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Monitoring of treatment effects

A clinical trial should not continue only by virtue of the fact that it has
begun. Establishing that the ethical considerations that were present at its
initiation continue to be present at every point in its implementation is
paramount.

In this lecture we discuss what constitutes appropriate monitoring of a
clinical trial. We focus, as in the textbook, on randomized comparative
trials with a single primary endpoint.
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Early stopping of a clinical trial

There are two decision landmarks for monitoring a clinical trial: when to
terminate accrual in the study and when to disseminate the results. While
these would be the same in many situations, accrual and follow-up time
can frequently be manipulated in some trial designs (e.g., in studies of
time to an event).

The decision to stop is frequently viewed as “symetrical”. That is, whether
treatment A is better than treatment B or the converse. However, if A is
the standard and B the experimental treatment, a study can be stopped
when,

B cannot be shown to be better than A

B is shown to be worse than A (“futility”)

B is much better than A

Stopping guidelines should thus reflects the inherent “asymmetry” of the
implications of the final study result.
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Reasons for early stopping of a clinical trial

The following are some reasons to stop a clinical trial early

Treatments are found to be different by experts

Treatments are found to be not different by experts

Side effects are too severe to continue in light of benefits

Accrual too slow to complete study in a timely fashion

The data are of poor quality

Definitive information about the treatment becomes available making
the study unnecessary or unethical

The scientific questions are no longer important

Adherence to treatment is unacceptably poor

Resources to perform the study are lost or are no longer available

The study integrity has been undermined by fraud or misconduct
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Competing interests in the decision to stop

Frequently there are competing interests in stopping versus continuing a
clinical trial. There are pressures to terminate a trial as soon as possible to
minimize the size and duration of the study and the number of patients
receiving an inferior treatment as well as disseminating the results.

On the other hand, benefits of longer, larger trials lead to increased
precision of the estimates, increased power, examining important
subgroups, and gathering information on secondary endpoints.

This tension reflects the needs of the collective good versus those of the
individual patient (individual good). There is an ethical mandate to
continue the trial until it provides a standard of evidence appropriate for
the setting.
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Monitoring committees

An area where all components of monitoring comes together is with
monitoring committees. These are called “Data Safety Monitoring Boards
(DSMB) or Committees (DSMC) or Treatment Effects Monitoring
Committees (TEMC).

In the following we will use the term “DSMB” instead of “TEMC”, as the
textbook does, because of the widespread use of the former term (despite
the fact that the latter term is more accurately descriptive of the role of
these committees).
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Functions performed by monitoring committees

These monitoring committees perform a number of important oversight
functions:

Assist the study team with study protocol design

Consider data quality and timeliness

Review drug toxicity and adverse events (patient safety)

Assess treatment efficacy

Provide guidelines about the continuation of the study, its
modification or early closing and dissemination of the results

Note: Monitoring committees serve an advisory role. These committees
cannot make executive decisions about the studies.
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Reasons for the popularity of the DSMB

DSMB have become very popular as ways to monitor clinical trials. Some
of the reasons for this include:

A workable mechanism for protecting the interests of the patients
while preserving the integrity of the trial

The DSMB is intellectually and financially independent from the
study investigators and ensure the appearance of objectivity

Many trial sponsors support or require the DSMB mechanism. For
example,

▶ The NCI policy is given at
http://deainfo.nci.nih.gov/grantspolicies/datasafety.htm

▶ The NIH policy is included at
http://grants.nih.gov/grants/guide/notice-files/not98-084.html

▶ The FDA policy is igiven at
http://www.fda.gov/OHRMS/DOCKETS/98fr/01d-0489-gdl0003.pdf
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Relationship of the DSMB to the investigators

There are two models of the structural relationship of the DSMB to the
investigators.

The DSMB is advisory to the trial sponsors

The DSMB is advisory to the study investigators

In the former model, has the advantage that the decision of the DSMB
will be free of investigator opinion. The disadvantage is that the study
sponsor may not be the best filter of the DSMB decisions and transmit
important information to the investigators.

The latter model is preferable, especially if this is done through a study
steering committee. Thus, guidance on a number of important ethical
issues will be efficiently transmitted to the investigator, the person most
closely responsible for the safety of the patients.
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Membership of the DSMB

DSMB usually consist of 3 to 10 members, based on the complexity of the
trial and the issues involved. The DSMB must include experts but also it
must include people that are experienced in clinical trials (which may not
be experts in the specific area). A statistician is also an important member
of the DSMB.

The DSMB should also involve a clinical trial investigator. While
investigators affiliated with the trial are important to provide a unique
perspective to the rest of the Board with respect to appropriately
summarized information on patient safety and data quality, their
participation in discussions on treatment efficacy and decisions to stop the
trial early is inappropriate. Usually an “open” session that includes study
investigators and a “closed” session, excluding study investigators, take
place during the DSMB meeting.
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Objectivity versus expertise in choosing DSMB members

When deciding whom to include as a DSMB member, it frequently
happens that the investigators most knowledgeable of the field are the
ones that may have less objectivity in rendering decisions. Thus, there is
frequently a conflict between expertise and objectivity.

