
file:///home/me/bookdown.org/yihui/rmarkdown/basics.html#basics
file:///home/me/bookdown.org/yihui/rmarkdown/language-engines.html#python
file:///home/me/bookdown.org/yihui/rmarkdown/interactive-documents.html#interactive-documents
file:///home/me/bookdown.org/yihui/rmarkdown/documents.html#documents
file:///home/me/bookdown.org/yihui/rmarkdown/presentations.html#presentations
file:///home/me/bookdown.org/yihui/rmarkdown/powerpoint-presentation.html#ppt-templates
file:///home/me/bookdown.org/yihui/rmarkdown/dashboards.html#dashboards
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan.html#xaringan
file:///home/me/bookdown.org/yihui/rmarkdown/websites.html#websites
file:///home/me/bookdown.org/yihui/rmarkdown/books.html#books
file:///home/me/bookdown.org/yihui/rmarkdown/journals.html#journals
file:///home/me/bookdown.org/yihui/rmarkdown/learnr.html#learnr
file:///home/me/bookdown.org/yihui/rmarkdown/parameterized-reports.html#parameterized-reports
file:///home/me/bookdown.org/yihui/rmarkdown/html-widgets.html#html-widgets
file:///home/me/bookdown.org/yihui/rmarkdown/document-templates.html#document-templates
file:///home/me/bookdown.org/yihui/rmarkdown/basics.html#basics
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#html-document

How	to	read	this	book

This	book	may	serve	you	better	as	a	reference	book	than	a	textbook.	It	contains	a	large	number	of
technical	details,	and	we	do	not	expect	you	to	read	it	from	beginning	to	end,	since	you	may	easily	feel
overwhelmed.	Instead,	think	about	your	background	and	what	you	want	to	do	first,	and	go	to	the	relevant
chapters	or	sections.	For	example:

I	just	want	to	finish	my	course	homework	(Chapter	2	should	be	more	than	enough	for	you).

I	know	this	is	an	R	Markdown	book,	but	I	use	Python	more	than	R	(Go	to	Section	2.7.1).

I	want	to	embed	interactive	plots	in	my	reports,	or	want	my	readers	to	be	able	change	my	model
parameters	interactively	and	see	results	on	the	fly	(Check	out	Section	2.8).

I	know	the	output	format	I	want	to	use,	and	I	want	to	customize	its	appearance	(Check	out	the
documentation	of	the	specific	output	format	in	Chapter	3	or	Chapter	4).	For	example,	I	want	to
customize	the	template	for	my	PowerPoint	presentation	(Go	to	Section	4.4.1).

I	want	to	build	a	business	dashboard	highlighting	some	key	figures	and	indicators	(Go	to	Chapter	5).

I	heard	about	 	yolo	=	TRUE		from	a	friend,	and	I’m	curious	what	that	means	in	the	xaringan	package
(Go	to	Chapter	7).

I	want	to	build	a	personal	website	(Go	to	Chapter	10),	or	write	a	book	(Go	to	Chapter	12).

I	want	to	write	a	paper	and	submit	to	the	Journal	of	Statistical	Software	(Go	to	Chapter	13).

I	want	to	build	an	interactive	tutorial	with	exercises	for	my	students	to	learn	a	topic	(Go	to	Chapter	14).

I’m	familiar	with	R	Markdown	now,	and	I	want	to	generate	personalized	reports	for	all	my	customers
using	the	same	R	Markdown	template	(Try	parameterized	reports	in	Chapter	15).

I	know	some	JavaScript,	and	want	to	build	an	interface	in	R	to	call	an	interested	JavaScript	library
from	R	(Learn	how	to	develop	HTML	widgets	in	Chapter	16).

I	want	to	build	future	reports	with	a	company	branded	template	that	shows	our	logo	and	uses	our
unique	color	theme	(Go	to	Chapter	17).

If	you	are	not	familiar	with	R	Markdown,	we	recommend	that	you	read	at	least	Chapter	2	to	learn	the
basics.	All	the	rest	of	the	chapters	in	this	book	can	be	read	in	any	order	you	desire.	They	are	pretty	much
orthogonal	to	each	other.	However,	to	become	familiar	with	R	Markdown	output	formats,	you	may	want	to
thumb	through	the	HTML	document	format	in	Section	3.1,	because	many	other	formats	share	the	same
options	as	this	format.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/basics.html#basics
file:///home/me/bookdown.org/yihui/rmarkdown/language-engines.html#python
file:///home/me/bookdown.org/yihui/rmarkdown/interactive-documents.html#interactive-documents
file:///home/me/bookdown.org/yihui/rmarkdown/documents.html#documents
file:///home/me/bookdown.org/yihui/rmarkdown/presentations.html#presentations
file:///home/me/bookdown.org/yihui/rmarkdown/powerpoint-presentation.html#ppt-templates
file:///home/me/bookdown.org/yihui/rmarkdown/dashboards.html#dashboards
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan.html#xaringan
file:///home/me/bookdown.org/yihui/rmarkdown/websites.html#websites
file:///home/me/bookdown.org/yihui/rmarkdown/books.html#books
file:///home/me/bookdown.org/yihui/rmarkdown/journals.html#journals
file:///home/me/bookdown.org/yihui/rmarkdown/learnr.html#learnr
file:///home/me/bookdown.org/yihui/rmarkdown/parameterized-reports.html#parameterized-reports
file:///home/me/bookdown.org/yihui/rmarkdown/html-widgets.html#html-widgets
file:///home/me/bookdown.org/yihui/rmarkdown/document-templates.html#document-templates
file:///home/me/bookdown.org/yihui/rmarkdown/basics.html#basics
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#html-document

R	Markdown:	The	Definitive	Guide

Yihui	Xie,	J.	J.	Allaire,	Garrett	Grolemund

2018-07-15

Preface

Note:	This	book	is	to	be	published	by	Chapman	&	Hall/CRC.	The	online	version	of	this	book	is	free	to	read
here	(thanks	to	Chapman	&	Hall/CRC),	and	licensed	under	the	Creative	Commons	Attribution-
NonCommercial-ShareAlike	4.0	International	License.

The	document	format	“R	Markdown”	was	first	introduced	in	the	knitr	package	(Xie	2015,	2018d)	in	early
2012.	The	idea	was	to	embed	code	chunks	(of	R	or	other	languages)	in	Markdown	documents.	In	fact,
knitr	supported	several	authoring	languages	from	the	beginning	in	addition	to	Markdown,	including	LaTeX,
HTML,	AsciiDoc,	reStructuredText,	and	Textile.	Looking	back	over	the	five	years,	it	seems	to	be	fair	to	say
that	Markdown	has	become	the	most	popular	document	format,	which	is	what	we	expected.	The	simplicity
of	Markdown	clearly	stands	out	among	these	document	formats.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.crcpress.com/p/book/9781138359338
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.crcpress.com/p/book/9781138359338
file:///home/me/bookdown.org/yihui/rmarkdown/index.html#ref-xie2015
file:///home/me/bookdown.org/yihui/rmarkdown/index.html#ref-R-knitr
file:///home/me/bookdown.org/yihui/rmarkdown/index.html#ref-R-knitr

However,	the	original	version	of	Markdown	invented	by	John	Gruber	was	often	found	overly	simple	and	not
suitable	to	write	highly	technical	documents.	For	example,	there	was	no	syntax	for	tables,	footnotes,	math
expressions,	or	citations.	Fortunately,	John	MacFarlane	created	a	wonderful	package	named	Pandoc
(http://pandoc.org)	to	convert	Markdown	documents	(and	many	other	types	of	documents)	to	a	large
variety	of	output	formats.	More	importantly,	the	Markdown	syntax	was	significantly	enriched.	Now	we	can
write	more	types	of	elements	with	Markdown	while	still	enjoying	its	simplicity.

In	a	nutshell,	R	Markdown	stands	on	the	shoulders	of	knitr	and	Pandoc.	The	former	executes	the
computer	code	embedded	in	Markdown,	and	converts	R	Markdown	to	Markdown.	The	latter	renders
Markdown	to	the	output	format	you	want	(such	as	PDF,	HTML,	Word,	and	so	on).

The	rmarkdown	package	(Allaire,	Xie,	McPherson,	et	al.	2018)	was	first	created	in	early	2014.	During	the
past	four	years,	it	has	steadily	evolved	into	a	relatively	complete	ecosystem	for	authoring	documents,	so	it
is	a	good	time	for	us	to	provide	a	definitive	guide	to	this	ecosystem	now.	At	this	point,	there	are	a	large
number	of	tasks	that	you	could	do	with	R	Markdown:

Compile	a	single	R	Markdown	document	to	a	report	in	different	formats,	such	as	PDF,	HTML,	or	Word.

Create	notebooks	in	which	you	can	directly	run	code	chunks	interactively.

Make	slides	for	presentations	(HTML5,	LaTeX	Beamer,	or	PowerPoint).

Produce	dashboards	with	flexible,	interactive,	and	attractive	layouts.

Build	interactive	applications	based	on	Shiny.

Write	journal	articles.

Author	books	of	multiple	chapters.

Generate	websites	and	blogs.

There	is	a	fundamental	assumption	underneath	R	Markdown	that	users	should	be	aware	of:	we	assume	it
suffices	that	only	a	limited	number	of	features	are	supported	in	Markdown.	By	“features”,	we	mean	the
types	of	elements	you	can	create	with	native	Markdown.	The	limitation	is	a	great	feature,	not	a	bug.	R
Markdown	may	not	be	the	right	format	for	you	if	you	find	these	elements	not	enough	for	your	writing:
paragraphs,	(section)	headers,	block	quotations,	code	blocks,	(numbered	and	unnumbered)	lists,
horizontal	rules,	tables,	inline	formatting	(emphasis,	strikeout,	superscripts,	subscripts,	verbatim,	and
small	caps	text),	LaTeX	math	expressions,	equations,	links,	images,	footnotes,	citations,	theorems,	proofs,
and	examples.	We	believe	this	list	of	elements	suffice	for	most	technical	and	non-technical	documents.	It
may	not	be	impossible	to	support	other	types	of	elements	in	R	Markdown,	but	you	may	start	to	lose	the
simplicity	of	Markdown	if	you	wish	to	go	that	far.

Epictetus	once	said,	“Wealth	consists	not	in	having	great	possessions,	but	in	having	few	wants.”	The	spirit
is	also	reflected	in	Markdown.	If	you	can	control	your	preoccupation	with	pursuing	typesetting	features,
you	should	be	much	more	efficient	in	writing	the	content	and	can	become	a	prolific	author.	It	is	entirely

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://en.wikipedia.org/wiki/Markdown
http://pandoc.org/
https://github.com/rstudio/rmarkdown
file:///home/me/bookdown.org/yihui/rmarkdown/index.html#ref-R-rmarkdown

possible	to	succeed	with	simplicity.	Jung	Jae-sung	was	a	legendary	badminton	player	with	a	remarkably
simple	playing	style:	he	did	not	look	like	a	talented	player	and	was	very	short	compared	to	other	players,
so	most	of	the	time	you	would	just	see	him	jump	three	feet	off	the	ground	and	smash	like	thunder	over	and
over	again	in	the	back	court	until	he	beats	his	opponents.

Please	do	not	underestimate	the	customizability	of	R	Markdown	because	of	the	simplicity	of	its	syntax.	In
particular,	Pandoc	templates	can	be	surprisingly	powerful,	as	long	as	you	understand	the	underlying
technologies	such	as	LaTeX	and	CSS,	and	are	willing	to	invest	time	in	the	appearance	of	your	output
documents	(reports,	books,	presentations,	and/or	websites).	As	one	example,	you	may	check	out	the	PDF
report	of	the	2017	Employer	Health	Benefits	Survey.	It	looks	fairly	sophisticated,	but	was	actually
produced	via	bookdown	(Xie	2016),	which	is	an	R	Markdown	extension.	A	custom	LaTeX	template	and	a
lot	of	LaTeX	tricks	were	used	to	generate	this	report.	Not	surprisingly,	this	very	book	that	you	are	reading
right	now	was	also	written	in	R	Markdown,	and	its	full	source	is	publicly	available	in	the	GitHub	repository
https://github.com/rstudio/rmarkdown-book.

R	Markdown	documents	are	often	portable	in	the	sense	that	they	can	be	compiled	to	multiple	types	of
output	formats.	Again,	this	is	mainly	due	to	the	simplified	syntax	of	the	authoring	language,	Markdown.
The	simpler	the	elements	in	your	document	are,	the	more	likely	that	the	document	can	be	converted	to
different	formats.	Similarly,	if	you	heavily	tailor	R	Markdown	to	a	specific	output	format	(e.g.,	LaTeX),	you
are	likely	to	lose	the	portability,	because	not	all	features	in	one	format	work	in	another	format.

Last	but	not	least,	your	computing	results	will	be	more	likely	to	be	reproducible	if	you	use	R	Markdown	(or
other	knitr-based	source	documents),	compared	to	the	manual	cut-and-paste	approach.	This	is	because
the	results	are	dynamically	generated	from	computer	source	code.	If	anything	goes	wrong	or	needs	to	be
updated,	you	can	simply	fix	or	update	the	source	code,	compile	the	document	again,	and	the	results	will
automatically	updated.	You	can	enjoy	reproducibility	and	convenience	at	the	same	time.

References

Xie,	Yihui.	2015.	Dynamic	Documents	with	R	and	Knitr.	2nd	ed.	Boca	Raton,	Florida:	Chapman;	Hall/CRC.
https://yihui.name/knitr/.

Xie,	Yihui.	2018d.	Knitr:	A	General-Purpose	Package	for	Dynamic	Report	Generation	in	R.
https://yihui.name/knitr/.

Allaire,	JJ,	Yihui	Xie,	Jonathan	McPherson,	Javier	Luraschi,	Kevin	Ushey,	Aron	Atkins,	Hadley	Wickham,
Joe	Cheng,	Winston	Chang,	and	Richard	Iannone.	2018.	Rmarkdown:	Dynamic	Documents	for	R.

Xie,	Yihui.	2016.	Bookdown:	Authoring	Books	and	Technical	Documents	with	R	Markdown.	Boca	Raton,
Florida:	Chapman;	Hall/CRC.	https://github.com/rstudio/bookdown.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://files.kff.org/attachment/Report-Employer-Health-Benefits-Annual-Survey-2017
https://www.kff.org/health-costs/report/2017-employer-health-benefits-survey/
file:///home/me/bookdown.org/yihui/rmarkdown/index.html#ref-xie2016
https://github.com/rstudio/rmarkdown-book
https://yihui.name/knitr/
https://yihui.name/knitr/
https://github.com/rstudio/bookdown

Structure	of	the	book

This	book	consists	of	four	parts.	Part	I	covers	the	basics:	Chapter	1	introduces	how	to	install	the	relevant
packages,	and	Chapter	2	is	an	overview	of	R	Markdown,	including	the	possible	output	formats,	the
Markdown	syntax,	the	R	code	chunk	syntax,	and	how	to	use	other	languages	in	R	Markdown.

Part	II	is	the	detailed	documentation	of	built-in	output	formats	in	the	rmarkdown	package,	including
document	formats	and	presentation	formats.

Part	III	lists	about	ten	R	Markdown	extensions	that	enable	you	to	build	different	applications	or	generate
output	documents	with	different	styles.	Chapter	5	introduces	the	basics	of	building	flexible	dashboards
with	the	R	package	flexdashboard.	Chapter	6	documents	the	tufte	package,	which	provides	a	unique
document	style	used	by	Edward	Tufte.	Chapter	7	introduces	the	xaringan	package	for	another	highly
flexible	and	customizable	HTML5	presentation	format	based	on	the	JavaScript	library	remark.js.	Chapter	8
documents	the	revealjs	package,	which	provides	yet	another	appealing	HTML5	presentation	format	based
on	the	JavaScript	library	reveal.js.	Chapter	9	introduces	a	few	output	formats	created	by	the	R	community,
such	as	the	prettydoc	package,	which	features	lightweight	HTML	document	formats.	Chapter	10	teaches
you	how	to	build	websites	using	either	the	blogdown	package	or	rmarkdown’s	built-in	site	generator.
Chapter	11	explains	the	basics	of	the	pkgdown	package,	which	can	be	used	to	quickly	build
documentation	websites	for	R	packages.	Chapter	12	introduces	how	to	write	and	publish	books	with	the
bookdown	package.	Chapter	13	is	an	overview	of	the	rticles	package	for	authoring	journal	articles.
Chapter	14	introduces	how	to	build	interactive	tutorials	with	exercises	and/or	quiz	questions.

Part	IV	covers	other	topics	about	R	Markdown,	and	some	of	them	are	advanced	(in	particular,	Chapter	16).
Chapter	15	introduces	how	to	generate	different	reports	with	the	same	R	Markdown	source	document	and
different	parameters.	Chapter	16	teaches	developers	how	to	build	their	own	HTML	widgets	for	interactive
visualization	and	applications	with	JavaScript	libraries.	Chapter	17	shows	how	to	create	custom	R
Markdown	and	Pandoc	templates	so	that	you	can	fully	customize	the	appearance	and	style	of	your	output
document.	Chapter	18	explains	how	to	create	your	own	output	formats	if	the	existing	formats	do	not	meet
your	need.	Chapter	19	shows	how	to	combine	the	Shiny	framework	with	R	Markdown,	so	that	your	readers
can	interact	with	the	reports	by	changing	the	values	of	certain	input	widgets	and	seeing	updated	results
immediately.

Note	that	this	book	is	intended	to	be	a	guide	instead	of	the	comprehensive	documentation	of	all	topics
related	to	R	Markdown.	Some	chapters	are	only	overviews,	and	you	may	need	to	consult	the	full
documentation	elsewhere	(often	freely	available	online).	Such	examples	include	Chapters	5,	10,	11,	12,
and	14.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/installation.html#installation
file:///home/me/bookdown.org/yihui/rmarkdown/basics.html#basics
file:///home/me/bookdown.org/yihui/rmarkdown/dashboards.html#dashboards
file:///home/me/bookdown.org/yihui/rmarkdown/tufte-handouts.html#tufte-handouts
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan.html#xaringan
file:///home/me/bookdown.org/yihui/rmarkdown/revealjs.html#revealjs
file:///home/me/bookdown.org/yihui/rmarkdown/community.html#community
file:///home/me/bookdown.org/yihui/rmarkdown/websites.html#websites
file:///home/me/bookdown.org/yihui/rmarkdown/pkgdown.html#pkgdown
file:///home/me/bookdown.org/yihui/rmarkdown/books.html#books
file:///home/me/bookdown.org/yihui/rmarkdown/journals.html#journals
file:///home/me/bookdown.org/yihui/rmarkdown/learnr.html#learnr
file:///home/me/bookdown.org/yihui/rmarkdown/html-widgets.html#html-widgets
file:///home/me/bookdown.org/yihui/rmarkdown/parameterized-reports.html#parameterized-reports
file:///home/me/bookdown.org/yihui/rmarkdown/html-widgets.html#html-widgets
file:///home/me/bookdown.org/yihui/rmarkdown/document-templates.html#document-templates
file:///home/me/bookdown.org/yihui/rmarkdown/new-formats.html#new-formats
file:///home/me/bookdown.org/yihui/rmarkdown/shiny-documents.html#shiny-documents
file:///home/me/bookdown.org/yihui/rmarkdown/dashboards.html#dashboards
file:///home/me/bookdown.org/yihui/rmarkdown/websites.html#websites
file:///home/me/bookdown.org/yihui/rmarkdown/pkgdown.html#pkgdown
file:///home/me/bookdown.org/yihui/rmarkdown/books.html#books
file:///home/me/bookdown.org/yihui/rmarkdown/learnr.html#learnr

Software	information	and	conventions

The	R	session	information	when	compiling	this	book	is	shown	below:

##	R	version	3.5.1	(2018-07-02)

##	Platform:	x86_64-apple-darwin15.6.0	(64-bit)

##	Running	under:	macOS	High	Sierra	10.13.5

##	

##	Locale:	en_US.UTF-8	/	en_US.UTF-8	/	en_US.UTF-8	/	C	/	en_US.UTF-8	/	en_US.UTF-8

##	

##	Package	version:

##			blogdown_0.7.1								bookdown_0.7.11						

##			flexdashboard_0.5.1.1	htmltools_0.3.6						

##			knitr_1.20.7										learnr_0.9.2.1							

##			pkgdown_1.1.0									reticulate_1.9							

##			revealjs_0.9										rmarkdown_1.10.7					

##			rticles_0.5											shiny_1.1.0										

##			tinytex_0.6											tufte_0.3												

##			xaringan_0.7									

##	

##	Pandoc	version:	2.2.1

We	do	not	add	prompts	(>		and	 	+)	to	R	source	code	in	this	book,	and	we	comment	out	the	text	output
with	two	hashes	 	##		by	default,	as	you	can	see	from	the	R	session	information	above.	This	is	for	your
convenience	when	you	want	to	copy	and	run	the	code	(the	text	output	will	be	ignored	since	it	is
commented	out).	Package	names	are	in	bold	text	(e.g.,	rmarkdown),	and	inline	code	and	filenames	are
formatted	in	a	typewriter	font	(e.g.,		knitr::knit('foo.Rmd')).	Function	names	are	followed	by
parentheses	(e.g.,	 	blogdown::serve_site()).	The	double-colon	operator	 	::		means	accessing	an
object	from	a	package.

“Rmd”	is	the	filename	extension	of	R	Markdown	files,	and	also	an	abbreviation	of	R	Markdown	in	this
book.

xfun::session_info(c(

		'blogdown',	'bookdown',	'knitr',	'rmarkdown',	'htmltools',

		'reticulate',	'rticles',	'flexdashboard',	'learnr',	'shiny',

		'revealjs',	'pkgdown',	'tinytex',	'xaringan',	'tufte'

),	dependencies	=	FALSE)

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

Acknowledgments

I	started	writing	this	book	after	I	came	back	from	the	2018	RStudio	Conference	in	early	February,	and
finished	the	first	draft	in	early	May.	This	may	sound	fast	for	a	300-page	book.	The	main	reason	I	was	able
to	finish	it	quickly	was	that	I	worked	full-time	on	this	book	for	three	months.	My	employer,	RStudio,	has
always	respected	my	personal	interests	and	allowed	me	to	focus	on	projects	that	I	choose	by	myself.	More
importantly,	I	have	been	taught	several	lessons	on	how	to	become	a	professional	software	engineer	since
I	joined	RStudio	as	a	fresh	PhD,	although	the	initial	journey	turned	out	to	be	painful.	It	is	a	great	blessing
for	me	to	work	in	this	company.

The	other	reason	for	my	speed	was	that	JJ	and	Garrett	had	already	prepared	a	lot	of	materials	that	I	could
adapt	for	this	book.	They	had	also	been	offering	suggestions	as	I	worked	on	the	manuscript.	In	addition,
Michael	Harper	contributed	the	initial	drafts	of	Chapters	12,	13,	15,	17,	and	18.	I	would	definitely	not	be
able	to	finish	this	book	so	quickly	without	their	help.

The	most	challenging	thing	to	do	when	writing	a	book	is	to	find	large	blocks	of	uninterrupted	time.	This	is
just	so	hard.	Both	others	and	myself	could	interrupt	me.	I	do	not	consider	my	willpower	to	be	strong:	I	read
random	articles,	click	on	the	endless	links	on	Wikipedia,	look	at	random	Twitter	messages,	watch	people
fight	on	meaningless	topics	online,	reply	to	emails	all	the	time	as	if	I	were	able	to	reach	“Inbox	Zero”,	and
write	random	blog	posts	from	time	to	time.	The	two	most	important	people	in	terms	of	helping	keep	me	on
track	are	Tareef	Kawaf	(President	of	RStudio),	to	whom	I	report	my	progress	on	the	weekly	basis,	and	Xu
Qin,	from	whom	I	really	learned	the	importance	of	making	plans	on	a	daily	basis	(although	I	still	fail	to	do
so	sometimes).	For	interruptions	from	other	people,	it	is	impossible	to	isolate	myself	from	the	outside
world,	so	I’d	like	to	thank	those	who	did	not	email	me	or	ask	me	questions	in	the	past	few	months	and
used	public	channels	instead	as	I	suggested.	I	also	thank	those	who	did	not	get	mad	at	me	when	my
responses	were	extremely	slow	or	even	none.	I	appreciate	all	your	understanding	and	patience.	Besides,
several	users	have	started	helping	me	answer	GitHub	and	Stack	Overflow	questions	related	to	R
packages	that	I	maintain,	which	is	even	better!	These	users	include	Marcel	Schilling,	Xianying	Tan,
Christophe	Dervieux,	and	Garrick	Aden-Buie,	just	to	name	a	few.	As	someone	who	works	from	home,
apparently	I	would	not	even	have	ten	minutes	of	uninterrupted	time	if	I	do	not	send	the	little	ones	to
daycare,	so	I	want	to	thank	all	teachers	at	Small	Miracles	for	freeing	my	daytime.

