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Section 1

Time to event studies
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Cross-over and non-compliance in time-to-event studies

Cross-over from or to active treatment at toxicity or disease progression
may lead to statistical challenges in the analysis of overall survival because
crossover leads to information loss and dilution of comparative clinical
efficacy.

Cross-over (as well as other forms of non-compliance) has potentially
significant implications for effect estimates on survival (e.g., hazard ratios).

The following follows the article by Jönsson and colleagues (Value in
Health, 2014), where various methods to account for non-compliance and
cross-over are reviewed.

The overall conclusion is that the results of the statistical analysis are
potentially very different depending on the method used.
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Case study: Sunitimib

We will describe two studies of the drug sunitinib (Sutent; Pfizer, Inc.,
New York, NY), an orally administered, multitargeted tyrosine kinase
inhibitor.

We described here two trials of sunitinib:

1 The study by Motzer et al., (NEJM, ) of sunitinib for the treatment
of metastatic renal cell carcinoma (mRCC)

2 The study by Demetri et al., (Lancet, ) of sunitinib for
imatinib-resistant gastrointestinal stromal tumors (GIST)

The issue that complicates routine ITT analyses in both studies is the
structured cross-over from the non-sunitinib arm (interferon-alpha and
placebo respectively) to sunitinib anticipated by the trial design.
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Analytical strategies in the sunitinib trias

There are four analytical strategies that were considered in this study:

The intent-to-treat (ITT) or as-randomized approach

Censoring subjects at the time of cross-over (on-treatment) analysis

Inverse probability of censoring weights (IPCW) modeling

Rank-preserving structural failure time (RPSFT) model.
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The ITT and on-treatment analyses

The ITT analysis considers everyone’s outcome within their randomly
assigned treatment. Based on what we saw earlier, the ITT analysis will
likely underestimate the treatment effect in the presence of crossover.

The on-treatment approach censors the time of a patient at their
cross-over time. The two methods are shown graphically in Figure 1.

Figure: ITT versus on-treatment analyses
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The IPCW model1

In the Inverse probability of censoring weights (IPCW), the model
addresses the counterfactual question of what would be the treatment
effect in the absence of cross-over. Similarly, it can answer the question
with “cross-over” replaced by “non-compliance”.

In this method, patients who cross over (or exhibit non-compliance) are
censored, while patients remaining in their randomized arm (or continuing
to exhibit compliance with their treatment) are weighted to compensate
for missing data.

The weights are determined by the predicted probability of not being
censored at a given time. Then, a survival analysis is carried out with
weights made up of the inverse of the probability of remaining uncensored
based on each patient’s profile (measured covariates both at baseline and
obtained over time during the study).

1Robins & Finkelstein, 2000.
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Constructing the weights

The IPCW weights are constructed in two steps:

1 Step 1 Calculate the probability of cross-over at each time point based
on baseline characteristics only; these are the: numerator weights

2 Step 2 Calculate the probability of cross-over at each time point
based on both baseline and time-updated characteristics:
denominator weights

IPCW (stabilized) weights are calculated as the ratio of the numerator
over the denominator weights.

A weighted analysis of the usual survival model (e.g., Cox, parametric
models, etc.) is run. However, the interpretation concerns the (possibly
counterfactual) policy of no cross over.
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Schematic representation of the IPCW method

Overall, patients who belong to groups with high cross-over rate will get
higher weights (they will “represent” more patients who crossed over)
while patients in groups with low cross-over rate will get lower weights
(they will represent a smaller number of patients who crossed over). This
is shown schematically in Figure 2.

Figure: Schematic representation of the IPCW procedure
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The RPSFT model

The Rank-preserving structural failure time (RPSFT) model allows a direct
comparison of the two (or more) randomization groups by adjusting the
overall survival of patients who cross over to reflect the survival they
would have had if they never received the experimental treatment.

In the RPSFT model, the observed failure time Ti for each subject i is
associated with the counterfactual time Ui that would have been observed
had the subject not crossed over and received the active drug. Ti and Ui
are related through the treatment history Qi(u), u ∈ (0, Ti) as follows:

Ui =

∫ Ti

0
exp {ψQi(u)} du

If switching occurs at discrete time points, this reduces to the following
sum:

Ui =

{
Ti non− cross− overs

T c
i + exp(ψ)T ei cross− overs

T e
i and T c

i are the times spent in the experimental and control arms
respectively and note that Ti = T ci + T ei .
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The RPSFT model as an accelerated failure-time model

In the RPSFT model, the coefficient ψ accelerates the consumption of the
survival time by a factor eψ. When ψ < 0 the untreated survival time Ui is
less than Ti, the observed survival, and the treatment is beneficial;
otherwise the treatment is detrimental.

