
Introduction to Clinical Trials
Lecture 5: Power and Sample Size Calculations

Giorgos Bakoyannis, PhD
Associate Professor

Department of Biostatistics and Health Data Science
Indiana University Indianapolis

Notes by Prof. Constantin T. Yiannoutsos, City University of New York

1 / 58



Section 1

Introduction
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Terminology

The following concepts will be referred to repeatedly in this lecture:

Power: 1-β
β level: Type II error probability
α level: Type I error probability

Likelihood ratio: Relative strength of evidence
Sample size: Number of experimental subjects
Effect size: Treatment difference expressed as the number of standard

deviations
Number of events: Number of subjects with a specific outcome

Study duration: Time from beginning of the trial to end of follow-up
Percent censoring: Proportion of participants without an event by the end

of the study
Allocation ratio: Ratio of sample size in the treatment groups

Accrual rate: New subjects entered per unit of time
Loss to follow-up rate: Rate at which study participants are lost before outcomes

are observed
Follow-up period: Interval from end of accrual to end of study

∆: Smallest treatment effect of interest based on clinical
considerations
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Power

Power is the chance that a true difference will be detected by the study.
There are a number of conceptual difficulties with this:

Power is defined hypothetically (the treatment effect is actually
present) as opposed to the null hypothesis of no effect or treatment
difference

Power is related to the experiment-wide variability

Power cannot be separated by the sample size and the treatment
effect. Thus, statements like “this study produced 90% power” are
erroneous and possibly misleading. In fact any study can be made to
generate any level of power (just assume a larger effect)
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Section 2

Early developmental studies
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Early developmental trials
Translational studies

In translational trials, the sample size n is such that it would ensure that
the absolute error lies below some threshold d with high probability. In
other words,

P (|X̄n − µ| ≤ d) ≥ 1− α

which is equivalent to

P

(
− d

σ/
√
n
≤ X̄n − µ

σ/
√
n

≤ d

σ/
√
n

)
≥ 1− α.
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Early developmental trials
Translational studies

By the central limit theorem we have that (for sufficiently large sample
size n)

P

(
− d

σ/
√
n
≤ X̄n − µ

σ/
√
n

≤ d

σ/
√
n

)
≈ Φ

(
d

σ/
√
n

)
− Φ

(
− d

σ/
√
n

)
= 2× Φ

(
d

σ/
√
n

)
− 1

where Φ(z) = P (Z ≤ z) with Z ∼ N(0, 1). Thus,

2× Φ

(
d

σ/
√
n

)
− 1 ≥ 1− α

⇒ Φ

(
d

σ/
√
n

)
≥ 1− α/2

⇒ d

σ/
√
n
≥ z1−α/2
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Early developmental trials
Translational studies (continued)

Thus, the required sample size n is

n ≥
(
z1−α/2

σ

d

)2

The above can be expressed in terms of effect size. That is, we may want
to calculate the sample size required to ensure (at the α = 0.05 say), that
the error d = 0.5σ (or, equivalently, d/σ = 0.5). The above formula is
then

n =
(
z1−α/2

σ

d

)2

= (1.96/0.5)2 ≈ 16
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Early developmental trials
Testing a single mean

When the mean is tested then the one-sided null and alternative
hypotheses are as follows:

H0 : µ ≤ µ0 or H0 : µ ≥ µ0

versus, respectively,

HA : µ > µ0 or HA : µ < µ0

or the two-sided null and alternative

H0 : µ = µ0

versus
HA : µ ̸= µ0
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Early developmental trials
Testing a single mean (continued)

Testing the null against the one-sided alternative HA : µ = µ1 > µ0, for a
pre-specified value of µ1 the test is based on the sample distribution of the
mean X̄n which, under H0 is N(µ0, σ

2/n) and under HA N(µ1, σ
2/n).