There	have	been	a	large	number	of	contributors	to	the	R	Markdown	ecosystem.	More	than	60	people	have
contributed	to	the	core	package,	rmarkdown.	Several	authors	have	created	their	own	R	Markdown
extensions,	as	introduced	in	Part	III	of	this	book.	Contributing	ideas	is	no	less	helpful	than	contributing
code.	We	have	gotten	numerous	inspirations	and	ideas	from	the	R	community	via	various	channels
(GitHub	issues,	Stack	Overflow	questions,	and	private	conversations,	etc.).	As	a	small	example,	Jared
Lander,	author	of	the	book	R	for	Everyone,	does	not	meet	me	often,	but	every	time	he	chats	with	me,	I	will
get	something	valuable	to	work	on.	“How	about	writing	books	with	R	Markdown?”	he	asked	me	at	the	2014
Strata	conference	in	New	York.	Then	we	invented	bookdown	in	2016.	“I	really	need	fullscreen	background
images	in	ioslides.	Look,	Yihui,	here	are	my	ugly	JavaScript	hacks,”	he	showed	me	on	the	shuttle	to	dinner
at	the	2017	RStudio	Conference.	A	year	later,	background	images	were	officially	supported	in	ioslides
presentations.

As	I	mentioned	previously,	R	Markdown	is	standing	on	the	shoulders	of	the	giant,	Pandoc.	I’m	always
amazed	by	how	fast	John	MacFarlane,	the	main	author	of	Pandoc,	responds	to	my	GitHub	issues.	It	is
hard	to	imagine	a	person	dealing	with	5000	GitHub	issues	over	the	years	while	maintaining	the	excellent
open-source	package	and	driving	the	Markdown	standards	forward.	We	should	all	be	grateful	to	John	and
contributors	of	Pandoc.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://yihui.name/en/2018/02/career-crisis/
http://mikeyharper.uk/
file:///home/me/bookdown.org/yihui/rmarkdown/books.html#books
file:///home/me/bookdown.org/yihui/rmarkdown/journals.html#journals
file:///home/me/bookdown.org/yihui/rmarkdown/parameterized-reports.html#parameterized-reports
file:///home/me/bookdown.org/yihui/rmarkdown/document-templates.html#document-templates
file:///home/me/bookdown.org/yihui/rmarkdown/new-formats.html#new-formats
http://home.uchicago.edu/~xuqin/
https://d.cosx.org/d/419325
https://yihui.name/en/2017/08/so-gh-email/
https://yihui.name/en/2018/01/thanks-marcel-schilling/
https://shrektan.com/
https://github.com/cderv
https://www.garrickadenbuie.com/
https://github.com/rstudio/rmarkdown/graphs/contributors
https://www.jaredlander.com/2017/07/fullscreen-background-images-in-ioslides-presentations/
https://github.com/jgm/pandoc

As	I	was	working	on	the	draft	of	this	book,	I	received	a	lot	of	helpful	reviews	from	these	reviewers:	John
Gillett	(University	of	Wisconsin),	Rose	Hartman	(UnderstandingData),	Amelia	McNamara	(Smith	College),
Ariel	Muldoon	(Oregon	State	University),	Yixuan	Qiu	(Purdue	University),	Benjamin	Soltoff	(University	of
Chicago),	David	Whitney	(University	of	Washington),	and	Jon	Katz	(independent	data	analyst).	Tareef
Kawaf	(RStudio)	also	volunteered	to	read	the	manuscript	and	provided	many	helpful	comments.	Aaron
Simumba,	Peter	Baumgartner,	and	Daijiang	Li	volunteered	to	carefully	correct	many	of	my	typos.	In
particular,	Aaron	has	been	such	a	big	helper	with	my	writing	(not	limited	to	only	this	book)	and	sometimes	I
have	to	compete	with	him	in	correcting	my	typos!

There	are	many	colleagues	at	RStudio	whom	I	want	to	thank	for	making	it	so	convenient	and	even
enjoyable	to	author	R	Markdown	documents,	especially	the	RStudio	IDE	team	including	J.J.	Allaire,	Kevin
Ushey,	Jonathan	McPherson,	and	many	others.

Personally	I	often	feel	motivated	by	members	of	the	R	community.	My	own	willpower	is	weak,	but	I	can
gain	a	lot	of	power	from	this	amazing	community.	Overall	the	community	is	very	encouraging,	and
sometimes	even	fun,	which	makes	me	enjoy	my	job.	For	example,	I	do	not	think	you	can	often	use	the
picture	of	a	professor	for	fun	in	your	software,	but	the	“desiccated	baseR-er”	Karl	Broman	is	an	exception
(see	Section	7.3.6),	as	he	allowed	me	to	use	a	mysteriously	happy	picture	of	him.

Lastly,	I	want	to	thank	my	editor,	John	Kimmel,	for	his	continued	help	with	my	fourth	book.	I	think	I	have
said	enough	about	him	and	his	team	at	Chapman	&	Hall	in	my	previous	books.	The	publishing	experience
has	always	been	so	smooth.	I	just	wonder	if	it	would	be	possible	someday	that	our	meticulous	copy-editor,
Suzanne	Lassandro,	would	fail	to	identify	more	than	30	issues	for	me	to	correct	in	my	first	draft.	Probably
not.	Let’s	see.

Yihui	Xie
Elkhorn,	Nebraska

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://asimumba.rbind.io/
http://peter.baumgartner.name/
https://daijiang.name/
https://github.com/rbind/yihui/commit/d8f39f7aa
https://twitter.com/kwbroman/status/922545181634768897
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan-format.html#yolo-true

About	the	Authors

This	book	is	primarily	put	together	by	me	(Yihui	Xie),	making	use	of	the	existing	R	documentation	of	the
rmarkdown	package	and	the	rmarkdown	website,	which	were	mainly	contributed	by	J.J.	Allaire	and	Garrett
Grolemund.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

Yihui	Xie

Yihui	Xie	(https://yihui.name)	is	a	software	engineer	at	RStudio	(https://www.rstudio.com).	He	earned	his
PhD	from	the	Department	of	Statistics,	Iowa	State	University.	He	is	interested	in	interactive	statistical
graphics	and	statistical	computing.	As	an	active	R	user,	he	has	authored	several	R	packages,	such	as
knitr,	bookdown,	blogdown,	xaringan,	tinytex,	animation,	DT,	tufte,	formatR,	fun,	xfun,	mime,	highr,	servr,
and	Rd2roxygen,	among	which	the	animation	package	won	the	2009	John	M.	Chambers	Statistical
Software	Award	(ASA).	He	also	co-authored	a	few	other	R	packages,	including	shiny,	rmarkdown,	and
leaflet.

He	has	authored	two	books,	Dynamic	Documents	with	knitr	(Xie	2015),	and	bookdown:	Authoring	Books
and	Technical	Documents	with	R	Markdown	(Xie	2016),	and	co-authored	the	book,	blogdown:	Creating
Websites	with	R	Markdown	(Xie,	Hill,	and	Thomas	2017).

In	2006,	he	founded	the	Capital	of	Statistics	(https://cosx.org),	which	has	grown	into	a	large	online
community	on	statistics	in	China.	He	initiated	the	Chinese	R	conference	in	2008,	and	has	been	involved	in
organizing	R	conferences	in	China	since	then.	During	his	PhD	training	at	Iowa	State	University,	he	won	the
Vince	Sposito	Statistical	Computing	Award	(2011)	and	the	Snedecor	Award	(2012)	in	the	Department	of
Statistics.

He	occasionally	rants	on	Twitter	(https://twitter.com/xieyihui),	and	most	of	the	time	you	can	find	him	on
GitHub	(https://github.com/yihui).

He	enjoys	spicy	food	as	much	as	classical	Chinese	literature.

References

Xie,	Yihui.	2015.	Dynamic	Documents	with	R	and	Knitr.	2nd	ed.	Boca	Raton,	Florida:	Chapman;	Hall/CRC.
https://yihui.name/knitr/.

Xie,	Yihui.	2016.	Bookdown:	Authoring	Books	and	Technical	Documents	with	R	Markdown.	Boca	Raton,
Florida:	Chapman;	Hall/CRC.	https://github.com/rstudio/bookdown.

Xie,	Yihui,	Alison	Presmanes	Hill,	and	Amber	Thomas.	2017.	Blogdown:	Creating	Websites	with	R
Markdown.	Boca	Raton,	Florida:	Chapman;	Hall/CRC.	https://github.com/rstudio/blogdown.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://yihui.name/
https://www.rstudio.com/
file:///home/me/bookdown.org/yihui/rmarkdown/yihui-xie.html#ref-xie2015
file:///home/me/bookdown.org/yihui/rmarkdown/yihui-xie.html#ref-xie2016
file:///home/me/bookdown.org/yihui/rmarkdown/yihui-xie.html#ref-xie2017
https://cosx.org/
https://twitter.com/xieyihui
https://github.com/yihui
https://yihui.name/knitr/
https://github.com/rstudio/bookdown
https://github.com/rstudio/blogdown

J.J.	Allaire

J.J.	Allaire	is	the	founder	of	RStudio	and	the	creator	of	the	RStudio	IDE.	J.J.	is	an	author	of	several
packages	in	the	R	Markdown	ecosystem	including	rmarkdown,	flexdashboard,	learnr,	and	radix.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

Garrett	Grolemund

Garrett	Grolemund	is	the	co-author	of	R	for	Data	Science	and	author	of	Hands-On	Programming	with	R.
He	wrote	the	lubridate	R	package	and	works	for	RStudio	as	an	advocate	who	trains	engineers	to	do	data
science	with	R	and	the	Tidyverse.	If	you	use	R	yourself,	you	may	recognize	Garrett	from	his	video	courses
on	Datacamp.com	and	O’Reilly	media,	or	for	his	series	of	popular	R	cheatsheets	distributed	by	RStudio.

Garrett	earned	his	PhD	in	Statistics	from	Rice	University	in	2012	under	the	guidance	of	Hadley	Wickham.
Before	that,	he	earned	a	Bachelor’s	degree	in	Psychology	from	Harvard	University	and	briefly	attended
law	school.	Garrett	has	been	one	of	the	foremost	promoters	of	Shiny,	R	Markdown,	and	the	Tidyverse,
documenting	and	explaining	each	in	detail.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

Chapter	1 	Installation

We	assume	you	have	already	installed	R	(https://www.r-project.org)	(R	Core	Team	2018)	and	the	RStudio
IDE	(https://www.rstudio.com).	RStudio	is	not	required	but	recommended,	because	it	makes	it	easier	for
an	average	user	to	work	with	R	Markdown.	If	you	do	not	have	RStudio	IDE	installed,	you	will	have	to	install
Pandoc	(http://pandoc.org),	otherwise	there	is	no	need	to	install	Pandoc	separately	because	RStudio	has
bundled	it.	Next	you	can	install	the	rmarkdown	package	in	R:

If	you	want	to	generate	PDF	output,	you	will	need	to	install	LaTeX.	For	R	Markdown	users	who	have	not
installed	LaTeX	before,	we	recommend	that	you	install	TinyTeX	(https://yihui.name/tinytex/):

TinyTeX	is	a	lightweight,	portable,	cross-platform,	and	easy-to-maintain	LaTeX	distribution.	The	R
companion	package	tinytex	(Xie	2018f)	can	help	you	automatically	install	missing	LaTeX	packages	when
compiling	LaTeX	or	R	Markdown	documents	to	PDF,	and	also	ensures	a	LaTeX	document	is	compiled	for
the	correct	number	of	times	to	resolve	all	cross-references.	If	you	do	not	understand	what	these	two	things
mean,	you	should	probably	follow	our	recommendation	to	install	TinyTeX,	because	these	details	are	often
not	worth	your	time	or	attention.

With	the	rmarkdown	package,	RStudio/Pandoc,	and	LaTeX,	you	should	be	able	to	compile	most	R
Markdown	documents.	In	some	cases,	you	may	need	other	software	packages,	and	we	will	mention	them
when	necessary.

References

R	Core	Team.	2018.	R:	A	Language	and	Environment	for	Statistical	Computing.	Vienna,	Austria:	R
Foundation	for	Statistical	Computing.	https://www.R-project.org/.

Xie,	Yihui.	2018f.	Tinytex:	Helper	Functions	to	Install	and	Maintain	Tex	Live,	and	Compile	Latex
Documents.	https://CRAN.R-project.org/package=tinytex.

#	Install	from	CRAN

install.packages('rmarkdown')

#	Or	if	you	want	to	test	the	development	version,

#	install	from	GitHub

if	(!requireNamespace("devtools"))

		install.packages('devtools')

devtools::install_github('rstudio/rmarkdown')

install.packages("tinytex")

tinytex::install_tinytex()		#	install	TinyTeX

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.r-project.org/
file:///home/me/bookdown.org/yihui/rmarkdown/installation.html#ref-R-base
https://www.rstudio.com/
http://pandoc.org/
https://yihui.name/tinytex/
file:///home/me/bookdown.org/yihui/rmarkdown/installation.html#ref-R-tinytex
file:///home/me/bookdown.org/yihui/rmarkdown/installation.html#ref-R-tinytex
https://www.r-project.org/
https://cran.r-project.org/package=tinytex

Chapter	2 	Basics

R	Markdown	provides	an	authoring	framework	for	data	science.	You	can	use	a	single	R	Markdown	file	to
both

save	and	execute	code,	and

generate	high	quality	reports	that	can	be	shared	with	an	audience.

R	Markdown	was	designed	for	easier	reproducibility,	since	both	the	computing	code	and	narratives	are	in
the	same	document,	and	results	are	automatically	generated	from	the	source	code.	R	Markdown	supports
dozens	of	static	and	dynamic/interactive	output	formats.

If	you	prefer	a	video	introduction	to	R	Markdown,	we	recommend	that	you	check	out	the	website
https://rmarkdown.rstudio.com,	and	watch	the	videos	in	the	“Get	Started”	section,	which	cover	the	basics
of	R	Markdown.

Below	is	a	minimal	R	Markdown	document,	which	should	be	a	plain-text	file,	with	the	conventional
extension	 	.Rmd	:

You	can	create	such	a	text	file	with	any	editor	(including	but	not	limited	to	RStudio).	If	you	use	RStudio,
you	can	create	a	new	Rmd	file	from	the	menu		File	->	New	File	->	R	Markdown	.

There	are	three	basic	components	of	an	R	Markdown	document:	the	metadata,	text,	and	code.	The
metadata	is	written	between	the	pair	of	three	dashes		---	.	The	syntax	for	the	metadata	is	YAML	(YAML
Ain’t	Markup	Language,	https://en.wikipedia.org/wiki/YAML),	so	sometimes	it	is	also	called	the	YAML

title:	"Hello	R	Markdown"

author:	"Awesome	Me"

date:	"2018-02-14"

output:	html_document

This	is	a	paragraph	in	an	R	Markdown	document.

Below	is	a	code	chunk:

```{r}

fit	=	lm(dist	~	speed,	data	=	cars)

b			=	coef(fit)

plot(cars)

abline(fit)

```

The	slope	of	the	regression	is	`r	b[1]`.

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://rmarkdown.rstudio.com/
https://en.wikipedia.org/wiki/YAML


metadata	or	the	YAML	frontmatter.	Before	it	bites	you	hard,	we	want	to	warn	you	in	advance	that
indentation	matters	in	YAML,	so	do	not	forget	to	indent	the	sub-fields	of	a	top	field	properly.	See	the
Appendix	B.2	of	Xie	(2016)	for	a	few	simple	examples	that	show	the	YAML	syntax.

The	body	of	a	document	follows	the	metadata.	The	syntax	for	text	(also	known	as	prose	or	narratives)	is
Markdown,	which	is	introduced	in	Section	2.5.	There	are	two	types	of	computer	code,	which	are	explained
in	detail	in	Section	2.6:

A	code	chunk	starts	with	three	backticks	like	 	̀ ``{r}		where	 	r		indicates	the	language	name, 	and
ends	with	three	backticks.	You	can	write	chunk	options	in	the	curly	braces	(e.g.,	set	the	figure	height
to	5	inches:	 	̀ ``{r,	fig.height=5}	).

An	inline	R	code	expression	starts	with	 	̀ r		and	ends	with	a	backtick	 	̀ 	.

Figure	2.1	shows	the	above	example	in	the	RStudio	IDE.	You	can	click	the		Knit		button	to	compile	the
document	(to	an	HTML	page).	Figure	2.2	shows	the	output	in	the	RStudio	Viewer.

FIGURE	2.1:	A	minimal	R	Markdown	example	in	RStudio.

1

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://bookdown.org/yihui/bookdown/r-markdown.html
file:///home/me/bookdown.org/yihui/rmarkdown/basics.html#ref-xie2016
file:///home/me/bookdown.org/yihui/rmarkdown/markdown-syntax.html#markdown-syntax
file:///home/me/bookdown.org/yihui/rmarkdown/r-code.html#r-code
file:///home/me/bookdown.org/yihui/rmarkdown/basics.html#fn1
file:///home/me/bookdown.org/yihui/rmarkdown/basics.html#fig:hello-rmd
file:///home/me/bookdown.org/yihui/rmarkdown/basics.html#fig:hello-rmd-out


FIGURE	2.2:	The	output	document	of	the	minimal	R	Markdown	example	in	RStudio.

Now	please	take	a	closer	look	at	the	example.	Did	you	notice	a	problem?	The	object		b		is	the	vector	of
coefficients	of	length	2	from	the	linear	regression;		b[1]		is	actually	the	intercept,	and		b[2]		is	the	slope!
This	minimal	example	shows	you	why	R	Markdown	is	great	for	reproducible	research:	it	includes	the
source	code	right	inside	the	document,	which	makes	it	easy	to	discover	and	fix	problems,	as	well	as
update	the	output	document.	All	you	have	to	do	is	change		b[1]		to	 	b[2]	,	and	click	the		Knit		button
again.	Had	you	copied	a	number		-17.579		computed	elsewhere	into	this	document,	it	would	be	very
difficult	to	realize	the	problem.	In	fact,	I	had	used	this	example	a	few	times	by	myself	in	my	presentations
before	I	discovered	this	problem	during	one	of	my	talks,	but	I	discovered	it	anyway.

Although	the	above	is	a	toy	example,	it	could	become	a	horror	story	if	it	happens	in	scientific	research	that
was	not	done	in	a	reproducible	way	(e.g.,	cut-and-paste).	Here	are	two	of	my	personal	favorite	videos	on
this	topic:

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


“A	reproducible	workflow”	by	Ignasi	Bartomeus	and	Francisco	Rodríguez-Sánchez
(https://youtu.be/s3JldKoA0zw).	It	is	a	2-min	video	that	looks	artistic	but	also	shows	very	common	and
practical	problems	in	data	analysis.

a	reproducible	workflow

“The	Importance	of	Reproducible	Research	in	High-Throughput	Biology”	by	Keith	Baggerly
(https://youtu.be/7gYIs7uYbMo).	You	will	be	impressed	by	both	the	content	and	the	style	of	this
lecture.	Keith	Baggerly	and	Kevin	Coombes	were	the	two	notable	heroes	in	revealing	the	Duke/Potti
scandal,	which	was	described	as	“one	of	the	biggest	medical	research	frauds	ever”	by	the	television
program	“60	Minutes”.

The	Importance	of	Reproducible	Research	in	High-Throughput	Biology

It	is	fine	for	humans	to	err	(in	computing),	as	long	as	the	source	code	is	readily	available.

References

Xie,	Yihui.	2016.	Bookdown:	Authoring	Books	and	Technical	Documents	with	R	Markdown.	Boca	Raton,
Florida:	Chapman;	Hall/CRC.	https://github.com/rstudio/bookdown.

1.	 It	is	not	limited	to	the	R	language;	see	Section	2.7	for	how	to	use	other	languages.↩

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.youtube.com/watch?v=s3JldKoA0zw
https://www.youtube.com/watch?v=7gYIs7uYbMo
https://youtu.be/s3JldKoA0zw
https://youtu.be/7gYIs7uYbMo
https://en.wikipedia.org/wiki/Anil_Potti
https://github.com/rstudio/bookdown
file:///home/me/bookdown.org/yihui/rmarkdown/language-engines.html#language-engines
file:///home/me/bookdown.org/yihui/rmarkdown/basics.html#fnref1


https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


2.1 	Example	applications

Now	you	have	learned	the	very	basic	concepts	of	R	Markdown.	The	idea	should	be	simple	enough:
interweave	narratives	with	code	in	a	document,	knit	the	document	to	dynamically	generate	results	from	the
code,	and	you	will	get	a	report.	This	idea	was	not	invented	by	R	Markdown,	but	came	from	an	early
programming	paradigm	called	“Literate	Programming”	(Knuth	1984).

Due	to	the	simplicity	of	Markdown	and	the	powerful	R	language	for	data	analysis,	R	Markdown	has	been
widely	used	in	many	areas.	Before	we	dive	into	the	technical	details,	we	want	to	show	some	examples	to
give	you	an	idea	of	its	possible	applications.

2.1.1 	Airbnb’s	knowledge	repository

Airbnb	uses	R	Markdown	to	document	all	their	analyses	in	R,	so	they	can	combine	code	and	data
visualizations	in	a	single	report	(Bion,	Chang,	and	Goodman	2018).	Eventually	all	reports	are	carefully
peer-reviewed	and	published	to	a	company	knowledge	repository,	so	that	anyone	in	the	company	can
easily	find	analyses	relevant	to	their	team.	Data	scientists	are	also	able	to	learn	as	much	as	they	want
from	previous	work	or	reuse	the	code	written	by	previous	authors,	because	the	full	R	Markdown	source	is
available	in	the	repository.

2.1.2 	Homework	assignments	on	RPubs

A	huge	number	of	homework	assignments	have	been	published	to	the	website	https://RPubs.com	(a	free
publishing	platform	provided	by	RStudio),	which	shows	that	R	Markdown	is	easy	and	convenient	enough
for	students	to	do	their	homework	assignments	(see	Figure	2.3).	When	I	was	still	a	student,	I	did	most	of
my	homework	assignments	using	Sweave,	which	was	a	much	earlier	implementation	of	literate
programming	based	on	the	S	language	(later	R)	and	LaTeX.	I	was	aware	of	the	importance	of	reproducible
research	but	did	not	enjoy	LaTeX,	and	few	of	my	classmates	wanted	to	use	Sweave.	Right	after	I
graduated,	R	Markdown	was	born,	and	it	has	been	great	to	see	so	many	students	do	their	homework	in
the	reproducible	manner.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/basics-examples.html#ref-knuth1984
file:///home/me/bookdown.org/yihui/rmarkdown/basics-examples.html#ref-bion2018
https://rpubs.com/
file:///home/me/bookdown.org/yihui/rmarkdown/basics-examples.html#fig:rpubs


FIGURE	2.3:	A	screenshot	of	RPubs.com	that	contains	some	homework	assginments	submitted	by
students.

In	a	2016	JSM	(Joint	Statistical	Meetings)	talk,	I	proposed	that	course	instructors	could	sometimes
intentionally	insert	some	wrong	values	in	the	source	data	before	providing	it	to	the	students	for	them	to
analyze	the	data	in	the	homework,	then	correct	these	values	the	next	time,	and	ask	them	to	do	the
analysis	again.	This	way,	students	should	be	able	to	realize	the	problems	with	the	traditional	cut-and-paste
approach	for	data	analysis	(i.e.,	run	the	analysis	separately	and	copy	the	results	manually),	and	the
advantage	of	using	R	Markdown	to	automatically	generate	the	report.

2.1.3 	Personalized	mail

One	thing	you	should	remember	about	R	Markdown	is	that	you	can	programmatically	generate	reports,
although	most	of	the	time	you	may	be	just	clicking	the		Knit		button	in	RStudio	to	generate	a	single	report
from	a	single	source	document.	Being	able	to	program	reports	is	a	super	power	of	R	Markdown.

Mine	Çetinkaya-Rundel	once	wanted	to	create	personalized	handouts	for	her	workshop	participants.	She
used	a	template	R	Markdown	file,	and	knitted	it	in	a	for-loop	to	generate	20	PDF	files	for	the	20
participants.	Each	PDF	contained	both	personalized	information	and	common	information.	You	may	read
the	article	https://rmarkdown.rstudio.com/articles_mail_merge.html	for	the	technical	details.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://rmarkdown.rstudio.com/articles_mail_merge.html


2.1.4 	2017	Employer	Health	Benefits	Survey

The	2017	Employer	Health	Benefits	Survey	was	designed	and	analyzed	by	the	Kaiser	Family	Foundation,
NORC	at	the	University	of	Chicago,	and	Health	Research	&	Educational	Trust.	The	full	PDF	report	was
written	in	R	Markdown	(with	the	bookdown	package).	It	has	a	unique	appearance,	which	was	made
possible	by	heavy	customizations	in	the	LaTeX	template.	This	example	shows	you	that	if	you	really	care
about	typesetting,	you	are	free	to	apply	your	knowledge	about	LaTeX	to	create	highly	sophisticated	reports
from	R	Markdown.

2.1.5 	Journal	articles

Chris	Hartgerink	explained	how	and	why	he	used	R	Markdown	to	write	dynamic	research	documents	in	the
post	at	https://elifesciences.org/labs/cad57bcf/composing-reproducible-manuscripts-using-r-markdown.
He	published	a	paper	titled	“Too	Good	to	be	False:	Nonsignificant	Results	Revisited”	with	two	co-authors
(Hartgerink,	Wicherts,	and	Assen	2017).	The	manuscript	was	written	in	R	Markdown,	and	results	were
dynamically	generated	from	the	code	in	R	Markdown.