The RPSFT model is related to the so-called “accelerated failure time
models” in survival analysis where risk factors act multiplicatively on the
time scale (i.e., by accelerating or decelerating the time until the
occurrence of the failure).
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The RPSFT model: An example

To understand how this works, consider a study in smoking cessation2

resulting in ψ = −0.1 and an observed lifetime for a subject Ti = 2.2
years, given smoking history 0.2 years on, one year off, one year on. The
survival if always smoked is

Ui = (2.2− 2)e−0.1 + (2− 1)e0 + (1)e−0.1 = 1 + 1.2e−0.1 ≈ 2.09

This means that, had the subject smoked for the entire period, their
survival would have been Ui = 2.09 years.

However, the one-year smoking cessation added about 0.11 years of life to
this subject’s survival, since the corresponding observed survival time was
Ti = 2.2 years.

2Mark & Robins, 1993.
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Core idea of the RPSFT model

The main idea of the RPSFT model is that each patient has an inherent
failure time Ui, which, because of randomization, is independent of the
treatment assignment Ri.

In other words, people with longer or shorter survival do not end up
preferentially in one or the other treatment arm; randomization guarantees
this (at least in expectation).

In addition, the decision to cross over from the control to the experimental
arm is assumed to be independent of the true failure time if unexposed (in
our case if not crossing over) Ui.

Note that this does not mean that the decision of crossing over is
independent of Ti, the observed failure time.
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Interpretation of ψ

From the previous discussion, the coefficient ψ is related to the exposed
and unexposed time by the following equation

eψ =
T c

T e
⇒ eψT e = T c

That is, ψ < 0 results in a longer survival if treated compared to untreated
(treatment beneficial).

For example, if eψ = 0.5 (i.e., ψ ≈ −0.69), this means that one year
unexposed/untreated equals two years exposed/treated.

Ui for subject i

Untreated, life = 1 year

Always treated, life = 2 years

Untreated 6 months
then switch, life = 1.5 years
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Construction of the RPSFT model

The RPSFT model is constructed in the following steps:

1 Define a model relating the observed event time Ti to the unobserved
event time Ui that would have been observed if crossover had not
occurred.

2 Compute Ui for a range of possible values of ψ (which includes all
relevant confounders) and find the one for which a statistical test of
the equality of Ui across the two groups has the highest (least
significant) p value. This ensures that the Ui are independent of Ri.
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Hypothetical data example4: Switches only from active
arm.

Treated and untreated subjects have equal Ui.
3

Treated arm:

Control arm:
Observed lifetimes

off treatment
on treatment

3Note that this is due to the randomization.
4Closely following the presentation by Ian White, HTMR network workshop on

Methods for adjusting for treatment switches in late-stage cancer trials. London, 20th
February 2012
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Hypothetical data example: eψ = 1

Treated arm:

Control arm:

Observed lifetimes

off treatment
on treatment

Fitted untreated lifetimes
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Comments

The estimate of ψ resulting in eψ = 1 (i.e., ψ̂ = 0) above, is not a good
estimate for ψ since the estimated untreated survival times are not equal
between the two groups!

Note that, because of randomization, the estimated untreated survival
times must be equal in the two groups. Since the estimate ψ̂ = 0 resulted
in unequal survival times between the two groups, this estimate does not
reflect the data.

Note also that ψ̂ = 0 is equivalent to no treatment effect since then
eψ = T c

T e = 1. In other words, the survival under exposure would be equal
to the survival under non-exposure.

In the above situation, the assumption of no treatment effect is
incongruous with what we see in practice, i.e., generally longer observed
survival times among the treated patients compared to the untreated
patients.

18 / 74



Hypothetical data example: eψ = 0.5

Treated arm:

Control arm:

Observed lifetimes

off treatment
on treatment

Fitted untreated lifetimes

Thus, eψ = 0.5 (i.e., ψ ≈ −0.69) is a good estimate for ψ since the
estimated untreated survival times are balanced between the two groups.19 / 74



Recensoring

Censoring introduces unexpected complications into the RSFMT model.

This is because, if there is a beneficial treatment effect (which extends
survival), then failure times in the treated group will be more likely to be
censored. Thus, censoring is informative and excluding censored
observations will lead to attenuation bias of the estimate of the treatment
effect5.

Mathematically, censoring implies that, instead of the failure time Ti we
observe Xi = min(Ti, Ci) where Ci is the censoring time, which runs from
randomization to the common closure of the study.

Unfortunately, replacing Ui with Xi in the calculations will not work unless
the null hypothesis is true (i.e., if ψ = 0) because if non-compliance is
non-random, Xi and Ri are not independent from each other.

5The exact opposite happens when a treatment or exposure is detrimental.
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Dealing with censoring in the RPSFT model

The core argument for developing a procedure to deal with censoring is to
understand that, just as with Ui, Ci (the maximum follow-up time) is (at
least in theory) known at randomization and is thus independent of Ri the
randomly assigned treatment.

