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The multiplier problem for the ball 

By CHARLES FEFFERMAN* 

1. Introduction 

Define an operator Ton LP(R7) by the equation Tf(x) = XB(x)f(x), where 

XB is the characteristic function of the unit ball. This operator and its 
variants play the role of the Hilbert transform for a number of problems on 
multiple Fourier series and boundary behavior of analytic functions of several 
complex variables. (See [6], [7], for instance.) Therefore, one would like to 
know whether T is a bounded operator on LP(R1). For the analogue of T in 
which the ball is replaced by a cube, an affirmative answer has been known 
for many years: Tcube is bounded on all LP (1 < p < Ao). See [6]. However, 
T is essentially different from Teube. One sees this almost immediately, by 
applying T, say, to the function 

1 if X I < 1/10 f(x) = j~ 11 

f(Z)=0 otherwise. 

Tf dies too slowly at infinity to be a good function, and it follows that T 
cannot be bounded on LP(R1) for any p outside the range 2n/(n + 1) < p < 
2n/(n - 1). The well-known "disc conjecture" asserts that T is bounded on 
all LP(Rz) with 2n/(n + 1) < p < 2n/(n - 1). Only the trivial case p = 2 
has ever been decided. 

In [5] and [3], heartening progress was made on the disc conjecture. 
Instead of the difficult operator T, Stein and I dealt with the slightly less 
singular Bochner-Riesz spherical summation operators, defined by Taf(x) = 
[max (1 - x 12, 0)If(x). For each 3 > 0, one expects T, to be bounded on a 
certain range of LP's, and [3] proves the analogue of the disc conjecture for 
all To with a greater than a critical value a, 

It therefore comes as a surprise, at least to me, that the disc conjecture 
is false. 

THEOREM 1. T is bounded only on L2 (n > 1). 

We shall prove this unfortunate fact in section 2 below. Note that it 
is enough to disprove LP-boundedness of T on R2 for p > 2. For, LP-bounded- 
ness of T on RI implies boundedness on R'-1 by a theorem of de Leeuw; and 
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the case p > 2 yields the case p < 2 by duality. (See Jodeit [4] for an 
enlightening proof of de Leeuw's theorem.) 

How badly does T fail to be bounded on LP(R1), 2n/(n + 1) < p < 
2n/(n - 1)? Just barely, at least in R2, according to the following result. 

THEOREM 2. Ta is bounded on L"(R2), for 3 > 0, 4/3 < p < 4. 

L. Carleson and P. Sjdlin proved Theorem 2 by means of Carleson's 
recent theory of "saddle-point" integrals. This news was a great psycho- 
logical stimulus to the author as he was working his way through the disc 
problem. He is profoundly grateful for this. 

With greatest pleasure, we acknowledge E. M. Stein's decisive contribu- 
tions to this research. His remarkable "Restriction Theorem" on Fourier 
transforms was the key insight that opened up the disc problem to serious 
attack. He provided me with the moral and mathematical support without 
which that problem would today be as open as ever. Lastly, he simplified 
my proof of Theorem 1 to its present digestible form. 

2. Disproof of the disc conjecture 

Assume that I Tf I IP < C I I f I Ip, where p > 2. From this would follow: 

LEMMA 1. (Y. Meyer.) Let v1, v2, *** be a sequence of unit vectors in R2, 
and let Hj be the half-plane {x e R2 I x v vj O}. Define a sequence of operators 
T1, T2, *. on LP(R2) by setting Tjf(x) = X,,(x)f(x). Then for any sequence 
of functions f1, f2, * , the following inequality holds: 

(A) I Tf 12)1/2 1, < Cj ( f| 2)1/2 P. 