This is shown pictorially in the Figure below:
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Early developmental trials
Sample size for testing a single mean

In light of the central limit theorem, the null hypothesis is rejected at the
level α if

X̄n − µ0

σ/
√
n

≥ z1−α

If the true mean is µ1 (i.e., under HA) then

P

(
X̄n − µ0

σ/
√
n

≥ z1−α

)
= P

(
X̄n ≥ z1−α

σ√
n
+ µ0

)
= P

(
X̄n − µ1

σ/
√
n

≥ z1−α − µ1 − µ0

σ/
√
n

)
≈ 1− Φ

(
z1−α − µ1 − µ0

σ/
√
n

)
for sufficiently large sample size n (by the central limit theorem).
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Early developmental trials
Sample size for testing a single mean (continued)

Letting 1− β be the desired power we have that

1− Φ

(
z1−α − µ1 − µ0

σ/
√
n

)
≥ 1− β

⇒ Φ

(
z1−α − µ1 − µ0

σ/
√
n

)
≤ β

⇒ z1−α − µ1 − µ0

σ/
√
n

≤ zβ

⇒ n ≥
σ2(zα + zβ)

2

(µ1 − µ0)2

Note that we can express the equation above in terms of effect size
f = (µ1 − µ0)/σ, i.e., n = (zα + zβ)

2/f2.
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Early developmental trials
Sample size for testing a single mean (continued)

As an example, consider the sample size required for a test of the
hypothesis H0 : µ ≤ 3 versus the alternative HA : µ > µ0 = 4 (this is
completely contrived example). If the α and β levels are, respectively, 5%
and 10% (or the power is 90%) and the standard deviation σ = 2, the
required sample size will be

n =
22(−1.645− 1.282)2

(4− 3)2
≈ 34.27

We choose the smallest integer that is greater than or equal to 34.27, so
that n = 35. The same results would be generated by considering this
difference in treatment means as an effect size f = 0.5.

Finally, in the case of a two-sided alternative hypothesis, the sample size

would be n = (−1.96−1.282)2

0.52
≈ 34.
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Early developmental trials
Sample size for testing a single proportion

The above results can be modified by substituting σ =
√
p(1− p) in the

previous formula when testing for a single proportion (of toxicity or
response) p. In this case, the null hypothesis is H0 : p ≤ po versus the
one-sided alternative HA : p = p1 > p0. The required sample size is

n =
p0(1− p0)(zα + zβ)

2

(p1 − p0)2

Thus, testing the null and alternative hypotheses H0 : p ≤ 0.3 and
HA : p = 0.4 respectively at the α = 0.05 and β = 0.10 we have

n =
0.3(1− 0.3)(−1.645− 1.282)2

(0.4− 0.3)2
≈ 180
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Testing a single proportion
Single-stage design

Consider the following situation:

In a Phase II non-comparative study (i.e, a small study of one treatment
that takes a first “stab” at efficacy assessment), we would like to know
whether the true response rate is at least as high as 15% (the current
standard).

Above that rate, the new therapy would be interesting and worth pursuing
further, while, below this rate, we would discontinue development of the
experimental therapy.

To perform power and sample size calculations we will have to specify an
alternative rate p1 > p0. We set for this example, p1 = 0.40.
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Testing a single proportion
Statistical construction

The null hypothesis to be tested is
H0 : p ≤ p0 = 0.15

versus the alternative
HA : p > p1 = 0.40

Let’s say that we would like to maintain α ≤ 0.1 and the power
1− β ≈ 0.80. We will thus create a one-sided 90% confidence interval
with a lower bound and see whether this lower bound excludes (lies above)
p0 = 0.15.

The power is the chance that the confidence interval will lie above p0 if
the true response is p1.

Monitoring toxicity is done in an identical manner by reversing the roles of
p0 and p1 and H0 and HA above.
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Testing a single proportion
Graphical representation of the problem

The situation is given graphically by the following figure:
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Of course, unlike the continuous case, the above figure would not have
been possible if we had not already determined the size n (see below for
how this was done).
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Testing a single proportion
Exact binomial confidence intervals

To determine the power at a specific sample size (or vice versa) we use the
exact binomial distribution (e.g., Korn, Biometrics, 1986).

We work similarly to the one-sample continuous-data case by trying to
identify a cutoff point x such that P (X ≤ r|H0) ≥ 1− α and
P (X ≤ r|HA) ≤ β. That is,

r∑
k=0

(
n
k

)
pk0(1− p0)

n−k ≥ 1− α

and
r∑

k=0

(
n
k

)
pk1(1− p1)

n−k ≤ β
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Testing a single proportion
Example

After some experimentation we end up with n = 16. In that case, the null
hypothesis will be excluded if the number of responding patients is X ≥ 5.