Thus, any function of Ui and Ci will be independent of Ri as well. We
define such a function as Xi(ψ) = min(Ui(ψ), Ci(ψ)) as follows:

Ci(ψ) =

{
Ci, ifψ ≥ 0

Ci exp(ψ) ifψ < 0

where we have made the dependence on ψ explicit. This is called
recensoring the data. The new censoring indicator is

∆i(ψ) = I {Ci(ψ) < Ui(ψ)}

We say then that the ith individual is ψ-censored.
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Statistical implementation of the RPSFT model

Using the fundamental equation

Ui =

∫ Ti

0
exp [ψQi(u)] du

we can estimate Ui(ψ) for a specific value of ψ.

Then, considering these Ui(ψ) as the true failure times, we carry out a
statistical test (e.g., a log-rank test) of the treatment arms.

The value ψ0 we seek is the solution satisfying the equation6

Pr(Ui(ψ0) ≥ t|Ri = 1) = Pr(Ui(ψ0) ≥ t|Ri = 0), t ≥ 0

Thus, the desired value of ψ0 is that which results in the most
non-significant log-rank (or other statsitical) test.

6Note that this is the definition of independence between Ui and Ri.
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Practical implementation of the RPSFT model

In practice, we carry a grid search to find this value of ψ0.
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Figure: Hypothetical grid search for ψ0

The confidence interval is the region where the test statistic does not
reject the null hypothesis.
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Remarks on the RPSFT model

The RPSFT model is “rank preserving” because a constant factor is used
for adjusting the time to event for each patient. Thus, if two patients i
and j are on the same treatment (either control or experimental), and
patient i fails (dies) before patient j, before adjustment, patient i will also
always fail before patient j after adjustment.

In other words, the ranking in failure times is preserved.

A key assumption of the RPSFT model is that the experimental treatment
results in a constant change (reduction) in the time to failure or death,
which is assumed equal for all patients before and after progression. This
may not be a reasonable assumption in some cases, which may restrict the
use of the method.
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Advantages and disadvantages of the RPSFT model

A major advantage of the RPSFMT model is that it is “randomization
respecting” method. In other words, it compares the two treatment groups
as they were randomized.

Another major advantage is that, unlike the IPCW model, the RPSFT
model does not assume no unmeasured confounding. In other words, it
does not assume that we have accounted for the effect of all factors that
are associated with both the outcome and the non-compliance.

A disadvantage of the method is the need to re-censor the data.

Another major disadvantage is the assumption that the treatment effect is
constant regardless when, in the disease progression, the treatment is
applied. This assumption in particular is unlikely to be 100% correct.
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Sunitinib for metastatic renal-cell carcinoma (mRCC)

In this international phase III trial7, 750 patients with mRCC were
randomized to receive either sunitinib (n = 375) or interferon-alfa (IFN-α;
n = 375).

Crossover was allowed only after an interim analysis had concluded a
significant gain in the primary endpoint PFS.

Twenty five patients (7%) in the IFN-α group crossed over to sunitinib
after an average of 70.8 weeks. There were 390 total deaths (190 in the
sunitinib and 200 in the IFN-α arm).

All events were included in the ITT analysis. Censoring at the time of
crossover (on-treatment analysis) led to the exclusion of five deaths in the
IFN-α arm which occurred after crossover to sunitinib.

7Motzer et al., NEJM, 2007.
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Analysis by RPSFT

In the RPSFT model, the estimated value for the acceleration parameter
calculated using a grid search method was ψ̂ = −0.244, corresponding to
a decrease in overall survival time of exp(ψ̂) = 0.22 with IFN-α than with
sunitinib.

The results of all analyses are presented in the following Figure:

Figure: ITT and alternative analyses of the mRCC study

While the results are similar, it is notable that the IPCW model has wider
confidence intervals as the censoring model and the impact of the RPSFT
model was minimal, most likely because of the limited cross-over in the
study.
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Sunitinib for gastrointestinal stromal tumors (GIST)

In this international phase III, multi-center, randomised, double-blind,
placebo-controlled study of sunitinib for the management of
gastrointestinal stromal tumors (GIST), 312 patients with with advanced
and documented imatinib resistance were randomized to receive either
sunitinib (n = 207) or placebo (n = 105).

Crossover was allowed after an interim analysis concluded a significant
gain in the time to progression (Figure 5), all patients in the placebo arm
were allowed to switch.
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Sunitinib trial: Time to tumor progression

During the interim analysis, the following results were observed8

 

Figure: Time to tumor progression at the interim analysis of the sunitinib trial for
GIST management

8Demetri et al., Lancet 2006, Blay, Ann Onc 2010.
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Sunitinib trial: Overall survival

The initial results of the study are shown in the following Figure9.