Ethical considerations however prescribe that expertise should be chosen
over objectivity when experts can be relied upon to be reasonably objective
in the collective sense and employ objective methods.

The most serious lack of expertise is ignorance of the study protocol, or
lack of interaction with the patients. This suggests that one of the
principal investigators should be included as a member of the DSMB as
long as they do not become privy of “unblinded interim comparisons” from
the study.
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Blinding (masking)

Masking or blinding of DSMB members from treatment allocation has
been recommended. In these cases, dummy treatment indicators are
provided to the Board while the DSMB has the ability to request
unblinding during the meeting.

While this could conceivably protect the integrity of the study, it is not a
good idea because the Board might wrongly attribute unexpected efficacy
trends in the wrong direction (consider the fact that a study should not be
stopped only when the experimental treatment is demonstrably worse than
the standard treatment).

There is inherent asymmetry in the nature of the decisions of the study
(i.e., the study should be stopped if the experimental therapy is either
much better or there is evidence of being worse than the standard therapy).
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The DSMB review

During its meeting, the DSMB considers a number of components of the
evolving study:

Baseline compatibility
The DSMB assesses the compatibility of various ancillary factors between the treatment

groups

Review design assumptions
Several assumptions made during the design of the study such as accrual or dropout rate

must be considered to ensure that the study can be completed in a timely manner. In

addition, the continued availability or resources, principally funds and drug availability

must be ensured.

Data quality and timeliness
There is always lag in data submission from the sites to the data coordinating center.
However, the rate of submitted forms should be very high (typically over 90%). Also, all
the events as of the specified cutoff date are included in the report, even if additional data
submissions are required past the cutoff date to accomplish this.
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The DSMB review (continued)

Patient eligibility and protocol deviations
All considerations pertaining to the establishment of patient eligibility
must be performed and documented in the database. Treatment
adherence is also an important consideration to ensure compliance
with the protocol. Adherence can break down when

▶ Side effects are serious
▶ Patient inability to tolerate the treatment
▶ Poor quality control is exercised
▶ Pressures external to the study mount (e.g., availability of other

treatments)
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The DSMB review
Review of safety and toxicity data

Toxicity data must be reviewed carefully and in the context of the
particular study. For example, mild events that can be reversed with dose
modifications are not of concern.

On the other hand, serious or fatal events might be unacceptable in a
study of healthy patients that otherwise have long life expectancy.

Finally, serious adverse events might be acceptable in AIDS studies or
cytotoxic clinical trials in cancer.

Note: Events related to pre-existing conditions (e.g., death from cancer in
a cancer trial) do not constitute an adverse event (although they have
great significance in the assessment of efficacy of the study treatment).
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The DSMB review
Review of efficacy comparisons

Efficacy considerations are probably the most important issues assessed by
the DSBM for a number of reasons such as ethics and resource utilization.

Data quality and baseline comparability of threatment groups will be
assessed, as mentioned earlier, and statistical guidelines will be very helpful
in assisting the DSMB in its decision.

One complication of the decision process is the frequently observed
situation of convincingly increased efficacy accompanied by also increasing
toxicity events.
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The DSMB review
Specific questions addressed by the DSMB

The DSMB, in its effort to assist the investigators with information to
effectively carry out the study, will address the following questions:

Should the study continue?
Usually, trials provide much more information in addition to whether
one treatment is more effective than the other. Thus, closing a study
and, potentially closing the window of opportunity of conducting
comparative studies in this area, must be weighed carefully against
the individual good of study participants

Should the study protocol be modified?
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The DSMB review
Specific questions addressed by the DSMB

A number of aspects of the protocol may need modification after
experience with the study. These include:

Changes with dosing due to AE

Change the frequency and timing of diagnostic tests

Discontinuation of one or more arms or treatment combinations in
multi-arm studies

Modification of consent documents

Improvement in data quality and timeliness

Change in treatment and eligibility criteria to enhance adherence and
increase accrual
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The DSMB review
Specific questions addressed by the DSMB

Are additional views of the data required?
The DSMB may request additional analyses to help its members in
their decision process.

Should the DSMB meeting schedule be modified?
Interesting trends in the data might prompt the DSMB to consider
meeting more frequently. Statistical monitoring plans must be flexible
enough (see subsequent discussion on this issue) to accommodate
modified or emergency meetings by the Board

Are there other recommendations by the DSMB?
The DSMB is a group of objective experts interested with the best
interests of all parties associated with the study. In this capacity the
Board frequently makes a number of ancillary recommendations (e.g.,
measures to increase accrual, changing its own membership to ensure
the presence of appropriate expertise, etc.)
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Section 1

Statistical considerations in study monitoring
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Background

Suppose that we compare the means of two groups. At the end of the
study, and after 2N total subjects have been enrolled, we compute the
statistic

ZN =
X̄1 − X̄2√

2σ2

N

=
SN√
νN

where Di = X1i −X2i, SN =
∑N

i=1Di and νN = Var(SN ) = 2Nσ2.

