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Section 1

Introduction

2 / 66



Difficulties with data analyses

After design, implementation and monitoring of a clinical trial comes the
time to analyze the collected data in order to address the questions that
motivated the study in the first place. Invariably, the collected data do not
entirely reflect what was anticipated and suffer from a number of
“imperfections” that need to be addressed. These, can be coarsely
assigned into three categories:

Protocol non-adherence

Incomplete or missing observations

Methodological errors

The problem is how to reconcile these imperfections with the experimental
approach to ensure reliable inference. Two approaches have been followed,
which have significant downstream implications: A “pragmatic” and an
“explanatory” approach.
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Pragmatic versus explanatory trials
The pragmatic perspective

The “pragmatic” versus “explanatory” approach has a huge impact both
on the design and analysis of a clinical trial.

The following is taken from
http://www.collemergencymed.ac.uk/CEM/Research/technical/guide/pragex.htm.
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Pragmatic versus explanatory trials
The pragmatic perspective

The pragmatic perspective addresses the question of whether a treatment
works under real-life conditions and in terms of what is important to the
patients.

While, the pragmatic approach might seem eminently logical, it may not
be able to determine how or why an intervention works. For this reason,
pragmatic studies are useful for making policy decisions of what services
should be provided but may give limited insight into why interventions are
efficacious or not (we will discuss efficacy later in this lecture).
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Pragmatic versus explanatory trials
The Explanatory perspective

Explanatory studies, on the other hand, address the question of whether a
treatment works under ideal conditions or under very selective
circumstances.

The explanatory perspective is more concerned with how and why an
intervention works and is thus useful for understanding efficacy but may
have limited value in informing policy decisions for providing a service to
the general patient population or in a wide variety of circumstances not
considered in the study (for a look at the difference between efficacy and
effectiveness see discussion later in this lecture).

6 / 66



Impact of the pragmatic or explanatory point of view
Case study: Pre-operative chemotherapy in early NSCLC

Whether a study is pragmatic or explanatory has a number of important
consequences in the implementation of the clinical trial.

Consider a trial where pre-operative chemotherapy (C) is evaluated in the
treatment of early-stage non-small-cell lung cancer (NSCLC) for patients
going to surgery (S). So, the two approaches are C + S versus S.
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Effect of the chosen approach in the case study

The effects of the pragmatic versus explanatory approach will have
important consequences in a number of characteristics of the resulting
study:

Patient selection
Under the pragmatic approach the patient cohort should reflect routine practice, so all

relevant patients should be studied, with exclusions limited to a small number patients.

For explanatory studies patients with co-morbidities or with a doubtful diagnosis will be

excluded. So while the explanatory approach will establish the efficacy of the treatment,

we will not know whether it will work in a “real-life” setting.

Study design
The study design might also be radically different. Under the explanatory model, the

intervention must be identical in the two groups in all aspects except of the treatment

under evaluation. For example, under the explanatory model, surgery might have to be

delayed in the S group for the same period as in the chemotherapy group to align the two.

Under the pragmatic approach, patients in the S group will have surgery immediately

after diagnosis.
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Efficacy versus effectiveness

Depending on the perspective chosen, there are consequences of whether
the study measures efficacy or effectiveness. These two terms are not
equivalent.

Efficacy addresses the question of whether the intervention works under
ideal conditions. It is a proof of concept. It answers the question - Can it
work?

By contrast, effectiveness assesses whether the intervention works in
real-life conditions. It answers the question- Does it work?

For further reading see Roland & Torgerson (BMJ, 1998) and Haynes
(BMJ, 1999).
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Impact of the pragmatic or explanatory point of view
Chosen analysis

Under the pragmatic model, patients are analyzed as they were assigned to
treatment and not as they were ultimately treated (we will take up this
issue at length later in this lecture). This is called an Intention-to-treat
analysis (ITT).

On the other hand, under the explanatory model, patients that changed
treatment group are analyzed according to treatment received (“TR” or
“as-treated”) analysis. Another analysis is one that discards non-adherent
patients (“adherers only” or “per-protocol” analysis).

