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Spinocerebellar ataxia (SCA) comprises a large group of heterogeneous
neurodegenerative disorders inherited in an autosomal dominant fashion. It
is characterized by progressive cerebellar ataxia with oculomotor
dysfunction, dysarthria, pyramidal signs, extrapyramidal signs, pigmentary
retinopathy, peripheral neuropathy, cognitive impairment and other
symptoms. It is classified according to the clinical manifestations or genetic
nosology. To date, 40 SCAs have been characterized, and include SCA1–40.
The pathogenic genes of 28 SCAs were identified. In recent years, with the
widespread clinical use of next-generation sequencing, the genes underlying
SCAs, and the mutants as well as the affected phenotypes were identified.
These advances elucidated the phenotype–genotype relationship in SCAs.
We reviewed the recent clinical advances, genetic features and
phenotype–genotype correlations involving each SCA and its
differentiation. The heterogeneity of the disease and the genetic diagnosis
might be attributed to the regional distribution and clinical characteristics.
Therefore, recognition of the phenotype–genotype relationship facilitates
genetic testing, prognosis and monitoring of symptoms.
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Spinocerebellar ataxia (SCA) consists of a large group
of heterogeneous inherited neurodegenerative disorders
that are characterized by progressive cerebellar ataxia
with oculomotor abnormalities, dysarthria, pyrami-
dal and extrapyramidal signs, pigmentary retinopathy,
peripheral neuropathy, cognitive dysfunction and other
symptoms (1).The group of diseases was designated as
autosomal dominant cerebellar ataxias (ADCAs) and
classified into three types according to their clinical
manifestations (2). SCAs were also classified according
to the genetic nosology (3). To date, 40 types of SCAs
have been identified and are classified as SCA1 through

SCA40, most of which were categorized according to
ADCA types (Table 1).

The prevalence of ADCA in the general popula-
tion was estimated at 0.001–0.005% (4, 5). Ruano
found that the prevalence of ADCA in Netherlands was
3.0/100,000 inhabitants (6), 4.2/100,000 in south Nor-
way (7), 5.6/100,000 in Portugal (8), 1.9/100,000 in
Brazil (4, 9), and 2.3/100,000 in Padua (Italy) (10). In
Korea, the prevalence of hereditary cerebellar ataxia was
4.99/100,000 (11). No data were reported from China.

Similarly, the frequency of each SCA type varied
regionally (12). For example, in Chinese ADCA, SCA3
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accounted for 54.6–72.5% (13, 14), followed by SCA2
(5.7–6.7%), SCA1 (5.9%), SCA6 (1.6–3.3%), and
SCA7 (0.8–4.8%) (14, 15), while in Brazil, SCA3
accounted for 92%, followed by SCA7 (2%), and certain
rare types.

The genes underlying 28 out of the 40 types
of SCAs including SCA1–3, 5–8, 10–14,
15/16, 17, 18, 19/22, 21, 23, 26–29, 31,
34–36, 38 and 40 have been identified (OMIM,
https://www.ncbi.nlm.nih.gov/books/NBK1138/). The
loci of the other six SCAs, including SCA4, 20, 25, 30,
32, and 37, were located by linkage disequilibrium. The
SCA4 locus was present in the same region as SCA31
(16). SCA9, 33 and 39 were unassigned. SCA24 was
recessively inherited. The pathogenic genes or genetic
loci of SCA1-40 are summarized in Table 1.

Although SCAs are highly heterogeneous, the clinical
manifestations are significant and obvious. We reviewed
the phenotype–genotype relationship of SCAs from the
clinical perspective of ADCA to facilitate the neurologi-
cal differentiation and clinical diagnosis of SCA.

ADCA type 1

ADCA type 1 manifests cerebellar ataxia combined with
ophthalmoplegia, dementia, extrapyramidal signs, optic
atrophy and amyotrophy.

SCA1, SCA2, SCA3 and SCA17

SCA1, 2, 3 and 17 are caused by dynamic mutations in
coding regions, with distinct characteristics.