The alpha level of the test is the chance that X ≥ 5 under the null
hypothesis,

P (X ≥ 5|H0) = P (X ≥ 5|n = 16, p = 0.15) = 0.0731 = α

The power (or the chance that the CI will lie above p0) is the same
probability under the alternative hypothesis i.e.,

P (X ≥ 5|HA) = P (X ≥ 5|n = 16, p = 0.40) = 0.8334 = 1− β
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Testing a single proportion
Example

The null and alternative distributions B(16, 0.15) and B(16, 0.40):

k P (X = r|H0) P (X ≤ r|H0) P (X = r|HA) P (X ≤ r|HA)
0 .0743 .0742511 .0002821 .0002821
1 .2097 .2839012 .0030092 .0032913
2 .2775 .5613793 .0150459 .0183372
3 .2285 .7898907 .0468095 .0651467

4 .1311 .9209 .1014206 .1666

5 .0555 .9764556 .162273 .3288404
6 .0180 .9944137 .1983337 .5271741
7 .0045 .998941 .1888892 .7160634
8 .0009 .9998398 .1416669 .8577303
9 .0001 .9999807 .0839508 .941681

10 .0000 .9999982 .039177 .9808581
11 .0000 .9999999 .0142462 .9951043
12 .0000 1 .0039573 .9990615
13 .0000 1 .0008117 .9998733
14 .0000 1 .000116 .9999893
15 .0000 1 .0000103 .9999996
16 .0000 1 .0000000 1

Thus, the alpha level is α = 1− 0.9209 = 0.0791 and the power is
1− β = 0.8334.
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Single-stage designs
The clinfun R package

There is an R package that performs much of these calculations. It is
called clinfun and performs many clinical trial design calculations. The
general invocation of function ph2single in this package is

ph2single(p0, p1, a, b, nsoln)

where nsoln provides a number of designs which would satisfy the α level
and power requirement (although, usually the one with the smallest
sample size is chosen).
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Single-stage designs
The clinfun R package

In our example, this is as follows:

> ph2single(.15, .4, .1, .2, nsoln=5)

n r Type I error Type II error

1 16 4 0.07905130 0.16656738

2 17 4 0.09871000 0.12599913

3 19 5 0.05369611 0.16292248

4 20 5 0.06730797 0.12559897

5 21 5 0.08273475 0.09574016

for 5 designs. The first one is the design produced by the other software
we considered earlier.
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Testing a single proportion
Two-stage designs

Consider what would be required in order to be able to insert an interim
analysis (a first “stage”) in the study monitoring. The components of a
two-stage design are the following:

Hypotheses to be tested
▶ H0 : p ≤ p0
▶ HA : p ≥ pA

Type I (α), type II (β) errors and power (1− β)

Sample size (n) and total number of responses (r)
▶ Stage I: Sample size (n1) and number of responses (r1)
▶ Stage II: Sample size (n2) and number of responses (r2)

Two-stage designs attempt to control the alpha level and power.
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Testing a single proportion
Simon’s two-stage design

Simon (Cont Clin Trials, 1985) proposed the following design:

First stage
The study is stopped after the first stage for insufficient efficacy if r1
or less responses out of n1 total subjects are observed. The
probability of early termination under rate p is

PET (p) = P (X ≤ r1|n, p)

Second stage
The study is continued to the second stage if more than r1 out of n1

subjects respond during the first stage.

The study is considered successful (H0 is rejected) if more than
r = r1 + r2 out of N subjects respond by the end of the second stage.
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Simon’s two-stage design
Expected versus maximum sample size

In the two-stage design the maximum sample size is random. The
expected sample size (also known as average sample number or ASN)
under rate p is given by the following formula:

ASN(p) = n1 + n2 × P (k > r1|n1, p)

= n1 + n2 × (1− PET (p))

that is, the average sample size equals the number of subjects to be
enrolled in the first stage, times the number of subjects enrolled in the
second stage probability of continuing to the second stage.

Simon’s design minimizes ASN(po) (i.e., under the null hypothesis)

The minimax design minimizes the maximum sample size n.
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Simon’s two-stage design
Implementation of the previous example

For example, consider the two-stage design with n1 = 9, r1 = 1, n = 16
and r = 4. Then under the null hypothesis p = 0.15 we have

n P (X = k|n = 9, p = 0.15) P (X ≤ k|n = 9, p = 0.15)

0 0.23162 0.23162
1 0.36786 0.59948
2 0.25967 0.85915
3 0.10692 0.96607
4 0.02830 0.99437
5 0.00499 0.99937
6 0.00059 0.99995
7 0.00004 1.00000
8 0.00000 1.00000
9 0.00000 1.00000
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With r1 = 1 and n2 = 7, r2 = 3 (so that r = 4) we have

Probability of response p = 0.15

Stage I (n1 = 9) Stage II (n2 = 7)
responses responses Probability Cum. prob.