The ITT approach addresses the question of how a treatment intervention
will fare when it is administered in general practice. On the other hand,
as-treated approaches permit insight into whether a treatment is
efficacious but do not address the real-life effectiveness of the treatment in
general use.
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ITT versus per-protocol approaches

Suppose that, among patients accrued in an single-arm trial, NE received
treatment and, out of those, RE had a beneficial response. On the other
hand, N1 did not receive the assigned treatment, and R1 had a beneficial
response (usually R1 = 0).

Then, under the ITT (pragmatic) approach,

pITT =
RE +R1

NE +N1

while, under the per-protocol approach,

pPP =
RE

NE

Thus, unless, N1 = 0 or R1/N1 ≥ pPP (neither of which is plausible
usually) pITT < pPP . In other words, as-treated or per-protocol analyses
will exaggerate the effectiveness of an intervention. Seen from the opposite
viewpoint, ITT analysis will underestimate the efficacy of the intervention.
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Advantages and problems with the two methods

While pITT does not measure the biological effect of the intervention,
there are serious problems with the explanatory analysis (or per-protocol
analysis) which leads to the estimation of pPP .

At the same time, pPP does not necessarily estimate a biological effect for
two reasons: The effect pPP is influence by adherence to the treatment
regimen. And, even if it did measure the biological effect, it degenerates if
patients cannot adhere to treatment.
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Difficulties of the per-protocol approach

A final technical issue arises when enrolling a patient. The explanatory,
per-protocol, analysis, conditions on patient adherence. This is of course
not known at the time of enrollment, so this approach conditions on a
future event.

This is both conceptually wrong and undermines fundamental
mathematical foundations of a number of models (e.g., what is called a
“predictable process” in survival analysis).

The ITT principle maintains the advantages of treatment randomization.
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Analysis of completers and the vagaries of missing data

Frequently analysis is performed on patients that have completed a
regimen (i.e., have complete data). This analysis is slightly different from
a per-protocol analysis as it focuses on data availability and not protocol
or treatment adherence. This analytical approach is the default for all
statistical software.

However, excluding subjects with missing values may produce seriously
biased results if the underlying assumption that the observed data are
representative of the missing data does not hold. This is a special case of
selection bias.
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The missing data hierarchy

The levels difficulty of interpreting missing data in a model of response Y ,
modeled according to a set of predictors (also known as covariates) X, are
given below (Little & Rubin, 1987):

MCAR
Data are missing completely at random. The missingness is not associated
with the actual true (but uknown) value and there are no other variables in
the data that can predict whether a missing value exists in a particular
variable. This is the difference between MCAR and MAR (below).

MAR
Data are missing at random. The pattern or probability of missingness is
associated with other variables in the data but not with the actual missing
value. This is the difference between MCAR and MNAR (see below).

MNAR
Data are missing not at random. The chance that the data are missing
depends on the actual missing value.
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The missing data hierarchy
MCAR

These are data missing completely at random. In clinical trials measuring
a response Y based on measurements obtained from the subjects
(covariates) X.

MCAR means that missing responses and/or covariate measurements are
not dependent upon other responses or covariate measurements.

16 / 66



Examples of MCAR cases

Examples include the following:

A laboratory specimen is dropped or goes bad

A subject is run over by a bus

A survey is lost in the mail

However, if the lab specimen reflects practices at a specific lab (which, in
turn, may be associated with the outcome), the survey was lost because
the post office is in a certain part of town, or the subject was part of a
depression study and may have thrown himself under the bus, then the
missing pattern may not be MCAR.
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The missing data hierarchy
MAR

MAR
Missing at random, is the situation where missingness depends on fully
observed variables only. Despite its name, there is little randomness about
MAR. Examples of MAR missingness are as follows:

▶ Sicker patients might be less able to perform some of the tests required
by the study protocol

▶ Laboratory animals are sacrificed for humane reasons when tumors
have grown too large

In both cases, missingness is MAR because the current (and missing)
response can be predicted (and thus imputed) by modeling it on previous
responses and/or the covariate measurements already collected on the
subjects.
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The missing data hierarchy
MNAR or NMAR or non-ignorable missingness

MNAR
Missing not at random is the hardest case to deal with as data
missingness depends on unobserved covariates or missing response
observations. The hardest part of MNAR is that, based only on
available data, there is no way to determine whether missingess is
non-random or whether modeling is appropriate! Examples include:

Patients are lost to follow-up because they are dead (but vital status
is not available because of the death)

Tumors in laboratory animals are non-palpable because of treatment
success so tumor volume is missing (because of the current, and
missing, observation not past ones)
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Statistics can address some missing data issues

It would be illustrative to go over the mathematical notation of missing
data (just so we have some anchors for the components of the statistical
analysis).