When	checking	the	accuracy	of	P-values	in	the	psychology	literature,	his	colleagues	and	he	found	that	P-
values	could	be	mistyped	or	miscalculated,	which	could	lead	to	inaccurate	or	even	wrong	conclusions.	If
the	P-values	were	dynamically	generated	and	inserted	instead	of	being	manually	copied	from	statistical
programs,	the	chance	for	those	problems	to	exist	would	be	much	lower.

Lowndes	et	al.	(2017)	also	shows	that	using	R	Markdown	(and	version	control)	not	only	enhances
reproducibility,	but	also	produces	better	scientific	research	in	less	time.

2.1.6 	Dashboards	at	eelloo

R	Markdown	is	used	at	eelloo	(https://eelloo.nl)	to	design	and	generate	research	reports.	Here	is	one	of
their	examples	(in	Dutch):	https://eelloo.nl/groepsrapportages-met-infographics/,	where	you	can	find
gauges,	bar	charts,	pie	charts,	wordclouds,	and	other	types	of	graphs	dynamically	generated	and
embedded	in	dashboards.

2.1.7 	Books

We	will	introduce	the	R	Markdown	extension	bookdown	in	Chapter	12.	It	is	an	R	package	that	allows	you
to	write	books	and	long-form	reports	with	multiple	Rmd	files.	After	this	package	was	published,	a	large
number	of	books	have	emerged.	You	can	find	a	subset	of	them	at	https://bookdown.org.	Some	of	these
books	have	been	printed,	and	some	only	have	free	online	versions.

There	have	also	been	students	who	wrote	their	dissertations/theses	with	bookdown,	such	as	Ed	Berry:
https://eddjberry.netlify.com/post/writing-your-thesis-with-bookdown/.	Chester	Ismay	has	even	provided	an
R	package	thesisdown	(https://github.com/ismayc/thesisdown)	that	can	render	a	thesis	in	various	formats.
Several	other	people	have	customized	this	package	for	their	own	institutions,	such	as	Zhian	N.	Kamvar’s
beaverdown	(https://github.com/zkamvar/beaverdown)	and	Ben	Marwick’s	huskydown
(https://github.com/benmarwick/huskydown).

2.1.8 	Websites

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.kff.org/health-costs/report/2017-employer-health-benefits-survey/
https://elifesciences.org/labs/cad57bcf/composing-reproducible-manuscripts-using-r-markdown
file:///home/me/bookdown.org/yihui/rmarkdown/basics-examples.html#ref-hartgerink2017
file:///home/me/bookdown.org/yihui/rmarkdown/basics-examples.html#ref-lowndes2017
https://eelloo.nl/
https://eelloo.nl/groepsrapportages-met-infographics/
file:///home/me/bookdown.org/yihui/rmarkdown/books.html#books
https://bookdown.org/
https://eddjberry.netlify.com/post/writing-your-thesis-with-bookdown/
https://github.com/ismayc/thesisdown
https://github.com/zkamvar/beaverdown
https://github.com/benmarwick/huskydown


The	blogdown	package	to	be	introduced	in	Chapter	10	can	be	used	to	build	general-purpose	websites
(including	blogs	and	personal	websites)	based	on	R	Markdown.	You	may	find	tons	of	examples	at
https://github.com/rbind	or	by	searching	on	Twitter:	https://twitter.com/search?q=blogdown.	Here	are	a	few
impressive	websites	that	I	can	quickly	think	of	off	the	top	of	my	head:

Rob	J	Hyndman’s	personal	website:	https://robjhyndman.com	(a	very	comprehensive	academic
website).

Amber	Thomas’s	personal	website:	https://amber.rbind.io	(a	rich	project	portfolio).

Emi	Tanaka’s	personal	website:	https://emitanaka.github.io	(in	particular,	check	out	the	beautiful
showcase	page).

“Live	Free	or	Dichotomize”	by	Nick	Strayer	and	Lucy	D’Agostino	McGowan:
http://livefreeordichotomize.com	(the	layout	is	elegant,	and	the	posts	are	useful	and	practical).

References

Knuth,	Donald	E.	1984.	“Literate	Programming.”	The	Computer	Journal	27	(2).	British	Computer	Society:
97–111.

Bion,	Ricardo,	Robert	Chang,	and	Jason	Goodman.	2018.	“How	R	Helps	Airbnb	Make	the	Most	of	Its
Data.”	The	American	Statistician	72	(1).	Taylor	&	Francis:	46–52.
https://doi.org/10.1080/00031305.2017.1392362.

Hartgerink,	Chris	HJ,	Jelte	M	Wicherts,	and	Marcel	ALM	van	Assen.	2017.	“Too	Good	to	Be	False:
Nonsignificant	Results	Revisited.”	Collabra:	Psychology	3	(1).	The	Regents	of	the	University	of	California.

Lowndes,	Julia	S	Stewart,	Benjamin	D	Best,	Courtney	Scarborough,	Jamie	C	Afflerbach,	Melanie	R
Frazier,	Casey	C	O’Hara,	Ning	Jiang,	and	Benjamin	S	Halpern.	2017.	“Our	Path	to	Better	Science	in	Less
Time	Using	Open	Data	Science	Tools.”	Nature	Ecology	&	Evolution	1	(6).	Nature	Publishing	Group.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/websites.html#websites
https://github.com/rbind
https://twitter.com/search?q=blogdown
https://robjhyndman.com/
https://amber.rbind.io/
https://emitanaka.github.io/
http://livefreeordichotomize.com/
https://doi.org/10.1080/00031305.2017.1392362


2.2 	Compile	an	R	Markdown	document

The	usual	way	to	compile	an	R	Markdown	document	is	to	click	the		Knit		button	as	shown	in	Figure	2.1,
and	the	corresponding	keyboard	shortcut	is		Ctrl	+	Shift	+	K		( 	Cmd	+	Shift	+	K		on	macOS).	Under
the	hood,	RStudio	calls	the	function		rmarkdown::render()		to	render	the	document	in	a	new	R	session.
Please	note	the	emphasis	here,	which	often	confuses	R	Markdown	users.	Rendering	an	Rmd	document	in
a	new	R	session	means	that	none	of	the	objects	in	your	current	R	session	(e.g.,	those	you	created	in	your
R	console)	are	available	to	that	session. 	Reproducibility	is	the	main	reason	that	RStudio	uses	a	new	R
session	to	render	your	Rmd	documents:	in	most	cases,	you	may	want	your	documents	to	continue	to	work
the	next	time	you	open	R,	or	in	other	people’s	computing	environments.	See	this	StackOverflow	answer	if
you	want	to	know	more.

If	you	must	render	a	document	in	the	current	R	session,	you	can	also	call		rmarkdown::render()		by
yourself,	and	pass	the	path	of	the	Rmd	file	to	this	function.	The	second	argument	of	this	function	is	the
output	format,	which	defaults	to	the	first	output	format	you	specify	in	the	YAML	metadata	(if	it	is	missing,
the	default	is	 	html_document	).	When	you	have	multiple	output	formats	in	the	metadata,	and	do	not	want
to	use	the	first	one,	you	can	specify	the	one	you	want	in	the	second	argument,	e.g.,	for	an	Rmd	document
	foo.Rmd		with	the	metadata:

You	can	render	it	to	PDF	via:

The	function	call	gives	you	much	more	freedom	(e.g.,	you	can	generate	a	series	of	reports	in	a	loop),	but
you	should	bear	reproducibility	in	mind	when	you	render	documents	this	way.	Of	course,	you	can	start	a
new	and	clean	R	session	by	yourself,	and	call		rmarkdown::render()		in	that	session.	As	long	as	you	do
not	manually	interact	with	that	session	(e.g.,	manually	creating	variables	in	the	R	console),	your	reports
should	be	reproducible.

Another	main	way	to	work	with	Rmd	documents	is	the	R	Markdown	Notebooks,	which	will	be	introduced	in
Section	3.2.	With	notebooks,	you	can	run	code	chunks	individually	and	see	results	right	inside	the	RStudio
editor.	This	is	a	convenient	way	to	interact	or	experiment	with	code	in	an	Rmd	document,	because	you	do
not	have	to	compile	the	whole	document.	Without	using	the	notebooks,	you	can	still	partially	execute	code
chunks,	but	the	execution	only	occurs	in	the	R	console,	and	the	notebook	interface	presents	results	of
code	chunks	right	beneath	the	chunks	in	the	editor,	which	can	be	a	great	advantage.	Again,	for	the	sake	of
reproducibility,	you	will	need	to	compile	the	whole	document	eventually	in	a	clean	environment.

Lastly,	I	want	to	mention	an	“unofficial”	way	to	compile	Rmd	documents:	the	function
	xaringan::inf_mr()	,	or	equivalently,	the	RStudio	addin	“Infinite	Moon	Reader”.	Obviously,	this	requires
you	to	install	the	xaringan	package	(Xie	2018g),	which	is	available	on	CRAN.	The	main	advantage	of	this
way	is	LiveReload:	a	technology	that	enables	you	to	live	preview	the	output	as	soon	as	you	save	the
source	document,	and	you	do	not	need	to	hit	the		Knit		button.	The	other	advantage	is	that	it	compiles

2

output:

		html_document:

				toc:	true

		pdf_document:

				keep_tex:	true

rmarkdown::render('foo.Rmd',	'pdf_document')

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/basics.html#fig:hello-rmd
file:///home/me/bookdown.org/yihui/rmarkdown/compile.html#fn2
https://stackoverflow.com/a/48494678/559676
file:///home/me/bookdown.org/yihui/rmarkdown/notebook.html#notebook
file:///home/me/bookdown.org/yihui/rmarkdown/compile.html#ref-R-xaringan
file:///home/me/bookdown.org/yihui/rmarkdown/compile.html#ref-R-xaringan


the	Rmd	document	in	the	current	R	session,	which	may	or	may	not	be	what	you	desire.	Note	that	this
method	only	works	for	Rmd	documents	that	output	to	HTML,	including	HTML	documents	and
presentations.

A	few	R	Markdown	extension	packages,	such	as	bookdown	and	blogdown,	have	their	own	way	of
compiling	documents,	and	we	will	introduce	them	later.

Note	that	it	is	also	possible	to	render	a	series	of	reports	instead	of	single	one	from	a	single	R	Markdown
source	document.	You	can	parameterize	an	R	Markdown	document,	and	generate	different	reports	using
different	parameters.	See	Chapter	15	for	details.

References

Xie,	Yihui.	2018g.	Xaringan:	Presentation	Ninja.	https://CRAN.R-project.org/package=xaringan.

2.	 This	is	not	strictly	true,	but	mostly	true.	You	may	save	objects	in	your	current	R	session	to	a	file,	e.g.,
	.RData	,	and	load	it	in	a	new	R	session.↩

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/parameterized-reports.html#parameterized-reports
https://cran.r-project.org/package=xaringan
file:///home/me/bookdown.org/yihui/rmarkdown/compile.html#fnref2


2.3 	Cheat	sheets

RStudio	has	created	a	large	number	of	cheat	sheets,	including	the	one-page	R	Markdown	cheat	sheet,
which	are	freely	available	at	https://www.rstudio.com/resources/cheatsheets/.	There	is	also	a	more
detailed	R	Markdown	reference	guide.	Both	documents	can	be	used	as	quick	references	after	you	become
more	familiar	with	R	Markdown.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.rstudio.com/resources/cheatsheets/


2.4 	Output	formats

There	are	two	types	of	output	formats	in	the	rmarkdown	package:	documents,	and	presentations.	All
available	formats	are	listed	below:

	beamer_presentation	

	github_document	

	html_document	

	ioslides_presentation	

	latex_document	

	md_document	

	odt_document	

	pdf_document	

	powerpoint_presentation	

	rtf_document	

	slidy_presentation	

	word_document	

We	will	document	these	output	formats	in	detail	in	Chapters	3	and	4.	There	are	more	output	formats
provided	in	other	extension	packages	(starting	from	Chapter	5).	For	the	output	format	names	in	the	YAML
metadata	of	an	Rmd	file,	you	need	to	include	the	package	name	if	a	format	is	from	an	extension	package,
e.g.,

If	the	format	is	from	the	rmarkdown	package,	you	do	not	need	the		rmarkdown::		prefix	(although	it	will
not	hurt).

When	there	are	multiple	output	formats	in	a	document,	there	will	be	a	dropdown	menu	behind	the	RStudio
	Knit		button	that	lists	the	output	format	names	(Figure	2.4).

FIGURE	2.4:	The	output	formats	listed	in	the	dropdown	menu	on	the	RStudio	toolbar.

Each	output	format	is	often	accompanied	with	several	format	options.	All	these	options	are	documented
on	the	R	package	help	pages.	For	example,	you	can	type		?rmarkdown::html_document		in	R	to	open	the
help	page	of	the		html_document		format.	When	you	want	to	use	certain	options,	you	have	to	translate

output:	tufte::tufte_html

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/documents.html#documents
file:///home/me/bookdown.org/yihui/rmarkdown/presentations.html#presentations
file:///home/me/bookdown.org/yihui/rmarkdown/dashboards.html#dashboards
file:///home/me/bookdown.org/yihui/rmarkdown/output-formats.html#fig:format-dropdown


the	values	from	R	to	YAML,	e.g.,

can	be	written	in	YAML	as:

The	translation	is	often	straightforward.	Remember	that	R’s		TRUE	,	 	FALSE	,	and	 	NULL		are	 	true	,
	false	,	and	 	null	,	respectively,	in	YAML.	Character	strings	in	YAML	often	do	not	require	the	quotes
(e.g.,	 	dev:	'svg'		and	 	dev:	svg		are	the	same),	unless	they	contain	special	characters,	such	as	the
colon	 	:	.	If	you	are	not	sure	if	a	string	should	be	quoted	or	not,	test	it	with	the	yaml	package,	e.g.,

Note	that	the	subtitle	in	the	above	example	is	quoted	because	of	the	colon.

If	a	certain	option	has	sub-options	(which	means	the	value	of	this	option	is	a	list	in	R),	the	sub-options
need	to	be	further	indented,	e.g.,

Some	options	are	passed	to	knitr,	such	as	 	dev	,	 	fig_width	,	and	 	fig_height	.	Detailed
documentation	of	these	options	can	be	found	on	the	knitr	documentation	page:
https://yihui.name/knitr/options/.	Note	that	the	actual	knitr	option	names	can	be	different.	In	particular,	knitr
uses	 	.		in	names,	but	rmarkdown	uses	 	_	,	e.g.,	 	fig_width		in	rmarkdown	corresponds	to
	fig.width		in	knitr.	We	apologize	for	the	inconsistencies—programmers	often	strive	for	consistencies	in
their	own	world,	yet	one	standard	plus	one	standard	often	equals	three	standards.	If	I	were	to	design	the
knitr	package	again,	I	would	definitely	use		_	.

Some	options	are	passed	to	Pandoc,	such	as		toc	,	 	toc_depth	,	and	 	number_sections	.	You	should
consult	the	Pandoc	documentation	when	in	doubt.	R	Markdown	output	format	functions	often	have	a
	pandoc_args		argument,	which	should	be	a	character	vector	of	extra	arguments	to	be	passed	to	Pandoc.

html_document(toc	=	TRUE,	toc_depth	=	2,	dev	=	'svg')

output:

		html_document:

				toc:	true

				toc_depth:	2

				dev:	'svg'

cat(yaml::as.yaml(list(

		title	=	'A	Wonderful	Day',

		subtitle	=	'hygge:	a	quality	of	coziness'

)))

title:	A	Wonderful	Day

subtitle:	'hygge:	a	quality	of	coziness'

output:

		html_document:

				toc:	true

				includes:

						in_header:	header.html

						before_body:	before.html

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://yihui.name/knitr/options/
https://xkcd.com/927/


If	you	find	any	Pandoc	features	that	are	not	represented	by	the	output	format	arguments,	you	may	use	this
ultimate	argument,	e.g.,

output:

		pdf_document:

				toc:	true

				pandoc_args:	["--wrap=none",	"--top-level-division=chapter"]

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


2.5 	Markdown	syntax

The	text	in	an	R	Markdown	document	is	written	with	the	Markdown	syntax.	Precisely	speaking,	it	is
Pandoc’s	Markdown.	There	are	many	flavors	of	Markdown	invented	by	different	people,	and	Pandoc’s
flavor	is	the	most	comprehensive	one	to	our	knowledge.	You	can	find	the	full	documentation	of	Pandoc’s
Markdown	at	https://pandoc.org/MANUAL.html.	We	strongly	recommend	that	you	read	this	page	at	least
once	to	know	all	the	possibilities	with	Pandoc’s	Markdown,	even	if	you	will	not	use	all	of	them.	This	section
is	adapted	from	Section	2.1	of	Xie	(2016),	and	only	covers	a	small	subset	of	Pandoc’s	Markdown	syntax.

2.5.1 	Inline	formatting

Inline	text	will	be	italic	if	surrounded	by	underscores	or	asterisks,	e.g.,		_text_		or	 	*text*	.	Bold	text	is
produced	using	a	pair	of	double	asterisks	(	**text**	).	A	pair	of	tildes	( 	~	)	turn	text	to	a	subscript	(e.g.,
	H~3~PO~4~		renders	H PO ).	A	pair	of	carets	( 	̂ 	)	produce	a	superscript	(e.g.,		Cu^2+^		renders	Cu ).

To	mark	text	as		inline	code	,	use	a	pair	of	backticks,	e.g.,	 	̀ code`	.	To	include	\(n\)	literal	backticks,
use	at	least	\(n+1\)	backticks	outside,	e.g.,	you	can	use	four	backticks	to	preserve	three	backtick	inside:
	̀ ```	```code```	````	,	which	is	rendered	as	 	̀ ``code```	.

Hyperlinks	are	created	using	the	syntax		[text](link)	,	e.g.,	 	[RStudio](https://www.rstudio.com)	.
The	syntax	for	images	is	similar:	just	add	an	exclamation	mark,	e.g.,		![alt	text	or	image	title]
(path/to/image)	.	Footnotes	are	put	inside	the	square	brackets	after	a	caret		̂ []	,	e.g.,	 	̂ [This	is	a

footnote.]	.

There	are	multiple	ways	to	insert	citations,	and	we	recommend	that	you	use	BibTeX	databases,	because
they	work	better	when	the	output	format	is	LaTeX/PDF.	Section	2.8	of	Xie	(2016)	has	explained	the	details.
The	key	idea	is	that	when	you	have	a	BibTeX	database	(a	plain-text	file	with	the	conventional	filename
extension	 	.bib	)	that	contains	entries	like:

You	may	add	a	field	named		bibliography		to	the	YAML	metadata,	and	set	its	value	to	the	path	of	the
BibTeX	file.	Then	in	Markdown,	you	may	use		@R-base		(which	generates	“R	Core	Team	(2018)”)	or	 	[@R-
base]		(which	generates	“(R	Core	Team	2018)”)	to	reference	the	BibTeX	entry.	Pandoc	will	automatically
generated	a	list	of	references	in	the	end	of	the	document.

2.5.2 	Block-level	elements

Section	headers	can	be	written	after	a	number	of	pound	signs,	e.g.,

3 4
2+

@Manual{R-base,

		title	=	{R:	A	Language	and	Environment	for	Statistical

				Computing},

		author	=	{{R	Core	Team}},

		organization	=	{R	Foundation	for	Statistical	Computing},

		address	=	{Vienna,	Austria},

		year	=	{2017},

		url	=	{https://www.R-project.org/},

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://pandoc.org/MANUAL.html
https://bookdown.org/yihui/bookdown/markdown-syntax.html
file:///home/me/bookdown.org/yihui/rmarkdown/markdown-syntax.html#ref-xie2016
https://bookdown.org/yihui/bookdown/citations.html
file:///home/me/bookdown.org/yihui/rmarkdown/markdown-syntax.html#ref-xie2016
file:///home/me/bookdown.org/yihui/rmarkdown/markdown-syntax.html#ref-R-base
file:///home/me/bookdown.org/yihui/rmarkdown/markdown-syntax.html#ref-R-base


If	you	do	not	want	a	certain	heading	to	be	numbered,	you	can	add		{-}		or	 	{.unnumbered}		after	the
heading,	e.g.,

Unordered	list	items	start	with		*	,	 	-	,	or	 	+	,	and	you	can	nest	one	list	within	another	list	by	indenting
the	sub-list,	e.g.,

The	output	is:

one	item
one	item
one	item

one	more	item
one	more	item
one	more	item

Ordered	list	items	start	with	numbers	(you	can	also	nest	lists	within	lists),	e.g.,

The	output	does	not	look	too	much	different	with	the	Markdown	source:

1.	 the	first	item
2.	 the	second	item
3.	 the	third	item

one	unordered	item
one	unordered	item

Blockquotes	are	written	after		>	,	e.g.,

#	First-level	header

##	Second-level	header

###	Third-level	header

#	Preface	{-}

-	one	item

-	one	item

-	one	item

				-	one	more	item

				-	one	more	item

				-	one	more	item

1.	the	first	item

2.	the	second	item

3.	the	third	item

				-	one	unordered	item

				-	one	unordered	item

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


The	actual	output	(we	customized	the	style	for	blockquotes	in	this	book):

Plain	code	blocks	can	be	written	after	three	or	more	backticks,	and	you	can	also	indent	the	blocks	by	four
spaces,	e.g.,

In	general,	you’d	better	leave	at	least	one	empty	line	between	adjacent	but	different	elements,	e.g.,	a
header	and	a	paragraph.	This	is	to	avoid	ambiguity	to	the	Markdown	renderer.	For	example,	does	“	#	”
indicate	a	header	below?

And	does	“ 	-	”	mean	a	bullet	point	below?

Different	flavors	of	Markdown	may	produce	different	results	if	there	are	no	blank	lines.

2.5.3 	Math	expressions

Inline	LaTeX	equations	can	be	written	in	a	pair	of	dollar	signs	using	the	LaTeX	syntax,	e.g.,		$f(k)	=	{n
\choose	k}	p^{k}	(1-p)^{n-k}$		(actual	output:	\(f(k)={n	\choose	k}p^{k}(1-p)^{n-k}\));	math
expressions	of	the	display	style	can	be	written	in	a	pair	of	double	dollar	signs,	e.g.,		$$f(k)	=	{n
\choose	k}	p^{k}	(1-p)^{n-k}$$	,	and	the	output	looks	like	this:

\[f\left(k\right)=\binom{n}{k}p^k\left(1-p\right)^{n-k}\]

You	can	also	use	math	environments	inside		$	$		or	 	$$	$$	,	e.g.,

>	"I	thoroughly	disapprove	of	duels.	If	a	man	should	challenge	me,

		I	would	take	him	kindly	and	forgivingly	by	the	hand	and	lead	him

		to	a	quiet	place	and	kill	him."

>

>	---	Mark	Twain

```

This	text	is	displayed	verbatim	/	preformatted

```

Or	indent	by	four	spaces:

				This	text	is	displayed	verbatim	/	preformatted

In	R,	the	character

#	indicates	a	comment.

The	result	of	5

-	3	is	2.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


\[\begin{array}{ccc}	x_{11}	&	x_{12}	&	x_{13}\\	x_{21}	&	x_{22}	&	x_{23}	\end{array}\]

\[X	=	\begin{bmatrix}1	&	x_{1}\\	1	&	x_{2}\\	1	&	x_{3}	\end{bmatrix}\]

\[\Theta	=	\begin{pmatrix}\alpha	&	\beta\\	\gamma	&	\delta	\end{pmatrix}\]

\[\begin{vmatrix}a	&	b\\	c	&	d	\end{vmatrix}=ad-bc\]

References

Xie,	Yihui.	2016.	Bookdown:	Authoring	Books	and	Technical	Documents	with	R	Markdown.	Boca	Raton,
Florida:	Chapman;	Hall/CRC.	https://github.com/rstudio/bookdown.

R	Core	Team.	2018.	R:	A	Language	and	Environment	for	Statistical	Computing.	Vienna,	Austria:	R
Foundation	for	Statistical	Computing.	https://www.R-project.org/.

$$\begin{array}{ccc}

x_{11}	&	x_{12}	&	x_{13}\\

x_{21}	&	x_{22}	&	x_{23}

\end{array}$$

$$X	=	\begin{bmatrix}1	&	x_{1}\\

1	&	x_{2}\\

1	&	x_{3}

\end{bmatrix}$$

$$\Theta	=	\begin{pmatrix}\alpha	&	\beta\\

\gamma	&	\delta

\end{pmatrix}$$

$$\begin{vmatrix}a	&	b\\

c	&	d

\end{vmatrix}=ad-bc$$

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/rstudio/bookdown
https://www.r-project.org/


2.6 	R	code	chunks	and	inline	R	code

You	can	insert	an	R	code	chunk	either	using	the	RStudio	toolbar	(the		Insert		button)	or	the	keyboard
shortcut	 	Ctrl	+	Alt	+	I		( 	Cmd	+	Option	+	I		on	macOS).

