Investigating human brain development
and neurological diseases using induced
pluripotent stem cells (iPSCs)
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iPSCs are pluripotent stem cells artificially derived from a non-pluripotent

cell, typically an adult somatic cell, by inducing a ‘forced’ expression of
specific genes
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Reprogramming approaches

Gene transduction:

_Retroviral or lentiviral  Efficient, but not safe
Reprogramming - Activation of
% . Q endogenous
Somatic cells T pluripotency
iPSCs
Integration-free methods:

-Nonintegrating virus

-Plasmids

-Recombinant proteins Safe, but inefficient

-Synthesized mRNA

-MicroRNAs

-Small molecules



Neural differentiation
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Nature Reviews | Neuroscience

Stages of neural differentiation in vitro and in vivo

hPSCs transit through defined stages during which they resemble distinct neural progenitor
cell (NPC) populations present during in vivo neurogenesis

hPSCs differentiate into neuroepithelial stem cells in vitro, corresponding to the
neuroepithelial NPCs that form the neural plate in vivo

Rosette-type NPCs derived from hPSCs resemble NPCs that populate the early neural tube
Radial glia-like NPCs generated from the rosette-type NPCs give rise to postmitotic neurons

Mertens et al, Nat Rev Neurosci 2016



Neural differentiation

Rosettes > > | Neurons Ul Astrocytes
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EBs Neural rosette is the NPCs are capable of Neurons are cells that  Astrocytes are the most
type of pliripotent cells  are three-dimensional developmental self-renewing and process and transmit  diverse neuroglial cells
morphologically similar ~ structures formed by signature of differentiating into information through and exert many
to embryonic cells that multicellular aggregates neuroprogenitors in neural cell lineage. electrical and chemical  functions as organize

can be generated that recapitulate aspects cultures of differentiating These cells hold promise  signal via synapses. the architecture of the
directly from adult of cell differentiation embryonic stem cells. for both biomedical The nervous system is brain, control
tissues and can be used during early Rosettes are structures  research and potential composed of a network emergence and function
in many studies as embryogenesis and play  of columnar cells that  research and potential ~ of neurons and others of the blood brain
disease modeling and  an important role in the express proteins present cell therapy cells (such as glial cells) barrier, control
drug discovery differentiation of ES cells in neuroepithelial cells neurogenesis,
into a variety of cell in the neural tube. Markers: Nestin, Sox1 =~ Markers: MAP2, SYN1,  homeostatic regulatin,
Markers: SSEA-1, types /in vitro Neuroprogenitors cells Sox2, Pax6, Ki67, Homer 1, PSD95, TUJ1 support and nurture,
SSEA-3, SSEA-4, Lin28, within neural rosettes Musashi 1 synaptogenesis,
TRA-1-60, TRA-1-81, Markers: Sox1, Otx2 are able to differentiate participate in
Oct3/4, Nanog, Sox2 (ectoderm), Brachyury, into neurons, neurotransmission and
HAND1 (mesoderm), oligodendrocytes, and cytokine secretion
GATA-4, SOX17 astrocytes
(endoderm) Markers: GFAP, CD44,
Markers: Pax6, Sox1, Aquaporin 4, S1008,
PSA-NCAM Vimentin

Russo et al, World J Transplant. 2015




You can study only what you can make
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Neuronal subtype specification

E dorsal dorsal
D
Neural tube progenitors neurons
Weeks 2 3-4
(in vitro) - ;

Default Cortical prog. ’é Glut. N. and
> (Paxé+, N21) GABAergic. In.

GABAergic.
Low SHH LGE prog. -
P> (Pax6+, Gsx2+) —> "«// projection N.

X

s

"WA .
.. Y | High SHH MGE prog. ? BFCN and
Blastocyst ESCs / 4':’.‘;;» (Pax6-, Nkx2.1+) — GABAergic In.
VAV
—> NE RA+SHH _  SCprog. > 'jé MNs
Somatic cells ~ IPSCs (Pax6-, Olig2+)

FGF8 + SHH MD prog. > '? mDA N.
- (FoxA2+, En1+)



Temporal course of glial differentiation

Weeks Blastocyst Neural tube progenitor neuron Astrocyte Oligodendrocyte
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Modeling Human Brain Development

Cell Stem Cell

2D and 3D Stem Cell Models of Primate Cortical
Development Identify Species-Specific Differences
in Progenitor Behavior Contributing to Brain Size

Graphical Abstract Authors

Tomoki Otani, Maria C. Marchetto,
Fred H. Gage, Benjamin D. Simons,
Frederick J. Livesey

Correspondence
rick@gurdon.cam.ac.uk

In Brief

[y v [ v R Based on m_OdefinQ of f:orﬁcal .
120 days neurogenesis with pluripotent cells in 2D

and organoid systems, Otani et al.
suggest that species-specific differences
in cortical size and cognitive ability
between human and other animals result
at least in part from cell-autonomous
differences in cortical progenitor
proliferation before neurogenic
1.4x10” neurons differentiation.

