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Section 1

Sample size versus information-based monitoring
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Example: Mean comparison with the O’Brien-Fleming
method

Consider the following example:

We would like to compare the mean response δ = µE − µC between two
treatment groups with α = 0.05 (two-sided) and 90% power.

Suppose further that the common standard deviation is σ = 15. The
required sample size, assuming δ = 5 (or equivalently an effect size
f = 1/3), is

N ≥
2σ2(z1−α/2 + z1−β)

2

δ2

so that N = 190 in each group.
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The O’Brien-Fleming method
Sample-based monitoring

If we add four interim analyses to this study (i.e., k = 5) and chose the
O’Brien-Fleming method for monitoring, the bounds would be as follows:

Symmetric two-sided group sequential design with

90 % power and 2.5 % Type I Error.

Spending computations assume trial stops

if a bound is crossed.

Analysis N Z Nominal p Spend

1 40 4.56 0.0000 0.0000

2 79 3.23 0.0006 0.0006

3 118 2.63 0.0042 0.0038

4 157 2.28 0.0113 0.0083

5 196 2.04 0.0207 0.0122

Total 0.0250

++ alpha spending:

O’Brien-Fleming boundary.
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Comments

From the previous output we see that there is a small inflation of the
required sample size from N = 190 per group to N ′ = 196 per group.

The first interim analysis will occur when n1 = 40 patients per group have
been recruited, the second when n2 = 79 patients have been recruited,
and so on.
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The O’Brien-Fleming method
Information-based monitoring

The same interim analysis can be done considering the information
fraction of the study, so that the first interim analysis happens at
τ1 = 0.20, the second at τ2 = 0.40 and so on:

Symmetric two-sided group sequential design with

90 % power and 2.5 % Type I Error.

Spending computations assume trial stops

if a bound is crossed.

Sample

Size

Analysis Ratio* Z Nominal p Spend

1 0.205 4.56 0.0000 0.0000

2 0.411 3.23 0.0006 0.0006

3 0.616 2.63 0.0042 0.0038

4 0.821 2.28 0.0113 0.0083

5 1.026 2.04 0.0207 0.0122

Total 0.0250

++ alpha spending:

O’Brien-Fleming boundary.

* Sample size ratio compared to fixed design with no interim
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Comments

This is identical to the previous output but it does not deal with the
specific sample size of the particular study.

An added advantage of this approach is that it is general enough for both
mean and response-comparison studies (where information is proportional
to the sample size) and time-to-event studies (where information is a
function of the total number of events).
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Section 2

Inference after study closure
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Inference in study monitoring

By “inference” we are talking about three major areas:

Determining p-values

Estimation of treatment effect

Constructing confidence intervals

Inference is affected by the fact that monitoring of the study has taken
place.
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The concept of the “p-value”
Fixed sample design

The definition of a p-value is the probability under the null hypothesis of
observing a test statistic as extreme or more extreme than what was
observed.

In a fixed-sample design |Z1| < |Z2| implies that Z2 is more extreme Z1.

In plain English, this means that the study that resulted in Z2 produced
more extreme evidence than the study that produced Z1.
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The concept of the “p-value”
Group sequential design

This is not so clear in the group sequential context.

For example, if Z1(τi) > Z2(τi), i.e., the test statistics of two identical
studies at the same interim analysis τi, it may be clear that Z1(τi)
provides more extreme evidence than Z2(τi), written formally as

(τi, Z1) ≻ (τi, Z2)

However, the following is not as clear which of the following is more
extreme?

(τ = 0.2, Z(0.2) = 3.5)

(τ = 0.4, Z(0.4) = 4)

It depends on the ordering of the sample space!!!

In what follows we will assume stage-wise ordering
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Governing assumption
Stage-wise ordering

The major assumption that will be made for the following discussion is
that the evidence leading to the stopping of the study is at least as
extreme in stage j as it was in stage i < j.

In other words, we assume that a study that was stopped in stage j
generated more extreme evidence (larger deviations from the null) than
was observed in stage i (where the study was not stopped). This is called
“stage-wise ordering” (of the sample space)[1].