 

Figure: Overall survival in the sunitinib study (ASCO 2005)

9Huang & Xu, 2011.

30 / 74



Sunitinib study: Extended follow-up

Extended follow-up of the study patients was presented in the following
year’s ASCO conference as shown below:

 

Figure: Overall survival in the sunitinib study (ASCO 2006)
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Sunitinib study: Final results

... and again in 2008:

 

Figure: Overall survival in the sunitinib study: final results (ASCO 2008)

We can see a tremendous decay of the treatment difference as follow-up
increases.
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Sunitinib trial: the impact of switching

The extent and impact of switching from placebo to sunitinib is shown in
Figure 9.

 Figure: The extent and impact of switching
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Concern over the impact of cross-over

The main concern of course is that the decay in the survival advantage
was due to the high proportion of patients crossing over at progression
(Figure 9).

Out of 73 patients in the placebo group whose disease progressed, 69
crossed over to sunitinib. In fact, the median time to progression in the
non-sunitinib arm was less than two months

In an RPSFT model10, the estimated value for ψ = −0.656 with the
resulting hazard ratio was θ = 0.505 (p=0.306).

This is to be compared with the hazard ratio of the usual ITT approach,
where the hazard ratio of sunitinib versus placebo (which of course
included many patients who switched) was θITT = 0.876 (p=0.306)

Note that the p-values in the ITT analysis and the RPSFT model are
identical, even though the hazard ratio in the RPSFT model was
substantially lower. This is by construction. The reason is the increased
uncertainty induced by re-censoring.

10Demetri et al., 2012.
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The Sunitimib study: RPSFT model

The result of the RPSFT model is as follows:

 

Figure: Adjusted results based on the RPSFT model.

Note how well the superimposed early survival curves fit the corrected survival
curves. The RPSFT appears to have captured the early survival advantage of
sunitinib.
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Section 2

Estimation of treatment effects

36 / 74



Data analysis versus good design

Analysis from a trial data and estimation of treatment effects is the
penultimate stage of the performance of a clinical study (the last being
reporting of the results, which we will discuss in the next lecture).

Analysis of trial data requires a number of statistical methods and models
and is considered the most important part of a study’s implementation.
This is because analysis appears closer to the results of the study.

However, the design of a study is much more important than the analysis
of trial data and the latter cannot supplant the former.

In this section we discuss analytical approaches having to do with a
number of contexts of clinical trials as well as context within a single trial
(e.g., efficacy versus toxicity considerations).
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Dose-finding and pharmacokinetic (PK) studies

Dose-finding studies have the following main outcomes of interest:

Maximal tolerated dose (MTD)

Absorption rate

Elimination rate

Area under the (drug concentration) curve

Peak concentration

Half life

Correlation between plasma drug levels and side effects

Proportion of patients who demonstrate evidence of efficacy

PK studies are instrumental in permitting investigators to address all of
these outcomes.
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A two-compartment PK model

Without going in too much detail about PK studies, we review here the
basic two-compartment model.

Figure: The basic two-compartment PK model
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A two-compartment PK model

In this model, a drug is infused into compartment X at a rate g(t). The
drug is transported from compartment X (e.g., blood) to Y (e.g., tissues)
at a rate λ and back to X at a rate µ and is eliminated from X at a rate γ.

40 / 74



Mathematical modeling of the two-compartment PK model

The mathematical analysis of the two-compartment PK model is based on
a system of differential (rate) equations such as

dX(t)
dt = −(λ+ γ)X(t)︸ ︷︷ ︸ + µY (t) + g(t)︸ ︷︷ ︸

levels leaving X levels returning to X

The solution to this system of equations is given by the following formulas:

X(t) = c1(t)e
ξ1t + c2(t)e

ξ2t

Y (t) = c1(t)
ξ1 + λ+ γ

µ
eξ1t + c2(t)

ξ2 + λ+ γ

µ
eξ2t

for appropriate ξ1, ξ2, and functions c1(t) and c2(t).
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Mathematics of the two-compartment PK model
(continued)

In the special case where the drug is infused at a constant rate g(t) = g0
over time t0 and the initial concentration in the X and Y compartment is
X(0) = 0 and Y (0) = 0 we obtain two models describing the
concentration in the two compartments. The concentration in the two
compartments is shown in the following Figure.

Figure: The basic two-compartment PK model

0
1

2
3

4
5

C
o

n
c
e

n
tr

a
ti
o

n

0 10 20 30 40 50

Time since start of infusion

Tissue compartment

Blood compartment

42 / 74



Area under the (drug concentration) curve (AUC)

The area under the concentration curve for compartment X is given as

AUCx =

∫ t0

0
X(t)dt︸ ︷︷ ︸ +

∫ ∞

t0

X(t)dt︸ ︷︷ ︸
drug up to t0 in X drug after time t0 in X

So that,

AUCx =
g0t0 +X(0)

γ

Under the special circumstances mentioned earlier, AUCx = g0t
γ . Similarly,

AUCy =
λg0t0 + λX(0)

µγ
=
λ

µ
AUCx

and under the special circumstances mentioned earlier, AUCy =
λg0t0
µγ .
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Analysis of SA studies

SA studies are concerned with both efficacy and toxicity.

