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Avenida Carlos Chagas Filho, s/n, Rio de Janeiro CEP 21949-900, Brasil

1Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil

(Correspondence should be addressed to D C Moraes; Email: deboracmop@gmail.com; T M Ortiga-Carvalho; Email: taniaort@biof.ufrj.br)
Abstract
Pituitary organogenesis is a highly complex and tightly

regulated process that depends on several transcription factors

(TFs), such as PROP1, PIT1 (POU1F1), HESX1, LHX3

and LHX4. Normal pituitary development requires the

temporally and spatially organised expression of TFs and

interactions between different TFs, DNA and TF co-activa-

tors. Mutations in these genes result in different combinations

of hypopituitarism that can be associated with structural
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alterations of the central nervous system, causing the

congenital form of panhypopituitarism. This review aims to

elucidate the complex process of pituitary organogenesis, to

clarify the role of the major TFs, and to compile the lessons

learned from functional studies of TF mutations in

panhypopituitarism patients and TF deletions or mutations

in transgenic animals.
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Introduction

The pituitary gland comprises two parts: posterior and

anterior. The posterior pituitary, or neurohypophysis, has a

neuronal origin and is responsible for storing and secreting

antidiuretic hormone and oxytocin, which are produced by

neurons in the paraventricular and supraoptic nuclei of the

hypothalamus. The anterior pituitary, or adenohypophysis,

consists of five distinct cell types. These cells and their specific

hormones are lactotropes, which produce prolactin (PRL);

somatotropes, which produce GH; gonadotropes, which

produce LH and FSH; corticotropes, which produce ACTH;

and thyrotropes, which produce TSH. LH, FSH and TSH are

called pituitary glycoproteins and consist of two subunits. The

alpha-glycoprotein subunit (aGSU) is common to the three

hormones and the beta subunit is specific to each of the

hormones (b-FSH, b-LH and b-TSH).

When two or more pituitary cell types are impaired,

panhypopituitarism results (Romero et al. 2009). Mutations

in several transcription factors (TFs) can lead to impaired

pituitary formation (Fernandez-Rodriguez et al. 2011,

Mortensen et al. 2011). Recently, the increase in the number

of identified mutations, functional studies and experiments

using transgenic animals have helped us understand TF

interactions and clarified the multiple steps of pituitary

organogenesis.
Early organogenesis: Rathke’s pouch invagination

While the neurohypophysis originates from the neural

ectoderm, the adenohypophysis is derived from Rathke’s

pouch, which is an invagination of the oral ectoderm

in response to neural epithelium signals (Watanabe 1982,

Treier & Rosenfeld 1996). Pituitary cell proliferation and

differentiation are regulated by transcriptional activators

and repressors and by signalling molecules from adjacent

regions (Roessler et al. 1996, 1997, Treier et al. 1998, 2001,

Tremblay et al. 1998, Nanni et al. 1999, Roessler et al. 2003,

Woods et al. 2005).

In the early stage of pituitary development, which

corresponds to embryonic days (E) 6.5–10.5 in mice

(Fig. 1), the extrinsic signalling pathways are activated,

including the sonic hedgehog (SHH; Treier et al. 2001),

bone morphogenetic proteins (BMPS; Ericson et al. 1998),

fibroblast growth factor (FGF; Ericson et al. 1998) and

wingless (WNT) pathways (Rizzoti & Lovell-Badge 2005).

SHH is not directly involved in Rathke’s pouch formation;

however, it is required for midline formation, forebrain

development, brain lobe determination, eye formation

(Roessler et al. 2003, Ericson et al. 1998. Franca et al. 2010,

Zhao et al. 2012) andBmp2 expression induction (Ericson et al.

1998, Kato et al. 2010). Mouse embryos that lack Shh have

pituitary hypoplasia and the optic disc is absent (Zhao et al.
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Figure 1 Early pituitary development. The most anterior portion of the neural plate gives rise to the anterior pituitary and the adjacent
midline region forms the endocrine hypothalamus. In mice, at approximately E8, the oral ectoderm proliferates in response to SHH.
SIX3, OTX2, HEX1 and SHH participate in the CNS and midline formation. Proliferation continues at approximately E9 in response to
neural epithelium signalisation with the expression of BMP4, FGF8, WNT2 and NKX2. At this point, oral ectoderm begins to invaginate
to form a rudimental pouch, which expresses LHX3/4 e PITX1/2. BMP2 is expressed at the edge of Rathke’s pouch that is in contact with
the oral ectoderm and antagonises the FGF8 expressed by the neural epithelium. Thus, an BMP2–FGF8 ventral-dorsal gradient is set,
which determines the activation of specific genes in each cell group according to their position in Rathke’s pouch. Full colour version of
this figure available via http://dx.doi.org/10.1530/JOE-12-0229.