It only matters that you reached the kth stopping time. How you reached
it is irrelevant.
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Stage-wise ordering
Formal definition

For one-sided testing, if ai and bi, where i = 1, · · · , k are, respectively,
efficacy and futility bounds, then (τi, Z(τi)) ≻ (τj , Z(τj)) if any of the
following conditions is satisfied:

1 If τi = τj and Z(τi) ≥ Z(τj)

2 If τi < τj and Z(τi) ≥ ai, i.e., if the study was stopped at an earlier
stage due to establishing efficacy

3 If τi > τj and Z(τj) ≤ bj , i.e., if the study was stopped at an earlier
stage due to establishing futility

Note that this not simply mathematical minutia. Ordering of the sample
space aids in determining the level of evidence produced by a study.
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Definition of the p-value
One-sided case

With the previous assumption in mind, the p-value in the one-sided case is

p = P
(
∪j−1
i=1Z(τi) ≥ ai|H0

)
︸ ︷︷ ︸ + P (Z(τj) ≥ zj |H0)︸ ︷︷ ︸

Trial stops at i < j OR Trial stops at j

where zj is the observed value of the test statistic at the final stage. Thus,

p =

j−1∑
i=1

P (Z(τi) ≥ ai|H0) + P (Z(τj) ≥ zj |H0)
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Example: Two-stage interim analysis design

For example (Proshan, Lan & Wittes, 2006), with τ1 = 0.5, τ2 = 1,
a1 = a2 = 2.18 and Z(1) = 2.30 (i.e., the study did not stop at the first
analysis at τ1 = 0.5 but the null hypothesis was rejected at the second and
final analysis at τ2 = 1).

The p-value is

p = P (Z(0.5) ≥ 2.18 ∪ Z(1) ≥ 2.30|H0) = 0.0218

Note. When the study is stopped at the first interim analysis, the p-value
is the same as if there had been no monitoring.
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Definition of the p-value
Two-sided case

For two-tailed p-values, suppose that the study was stopped at stage τj
and that the observed z-score was Z(τj) = zj .

If the boundaries are symmetric around zero, then the two-sided p-value is
the one-sided p-value applied to |Z(τi)| for i = 1, · · · , j such that

p =

j−1∑
i=1

P (|Z(τi)| ≥ ai|H0) + P (|Z(τj)| ≥ zj |H0)

Otherwise, the two-sided p-value is

p = 2min(pL, pU )

where pL and pU are the one-sided p-values of crossing the lower and the
upper boundary, respectively.

Note: In the case where the lower boundaries are simply advisory, it is best
to calculate the one-sided p-value pU .
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Confidence intervals
No monitoring

Recall that, without monitoring, we observe δ̂ and zobs = δ̂/

√
Var(δ̂),

where δ̂ is X̄1 − X̄2, pC − pT or λ1/λ2 in two-sided tests of means,
proportions or the hazard ratio in studies of time to an event and zobs is
the observed z-score for testing the null hypothesis H0 : δ = 0.

The statistical test rejects the null hypothesis if

p = P
(
|Z| ≥ zobs|H0

)
≤ α

Confidence intervals can be constructed by “inverting” this hypothesis test.
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Confidence intervals

Inversion of the hypothesis test means that, using the above probability
statement, we calculate lower and upper bounds δL and δU respectively
such that

P (δL ≥ δ) = P

 δL − δ̂√
Var(δ̂)

≥
δ − δ̂√
Var(δ̂)

 ≈ P

 δ̂ − δL√
Var(δ̂)

≤ Z


= 1− Φ

 δ̂ − δL√
Var(δ̂)

 ≤ α/2

⇒ δ̂ − δL√
Var(δ̂)

≥ z1−α/2 ⇒ δL ≤ δ − z1−α/2

√
Var(δ̂)

and, thus,

δL = δ − z1−α/2

√
Var(δ̂)

and similarly for the upper bound δU .
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Confidence intervals resulting from stage-wise ordering

Confidence intervals calculated after a study which includes interim
monitoring should have the following properties:

1 The confidence interval should be a (contiguous) interval

2 It should agree with the original test. In other words, if the test
rejected H0, then the value of δ under the null should not be
contained within the interval.

3 The confidence interval should contain the MLE δ̂

4 A narrower confidence interval is to be preferred to a wider one

All of these properties hold under the stage-wise ordering espoused in
these notes.
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Example: Diet trial (Proshan, Lan & Wittes, 2006)

To work through this, consider the following example:

In a clinical trial of 200 participants per arm the primary endpoint was
weight change over 3 months. An O’Brien-Fleming spending function was
used and four analyses of the data were planned.