Proof. The idea is to replace Tj by an operator more closely related to 
the disc. Define Tj; by the equation Tjrf(x) = XDd(x)f(x), where Dj is the disc 
of radius r and center rvj. Dj looks much like the half-plane Hj for enormous 
r, so that we might expect Tjf(x) = limrO Tjrf(x) for x C R2. Indeed, when 

f0 CO(R2), this is immediate frQm routine estimates on Tjf - Trf. Fatou's 
Lemma now shows that 

II( IT j 12)1/2 IP < lim infract j I a ITr 2)1/2P| 

So in order to prove (A), it is enough to prove 

(At)~~~~~ I (EjI T.rf 12)1l2 11 < C 11( j If 1)ll (A') Tj~212 j f 12)1/2P1 

with C independent of r. By dilating R2, we may assume that r = 1. How- 
ever, Tj'f(x) = eivi xT(e-iviPYf(y)), so that the left-hand side of (A') is nothing 
but 

(B) 1j ( j I T(e"i"Pyfj(y)) 12)1/2 P 
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and our problem is to dominate (B) by C jj (Ej If1 2)1/2 j* 
We are assuming that I Tf I 1, C 11 f I 1, for all f e LP(R2). An application 

of the Rademacher functions shows that the vector analogue 

I Tfj12)1/2j <_C ? (j If 12)1121 

holds also (see [7, vol. 2, p. 224]). Therefore, the expression (B) is dominated by 

C j (E I evi yf (y) 2)12 jj = C f 2)1/2 jj 

which is just what we had to prove. Q.E.D. 

To prove Theorem 1, we shall exhibit a counterexample to (A) for any 
p > 2. Our example is based on a slight variant of (Schbnberg's improve- 
ment of) Besicovitch's construction for the Kakeya needle problem. 

LEMMA 2. Fix a small number ry > 0. There is a set E Z R2 and a, 
collection R = {Rj} of pairwise disjoint rectangles, with the properties: 

(1) At least one-tenth the area of each Rj lies in E. 
(2) [Et I :!g Ej I Ri1. 

Here, Rj is the shaded region in Figure 1. 

Vj 

a~~~~~~~~ 

FIGURE 1 

As soon as we know Lemma 2, we can immediately disprove (A) and thus 
establish Theorem 1. For, we simply set fj = XZRj and let vj be parallel to 
the longer sides of Rj, as in Figure 1. Direct computation shows that 
I Tif, I ? 1/2 on Rj, so that 

(a I Tjfj(x) 12)dx = Ej S Tjfj(x) I2dx > 1 Ej I En Ri I 
(C) 

'40 = 20 

(by (1)). 
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On the other hand, if (A) were true, Holder's inequality would show that 

5>(j I Tjfj(X) 
12 E (p-2)p 11 (Ej I Tjf 

2)1/2 

(D) ~~~~~~d < I El j ff2)1/2 2 1 
ED _ I E (p-2) /P I I(EjI 12)1/2112P 

C I E I(P-2)P(j I Rj 1)21p < Crp-2)'p a I Rj I 
(by (2)). 

For small (, (C) contradicts (D), which disproves (A). Therefore, 
Theorem 1 follows from Lemma 2. 

Proof of Lemma 2. We shall follow closely the excellent exposition in 
[2]. See also the classic paper of Busemann and Feller [1]. 

Consider the following process: We are given a triangle T as in Figure 2a, 
with horizontal base ab and height h. Extend the lines ac and bc to points 
a' and b' of height h' > h. Let d be the midpoint of ab. (See Figure 2b). 

a' 

C 

a b 
a b d 

FIGURE 2a FIGURE 2b 

We say that the two triangles T' ada' and T" = bdb' arise as T spromts 
from height h to height h'. 

Now we can construct the Besicovitch set E. Begin with an equilateral 
triangle To whose base is the interval [0, 1] on the x-axis, and pick an increa- 
sing sequence of numbers h,, hl, h2, * * *, hk where h. = V 3 /2 = height (T0). 
Sprout T' from height h. to height h1, to obtain two triangles, T' and 
T". Sprout both T' and T" from height h1 to height h2 to obtain four 
triangles T', T2, T3, T4, all of height h2. Continue sprouting, obtaining at 
stage n, 2n triangles of height h, and base 2-f. Finally, set E equal to the 
union of all 2k triangles T1, T2, *.., ?T2k arising at stage k. 