The complete data is a vector Y = (Yobs,Ymis). We can also consider a
binary (zero/one) matrix M, with elements mij = 1 if observation from
the jth subject and ith variable is observed and mij = 0 if it is missing.

20 / 66



Modeling with missing values

What we are trying to model is

f(Y,M|X; θ) = f(Yobs,Ymis|X; θ)︸ ︷︷ ︸ f(M|Yobs,Ymis,X; θ)︸ ︷︷ ︸
Data mechanism Missingness mechanism

where X are all the covariates and θ are parameters (e.g., means,
variances, etc.).

So we are jointly modeling the data and the missing mechanism
f(M|Yobs,Ymis,X; θ).
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Statistics can address some missing data issues
Statistical modeling under different missing patterns

MCAR
f(M|Y,X) = f(M)

in this case the usual complete case analysis that discards the
observations with missing values is valid.

MAR
f(M|Y,X) = f(M|Yobs,X))

which implies that

f(Ymis|M = 0,Yobs,X; θ) = f(Ymis|M = 1,Yobs,X; θ)

so a correct completer model can be used to impute (fill in) the
missing data. In the special case of covariate-dependent missingness
the above becomes f(M|Y,X) = f(M|X) and, in this case, the
complete case analysis is still valid.
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Statistics can address some missing data issues
Statistical modeling under different missing patterns
(continued)

MNAR
f(M|Y,X) = f(M|Yobs,Ymis,X)

this implies that we will need to explicitly model f(Ymis|M,X; θ),
but there is no data to estimate this model under MNAR!
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Example: Simple linear regression with
covariate-dependent missingness

Consider the following contrived data set1:

Unit X Y
1 3.4 5.67
2 3.9 4.81
3 2.6 4.93
4 1.9 6.21
5 2.2 6.83
6 3.3 5.61
7 1.7 5.45
8 2.4 4.94
9 2.8 5.73

10 3.6 .

1Taken from http://www.lshtm.ac.uk/msu/missingdata/simple web/node5.html
24 / 66



Example: Linear regression with covariate-dependent
missingness
Complete case analysis

The complete case analysis (regression of Y on X) is given as follows:

Call:

lm(formula = y ~ x, data = reg)

Residuals:

Min 1Q Median 3Q Max

-0.7413 -0.4876 0.1951 0.3456 1.0754

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.5601 0.8565 7.660 0.00012 ***

x -0.3662 0.3085 -1.187 0.27399

---

Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

Residual standard error: 0.6389 on 7 degrees of freedom

(1 observation deleted due to missingness)

Multiple R-squared: 0.1675, Adjusted R-squared: 0.0486

F-statistic: 1.409 on 1 and 7 DF, p-value: 0.274
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Example: Linear regression with covariate-dependent
missingness
Analysis based on multiple imputation

Based on this model we can follow the multiple-imputation paradigm to
impute the missing value. The steps are as follows

(i) Choose the number k of multiple imputations.

(ii) For each j = 1, . . . , k follow the steps:

1 Simulate β̃ = (β̃0, β̃1) ∼ N(β̂, Σ̂) where β̂ = (β̂0, β̂1) and Σ̂ is the

estimated variance matrix of β̂
2 Simulate the missing value Ỹ10 ∼ N(β̃0 + β̃1X10, σ̂

2
ϵ )

3 Based on the pseudo-complete data estimate β̂(j) = (β̂
(j)
0 , β̂

(j)
1 )

(iii) Estimate the parameter based on multiple-imputation as
β̂MI = k−1

∑k
j=1 β̂

(j).