With this situation, the O’Brien-Fleming bounds would be

Information time (t) O-F boundary

0.22 ±4.64
0.55 ±2.81
0.74 ±2.39
1.00 ±2.01

20 / 47



Diet study example
Interim analyses

The first two analyses occurred at times τ1 = 0.22 and τ2 = 0.55.

The third analysis occurred after nT = 152 and nC = 144 subjects had
been accrued in the treatment and control arms respectively, that is, at
(information) time τ3 = 0.741.

1Since the total information is Imax = 200/2σ2 and the information at the third

interim analysis is I3 =
[
σ2 (1/152 + 1/144)

]−1
then, the information fraction is

τ3 = 2σ2

200
/σ2

(
1

152
+ 1

144

)
≈ 0.74
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Diet study example
Early stopping

The z-score at the third interim analysis was

Z(0.74) =
X̄1 − X̄2√

(4.8)2(1/152 + 1/144)
= 3.76

reflecting a sample standard deviation s = 4.8 and δ̂(τ3) = 2.099.
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Diet study example (continued)
P-value

Note our contention before that we don’t care how we got to this point
and we certainly do not care what might have happened afterwards.

The output from R is as follows:

Boundary crossing probabilities and expected sample size assume

any cross stops the trial

Upper boundary (power or Type I Error)

Analysis

Theta 1 2 3 Total E{N}

0 0 0.0025 0 0.0025 0.7

Lower boundary (futility or Type II Error)

Analysis

Theta 1 2 3 Total

0 0 0.0025 0 0.0025
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Comments

We have pU = 0.0025 and pL = 0.0025 so that the two-sided p-value is

p = 2min(pL, pU ) = 0.005

As Z(0.74) = 3.76 > 2.39 the study stops with a cumulative two-sided
(“exit”) probability=0.005).
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Constructing the confidence interval
Effect size

The two-sided confidence interval in terms of the effect size is going to be

(θL, θU ) = (1.1394, 6.2139)

Recall that the effect size is

θ =
δ√

Var(δ)
=

δ√
2σ2/N

where N is the sample size for each group at the completion of the study.
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Constructing the confidence interval
In terms of the effect of the intervention

Thus δ = θ
√

2σ2/N and the relevant 95% confidence interval in the scale
of δ is

(δL, δU ) = (θL
√
2σ2/N, θU

√
2σ2/N)

= (1.1394
√

2(4.8)2/200, 6.2139
√
2(4.8)2/200) = (0.544, 2.982)

This means that the experimental treatment reduces weight by between
half and three kilograms.
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Section 3

Adaptive designs
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Adaptive designs

Adaptive designs refer to designs which adapt various parameters of the
initial study design during the study’s implementation.

According to the FDA, and adaptive design clinical study “is defined as a
study that includes a prospectively planned opportunity for modification of
one or more specified aspects of the study design and hypotheses based on
analysis of data (usually interim data) from subjects in the study.”

The FDA Guidance for Industry continues: “Revisions not previously
planned and made or proposed after an unblinded interim analysis raise
major concerns about study integrity (i.e., potential introduction of bias).”

Thus, the term applies to a-priori established changes to the study which
modify its design.
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Introduction

Several assumptions that enter the calculation of the sample size involve
ancillary (“nuisance”) quantities that are not related to the study question
but, if incorrect, may severely impact the study.

Usually, this parameter is the variance σ2 in analyses involving
comparisons of means or the average, or the null proportions p = pC+pT

2
and pC in analyses of proportions.

It would useful if the nuisance parameter could be estimated from the data
during the study.
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Types of adaptive designs

Types of adaptive designs include but are not limited to:

1 Adaptation of study eligibility criteria based on analyses of
pretreatment (baseline) data

2 Adaptations to maintain study power based on blinded interim
analyses

3 Adaptations based on interim results of an outcome unrelated to
efficacy

4 Adaptations using group sequential methods for early study
termination for lack of benefit or demonstrated efficacy

5 Adaptive randomization based on relative treatment Group responses

6 Adaptation of sample size based on interim-effect size estimates

7 Adaptation for endpoint selection based on interim estimate of
treatment effect

We will concentrate on items 2 and 6 above.
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Two-stage designs

First we consider adaptive designs which protect the power of the study.