D C MORAES and others . Pituitary organogenesis240
2012). The SHH pathway depends on zinc finger factors, such

as GLI1, Gli2 and GLI3 (Treier et al. 2001). Although Shh is

not expressed in Rathke’s pouch, GLI factors are found in the

precursor structures of the pituitary. Therefore, it is possible

that in response to SHH signalling, GLI proteins activate other

target genes directly involved in pituitary organogenesis

(Franca et al. 2010). Otx2 is another TF that is not expressed

in the pituitary tissues themselves (Diaczok et al. 2008,

Gorbenko Del Blanco et al. 2012). This TF encodes a bicoid

protein that is important for eye and forebrain formation

(Schilter et al. 2011, Gorbenko Del Blanco et al. 2012). OTX2

is also responsible for Hesx1 expression regulation (Diaczok

et al. 2008). Hesx1 is the first pituitary-specific TF to be

expressed at or before E6.5. (Hermesz et al. 1996, Brickman

et al. 2001). Hesx1 expression begins in the rostral region

and progresses dorsally; the restricted expression of this TF is

responsible for Rathke’s pouch formation (Hermesz et al.

1996). HESX1 is important for midline formation and

regulates the expression of other TFs (Hermesz et al. 1996,

Diaczok et al. 2008, 2011, Reynaud et al. 2011; Fig. 1).

ThePitx1 andPitx2 genes are expressed at approximately E9

and participate in the different steps of central nervous system

(CNS) organogenesis. Pitx1 is initially expressed in the first

branchial arch, then in the oral cavity, and next in Rathke’s

pouch (Drouin et al. 1998). Pitx1 continues to be expressed in

the latter stages of pituitary embryogenesis and participates in

cellular differentiation (Drouin et al. 1998, Tremblay et al.

1998). Pitx2 is expressed in several organs, including the

CNS, forelimbs, lungs, kidneys and tongue. In addition to its

role in CNS formation, PTX2 appears to be important in the

determination of the left–right axis. Similar to Pitx1, Pitx2
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continues to be expressed during pituitary cell differentiation

and acts synergistically with other TFs to determine pituitary

cell types, primarily PIT1 (Pou1f1)-specific cells (Drouin et al.

1998, Tremblay et al. 1998, Lamolet et al. 2001).

Other molecules play relevant roles in the development

of the CNS, including the SOXB1 TFs (SOX1, SOX2 (Yako

et al. 2011) and SOX3 (Woods et al. 2005)). SOX3 expression

begins during early embryogenesis; recent studies have

suggested that this gene must be expressed at a constant

level because both increases and decreases in its expression are

related to pituitary deficiencies and CNS malformations

(Woods et al, 2005). Some signalling molecules expressed in

the infundibulum directly contribute to the induction of

pouch invagination, among which BMP4 (Ericson et al.

1998) and NKX2 are key (Kimura et al. 1996). Mutant

animals lacking any of these factors may develop pituitary

absence, malformation or even embryonic lethality (Sussel

et al. 1998, Nasonkin et al. 2011).

In parallel with the invagination of oral ectoderm, the

pituitary precursor cells proliferate and migrate. The WNT

(Yako et al. 2011) and SHH pathways (Fernandez-Rodriguez

et al. 2011) are important for proliferation regulation, while

the BMP and FGF pathways are required for proliferation

and for determining cellular migration (Kato et al. 2010).

Rathke’s pouch formation is complete at approximately

E10.5, and the pituitary precursor cells begin to express

specific factors that determine their differentiation patterns

(Yako et al. 2011). This activation of distinct target genes

occurs in response to the establishment of a dorsal–ventral

gradient of FGF8 and a ventral–dorsal gradient of BMP2

(Ericson et al. 1998). Thus, depending on its location, each
www.endocrinology-journals.org
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cell has a distinct starting point within the differentiation

process (Fig. 2). For example, ventral cells express the TFs Isl1

and Gata2 (Dasen et al. 1999) and dorsal cells express Pax6

(Kioussi et al. 1999), Tpit (Lamolet et al. 2001) and Prop1

(Sornson et al. 1996).
Pituitary-specific factors

Lhx3 and Lhx4 are predominantly expressed in Rathke’s

pouch (Mullen et al. 2007) at approximately E9 (Bach et al.