Here we assume a balanced subject allocation, i.e., N1 = N2 = N and a
common variance Var(X1) = Var(X2) = σ2.
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Introducing interim monitoring of the study

Now consider carrying out an interim analysis of the data when 2n
subjects have been enrolled and that we compute an interim z-score

Z(t) =
Sn
√
νn

where Sn =
∑n

i=1Di and νn = Var(Sn) = 2nσ2 and t is the trial fraction

t =
νn
νN

=
2nσ2

2Nσ2
=

n

N

Note that t is the study fraction (i.e., how far through the study we are at
any point). In this situation, Z(1) = ZN .
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The problem with multiple interim analyses

Consider a study of sample N where the treatment comparison is based on
a one-sided test. Then, the null hypothesis (with one-sided alternative
HA : µ1 > µ2) is rejected when Z(1) ≥ z1−α where α is the type-I error
rate.

Consider what would happen if we introduced k analyses at trial fractions
τ1, τ2, · · · , τk = 1 and stopped the study any time that the interim z-score
Z(τj) ≥ z1−α (for j = 1, 2, · · · , k).

The probability that Z(1) ≥ z1−α is

P
(
∪k
j=1{Z(τj) ≥ z1−α}

∣∣H0

)
= 1− P

(
∩k
j=1{Z(τj) ≤ z1−α}

∣∣H0

)
≤ 1− (1− α)k

under the null hypothesis. The less than or equal sign results since
Cov{Z(τj), Z(τj′)} ≥ 0.
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Sampling to a foregone conclusion

The implication of this on the Type-I error is given in the following table
where the probability that a statistically significant difference will be
observed based on the number of interim analyses k is as follows:

k α = 0.01 α = 0.05
1 .0100000 .0500000
2 .0199000 .0975000
3 .0297010 .1426250
4 .0394040 .1854938
5 .0490099 .2262191
6 .0585199 .2649081
7 .0679347 .3016627
8 .0772553 .3365796
9 .0864828 .3697506
10 .0956179 .4012631
20 .1820931 .6415141
50 .3949939 .9230551
100 .6339676 .9940795
1000 .9999568 1.0000000
∞ 1.0000000 1.0000000

Thus, the Type-I error typically gets inflated as the number of interim
analyses increases.
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Intuition

Let’s for a second decipher the dense mathematical formulas from the

previous slide. We read P
(
∪k
j=1{Z(τj) ≥ z1−α}

∣∣H0

)
as “the probability

that Z(τ1) ≥ z1−α OR Z(τ2) ≥ z1−α and so on up to the kth analysis, if
the null hypothesis is true.”

Through logical rules, this is equivalent to the complementary probability
1− P (∩k

j=1{Z(τj) ≤ z1−α}|H0), which means the opposite of not
rejecting the null hypothesis in any of the k− 1 interim and the final (kth)
analysis.

The basic intuition is that every time we carry out an additional analysis
we add the possibility of making a mistake and reject the null hypothesis
when it is correct (i.e., making a type-I error). This inflates this type of
error beyond the maximum acceptable α level.
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Boundaries that adjust for multiple analyses

To adjust for multiple interim analyses we seek boundaries c1, · · · , ck such
that

P
(
∪k
j=1{Z(τj) > cj}

∣∣H0

)
= α

or
P
(
∪k
j=1{Z(τj) < −cj}

∣∣H0

)
= α

for one-tailed tests and

P
(
∪k
j=1{|Z(τj)| > cj}

∣∣H0

)
= α

for two-tailed tests.

In plain language, we seek boundaries that the total probability of rejecting
in any of the analyses (both interim and final) is equal to α under the null
hypothesis.
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Section 2

Sequential boundaries
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The Haybittle boundary

Haybittle (Br J Radiol, 1971) proposed the following procedure:

Use critical value c = 3 at the interim analyses

Use critical value c = 1.96 at the final analysis

The author showed by simulation that the alpha level of this procedure
does not overly inflate the Type-I error if the number of interim analyses
are not too numerous.
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The Haybittle boundary
Advantages and disadvantages

The advantages of this approach are that

It is simple to implement

The final test is the same as in the case of no monitoring (note that
c = 1.96 = z1−α/2 for α = 0.05).

The disadvantages of the approach are that

It is very difficult to stop before the final analysis (note that c = 3 is
equivalent to a p-value of p = 0.0013).

The procedure still produces a minor inflation of the Type-I error
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The Haybittle boundary
Improvements

The latter disadvantage of the inflation of the Type-I error can be fixed by
use of the Bonferroni procedure. That is, we proceed as follows:

At first k − 1 analyses use p = 0.001, that is, reject the null
hypothesis at the ith analysis if |Z(t)| > 3.29.

Use Bonferroni to fix last critical value.