Often the efficacy and toxicity outcomes are expressed in terms of
dichotomous (yes/no probabilities). Often, analyzing these data involves
the estimation of absolute probabilities (proportions).
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Case study: Study of Alimta for thymoma

For example, consider the following two-stage cancer trial of pemetrexed
(Alimta) in thymoma, a rare cancer involving the thymus. The study was
designed as follows:

First stage
Eighteen patients were to be accrued at the first stage. If one or more
partial or complete response (based on RECIST criteria) were
observed, the study would be continued to the second stage.

Second stage
Nine more patients were to be accrued in the second stage. If four or
more responses (defined above) were observed the study would be
considered successful.
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Design of the thymoma study
Efficacy

The desired response (alternative hypothesis) was pA = 0.2 while, a
response below p0 = 0.05 would be considered of no interest. The above
design is not optimal in the sense of Simon but has the following
characteristics:

Ensures that the probability of early termination (PET) under the
alternative hypothesis (i.e., under the assumption that
p = pA = 20%) is less than 2%.

Generates power of about 80% (actually, power is 81.6%).

The exact type I error is < 5%
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Design of the thymoma study
Safety

The estimate of the upper and lower limit of the toxicity is based on all evaluable
patients (n = 27 in this study). The confidence intervals are given at the 90%
level, they are two-sided and the exact binomial distribution is used instead of the
normal approximation. Given these considerations the 90% confidence interval for
various scenarios is as given in the following table:

Number of toxicities 1 90% CI
0 (0.000, 0.1052)
1 (0.002, 0.164)
2 (0.013, 0.215)
3 (0.031, 0.263)
4 (0.052, 0.308)
. .
. .
. .

1Grade 3 or higher toxicities (grade 3: Severe AE, 4: life-threatening, 5: death related to AE)
295% one-sided upper limit
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Analysis of the thymoma study

Eighteen patients were accrued in the first stage. There were four
responses observed (two partial and two complete). The study was
continued and nine more patients were accrued with an additional partial
response observed among the latter nine patients.

Clearly the study was successful. Now we need to figure out what the
estimate and confidence interval of the response rate is.

We note that we cannot simply generate binomial confidence interval
based on the final number of patients, but we should account for the fact
that an interim analysis was performed.
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Analysis of the thymoma study
Estimation of response

To generate confidence intervals, we use the program KSTAGE by Barry
Brown.

The program essentially sums up (binomial) probabilities of all possible
scenarios that can lead to the current state of affairs (Atkinson & Brown,
Biometrics, 1985).

The output from this software is as follows:
Enter Number of Stages and Cumulative Number of Trials for each Stage:

?

2 18 27

Enter Lo and Hi stopping values starting with stage 1:

(-1 indicates no stopping)

?

0 -1

Note that we entered -1 for the upper limit (of response events) because
the study will not stop regardless if the total number of responses required
by the design is reached during the first stage. 49 / 74



Analysis of the thymoma study
Estimation of response (continued)

Enter Stage Number and Event Number:

(from which C.I. is calculated)

?

2 5

K-Stage Design:

Number of Stages = 2

Stage # # of Trials Cum # of Trials Lo Quit Hi Quit

1 18 18 0 -1

2 9 27

Kstg= 2 Kevt= 5

The 94% Confidence Interval is ( .0630344, .3808469)

Thus, the 95% confidence interval for efficacy is between 6.3% and 38%,
which excludes 5% (the lower limit of efficacy). Thus, the study is a
success!
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Analysis of the thymoma study
Estimation of toxicity

There were 8 patients out of 27 that experienced at least one grade-3
toxicity during the study.

Disregarding the sequential nature of the study (which was not based on
toxicity criteria anyway), the exact 90% binomial confidence interval for
toxicity is 15.7%-47.1%.

On the other hand, no grade-4 or higher toxicities were observed, so the
upper bound of the 95% one-sided confidence interval for the rate of
grade-4 or higher toxicity is 10.5%.
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Case study: The mesothelioma Phase II study

Rusch, Piantadosi and Holmes (J Thorac Cardiovasc Surg. 1991), report
on a study of mesothelioma, a rare form of lung cancer associated with
asbestos exposure. In that study, three approaches, biopsy, limited
resection or extrapleural pneumonectomy (EPP) were attempted on 83
patients suffering from mesothelioma.