Mouse oy pmctl]

IOEAMIT Neuronal subtypes

6 days

Human

Highlights
e Human and primate PSCs can replicate cortical development
in culture

e PSC-derived cortical progenitors from different species
expand to different degrees

« Clonal analysis reveals marked difference in neurogenesis
output over time

e Species-specific timing differences in neurogenesis are
regulated cell autonomously

Otani et al., 2016, Cell Stem Cell 18, 467480
@(_-mu.,\ April 7, 2016 ©2016 The Authors Ce“
http://dx.doi.org/10.1016/j.5tem.2016.03.003



Modeling temporal and spatial patterning of
cortical neurogenesis

Cortical pyramidal neurons
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Anderson & Vanderhaeghen, Curr Opin Neurobiol 2014



Modeling cortical development

the cortex of humans and other primates appears to follow different scaling rules than
that of other mammals, including mouse, in terms of the relationship between cortical
volume and cell number and overall body size

In this study, they extended the use of stem cell systems to compare human, macaque,
and chimpanzee cortical neurogenesis to understand the developmental mechanisms
regulating increased cortical size in different primates

macaque ESCs
chimpanzee iPSCs

human ESCs & iPSCs

Macaca fascicularis

& = i

Pan Troglodytes



Modeling cortical development

Laminin
>
Neural induction N2/B27-medium
(Noggin/SB) + FGF2 N2/B27-medium up to 80 days
for 12 days for 4 days
ESCs/iPSCs NE sheet
(Dispase) (Dispase) Day 20-35
early-born deep-layer neurons and/or

After day 70
Late-born upper-layer neurons
and

3-months
~equal proportions of
deep- and upper-layer neurons

Shi et al, Nature Protocols 2012



Species-appropriate timing of
major developmental events in

cortical development is
maintained in vitro

Cell Stem Cell 2016 18, 467-480DOI: (10.1016/j.stem.2016.03.003)

Copyright © 2016 The Authors
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Modeling neurological diseases

PATIENT CLASSIFICATION PATIENTS

FAMILIAL SPORADIC

¢ Genetic taxonomy
¢ Pathological stratification

L |
¢ Skin biopsy
¢ Blood sample

» Clinical classification
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Electrophysiological O
Rationally targeted homeostasis i
clinical trials ob
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therapeutics abnormalities

Personalized Cytoskeletal / j¥

Ichida & Kiskinis, EMBO J 2015



Modeling neurological diseases

List of human neurological diseases with published iPSC studies

Alzheimer's Disease

Amyotrophic Lateral Sclerosis (ALS)
Angelman & Prader-Willi Syndrome

Ataxia Telangiectasia

Best Disease

Dravet Syndrome

Familial Dysautonomia
Fragile X Syndrome
Friedreich's Ataxia
Frontotemporal Dementia
Gaucher's Disease

Gyrate Atrophy
Hereditary Spastic Paraplegia
Huntington's Disease
Lesch-Nyhan Syndrome

Microcephaly

Neuronal ceroid lipofuscinosis
Niemann-Pick type C1 disease
Parkinson's Disease
Phelan-McDermid Syndrome
Retinitis Pigmentosa

Rett Syndrome

Schizophrenia

Spinal Muscular Atrophy
Tauopathy

Timothy Syndrome

26 Diseases
>200 Publications

Ichida & Kiskinis, EMBO J 2015



First report or patient-specific neurons

&usb.

Induced Pluripotent Stem Cells Generated from
Patients with ALS Can Be Differentiated into Motor
Neurons

John T. Dimos, et al.