(iv) Estimate the standard error of β̂MI using Rubin’s rules for combining
the within-imputation and between-imputation variances
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Example: The OASIS smoking cessation study

Consider the following table of the OASIS smoking cessation study that
compares standard (ST) versus enhanced (ET) counseling interventions2:

Table: The OASIS study

Month
Treatment 1 3 6 12

Abstinent 0.18 0.09 0.11 0.11
ET Smoking 0.83 0.47 0.42 0.34

Missing – 0.44 0.45 0.55
Abstinent 0.15 0.09 0.10 0.07

ST Smoking 0.85 0.54 0.52 0.52
Missing – 0.37 0.38 0.40

2Taken from Daniels & Hogan, Missing data in longitudinal studies: Strategies for
Bayesian modeling and sensitivity analysis, Chapman & Hall/CRC, 2008.
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Example: The OASIS study
Analysis under MCAR

Analysis under the MCAR assumption assumes that all the missing smoking
statuses are missing randomly, so the analysis can be done ignoring all missing
observations.

If we perform a logistic-regression analysis, based on the subjects with known
smoking status (completers), the smoking rate at one year is pET = 0.76 and
pST = 0.88 for the enhanced and standard intervention groups respectively.

The odds ratio is OR = 2.225.
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Alternative analysis

The above analysis is equivalent to an analysis of the following 2× 2 table.

Group
Smoking status ET ST Total
Abstinent 16 (24%) 11 (12%) 27
Smoking 51 (76%) 78 (88%) 129
Total 67 89 156

The 95% CI of the odds-ratio is (0.96, 5.18). So the OR is not statistically
significant at the 95% level (since the value OR=1 is included in the
confidence interval). In other words, this analysis fails to show any
difference in the effectiveness of the interventions in groups ET and ST .
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Example: The OASIS study
Analysis under MAR

Under the MAR assumption, it is assumed that the missing smoking
statuses are missing randomly within each intervention group.

In other words, it is assumed that, within each intervention group, the
smoking rate among subjects with missing smoking status is the same as
the rate determined from subjects with known smoking status.
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Example: The OASIS study
Analysis under MAR (continued)

An analysis under MAR would impute (fill in) the missing statuses as
smoking in 76% and 88% of the missing subjects in group ET and ST
respectively and as non-smoking in 24% and 12%.

This is like analyzing the following table:

Group
Smoking status ET ST Total
Abstinent 36 (24%) 18 (12%) 54
Smoking 113 (76%) 131 (88%) 244
Total 149 149 298
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Example: The OASIS study
Analysis under MAR (continued)

The odds ratio is ÔR = (36× 131)/(18× 113) = 2.31, with an
approximate 95% CI(

elog(2.31)−1.96
√

1/36+1/113+1/18+1/131, elog(2.31)+1.96
√

1/36+1/113+1/18+1/131
)

(1.24, 4.29)

This analysis shows that the smoking rate in the standard is significantly
higher than the enhanced group (or, equivalently, that the enhanced
intervention is more effective).
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Example: The OASIS study
Analysis under MAR (continued)

The previous analysis has a significant drawback. It does not take into
account the fact that 55% of the missing observations in the ET group
and 40% of the missing observations in the ST group were
deterministically imputed.

Thus, the estimate of the variability of the odds ratio will be
underestimated.
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Example: The OASIS study
Analysis under MAR (continued)

To overcome this, we can perform simulations of the data where each
missing value is imputed with some degree of error in a random fashion.

In the following we show the analysis of the smoking cessation trial where
a uniform random number U ∈ (0, 1) was generated and the missing
observations in the ET group were replaced with one (smokers) if
U < 0.76 and zero otherwise.

Similarly, the missing observations in the ST group were replaced with one
if U < 0.88 and zero otherwise.
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Example: The OASIS study
Analysis under MAR: Simulations of the OR

In the following figure I present a histogram of 1,000 replications of the
imputed data and the resulting values of the OR.

Descriptive statistics are given in the next slide.
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Figure: Histogram of odds ratios from 1,000 simulated data sets
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Example: The OASIS study
Analysis under MAR: Simulations of the OR

The median of the simulated odds ratio is 2.453.

A way to obtain the two-sided 95% confidence interval for the odds ratio is
to determine the 2.5th and 97.5th percentiles.