0 0.2316 0.2316
1 0.3679 0.5995

2 0 0.0832 0.6827
1 0.1028 0.7856
2 0.0544 0.8400

3 0 0.0343 0.8743
1 0.0423 0.9166

4 0 0.0091 0.9257

27 / 58



Simon’s two-stage design
Attained size of the test

The probability of not rejecting the null hypothesis H0 : p ≤ 0.15 when
this is true is 1− α = 0.9257). The cumulative probability 0.9257 above is
the total probability associated with all scenarios of non-rejection of H0.
These are:

First stage
The number of responses is k ≤ r1 = 1, i.e., k = 0, or 1 (this would
result in stopping the trial).

Second stage
In order to proceed to the second stage, k > 1. In order not to reject
the null hypothesis, k ≤ r = 4, i.e., k = 2, 3, 4. The probability is
given by summing the binomial probabilities of the compatible
scenarios.

Thus, the attained size of the test is α = 1− 0.9257 = 0.0743.
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Simon’s two-stage design (cont’d)

To estimate power we run the same routine with p = pA = 0.40. The
results are as follows:

n P (X = k|n = 9, p = 0.40) P (X ≤ k|n = 9, p = 0.40)
0 0.01008 0.01008
1 0.06047 0.07054
2 0.16124 0.23179
3 0.25082 0.48261
4 0.25082 0.73343
5 0.16722 0.90065
6 0.07432 0.97497
7 0.02123 0.99620
8 0.00354 0.99974
9 0.00026 1.00000
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Simon’s two-stage design (cont’d)

With r1 = 1 and n2 = 7, r2 = 3 (so that r = 4) we have

Probability of response p = 0.40

Stage I (n1 = 9) Stage II (n2 = 7)
responses respnses Probability Cum. prob.

0 0.0101 0.0101
1 0.0605 0.0705

2 0 0.0045 0.0751
1 0.0211 0.0961
2 0.0421 0.1383

3 0 0.0070 0.1453
1 0.0328 0.1780

4 0 0.0070 0.1851
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Simon’s two-stage design
Power

The previous output is interpreted as follows:

The probability of not rejecting the null hypothesis H0 : p ≤ p0 = 0.15
when this is false (i.e., the Type II of this test) is β = 0.1851.

The cumulative probability 0.1851 is given in a manner similar to the
calculation of α above by summing the binomial probabilities of the
compatible scenarios, but with p = pA in this case.

The projected power of this study is 1− β = 0.8149.
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Simon’s two-stage design
Average sample size

From the output above we can calculate that
Under the null hypothesis

ASN(po) = n1 + n2 × (1−B(r1;n1, po))

= 9 + 7× (1− 0.59948) = 11.803

Under the alternative hypothesis

ASN(pA) = n1 + n2 × (1−B(r1;n1, pA))

= 9 + 7× (1− 0.07054) = 15.506

The fact that the expected sample size of the two-stage design (under the
null hypothesis) is significantly lower than the sample size of the
comparable one-stage design is a critical advantage of this design.
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Simon’s two-stage design
The R package clinfun

To carry out a Simon or minimax two-stage design, we use the function
ph2simon within the R package clinfun. The invocation of this function is

ph2simon(p0, p1, a, b, nmax)

where nmax specifies the maximum n and is 100 by default unless you
otherwise specify. In our previous example, the results are as follows:

ph2simon(.15, .4, .1, .2)

Simon 2-stage Phase II design

Unacceptable response rate: 0.15

Desirable response rate: 0.4

Error rates: alpha = 0.1 ; beta = 0.2

r1 n1 r n EN(p0) PET(p0)

Optimal 1 7 4 18 10.12 0.7166

Minimax 1 9 4 16 11.80 0.5995
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Section 3

Comparative studies
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Comparative studies
Testing the difference of two means

In the two-sample case, the null hypothesis is (usually) H0 : µ1 = µ2. This
is equivalent to difference of the two means ∆̂ = X̄1 − X̄2 under some
a-priori assumptions.