There	are	a	lot	of	things	you	can	do	in	a	code	chunk:	you	can	produce	text	output,	tables,	or	graphics.	You
have	fine	control	over	all	these	output	via	chunk	options,	which	can	be	provided	inside	the	curly	braces
(between	 	̀ ``{r		and	 	}	).	For	example,	you	can	choose	hide	text	output	via	the	chunk	option		results
=	'hide'	,	or	set	the	figure	height	to	4	inches	via		fig.height	=	4	.	Chunk	options	are	separated	by
commas,	e.g.,

The	value	of	a	chunk	option	can	be	an	arbitrary	R	expression,	which	makes	chunk	options	extremely
flexible.	For	example,	the	chunk	option		eval		controls	whether	to	evaluate	(execute)	a	code	chunk,	and
you	may	conditionally	evaluate	a	chunk	via	a	variable	defined	previously,	e.g.,

There	are	a	large	number	of	chunk	options	in	knitr	documented	at	https://yihui.name/knitr/options.	We	list
a	subset	of	them	below:

	eval	:	Whether	to	evaluate	a	code	chunk.

	echo	:	Whether	to	echo	the	source	code	in	the	output	document	(someone	may	not	prefer	reading
your	smart	source	code	but	only	results).

	results	:	When	set	to		'hide'	,	text	output	will	be	hidden;	when	set	to		'asis'	,	text	output	is
written	“as-is”,	e.g.,	you	can	write	out	raw	Markdown	text	from	R	code	(like		cat('**Markdown**	is
cool.\n')	).	By	default,	text	output	will	be	wrapped	in	verbatim	elements	(typically	plain	code
blocks).

	collapse	:	Whether	to	merge	text	output	and	source	code	into	a	single	code	block	in	the	output.
This	is	mostly	cosmetic:		collapse	=	TRUE		makes	the	output	more	compact,	since	the	R	source
code	and	its	text	output	are	displayed	in	a	single	output	block.	The	default		collapse	=	FALSE	
means	R	expressions	and	their	text	output	are	separated	into	different	blocks.

	warning	,	 	message	,	and	 	error	:	Whether	to	show	warnings,	messages,	and	errors	in	the	output
document.	Note	that	if	you	set		error	=	FALSE	,	 	rmarkdown::render()		will	halt	on	error	in	a	code
chunk,	and	the	error	will	be	displayed	in	the	R	console.	Similarly,	when		warning	=	FALSE		or
	message	=	FALSE	,	these	messages	will	be	shown	in	the	R	console.

```{r,	chunk-label,	results='hide',	fig.height=4}

```{r}

#	execute	code	if	the	date	is	later	than	a	specified	day

do_it	=	Sys.Date()	>	'2018-02-14'

```

```{r,	eval=do_it}

x	=	rnorm(100)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://yihui.name/knitr/options

	include	:	Whether	to	include	anything	from	a	code	chunk	in	the	output	document.	When		include
=	FALSE	,	this	whole	code	chunk	is	excluded	in	the	output,	but	note	that	it	will	still	be	evaluated	if
	eval	=	TRUE	.	When	you	are	trying	to	set		echo	=	FALSE	,	 	results	=	'hide'	,	 	warning	=
FALSE	,	and	 	message	=	FALSE	,	chances	are	you	simply	mean	a	single	option		include	=	FALSE	
instead	of	suppressing	different	types	of	text	output	individually.

	cache	:	Whether	to	enable	caching.	If	caching	is	enabled,	the	same	code	chunk	will	not	be	evaluated
the	next	time	the	document	is	compiled	(if	the	code	chunk	was	not	modified),	which	can	save	you
time.	However,	I	want	to	honestly	remind	you	of	the	two	hard	problems	in	computer	science	(via	Phil
Karlton):	naming	things,	and	cache	invalidation.	Caching	can	be	handy	but	also	tricky	sometimes.

	fig.width		and	 	fig.height	:	The	(graphical	device)	size	of	R	plots	in	inches.	R	plots	in	code
chunks	are	first	recorded	via	a	graphical	device	in	knitr,	and	then	written	out	to	files.	You	can	also
specify	the	two	options	together	in	a	single	chunk	option		fig.dim	,	e.g.,	 	fig.dim	=	c(6,	4)	
means	 	fig.width	=	6		and	 	fig.height	=	4	.

	out.width		and	 	out.height	:	The	output	size	of	R	plots	in	the	output	document.	These	options
may	scale	images.	You	can	use	percentages,	e.g.,		out.width	=	'80%'		means	80%	of	the	page
width.

	fig.align	:	The	alignment	of	plots.	It	can	be		'left'	,	 	center	,	or	 	'right'	.

	dev	:	The	graphical	device	to	record	R	plots.	Typically	it	is		'pdf'		for	LaTeX	output,	and		'png'	
for	HTML	output,	but	you	can	certainly	use	other	devices,	such	as		'svg'		or	 	'jpeg'	.

	fig.cap	:	The	figure	caption.

	child	:	You	can	include	a	child	document	in	the	main	document.	This	option	takes	a	path	to	an
external	file.

Chunk	options	in	knitr	can	be	surprisingly	powerful.	For	example,	you	can	create	animations	from	a	series
of	plots	in	a	code	chunk.	I	will	not	explain	how	here	because	it	requires	an	external	software	package,	but
encourage	you	to	read	the	documentation	carefully	to	discover	the	possibilities.	You	may	also	read	Xie
(2015),	which	is	a	comprehensive	guide	to	the	knitr	package,	but	unfortunately	biased	towards	LaTeX
users	for	historical	reasons	(which	was	one	of	the	reasons	why	I	wanted	to	write	this	R	Markdown	book).

There	is	an	optional	chunk	option	that	does	not	take	any	value,	which	is	the	chunk	label.	It	should	be	the
first	option	in	the	chunk	header.	Chunk	labels	are	mainly	used	in	filenames	of	plots	and	cache.	If	the	label
of	a	chunk	is	missing,	a	default	one	of	the	form		unnamed-chunk-i		will	be	generated,	where		i		is
incremental.	I	strongly	recommend	that	you	only	use	alphanumeric	characters	(a-z	,	 	A-Z		and	 	0-9)
and	dashes	(-)	in	labels,	because	they	are	not	special	characters	and	will	surely	work	for	all	output
formats.	Other	characters,	spaces	and	underscores	in	particular,	may	cause	trouble	in	certain	packages,
such	as	bookdown.

If	a	certain	option	needs	to	be	frequently	set	to	a	value	in	multiple	code	chunks,	you	can	consider	setting	it
globally	in	the	first	code	chunk	of	your	document,	e.g.,

Besides	code	chunks,	you	can	also	insert	values	of	R	objects	inline	in	text.	For	example:

```{r,	setup,	include=FALSE}

knitr::opts_chunk$set(fig.width	=	8,	collapse	=	TRUE)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://blogdown-demo.rbind.io/2018/01/31/gif-animations/
file:///home/me/bookdown.org/yihui/rmarkdown/r-code.html#ref-xie2015

2.6.1 	Figures

By	default,	figures	produced	by	R	code	will	be	placed	immediately	after	the	code	chunk	they	were
generated	from.	For	example:

You	can	provide	a	figure	caption	using		fig.cap		in	the	chunk	options.	If	the	document	output	format
supports	the	option	 	fig_caption:	true		(e.g.,	the	output	format		rmarkdown::html_document),	the	R
plots	will	be	placed	into	figure	environments.	In	the	case	of	PDF	output,	such	figures	will	be	automatically
numbered.	If	you	also	want	to	number	figures	in	other	formats	(such	as	HTML),	please	see	the	bookdown
package	in	Chapter	12	(in	particular,	see	Section	12.4.4).

PDF	documents	are	generated	through	the	LaTeX	files	generated	from	R	Markdown.	A	highly	surprising
fact	to	LaTeX	beginners	is	that	figures	float	by	default:	even	if	you	generate	a	plot	in	a	code	chunk	on	the
first	page,	the	whole	figure	environment	may	float	to	the	next	page.	This	is	just	how	LaTeX	works	by
default.	It	has	a	tendency	to	float	figures	to	the	top	or	bottom	of	pages.	Although	it	can	be	annoying	and
distracting,	we	recommend	that	you	refrain	from	playing	the	“Whac-A-Mole”	game	in	the	beginning	of	your
writing,	i.e.,	desparately	trying	to	position	figures	“correctly”	while	they	seem	to	be	always	dodging	you.
You	may	wish	to	fine-tune	the	positions	once	the	content	is	complete	using	the		fig.pos		chunk	option
(e.g.,	 	fig.pos	=	'h')	.	See	https://www.sharelatex.com/learn/Positioning_images_and_tables	for
possible	values	of	 	fig.pos		and	more	general	tips	about	this	behavior	in	LaTeX.	In	short,	this	can	be	a
difficult	problem	for	PDF	output.

To	place	multiple	figures	side-by-side	from	the	same	code	chunk,	you	can	use	the		fig.hold='hold'	
option	along	with	the		out.width		option.	Figure	2.5	shows	an	example	with	two	plots,	each	with	a	width
of	 	50%	.

```{r}

x	=	5		#	radius	of	a	circle

```

For	a	circle	with	the	radius	`r	x`,

its	area	is	`r	pi	*	x^2`.

```{r}

plot(cars,	pch	=	18)

```

par(mar	=	c(4,	4,	0.2,	0.1))

plot(cars,	pch	=	19)

plot(pressure,	pch	=	17)

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/books.html#books
file:///home/me/bookdown.org/yihui/rmarkdown/bookdown-output.html#a-single-document
https://www.sharelatex.com/learn/Positioning_images_and_tables
file:///home/me/bookdown.org/yihui/rmarkdown/r-code.html#fig:hold-position

FIGURE	2.5:	Two	plots	side-by-side.

If	you	want	to	include	a	graphic	that	is	not	generated	from	R	code,	you	may	use	the
	knitr::include_graphics()		function,	which	gives	you	more	control	over	the	attributes	of	the	image
than	the	Markdown	syntax	of		![alt	text	or	image	title](path/to/image)		(e.g.,	you	can	specify	the
image	width	via	 	out.width).	Figure	2.6	provides	an	example	of	this.

FIGURE	2.6:	The	R	Markdown	hex	logo.

2.6.2 	Tables

The	easiest	way	to	include	tables	is	by	using		knitr::kable()	,	which	can	create	tables	for	HTML,	PDF
and	Word	outputs. 	Table	captions	can	be	included	by	passing		caption		to	the	function,	e.g.,

Tables	in	non-LaTeX	output	formats	will	always	be	placed	after	the	code	block.	For	LaTeX/PDF	output
formats,	tables	have	the	same	issue	as	figures:	they	may	float.	If	you	want	to	avoid	this	behavior,	you	will
need	to	use	the	LaTeX	package	longtable,	which	can	break	tables	across	multiple	pages.	This	can	be
achieved	by	adding	 	\usepackage{longtable}		to	your	LaTeX	preamble,	and	passing		longtable	=
TRUE		to	 	kable()	.

```{r,	out.width='25%',	fig.align='center',	fig.cap='...'}

knitr::include_graphics('images/hex-rmarkdown.png')

```

3

```{r	tables-mtcars}

knitr::kable(iris[1:5,	],	caption	=	'A	caption')

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/r-code.html#fig:include-graphics
file:///home/me/bookdown.org/yihui/rmarkdown/r-code.html#fn3
https://www.ctan.org/pkg/longtable

If	you	are	looking	for	more	advanced	control	of	the	styling	of	tables,	you	are	recommended	to	use	the
kableExtra	package,	which	provides	functions	to	customize	the	appearance	of	PDF	and	HTML	tables.
Formatting	tables	can	be	a	very	complicated	task,	especially	when	certain	cells	span	more	than	one
column	or	row.	It	is	even	more	complicated	when	you	have	to	consider	different	output	formats.	For
example,	it	is	difficult	to	make	a	complex	table	work	for	both	PDF	and	HTML	output.	We	know	it	is
disappointing,	but	sometimes	you	may	have	to	consider	alternative	ways	of	presenting	data,	such	as	using
graphics.

We	explain	in	Section	12.3	how	the	bookdown	package	extends	the	functionality	of	rmarkdown	to	allow	for
figures	and	tables	to	be	easily	cross-referenced	within	your	text.

References

Xie,	Yihui.	2015.	Dynamic	Documents	with	R	and	Knitr.	2nd	ed.	Boca	Raton,	Florida:	Chapman;	Hall/CRC.
https://yihui.name/knitr/.

3.	 You	may	also	consider	the	pander	package.	There	are	several	other	packages	for	producing	tables,
including	xtable,	Hmisc,	and	stargazer,	but	these	are	generally	less	compatible	with	multiple	output
formats.↩

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://cran.r-project.org/package=kableExtra
file:///home/me/bookdown.org/yihui/rmarkdown/bookdown-markdown.html#bookdown-markdown
https://yihui.name/knitr/
file:///home/me/bookdown.org/yihui/rmarkdown/r-code.html#fnref3

2.7 	Other	language	engines

A	less	well-known	fact	about	R	Markdown	is	that	many	other	languages	are	also	supported,	such	as
Python,	Julia,	C++,	and	SQL.	The	support	comes	from	the	knitr	package,	which	has	provided	a	large
number	of	language	engines.	Language	engines	are	essentially	functions	registered	in	the	object
	knitr::knit_engine	.	You	can	list	the	names	of	all	available	engines	via:

##		[1]	"awk"									"bash"								"coffee"					

##		[4]	"gawk"								"groovy"						"haskell"				

##		[7]	"lein"								"mysql"							"node"							

##	[10]	"octave"						"perl"								"psql"							

##	[13]	"Rscript"					"ruby"								"sas"								

##	[16]	"scala"							"sed"									"sh"									

##	[19]	"stata"							"zsh"									"highlight"		

##	[22]	"Rcpp"								"tikz"								"dot"								

##	[25]	"c"											"fortran"					"fortran95"		

##	[28]	"asy"									"cat"									"asis"							

##	[31]	"stan"								"block"							"block2"					

##	[34]	"js"										"css"									"sql"								

##	[37]	"go"										"python"						"julia"						

##	[40]	"theorem"					"lemma"							"corollary"		

##	[43]	"proposition"	"conjecture"		"definition"	

##	[46]	"example"					"exercise"				"proof"						

##	[49]	"remark"						"solution"

Most	engines	have	been	documented	in	Chapter	11	of	Xie	(2015).	The	engines	from	 	theorem		to
	solution		are	only	available	when	you	use	the	bookdown	package,	and	the	rest	are	shipped	with	the
knitr	package.	To	use	a	different	language	engine,	you	can	change	the	language	name	in	the	chunk
header	from	 	r		to	the	engine	name,	e.g.,

For	engines	that	rely	on	external	interpreters	such	as		python	,	 	perl	,	and	 	ruby	,	the	default
interpreters	are	obtained	from		Sys.which()	,	i.e.,	using	the	interpreter	found	via	the	environment
variable	 	PATH		of	the	system.	If	you	want	to	use	an	alternative	interpreter,	you	may	specify	its	path	in	the
chunk	option	 	engine.path	.	For	example,	you	may	want	to	use	Python	3	instead	of	the	default	Python	2,
and	we	assume	Python	3	is	at		/usr/bin/python3		(may	not	be	true	for	your	system):

names(knitr::knit_engines$get())

```{python}

x	=	'hello,	python	world!'

print(x.split('	'))

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/language-engines.html#ref-xie2015

You	can	also	change	the	engine	interpreters	globally	for	multiple	engines,	e.g.,

Note	that	you	can	use	a	named	list	to	specify	the	paths	for	different	engines.

Most	engines	will	execute	each	code	chunk	in	a	separate	new	session	(via	a		system()		call	in	R),	which
means	objects	created	in	memory	in	a	previous	code	chunk	will	not	be	directly	available	to	latter	code
chunks.	For	example,	if	you	create	a	variable	in	a		bash		code	chunk,	you	will	not	be	able	to	use	it	in	the
next	 	bash		code	chunk.	Currently	the	only	exceptions	are		r	,	 	python	,	and	 	julia	.	Only	these
engines	execute	code	in	the	same	session	throughout	the	document.	To	clarify,	all		r		code	chunks	are
executed	in	the	same	R	session,	all		python		code	chunks	are	executed	in	the	same	Python	session,	and
so	on,	but	the	R	session	and	the	Python	session	are	independent.

I	will	introduce	some	specific	features	and	examples	for	a	subset	of	language	engines	in	knitr	below.	Note
that	most	chunk	options	should	work	for	both	R	and	other	languages,	such	as		eval		and	 	echo	,	so
these	options	will	not	be	mentioned	again.

2.7.1 	Python

The	 	python		engine	is	based	on	the	reticulate	package	(Allaire,	Ushey,	and	Tang	2018),	which	makes	it
possible	to	execute	all	Python	code	chunks	in	the	same	Python	session.	If	you	actually	want	to	execute	a
certain	code	chunk	in	a	new	Python	session,	you	may	use	the	chunk	option		python.reticulate	=
FALSE	.	If	you	are	using	a	knitr	version	lower	than	1.18,	you	should	update	your	R	packages.

Below	is	a	relatively	simple	example	that	shows	how	you	can	create/modify	variables,	and	draw	graphics
in	Python	code	chunks.	Values	can	be	passed	to	or	retrieved	from	the	Python	session.	To	pass	a	value	to
Python,	assign	to	 	py$name	,	where	 	name		is	the	variable	name	you	want	to	use	in	the	Python	session;	to
retrieve	a	value	from	Python,	also	use		py$name	.

```{python,	engine.path	=	'/usr/bin/python3'}

import	sys

print(sys.version)

```

knitr::opts_chunk$set(engine.path	=	list(

		python	=	'~/anaconda/bin/python',

		ruby	=	'/usr/local/bin/ruby'

))

4

title:	"Python	code	chunks	in	R	Markdown"

date:	2018-02-22

##	A	normal	R	code	chunk

```{r}

library(reticulate)

x	=	42

print(x)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/language-engines.html#fn4
file:///home/me/bookdown.org/yihui/rmarkdown/language-engines.html#ref-R-reticulate

##	Modify	an	R	variable

In	the	following	chunk,	the	value	of	`x`	on	the	right	hand	side

is	`r	x`,	which	was	defined	in	the	previous	chunk.

```{r}

x	=	x	+	12

print(x)

```

##	A	Python	chunk

This	works	fine	and	as	expected.	

```{python}

x	=	42	*	2

print(x)	

```

The	value	of	`x`	in	the	Python	session	is	`r	py$x`.

It	is	not	the	same	`x`	as	the	one	in	R.

##	Modify	a	Python	variable

```{python}

x	=	x	+	18	

print(x)

```

Retrieve	the	value	of	`x`	from	the	Python	session	again:

```{r}

py$x

```

Assign	to	a	variable	in	the	Python	session	from	R:

```{r}

py$y	=	1:5

```

See	the	value	of	`y`	in	the	Python	session:

```{python}

print(y)

```

##	Python	graphics

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

You	may	learn	more	about	the	reticulate	package	from	https://rstudio.github.io/reticulate/.

2.7.2 	Shell	scripts

You	can	also	write	Shell	scripts	in	R	Markdown,	if	your	system	can	run	them	(the	executable		bash		or
	sh		should	exist).	Usually	this	is	not	a	problem	for	Linux	or	macOS	users.	It	is	not	impossible	for
Windows	users	to	run	Shell	scripts,	but	you	will	have	to	install	additional	software	(such	as	Cygwin	or	the
Linux	Subsystem).

Shell	scripts	are	executed	via	the		system2()		function	in	R.	Basically	knitr	passes	a	code	chunk	to	the
command	 	bash	-c		to	run	it.

2.7.3 	SQL

The	 	sql		engine	uses	the	DBI	package	to	execute	SQL	queries,	print	their	results,	and	optionally	assign
the	results	to	a	data	frame.

To	use	the	 	sql		engine,	you	first	need	to	establish	a	DBI	connection	to	a	database	(typically	via	the
	DBI::dbConnect()		function).	You	can	make	use	of	this	connection	in	a		sql		chunk	via	the
	connection		option.	For	example:

By	default,	 	SELECT		queries	will	display	the	first	10	records	of	their	results	within	the	document.	The
number	of	records	displayed	is	controlled	by	the		max.print		option,	which	is	in	turn	derived	from	the
global	knitr	option	 	sql.max.print		(e.g.,	 	knitr::opts_knit$set(sql.max.print	=	10)	;	N.B.	it	is
	opts_knit		instead	of	 	opts_chunk).	For	example,	the	following	code	chunk	displays	the	first	20
records:

You	can	draw	plots	using	the	**matplotlib**	package	in	Python.

```{python}

import	matplotlib.pyplot	as	plt

plt.plot([0,	2,	1,	4])

plt.show()

```

```{bash}

echo	"Hello	Bash!"

cat	flights1.csv	flights2.csv	flights3.csv	>	flights.csv

```

```{r}

library(DBI)

db	=	dbConnect(RSQLite::SQLite(),	dbname	=	"sql.sqlite")

```

```{sql,	connection=db}

SELECT	*	FROM	trials

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://rstudio.github.io/reticulate/
https://www.cygwin.com/
https://cran.rstudio.com/package=DBI

You	can	specify	no	limit	on	the	records	to	be	displayed	via		max.print	=	-1		or	 	max.print	=	NA	.

By	default,	the	 	sql		engine	includes	a	caption	that	indicates	the	total	number	of	records	displayed.	You
can	override	this	caption	using	the		tab.cap		chunk	option.	For	example:

You	can	specify	that	you	want	no	caption	all	via		tab.cap	=	NA	.

If	you	want	to	assign	the	results	of	the	SQL	query	to	an	R	object	as	a	data	frame,	you	can	do	this	using	the
	output.var		option,	e.g.,

When	the	results	of	a	SQL	query	are	assigned	to	a	data	frame,	no	records	will	be	printed	within	the
document	(if	desired,	you	can	manually	print	the	data	frame	in	a	subsequent	R	chunk).

If	you	need	to	bind	the	values	of	R	variables	into	SQL	queries,	you	can	do	so	by	prefacing	R	variable
references	with	a	 	?	.	For	example:

If	you	have	many	SQL	chunks,	it	may	be	helpful	to	set	a	default	for	the		connection		chunk	option	in	the
setup	chunk,	so	that	it	is	not	necessary	to	specify	the	connection	on	each	individual	chunk.	You	can	do	this
as	follows:

Note	that	the	 	connection		option	should	be	a	string	naming	the	connection	object	(not	the	object	itself).
Once	set,	you	can	execute	SQL	chunks	without	specifying	an	explicit	connection:

```{sql,	connection=db,	max.print	=	20}

SELECT	*	FROM	trials

```

```{sql,	connection=db,	tab.cap	=	"My	Caption"}

SELECT	*	FROM	trials

```

```{sql,	connection=db,	output.var="trials"}

SELECT	*	FROM	trials

```

```{r}

subjects	=	10

```

```{sql,	connection=db,	output.var="trials"}

SELECT	*	FROM	trials	WHERE	subjects	>=	?subjects

```

```{r	setup}

library(DBI)

db	=	dbConnect(RSQLite::SQLite(),	dbname	=	"sql.sqlite")

knitr::opts_chunk$set(connection	=	"db")

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

2.7.4 	Rcpp

The	 	Rcpp		engine	enables	compilation	of	C++	into	R	functions	via	the	Rcpp	 	sourceCpp()		function.	For
example:

Executing	this	chunk	will	compile	the	code	and	make	the	C++	function		timesTwo()		available	to	R.

You	can	cache	the	compilation	of	C++	code	chunks	using	standard	knitr	caching,	i.e.,	add	the		cache	=
TRUE		option	to	the	chunk:

In	some	cases,	it	is	desirable	to	combine	all	of	the		Rcpp		code	chunks	in	a	document	into	a	single
compilation	unit.	This	is	especially	useful	when	you	want	to	intersperse	narrative	between	pieces	of	C++
code	(e.g.,	for	a	tutorial	or	user	guide).	It	also	reduces	total	compilation	time	for	the	document	(since	there
is	only	a	single	invocation	of	the	C++	compiler	rather	than	multiple).

To	combine	all	Rcpp	chunks	into	a	single	compilation	unit,	you	use	the		ref.label		chunk	option	along
with	the	 	knitr::all_rcpp_labels()		function	to	collect	all	of	the		Rcpp		chunks	in	the	document.	Here
is	a	simple	example:

```{sql}

SELECT	*	FROM	trials

```

```{Rcpp}

#include	<Rcpp.h>

using	namespace	Rcpp;

//	[[Rcpp::export]]

NumericVector	timesTwo(NumericVector	x)	{

		return	x	*	2;

}

```

```{Rcpp,	cache=TRUE}

#include	<Rcpp.h>

using	namespace	Rcpp;

//	[[Rcpp::export]]

NumericVector	timesTwo(NumericVector	x)	{

		return	x	*	2;

}

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

The	two	 	Rcpp		chunks	that	include	code	will	be	collected	and	compiled	together	in	the	first		Rcpp		chunk
via	the	 	ref.label		chunk	option.	Note	that	we	set	the		eval	=	FALSE		option	on	the	 	Rcpp		chunks	with
code	in	them	to	prevent	them	from	being	compiled	again.

2.7.5 	Stan

The	 	stan		engine	enables	embedding	of	the	Stan	probabilistic	programming	language	within	R
Markdown	documents.

The	Stan	model	within	the	code	chunk	is	compiled	into	a		stanmodel		object,	and	is	assigned	to	a
variable	with	the	name	given	by	the		output.var		option.	For	example:

All	C++	code	chunks	will	be	combined	to	the	chunk	below:

```{Rcpp,	ref.label=knitr::all_rcpp_labels(),	include=FALSE}

```

First	we	include	the	header	`Rcpp.h`:

```{Rcpp,	eval=FALSE}

#include	<Rcpp.h>

```

Then	we	define	a	function:

```{Rcpp,	eval=FALSE}

//	[[Rcpp::export]]

int	timesTwo(int	x)	{

		return	x	*	2;

}

```

```{stan,	output.var="ex1"}

parameters	{

		real	y[2];

}

model	{

		y[1]	~	normal(0,	1);

		y[2]	~	double_exponential(0,	2);

}

```

```{r}

library(rstan)

fit	=	sampling(ex1)

print(fit)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://mc-stan.org/

2.7.6 	JavaScript	and	CSS

If	you	are	using	an	R	Markdown	format	that	targets	HTML	output	(e.g.,		html_document		and
	ioslides_presenation	,	etc.),	you	can	include	JavaScript	to	be	executed	within	the	HTML	page	using
the	JavaScript	engine	named		js	.