> quantile(sampleOR[,4])

0% 25% 50% 75% 100%

0.6060277 1.8567031 2.4109671 3.1720622 12.4419048

> quantile(sampleOR[,4], probs=c(0.025, 0.975))

2.5% 97.5%

1.087558 6.065612

This interval is (1.09, 6.07), suggesting that, under the MAR assumption,
the enhanced intervention is significantly more effective than the standard
intervention.

3Note: Since the distribution of the odds ratio is skewed to the right the median,
rather than the mean, should be used as a measure of central tendency
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Example: The OASIS study
Analysis under MNAR

While the MCAR assumption seems completely far-fetched for this
example, there are serious suspicions that the MAR hypothesis is a stretch
at best. It is commonly accepted that subjects that smoke tend to drop
out more readily from a program. This means that the smoking rates
among subjects with missing smoking status will be higher (potentially
significantly so) compared to the observed rates in each intervention group.

Since it is not known how well any model represents reality, a reasonable
approach is to consider a number of models and see how they affect the
results. This is called sensitivity analysis.
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Example: The OASIS study
Sensitivity analysis

In the OASIS study, one conservative approach would be to consider all
subjects with missing smoking status are smokers. Another is the approach
the investigators followed. They consulted with four experts about the
likely probability that subjects with missing smoking status are smokers.

While the analysis chosen is beyond the scope of this lecture, the resulting
probabilities from the five approaches are given in the following Table4:

Model/Expert
Intervention MAR Conservative 1 2 3 4
ET 0.78 0.89 0.83 0.87 0.87 0.83
ST 0.88 0.93 0.90 0.91 0.90 0.90

OR 2.31 1.51 1.54 1.61 1.41 1.47

4Note that we have considerably simplified the analysis. For more details refer to
Daniels & Hogan (2008).

Note that we expressed the odds ratio as ST versus ET .
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Example: The OASIS study
Sensitivity analysis (continued)
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Figure: Monte Carlo simulations under MAR (green) and the four experts (grey).
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Implications of the analysis

The analysis shown in Figure 2 represents a histogram of 1,000 simulated
datasets with a smoother run through it.

It is obvious that the MAR assumption is the most optimistic viewpoint
and that most likely the treatment effect is, at best, minor, and certainly
not statistically significant at the 5% level.
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Section 2

Causality and non-compliance
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Causality

Randomization allows us to make causal statements regarding the effect of
treatment on the response of interest.

In this section we will give a more formal definition of cause and effect. To
do this we use what are called counterfactual random variables.

As usual, we consider an overall population of individuals that we are
interested in and assume that the participants in a clinical trial represent a
random sample from this population. Within this clinical trial we will
compare an experimental treatment (e.g., treatment 1) to a standard
treatment or placebo (treatment 0).
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Definition of counterfactual random variables

We define the counterfactual random variable Y ∗
1 to denote the response.

This may be a binary or continuous outcome that a randomly selected
individual would have if, possibly contrary to fact, they received treatment
1 (the experimental treatment).

Similarly, we define the counterfactual random variable Y ∗
0 to denote the

response that a randomly selected individual would have if, possibly
contrary to fact, that individual received treatment 0 (standard treatment
or placebo).

We imagine that both random variables Y ∗
0 and Y ∗

1 exist, even though in
actuality it would be impossible to observe both responses on the same
individual (from which the term counterfactual or “contrary to fact”
emanates).

43 / 66



Formal definition of the causal effect of treatment

Definition (Causal treatment effect)

At the individual level, the (random) causal treatment effect is

Y ∗
1 − Y ∗

0
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The mean causal effect of treatment

Clearly, if we knew the response of an individual to both treatments, then
we would choose whichever treatment gave the better response.

Of course, this is not possible at the individual level but perhaps we can
look at this question at the population level. That is, we will estimate the
causal treatment response by the population mean causal effect

∆ = E(Y ∗
1 − Y ∗

0 ) = E(Y ∗
1 )− E(Y ∗

0 )

If ∆ is positive, then, on average, the response on treatment 1 will be
better than on treatment 0.