The complete data are given at
http://www.cancerbiostats.onc.jhmi.edu/Piantadosi clinicaltrials/Software/Data%2BPrograms.zip.

The survival of patients in the three groups is given in the following table:

age sex ps hist wtchg surg ptime prog stime dead X_st X_d X_t X_t0

1 69 1 0 136 1 1 175 1 725 0 1 0 725 0

2 61 1 0 131 2 1 61 1 294 1 1 1 294 0

3 71 1 0 136 1 1 133 1 316 1 1 1 316 0

4 68 1 0 136 1 1 1009 1 1029 0 1 0 1029 0

5 65 0 0 NA 2 1 117 1 545 0 1 0 545 0

6 68 1 1 136 1 1 20 1 122 1 1 1 122 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
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Case study: The mesothelioma Phase II study
Descriptive summaries

The survival status in the three groups is given in the following table:

Result
Group Dead Alive Total

Biopsy 32 5 37
Limited 21 5 26

EPP 15 5 20

We should observe the important fact that, in each group, five patients did
not die by the end of the study. Their survival was not observed fully (we
know simply that they did not die by the end of the study). These are
“censored” observations.
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Case study: The mesothelioma Phase II study
Analysis of survival data

Survival data are unique in that not all events (deaths) are observed. We
analyse these data by breaking up the time scale in intervals according to
observed deaths. The probability of death is given by

pi =
di
ni

where di is the number of deaths observed in that interval and ni the
number of persons that were alive at the start of the interval. The
probability of surviving that interval is, therefore, 1− pi = 1− di

ni
. The

probability of surviving past the time of the kth failure tk is

Ŝ(tk) =

k∏
i=0

(
1− di

ni

)
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Case study: The mesothelioma Phase II study
Analysis of survival data (continued)

The results of the analysis are given in the following table:

Event Beg. Number Number Survival Std.
Time ti Total Fail Lost Probability Error

4 82 1 0 0.9878 0.0121
6 81 1 0 0.9756 0.0170
. . . . . .
. . . . . .
. . . . . .

475 28 1 0 0.3293 0.0519
499 27 0 1 0.3293 0.0519
503 26 1 0 0.3166 0.0514

. . . . . .

. . . . . .

. . . . . .
1265 2 1 0 0.0585 0.0502
1338 1 0 1 0.0585 0.0502
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Case study: The mesothelioma Phase II study
Analysis of survival data (continued)

From the previous table we see how survival probability estimates are
generated.

Starting with 100% probability of survival at time t = 0, and excluding the
individual with zero survival, we drop to 1− 1

82 = 0.9878 after the first
failure at time t1 = 4 days.

The next failure occurs at time t2 = 6 at which point, the probability of
survival is p2 =

(
1− 1

82

) (
1− 1

81

)
= 0.9756.

By contrast, when an observation is censored (at time t = 499 days, the
probability of survival through that interval is 100% so there is no
difference in the probability for that subject. We see that the probability
remains the same as that of the 55th failure at time t55 = 475 days, i.e.,
Ŝ(t55) = 0.3293.
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Case study: The mesothelioma Phase II study
The Kaplan-Meier estimator of survival

We plot the estimate of survival over time by drawing a horizontal line
between successive failures and a vertical line of length di/ni at each
event i. Censored observations are ignored. This produces the so called
“Kaplan-Meier” estimate of survival.

EPP

Limited

Biopsy only

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

b
a
b

ili
ty

 o
f 
s
u
rv

iv
a
l

0 200 400 600 800 1000 1200 1400

Time in days

57 / 74



Case study: The mesothelioma Phase II study
Comparisons between groups

Summaries of the survival experience in the three groups are given in the
following Table:

time incidence no. of Survival time
surg at risk rate3 subjects 25% 50% 75%

biopsy 15042 .0021274 37 218 327 475
limited 9678 .0020665 25 165 310 730
EPP 10441 .0014366 20 139 320 1229

total 35161 .0019055 82 168 320 722

For example, the median survival in the three groups is 327, 310 and 320
days respectively.

3Equals, number of deaths divided by time at risk. For example, in the biopsy group this is
32/15042 ≈ 0.00212.
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Case study: The mesothelioma Phase II study
Comparisons between groups:The log-rank test

To compare the survival in the three groups, we consider the so-called
“log-rank” test. This test is based on the inherent ordering of the deaths
by the time they occurred. At each death, we can construct a 3× 2 table.
The table will look as follows for the first failure that occurred at t = 4
days in the biopsy group:

Result
Group Dead Alive Total
Biopsy 1 36 37
Limited 0 25 25

EPP 0 20 20

After generating these tables, we perform a Mantel-Haenszel test of
association between surgical group and survival status. This measures
whether, on average, the proportion of deaths falls inordinately on one or
more of the three groups.
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Case study: The mesothelioma Phase II study
The log-rank test (continued)

