N ~ . .
(o) If I, € I, then T(I) < T(,). This is clear by induction.
(8) Let I, and I, be two halves of the dyadic interval I. Say that I, is
~ ~ ~~ .
to the left of I,. Then T(I,) and T(I,) are disjoint, and T(I,) is to the left of
I~
T(l). (See Figure 2b).
Therefore,
(v) If I, and I, are disjoint dyadic subintervals of [0, 1], and I, lies to the
AN ~ NS
left of I,, then T'(I) and T(I,) are pairwise disjoint and T'(I,) lies to the left
~~
of T(I).
Lemma 3 follows at once from (7), since P(I) € ﬁ'f ). Q.E.D.

Lemma 3 is trivial, and its proof should not be taken too seriously. In
any event, we now know that the rectangles of R are pairwise disjoint.
The proofs of Lemma 2 and Theorem 1 are complete. Q.E.D.

We explain briefly how to construct explicit counterexamples to the dise
conjecture in R®. By carrying out the construction of Lemma 2 and then
dilating the plane, we obtain a set £’ and a collection of pairwise disjoint
rectangles {R} satisfying (1) and (2) above, with the further property that
all the R’ have dimension roughly N*? x N. Here N is as large as we please.
Also, we may replace E’ by a slightly smaller set E” which is a union of
squares of length N2, without destroying (1) and (2). As above, set v; equal
to a unit vector parallel to the longer sides of R’. Then the function

f@) = X, 60, @) = 5, F(@)
satisfies
ITfll, > ClIfl (»>2),

provided we take N = N(C, p) large enough. To prove this, one first com-
putes Tf; and verifies that for 5 = 5/, Tf; and Tf; are essentially orthogonal
on every square of length = N*2, (On each square of side N'*, Tf; and Tf;
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turn out, more or less, to be plgr\le waves travelling in different directions.
AN
It is helpful to look at T'f; and Tf;..) Therefore,

|| 7@ o = | |, Tri@) faw ~ 3, | | 7)o

As in the deduction of Theorem 1 from Lemma 2, the left-hand integral turns
out to be so large that || T'f ||, < C|| f||, is impossible.

UNIVERSITY OF CHICAGO, CHICAGO, ILL.
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