For the case h, = - 3 21 + ) h2 = V3 (1 + + ) * * . h2 27 22 
+ 

Busemann and Feller compute the area of E, and find it to be at most 17. 
(Actually, Busemann and Feller use a sprouting procedure slightly different 
from ours. However, since their sprouted triangles are strictly larger than 
ours, their estimates apply here.) 

Now we have built the set E and found its measure. It remains to 
construct a collection '9 of pairwise disjoint rectangles satisfying (1) and (2). 
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To do so, note that each dyadic interval Ic [0, 11, of length 2-k, is the base 
of exactly one T3. Denote that Tj by T(I), and call its upper vertex P(I). 
Using T(I), we construct the rectangle R(I) as in Figure 3. 

P(I) 

-log k T(1) 

x-axis 

R(I) 
A ~~~B 

'-II! 
FIGURE 3 

It doesn't matter how R(I) is placed, as long as it stays inside triangle 
P(I)BA. Now define R = {R(I) I is a dyadic subinterval of [0, 1], of 
length 2k}. 

Let us check (1) and (2). (1) is obvious from Figure 3, since T(I) c E. 
To check (2), we note that each R(I) has area (log k) .2-k, and that there 
are 2k R(I)'s. So 

E, R(1) - (log k) 2 *k2 = log k, 

whereas we saw that the area of E is at most 17. Thus, (2) holds if we take 
k so large that log k > 17/n7. 

It remains only to show that the different R(I) are pairwise disjoint. 
This is geometrically obvious from the following. 

LEMMA 3. Let I and I' be two dyadic subintervals of [0, 11 of length 2k. 

If I lies to the left of I', then P(I') lies to the left of P(I). 

Proof of Lemma 3. For any triangle T with horizontal base, define the 
region T as in Figure 4. 
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FIGURE 4 

We have: 
(a) If 1 c 12 then T(11) 9 T(I2). This is clear by induction. 
(I) Let I1 and 12 be two halves of the dyadic interval I. Say that I1 is 

to the left of 12. Then T(1) and T(I2) are disjoint, and T(12) is to the left of 
T(1). (See Figure 2b). 
Therefore, 

(y) If I1 and 12 are disjoint dyadic subintervals of [0, 11, and I1 lies to the 
left of 12, then T(1) and T(12) are pairwise disjoint and T(12) lies to the left 
of T(1). 
Lemma 3 follows at once from (r), since P(I) e T(I). Q.E.D. 

Lemma 3 is trivial, and its proof should not be taken too seriously. In 
any event, we now know that the rectangles of R are pairwise disjoint. 
The proofs of Lemma 2 and Theorem 1 are complete. Q.E.D. 

We explain briefly how to construct explicit counterexamples to the disc 
conjecture in R2. By carrying out the construction of Lemma 2 and then 
dilating the plane, we obtain a set E' and a collection of pairwise disjoint 
rectangles {R'} satisfying (1) and (2) above, with the further property that 
all the R', have dimension roughly N112 x N. Here N is as large as we please. 
Also, we may replace E' by a slightly smaller set E" which is a union of 
squares of length N'2, without destroying (1) and (2). As above, set vj equal 
to a unit vector parallel to the longer sides of Rj. Then the function 

f(x) = Ej eaj XkR(x) - j fj(X) 

satisfies 

11 Tf II, > C lf III, (p > 2) 

provided we take N = N(C, p) large enough. To prove this, one first com- 
putes Tfj and verifies that for j # j', Tfj and Tfj, are essentially orthogonal 
on every square of length > N'2. (On each square of side N"2, Tfj and Tfj, 
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turn out, more or less, to be plane waves travelling in different directions. 
It is helpful to look at Tfj and Tfj,.) Therefore, 

I Tf(x) 12dx 
= 
| l E1 

E 2dx 

As in the deduction of Theorem 1 from Lemma 2, the left-hand integral turns 
out to be so large that I Tf IHP < C Ilf I f is impossible. 

UNIVERSITY OF CHICAGO, CHICAGO, ILL. 
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