To protect the power we need to have a good estimate of the variance. It
would useful if the variance could be estimated from the data during the
study. This leads to the following two-stage design:

Stage 1: Enroll n1 subjects per arm, compute additional sample size
n2 per arm based on an interim estimation of the nuisance parameter
σ

Stage 2: Enroll additional n2 subjects per arm based on the estimate
of the variability in the first stage.

Note that the remainder sample size n2 is now random (i.e., it cannot be
predicted a-priori).
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Stein’s design
First stage

Stein’s two-stage design (Stein, Ann Math Stat, 1945) involves recruiting
2n1 subjects and obtaining the pooled sample variance

s2T =
(n1 − 1)s21 + (n1 − 1)s22

2(n1 − 1)

where s21 =
1

n1−1

∑n1
i=1

(
XT i − X̄T1

)2
and X̄T1 are the sample variance

and mean of the first n1 observations in the experimental treatment arm
collected at the end of the first stage. The sample variance s2C1

in the
control arm is calculated similarly.
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Stein’s design
Second stage

We use this pooled estimate of the variance to recalculate the sample size
by recomputing the required N as follows:

N ′ = max
{
n1; 2s

2
1

(
t1−α/2,2(n1−1) + t1−β,2(n1−1)

)2/
δ2}

then recruit additional n2 = N ′ − n1 patients per arm in the second stage.
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Stein’s two-stage method
Test statistic

At the end, the appropriate test statistic will be

tS =
X̄T − X̄C√

2s21/N
∼ t2(n1−1)

The beauty of this approach is that the power is 1− β regardless of the
true variance σ2!
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Example: Diet and diastolic blood pressure2

Consider a study that compares two diets with respect to diastolic blood
pressure (DBP) from baseline to 6 weeks.

The estimated standard deviation is expected to be σ = 5 mmHg. The
sample size needed to detect a difference of δ = 3 mmHg with 85% power
is

N =
2σ2

(
z1−α/2 + z1−β

)2
δ2

=
2(5)2(1.96 + 1.04)2

(3)2
= 50

participants per arm.

2Proshan, J Biopharm Stat, 2005
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Diet and diastolic blood pressure
Stage 1

Now suppose that after 25 and 27 patients enrolled in the treatment and
control arm respectively and s1 = 6 mmHg.

Using Stein’s method as mentioned above

N ′ = max{52, 2
(
2(6)2(t0.025,50 + t0.15,50)

2/(3)2
)
}3

= max{52, 2
(
2(6)2(2.009 + 1.047)2/(3)2

)
} = 150 total subjects

3Note here that, since the two groups had different number of patients, we expressed
the numbers of patients as total sample sizes and not as sample size per arm.
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Diet and diastolic blood pressure
Stage 2

At the end of the study, we observe δ̂ = 2.40 with 74 and 78 control and
treatment participants respectively, with a pooled estimate of the variance
s2p = 40.1.

The test statistic is

tS =
δ

s1

√
1
n1

+ 1
n2

=
2.40

(6)
√
1/74 + 1/78

= 2.465
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Comments

Even though the pooled estimate of the variance is s2p = 40.1 the sample
variance from the first stage, s21 = 36 was used. This is critical, because the
tS statistic above should be compared to a t distribution with
(25+27-2)=50 and not (74+78-2)=150 degrees of freedom! The p-value
associated with this statistic is thus, p = 0.017.

Had the pooled estimate of the variance been used, the resulting t statistic
would have been 2.336. The p-value compared to a t statistic with 150
degrees of freedom would have been 0.021. This is the “näıve t-test”
procedure of Wittes & Brittain (Stat Med, 1990)4.

Had we not used Stein’s method and performed a study with 50 patients per
arm (and, further, assuming that the pooled estimate of the variance were
s2p = 40.10, and the difference still δ = 2.4 mmHg, the t statistic would have
been 1.894 which, compared to a t distribution with 2× 50− 2 = 98 degrees
of freedom produces a p-value 0.061 (i.e., not statistically significant at the
5% level).

4“Näıve” because it does not acknowledge that N ′ is random.
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Concerns with two-stage designs

A big concern about using these designs is the possibility of unblinding the
investigator to the treatment effect during the study.