For	example,	the	following	chunk	uses	jQuery	(which	is	included	in	most	R	Markdown	HTML	formats)	to
change	the	color	of	the	document	title	to	red:

Similarly,	you	can	embed	CSS	rules	in	the	output	document.	For	example,	the	following	code	chunk	turns
text	within	the	document	body	red:

Without	the	chunk	option		echo	=	FALSE	,	the	JavaScript/CSS	code	will	be	displayed	verbatim	in	the
output	document,	which	is	probably	not	what	you	want.

2.7.7 	Julia

The	Julia	language	is	supported	through	the	JuliaCall	package	(Li	2018).	Similar	to	the		python		engine,
the	 	julia		engine	runs	all	Julia	code	chunks	in	the	same	Julia	session.	Below	is	a	minimal	example:

2.7.8 	C	and	Fortran

For	code	chunks	that	use	C	or	Fortran,	knitr	uses	 	R	CMD	SHLIB		to	compile	the	code,	and	load	the	shared
object	(a	 	*.so		file	on	Unix	or		*.dll		on	Windows).	Then	you	can	use		.C()		/	 	.Fortran()		to	call
the	C	/	Fortran	functions,	e.g.,

```{js,	echo=FALSE}

$('.title').css('color',	'red')

```

```{css,	echo=FALSE}

body	{

		color:	red;

}

```

```{julia}

a	=	sqrt(2);		#	the	semicolon	inhibits	printing

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://julialang.org/
file:///home/me/bookdown.org/yihui/rmarkdown/language-engines.html#ref-R-JuliaCall

You	can	find	more	examples	on	different	language	engines	in	the	GitHub	repository
https://github.com/yihui/knitr-examples	(look	for	filenames	that	contain	the	word	“engine”).

References

Xie,	Yihui.	2015.	Dynamic	Documents	with	R	and	Knitr.	2nd	ed.	Boca	Raton,	Florida:	Chapman;	Hall/CRC.
https://yihui.name/knitr/.

Allaire,	JJ,	Kevin	Ushey,	and	Yuan	Tang.	2018.	Reticulate:	Interface	to	’Python’.	https://CRAN.R-
project.org/package=reticulate.

Li,	Changcheng.	2018.	JuliaCall:	Seamless	Integration	Between	R	and	’Julia’.	https://CRAN.R-
project.org/package=JuliaCall.

4.	 This	is	not	strictly	true,	since	the	Python	session	is	actually	launched	from	R.	What	I	mean	here	is	that
you	should	not	expect	to	use	R	variables	and	Python	variables	interchangeably	without	explicitly
importing/exporting	variables	between	the	two	sessions.↩

```{c,	test-c,	results='hide'}

void	square(double	*x)	{

		*x	=	*x	*	*x;

}

```

Test	the	`square()`	function:

```{r}

.C('square',	9)

.C('square',	123)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/yihui/knitr-examples
https://yihui.name/knitr/
https://cran.r-project.org/package=reticulate
https://cran.r-project.org/package=JuliaCall
file:///home/me/bookdown.org/yihui/rmarkdown/language-engines.html#fnref4

2.8 	Interactive	documents

R	Markdown	documents	can	also	generate	interactive	content.	There	are	two	types	of	interactive	R
Markdown	documents:	you	can	use	the	HTML	Widgets	framework,	or	the	Shiny	framework	(or	both).	They
will	be	described	in	more	detail	in	Chapter	16	and	Chapter	19,	respectively.

2.8.1 	HTML	widgets

The	HTML	Widgets	framework	is	implemented	in	the	R	package	htmlwidgets	(Vaidyanathan	et	al.	2018),
interfacing	JavaScript	libraries	that	create	interactive	applications,	such	as	interactive	graphics	and	tables.
Several	widget	packages	have	been	developed	based	on	this	framework,	such	as	DT	(Xie	2018c),	leaflet
(Cheng,	Karambelkar,	and	Xie	2018),	and	dygraphs	(Vanderkam	et	al.	2018).	Visit
https://www.htmlwidgets.org	to	know	more	about	widget	packages	as	well	as	how	to	develop	a	widget
package	by	yourself.

Figure	2.7	shows	an	interactive	map	created	via	the	leaflet	package,	and	the	source	document	is	below:

title:	"An	Interactive	Map"

Below	is	a	map	that	shows	the	location	of	the

Department	of	Statistics,	Iowa	State	University.

```{r	out.width='100%',	echo=FALSE}

library(leaflet)

leaflet()	%>%	addTiles()	%>%

		setView(-93.65,	42.0285,	zoom	=	17)	%>%

		addPopups(

				-93.65,	42.0285,

				'Here	is	the	<b>Department	of	Statistics</b>,	ISU'

		)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/html-widgets.html#html-widgets
file:///home/me/bookdown.org/yihui/rmarkdown/shiny-documents.html#shiny-documents
file:///home/me/bookdown.org/yihui/rmarkdown/interactive-documents.html#ref-R-htmlwidgets
file:///home/me/bookdown.org/yihui/rmarkdown/interactive-documents.html#ref-R-DT
file:///home/me/bookdown.org/yihui/rmarkdown/interactive-documents.html#ref-R-DT
file:///home/me/bookdown.org/yihui/rmarkdown/interactive-documents.html#ref-R-leaflet
file:///home/me/bookdown.org/yihui/rmarkdown/interactive-documents.html#ref-R-dygraphs
https://www.htmlwidgets.org/
file:///home/me/bookdown.org/yihui/rmarkdown/interactive-documents.html#fig:leaflet

FIGURE	2.7:	An	R	Markdown	document	with	a	leaflet	map	widget.

Although	HTML	widgets	are	based	on	JavaScript,	the	syntax	to	create	them	in	R	is	often	pure	R	syntax.

If	you	include	an	HTML	widget	in	a	non-HTML	output	format,	such	as	a	PDF,	knitr	will	try	to	embed	a
screenshot	of	the	widget	if	you	have	installed	the	R	package	webshot	(Chang	2017)	and	the	PhantomJS
package	(via	 	webshot::install_phantomjs()).

2.8.2 	Shiny	documents

The	shiny	package	(Chang	et	al.	2018)	builds	interactive	web	apps	powered	by	R.	To	call	Shiny	code	from
an	R	Markdown	document,	add		runtime:	shiny		to	the	YAML	metadata,	like	in	this	document:

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/interactive-documents.html#ref-R-webshot
file:///home/me/bookdown.org/yihui/rmarkdown/interactive-documents.html#ref-R-shiny

Figure	2.8	shows	the	output,	where	you	can	see	a	dropdown	menu	that	allows	you	to	choose	the	number
of	bins	in	the	histogram.

title:	"A	Shiny	Document"

output:	html_document

runtime:	shiny

A	standard	R	plot	can	be	made	interactive	by	wrapping

it	in	the	Shiny	`renderPlot()`	function.	The	`selectInput()`

function	creates	the	input	widget	to	drive	the	plot.

```{r	eruptions,	echo=FALSE}

selectInput(

		'breaks',	label	=	'Number	of	bins:',

		choices	=	c(10,	20,	35,	50),	selected	=	20

)

renderPlot({

		par(mar	=	c(4,	4,	.1,	.5))

		hist(

				faithful$eruptions,	as.numeric(input$breaks),

				col	=	'gray',	border	=	'white',

				xlab	=	'Duration	(minutes)',	main	=	''

		)

})

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/interactive-documents.html#fig:shiny

FIGURE	2.8:	An	R	Markdown	document	with	a	Shiny	widget.

You	may	use	Shiny	to	run	any	R	code	that	you	like	in	response	to	user	actions.	Since	web	browsers
cannot	execute	R	code,	Shiny	interactions	occur	on	the	server	side	and	rely	on	a	live	R	session.	By
comparison,	HTML	widgets	do	not	require	a	live	R	session	to	support	them,	because	the	interactivity
comes	from	the	client	side	(via	JavaScript	in	the	web	browser).

You	can	learn	more	about	Shiny	at	https://shiny.rstudio.com.

HTML	widgets	and	Shiny	elements	rely	on	HTML	and	JavaScript.	They	will	work	in	any	R	Markdown
format	that	is	viewed	in	a	web	browser,	such	as	HTML	documents,	dashboards,	and	HTML5
presentations.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://shiny.rstudio.com/

References

Vaidyanathan,	Ramnath,	Yihui	Xie,	JJ	Allaire,	Joe	Cheng,	and	Kenton	Russell.	2018.	Htmlwidgets:	HTML
Widgets	for	R.	https://github.com/ramnathv/htmlwidgets.

Xie,	Yihui.	2018c.	DT:	A	Wrapper	of	the	Javascript	Library	’Datatables’.	https://rstudio.github.io/DT.

Cheng,	Joe,	Bhaskar	Karambelkar,	and	Yihui	Xie.	2018.	Leaflet:	Create	Interactive	Web	Maps	with	the
Javascript	’Leaflet’	Library.	https://CRAN.R-project.org/package=leaflet.

Vanderkam,	Dan,	JJ	Allaire,	Jonathan	Owen,	Daniel	Gromer,	and	Benoit	Thieurmel.	2018.	Dygraphs:
Interface	to	’Dygraphs’	Interactive	Time	Series	Charting	Library.	https://CRAN.R-
project.org/package=dygraphs.

Chang,	Winston.	2017.	Webshot:	Take	Screenshots	of	Web	Pages.	https://CRAN.R-
project.org/package=webshot.

Chang,	Winston,	Joe	Cheng,	JJ	Allaire,	Yihui	Xie,	and	Jonathan	McPherson.	2018.	Shiny:	Web
Application	Framework	for	R.	https://CRAN.R-project.org/package=shiny.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/ramnathv/htmlwidgets
https://rstudio.github.io/DT
https://cran.r-project.org/package=leaflet
https://cran.r-project.org/package=dygraphs
https://cran.r-project.org/package=webshot
https://cran.r-project.org/package=shiny

Chapter	3 	Documents

The	very	original	version	of	Markdown	was	invented	mainly	to	write	HTML	content	more	easily.	For
example,	you	can	write	a	bullet	with		-	text		instead	of	the	verbose	HTML	code		text
	,	or	a	quote	with		>	text		instead	of	 	<blockquote>text</blockquote>	.

The	syntax	of	Markdown	has	been	greatly	extended	by	Pandoc.	What	is	more,	Pandoc	makes	it	possible
to	convert	a	Markdown	document	to	a	large	variety	of	output	formats.	In	this	chapter,	we	will	introduce	the
features	of	various	document	output	formats.	In	the	next	two	chapters,	we	will	document	the	presentation
formats	and	other	R	Markdown	extensions,	respectively.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

3.1 	HTML	document

As	we	just	mentioned	before,	Markdown	was	originally	designed	for	HTML	output,	so	it	may	not	be
surprising	that	the	HTML	format	has	the	richest	features	among	all	output	formats.	We	recommend	that
you	read	this	full	section	before	you	learn	other	output	formats,	because	other	formats	have	several
features	in	common	with	the	HTML	document	format,	and	we	will	not	repeat	these	features	in	the
corresponding	sections.

To	create	an	HTML	document	from	R	Markdown,	you	specify	the		html_document		output	format	in	the
YAML	metadata	of	your	document:

3.1.1 	Table	of	contents

You	can	add	a	table	of	contents	(TOC)	using	the		toc		option	and	specify	the	depth	of	headers	that	it
applies	to	using	the		toc_depth		option.	For	example:

If	the	table	of	contents	depth	is	not	explicitly	specified,	it	defaults	to	3	(meaning	that	all	level	1,	2,	and	3
headers	will	be	included	in	the	table	of	contents).

3.1.1.1 	Floating	TOC

You	can	specify	the		toc_float		option	to	float	the	table	of	contents	to	the	left	of	the	main	document
content.	The	floating	table	of	contents	will	always	be	visible	even	when	the	document	is	scrolled.	For
example:

title:	Habits

author:	John	Doe

date:	March	22,	2005

output:	html_document

title:	"Habits"

output:

		html_document:

				toc:	true

				toc_depth:	2

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

You	may	optionally	specify	a	list	of	options	for	the		toc_float		parameter	which	control	its	behavior.
These	options	include:

	collapsed		(defaults	to	 	TRUE)	controls	whether	the	TOC	appears	with	only	the	top-level	(e.g.,	H2)
headers.	If	collapsed	initially,	the	TOC	is	automatically	expanded	inline	when	necessary.

	smooth_scroll		(defaults	to	 	TRUE)	controls	whether	page	scrolls	are	animated	when	TOC	items
are	navigated	to	via	mouse	clicks.

For	example:

3.1.2 	Section	numbering

You	can	add	section	numbering	to	headers	using	the		number_sections		option:

Note	that	if	you	do	choose	to	use	the		number_sections		option,	you	will	likely	also	want	to	use		#		(H1)
headers	in	your	document	as		##		(H2)	headers	will	include	a	decimal	point,	because	without	H1	headers,
you	H2	headers	will	be	numbered	with		0.1	,	 	0.2	,	and	so	on.

3.1.3 	Tabbed	sections

title:	"Habits"

output:

		html_document:

				toc:	true

				toc_float:	true

title:	"Habits"

output:

		html_document:

				toc:	true

				toc_float:

						collapsed:	false

						smooth_scroll:	false

title:	"Habits"

output:

		html_document:

				toc:	true

				number_sections:	true

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

You	can	organize	content	using	tabs	by	applying	the		.tabset		class	attribute	to	headers	within	a
document.	This	will	cause	all	sub-headers	of	the	header	with	the		.tabset		attribute	to	appear	within	tabs
rather	than	as	standalone	sections.	For	example:

You	can	also	specify	two	additional	attributes	to	control	the	appearance	and	behavior	of	the	tabs.	The
	.tabset-fade		attribute	causes	the	tabs	to	fade	in	and	out	when	switching	between	tabs.	The		.tabset-
pills		attribute	causes	the	visual	appearance	of	the	tabs	to	be	“pill”	(see	Figure	3.1)	rather	than
traditional	tabs.	For	example:

FIGURE	3.1:	Traditional	tabs	and	pill	tabs	on	an	HTML	page.

3.1.4 	Appearance	and	style

There	are	several	options	that	control	the	appearance	of	HTML	documents:

	theme		specifies	the	Bootstrap	theme	to	use	for	the	page	(themes	are	drawn	from	the	Bootswatch
theme	library).	Valid	themes	include	default,	cerulean,	journal,	flatly,	readable,	spacelab,	united,
cosmo,	lumen,	paper,	sandstone,	simplex,	and	yeti.	Pass		null		for	no	theme	(in	this	case	you	can
use	the	 	css		parameter	to	add	your	own	styles).

	highlight		specifies	the	syntax	highlighting	style.	Supported	styles	include		default	,	 	tango	,
	pygments	,	 	kate	,	 	monochrome	,	 	espresso	,	 	zenburn	,	 	haddock	,	and	 	textmate	.	Pass
	null		to	prevent	syntax	highlighting.

	smart		indicates	whether	to	produce	typographically	correct	output,	converting	straight	quotes	to
curly	quotes,	 	---		to	em-dashes,	 	--		to	en-dashes,	and	 	...		to	ellipses.	Note	that		smart		is
enabled	by	default.

For	example:

##	Quarterly	Results	{.tabset}

###	By	Product

(tab	content)

###	By	Region

(tab	content)

##	Quarterly	Results	{.tabset	.tabset-fade	.tabset-pills}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#fig:tabset
https://bootswatch.com/3/

3.1.4.1 	Custom	CSS

You	can	add	your	own	CSS	to	an	HTML	document	using	the		css		option:

If	you	want	to	provide	all	of	the	styles	for	the	document	from	your	own	CSS	you	set	the		theme		(and
potentially	 	highlight)	to	 	null	:

You	can	also	target	specific	sections	of	documents	with	custom	CSS	by	adding	ids	or	classes	to	section
headers	within	your	document.	For	example	the	following	section	header:

Would	enable	you	to	apply	CSS	to	all	of	its	content	using	either	of	the	following	CSS	selectors:

3.1.5 	Figure	options

title:	"Habits"

output:

		html_document:

				theme:	united

				highlight:	tango

title:	"Habits"

output:

		html_document:

				css:	styles.css

title:	"Habits"

output:

		html_document:

				theme:	null

				highlight:	null

				css:	styles.css

##	Next	Steps	{#nextsteps	.emphasized}

#nextsteps	{

			color:	blue;

}

.emphasized	{

			font-size:	1.2em;

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

There	are	a	number	of	options	that	affect	the	output	of	figures	within	HTML	documents:

	fig_width		and	 	fig_height		can	be	used	to	control	the	default	figure	width	and	height	(7x5	is
used	by	default).

	fig_retina		specifies	the	scaling	to	perform	for	retina	displays	(defaults	to	2,	which	currently	works
for	all	widely	used	retina	displays).	Set	to		null		to	prevent	retina	scaling.

	fig_caption		controls	whether	figures	are	rendered	with	captions.

	dev		controls	the	graphics	device	used	to	render	figures	(defaults	to		png).

For	example:

3.1.6 	Data	frame	printing

You	can	enhance	the	default	display	of	data	frames	via	the		df_print		option.	Valid	values	are	shown	in
Table	3.1.

TABLE	3.1:	The	possible	values	of	the		df_print		option	for	the	 	html_document		format.

Option Description

default Call	the	 	print.data.frame		generic	method

kable Use	the	 	knitr::kable		function

tibble Use	the	 	tibble::print.tbl_df		function

paged Use	 	rmarkdown::print.paged_df		to	create	a	pageable	table

3.1.6.1 	Paged	printing

When	the	 	df_print		option	is	set	to		paged	,	tables	are	printed	as	HTML	tables	with	support	for
pagination	over	rows	and	columns.	For	instance	(see	Figure	3.2):

title:	"Habits"

output:

		html_document:

				fig_width:	7

				fig_height:	6

				fig_caption:	true

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#tab:df-print
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#fig:paged

FIGURE	3.2:	A	paged	table	in	the	HTML	output	document.

Table	3.2	shows	the	available	options	for	paged	tables.

TABLE	3.2:	The	options	for	paged	HTML	tables.

Option Description

max.print The	number	of	rows	to	print.

rows.print The	number	of	rows	to	display.

cols.print The	number	of	columns	to	display.

cols.min.print The	minimum	number	of	columns	to	display.

pages.print The	number	of	pages	to	display	under	page	navigation.

paged.print When	set	to	 	FALSE		turns	off	paged	tables.

rownames.print When	set	to	 	FALSE		turns	off	row	names.

These	options	are	specified	in	each	chunk	like	below:

3.1.7 	Code	folding

title:	"Motor	Trend	Car	Road	Tests"

output:

		html_document:

				df_print:	paged

```{r}

mtcars

```

```{r	cols.print=3,	rows.print=3}

mtcars

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#tab:paged

When	the	knitr	chunk	option	 	echo	=	TRUE		is	specified	(the	default	behavior),	the	R	source	code	within
chunks	is	included	within	the	rendered	document.	In	some	cases,	it	may	be	appropriate	to	exclude	code
entirely	(echo	=	FALSE)	but	in	other	cases	you	might	want	the	code	to	be	available	but	not	visible	by
default.

The	 	code_folding:	hide		option	enables	you	to	include	R	code	but	have	it	hidden	by	default.	Users	can
then	choose	to	show	hidden	R	code	chunks	either	individually	or	document	wide.	For	example:

You	can	specify	 	code_folding:	show		to	still	show	all	R	code	by	default	but	then	allow	users	to	hide	the
code	if	they	wish.

3.1.8 	MathJax	equations

By	default,	MathJax	scripts	are	included	in	HTML	documents	for	rendering	LaTeX	and	MathML	equations.
You	can	use	the		mathjax		option	to	control	how	MathJax	is	included:

Specify	 	"default"		to	use	an	HTTPS	URL	from	a	CDN	host	(currently	provided	by	RStudio).

Specify	 	"local"		to	use	a	local	version	of	MathJax	(which	is	copied	into	the	output	directory).	Note
that	when	using	 	"local"		you	also	need	to	set	the		self_contained		option	to	 	false	.

Specify	an	alternate	URL	to	load	MathJax	from	another	location.

Specify	 	null		to	exclude	MathJax	entirely.

For	example,	to	use	a	local	copy	of	MathJax:

To	use	a	self-hosted	copy	of	MathJax:

To	exclude	MathJax	entirely:

title:	"Habits"

output:

		html_document:

				code_folding:	hide

title:	"Habits"

output:

		html_document:

				mathjax:	local

				self_contained:	false

title:	"Habits"

output:

		html_document:

				mathjax:	"http://example.com/MathJax.js"

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.mathjax.org/

3.1.9 	Document	dependencies

By	default,	R	Markdown	produces	standalone	HTML	files	with	no	external	dependencies,	using		data:	
URIs	to	incorporate	the	contents	of	linked	scripts,	stylesheets,	images,	and	videos.	This	means	you	can
share	or	publish	the	file	just	like	you	share	Office	documents	or	PDFs.	If	you	would	rather	keep
dependencies	in	external	files,	you	can	specify		self_contained:	false	.	For	example:

Note	that	even	for	self-contained	documents,	MathJax	is	still	loaded	externally	(this	is	necessary	because
of	its	big	size).	If	you	want	to	serve	MathJax	locally,	you	should	specify		mathjax:	local		and
	self_contained:	false	.

One	common	reason	to	keep	dependencies	external	is	for	serving	R	Markdown	documents	from	a	website
(external	dependencies	can	be	cached	separately	by	browsers,	leading	to	faster	page	load	times).	In	the
case	of	serving	multiple	R	Markdown	documents	you	may	also	want	to	consolidate	dependent	library	files
(e.g.	Bootstrap,	and	MathJax,	etc.)	into	a	single	directory	shared	by	multiple	documents.	You	can	use	the
	lib_dir		option	to	do	this.	For	example:

3.1.10 	Advanced	customization

3.1.10.1 	Keeping	Markdown

When	knitr	processes	an	R	Markdown	input	file,	it	creates	a	Markdown	(*.md)	file	that	is	subsequently
transformed	into	HTML	by	Pandoc.	If	you	want	to	keep	a	copy	of	the	Markdown	file	after	rendering,	you
can	do	so	using	the		keep_md		option:

title:	"Habits"

output:

		html_document:

				mathjax:	null

title:	"Habits"

output:

		html_document:

				self_contained:	false

title:	"Habits"

output:

		html_document:

				self_contained:	false

				lib_dir:	libs

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

3.1.10.2 	Includes

You	can	do	more	advanced	customization	of	output	by	including	additional	HTML	content	or	by	replacing
the	core	Pandoc	template	entirely.	To	include	content	in	the	document	header	or	before/after	the	document
body,	you	use	the		includes		option	as	follows:

3.1.10.3 	Custom	templates

You	can	also	replace	the	underlying	Pandoc	template	using	the		template		option:

Consult	the	documentation	on	Pandoc	templates	for	additional	details	on	templates.	You	can	also	study
the	default	HTML	template	 	default.html5		as	an	example.

3.1.10.4 	Markdown	extensions

By	default,	R	Markdown	is	defined	as	all	Pandoc	Markdown	extensions	with	the	following	tweaks	for
backward	compatibility	with	the	old	markdown	package	(Allaire	et	al.	2017):

+autolink_bare_uris

+ascii_identifier

+tex_math_single_backslash

You	can	enable	or	disable	Markdown	extensions	using	the		md_extensions		option	(you	preface	an	option
with	 	-		to	disable	and	 	+		to	enable	it).	For	example:

title:	"Habits"

output:

		html_document:

				keep_md:	true

title:	"Habits"

output:

		html_document:

				includes:

						in_header:	header.html

						before_body:	doc_prefix.html

						after_body:	doc_suffix.html

title:	"Habits"

output:

		html_document:

				template:	quarterly_report.html

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://pandoc.org/MANUAL.html#templates
https://github.com/jgm/pandoc-templates/
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#ref-R-markdown

The	above	would	disable	the		autolink_bare_uris		extension,	and	enable	the		hard_line_breaks	
extension.

For	more	on	available	markdown	extensions	see	the	Pandoc	Markdown	specification.

3.1.10.5 	Pandoc	arguments

If	there	are	Pandoc	features	that	you	want	to	use	but	lack	equivalents	in	the	YAML	options	described
above,	you	can	still	use	them	by	passing	custom		pandoc_args	.	For	example:

Documentation	on	all	available	pandoc	arguments	can	be	found	in	the	Pandoc	User	Guide.

3.1.11 	Shared	options

If	you	want	to	specify	a	set	of	default	options	to	be	shared	by	multiple	documents	within	a	directory,	you
can	include	a	file	named		_output.yml		within	the	directory.	Note	that	no	YAML	delimiters	(---)	or	the
enclosing	 	output		field	are	used	in	this	file.	For	example:

It	should	not	be	written	as:

title:	"Habits"

output:

		html_document:

				md_extensions:	-autolink_bare_uris+hard_line_breaks

title:	"Habits"

output:

		html_document:

				pandoc_args:	[

						"--title-prefix",	"Foo",

						"--id-prefix",	"Bar"

]

html_document:

		self_contained:	false

		theme:	united

		highlight:	textmate

output:

		html_document:

				self_contained:	false

				theme:	united

				highlight:	textmate

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://pandoc.org/MANUAL.html#pandocs-markdown
http://pandoc.org/MANUAL.html#options

All	documents	located	in	the	same	directory	as		_output.yml		will	inherit	its	options.	Options	defined
explicitly	within	documents	will	override	those	specified	in	the	shared	options	file.

3.1.12 	HTML	fragments

If	want	to	create	an	HTML	fragment	rather	than	a	full	HTML	document	you	can	use	the		html_fragment	
format.	For	example:

Note	that	HTML	fragments	are	not	complete	HTML	documents.	They	do	not	contain	the	standard	header
content	that	HTML	documents	do	(they	only	contain	content	in	the		<body>		tags	of	normal	HTML
documents).	They	are	intended	for	inclusion	within	other	web	pages	or	content	management	systems	(like
blogs).	As	such,	they	do	not	support	features	like	themes	or	code	highlighting	(it	is	expected	that	the
environment	they	are	ultimately	published	within	handles	these	things).

References

Allaire,	JJ,	Jeffrey	Horner,	Vicent	Marti,	and	Natacha	Porte.	2017.	Markdown:	’Markdown’	Rendering	for	R.
https://CRAN.R-project.org/package=markdown.

output:	html_fragment

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://cran.r-project.org/package=markdown

3.2 	Notebook

An	R	Notebook	is	an	R	Markdown	document	with	chunks	that	can	be	executed	independently	and
interactively,	with	output	visible	immediately	beneath	the	input.	See	Figure	3.3	for	an	example.

FIGURE	3.3:	An	R	Notebook	example.

R	Notebooks	are	an	implementation	of	Literate	Programming	that	allows	for	direct	interaction	with	R	while
producing	a	reproducible	document	with	publication-quality	output.

Any	R	Markdown	document	can	be	used	as	a	notebook,	and	all	R	Notebooks	can	be	rendered	to	other	R
Markdown	document	types.	A	notebook	can	therefore	be	thought	of	as	a	special	execution	mode	for	R
Markdown	documents.	The	immediacy	of	notebook	mode	makes	it	a	good	choice	while	authoring	the	R
Markdown	document	and	iterating	on	code.	When	you	are	ready	to	publish	the	document,	you	can	share
the	notebook	directly,	or	render	it	to	a	publication	format	with	the		Knit		button.

3.2.1 	Using	Notebooks

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/notebook.html#fig:notebook-demo
https://en.wikipedia.org/wiki/Literate_programming

3.2.1.1 	Creating	a	Notebook

You	can	create	a	new	notebook	in	RStudio	with	the	menu	command		File	->	New	File	->	R
Notebook	,	or	by	using	the		html_notebook		output	type	in	your	document’s	YAML	metadata.

By	default,	RStudio	enables	inline	output	(Notebook	mode)	on	all	R	Markdown	documents,	so	you	can
interact	with	any	R	Markdown	document	as	though	it	were	a	notebook.	If	you	have	a	document	with	which
you	prefer	to	use	the	traditional	console	method	of	interaction,	you	can	disable	notebook	mode	by	clicking
the	gear	button	in	the	editor	toolbar,	and	choosing		Chunk	Output	in	Console		(Figure	3.4).

FIGURE	3.4:	Send	the	R	code	chunk	output	to	the	console.

If	you	prefer	to	use	the	console	by	default	for	all	your	R	Markdown	documents	(restoring	the	behavior	in
previous	versions	of	RStudio),	you	can	make		Chunk	Output	in	Console		the	default:	 	Tools	->
Options	->	R	Markdown	->	Show	output	inline	for	all	R	Markdown	documents	.

3.2.1.2 	Inserting	chunks

Notebook	chunks	can	be	inserted	quickly	using	the	keyboard	shortcut		Ctrl	+	Alt	+	I		(macOS:	 	Cmd	+
Option	+	I),	or	via	the		Insert		menu	in	the	editor	toolbar.

Because	all	of	a	chunk’s	output	appears	beneath	the	chunk	(not	alongside	the	statement	which	emitted
the	output,	as	it	does	in	the	rendered	R	Markdown	output),	it	is	often	helpful	to	split	chunks	that	produce
multiple	outputs	into	two	or	more	chunks	which	each	produce	only	one	output.	To	do	this,	select	the	code
to	split	into	a	new	chunk	(Figure	3.5),	and	use	the	same	keyboard	shortcut	for	inserting	a	new	code	chunk
(Figure	3.6).

title:	"My	Notebook"

output:	html_notebook

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/notebook.html#fig:notebook-console
file:///home/me/bookdown.org/yihui/rmarkdown/notebook.html#fig:notebook-split-before
file:///home/me/bookdown.org/yihui/rmarkdown/notebook.html#fig:notebook-split-after

FIGURE	3.5:	Select	the	code	to	split	into	a	new	chunk.

FIGURE	3.6:	Insert	a	new	chunk	from	the	code	selected	before.

3.2.1.3 	Executing	code

Code	in	the	notebook	is	executed	with	the	same	gestures	you	would	use	to	execute	code	in	an	R
Markdown	document:

1.	 Use	the	green	triangle	button	on	the	toolbar	of	a	code	chunk	that	has	the	tooltip	“Run	Current	Chunk”,
or	 	Ctrl	+	Shift	+	Enter		(macOS:	 	Cmd	+	Shift	+	Enter)	to	run	the	current	chunk.

2.	 Press	 	Ctrl	+	Enter		(macOS:	 	Cmd	+	Enter)	to	run	just	the	current	statement.	Running	a	single
statement	is	much	like	running	an	entire	chunk	consisting	only	of	that	statement.

3.	 There	are	other	ways	to	run	a	batch	of	chunks	if	you	click	the	menu		Run		on	the	editor	toolbar,	such
as	 	Run	All	,	 	Run	All	Chunks	Above	,	and	 	Run	All	Chunks	Below	.

The	primary	difference	is	that	when	executing	chunks	in	an	R	Markdown	document,	all	the	code	is	sent	to
the	console	at	once,	but	in	a	notebook,	only	one	line	at	a	time	is	sent.	This	allows	execution	to	stop	if	a	line
raises	an	error.

There	is	also	a		Restart	R	and	Run	All	Chunks		item	in	the	 	Run		menu	on	the	editor	toolbar,	which
gives	you	a	fresh	R	session	prior	to	running	all	the	chunks.	This	is	similar	to	the		Knit		button,	which
launches	a	separate	R	session	to	compile	the	document.

When	you	execute	code	in	a	notebook,	an	indicator	will	appear	in	the	gutter	to	show	you	execution
progress	(Figure	3.7).	Lines	of	code	that	have	been	sent	to	R	are	marked	with	dark	green;	lines	that	have
not	yet	been	sent	to	R	are	marked	with	light	green.	If	at	least	one	chunk	is	waiting	to	be	executed,	you	will
see	a	progress	meter	appear	in	the	editor’s	status	bar,	indicating	the	number	of	chunks	remaining	to	be
executed.	You	can	click	on	this	meter	at	any	time	to	jump	to	the	currently	executing	chunk.	When	a	chunk
is	waiting	to	execute,	the		Run		button	in	its	toolbar	will	change	to	a	“queued”	icon.	If	you	do	not	want	the
chunk	to	run,	you	can	click	on	the	icon	to	remove	it	from	the	execution	queue.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/notebook.html#fig:notebook-longrunning

FIGURE	3.7:	Insert	a	new	chunk	from	the	code	selected	before.

In	general,	when	you	execute	code	in	a	notebook	chunk,	it	will	do	exactly	the	same	thing	as	it	would	if	that
same	code	were	typed	into	the	console.	There	are	however	a	few	differences:

Output:	The	most	obvious	difference	is	that	most	forms	of	output	produced	from	a	notebook	chunk	are
shown	in	the	chunk	output	rather	than,	for	example,	the	RStudio	Viewer	or	the	Plots	pane.	Console
output	(including	warnings	and	messages)	appears	both	at	the	console	and	in	the	chunk	output.

Working	directory:	The	current	working	directory	inside	a	notebook	chunk	is	always	the	directory
containing	the	notebook	 	.Rmd		file.	This	makes	it	easier	to	use	relative	paths	inside	notebook
chunks,	and	also	matches	the	behavior	when	knitting,	making	it	easier	to	write	code	that	works
identically	both	interactively	and	in	a	standalone	render.

You’ll	get	a	warning	if	you	try	to	change	the	working	directory	inside	a	notebook	chunk,	and	the
directory	will	revert	back	to	the	notebook’s	directory	once	the	chunk	is	finished	executing.	You	can
suppress	this	warning	by	using	the		warnings	=	FALSE		chunk	option.

If	it	is	necessary	to	execute	notebook	chunks	in	a	different	directory,	you	can	change	the	working
directory	for	all	your	chunks	by	using	the	knitr	 	root.dir		option.	For	instance,	to	execute	all
notebook	chunks	in	the	grandparent	folder	of	the	notebook:

knitr::opts_knit$set(root.dir	=	normalizePath(".."))

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

This	option	is	only	effective	when	used	inside	the	setup	chunk.	Also	note	that,	as	in	knitr,	the
	root.dir		chunk	option	applies	only	to	chunks;	relative	paths	in	Markdown	are	still	relative	to	the
notebook’s	parent	folder.

Warnings:	Inside	a	notebook	chunk,	warnings	are	always	displayed	immediately	rather	than	being
held	until	the	end,	as	in		options(warn	=	1)	.

Plots:	Plots	emitted	from	a	chunk	are	rendered	to	match	the	width	of	the	editor	at	the	time	the	chunk
was	executed.	The	height	of	the	plot	is	determined	by	the	golden	ratio.	The	plot’s	display	list	is	saved,
too,	and	the	plot	is	re-rendered	to	match	the	editor’s	width	when	the	editor	is	resized.

You	can	use	the		fig.width	,	 	fig.height	,	and	 	fig.asp		chunk	options	to	manually	specify	the
size	of	rendered	plots	in	the	notebook;	you	can	also	use		knitr::opts_chunk$set(fig.width	=
...,	fig.height	=	...)		in	the	setup	chunk	to	to	set	a	default	rendered	size.	Note,	however,
specifying	a	chunk	size	manually	suppresses	the	generation	of	the	display	list,	so	plots	with	manually
specified	sizes	will	be	resized	using	simple	image	scaling	when	the	notebook	editor	is	resized.

To	execute	an	inline	R	expression	in	the	notebook,	put	your	cursor	inside	the	chunk	and	press		Ctrl	+
Enter		(macOS:	 	Cmd	+	Enter).	As	in	the	execution	of	ordinary	chunks,	the	content	of	the	expression
will	be	sent	to	the	R	console	for	evaluation.	The	results	will	appear	in	a	small	pop-up	window	next	to	the
code	(Figure	3.8).

FIGURE	3.8:	Output	from	an	inline	R	expression	in	the	notebook.

In	notebooks,	inline	R	expressions	can	only	produce	text	(not	figures	or	other	kinds	of	output).	It	is	also
important	that	inline	R	expressions	executes	quickly	and	do	not	have	side-effects,	as	they	are	executed
whenever	you	save	the	notebook.

Notebooks	are	typically	self-contained.	However,	in	some	situations,	it	is	preferable	to	re-use	code	from	an
R	script	as	a	notebook	chunk,	as	in	knitr’s	code	externalization.	This	can	be	done	by	using
	knitr::read_chunk()		in	your	notebook’s	setup	chunk,	along	with	a	special		##	----	chunkname	
annotation	in	the	R	file	from	which	you	intend	to	read	code.	Here	is	a	minimal	example	with	two	files:

example.Rmd

example.R

When	you	execute	the	empty	chunk	in	the	notebook		example.Rmd	,	code	from	the	external	file
	example.R		will	be	inserted,	and	the	results	displayed	inline,	as	though	the	chunk	contained	that	code
(Figure	3.9).

```{r	setup}

knitr::read_chunk("example.R")

```

##	----	chunk

1	+	1

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://en.wikipedia.org/wiki/Golden_ratio
file:///home/me/bookdown.org/yihui/rmarkdown/notebook.html#fig:notebook-inline-output
https://yihui.name/knitr/demo/externalization/
file:///home/me/bookdown.org/yihui/rmarkdown/notebook.html#fig:notebook-external-code

FIGURE	3.9:	Execute	a	code	chunk	read	from	an	external	R	script.

3.2.1.4 	Chunk	output

When	code	is	executed	in	the	notebook,	its	output	appears	beneath	the	code	chunk	that	produced	it.	You
can	clear	an	individual	chunk’s	output	by	clicking	the		X		button	in	the	upper	right	corner	of	the	output,	or
collapse	it	by	clicking	the	chevron.

It	is	also	possible	to	clear	or	collapse	all	of	the	output	in	the	document	at	once	using	the		Collapse	All
Output		and	 	Clear	All	Output		menu	items	available	on	the	gear	menu	in	the	editor	toolbar	(Figure
3.4).

If	you	want	to	fully	reset	the	state	of	the	notebook,	the	item		Restart	R	and	Clear	Output		on	the	 	Run	
menu	on	the	editor	toolbar	will	do	the	job.

Ordinary	R	Markdown	documents	are	“knitted”,	but	notebooks	are	“previewed”.	While	the	notebook
preview	looks	similar	to	a	rendered	R	Markdown	document,	the	notebook	preview	does	not	execute	any	of
your	R	code	chunks.	It	simply	shows	you	a	rendered	copy	of	the	Markdown	output	of	your	document	along
with	the	most	recent	chunk	output.	This	preview	is	generated	automatically	whenever	you	save	the
notebook	(whether	you	are	viewing	it	in	RStudio	or	not);	see	the	section	beneath	on	the		*.nb.html		file
for	details.

When	 	html_notebook		is	the	topmost	(default)	format	in	your	YAML	metadata,	you	will	see	a		Preview	
button	in	the	editor	toolbar.	Clicking	it	will	show	you	the	notebook	preview	(Figure	3.10).

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/notebook.html#fig:notebook-console
file:///home/me/bookdown.org/yihui/rmarkdown/notebook.html#fig:notebook-preview

FIGURE	3.10:	Preview	a	notebook.

If	you	have	configured	R	Markdown	previewing	to	use	the	Viewer	pane	(as	illustrated	in	Figure	3.10),	the
preview	will	be	automatically	updated	whenever	you	save	your	notebook.

When	an	error	occurs	while	a	notebook	chunk	is	executing	(Figure	3.11):

FIGURE	3.11:	Errors	in	a	notebook.

1.	 Execution	will	stop;	the	remaining	lines	of	that	chunk	(and	any	chunks	that	have	not	yet	been	run)	will
not	be	executed.

2.	 The	editor	will	scroll	to	the	error.

3.	 The	line	of	code	that	caused	the	error	will	have	a	red	indicator	in	the	editor’s	gutter.

If	you	want	your	notebook	to	keep	running	after	an	error,	you	can	suppress	the	first	two	behaviors	by
specifying	 	error	=	TRUE		in	the	chunk	options.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/notebook.html#fig:notebook-preview
file:///home/me/bookdown.org/yihui/rmarkdown/notebook.html#fig:notebook-error

In	most	cases,	it	should	not	be	necessary	to	have	the	console	open	while	using	the	notebook,	as	you	can
see	all	of	the	console	output	in	the	notebook	itself.	To	preserve	vertical	space,	the	console	will	be
automatically	collapsed	when	you	open	a	notebook	or	run	a	chunk	in	the	notebook.

If	you	prefer	not	to	have	the	console	hidden	when	chunks	are	executed,	uncheck	the	option	from	the	menu
	Tools	->	Global	Options	->	R	Markdown	->	Hide	console	automatically	when	executing

notebook	chunks	.

3.2.2 	Saving	and	sharing

3.2.2.1 	Notebook	file

When	a	notebook	 	*.Rmd		file	is	saved,	a		*.nb.html		file	is	created	alongside	it.	This	file	is	a	self-
contained	HTML	file	which	contains	both	a	rendered	copy	of	the	notebook	with	all	current	chunk	outputs
(suitable	for	display	on	a	website)	and	a	copy	of	the		*.Rmd		file	itself.

You	can	view	the		*.nb.html		file	in	any	ordinary	web	browser.	It	can	also	be	opened	in	RStudio;	when
you	open	there	(e.g.,	using		File	->	Open	File),	RStudio	will	do	the	following:

1.	 Extract	the	bundled	 	*.Rmd		file,	and	place	it	alongside	the		*.nb.html		file.

2.	 Open	the	 	*.Rmd		file	in	a	new	RStudio	editor	tab.

3.	 Extract	the	chunk	outputs	from	the		*.nb.html		file,	and	place	them	appropriately	in	the	editor.

Note	that	the	 	*.nb.html		file	is	only	created	for	R	Markdown	documents	that	are	notebooks	(i.e.,	at	least
one	of	their	output	formats	is		html_notebook).	It	is	possible	to	have	an	R	Markdown	document	that
includes	inline	chunk	output	beneath	code	chunks,	but	does	not	produce	an		*.nb.html		file,	when
	html_notebook		is	not	specified	as	an	output	format	for	the	R	Markdown	document.

3.2.2.2 	Output	storage

The	document’s	chunk	outputs	are	also	stored	in	an	internal	RStudio	folder	beneath	the	project’s
	.Rproj.user		folder.	If	you	work	with	a	notebook	but	do	not	have	a	project	open,	the	outputs	are	stored
in	the	RStudio	state	folder	in	your	home	directory	(the	location	of	this	folder	varies	between	the	desktop
and	the	server).

3.2.2.3 	Version	control

One	of	the	major	advantages	of	R	Notebooks	compared	to	other	notebook	systems	is	that	they	are	plain-
text	files	and	therefore	work	well	with	version	control.	We	recommend	checking	in	both	the		*.Rmd		and
	*.nb.html		files	into	version	control,	so	that	both	your	source	code	and	output	are	available	to
collaborators.	However,	you	can	choose	to	include	only	the		*.Rmd		file	(with	a	 	.gitignore		that
excludes	 	*.nb.html)	if	you	want	each	collaborator	to	work	with	their	own	private	copies	of	the	output.

3.2.3 	Notebook	format

While	RStudio	provides	a	set	of	integrated	tools	for	authoring	R	Notebooks,	the	notebook	file	format	itself
is	decoupled	from	RStudio.	The	rmarkdown	package	provides	several	functions	that	can	be	used	to	read
and	write	R	Notebooks	outside	of	RStudio.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://support.rstudio.com/hc/en-us/articles/200534577
https://support.rstudio.com/hc/en-us/articles/218730228

In	this	section,	we	describe	the	internals	of	the	notebook	format.	It	is	primarily	intended	for	front-end
applications	using	or	embedding	R,	or	other	users	who	are	interested	in	reading	and	writing	documents
using	the	R	Notebook	format.	We	recommend	that	beginners	skip	this	section	when	reading	this	book	or
using	notebooks	for	the	first	time.

R	Notebooks	are	HTML	documents	with	data	written	and	encoded	in	such	a	way	that:

1.	 The	source	Rmd	document	can	be	recovered,	and

2.	 Chunk	outputs	can	be	recovered.

To	generate	an	R	Notebook,	you	can	use		rmarkdown::render()		and	specify	the	 	html_notebook	
output	format	in	your	document’s	YAML	metadata.	Documents	rendered	in	this	form	will	be	generated	with
the	 	.nb.html		file	extension,	to	indicate	that	they	are	HTML	notebooks.

To	ensure	chunk	outputs	can	be	recovered,	the	elements	of	the	R	Markdown	document	are	enclosed	with
HTML	comments,	providing	more	information	on	the	output.	For	example,	chunk	output	might	be	serialized
in	the	form:

Because	R	Notebooks	are	just	HTML	documents,	they	can	be	opened	and	viewed	in	any	web	browser;	in
addition,	hosting	environments	can	be	configured	to	recover	and	open	the	source	Rmd	document,	and
also	recover	and	display	chunk	outputs	as	appropriate.

3.2.3.1 	Generating	R	Notebooks	with	custom	output

It	is	possible	to	render	an	HTML	notebook	with	custom	chunk	outputs	inserted	in	lieu	of	the	result	that
would	be	generated	by	evaluating	the	associated	R	code.	This	can	be	useful	for	front-end	editors	that
show	the	output	of	chunk	execution	inline,	or	for	conversion	programs	from	other	notebook	formats	where
output	is	already	available	from	the	source	format.	To	facilitate	this,	one	can	provide	a	custom	“output
source”	to	 	rmarkdown::render()	.	Let’s	investigate	with	a	simple	example:

Let’s	try	to	render	this	document	with	a	custom	output	source,	so	that	we	can	inject	custom	output	for	the
single	chunk	within	the	document.	The	output	source	function	will	accept:

<!--	rnb-chunk-begin	-->

<!--	rnb-output-begin	-->

<pre><code>Hello,	World!</code></pre>

<!--	rnb-output-end	-->

<!--	rnb-chunk-end	-->

rmd_stub	=	"examples/r-notebook-stub.Rmd"

cat(readLines(rmd_stub),	sep	=	"\n")

title:	"R	Notebook	Stub"

output:	html_notebook

```{r	chunk-one}

print("Hello,	World!")

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

	code	:	The	code	within	the	current	chunk.

	context	:	An	environment	containing	active	chunk	options	and	other	chunk	information.

	...	:	Optional	arguments	reserved	for	future	expansion.

In	particular,	the	 	context		elements	 	label		and	 	chunk.index		can	be	used	to	help	identify	which
chunk	is	currently	being	rendered.

We	can	pass	our		output_source		along	as	part	of	the		output_options		list	to
	rmarkdown::render()	.

We	have	now	generated	an	R	Notebook.	Open	this	document	in	a	web	browser,	and	it	will	show	that	the
	output_source		function	has	effectively	side-stepped	evaluation	of	code	within	that	chunk,	and	instead
returned	the	injected	result.

3.2.3.2 	Implementing	output	sources

In	general,	you	can	provide	regular	R	output	in	your	output	source	function,	but	rmarkdown	also	provides	a
number	of	endpoints	for	insertion	of	custom	HTML	content.	These	are	documented	within		?
html_notebook_output	.

Using	these	functions	ensures	that	you	produce	an	R	Notebook	that	can	be	opened	in	R	frontends	(e.g.,
RStudio).

3.2.3.3 	Parsing	R	Notebooks

The	 	rmarkdown::parse_html_notebook()		function	provides	an	interface	for	recovering	and	parsing	an
HTML	notebook.

List	of	4

$	source	:	chr	[1:1759]	"<!DOCTYPE	html>"	""	"<html

output_source	=	function(code,	context,	...)	{

		logo	=	file.path(R.home(),	"doc/html/logo.jpg")

		if	(context$label	==	"chunk-one")	list(

				rmarkdown::html_notebook_output_code("#	R	Code"),

				paste("Custom	output	for	chunk:",	context$chunk.index),

				rmarkdown::html_notebook_output_code("#	R	Logo"),

				rmarkdown::html_notebook_output_img(logo)

)

}

output_file	=	rmarkdown::render(

		rmd_stub,

		output_options	=	list(output_source	=	output_source),

		quiet	=	TRUE

)

parsed	=	rmarkdown::parse_html_notebook(output_file)

str(parsed,	width	=	60,	strict.width	=	"wrap")

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://rmarkdown.rstudio.com/notebook/r-notebook-stub.nb.html

			xmlns=\"http://www.w3.org/1999/xhtml\">"	""	...

$	rmd	:	chr	[1:8]	"---"	"title:	\"R	Notebook	Stub\""

			"output:	html_notebook"	"---"	...

$	header	:	chr	[1:1598]	"<head>"	""	"<meta

			charset=\"utf-8\"	/>"	"<meta	http-equiv=\"Content-Type\"

			content=\"text/html;	charset=utf-8\"	/>"	...