1995), and the activation of these factors is essential for

proper pituitary formation (Sloop et al. 2000, West et al.

2004, Machinis & Amselem 2005, Mullen et al. 2007,

Pfaeffle et al. 2008). Although LHX3 participates in the

pituitary differentiation and maturation process (West et al.

2004, Mullen et al. 2007), LHX4 is more important for

cellular proliferation (Machinis & Amselem 2005). LHX3

appears to play a role in the maintenance of some pituitary

cellular strains because it is expressed in the adult pituitary

gland (Sloop et al. 2000).

When the expression of Hesx1 begins to fall by E10, Prop1

expression progressively increases and reaches maximal
Figure 2 Temporal and spatial activation of pituitary tra
ventral–dorsal gradient, pituitary cell lineages are deter
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expression at E12 (Sornson et al. 1996). These homeodomain

factor pairs play distinct roles. HESX1 is primarily a

transcriptional repressor, while PROP1 is an activator.

When Hesx1 expression is high, HESX1 homodimers are

formed and bind the promoter site, which leads to the

recruitment of co-repressor elements. As Prop1 expression

increases, the PROP1 homodimers predominate and bind

to regulatory sites, recruiting co-activator complexes, and

PROP1-dependent gene transcription increases (Dasen &

Rosenfeld 2001). This mechanism is essential for determining

the Pit1-specific cells and the gonadotropic lineages

(Simmons et al. 1990, Drolet et al. 1991, Steger et al. 1994,

Dasen & Rosenfeld 2001, Zhao et al. 2005). After Pit1

activation, Prop1 expression decreases rapidly, and it is not

expressed in the adult gland (Cohen & Radovick 2002).

Pit1 expression is first noticeable by E12, and it is necessary

for the differentiation of thyrotropes, lactotropes and

somatotropes, which are known as the pituitary-specific

cell types (Simmons et al. 1990). It is well known that

Pit1 expression requires PROP1 activation. LHX4 also

up-regulates Pit1 expression by binding to its transactivation

domain (Machinis & Amselem 2005).
nscription factors. In response to the BMP2–FGF8
mined by the activation or repression of each TF.
d arrows indicate an unknown role in the activation
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Cellular differentiation

Initially, all Rathke’s pouch cells express Isl1. The most ventral

cells maintain the expression of this TF in response to

BMP2, while FGF8 blocks Isl1 expression in the more dorsal

cells. The presence of ISL1 activates aGSU, the common

subunit of the heterodimeric hormones TSH, LH and FSH

(Ericson 1998).
Gonadotropes

Gata2 is another importantTF that is expressed by ventral cells.

This TF is necessary to restrict PITactivation in these cells and

to ensure that a PIT-independent cell lineage is established.

GATA2 activates the expression of steroidogenic factor 1 (Sf1;

Steger et al. 1994, Zhao et al. 2005), which in turn stimulates

aGSU and LHb gene expression; however, GATA2 does not

significantly influence FSHb expression (Brown & McNeilly

1999). However, a recent study showed that GATA2 and

GATA4 increase FSHb expression in vitro (Lo et al. 2011).

Although SF1 contributes to gonadotropic differentiation,

the treatment of Sf1 knockout mice with GNRH completely

restores the expression of gonadotrophins, demonstrating that

SF1 is not the only TF involved (Ikeda et al. 1995).

PITX1 transactivates aGSU, FSHb and LHb (Tremblay

et al. 1998), while Lhx3 up-regulates aGSU and FSHb (Bach

et al. 1995, West et al. 2004), and HESX1 stimulates LHb
expression (Brown & McNeilly 1999). Animals and humans

with Prop1 mutations usually have gonadotrophin deficiency.

Functional studies suggest that PROP1 is important for FSHb
expression, even in adulthood (Aikawa et al. 2006). It is possible

that PROP1 participates in gonadotrope differentiation in a

manner that is not well defined. In response to temporally and

spatially organised TF expression, the gonadotropes complete

differentiation by E17 (Brown & McNeilly 1999).
PIT1-specific cells: thyrotropes, somatotropes and lactotropes

In response to BMP2 signalling, Gata2 is activated and

determines the gonadotrope and thyrotropic precursors. It has

been suggested that Gata2 expression in thyrotropes is below

the threshold necessary to block Pit1 activation, allowing the

emergence of Gata2C/Pit1C cells (Dasen et al. 1999). The

PAX6 ventral–dorsal gradient is important for distinguishing

between the thyrotropic and somatotropic/lactotropic

lineages (Kioussi et al. 1999). In the absence of PAX6,

thyrotropes occupy a larger region at the expense

of lactotropes and somatotropes, and PRL and GH

deficiencies result (Simmons et al. 1990, Bentley et al. 1999,

Kioussi et al. 1999).