This could happen if one had access to both the “lumped” estimate of the
variance

s2L1 =
1

2n1 − 1

2n1∑
i=1

(Xi − X̄)2

the variance that would be estimated if treatment and control subject data
were lumped together, as well as the pooled estimate of the variance

s2p =
(n1 − 1)s21 + (n1 − 1)s22

2(n1 − 1)

where s2j =
1

n1−1

∑n1
i=1 (Xij − X̄1)

2 for group j = 1, 2.
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Concerns with two-stage designs (cont’d)

This is because of the variance decomposition formula that states

(2n1 − 1)s2L1 = n1δ̂
2
1/2 + 2(n1 − 1)s21

(e.g., Proshan, J Biopharm Stat, 2005) thus providing an estimate of the
interim treatment effect!

A partial solution might be to use the lumped instead of the pooled
variance (Gould & Shih, Comm Stat (A), 1992, Gould, Stat Med, 1995).

While using the lumped estimate of the variance overestimates the sample
size, the inflation is small in most cases (generally in the area of 3%).
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Analysis of proportions

Gould (Stat Med, 1992) presented the following adaptive procedure for the
case of the comparison between two proportions:

Stage 1: Recruit 2n1 patients and compute the overall proportion p̂1
of stage-1 patients with an event.

▶ Treating p̂1 ≈ pT+pC

2 and, assuming the originally hypothesized relative
risk R = pT /pC , solve for pT and pC using the two equations

p =
pC + pT

2
and

pT
pC

= R

which results in estimates of the two proportions of

p̂C1 =
2p̂1

1 +R
and p̂T1 =

2Rp̂1
1 +R

▶ Plug the two estimates p̂T1 and p̂C1 in sample size formula for
proportions.
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Gould’s method (continued)

Stage 2: The sample size n2 for stage 2 will be max(n1, N
′ − n1),

where

N ′ =

[
z1−a/2

√
2p̂1(1− p̂1) + z1−β

√
p̂T1(1− p̂T1) + p̂C1(1− p̂C1)

]2
(p̂T1 − p̂C1)2

where p̂1 = (p̂T1 + p̂C1)/2. At the completion of the stage 2 the
appropriate test statistic is

Z =
p̂C − p̂T√
2p̂(1− p̂)/N

∼ N(0, 1) under H0

where p̂ = (p̂T + p̂C)/2.

Note. This procedure maintains blinding since only the overall event rate
is calculated.
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Example: Tumor progression5

Consider a study that compares the rate of tumor progression over a
three-month period. The standard treatment is expected to have a
pC = 0.50 progression rate, and we would like to detect a 30% decline
with 90% power.

This means that pT = (1− 0.3)pC = 0.35 and p = (pT + pC)/2 = 0.425.
The sample size is (per arm)

N =

[
(1.96)

√
2(0.425)(0.575) + 1.282

√
(0.5)(0.5) + (0.35)(0.65)

]2
(0.15)2

≈ 227

5Proshan, J Biopharm Stat, 2005
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Example: Tumor progression
Stage 1

Now suppose that, after 200 patients have been evaluated, 58 have
progressed. Then, the overall event rate is p̂1 = 58/200 = 0.290.
Following the procedure as described previously, we get

p̂C1 = 0.290/0.85 = 0.341 and p̂T1 = 0.239.

Substituting these estimates in the previous equation, produces a revised
sample size estimate (per arm)

N ′ =

[
(1.96)

√
2(0.29)(0.71) + 1.282

√
(0.341)(0.659) + (0.239)(0.761)

]2
(0.102)2

≈ 414

The total sample size is 828 subjects, a huge increase over the original
estimate of 454 subjects!
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Example: Tumor progression
Stage 2: Constant treatment effect

Now suppose that, after the study is done (with all 828 patients accrued)
the observed event rate in the control arm is p̂C = 0.4. This is less than
50% as thought at analysis time and implies that it might be this reduced
rate in the control that was partially responsible for the 29% interim
overall event rate.

If the relative risk is still R = pT /pC = 0.7 then p̂T = 0.28 and p̂ = 0.34.

Then the test statistic will be

Z =
0.120√

2(0.34)(0.66)/414
= 3.645

This is highly significant (i.e., we overshot the sample size recalculation by
quite a bit).
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Example: Tumor progression
Stage 2: Constant event rate average

Now if the event rate average is kept constant, with pC = 0.40 we will
have and pT = 0.26, then p̂ = 0.29 as before, but the risk ratio is now
R′ = 0.32/0.23 = 0.813, (i.e., only a 18.7% reduction).

In this case, the z-score will be

Z =
0.09√

2(0.29)(0.71)/414
= 2.854

which is associated with a p-value 0.001. In this case, recalculation of the
sample size has protected the study.
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