Note that, at the individual level, this does not necessarily imply that any
specific individual will be guaranteed to benefit from the treatment found
to be superior based on ∆ but, on average, the population as a whole will
benefit.
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Observable data

The data that we actually observe from a clinical trial are summarized by
(Yi, Ai, Xi), with i = 1, · · · , n, where, for a randomly selected individual i,

Ai ∈ {0, 1} denotes the treatment assignment (to the new treatment
or the standard treatment or placebo respectively)

Yi denotes the response

Xi denotes any additional characteristics, collected on the individual
prior to treatment assignment (baseline characteristics)

We will refer to these as the observable random variables.

Note: We distinguish between the observed response Yi for the i-th
individual and the counterfactual responses Y ∗

1i and Y ∗
0i.
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The consistency assumption

We make the reasonable assumption that Yi = Y ∗
1i if Ai = 1 and that

Yi = Y ∗
0i if Ai = 0. In other words, we assume that the observed

treatment response is equal to the counterfactual treatment response if
the individual were assigned the same treatment as the one we observe to
be assigned to the individual. This is the consistency assumption.

The consistency assumption in causal inference is defined as

Yi = Y ∗
1iI(Ai = 1) + Y ∗

0iI(Ai = 0)

where I(·) denotes the indicator function of an event and it equals 1 when
the event is true and 0 otherwise.
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Association versus causation

Traditional statistical methods allow us to estimate associational
relationships. For example, we can use regression models that allow us to
estimate relationships such as E(Y |A,X). These models explore the
association of the mean outcome Y to the assigned treatment A and other
measured characteristics (prognostic factors or covariates) X.

These associational relationships are not the causal relationships that are
the parameters of interest.

However, associational statements are more easily assessed. So the
question of estimating causal effects is modified as:

“Under what conditions or assumptions can we estimate causal parameters
such as ∆, from observable data?”
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Randomization

This is where randomization plays a key role. Since treatment is randomly
assigned to the patient in a randomized study, treatment assignment is
independent of any pre-treatment characteristics of the individual.

Consequently, we make the following assumption:

In randomized clinical trials,

Ai is independent of (Y
∗
1i, Y

∗
0i, Xi)

That is, randomization severs any association between how an individual
would have responded if given treatment 1 and how he/she would have
responded if given treatment 0 and the treatment he/she was randomized
to.
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Remark

It is important to note that the assumption of independence between the
treatment assignment Ai and the counterfactual response of individual i,
(i.e., Y ∗

1i or Y
∗
0i), is not the same as saying that Ai is independent of Yi

(the observed response).

Since Yi = Y ∗
1iI(Ai = 1) + Y ∗

0iI(Ai = 0), Yi is a function both of
counterfactual responses and the treatment assignment and, as such, will
not be independent of Ai.

In fact, if treatment is effective, as one hopes, then we would expect (and
want) Yi to depend on Ai.
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Mean causal treatment effect

Another assumption is that 0 < P (A = 1) < 1, also knonw as the
positivity assumption (i.e., each treatment has a non-zero probability).

Based on the consistency, independence, and positivity assumptions we
have that

E(Y |A = 1)− E(Y |A = 0) = E(Y ∗
1 A+ Y ∗

0 (1−A)|A = 1)

−E(Y ∗
1 A+ Y ∗

0 (1−A)|A = 0)

= E(Y ∗
1 |A = 1)− E(Y ∗

0 |A = 0)

= E(Y ∗
1 )− E(Y ∗

0 )

= ∆

Now we have an expression for the causal parameter ∆ in terms of
quantities that can be observed!
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Estimation of the mean causal treatment effect

To estimate ∆ it suffices to estimate E(Y |A = 1) and E(Y |A = 0).

These can be estimated by

Ȳ1 =

∑n
i=1 YiAi∑n
i=1Ai

and

Ȳ0 =

∑n
i=1 Yi(1−Ai)∑n
i=1(1−Ai)

respectively.

Thus, an consistent estimator of the causal treatment effect ∆ can be
derived from a randomized study using

∆̂ = Ȳ1 − Ȳ0
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Non-compliance

The arguments outlined above assume that patients take the treatment to
which they are randomized. In most clinical trials however, this is rarely
the case. This is called non-compliance.