SCA1 is commonly seen in Italian (41%), South
African (40.7%), Australian (16%), German (9%), Chi-
nese (7%), Korean (12%), Japanese (5.5%) and Span-
ish (6%) populations. SCA2 is more often seen in Italy,
India, Mexico and Cuba with a frequency ranging from
24% to 45.4%. The frequency of SCA3 is high in France,
USA, Japan, Portugal, Brazil and China, ranging from
20.4% to 92%. SCA17 has been reported in Japanese,
Germans, French, Chinese, Koreans, Italian Mexicans,
Greeks and Indians, albeit with a frequency much lower
than SCA1–3 (13, 17–28).

The cerebellar ataxia associated with SCA3 includes a
wide range of clinical manifestations: pyramidal signs,
peripheral neuropathy, ophthalmoparesis and bulging
eyes, fasciculations of the face and tongue, amyotro-
phy, and extrapyramidal signs, and, rarely, dementia. The
heterogeneity presents in terms of age at onset (AAO),
clinical manifestations and symptoms. SCA3 is caused
by an unstable CAG triplet repeat expansion of exon
10 in ATXN3. Generally, it is classified into three types
based on the spectrum of clinical manifestations and
CAG repeat size (29, 30). The SCA3 types containing
early AAOs and higher number of CAG repeats tend
to exhibit a pyramidal phenotype and dystonia, whereas
those with late AAOs and smaller CAG repeat num-
bers are probably to develop neuropathy (31, 32). Subse-
quent studies described five subtypes: type 4 comprising
a Parkinsonian triad, type 5 including spastic parapare-
sis, type 6 manifesting pure cerebellar ataxia and type

7 associated with a mixed form of ataxia and levodopa
responsive Parkinsonism (33). Other rare manifesta-
tions have been reported, including retinal degeneration,
complicated hereditary spastic paraplegia, stiff-person
syndrome, motor neuronal disease, akathisia, verbal flu-
ency and visual memory deficits, dystonia, involuntary
movement combined with memory decline, and hearing
loss (32, 34–39). However, no significant difference was
found between these sub-phenotypes and CAG repeat
expansions (33). The homozygous patients showed a
more serious course (40).

SCA1 and SCA2 are also characterized with features
of progressive ataxia starting in the mid-adulthood. The
SCA2 and SCA3 types were more frequently associated
with basal ganglia symptoms. Bulging eyes were pre-
dominantly seen in SCA3 (41). Decreased deep tendon
reflexes were observed more frequently in SCA2, and
more commonly increased in SCA1 and SCA3. Recent
studies found that SCA1 progressed faster than SCA2
and SCA3 (42, 43). The eye movements in these three
SCAs were distinct. In SCA2, saccade velocity was
markedly decreased, but gaze-evoked nystagmus was not
associated. In SCA3, square wave jerks were exclusively
observed and gaze-evoked nystagmus was often present.
In SCA1, nystagmus was more common and saccade
amplitude was significantly increased, resulting in hyper-
metria (44, 45).

The SCA2 allele carrying 32 repeats represented an
intermediate allele compared with the normal (14–31
repeats) and fully penetrant alleles (33–202 repeats)
(46). The allele with 33 CAG repeats was consid-
ered a ‘late onset’ allele. The expansion was inter-
rupted by a CAA repeat. Parkinsonism is often seen
in SCA2 (SCA2-P). Compared with cerebellar ataxia
type (SCA2-A), the SCA2 is associated with a mild
CAG repeat expansion (32–42) usually interrupted by a
CAA repeat (47). The SCA2-A harbored a CAG expan-
sion without CAA interruption (48, 49). Recent linkage
analysis and whole-exome sequencing indicated that the
CAG expansion was the only causative mutation respon-
sible for SCA2-P (50).

Interestingly, recent studies investigated the
pleiotropism of expanded ATXN-2. The fully
expanded ATXN-2 caused both frontotemporal
dementia-amyotrophic lateral sclerosis (FTD-ALS)
and SCA2 in different family members of a single
family (51, 52).

The homozygous state of SCA2 was reported to alter
the phenotype and exacerbate disease, without affecting
the AAO (53).