The distribution of the sample difference of two means, assuming two
equal-size n1 = n2 = n (say) independent samples and known and equal

variances (σ2
1 = σ2

2 = σ2) is ∆̂n∼̇N(∆, σ2
∆), where σ2

∆ = σ2
(

1
n1

+ 1
n2

)
and σ2

∆ =
(
2σ2

n

)
if n1 = n2 = n.

In other words, the approach is the same as in the single-mean case, with
the recognition that the variance is roughly double that of the one-sample
case (to acknowledge the estimation of both µ1 and µ2).
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Comparative studies
Sample size calculations

To calculate the sample size for each group n′ we can use the previous
one-sample formula, with the appropriate estimate of the variance of
course. That is, each group will be comprised of individuals from each
population,

n′ =

[
(zα + zβ)

∆
σ∆

]2
=

[
(zα + zβ)

∆
σ
√
2

]2
= 2

[
(zα + zβ)

∆
σ

]2
= 2n

where n is the size of the identically defined one-sample case. That is, the
sample size in each group in the two-sample case will be roughly double
that of the one-sample case.
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Comparative studies
Sample size calculations: effect size

We can also express the above formula in terms of the effect size
f = ∆/σ. In this case, the sample size for each group will be

n′ = 2

(
zα + zβ

f

)2

For example, if f = 0.25, α = 0.05 and β = 0.1 the required sample size
will be

n′ = 2

[
(1.645 + 1.282)

0.25

]2
≈ 275

per group for one-sided alternative hypotheses and

n′ = 2

[
(1.96 + 1.282)

0.25

]2
≈ 337

per group for two-sided alternatives (see Piantadosi, 2005, pp.280).
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Comparing means in a cluster randomization studies

In cluster randomization studies, the sampling unit is the cluster, rather
than the individual. Power and sample size calculations in this context
need to take into account the cluster randomization design.

To compare two means within a cluster randomization design, we must
take into account both the within-cluster variability and the
between-cluster variability to come up with the estimate of the total
variability σ2

c to compare mean µ1 to µ2 in this design.

38 / 58



Loss of efficiency in the cluster-randomized design

In randomized designs (where the individual observation is the primary
sampling unit) the only source of variability is the variability between the
units (i.e., σ2

∆). Since, in cluster randomized studies, we have an extra
source of variability, the variability between the clusters.

Thus, all else being equal, in cluster-randomized studies the sample size
will be larger than in randomized studies (meaning that there is a,
potentially significant, loss of efficiency in cluster-randomized studies).
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The design effect

The loss of precision (i.e., increase in variance) due to the
cluster-randomized trial design is quantified by the design effect:

Deff = 1 + (m− 1)ρ

where m is the average number of individuals in each cluster and ρ the
intracluster correlation.

The effective sample size neff is the sample size based on simple
(non-cluster) randomization that whould achieve the same variance σ2

∆ of

the estimator ∆̂n to that in the cluster-randomized clinical trial. The
effective sample size is

neff =
n

Deff

neff can be used for power calculations in cluster-randomized trials using
formulas and software for power analysis based on simple randomization.
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Example

The sample size for a number of choices of m and n is given in the
following table and is compared to the sample size of the simple
randomized study:

No. of patients per Standard No. of No. of Design
practice m Deviation practices patients effect

10 0.364 558 5,580 1.04
25 0.236 234 5,850 1.09
50 0.173 126 6,300 1.17
100 0.132 74 7,400 1.38
500 0.085 32 16,000 2.98

No. needed with individual
randomization 5,364 1.00

The conclusion from these results is that the higher the m and the lower
the n, the more significant the inefficiency of the design. Conversely, the
closer the study comes to an individual randomized design (i.e., m gets
close to the total sample size) the less the inefficiency.
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Comparative studies
Testing for the difference in two proportions

In the two-sample case, the null hypothesis is (usually) H0 : π1 = π2. This
is equivalent to H0 : δ = π1 − π2 = 0.