Thyrotropes are derived from two different populations.

The first population appears in the rostral tip of the

developing gland by E12, and this population is transient

and independent of Pit1 expression (Turton et al. 2012). The

other population arises by E15.5 and is PIT1 dependent.
Journal of Endocrinology (2012) 215, 239–245
This second population corresponds to the thyrotropes found

in adulthood, suggesting that PIT1 is important for

transactivating TSHb (Lin et al. 1994) and for maintaining

this cellular lineage. Thyrotroph embryonic factor (TEF) is

expressed exclusively in the rostral portion of the developing

pituitary, where the thyrotropic precursors are located. TEF

can bind to three different elements of the TSHb promoter,

which leads to its effective transactivation (Drolet et al. 1991).

PITX1 and Pitx2 also collaborate in thyrotrope differentiation

by acting synergistically with aGSU and TSHb transactiva-

tion (Drouin et al. 1998).

Lactotrope and somatotrope differentiation are completely

dependent on Pit1 activation. These two cell types appear to

arise from the same precursor; thus, secondary TFs restrictGH

and PRL expression to their corresponding cell lineages

(Simmons et al. 1990). PTX1 and PTX2 synergise with PIT1

to transactivate GH and PRL (Tremblay et al. 1998). Among

the elements that are important in determining somatotrope

specificity, a small zinc finger protein, Zn-15, binds to theGH

promoter, synergising with PIT1 (Lipkin et al. 1993). The

retinoic acid receptor and the thyroid hormone nuclear

receptor also cooperate with PIT1 in the regulation of GH

gene expression (Schaufele et al. 1992, Palomino et al. 1998).

However, in lactotrope differentiation, the oestrogen nuclear

receptor synergistically partners with PIT1 (Simmons et al.

1990). Somatotrope and lactotrope differentiation finish at

approximately E16 andE17 respectively (Simmons et al. 1990).
Corticotropes

The most dorsal cells differentiate into corticotropes. This cell

lineage is the most distinct among the pituitary cells (Reynaud

et al. 2004). In response to FGF8 signalling, corticotrope

progenitors do not express any of the rostro-dorsal-specific

TFs. Corticotrope differentiation depends on the interactions

between PTX1, TPIT, NeuroD1 and LIF, which are all

expressed just before pro-opiomelanocortin (POMC)

expression is first detected and act synergistically at the level

of the POMC promoter to transactivate this gene (Poulin et al.

1997, Tremblay et al. 1998, Yano et al. 1999, Lo et al. 2011).

PITX1 is also necessary for maintaining corticotrope-specific

transcription (Tremblay et al. 1998). The terminal differen-

tiation of corticotropes depends on FGF8 down-regulation,

which occurs by E14.5 (Ericson et al. 1998). Although Prop1 is
not expressed in corticotropes, PROP1-deficient

individuals may develop ACTH deficiencies. It has also been

suggested that PROP1 is required for long-term maintenance

of the corticotrope population; however, Nasonkin et al.

(2011) have shown that aged PROP1-deficient mice maintain

ACTH production.
Final considerations

Pituitary organogenesis during embryogenesis is a complex

process that depends on both the activation and inactivation
www.endocrinology-journals.org
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of different TFs at the appropriate times. Moreover, correct

cellular migration in response to dorsal–ventral gradients

enables each cell group to receive signals from distinct

pathways, depending on the cell location. This process

induces different responses and allows the determination of

the five cell lineages that constitute the pituitary. Thus, as

shown in Fig. 2, pituitary organogenesis is a temporally and

spatially sequenced and organised process.

We can thus expect that any mutation that alters the length,

quality or quantity of TF gene expression will result in

pituitary development failure. The integrity of TF

co-activator or co-repressor recruitment is also critical for

the formation of this gland, and any changes in the

components of these pathways may contribute to the

development of hypopituitarism, which would explain

the existence of different phenotypes for the same mutation.

Functional studies of known human mutations and the

knowledge obtained from transgenic animals have enabled

the discovery of several TFs as well as the timing of their

appearance and a partial understanding of their role in

pituitary development. These discoveries have shaped

our current understanding of the process of pituitary

organogenesis. However, there are still many questions to

be answered, mainly regarding the interaction mechanisms

of TFs and co-factors.
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