AVAAAS Science 321, 1218 (2008):

DOI: 10.1126/science.1158799

The following resources related to this article are available online at
www.sciencemag.org (this information is current as of September 9, 2008 ):

Updated information and services, including high-resolution figures, can be found in the online
version of this article at:
http://www.sciencemag.org/cgi/content/full/321/5893/1218

Supporting Online Material can be found at:
http://www.sciencemag.org/cgi‘content/full/1 158799/DCA

A list of selected additional articles on the Science Web sites related to this article can be
found at:

hitpz//www.sciencemag.org/cgi/content/full/321/5893/121 B#related-content

This article cites 26 articles, 8 of which can be accessed for free:
hitp:‘www.sciencemag.org/cgi‘content/full/321/5893/1 21 B#otherarticles

This article appears in the following subject collections:
Development . .
http://www.sciencemag.org/cgi/collection/development

Information about obtaining reprints of this article or about obtaining permission to reproduce
this article in whole or in part can be found at:
http://www.sciencemag.org/about/permissions.dtl

‘rom www.sciencemag.org on September 9, 2008



trophic Lateral Sclerosis (ALS)

Skin cells from

ALS patients
® " (82-year-old woman)

Yamanaka \
method \\
Oct4
Sox2
KlIf4
C-Myc

iPS cells

induced pluripotent
stemcells

Dimos, JT et al. (2008). Induced
Pluripotent Stem Cells Generated
from Patients with ALS Can Be

Differentiated into Motor Neurons.

Science 321: 1218-21.




Motor neuron differentiation Motor neuron disease analysis
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Ce“ Stem Cell Article

Human iPSC Glial Mouse Chimeras Reveal Glial
Contributions to Schizophrenia

Graphical Abstract Authors
Martha S. Windrem,
- ’ Mikhail Osipovitch, Zhengshan Liu, ...,
Schizophrenic (SC2Z) Controls (CTR) Robert L Findling, Paul J. Tesar,
Correspondence
2 steven_goldman@urmc.rochester.edu or
—>» PSCs <— goldman@sund.ku.dk
¢ In Brief
Goldman and colleagues use mice
Glial chimerized with human patient-derived
: Pt glial progenitor cells to find out whether
dlﬂgreqhatlon glia contribute to chidhood-onset
In vitro schizophrenia. The defects in cell
differentiation, myelination, and behavior
Sort for Neonatal they see sirangly suggest that gfisl cells
X do, in fact, have a previously
17 CD140a h tranSplantabOﬁ unappreciated role in the pathogenesis of
shiverer myelin wt RE
e i A
Differential Histology Behavior
Gene Exp. " Donor cell ; OO
distribution I\
e, q |
| uv
se2 CTR Astrocyte differentiation s
Windrem et al., 2017, Cell Stem Cell 27, 195-208 - oo
e e Cell"ress



Human iPSCs can be directed into OPC fate
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SCZ-derived hGPCs exhibit aberrant dispersal
and relative hypomyelination
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SCZ-derived hGPCs
suppress

glial differentiation-
associated gene
expression

A e S B up e%s, C # Annotation Term P-Value
{ neurotransmitter receptor activity <1.00E-10
extracellular ligand-gated ion

channel activity 1.58E-06
ionotropic glutamate receptor 2
activity 1.72E-06
a’\terqgrade trans-synaptic <1.00E-10
464 signaling
chemical synaptic transmission <1.00E-10
799
modula.tloin of synaptic <1.00E-10
transmission
central nervous system
development <1.008-10
oligodendrocyte differentiation <1.00E-10
\90 81 glial cell differentiation <1.00E-10
%o < 201 myelination 1.68E-06
ensheathment of neurons 1.88E-06
galactolipid biosynthesis process 2.18E-05
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From cell autonomy
to
more sophisticated systems




3D stem cell-based models

_»
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Gene editing disease processes network disease process process

Organoids

Ichida & Kiskinis, EMBO J 2015
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Brain organoids
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Cerebral organoids model human brain development and " Sox2 Tuj1 Hoechs!
microcephaly

Nature. 2013 September 19; 501(7467): . doi:10.1038/nature12517.

Madeline A. Lancaster!, Magdalena Renner!, Carol-Anne Martin2, Daniel Wenzel!
S. Bicknell2, Matthew E. Hurles?, Tessa Homfray*, Josef M. Penninger!, Andrew F

Jackson?, and Juergen A. Knoblich' d

ung JNd 2domnyg ¢

| Day1 Day34
v wtﬁ”(_

Self-organization of axial polarity, inside-out layer
pattern, and species-specific progenitor dynamics
in human ES cell-derived neocortex

Taisuke Kadoshima®®', Hideya Sakaguchi*®, Tokushige Nakano®?, Mika Soen?, Satoshi Ando™2, Mototsugu Eiral
and Yoshiki Sasai*"?