For example, if we have k = 5 (i.e., 4 interim analyses before the final), we
use significance level 0.05 -4(0.001) = 0.046 at the final analysis (i.e.,
reject the null if |Z(1)| > 1.995).

This is a very nice procedure because it can be universally applied as long
as p-values can be computed.
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The Pocock procedure

Pocock (Biometrika, 1977) suggested the following procedure, based on
equally-spaced analyses (i.e., analyses performed at times t = j/k where
j = 1, · · · , k).

Determine c such that

P
(
∪k
j=1{Z(j/k) > c}

∣∣H0

)
= α
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The Pocock boundary
Advantages and disadvantages

The advantages of this procedure are

It is a natural extension of the case without monitoring (i.e., going
from z1−α to c but still using a constant boundary)

Uses same degree of evidence at each analysis

c is typically smaller than the Haybittle boundary, so the Pocock
procedure can stop earlier

The main problem with the Pocock approach is that the p-value at the
final analysis should be very low to reject the null hypothesis.

What’s more, Pocock now recommends against his own procedure!
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Boundaries for the Pocock procedure

Table: Two-tailed boundaries for the Pocock procedure (Proshan, Lan & Wittes,
2006)

# of looks α = 0.01 α = 0.05 α = 0.10

1 2.576 1.960 1.645
2 2.772 2.178 1.875
3 2.873 2.289 1.992
4 2.939 2.361 2.067
5 2.986 2.413 2.122

10 3.117 2.550 2.270
20 3.225 2.672 2.392
∞ ∞ ∞ ∞

The conclusion from the table is that the critical values increase
significantly with the increase of the number of interim analyses.
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Brownian motion

Now consider the related quantity B(t) = Sn√
νN

. The interim z-score

Z(t) = Sn√
νn

at time t = n/N is related to B(t) by the equation

Z(t) =
Sn√
νn

=

(√
νN√
νn

)
Sn√
νN

=

√
N

n
B(t) =

B(t)√
t

The quantity B(t) is related to the so-called “Brownian motion” (a
stochastic process with a number of characteristics that help in the
modeling of random events). While the Brownian motion is the source of
fundamental theoretical results in study monitoring, we will not consider it
further as it is beyond the scope of this course.
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The O’Brien-Fleming procedure

O’Brien and Fleming (Biometrics, 1979) proposed a related procedure with
that of Pocock. The critical difference of the O’Brien-Fleming procedure is
that the boundary is related to the B(t) quantity rather than the interim
z-score Z(t).

In other words, the O’Brien-Fleming boundary is such that

P
(
∪k
j=1{B(j/k) > c}

∣∣H0

)
= α

Given the relationship between B(t) and Z(t) the above procedure is
equivalent to one in terms of Z(t) as follows:

P

(
∪k
j=1

{
Z(j/k) > c/

√
j/k

} ∣∣∣∣H0

)
= α
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Boundaries of the O’Brien-Fleming procdure

Table: Two-tailed boundaries for the O’Brien-Fleming procedure (Proshan, Lan &
Wittes, 2006)

# of looks α = 0.01 α = 0.05 α = 0.10

1 2.576 1.960 1.645
2 2.580 1.977 1.678
3 2.595 2.004 1.710
4 2.609 2.024 1.733
5 2.621 2.040 1.751

10 2.660 2.087 1.801
20 2.695 2.126 1.842
∞ 2.807 2.241 1.960
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The O’Brien-Fleming procedure
Advantages and disadvantages

The big advantage of the O’Brien-Fleming procedure is that, at the final
analysis, the alpha level is close to the original alpha level.

This is counter-balanced by the fact that the O-B procedure will stop the
trial more infrequently early (when evidence is more limited) compared to
the Pocock procedure.

This latter consideration may not be very problematic as, intuitively, there
is great resistance for stopping early when information is limited.
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Example: A study with k = 5 analyses
Boundaries of the 3 procedures

For a study with k = 5 total analyses, the three boundaries give the
following critical values (Table 1) and corresponding p-value boundaries
(Table 2):

Table: Two-tailed boundaries for the O’Brien-Fleming, Pocock and Haybittle-
Peto procedures

# of looks O’Brien-Fleming Pocock Haybittle-Peto

1 ± 4.562 ± 2.413 ± 3.290
2 ± 3.226 ± 2.413 ± 3.290
3 ± 2.634 ± 2.413 ± 3.290
4 ± 2.281 ± 2.413 ± 3.290
5 ± 2.040 ± 2.413 ± 1.995
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Example: A study with k = 5 analyses
p-values

The p-values corresponding to the boundaries Table 3 are given in the
following Table:

Table: Two-tailed p-values for the O’Brien-Fleming, Pocock and Haybittle- Peto
procedures

# of looks O’Brien-Fleming Pocock Haybittle-Peto

1 5.067e-06 0.016 0.001
2 0.001 0.016 0.001
3 0.008 0.016 0.001
4 0.023 0.016 0.001
5 0.041 0.016 0.046
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Example: A study with k = 5 analyses
Graphical representation