The anticipation of SCA17 was infrequently docu-
mented (54). The AAO and CAG/CAA repeat sizes
are inversely related (53, 55), but not as strongly as in
other dynamic disease mutations. SCA17 is referred to
as Huntington’s disease-like syndrome type 4 (HDL-4),
with typical chorea, dementia and psychiatric dysfunc-
tion. Further, pyramidal signs and epilepsy are prominent
features (56). A few phenotypes are related to the number
of CAG/CAA repeats. Parkinsonism and chorea are asso-
ciated with small size (42–48), while pyramidal signs
and dystonia are common in larger-sized amplification

309



Sun et al.

(≥50) (57). Cerebellar ataxia and reduced intellec-
tual function/psychiatric symptoms are commonly seen
regardless of the size.

SCA8, SCA10, and SCA12

The nucleotide repeat expansions of SCA 8, 10, and
12 are located in the non-coding regions, and the
alleles are partially characterized by dynamic muta-
tions. SCA8 usually occurs in adulthood and progresses
slowly with cognitive decline, pyramidal and sensory
signs (58). The SCA8 phenotype is relatively varied
compared with other SCAs, because of the atypical
non-cerebellar symptoms of Parkinsonism, ALS and
migraine (59). It is attributed to CTA and CTG triplet
repeat expansion in ATXN8OS/ATXN8. No relationship
was observed between the expanded repeats and AAO,
disease progression or disease severity (60). Reduced
penetrance occurred in SCA8. The expansion carriers
remain asymptomatic for ataxia and the incidence of
disease was not predicted by the length of expansion.
Therefore, genetic counseling is critical to explaining the
results in asymptomatic individuals or family members
(61).

SCA10, manifesting cerebellar ataxia and epilepsy,
occurs in Mexican (about 15% of ADCA, follow-
ing SCA2) and Brazilian populations (0.7–11.6% of
ADCA, following SCA3) (23, 62, 63). Patients diag-
nosed in Argentinian and Latin American families were
attributed to ATTCT repeats in ATXN10. Recent stud-
ies proposed penta- and heptanucleotide ‘ATCCT inter-
ruptions’, involving SCA10 expansions (64, 65). The
expansion size and AAO were inversely related only
in SCA10 without interruptions. Interrupted expansion
alleles showed anticipation but paradoxically contracted
during transmission, particularly in paternal lineages.
The presence of repeat interruption increased the risk of
epilepsy, and its prognosis during genetic counseling.

SCA12 is rare worldwide. In addition to a few families
in India (66), it was detected in one American family of
German origin, one Singaporean family, two Italian fam-
ilies and three Chinese pedigrees. Recently, we reported
three SCA12 families, suggesting that the incidence of
SCA12 in Chinese population might be higher than pre-
viously reported (67). SCA12 is caused by a CAG repeat
expansion in PPP2R2B. Because of the limited case
number, the number of pathological mutations exceeds
51. However, one of our recent reported cases carried
46 CAG repeats, which might be the shortest pathogenic
number of SCA12 (67).

The triplet, quintuplet or sextuplet repeats expan-
sion in non-coding region (including SCA36 discussed
later) do not directly encode a toxic protein but affect
the cellular functions via RNA loss-of-function, RNA
gain-of-function or repeats associated with non-ATG
(RAN) translation (only in SCA8) (68, 69), resulting
in deregulation of gene transcription and expression
(70), formation of ‘RNA foci’ in the nucleus and
negative impact on cellular function (71–73). In con-
trast, the SCAs expansion involving the coding region
were mostly attributed to gain-of-function involving

toxic mutant proteins affecting cellular function
(74, 75).

SCA13, SCA14, SCA15, SCA18, SCA19/22, SCA21,
SCA23, SCA27, and SCA28

SCA13, 14, 15, 18, 19/22, 21, 23, 27 and 28 are caused
by conventional mutations. However, the number of
families with SCAs in this group is not adequate to obtain
genotype–phenotype correlations. The following results
were observational.

With respect to SCA13, the p.R420H (c.G1260A)
mutation in KCNC3 is associated with late-onset
ataxia, whereas the p.F448L (c.C1344A) and p.R423H
(c.G1268A) mutations are related to early-onset ataxia,
delayed motor milestones, mental retardation and
epilepsy (76, 77). In SCA14, the same mutation pre-
sented different symptoms, even in a single family (78,
79). In SCA28, p.M666R (c.T1997G) and p.E700K
(c.G2098A) mutations were identified in early-onset
patients, and another mutation was related to adult-onset
(80). SCA15 is rare and accounted for 1% of ADCA
in Caucasian population and 0.1% in Japan (24, 81).
It is characterized by slow progression with variable
AAO. It is characterized by tremors, cerebellar atro-
phy, occasional pyramidal signs, cognitive impairment
and involuntary movements (82, 83). It is caused by
the ITPR1 deletion or missense mutation. The mis-
sense mutations in ITPR1 also cause SCA29, which is
discussed later in ADCA type 3.