Estimation of the difference of the true population proportions δ = π1 − π2
is carried out by using the difference of the two sample proportions
δ̂ = p1 − p2 (where p1 = x1/n1 and p2 = x2/n2, i.e., the number of
successes out of n1 and n2 participants in the two groups respectively).
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Testing for the difference of two proportions (cont’d)

Under some suitable assumptions, the distribution of the difference of the
two sample proportions is δ̂n∼̇N(0, σ2

δ ) under the null hypothesis and
N(δ, σ2

δ ) under the alternative hypothesis, where the variance is

σ2
δ = π1(1− π1)

(
1
n1

+ 1
n2

)
under the null hypothesis (with

σ2
δ = 2π1(1−π1)

n when n1 = n2 = n), and σ2
δ = π1(1−π1)

n1
+ π2(1−π2)

n2
under

the alternative (and σ2
δ = π1(1−π1)+π2(1−π2)

n when n1 = n2 = n).
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Testing for the difference in two proportions
Sample size calculations

With the exception of the fact that the variance is not the same under the
null and alternative hypothesis (and, in fact, that the variance is a function
of the unknown quantities π1 and π2), the approach is the same as in all
previous illustrations.

To calculate the sample size for each group n (unequal sample sizes are
handled fairly easily) we use a similar formula to the single-mean case,
where, under the null hypothesis, π1 = π2 = π.
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Testing for the difference in two proportions

The following is the formula for the sample size per group in the
two-proportion case:

n =

{
z1−α

√
2π(1− π)− zβ

√
π1(1− π1) + π2(1− π2)

}2

(π2 − π1)2

where, under the null hypothesis, π1 = π2 = π.
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Testing for the difference in two proportions
Example

For example, if π1 = 0.3, π2 = 0.4, α = 0.05 and β = 0.1 (power=90%),
p = 1/2(0.3 + 0.4) = 0.35 and the required sample size will be

n =

{
1.645

√
2(0.35)(0.65) + 1.282

√
(0.3)(0.7) + 0.4(0.6)

}2

(0.4− 0.3)2
≈ 388

per group for a one-sided alternative hypothesis and

n =

{
1.96

√
2(0.35)(0.65) + 1.282

√
(0.3)(0.7) + (0.4)(0.6)

}2

(0.4− 0.3)2
≈ 477

per group for two-sided alternatives.

46 / 58



Testing for the difference in two proportions
Equality of means versus lack of association in a
2× 2 table

The discussion here is a direct consequence of the 2× 2 table setup, which
is given below. Considering the “outcome” in the table as success (e.g.,
death, remission, toxicity, etc.) versus “failure”) in the two groups, the
table is set up as follows:

Group
Outcome Group 1 Group 2 Total

Success x1 x2 x1 + x2
Failure n− x1 n− x2 n− (x1 + x2)

Total n1 n2 n = n1 + n2

Then, the hypothesis of no difference between the two proportions (of
“Success”) is the same as the lack of association the outcome and
membership in Group 1 or 2.
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Testing for the difference in two proportions
Using the Fisher’s exact test

One way to address the case of lack of association is to use the, so-called,
Fisher’s exact test. According to this setup, the margins of the table above
(i.e., the row and column totals) are considered fixed. Then the cell counts
can be thought of as random draws of n1 total colored balls from an urn,
of which x1+x2 have a certain color. x1 has a hypergeometric distribution

P (X = x1) =

(
x1 + x2

x1

)(
n− (x1 + x2)

n− x1

)
(

n
n1

)
We can use the Fisher’s exact test to calculate sample sizes in the previous
example (this would be preferred, especially, in cases where the sample
sizes are small and thus the normal approximation might not be accurate).
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Testing for the difference in two proportions
Example using the Fisher’s exact test in the R
package clinfun

The R package clinfun has an array of different programs that use the
2× 2 table setup. The function which corresponds to the Fisher’s exact
test is fe.ssize and is invoked as follows (shown are the default entries):

fe.ssize(p1, p2, alpha=0.05,power=0.8,r=1,npm=5,mmax=1000)

where r is the allocation ratio, npm is a range of n±npm where the sample
calculation search will be conducted and mmax is the maximum group size.
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Testing for the difference in two proportions
Using the fe.ssize in the previous example

Using the function fe.ssize to calculate the sample size in the previous
example we get

fe.ssize(.3, .4, alpha=0.1,power=0.9,r=1,npm=5,mmax=1000)

Group 1 Group 2 Exact Power

CPS 408 408 0.9001173

Fisher Exact 408 408 0.9001173

for a one-sided alternative hypothesis (note that the routine will always
give the two-sided alternative sample size so the alpha level must be
doubled to get the one-sided sample size) and

fe.ssize(.3, .4, alpha=0.05,power=0.9,r=1,npm=5,mmax=1000)

Group 1 Group 2 Exact Power

CPS 496 496 0.9003782

Fisher Exact 496 496 0.9003782

for a two-sided alternative. Along with the sample size corresponding to
the Fisher’s exact test, we also get the Casagrande, Pike and Smith
approximation (Biometrics, 1978).
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The concept of statistical information

The concept of statistical information is central to frequentist analysis. In
general, the information about a parameter δ is

I ∝
[
Var(δ̂n)

]−1

Thus, the information is proportional to the sample size in all of the cases
so far described. For example, in the single-sample case I ∝ n/σ2, in the
two-sample comparison I ∝ n/σ2

∆ and in the single-proportion case
I ∝ n

p(1−p) .