Carrying out the log-rank test analysis we obtain the following output:

Call:

survdiff(formula = Surv(stime, dead) ~ group, data = mesoth)

N Observed Expected (O-E)^2/E (O-E)^2/V

group=biopsy 37 32 30.2 0.107 0.195

group=limited 26 21 18.5 0.346 0.483

group=EPP 20 15 19.3 0.969 1.401

Chisq= 1.5 on 2 degrees of freedom, p= 0.479

The p value of the log-rank test is 0.479 suggesting that there is no
evidence for a difference in survival across the three surgical procedures.
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Resampling methods

A very powerful methodology to generate distributions of various statistics
is through resampling. The “bootstrap” as it’s called, involves generating
repeated analyses by resampling out of the dataset with replacement.

We can run a bootstrap analysis of the previous survival analysis to obtain
the distribution. The median and the associated 95% confidence interval,
based on the normal distribution, is 320 days and (292, 387) days
respectively. The bootstrap estimate of the median and the 95%
confidence interval is 320 days and (276.1, 363.9) days respectively.

The bootstrap, in this case, merely validated a known distributional result.
The true power of the bootstrap is that it can generate similar
distributions more difficult to calculate (e.g., the difference between two
median survivals).

61 / 74



Comparative efficacy trials (Phase III)

While developmental studies such as DF and SA studies use mainly
descriptive means to present the treatment effects, comparative trials
describe data, quantify possible treatment differences and assess
extraneous influence.

The usual approach is a test of statistical significance, i.e., determining to
what extent the observed differences are attributable to random variation.
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Case study: FAP prevention study

The following is the Familial Adenomatous Polyposis (FAP) dataset
(Giardiello et al., NEJM, 1993):

polyp polyp polyp polyp
number at number at size at size at

id sex age month 0 month 12 month 0 month 12 rx
1 0 17 7 – 3.6 – 1
2 0 20 77 – 3.8 – 0
3 1 16 7 4 5.0 1.0 1
4 0 18 5 26 3.4 2.1 0
5 1 22 23 16 3.0 1.2 1
6 0 13 35 40 4.2 4.1 0
7 0 23 11 14 2.2 3.3 1
8 1 34 12 16 2.0 3.0 0
9 1 50 7 11 4.2 2.5 0

10 1 19 318 434 4.8 4.4 0
11 1 17 160 26 5.5 3.5 1
12 0 23 8 7 1.7 0.8 1
13 1 22 20 45 2.5 3.0 0
14 1 30 11 32 2.3 2.7 0
15 1 27 24 80 2.4 2.7 0
16 1 23 34 34 3.0 4.2 1
17 0 22 54 38 4.0 2.9 0
18 1 13 16 – 1.8 – 1
21 1 34 30 57 3.2 3.7 0
22 0 23 10 7 3.0 1.1 1
23 0 22 20 1 4.0 4.0 1
24 1 42 12 8 2.8 1.0 1
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Case study: FAP prevention study
Comparisons of month-12 polyp number and size

The baseline (month-0) and month-12 number and size of polyps in each
treatment arm is shown in the following Table:

Treatment arm
Treatment 0 Treatment 1

Time point Mean (± SD) Mean (± SD) p-value1

Number of polyps
Month 0 53.9 (90.2) 28 (44.5) 0.403
Month 12 77.9 (126.7) 13 (10.8) 0.145

Polyp size
Month 0 3.3 (0.93) 3.2 (1.22) 0.816
Month 12 3.1 (0.73) 1.8 (1.41) 0.022

1T test

This suggests that, while there is no significant reduction in the number of
polyps in month 12, there might be a reduction of their size due to
therapy (active treatment=1, standard treatment=0).
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Case study: FAP prevention study
Using differences from baseline

Instead of comparing the month-12 number of polyps or polyp size, we can
compare the difference between month-12 and month-0 in the number and
size of the polyps. The revised analysis is given in the following Table:

Treatment arm
Treatment 0 Treatment 1

Time point Mean (± SD) Mean (± SD) p-value
Number of polyps

Month 12 difference 26.3 (36.9) -18.7 (43.7) 0.026

Polyp size
Month 12 difference -0.2 (0.90) -1.5 (1.8) 0.053

This analysis shows how much the variability of the measures under
comparison has been reduced by removing the biological effect, which is
the largest component of the variability. Now, there is both a reduction in
the number and, possibly, in the size of the polyps associated with active
treatment.
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Case study: FAP prevention study
Analysis of covariance (ANCOVA) analysis

Another way to do this analysis is to adjust for the baseline number or size of the
polyps. This involves a model for each subject i as follows:

Y12,i = β0︸︷︷︸ + β1Y0i︸ ︷︷ ︸ + β2Ti︸ ︷︷ ︸ + ϵi︸︷︷︸
intercept baseline quantity treatment effect error term