$	annotations:List	of	12

..$:List	of	4

..	..$	row	:	int	1701

..	..$	label:	chr	"text"

..	..$	state:	chr	"begin"

..	..$	meta	:	NULL

..$:List	of	4

..	..$	row	:	int	1702

..	..$	label:	chr	"text"

..	..$	state:	chr	"end"

..	..$	meta	:	NULL

..$:List	of	4

..	..$	row	:	int	1703

..	..$	label:	chr	"chunk"

..	..$	state:	chr	"begin"

..	..$	meta	:	NULL

..$:List	of	4

..	..$	row	:	int	1704

..	..$	label:	chr	"source"

..	..$	state:	chr	"begin"

..	..$	meta	:List	of	1

..$	data:	chr	"```r\n#	R	Code\n```"

..$:List	of	4

..	..$	row	:	int	1706

..	..$	label:	chr	"source"

..	..$	state:	chr	"end"

..	..$	meta	:	NULL

..$:List	of	4

..	..$	row	:	int	1707

..	..$	label:	chr	"output"

..	..$	state:	chr	"begin"

..	..$	meta	:List	of	1

..$	data:	chr	"Custom	output	for	chunk:	1\n"

..$:List	of	4

..	..$	row	:	int	1709

..	..$	label:	chr	"output"

..	..$	state:	chr	"end"

..	..$	meta	:	NULL

..$:List	of	4

..	..$	row	:	int	1710

..	..$	label:	chr	"source"

..	..$	state:	chr	"begin"

..	..$	meta	:List	of	1

..$	data:	chr	"```r\n#	R	Logo\n```"

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

..$:List	of	4

..	..$	row	:	int	1712

..	..$	label:	chr	"source"

..	..$	state:	chr	"end"

..	..$	meta	:	NULL

..$:List	of	4

..	..$	row	:	int	1713

..	..$	label:	chr	"plot"

..	..$	state:	chr	"begin"

..	..$	meta	:	NULL

..$:List	of	4

..	..$	row	:	int	1715

..	..$	label:	chr	"plot"

..	..$	state:	chr	"end"

..	..$	meta	:	NULL

..$:List	of	4

..	..$	row	:	int	1716

..	..$	label:	chr	"chunk"

..	..$	state:	chr	"end"

..	..$	meta	:	NULL

This	interface	can	be	used	to	recover	the	original	Rmd	source,	and	also	(with	some	more	effort	from	the
front-end)	the	ability	to	recover	chunk	outputs	from	the	document	itself.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

3.3 	PDF	document

To	create	a	PDF	document	from	R	Markdown,	you	specify	the		pdf_document		output	format	in	the	YAML
metadata:

Within	R	Markdown	documents	that	generate	PDF	output,	you	can	use	raw	LaTeX,	and	even	define	LaTeX
macros.	See	Pandoc’s	documentation	on	the	raw_tex	extension	for	details.

Note	that	PDF	output	(including	Beamer	slides)	requires	an	installation	of	LaTeX	(see	Chapter	1).

3.3.1 	Table	of	contents

You	can	add	a	table	of	contents	using	the		toc		option	and	specify	the	depth	of	headers	that	it	applies	to
using	the	 	toc_depth		option.	For	example:

If	the	TOC	depth	is	not	explicitly	specified,	it	defaults	to	3	(meaning	that	all	level	1,	2,	and	3	headers	will	be
included	in	the	TOC).

You	can	add	section	numbering	to	headers	using	the		number_sections		option:

If	you	are	familiar	with	LaTeX,		number_sections:	true		means	 	\section{}	,	and	 	number_sections:
false		means	 	\section*{}		for	sections	in	LaTeX	(it	also	applies	to	other	levels	of	“sections”	such	as
	\chapter{}	,	and	 	\subsection{}).

title:	"Habits"

author:	John	Doe

date:	March	22,	2005

output:	pdf_document

title:	"Habits"

output:

		pdf_document:

				toc:	true

				toc_depth:	2

title:	"Habits"

output:

		pdf_document:

				toc:	true

				number_sections:	true

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://pandoc.org/MANUAL.html#extension-raw_tex
file:///home/me/bookdown.org/yihui/rmarkdown/installation.html#installation

3.3.2 	Figure	options

There	are	a	number	of	options	that	affect	the	output	of	figures	within	PDF	documents:

	fig_width		and	 	fig_height		can	be	used	to	control	the	default	figure	width	and	height	(6x4.5	is
used	by	default).

	fig_crop		controls	whether	the	 	pdfcrop		utility,	if	available	in	your	system,	is	automatically	applied
to	PDF	figures	(this	is		true		by	default).	If	your	graphics	device	is		postscript	,	we	recommend
that	you	disable	this	feature	(see	more	info	in	this	knitr	issue).

	fig_caption		controls	whether	figures	are	rendered	with	captions	(this	is		false		by	default).

	dev		controls	the	graphics	device	used	to	render	figures	(defaults	to		pdf).

For	example:

3.3.3 	Data	frame	printing

You	can	enhance	the	default	display	of	data	frames	via	the		df_print		option.	Valid	values	are	presented
in	Table	3.3.

TABLE	3.3:	The	possible	values	of	the		df_print		option	for	the	 	pdf_document		format.

Option Description

default Call	the	 	print.data.frame		generic	method

kable Use	the	 	knitr::kable()		function

tibble Use	the	 	tibble::print.tbl_df()		function

For	example:

3.3.4 	Syntax	highlighting

The	 	highlight		option	specifies	the	syntax	highlighting	style.	Its	usage	in		pdf_document		is	the	same
as	 	html_document		(Section	3.1.4).	For	example:

title:	"Habits"

output:

		pdf_document:

				fig_width:	7

				fig_height:	6

				fig_caption:	true

title:	"Habits"

output:

		pdf_document:

				df_print:	kable

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/yihui/knitr/issues/1365
file:///home/me/bookdown.org/yihui/rmarkdown/pdf-document.html#tab:df-print-pdf
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#appearance-and-style

3.3.5 	LaTeX	options

Many	aspects	of	the	LaTeX	template	used	to	create	PDF	documents	can	be	customized	using	top-level
YAML	metadata	(note	that	these	options	do	not	appear	underneath	the		output		section,	but	rather
appear	at	the	top	level	along	with		title	,	 	author	,	and	so	on).	For	example:

A	few	available	metadata	variables	are	displayed	in	Table	3.4	(consult	the	Pandoc	manual	for	the	full	list):

TABLE	3.4:	Available	top-level	YAML	metadata	variables	for	LaTeX	output.

Variable Description

lang Document	language	code

fontsize Font	size	(e.g.,	 	10pt	,	 	11pt	,	or	 	12pt)

documentclass LaTeX	document	class	(e.g.,		article)

classoption Options	for	documentclass	(e.g.,		oneside)

geometry Options	for	geometry	class	(e.g.,		margin=1in)

mainfont,	sansfont,
monofont,	mathfont

Document	fonts	(works	only	with		xelatex		and	 	lualatex)

linkcolor,	urlcolor,
citecolor

Color	for	internal,	external,	and	citation	links

3.3.6 	LaTeX	packages	for	citations

By	default,	citations	are	processed	through		pandoc-citeproc	,	which	works	for	all	output	formats.	For
PDF	output,	sometimes	it	is	better	to	use	LaTeX	packages	to	process	citations,	such	as		natbib		or
	biblatex	.	To	use	one	of	these	packages,	just	set	the	option		citation_package		to	be	 	natbib		or
	biblatex	,	e.g.

title:	"Habits"

output:

		pdf_document:

				highlight:	tango

title:	"Crop	Analysis	Q3	2013"

output:	pdf_document

fontsize:	11pt

geometry:	margin=1in

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/pdf-document.html#tab:latex-vars

3.3.7 	Advanced	customization

3.3.7.1 	LaTeX	engine

By	default,	PDF	documents	are	rendered	using		pdflatex	.	You	can	specify	an	alternate	engine	using	the
	latex_engine		option.	Available	engines	are	 	pdflatex	,	 	xelatex	,	and	 	lualatex	.	For	example:

The	main	reasons	you	may	want	to	use		xelatex		or	 	lualatex		are:	(1)	They	support	Unicode	better;
(2)	It	is	easier	to	make	use	of	system	fonts.	See	some	posts	on	Stack	Overflow	for	more	detailed
explanations,	e.g.,	https://tex.stackexchange.com/q/3393/9128	and
https://tex.stackexchange.com/q/36/9128.

3.3.7.2 	Keeping	intermediate	TeX

R	Markdown	documents	are	converted	to	PDF	by	first	converting	to	a	TeX	file	and	then	calling	the	LaTeX
engine	to	convert	to	PDF.	By	default,	this	TeX	file	is	removed,	however	if	you	want	to	keep	it	(e.g.,	for	an
article	submission),	you	can	specify	the		keep_tex		option.	For	example:

3.3.7.3 	Includes

You	can	do	more	advanced	customization	of	PDF	output	by	including	additional	LaTeX	directives	and/or
content	or	by	replacing	the	core	Pandoc	template	entirely.	To	include	content	in	the	document	header	or
before/after	the	document	body,	you	use	the		includes		option	as	follows:

output:

		pdf_document:

				citation_package:	natbib

title:	"Habits"

output:

		pdf_document:

				latex_engine:	xelatex

title:	"Habits"

output:

		pdf_document:

				keep_tex:	true

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://tex.stackexchange.com/q/3393/9128
https://tex.stackexchange.com/q/36/9128

3.3.7.4 	Custom	templates

You	can	also	replace	the	underlying	Pandoc	template	using	the		template		option:

Consult	the	documentation	on	Pandoc	templates	for	additional	details	on	templates.	You	can	also	study
the	default	LaTeX	template	as	an	example.

3.3.8 	Other	features

Similar	to	HTML	documents,	you	can	enable	or	disable	certain	Markdown	extensions	for	generating	PDF
documents.	See	Section	3.1.10.4	for	details.	You	can	also	pass	more	custom	Pandoc	arguments	through
the	 	pandoc_args		option	(Section	3.1.10.5),	and	define	shared	options	in		_output.yml		(Section
3.1.11).

title:	"Habits"

output:

		pdf_document:

				includes:

						in_header:	preamble.tex

						before_body:	doc-prefix.tex

						after_body:	doc-suffix.tex

title:	"Habits"

output:

		pdf_document:

				template:	quarterly-report.tex

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://pandoc.org/README.html#templates
https://github.com/jgm/pandoc-templates/blob/master/default.latex
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#markdown-extensions
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#pandoc-arguments
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#shared-options

3.4 	Word	document

To	create	a	Word	document	from	R	Markdown,	you	specify	the		word_document		output	format	in	the
YAML	metadata	of	your	document:

The	most	notable	feature	of	Word	documents	is	the	Word	template,	which	is	also	known	as	the	“style
reference	document”.	You	can	specify	a	document	to	be	used	as	a	style	reference	in	producing	a
	*.docx		file	(a	Word	document).	This	will	allow	you	to	customize	things	such	as	margins	and	other
formatting	characteristics.	For	best	results,	the	reference	document	should	be	a	modified	version	of	a
	.docx		file	produced	using	rmarkdown	or	Pandoc.	The	path	of	such	a	document	can	be	passed	to	the
	reference_docx		argument	of	the	 	word_document		format.	Pass	 	"default"		to	use	the	default	styles.
For	example:

For	more	on	how	to	create	and	use	a	reference	document,	you	may	watch	this	short	video:
https://vimeo.com/110804387,	or	read	this	detailed	article:
https://rmarkdown.rstudio.com/articles_docx.html.

3.4.1 	Other	features

Refer	to	Section	3.1	for	the	documentation	of	most	features	of	Word	documents,	including	figure	options
(Section	3.1.5),	data	frame	printing	(Section	3.1.6),	syntax	highlighting	(Section	3.1.4),	keeping	Markdown
(Section	3.1.10.1),	Markdown	extensions	(Section	3.1.10.4),	Pandoc	arguments	(Section	3.1.10.5),	and
shared	options	(Section	3.1.11).

title:	"Habits"

author:	John	Doe

date:	March	22,	2005

output:	word_document

title:	"Habits"

output:

		word_document:

				reference_docx:	my-styles.docx

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://vimeo.com/110804387
https://rmarkdown.rstudio.com/articles_docx.html
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#html-document
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#figure-options
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#data-frame-printing
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#appearance-and-style
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#keeping-markdown
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#markdown-extensions
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#pandoc-arguments
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#shared-options

3.5 	OpenDocument	Text	document

To	create	an	OpenDocument	Text	(ODT)	document	from	R	Markdown,	you	specify	the		odt_document	
output	format	in	the	YAML	metadata	of	your	document:

Similar	to	 	word_document,		you	can	also	provide	a	style	reference	document	to		odt_document	
throught	the	 	reference_odt		option.	For	best	results,	the	reference	ODT	document	should	be	a	modified
version	of	an	ODT	file	produced	using	rmarkdown	or	Pandoc.	For	example:

3.5.1 	Other	features

Refer	to	Section	3.1	for	the	documentation	of	most	features	of	ODT	documents,	including	figure	options
(Section	3.1.5),	keeping	Markdown	(Section	3.1.10.1),	header	and	before/after	body	inclusions	(Section
3.1.10.2),	custom	templates	(Section	3.1.10.3),	Markdown	extensions	(Section	3.1.10.4),	Pandoc
arguments	(Section	3.1.10.5),	and	shared	options	(Section	3.1.11).

title:	"Habits"

author:	John	Doe

date:	March	22,	2005

output:	odt_document

title:	"Habits"

output:

		odt_document:

				reference_odt:	my-styles.odt

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#html-document
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#figure-options
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#keeping-markdown
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#includes
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#custom-templates
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#markdown-extensions
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#pandoc-arguments
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#shared-options

3.6 	Rich	Text	Format	document

To	create	a	Rich	Text	Format	(RTF)	document	from	R	Markdown,	you	specify	the		rtf_document		output
format	in	the	YAML	metadata	of	your	document:

If	you	know	the	RTF	format	really	well,	you	can	actually	embed	raw	RTF	content	in	R	Markdown.	For
example,	you	may	create	a	table	in	RTF	using	other	software	packages,	and	insert	it	to	your	final	RTF
output	document.	An	RTF	document	is	essentially	a	plain-text	document,	so	you	can	read	it	into	R	using
functions	like	 	readLines()	.	Now	suppose	you	have	an	RTF	table	in	the	file		table.rtf	.	To	embed	it	in
R	Markdown,	you	read	it	and	pass	to		knitr::raw_output()	,	e.g.,

3.6.1 	Other	features

Refer	to	Section	3.1	for	the	documentation	of	most	features	of	RTF	documents,	including	table	of	contents
(Section	3.1.1),	figure	options	(Section	3.1.5),	keeping	Markdown	(Section	3.1.10.1),	Markdown
extensions	(Section	3.1.10.4),	Pandoc	arguments	(Section	3.1.10.5),	and	shared	options	(Section	3.1.11).

title:	"Habits"

author:	John	Doe

date:	March	22,	2005

output:	rtf_document

```{r,	echo=FALSE}

knitr::raw_output(readLines('table.rtf'))

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#html-document
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#table-of-contents
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#figure-options
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#keeping-markdown
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#markdown-extensions
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#pandoc-arguments
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#shared-options

3.7 	Markdown	document

In	some	cases,	you	might	want	to	produce	plain	Markdown	output	from	R	Markdown	(e.g.,	to	create	a
document	for	a	system	that	accepts	Markdown	input	like	Stack	Overflow).

To	create	a	Markdown	document	from	R	Markdown,	you	specify	the		md_document		output	format	in	the
front-matter	of	your	document:

3.7.1 	Markdown	variants

By	default,	the	 	md_document		format	produces	“strict”	Markdown	(i.e.,	conforming	to	the	original
Markdown	specification	with	no	extensions).	You	can	generate	a	different	flavor	of	Markdown	using	the
	variant		option.	For	example:

Valid	values	are:

	markdown		(Full	Pandoc	Markdown)
	markdown_strict		(Original	Markdown	specification;	the	default)
	markdown_github		(GitHub	Flavored	Markdown)
	markdown_mmd		(MultiMarkdown)
	markdown_phpextra		(PHP	Markdown	extra)

You	can	also	compose	custom	Markdown	variants.	For	example:

See	Pandoc’s	Manual	for	all	of	the	Markdown	extensions	and	their	names	to	be	used	in	composing
custom	variants.

3.7.1.1 	Publishing	formats

title:	"Habits"

author:	John	Doe

date:	March	22,	2005

output:	md_document

output:

		md_document:

				variant:	markdown_github

output:

		md_document:

				variant:	markdown_strict+backtick_code_blocks+autolink_bare_uris

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://stackoverflow.com/editing-help

Many	popular	publishing	systems	now	accept	Markdown	as	input.	Table	3.5	shows	the	correct	Markdown
variants	to	use	for	some	popular	systems.

TABLE	3.5:	Markdown	variants	for	some	popular	publishing	systems.

System Markdown	Variant

GitHub	Wikis 	markdown_github	

Drupal 	markdown_phpextra	

WordPress.com 	markdown_phpextra+backtick_code_blocks	

StackOverflow 	markdown_strict+autolink_bare_uris	

In	many	cases,	you	can	simply	copy	and	paste	the	Markdown	generated	by		rmarkdown::render()		into
the	editing	interface	of	the	system	you	are	targeting.	Note,	however,	that	if	you	have	embedded	plots	or
other	images,	you	will	need	to	upload	them	separately	and	fix	up	their	URLs	to	point	to	the	uploaded
location.	If	you	intend	to	build	websites	based	on	R	Markdown,	we	recommend	that	you	use	the	more
straightforward	solutions	such	as	blogdown	(Xie,	Hill,	and	Thomas	2017;	Xie	2018a)	as	introduced	in
Section	10	instead	of	manually	copying	the	Markdown	content.

3.7.2 	Other	features

Refer	to	Section	3.1	for	the	documentation	of	other	features	of	Markdown	documents,	including	table	of
contents	(Section	3.1.1),	figure	options	(Section	3.1.5),	header	and	before/after	body	inclusions	(Section
3.1.10.2),	Pandoc	arguments	(Section	3.1.10.5),	and	shared	options	(Section	3.1.11).

References

Xie,	Yihui,	Alison	Presmanes	Hill,	and	Amber	Thomas.	2017.	Blogdown:	Creating	Websites	with	R
Markdown.	Boca	Raton,	Florida:	Chapman;	Hall/CRC.	https://github.com/rstudio/blogdown.

Xie,	Yihui.	2018a.	Blogdown:	Create	Blogs	and	Websites	with	R	Markdown.
https://github.com/rstudio/blogdown.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/markdown-document.html#tab:markdown-variant
file:///home/me/bookdown.org/yihui/rmarkdown/markdown-document.html#ref-xie2017
file:///home/me/bookdown.org/yihui/rmarkdown/markdown-document.html#ref-R-blogdown
file:///home/me/bookdown.org/yihui/rmarkdown/markdown-document.html#ref-R-blogdown
file:///home/me/bookdown.org/yihui/rmarkdown/websites.html#websites
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#html-document
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#table-of-contents
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#figure-options
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#includes
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#pandoc-arguments
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#shared-options
https://github.com/rstudio/blogdown
https://github.com/rstudio/blogdown

3.8 	R	package	vignette

The	 	html_vignette		format	provides	a	lightweight	alternative	to		html_document		suitable	for	inclusion
in	packages	to	be	released	to	CRAN.	It	reduces	the	size	of	a	basic	vignette	from	600Kb	to	around	10Kb.
The	format	differs	from	a	conventional	HTML	document	as	follows:

Never	uses	retina	figures
Has	a	smaller	default	figure	size
Uses	a	custom	lightweight	CSS	stylesheet

To	use	 	html_vignette	,	you	specify	it	as	the	output	format	and	add	some	additional	vignette	related
settings	via	the	 	\Vignette*{}		macros:

Note	that	you	should	change	the		title		field	and	the	 	\VignetteIndexEntry{}		to	match	the	title	of
your	vignette.

Most	options	for	 	html_document		(Section	3.1)	also	work	for		html_vignette	,	except	 	fig_retina	
and	 	theme	,	which	have	been	set	to		null		internally	in	this	format.

The	 	html_vignette		template	includes	a	basic	CSS	theme.	To	override	this	theme,	you	can	specify	your
own	CSS	in	the	document	metadata	as	follows:

The	default	figure	size	is	3x3.	Because	the	figure	width	is	small,	usually	you	will	be	able	to	put	two	images
side-by-side	if	you	set	the	chunk	option		fig.show='hold'	,	e.g.,

If	you	want	larger	figure	sizes	you	can	change	the		fig_width		and	 	fig_height		in	the	document	output
options	or	alternatively	override	the	default	options	on	a	per-chunk	basis.

title:	"Your	Vignette	Title"

output:	rmarkdown::html_vignette

vignette:	>

		%\VignetteEngine{knitr::rmarkdown}

		%\VignetteIndexEntry{Your	Vignette	Title}

		%\VignetteEncoding{UTF-8}

output:

		rmarkdown::html_vignette:

				css:	mystyles.css

```{r,	fig.show='hold'}

plot(1:10)

plot(10:1)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#html-document

Chapter	4 	Presentations

For	documents,	the	basic	units	are	often	sections.	For	presentations,	the	basic	units	are	slides.	A	section
in	the	Markdown	source	document	often	indicates	a	new	slide	in	the	presentation	formats.	In	this	chapter,
we	introduce	the	built-in	presentation	formats	in	the	rmarkdown	package.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

4.1 	ioslides	presentation

To	create	an	ioslides	presentation	from	R	Markdown,	you	specify	the		ioslides_presentation		output
format	in	the	YAML	metadata	of	your	document.	You	can	create	a	slide	show	broken	up	into	sections	by
using	the	 	#		and	 	##		heading	tags	(you	can	also	create	a	new	slide	without	a	header	using	a	horizontal
rule	(---).	For	example	here	is	a	simple	slide	show	(see	Figure	4.1	for	two	sample	slides):

title:	"Habits"

author:	John	Doe

date:	March	22,	2005

output:	ioslides_presentation

#	In	the	morning

##	Getting	up

-	Turn	off	alarm

-	Get	out	of	bed

##	Breakfast

-	Eat	eggs

-	Drink	coffee

#	In	the	evening

##	Dinner

-	Eat	spaghetti

-	Drink	wine

```{r,	cars,	fig.cap="A	scatterplot.",	echo=FALSE}

plot(cars)

```

##	Going	to	sleep

-	Get	in	bed

-	Count	sheep

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/ioslides-presentation.html#fig:ioslides

FIGURE	4.1:	Two	sample	slides	in	an	ioslides	presentation.

You	can	add	a	subtitle	to	a	slide	or	section	by	including	text	after	the	pipe	(|)	character.	For	example:

4.1.1 	Display	modes

The	following	single	character	keyboard	shortcuts	enable	alternate	display	modes:

	'f'	:	enable	fullscreen	mode

	'w'	:	toggle	widescreen	mode

	'o'	:	enable	overview	mode

	'h'	:	enable	code	highlight	mode

	'p'	:	show	presenter	notes

Pressing	 	Esc		exits	all	of	these	modes.	See	the	sections	below	on	Code	Highlighting	and	Presenter
Mode	for	additional	detail	on	those	modes.

4.1.2 	Incremental	bullets

You	can	render	bullets	incrementally	by	adding	the		incremental		option:

If	you	want	to	render	bullets	incrementally	for	some	slides	but	not	others	you	can	(ab)use	this	syntax	for
blockquotes:

4.1.3 	Visual	appearance

##	Getting	up	|	What	I	like	to	do	first	thing

output:

		ioslides_presentation:

				incremental:	true

>	-	Eat	eggs

>	-	Drink	coffee

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

4.1.3.1 	Presentation	size

You	can	display	the	presentation	using	a	wider	form	factor	using	the		widescreen		option.	You	can	specify
that	smaller	text	be	used	with	the		smaller		option.	For	example:

You	can	also	enable	the		smaller		option	on	a	slide-by-slide	basis	by	adding	the		.smaller		attribute	to
the	slide	header:

4.1.3.2 	Transition	speed

You	can	customize	the	speed	of	slide	transitions	using		transition		option.	This	can	be	 	"default"	,
	"slower"	,	 	"faster"	,	or	a	numeric	value	with	a	number	of	seconds	(e.g.,		0.5)	.	For	example:

4.1.3.3 	Build	slides

Slides	can	also	have	a		.build		attribute	that	indicate	that	their	content	should	be	displayed
incrementally.	For	example:

Slide	attributes	can	be	combined	if	you	need	to	specify	more	than	one.	For	example:

4.1.3.4 	Background	images

You	can	specify	a	background	image	for	a	slide	using	the	attribute		data-background	,	and	use	other
attributes	including	 	data-background-size	,	 	data-background-position	,	and	 	data-background-
repeat		to	tweak	the	style	of	the	image.	You	need	to	be	familiar	with	CSS	to	fully	understand	these	four
attributes,	and	they	correspond	to	the	CSS	properties	 	background	,	 	background-size	,	 	background-
position	,	and	 	background-repeat	,	respectively.	For	example:

output:

		ioslides_presentation:

				widescreen:	true

				smaller:	true

##	Getting	up	{.smaller}

output:

		ioslides_presentation:

				transition:	slower

##	Getting	up	{.build}

##	Getting	up	{.smaller	.build}

##	Getting	up	{data-background=foo.png	data-background-size=cover}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.w3schools.com/cssref/css3_pr_background.asp

4.1.3.5 	Custom	CSS

You	can	add	your	own	CSS	to	an	ioslides	presentation	using	the		css		option:

You	can	also	target	specific	slides	or	classes	of	slice	with	custom	CSS	by	adding	IDs	or	classes	to	the
slides	headers	within	your	document.	For	example	the	following	slide	header:

Would	enable	you	to	apply	CSS	to	all	of	its	content	using	either	of	the	following	CSS	selectors:

4.1.4 	Code	highlighting

It	is	possible	to	select	subsets	of	code	for	additional	emphasis	by	adding	a	special	“highlight”	comment
around	the	code.	For	example:

The	highlighted	region	will	be	displayed	with	a	bold	font.	When	you	want	to	help	the	audience	focus
exclusively	on	the	highlighted	region	press	the		h		key	and	the	rest	of	the	code	will	fade	away.