2Laboratory of Organogenesis and Neurogenesis and “Four-Dimensional Tissue Analysis Unit, RIKEN Center for Developmental Biology, Kobe 650-004
and l’Departmem of Medical Embryology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan

Edited by Chen-Ming Fan, Carnegie Institution of Washington, Baltimore, MD, and accepted by the Editorial Board October 17, 2013 (received foi
August 21, 2013)
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Therapeutic potential of organoids

Disease - Drug
modeling

Lancaster & Knoblich, Science 2014



Take home points

iPSC-based models: study disease mechanisms in the context of human neurons and in
the context of each patient’s own unique genetic background

* What s the right cell type to make and study?
* What are the right controls to use when assessing a disease-related phenotype?
* How do phenotypes identified in vitro relate to the clinical presentation of patients?

* (Can we match an in vivo clinical trial with an in vitro iPSC-based clinical trial to monitor the
correlation of outcome measures?

e (Can we predict how patients will respond to a potential therapeutic treatment by studying their
stem cell-derived neurons?

Perhaps the seemingly biggest advantage of this approach - the ability to study disease in the
genetic background of the patient - has created the biggest challenge, as genetic background
contributes to high variability in the properties of the patient-derived cells. This variability is a
reality that neurologists have been facing for years, as often, two patients diagnosed with the same
condition might present with very different clinical profiles.

The technology of cellular reprogramming has brought this reality of clinical
heterogeneity seen in patients from the bedside to the lab bench.

The answers to these questions will help us conclude what are the capabilities and limitations
of this promising technological tool.



| | Telephone interview with Shinya Yamanaka following the announcement of the
* 2012 Nobel Prize in Physiology or Medicine, 8 October 2012

[AS] But I just wanted ask you one final question, which was what your greatest hopes for stem
cells technologies are at the moment? What do you hope will be the first benefit?

[SY] Well, I will bring this technology to clinics. | really want to help as many patients as possible.
As you may know, | started my career as a surgeon 25 years ago. But it turned out that | am not
talented as a surgeon. So | decided to change my career, from clinics to laboratories. But I still
feel that | am a doctor, | am a physician, so | really want to help patients. So my goal, all my life,
is to bring this technology, stem cell technology to the bedside, to patients, to clinics.



Thank you



Pilot clinical study into iPS cell therapy for eye disease in Japan

| First patient
Masayo Takahashi M.D., Ph. D. to receive iPSC-derived implant:

Laboratory for Retinal Regeneration 70 year old Japanese woman
RIKEN Center for Developmental Biology age-related macular degeneration
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Applications of iPSC technologies in spinal cord injury
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Applications of iPSC technologies

Table 1 Planned clinical trials of iPS cell-based therapies

Principal investigator (Institute/Location) Cell type to transplant Target disorders
Masayo Takahashi, (RIKEN) Retinal Pigment Epithelium (sheet) Age-related macular degeneration (wet type)
Alfred Lane, Anthony Oro, Marius Wernig Keratinocytes Recessive dystrophic epidermolysis bullosa
(Stanford University) (RDEB)
Mahendra Rao (NIH) DA neurons Parkinson's disease
Koji Eto (Kyoto University) Megakaryocyte Thrombocytopenia
Jun Takahashi (Kyoto University) DA neurons Parkinson’s disease
Steve Goldman, (University of Rochester) Oligodendrocyte precursor cell
Hideyuki Okano, Masaya Nakamura (Keio University) Neural stem/progenitor cells Spinal Cord Injury
Shigeto Shimmura (Keio University) Corneal endothelial cells Corneal endothelial dysfunction
Koji Nishida (Osaka University) Corneal epithelial cells (sheet) Corneal epithelial dysfunction and trauma
(e.g. Stevens—Johnson syndrome)
Yoshiki Sawa (Osaka University) Cardiomyocytes (sheet) Heart Failure
Keiichi Fukuda (Keio University) Cardiomyocytes (sphere) Heart Failure
Yoshiki Sasai and Masayo Takahashi (RIKEN) Ne“uroretinal sheet including photoreceptor[ Retinitis pigmentosa
cells
Advanced Cell Technology Megakaryocytes Refractory thrombocytopenia

Representative studies of iPS-based cell therapy with planned clinical trials are listed.
References: [17,19-29].

Okano & Yamanaka, Mol Brain 2014