The three boundaries are shown in the following Figure:

Figure: Two-tailed critical values for the O’Brien-Fleming, Pocock and
Haybittle-Peto procedures
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Statistical Information

We have mentioned that the definition of “statistical information” for
parameter δ is the inverse of the variance of its estimator δ̂ i.e.,

I = Var(δ̂)−1

The trial fraction t = n/N is also the information fraction during the
interim analysis. To see this, consider what the total information at the
end of the study (i.e., 2N subjects have been accrued) is

IN = (νN )−1 =
N

2σ2

while the information at the interim analysis (and after 2n subjects have
been accrued) is

In = (νn)
−1 =

n

2σ2
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Trial fraction versus the information fraction

So the trial fraction t is

t = n/N

=
( n

2σ2

)(
2σ2

N

)
=

νN
νn

=
In
IN

This means that the trial fraction is also the information fraction.
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Example: Ischemia trial

In an ischemia trial (Proshan, Lan & Wittes, 2006) that expects to enroll
200 subjects per arm, suppose that we have nT = 82 control subjects and
nC = 86 treatment subjects.

The estimator of the difference of the proportion of events is δ̂ = p̂C − p̂T
and, under the null hypothesis one can use a pooled estimate of the
common proportion p̂ = nT p̂C+nC p̂T

nC+nT
.
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Ischemia trial: Information

The current information is

In = Var(δ̂) =

{
p̂(1− p̂)

(
1

82
+

1

86

)}−1

The total information at the end of the study is

IN =

{
p̂(1− p̂)

(
2

200

)}−1

The information fraction is

In
IN

=
(82)(86)[168p̂(1− p̂)]

100/p̂(1− p̂)
= 0.42
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Information in studies of time to failure

We discussed information being proportional to the sample size in studies
involving comparisons of means or proportions. But what about survival
(“time-to-event”) studies?

It turns out that information in this case is proportional to the number of
events d and D associated with n and N participants at the interim and
final analysis respectively.

Thus the information fraction at interim analysis after d events have
occurred is

t ≈ d

D

One problem with these studies is that one is not certain what the event
rate will be even if the study is fully accrued (and, if the study stops early,
it will never be confirmed whether the event rate were close to the one
assumed at the time of the study design; we will discuss this further later
in this lecture).
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Information versus calendar time

Interim monitoring becomes complicated in survival analysis studies
because information is proportional to the number of events and not the
overall sample size. This is no problem in a study with no monitoring,
because one may continue until all events have been observed.

However, usually there is a maximum duration of the study (i.e., total
accrual time plus total follow-up time after completion of patient accrual).

It is thus difficult to figure out in practice where exactly in the information
time you are at each interim analysis. Calendar time, by contrast, is
unambiguous but may not correspond exactly (or even closely) with
information time.
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Section 3

Spending functions
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Spending functions

Spending functions show the way that the total alpha is “spent” through
the interim and final analyses. They are necessary for the following
reasons:

The Pocock and O’Brien-Fleming boundaries require equal spacing of
the analyses but DSMB meet when the schedules permit

Analysis times may not be easily predictable in advance

Extra analyses may be scheduled during the implementation of the
study

The seminal reference for this methodology is the paper by Lan & DeMets
(Biometrika, 1983) that showed that boundaries can be computed without
knowing the timing of the analyses in advance.
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Alpha spending functions

An alpha spending function α(t), with α(0) = 0 and α(1) = α of the form

α(t) = P
(
∪k
j=1{|Z(t)| > cj}|H0

)
For a given schedule of analyses τ1, · · · , τk, this splits α in probabilities
α̃(τj), j = 1, · · · , k,

α̃(τ1) = P (|Z(τ1)| > c1|H0)

and for j = 2, · · · , k

α̃(τj) = P (|Z(τ1)| ≤ c1, · · · , |Z(τj−1)| ≤ cj−1, |Z(τj)| > cj |H0)

with
∑k

j=1 α̃(τj) = α. These probabilities are calculated by numerical
methods (Armitage, McPherson & Rowe, JRSS A’, 1969).
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Example: Equal alpha spending over k = 5 interim analyses

Consider the situation where sample size calculations have determined
that, with α = 0.05 and β = 0.2 the requisite sample size for the fixed
(i.e., one-analysis) design is N = 100 per group.

Suppose that we want to carry out k = 5 total analyses (i.e., four interim
and one final analysis) at equal time points (i.e., after n1 = 20 per group,
n2 = 40 per group and so on) and we want to spend α = 0.05 equally,
over these k = 5 analysis. In other words, we want

α(1) = 0.01
α(2) = 0.01
α(3) = 0.01
α(4) = 0.01

α(5) = 0.01
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Example: Equal alpha spending over k = 5 interim analyses
Bounds

The critical values c1, · · · , c5 are given from the following output:

Symmetric two-sided group sequential design with

80 % power and 2.5 % Type I Error.