There is almost always some form of noncompliance from the intended
treatment regimen. Some reasons for non-compliance are:

A refusal by the patient to start or continue the assigned treatment,
due to side effects or a belief that the treatment is ineffective

A failure to comply with detailed instructions, such as drug dose, or
to attend examinations when requested to do so

A change of treatment imposed by the physician for clinical reasons,
such as adverse effects or deterioration of the patient’s health

An administrative error. In its most extreme form, this may be the
implementation of the wrong treatment.
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Analytical strategies in the face of non-compliance

Some strategies that have been proposed include the following:

Intent-to-Treat Analysis (ITT; As randomized)
Everyone is included in the analysis and the comparison of treatments
is based on the difference of the average response between the
randomized groups ignoring the fact that some patients were
non-compliant.

As-treated analysis
This type of analysis follows the general idea that only patients who
fully complied with their assigned treatment regimen are to be
compared and all non-compliant patients are excluded from the
analysis.
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The ITT principle and the dogma of clinical trials

The intent-to-treat (ITT) analysis principal complies (no pun intended)
with the central dogma in clinical trial research:

Exclusions based on post-randomization considerations, such as
noncompliance, are not allowed for the primary analysis.

This is because exclusion of patients from the analysis may result in bias in
the treatment comparisons.
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Example: The Clofibrate study

To illustrate some of the difficulties that can result from non-compliance,
we consider the results from a study conducted by the Coronary Drug
Project (New England Journal of Medicine, 1980).

This was a double-blind placebo-controlled trial comparing Clofibrate to
Placebo. The following table shows the results from the ITT analysis:

Table: Intent-to-Treat Analysis

Treatment
Clofibrate Placebo
N = 1065 N = 2695

5-year mortality 0.18 0.19
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Effect of non-compliance

Table: 5-year mortality by treatment adherence

Clofibrate Placebo
Adherence 5-year Number of 5-year Number of
(% of capsules taken) mortality patients mortality patients

Poor (< 80%) 0.25 357 0.28 882
Good (> 80%) 0.15 708 0.15 1813

It is clear from these data that compliant patients are prognostically
different from non-compliant patients. Therefore, the as-treated approach
may lead to severe biases because it cannot separate the prognostic effect
of noncompliance from the prognostic effect of treatment.

By contrast, the intent-to-treat analysis does not suffer from this type of
bias. At the same time, when some patients do not comply with the
treatment, an ITT analysis would diminish the effect of a treatment.
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A simple trial design

Consider a randomized study where patients are randomized with equal
probability to active drug (treatment 1) or placebo (control) (treatment 0).

Response is dichotomous. The main goal of the clinical trial is to estimate
the difference in the probability of response between active drug and
placebo

For simplicity, we assume that every patient either takes their assigned
treatment or not (partial compliance is not considered) and their
compliance can be assessed by a simple assay.

We also consider that the patients assigned to placebo do not have access
to the study drug and that compliance cannot be determined for these
patients.
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Counterfactual and observable random variables

The problem above can be conceptualized as follows:

Let the counterfactual random variables Y ∗
1 and Y ∗

0 denote the response
(1=response, 0=non-response) of a randomly selected individual if they
received treatment 1 or 0 respectively.

Also let C denote the counterfactual random variable corresponding to
whether or not a randomly selected individual complies or not C = (1, 0).
This is a counterfactual random variable because we do not know the
compliance status for patients randomized to placebo.
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Counterfactual random variables (continued)

Denote by θ = P (C = 1) the population probability of complying with the
assigned treatment, while πCOM

1 = P (Y ∗
1 = 1|C = 1) and

πNC
1 = P (Y ∗

1 = 1|C = 0) are the probability of response among those who
comply or do not comply if given active drug respectively.

Also, denote by πCOM
0 = P (Y ∗

0 = 1|C = 1) and πNC
0 = P (Y ∗

0 = 1|C = 0)
the probability of response among those who comply or do not comply if
given active placebo.