No explicit phenotype–genotype relationships were
observed for SCA18, 21, 23, or 27 because of their rarity.
Their clinical and genetic features are listed in Table 1.

ADCA type 2

SCA7 is the only type of ADCA type 2, which is
characterized by progressive cerebellar ataxia and retinal
degeneration. The disease course spanned four stages
in a recent longitudinal study. Electroretinograms were
identified as biomarkers of disease onset and progression
(84). SCA7 is rare, but is often found in Swedish,
Finnish, and South African (22.2%) populations as well
as in Brazilian (6%), Spanish (1%), Portuguese (1%) and
Australian (2%) populations (17–27).

SCA7 is caused by CAG triplet repeat expansions
in ATXN7. A higher CAG repeat number is associated
with an earlier AAO, more severe symptoms, rapid
clinical progression and a high frequency of diseased
vision (85, 86). The expansion was highly unstable
during transmission, and anticipation was clear. The
mean increase in CAG repeat number was reported to
be 10± 16. Instability was significantly greater in male
transmission (87).

ADCA type 3

ADCA type 3 is considered a ‘pure’ cerebellar ataxia, in
which SCA6 is the most common followed by SCA31.

SCA6 was commonly seen in Korean (15–23%),
Japanese (6–23%), Dutch (11–23%), Australian (17%)
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and German populations (10–22%), and less frequently
seen in the UK (5%), India (0–4%), and China (0–3%)
(17–27, 88). It is caused by CAG triplet expansion
in CACNA1A (89). The expanded CAG repeat number
is inversely correlated with AAO. The size of SCA6
expanded alleles is generally stable during transmission,
and anticipation is rare. A dosage effect was observed
(90–93).

SCA6 together with episodic ataxia type 2 (EA2)
and familial hemiplegic migraine (FHM1) represents a
clinical continuum attributed to CACNA1A mutations.
EA2 is an autosomal dominant disorder characterized
by episodic attacks of ataxia (94). EA2 and FHM1 are
usually caused by missense, deletion or insertion muta-
tions while SCA6 are caused by CAG triplet expansions
(http://www.hgmd.cf.ac.uk/). Interestingly, the clinical
manifestations of SCA6, EA2 and FHM presented in
different members of a single family with either CAG
triplet number expansion (94) or missense mutations
(95, 96), or even in the same patient (97, 98).This phe-
nomenon was explained by similar underlying mecha-
nisms of functional changes in calcium channel subunits
encoded by mutant CACNA1A. The SCA6 polyglutamine
mutation in CACNA1A has been shown to affect chan-
nelopathy and transcriptional regulation (99). The point
mutations also affected the channelopathy and transcrip-
tional regulation (94). However, the underlying mecha-
nism was obscure and needs further investigation.

Most cases of SCA31 were reported in Japan, while
three cases represented Chinese, Korean and Brazil-
ian populations (100–102). It is a late-onset cerebel-
lar ataxia usually associated with hearing loss. It is
also associated with extracerebellar pyramidal signs,
extrapyramidal signs, dizziness or psychiatric ailments.
It is attributed to complex penta-nucleotide repeats con-
taining (TGGAA)n inserted in the introns of BEAN1. The
size of the insertion was inversely correlated with AAO
in patients (r =−0.41), although it may not affect the
progression after onset (103). Very mild anticipation and
subtle expansion were also observed (104).

Despite the association of SCA6 and SCA31 with sim-
ilar type of ADCA, differences were still observed. The
AAO was higher in SCA31 than in SCA6. In several
reports of Japanese population, the number of extrac-
erebellar symptoms varied between SCA31 and SCA6.
Gaze-evoked nystagmus and downbeat positioning nys-
tagmus were more frequent in SCA6 than in SCA31, and
successfully differentiated SCA6 from SCA31 (105). In
neuroimaging, cerebellar atrophy started from the upper
vermis in magnetic resonance image (MRI) of SCA31,
while in SCA6, the fourth ventricle was enlarged even in
the early stage of disease (106).