Spending computations assume trial stops

if a bound is crossed.

Analysis N Z Nominal p Spend

1 23 2.58 0.0050 0.005

2 46 2.49 0.0064 0.005

3 69 2.41 0.0080 0.005

4 92 2.34 0.0097 0.005

5 115 2.28 0.0114 0.005

Total 0.0250

This is the α spent for the scenarios where the experimental treatment is
better. An equal amount (i.e., α/2 = 0.025) is spent for scenarios leading
to the standard treatment being superior (“futility”). Note also that the
sample size N has been inflated. More on this later.
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Example: Equal alpha spending over k = 5 interim analyses
Pictorial representation
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Figure: Boundaries for equal spending of the alpha level over k = 5 analyses
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Continuous spending functions

The advantage of the alpha spending approach is that they can
accommodate arbitrary interim analysis schedules.

The limitation of this approach is that the schedule of the interim analyses
must be known a priori.

In a seminal paper, Lan & DeMets1, proposed a continuous spending
function approach. They suggested that alpha spending functions can be
arbitrary as long as

α(0) = 0

α(1) = α

Note: The main advantage of this approach is that the analyses do not
have to be equally-spaced and the timing or the number of the analyses
do not have to be known in advance!

1Lan KKG and DeMets DL. Discrete sequential boundaries for clinical trials,
Biometrika, 70, 659–663. 1983
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O-F or Pocock-like spending functions

The main advantage of the continuous spending-function approach is that
interim analyses can be undertaken at any point during the
implementation of the study.

Two spending functions, which are in the vein of the Pocock and the
O’Brien-Fleming methods are given below:

Pocock-like spending function

αP (t) = α log{1 + (e− 1)t}

O’Brien-Fleming-like spending function

αOB(t) = 2
{
1− Φ

(
z1−α/2/

√
t
)}
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Example: O-F and Pocock spending functions for k = 5
Cum. alpha level spent

For example, with k = 5 the Pocock and O’Brien-Fleming spending
functions are

Cumulative α spent Bounds
Information fraction Pocock O-F Pocock O-F

0.2 0.016 0.000 ± 2.41 ± 4.56
0.4 0.028 0.001 ± 2.41 ± 3.23
0.6 0.037 0.009 ± 2.41 ± 2.63
0.8 0.044 0.026 ± 2.41 ± 2.28
1.0 0.050 0.050 ± 2.41 ± 2.04

So, although both functions spend the same amount of α by the end of
the study, the Pocock spending function spends alpha much faster than
the O’Brien-Fleming spending function.
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Spending functions
Pictorial representation

The cumulative rate of alpha spending of the two spending functions is
given pictorially in the following figure:

Figure: Cum. α spending in Pocock and O’Brien-Fleming spending functions.
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The Hwang, Shih & DeCani family of spending functions

In a 1990 paper, Hwang, Shih & DeCani2 introduced the following general
family of alpha spending functions:

α(t) =

{
α(1− e−γt)/(1− e−γ) ifγ ̸= 0

αt ifγ = 0

2Hwang IK, Shih WJ and DeCani JS. Group sequential designs using a family of
Type I error probability spending functions, Stat Med, 9:1439–1445. 1990
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The HSD family of spending functions
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Figure: Hwang-Shih-DeCani family of spending functions

‘From the figure it is clear that alpha is spent more quickly the larger the
value of γ.
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Example: Study with k = 3 analyses at unequal times

Suppose that you are carrying out two interim analyses, one at τ1 = 0.2
and one at τ2 = 0.5 and you are using the simple (linear) spending
function α(t) = αt with α = 0.5.

This means that the critical values for this scenario will be

Fraction (t) α spent Z(t)

0.20 0.0100 2.58
0.50 0.0250 2.38
1.00 0.0500 2.14

What if, after the second interim analysis, you wanted to add a third
interim look, say, at τ3 = 0.75 to the schedule?
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Adding an interim analysis

The beauty of the spending-function approach is that, at any point, we
only need to concern ourselves with what has happened so far and not on
information about the remainder of the study. However, the addition of the
interim analysis does have an impact on the boundary at the final analysis.

If we want to add an interim analysis at τ3 = 0.75 we realize that the
alpha spent will be α(τ3) = 0.0375. The bounds are as follows:

Fraction (t) α spent Z(t)

0.20 0.0100 2.58
0.50 0.0250 2.38
0.75 0.0375 2.32
1.00 0.0500 2.24
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Comments

Note the following:

The critical bounds before the third analysis did not change

The critical bound at the final analysis is higher (Z3(1) = 2.14 versus
Z4(1) = 2.24 in the case of the three-analysis and four-analysis
scenaria respectively). This is because of the additional alpha spent
to carry out this additional interim analysis.

While adding an interim analysis to the schedule is straightforward,
this should be undertaken with extreme care, since the immediate
result will be to raise the level of evidence (lower the p-value
threshold) in the final analysis.
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Recalibration of a study

Spending functions can be used to react to information as it comes in
within an ongoing study.