As it is not reasonable to assume that Y ∗
1 and Y ∗

0 are independent of C,
so we would not expect πCOM

1 = πNC
1 or πCOM

0 = πNC
0 .
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Estimating the causal treatment effect

Using some simple probability calculations we get that

E(Y ∗
1 ) = P (Y ∗

1 = 1)

= P (Y ∗
1 = 1|C = 1)P (C = 1) + P (Y ∗

1 = 1|C = 0)P (C = 0)

= πCOM
1 θ + πNC

1 (1− θ) = π1

and, similarly,

E(Y ∗
0 ) = P (Y ∗

0 = 1) = πCOM
0 θ + πNC

0 (1− θ) = π0

Therefore, the average causal treatment effect equals

∆ = E(Y ∗
1 )− E(Y ∗

0 ) = π1 − π0 = ∆COMθ +∆NC(1− θ)

where ∆COM = πCOM
1 − πCOM

0 and ∆NC = πNC
1 − πNC

0 .
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Estimation of the probabilities πCOM
1 , πCOM

0

How can we estimate the probabilities πCOM
1 , πCOM

0 using the data we
observe from a randomized clinical trial when there is noncompliance?

θ (the overall compliance rate)

P (C = 1|A = 1) = P (C = 1) = θ

π0 (the overall response rate)

P (Y = 1|A = 0) = P (Y ∗
0 = 1|A = 0) = P (Y ∗

0 = 1) = π0

πNC
0 (the response rate in the control arm under non-compliance)

P (Y = 1|A = 1, C = 0) = P (Y ∗
0 = 1|A = 1, C = 0)

= P (Y ∗
0 = 1|C = 0) = πNC

0

πCOM
1 (the response rate in the active arm under compliance)

P (Y = 1|A = 1, C = 1) = P (Y ∗
1 = 1|A = 1, C = 1)

= P (Y ∗
1 = 1|C = 1) = πCOM

1

πCOM
0 (the response rate in the control arm under compliance)

πCOM
0 =

π0 − πNC
0 (1− θ)

θ
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Estimation of the treatment effect under Intent-to-treat

We are estimating

∆ITT = P (Y = 1|A = 1)− P (Y = 1|A = 0)

Again, by the assumptions made and some probability calculations we get

P (Y = 1|A = 1) = πCOM
1 θ + πNC

1 (1− θ)

Similarly,
P (Y = 1|A = 0) = πCOM

0 θ + πNC
0 (1− θ)

Thus, ∆ITT is

∆ITT = (πCOM
1 − πCOM

0 )θ + (πNC
1 − πNC

0 )(1− θ)

= θ∆COM + (1− θ)∆NC

This, unless the compliance rate is 100%, will be less (and perhaps much
less) than the causal treatment effect under full compliance.
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Remarks

Recall that

∆COM = P (Y ∗
1 = 1|C = 1)− P (Y ∗

0 = 1|C = 1) = E(Y ∗
1 − Y ∗

0 )

is the difference in the mean counterfactual responses between the two
treatment arms among patients that would comply with treatment.

As such, ∆COM, some argue, is the causal parameter of greatest interest
since it quantifies the benefit among patients who will comply with the
new treatment.

However, we are in fact able to estimate ∆COM since we can estimate the
parameter θ, the overall compliance rate if offered the new treatment by

∆COM =
∆ITT − (1− θ)∆NC

θ

Since all the quantities are easily estimated from the data of a clinical
trial, this means we can estimate the causal parameter ∆COM.
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More remarks on the ITT principle

If the null hypothesis of no treatment effect is true; namely

H0 : ∆COM = ∆NC = ∆ = 0

the intent-to-treat analysis gives an unbiased estimator of treatment
difference (under H0) and can be used to compute a valid test of the null
hypothesis

However, the above results make it clear that the ITT analysis will yield an
estimator which diminishes a causal treatment effect under compliance.
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As-treated analysis

In one version of an as-treated analysis we compare the response rate of
patients randomized to active drug who comply to all patients randomized
to receive the control. That is, we compute

∆AT = E(Y |A = 1, C = 1)− E(Y |A = 0)

After some algebra we get that

∆AT = ∆+ (1− θ)(πCOM
0 − πNC

0 )

where ∆ is the average causal treatment effect.

This makes clear that when there is noncompliance, (i.e., when θ < 1), the
as-treated analysis will yield an unbiased estimate of the average causal
treatment effect only if πCOM

0 = πNC
0 .

Since this assumption is not generally true, the as-treated analysis can
result in biased estimation even under the null hypothesis.
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