The results are given in the following table:

Dependent Model Parameter Standard
Terms Estimate Error p-value

Number of polyps β0 21.5 14.2 –
β1 1.1 0.1 <0.0001
β2 -43.2 18.9 0.037

Polyp size β0 1.13 0.90 –
β1 0.21 0.1 0.403
β2 -1.29 0.51 0.023

The ANCOVA analysis shows that the size and number of polyps are significantly
lowered in relation to the active treatment.
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Case study: NSCLC lung cancer trial

Lad, Rubinstein, Sadeghi, et al. J Clin Onc, 1988) report a randomized
trial of CAP (a combination of cytoxan, doxorubicin and platinum
chemotherapy as adjuvant treatment to radiotherapy in non-small-cell lung
cancer (NSCLC).

The data are given in the following list:

celltype karn t n treat surv dead dfs event age race elig wtloss sex survyear

1 1 2 1 0 1 1046 1 413 1 70 1 0 1 1 2.8657530

2 1 2 2 2 0 342 1 342 0 67 1 0 1 1 0.9369863

3 1 2 2 2 1 54 1 18 1 61 1 0 0 1 0.1479452

4 1 2 2 2 0 303 1 264 1 52 1 0 0 1 0.8301370

5 1 2 1 2 1 295 1 248 1 59 0 0 0 1 0.8082192

6 2 1 3 2 1 88 1 59 1 39 0 0 0 0 0.2410959

7 2 2 2 2 1 241 1 241 0 46 0 0 0 0 0.6602740

8 2 2 1 2 1 567 1 252 1 44 0 0 0 1 1.5534250

9 2 2 2 2 0 286 1 211 1 38 0 0 1 0 0.7835616

10 2 2 2 1 0 265 1 262 1 62 1 0 0 1 0.7260274
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Case study: NSCLC lung cancer trial:Kaplan-Meier analysis

The Kaplan Meier plot is given in the following Figure:

Figure: Survival by treatment group in the lung-cancer trial
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Case study: Lung cancer trial
The Cox proportional hazards model

An approach to assess the effect of various factors on survival is through
the Cox proportional hazards model. This model asserts that the hazard of
death dependent on a number of predictors X is given by

λ(t;X) = λ0(t)e
β′X

in other words, the predictor effect is multiplicative and is constant over
time. This model is called proportional because the hazard ratio is
indepedent of time. The implication of this model is that

log

{
λ(t;X)

λ0(t)

}
= β1X1 + β2X1 + · · ·
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Case study: Lung cancer trial
Analysis via the Cox proportional hazards model

The analysis of the Cox model is given in the following table:

Factor Haz. Ratio Std. Err. z P > |z| [95% Conf. Interval]
treat=“2” 1.30616 0.233470 1.49 0.135 0.920127 1.854151
cell type=“2” 1.31154 0.241337 1.47 0.141 0.914435 1.881098
t=“2” 0.91412 0.247078 -0.33 0.740 0.538186 1.552655
t=“3” 1.16275 0.362530 0.48 0.629 0.631092 2.142298
n=“1” 0.95181 0.356827 -0.13 0.895 0.456500 1.984541
n=“2” 1.26627 0.448955 0.67 0.506 0.632026 2.536994
age 1.00383 0.010218 0.38 0.707 0.984000 1.024057
sex 1.06313 0.222285 0.29 0.770 0.705692 1.601625
weight loss 1.10107 0.346521 0.31 0.760 0.594196 2.040323
race 1.28824 0.356660 0.91 0.360 0.748749 2.216457

For example, the hazard among subjects in treatment 2 (radiotherapy) is
30.6% higher than treatment 1 (radiotherapy + CAP), or
radiotherapy+CAP reduces the hazard to 76% (≈ 1/1.31) regardless of
the length of the survival. This is not a statistically significant difference.

70 / 74



Other analyses

The spectrum of analysis of data generated from clinical trials is extensive.
Some additional analyses used are:

Longitudinal analyses
These are analyses involving repeated measurements on the same
subjects.

Time-dependent covariates
While many predictors are fixed at baseline and are assumed to have
a constant effect over time, time-updated factors attempt to model
factors that change over time.

Measurement error
While most analyses assume that all factors are measured exactly, a
number of analyses have been introduced that allow for some error in
the measurement of covariate predictors.
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Other analyses (continued)

Random versus fixed effects
Most statistical models assume that the effects of predictors are fixed
(non-random).

For example, in assessing the effect of institution in a multi-center
study, a fixed-effect analysis considers the institutions participating as
fixed, while a random-effect analysis considers these as a random
sample from all possible institutions.

This has also been applied in longitudinal models that increase the
flexibility of the statistical model by allowing different slopes or
intercepts for each subject thus more realistically modeling response.
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