Suppose we have a study and we are using the Pocock spending function
αP (t) = 0.05 log{1 + (e− 1)t} (Proshan, Lan & DeMets, 2006). Now
suppose that the first analysis happened at the t = 1/10 fraction. So, at
this look, you spent αP (1/10) = 0.008 (using z-score boundaries ±2.655
from the Pocock spending function).

At the second analysis, for reasons we will discuss later, you figure that the
first analysis was actually at the trial fraction t = 0.20.

Question: What do you do?
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Recalibration of the study
Adjusting the error spending rate

The information fraction at the first analysis should have been t = 0.2 and
you should have spent αP (0.20) = 0.015 but you spent only αP = 0.008.
So you are spending alpha much more slowly than you expected when the
study was designed. So we need to adjust the rate of alpha spending to
catch up.

The alpha spent at the first look is gone. To adjust, you interpolate the
spending function for t ≥ 0.20 by

α′
P (t) = 0.008 +

(
0.05− 0.008

0.05− 0.015

)
{αP (t)− 0.015}
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Recalibration of the study
Pictorial representation

The two spending functions are given pictorially in the following figure:

Figure: Pocock-like alpha spending functions recalibrated after the first interim
analysis
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Impact of interim monitoring on sample size

In order to incorporate interim monitoring into a clinical trial the sample
size will need to be inflated in order to achieve the same power.

This becomes immediately clear if we simply consider the Bonferroni
adjustment for multiple comparisons.

The sample size for a single-test design with α = 0.05, power 1− β = 0.8
and effect size f = 1 is n = [2(1.96− 1.282)]2 ≈ 43.

When the number of tests is k = 3 we adjust the alpha level to
α∗ = α/k = 0.0167. Then the sample size everything else being equal is
n∗ = [2(2.4− 1.282)]2 ≈ 55 individuals. This is an inflation of almost
28%.
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Revision of sample size for the Pocock and O-F procedures

Table 5 shows the inflation of the sample size from a Pocock and an
O’Brien-Fleming procedures with equally and not equally-spaced analyses:

Table: Sample size inflation for equally and not equally-spaced analyses for the
O’Brien-Fleming and Pocock procedures

Equispaced non-equispaced
k O-F Pocock O-F Pocock
2 1.004525 1.083919 1.013130 1.048586
3 1.011075 1.127630 1.019828 1.070271
4 1.015727 1.156074 1.023904 1.082788
5 1.019146 1.176742 1.026661 1.091020
6 1.021770 1.192787 1.028658 1.096883
7 1.023848 1.205804 1.030175 1.101290
8 1.025536 1.216702 1.031370 1.104736
9 1.026934 1.226042 1.032336 1.107509
10 1.028113 1.234192 1.033134 1.109795

The Pocock procedure results in significant sample-size inflation and the
inflation is related to how quickly the alpha is spent. Notice that the
O’Brien-Fleming routine is almost impervious to the timing of the analyses.
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Section 4

Beta spending and stopping for futility
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Beta spending

Akin to the idea of alpha spending we have the idea of beta spending. As
before, for a series of τ1, · · · , τk analyses, we have critical bounds
a1, · · · , ak and b1, · · · , bk such that3

α̃(τ1) = P (Z(τ1) > a1|H0)

β̃(τ1) = P (Z(τ1) < b1|HA)

for the first analysis and for j = 2, . . . , k

α̃(τj) = P
(
∩j−1
l=1 {bl ≤ Z(τl) ≤ al}, Z(τj) > aj |H0

)
β̃(τj) = P

(
∩j−1
l=1 {bl ≤ Z(τl) ≤ al}, Z(τj) < bj |HA

)
for analyses 2 through k with

∑k
j=1 α̃(τj) = α and

∑k
j=1 β̃(τj) = β.

3In the sequel we will only deal with symmetric bounds, so it is implied that the lower
bounds will be −aj and −bj , j = 1, · · · , k.
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Example: A one-sided study with boundaries for futility

Suppose that we are designing a study with k = 5 analyses, to be carried
out at the α = 0.05 and with 90% power. Suppose also that we want to
stop the study both if there is sufficient evidence to reject the null
hypothesis as well as if there is evidence in favor of the null hypothesis
(futility).

Using spending functions α(t) = αtρ and β(t) = βtρ with ρ = 34 we
obtain the following upper and lower boundaries:

k t bj aj α spent β spent
1 0.2000 -1.81629 3.35279 0.0004 0.0008
2 0.4000 -0.62004 2.75256 0.0032 0.0064
3 0.6000 0.24893 2.35028 0.0108 0.0216
4 0.8000 0.98426 2.01825 0.0156 0.0512
5 1.0000 1.68698 1.68698 0.0500 0.1000

The inflation of the sample size is about 4.8%.