SCA5 has been reported in five families worldwide
including American, French, German, Japanese and Nor-
wegians and in one congenital SCA5 patient (107, 108).
It is late-onset and usually does not shorten the life span
(108). Six different mutations including three in-frame
deletions and three missense mutations related to SCA5
have been found in SPTBN2. SCA11 was also rare.
Four families were reported from 1999 (26, 100), and
none involved Chinese population (27). Two in-frame

deletions and one missense mutation were confirmed as
pathogenic (109). Because of the rarity of SCA5 and
SCA11, no explicit phenotype–genotype relationships
were observed.

SCA29 is also known as congenital non-progressive
cerebellar ataxia, first reported in 1987 (110). The
causative gene was found by exome sequencing in
2012. Until now, p.N587D (c.A1759G) and p.V1547M
(c.G4639A) have been reported pathogenic. Recently,
four unrelated sporadic infant-onset non-progressive
cerebellar ataxia were attributed to de novo missense
mutations in ITPR1, suggesting the existence of three
types of ITPR1-related SCAs: SCA15, SCA29 and spo-
radic one (111). The features of SCA26 were referred to
Table 1.

SCA34, SCA35, SCA36, SCA38 and SCA40

SCA34 is associated with the onset of erythremia and
hyperkeratosis in early childhood. Cerebellar ataxia
manifests in mid-adulthood and progresses slowly. Skin
lesions tend to improve with age. The pathogenic gene
was identified in 2015 by genome-wide linkage analy-
sis and next-generation sequencing and incomplete pen-
etrance was found (112).

SCA36 is rare worldwide, accounting for 1.9% of all
French SCAs, 1.5% of all Japanese SCAs and 1.6% in
Chinese ADCA (113). It is characterized by cerebellar
ataxia with progressive motor neuronal dysfunction and
sensorineural hearing loss (72, 114). Cognitive and affec-
tive impairments and oromandibular dystonia were also
reported (115–117). The expansion of intronic GGC-
CTG hexanucleotide repeat in NOP56 causing SCA36
was identified in 2011 (118). The expansion tended
to increase during transmission, with larger expansions
resulting in more severe symptoms (119). However, one
recent report found that small expansions (25, 30 and
31, respectively) caused the disease. The clinical features
were indistinguishable between individuals with short
and typically long expansions (120).

The causative genes of SCA38 and 40 were identified
by genome-wide genetic studies (121). The clinical and
genetic features of SCA35 are listed in Table 1.

MRI of SCAs

MRI is helpful to the diagnosis of SCAs. Atrophy in
cerebellum, pon, brain stem, basal ganglia or certain
cortical areas was the main feature on MRI (122).
In some types, like SCA5, 8 (123), 10, (124), 11,
13, 14, 15/16, 20, 27 and 28, atrophy was restricted
within cerebellum (122). SCA12 was found atrophy in
cerebellum and/or cerebrum (66). The brain atrophy
in SCA1, 2, 3, 6, 7, 17 was wide. SCA1 showed
atrophy mainly in brainstem, cerebellum, basal ganglia
and cortex. SCA2 showed atrophy in cerebellum, pons,
medullar oblongata, spinal cord and also in parietal
cortex and thalamus. SCA6 showed severe atrophy in
cerebellum, mild atrophy in pons, basal ganglion and
cortex. SCA7 and 17 had obvious atrophy in brainstem
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and the cortical area was affected. As for SCA36,
atrophy was found in initial stage and global cerebellar
atrophy and oliveo-ponto-cerebellar atrophy showed by
the disease progression (72, 119).

Conclusion

The phenotype–genotype correlation facilitates clinical
and differential diagnosis of SCA, prediction of disease
course and monitoring of symptoms and genetic coun-
seling. Advances in molecular diagnostics may unravel
additional disease-causing genes in SCAs. Detection of
the genetic risk loci modifying the phenotype will elu-
cidate the clinical pattern and highlight the underlying
pathogenesis.
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