However, the statistical information in time-to-event trials that are based
on the log-rank test is I ∝ D, i.e., it is not proportional to the number of
subjects but the number of events!

51 / 58



Statistical information
Studies of time to event

In the case of time to event studies, there are a number of considerations
with respect to study design. These are:

Accrual of patients.
Accrual of patients happens at a rate of a(t) over time.

Follow-up of patients.
Follow-up of patients happens over time t− u after they have been accrued
at time u.

Hazard λ(t).
Hazard time λ(t) = limh→0

1
hPr(t ≤ T ≤ T + h|T ≥ t), is the instantaneous

failure rate.

Survival distribution S(t)
Survival distribution function is S(t) = P (T > t) is the probability of
survival past time t.
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Time-to-event studies
Event rate

In order to have an event, each individual participating in the study must

Have been accrued at time u < t

Survived during the period t− u

Had an event at time t

The event rate at time t ≤ T is given in general by the expression

n(t) =
∫ τ
0 a(u)︸︷︷︸ S(t− u)︸ ︷︷ ︸ λ(t− u)︸ ︷︷ ︸ du

accrued at u survive past t− u fail at t− u+ h

where τ = min(t, T ), so that

n(t) =

{ ∫ t
0 a(u)S(t− u)λ(t− u)du if t ≤ T∫ T
0 a(u)S(t− u)λ(t− u)du if t > T
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Time-to-event studies
Simplifying assumptions

Accrual is usually assumed to be uniform over the period [0, T ], i.e.,

a(t) =

{
a0 if t ≤ T,
0 if t > T

If the additional assumption is made that survival is exponential is made
(i.e., S(t) =

∫∞
t λe−λudu = e−λt and λ(t) = λ), the event rate at time t is

n(t) =

{
a0

∫ t
0 λe

−λ(t−u)du = a0(1− e−λt) if t ≤ T,

a0
∫ T
0 λe−λ(t−u)du = a0(e

−λ(t−T ) − e−λt) if t > T.
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Time-to-event studies
Example (see Piantadosi, 2005, pp. 321-322)

Supposed that a clinical trial requires 180 events to achieve its planned power. If
accrual proceeds at a0 = 80 subjects annually, for T = 4 years, the event rate is
constant at λ = 0.13 deaths per person-year of follow-up, the number of events is
given graphically in the Figure below.
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Time-to-event studies
Cumulative number of events

The number of total events is

D(t) =

∫ t

0
n(u)du

Using the previous simplifying assumptions of a uniform accrual and
exponential survival, the cummulative number of events is∫ t

0 a0(1− e−λt)dt
= a0

λ (λt+ e−λt − 1) if t ≤ T∫ T
0 a0(1− e−λt)dt+

∫ t
T a0(e

−λ(t−T ) − e−λt)dt

= a0
λ (λT + e−λt − e−λ(t−T )) if t > T
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Clinical trial example
Cumulative number of events

In the previous example, the cumulative number of events is given graphically in
the Figure below. Notice that it would take over five years after completion of
accrual to reach the desired 180 number of events.

0
10

0
20

0
30

0

D
(t)

0 5 10 15 20

t (years)

57 / 58



Designing survival studies
Number of events versus number of subjects

Designing studies with time to event as the endpoint, is challenging because we
would like to, ultimately, determine the size of the sample. Given the complexities
of the design, there is no single sample size that will fit the desired power
considerations. So extensive experimentation is necessary. Here are some
guidelines:

If the cost of patient accrual is small relatively to the cost of a long study
and accrual rates are fixed, we can accelerate the completion of the study by
increasing the sample size (i.e., extending accrual versus extending
follow-up). Alternatively, if we can, accrual rates can be increased by
incorporating more sites.

If the cost of patient accrual is great, we can accrue less patients (although
never of course less than the desired number of events) and follow them
longer (so that we can observe a larger proportion of them having the event)
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