4This is approximately the O’Brien-Fleming procedure.
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One-sided alternative with boundaries for futility
Pictorial representation
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Figure: One-sided boundary with lower bound for futility

The trial continues while bj ≤ Z(τj) ≤ aj , j = 1, · · · , k − 1.
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Two-sided boundaries with futility bounds (inner wedge)

We can also have a situation where two-sided boundaries are generated
with a two-sided region for futility as shown in the following Figure:

Figure: Two-sided boundaries with futility bounds (inner wedge) for an O-F study
with four analyses
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The unique nature of failure-time studies

In failure-time (survival) studies, the added complication, when designing
them, is that the sample size, both for the fixed-sample and the study with
interim analyses depends on the study duration and the accrual rate.

In the sequel, we will use two methods:

1 We will apply the Lachin & Foulkes [2] sample size method and
extend it to group sequential design. This method fixes the duration
of a study and varies enrollment rates to power a trial.

2 We also use the Lachin & Foulkes [2] basic power equation to
compute sample size along the lines of Kim & Tsiatis [1] where
enrollment rates are fixed and enrollment duration is allowed to vary
to enroll a sufficient sample size to power a study.
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Basic assumptions and fixed design sample size
Enrollment, randomization and dropout

When designing a failure-time study we first set up the enrollment and
dropout information.

Usually enrollment rates are assumed to be uniform, but piece-wise
uniform rates or other simplified patterns of patient recruitment can be
accommodated by contemporary software.

We also need to provide information about the duration of the study. In
this situation we fix the total duration of the study.

Finally, we would need the randomization ratio between the (two in this
case) arms under comparison.
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Basic assumptions and fixed design sample size
Failure parameters

Next we provide information about the median time to event in the control
group as well as the accrual and dropout rate, hazard ratios under the null
and alternate hypotheses for experimental therapy compared to control,
and the desired Type I and II error rates.

Finally, we design a trial with no interim analyses under these assumptions.

Note that when calling nSurv in R, we transform the median time-to-event
(m) to an exponential event rate (λ) with the formula

λ = log(2)/m.
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Example: Fixed design sample size for a failure-time trial

We consider the following parameters:

1 Planned duration of patient accrual is 24 months and the duration of
follow-up is 12 months.

2 We consider piece-wise uniform enrollment rates

3 Median time to event in the control group m = 12 months

4 Exponential dropout rate per unit of time η = 0.001

5 Hypothesized experimental/control hazard ratio θ = 0.75

6 Type-I error (1-sided) α = 0.025

7 Type-II error (1-power) β = 0.1

75 / 82



Fixed design sample size

Using the Lachin & Foulkes[2] method we come up with

D =
4(1.96 + 0.842)2

(log 0.75)2
= 380

events. Using the remaining information above, the total sample size is
N = 580 patients are needed in the two arms (N1 = N2 = 290 per arm).
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Adding the group sequential design

Now we move on to a group sequential design. We set up the number of
analyses, timing and spending function parameters.

1 Number of analyses (interim + final), k = 2 with the interim analysis
occurring at the 40% trial fraction.

2 We will use the Hwang-Shi-DeCani spending function for the efficacy
bound with parameter γα = −10.

3 For the futility bound, we will use the same family of spending
functions with (beta) spending parameter γβ = 2.
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Group sequential design of a failure-time study
Output

The accrual rates are given in the following table:

Period (months) Accrual rate
0-1 11.02665
1-3 16.53997
3-6 27.56662
6-24 44.10660

The upper and lower bounds are given in the following Table:

Lower bounds Upper bounds
Analysis N Z Nominal p β spent Z Nominal p α spent

1 241 0.71 0.7611 0.0637 3.84 0.0001 0.0001
2 603 1.96 0.9750 0.1000 1.96 0.0250 0.0250
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Group sequential design of a failure-time study

The following Figure shows the above situation pictorially:
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Figure: Group sequential design with one-sided futility bound
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Monitoring a survival study using calendar time

Suppose that we have designed a study base on time-to-event
(failure-time) data with maximum duration of six years and with a Pocock
error spending function.

Then at the end of the first year (say) we are at s = 1/6 = 0.17 of the
total calendar time but we may not be at t = 1/6 in terms of the final
number of events.

If a DSMB review of the study is scheduled at the end of the first year,
how can you proceed? (It is much more convenient to schedule meetings
according to the yearly calendar than the study-fraction calendar).

One solution is to let t = s and use a spending function α∗(s) (i.e., spend
error at the rate of the calendar not the trial fraction).
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Monitoring a survival study using calendar time (cont’d)

In the example above, at the end of the first year, the alpha to be spent
should have been α∗(1/6) = 0.013 (using the Pocock alpha spending
function5). Then we can proceed identically as before by adjusting for this
fraction.

This is an attractive way to do monitoring since the total number of events
at the end is not necessarily known and thus we never really know t.

However, there is a big drawback: Events will be likely slow at the
beginning, so it may actually be easier to stop the trial early using calendar
versus information time.

5Note that α∗(0.17) = 0.05 log(1 + (e− 1)0.16) ≈ 0.013.
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