4.1.5 	Adding	a	logo

You	can	add	a	logo	to	the	presentation	using	the		logo		option	(by	default,	the	logo	will	be	displayed	in	a
85x85	pixel	square).	For	example:

output:

		ioslides_presentation:

				css:	styles.css

##	Future	Steps	{#future-steps	.emphasized}

#future-steps	{

		color:	blue;

}

.emphasized	{

		font-size:	1.2em;

}

###	

x	<-	10

y	<-	x	*	2

###	

output:

		ioslides_presentation:

				logo:	logo.png

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

The	logo	graphic	will	be	rescaled	to	85x85	(if	necessary)	and	added	to	the	title	slide.	A	smaller	icon
version	of	the	logo	will	be	included	in	the	bottom-left	footer	of	each	slide.

The	logo	on	the	title	page	and	the	rectangular	element	containing	it	can	be	customised	with	CSS.	For
example:

These	selectors	are	to	be	placed	in	the	CSS	text	file.

Similarly,	the	logo	in	the	footer	of	each	slide	can	be	resized	to	any	desired	size.	For	example:

This	will	make	the	footer	logo	150	by	75	pixels	in	size.

4.1.6 	Tables

The	ioslides	template	has	an	attractive	default	style	for	tables	so	you	should	not	hesitate	to	add	tables	for
presenting	more	complex	sets	of	information.	Pandoc	Markdown	supports	several	syntaxes	for	defining
tables,	which	are	described	in	the	Pandoc	Manual.

4.1.7 	Advanced	layout

You	can	center	content	on	a	slide	by	adding	the		.flexbox		and	 	.vcenter		attributes	to	the	slide	title.
For	example:

You	can	horizontally	center	content	by	enclosing	it	in	a		div		tag	with	class	 	centered	.	For	example:

You	can	do	a	two-column	layout	using	the		columns-2		class.	For	example:

.gdbar	img	{

		width:	300px	!important;

		height:	150px	!important;

		margin:	8px	8px;

}

.gdbar	{

		width:	400px	!important;

		height:	170px	!important;

}

slides	>	slide:not(.nobackground):before	{

		width:	150px;

		height:	75px;

		background-size:	150px	75px;

}

##	Dinner	{.flexbox	.vcenter}

<div	class="centered">

This	text	is	centered.

</div>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

Note	that	content	will	flow	across	the	columns	so	if	you	want	to	have	an	image	on	one	side	and	text	on	the
other	you	should	make	sure	that	the	image	has	sufficient	height	to	force	the	text	to	the	other	side	of	the
slide.

4.1.8 	Text	color

You	can	color	content	using	base	color	classes		red	,	 	blue	,	 	green	,	 	yellow	,	and	 	gray		(or
variations	of	them,	e.g.,		red2	,	 	red3	,	 	blue2	,	 	blue3	,	etc.).	For	example:

4.1.9 	Presenter	mode

A	separate	presenter	window	can	also	be	opened	(ideal	for	when	you	are	presenting	on	one	screen	but
have	another	screen	that	is	private	to	you).	The	window	stays	in	sync	with	the	main	presentation	window
and	also	shows	presenter	notes	and	a	thumbnail	of	the	next	slide.	To	enable	presenter	mode	add		?
presentme=true		to	the	URL	of	the	presentation.	For	example:

The	presenter	mode	window	will	open	and	will	always	re-open	with	the	presentation	until	it	is	disabled
with:

To	add	presenter	notes	to	a	slide,	you	include	it	within	a	“notes”		div	.	For	example:

4.1.10 	Printing	and	PDF	output

<div	class="columns-2">

		

		-	Bullet	1

		-	Bullet	2

		-	Bullet	3

</div>

<div	class="red2">

This	text	is	red

</div>

my-presentation.html?presentme=true

my-presentation.html?presentme=false

<div	class="notes">

This	is	my	*note*.

-	It	can	contain	markdown

-	like	this	list

</div>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

You	can	print	an	ioslides	presentation	from	within	browsers	that	have	good	support	for	print	CSS	(as	of
this	writing,	Google	Chrome	has	the	best	support).	Printing	maintains	most	of	the	visual	styles	of	the
HTML	version	of	the	presentation.

To	create	a	PDF	version	of	a	presentation,	you	can	use	the	menu		Print	to	PDF		from	Google	Chrome.

4.1.11 	Custom	templates

You	can	replace	the	underlying	Pandoc	template	using	the		template		option:

However,	please	note	that	the	level	of	customization	that	can	be	achieved	is	limited	compared	to	the
templates	of	other	output	formats,	because	the	slides	are	generated	by	custom	formatting	written	in	Lua,
and	as	such	the	template	used	must	include	the	string		RENDERED_SLIDES		as	can	be	found	in	the	default
template	file	with	the	path		rmarkdown:::rmarkdown_system_file("rmd/ioslides/default.html")	.

4.1.12 	Other	features

Refer	to	Section	3.1	for	the	documentation	of	other	features	of	ioslides	presentations,	including	figure
options	(Section	3.1.5),	MathJax	equations	(Section	3.1.8),	data	frame	printing	(Section	3.1.6),	Markdown
extensions	(Section	3.1.10.4),	keeping	Markdown	(Section	3.1.10.1),	document	dependencies	(Section
3.1.9),	header	and	before/after	body	inclusions	(Section	3.1.10.2),	Pandoc	arguments	(Section	3.1.10.5),
and	shared	options	(Section	3.1.11).

title:	"Habits"

output:

		ioslides_presentation:

				template:	quarterly-report.html

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/rstudio/rmarkdown/blob/master/inst/rmd/ioslides/default.html
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#html-document
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#figure-options
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#mathjax-equations
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#data-frame-printing
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#markdown-extensions
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#keeping-markdown
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#document-dependencies
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#includes
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#pandoc-arguments
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#shared-options

4.2 	Slidy	presentation

To	create	a	Slidy	presentation	from	R	Markdown,	you	specify	the		slidy_presentation		output	format	in
the	YAML	metadata	of	your	document.	You	can	create	a	slide	show	broken	up	into	sections	by	using	the
	##		heading	tag	(you	can	also	create	a	new	slide	without	a	header	using	a	horizontal	rule	(---).	For
example,	here	is	a	simple	slide	show	(see	Figure	4.2	for	two	sample	slides):

title:	"Habits"

author:	John	Doe

date:	March	22,	2005

output:	slidy_presentation

#	In	the	morning

##	Getting	up

-	Turn	off	alarm

-	Get	out	of	bed

##	Breakfast

-	Eat	eggs

-	Drink	coffee

#	In	the	evening

##	Dinner

-	Eat	spaghetti

-	Drink	wine

```{r,	cars,	fig.cap="A	scatterplot.",	echo=FALSE}

plot(cars)

```

##	Going	to	sleep

-	Get	in	bed

-	Count	sheep

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.w3.org/Talks/Tools/Slidy2/
file:///home/me/bookdown.org/yihui/rmarkdown/slidy-presentation.html#fig:slidy

FIGURE	4.2:	Two	sample	slides	in	a	Slidy	presentation.

4.2.1 	Display	modes

The	following	single	character	keyboard	shortcuts	enable	alternate	display	modes:

	'C'	:	Show	table	of	contents	(the	right	sub-figure	in	Figure	4.2	has	shown	the	table	of	contents).
	'F'	:	Toggles	the	display	of	the	footer.
	'A'	:	Toggles	display	of	current	vs	all	slides	(useful	for	printing	handouts).
	'S'	:	Make	fonts	smaller.
	'B'	:	Make	fonts	larger	.

4.2.2 	Text	size

You	can	use	the		font_adjustment		option	to	increase	or	decrease	the	default	font	size	(e.g.,		-1		or
	+1)	for	the	entire	presentation.	For	example:

If	you	want	to	decrease	the	text	size	on	an	individual	slide	you	can	use	the		.smaller		slide	attribute.	For
example:

If	you	want	to	increase	the	text	size	on	an	individual	slide	you	can	use	the		.bigger		slide	attribute.	For
example:

You	can	also	manually	adjust	the	font	size	during	the	presentation	using	the		'S'		(smaller)	and	 	'B'	
(bigger)	keys.

output:

		slidy_presentation:

				font_adjustment:	-1

##	Getting	up	{.smaller}

##	Getting	up	{.bigger}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/slidy-presentation.html#fig:slidy

4.2.3 	Footer	elements

You	can	add	a	countdown	timer	to	the	footer	of	your	slides	using	the		duration		option	(duration	is
specified	in	minutes).	For	example:

You	can	also	add	custom	footer	text	(e.g.,	organization	name	and/or	copyright)	using	the		footer		option.
For	example:

4.2.4 	Other	features

Refer	to	Section	3.1	for	the	documentation	of	other	features	of	Slidy	presentations,	including	figure	options
(Section	3.1.5),	appearance	and	style	(Section	3.1.4),	MathJax	equations	(Section	3.1.8),	data	frame
printing	(Section	3.1.6),	Markdown	extensions	(Section	3.1.10.4),	keeping	Markdown	(Section	3.1.10.1),
document	dependencies	(Section	3.1.9),	header	and	before/after	body	inclusions	(Section	3.1.10.2),
custom	templates	(Section	3.1.10.3),	Pandoc	arguments	(Section	3.1.10.5),	and	shared	options	(Section
3.1.11).

Slidy	presentations	have	several	features	in	common	with	ioslides	presentations	in	Section	4.1.	For
incremental	bullets,	see	Section	4.1.2.	For	custom	CSS,	see	Section	4.1.3.5.	For	printing	Slidy	slides	to
PDF,	see	Section	4.1.10.

output:

		slidy_presentation:

				duration:	45

output:

		slidy_presentation:

				footer:	"Copyright	(c)	2014,	RStudio"

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#html-document
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#figure-options
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#appearance-and-style
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#mathjax-equations
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#data-frame-printing
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#markdown-extensions
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#keeping-markdown
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#document-dependencies
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#includes
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#custom-templates
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#pandoc-arguments
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#shared-options
file:///home/me/bookdown.org/yihui/rmarkdown/ioslides-presentation.html#ioslides-presentation
file:///home/me/bookdown.org/yihui/rmarkdown/ioslides-presentation.html#incremental-bullets
file:///home/me/bookdown.org/yihui/rmarkdown/ioslides-presentation.html#custom-css-ioslides
file:///home/me/bookdown.org/yihui/rmarkdown/ioslides-presentation.html#printing-and-pdf-output

4.3 	Beamer	presentation

To	create	a	Beamer	presentation	from	R	Markdown,	you	specify	the		beamer_presentation		output
format	in	the	YAML	metadata	of	your	document.	You	can	create	a	slide	show	broken	up	into	sections	by
using	the	 	#		and	 	##		heading	tags	(you	can	also	create	a	new	slide	without	a	header	using	a	horizontal
rule	(---).	For	example,	here	is	a	simple	slide	show	(see	Figure	4.3	for	two	sample	slides):

title:	"Habits"

author:	John	Doe

date:	March	22,	2005

output:	beamer_presentation

#	In	the	morning

##	Getting	up

-	Turn	off	alarm

-	Get	out	of	bed

##	Breakfast

-	Eat	eggs

-	Drink	coffee

#	In	the	evening

##	Dinner

-	Eat	spaghetti

-	Drink	wine

```{r,	cars,	fig.cap="A	scatterplot.",	echo=FALSE}

plot(cars)

```

##	Going	to	sleep

-	Get	in	bed

-	Count	sheep

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/beamer-presentation.html#fig:beamer

FIGURE	4.3:	Two	sample	slides	in	a	Beamer	presentation.

Within	R	Markdown	documents	that	generate	PDF	output,	you	can	use	raw	LaTeX	and	even	define	LaTeX
macros.	See	Pandoc’s	manual	for	details.

4.3.1 	Themes

You	can	specify	Beamer	themes	using	the		theme	,	 	colortheme	,	and	 	fonttheme		options.	For
example:

Figure	4.4	shows	two	sample	slides	of	the		AnnArbor		theme	in	the	above	example.	You	can	find	a	list	of
possible	themes	and	color	themes	at	https://hartwork.org/beamer-theme-matrix/.

FIGURE	4.4:	Two	sample	slides	with	the	AnnArbor	theme	in	Beamer.

4.3.2 	Slide	level

The	 	slide_level		option	defines	the	heading	level	that	defines	individual	slides.	By	default,	this	is	the
highest	header	level	in	the	hierarchy	that	is	followed	immediately	by	content,	and	not	another	header,
somewhere	in	the	document.	This	default	can	be	overridden	by	specifying	an	explicit		slide_level	:

output:

		beamer_presentation:

				theme:	"AnnArbor"

				colortheme:	"dolphin"

				fonttheme:	"structurebold"

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/beamer-presentation.html#fig:beamer-theme
https://hartwork.org/beamer-theme-matrix/

4.3.3 	Other	features

Refer	to	Section	3.1	for	the	documentation	of	other	features	of	Beamer	presentations,	including	table	of
contents	(Section	3.1.1),	figure	options	(Section	3.1.5),	appearance	and	style	(Section	3.1.4),	data	frame
printing	(Section	3.1.6),	Markdown	extensions	(Section	3.1.10.4),	header	and	before/after	body	inclusions
(Section	3.1.10.2),	custom	templates	(Section	3.1.10.3),	Pandoc	arguments	(Section	3.1.10.5),	and
shared	options	(Section	3.1.11).

Beamer	presentations	have	a	few	features	in	common	with	ioslides	presentations	in	Section	4.1	and	PDF
documents	in	Section	3.3.	For	incremental	bullets,	see	Section	4.1.2.	For	how	to	keep	the	intermediate
LaTeX	output	file,	see	Section	3.3.7.2.

output:

		beamer_presentation:

				slide_level:	2

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#html-document
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#table-of-contents
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#figure-options
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#appearance-and-style
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#data-frame-printing
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#markdown-extensions
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#includes
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#custom-templates
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#pandoc-arguments
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#shared-options
file:///home/me/bookdown.org/yihui/rmarkdown/ioslides-presentation.html#ioslides-presentation
file:///home/me/bookdown.org/yihui/rmarkdown/pdf-document.html#pdf-document
file:///home/me/bookdown.org/yihui/rmarkdown/ioslides-presentation.html#incremental-bullets
file:///home/me/bookdown.org/yihui/rmarkdown/pdf-document.html#keeping-intermediate-tex

4.4 	PowerPoint	presentation

To	create	a	PowerPoint	presentation	from	R	Markdown,	you	specify	the		powerpoint_presentation	
output	format	in	the	YAML	metadata	of	your	document.	Please	note	that	this	output	format	is	only	available
in	rmarkdown	>=	v1.9,	and	requires	at	least	Pandoc	v2.0.5.	You	can	check	the	versions	of	your
rmarkdown	package	and	Pandoc	with		packageVersion('rmarkdown')		and
	rmarkdown::pandoc_version()		in	R,	respectively.	The	RStudio	version	1.1.x	ships	Pandoc	1.19.2.1,
which	is	not	sufficient	to	generate	PowerPoint	presentations.	You	need	to	either	install	Pandoc	2.x	by
yourself	if	you	use	RStudio	1.1.x,	or	install	a	preview	version	of	RStudio	(>=	1.2.633),	which	has	bundled
Pandoc	2.x.

Below	is	a	quick	example	(see	Figure	4.5	for	a	sample	slide):

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.rstudio.com/products/rstudio/download/preview/
file:///home/me/bookdown.org/yihui/rmarkdown/powerpoint-presentation.html#fig:powerpoint

title:	"Habits"

author:	John	Doe

date:	March	22,	2005

output:	powerpoint_presentation

#	In	the	morning

##	Getting	up

-	Turn	off	alarm

-	Get	out	of	bed

##	Breakfast

-	Eat	eggs

-	Drink	coffee

#	In	the	evening

##	Dinner

-	Eat	spaghetti

-	Drink	wine

```{r,	cars,	fig.cap="A	scatterplot.",	echo=FALSE}

plot(cars)

```

##	Going	to	sleep

-	Get	in	bed

-	Count	sheep

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

FIGURE	4.5:	A	sample	slide	in	a	PowerPoint	presentation.

The	default	slide	level	(i.e.,	the	heading	level	that	defines	individual	slides)	is	determined	in	the	same	way
as	in	Beamer	slides	(Section	4.3.2),	and	you	can	specify	an	explicit	level	via	the		slide_level		option
under	 	powerpoint_presentation	.	You	can	also	start	a	new	slide	without	a	header	using	a	horizontal
rule	 	---	.

You	can	generate	most	elements	supported	by	Pandoc’s	Markdown	(Section	2.5)	in	PowerPoint	output,
such	as	bold/italic	text,	footnotes,	bullets,	LaTeX	math	expressions,	images,	and	tables,	etc.

Please	note	that	images	and	tables	will	always	be	placed	on	new	slides.	The	only	elements	that	can
coexist	with	an	image	or	table	on	a	slide	are	the	slide	header	and	image/table	caption.	When	you	have	a
text	paragraph	and	an	image	on	the	same	slide,	the	image	will	be	moved	to	a	new	slide	automatically.
Images	will	be	scaled	automatically	to	fit	the	slide,	and	if	the	automatic	size	does	not	work	well,	you	may
manually	control	the	image	sizes:	for	static	images	included	via	the	Markdown	syntax			,	you	may
use	the	 	width		and/or	 	height		attributes	in	a	pair	of	curly	braces	after	the	image,	e.g.,		![caption]
(foo.png){width=40%}	;	for	images	generated	dynamically	from	R	code	chunks,	you	can	use	the	chunk
options	 	fig.width		and	 	fig.height		to	control	the	sizes.

Please	read	the	section	“Producing	slide	shows	with	Pandoc”	in	Pandoc’s	manual	for	more	information	on
slide	shows,	such	as	the	multi-column	layout:

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/beamer-presentation.html#slide-level
file:///home/me/bookdown.org/yihui/rmarkdown/markdown-syntax.html#markdown-syntax

4.4.1 	Custom	templates

Like	Word	documents	(Section	3.4),	you	can	customize	the	appearance	of	PowerPoint	presentations	by
passing	a	custom	reference	document	via	the		reference_doc		option,	e.g.,

Note	that	the	 	reference_doc		option	requires	a	version	of	rmarkdown	higher	than	1.19:

Basically	any	template	included	in	a	recent	version	of	Microsoft	PowerPoint	should	work.	You	can	create	a
new	 	*.pptx		file	from	the	PowerPoint	menu		File	->	New		with	your	desired	template,	save	the	new
file,	and	use	it	as	the	reference	document	(template)	through	the		reference_doc		option.	Pandoc	will
read	the	styles	in	the	template	and	apply	them	to	the	PowerPoint	presentation	to	be	created	from	R
Markdown.

4.4.2 	Other	features

Refer	to	Section	3.1	for	the	documentation	of	other	features	of	PowerPoint	presentations,	including	table
of	contents	(Section	3.1.1),	figure	options	(Section	3.1.5),	data	frame	printing	(Section	3.1.6),	keeping
Markdown	(Section	3.1.10.1),	Markdown	extensions	(Section	3.1.10.4),	Pandoc	arguments	(Section
3.1.10.5),	and	shared	options	(Section	3.1.11).	As	of	Pandoc	2.2.1,	incremental	slides	in	PowerPoint	are
not	supported	yet.

::::::	{.columns}

:::	{.column	width="40%"}

Content	of	the	left	column.

:::

:::	{.column	width="60%"}

Content	of	the	right	column.

:::

::::::

title:	"Habits"

output:

		powerpoint_presentation:

				reference_doc:	my-styles.pptx

if	(packageVersion("rmarkdown")	<=	"1.9")	{

		install.packages("rmarkdown")		#	update	rmarkdown	from	CRAN

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/word-document.html#word-document
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#html-document
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#table-of-contents
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#figure-options
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#data-frame-printing
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#keeping-markdown
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#markdown-extensions
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#pandoc-arguments
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#shared-options

Chapter	5 	Dashboards

R	Markdown	is	customizable	and	extensible.	In	Chapters	3	and	4,	we	have	introduced	basic	document
and	presentation	formats	in	the	rmarkdown	package,	and	explained	how	to	customize	them.	From	this
chapter	on,	we	will	show	several	more	existing	extension	packages	that	bring	different	styles,	layouts,	and
applications	to	the	R	Markdown	ecosystem.	In	this	chapter,	we	introduce	dashboards	based	on	the
flexdashboard	package	(Iannone,	Allaire,	and	Borges	2018).

Dashboards	are	particularly	common	in	business-style	reports.	They	can	be	used	to	highlight	brief	and	key
summaries	of	a	report.	The	layout	of	a	dashboard	is	often	grid-based,	with	components	arranged	in	boxes
of	various	sizes.

With	the	flexdashboard	package,	you	can

Use	R	Markdown	to	publish	a	group	of	related	data	visualizations	as	a	dashboard.

Embed	a	wide	variety	of	components	including	HTML	widgets,	R	graphics,	tabular	data,	gauges,
value	boxes,	and	text	annotations.

Specify	row	or	column-based	layouts	(components	are	intelligently	re-sized	to	fill	the	browser	and
adapted	for	display	on	mobile	devices).

Create	story	boards	for	presenting	sequences	of	visualizations	and	related	commentary.

Optionally	use	Shiny	to	drive	visualizations	dynamically.

To	author	a	dashboard,	you	create	an	R	Markdown	document	with	the
	flexdashboard::flex_dashboard		output	format.	You	can	also	create	a	document	from	within	RStudio
using	the	 	File	->	New	File	->	R	Markdown		dialog,	and	choosing	a	“Flex	Dashboard”	template.

If	you	are	not	using	RStudio,	you	can	create	a	new		flexdashboard		R	Markdown	file	from	the	R	console:

The	full	documentation	of	flexdashboard	is	at	https://rmarkdown.rstudio.com/flexdashboard/.	We	will	only
cover	some	basic	features	and	usage	in	this	chapter.	Dashboards	have	many	features	in	common	with
HTML	documents	(Section	3.1),	such	as	figure	options	(Section	3.1.5),	appearance	and	style	(Section
3.1.4),	MathJax	equations	(Section	3.1.8),	header	and	before/after	body	inclusions	(Section	3.1.10.2),	and
Pandoc	arguments	(Section	3.1.10.5),	and	so	on.	We	also	recommend	that	you	take	a	look	at	the	R	help
page	 	?flexdashboard::flex_dashboard		to	learn	about	more	features	and	options.

References

Iannone,	Richard,	JJ	Allaire,	and	Barbara	Borges.	2018.	Flexdashboard:	R	Markdown	Format	for	Flexible
Dashboards.	https://CRAN.R-project.org/package=flexdashboard.

rmarkdown::draft(

		"dashboard.Rmd",	template	=	"flex_dashboard",

		package	=	"flexdashboard"

)

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/documents.html#documents
file:///home/me/bookdown.org/yihui/rmarkdown/presentations.html#presentations
file:///home/me/bookdown.org/yihui/rmarkdown/dashboards.html#ref-R-flexdashboard
https://rmarkdown.rstudio.com/flexdashboard/
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#html-document
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#figure-options
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#appearance-and-style
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#mathjax-equations
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#includes
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#pandoc-arguments
https://cran.r-project.org/package=flexdashboard

5.1 	Layout

The	overall	rule	about	the	dashboard	layout	is	that	a	first-level	section	generates	a	page,	a	second-level
section	generates	a	column	(or	a	row),	and	a	third-level	section	generates	a	box	(that	contains	one	or
more	dashboard	components).	Below	is	a	quick	example:

Note	that	a	series	of	dashes	under	a	line	of	text	is	the	alternative	Markdown	syntax	for	the	second-level
section	header,	i.e.,

is	equivalent	to

title:	"Get	Started"

output:	flexdashboard::flex_dashboard

```{r	setup,	include=FALSE}

library(flexdashboard)

```

Column	1

--

###	Chart	A

```{r}

```

Column	2

--

###	Chart	B

```{r}

```

###	Chart	C

```{r}

```

Column	1

--

##	Column	1

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

We	used	a	series	of	dashes	just	to	make	the	second-level	sections	stand	out	in	the	source	document.	By
default,	the	second-level	sections	generate	columns	on	a	dashboard,	and	the	third	level	sections	will	be
stacked	vertically	inside	columns.	You	do	not	have	to	have	columns	on	a	dashboard:	when	all	you	have
are	the	third-level	sections	in	the	source	document,	they	will	be	stacked	vertically	as	one	column	in	the
output.

The	text	of	the	second-level	headers	will	not	be	displayed	in	the	output.	The	second-level	headers	are	for
the	sole	purpose	of	layout,	so	the	actual	content	of	the	headers	does	not	matter	at	all.	By	contrast,	the
first-level	and	third-level	headers	will	be	displayed	as	titles.

Figure	5.1	shows	the	output	of	the	above	example,	in	which	you	can	see	two	columns,	with	the	first
column	containing	“Chart	A”,	and	the	second	column	containing	“Chart	B”	and	“Chart	C”.	We	did	not	really
include	any	R	code	in	the	code	chunks,	so	all	boxes	are	empty.	In	these	code	chunks,	you	may	write
arbitrary	R	code	that	generates	R	plots,	HTML	widgets,	and	various	other	components	to	be	introduced	in
Section	5.2.

FIGURE	5.1:	A	quick	example	of	the	dashboard	layout.

5.1.1 	Row-based	layouts

You	may	change	the	column-oriented	layout	to	the	row-oriented	layout	through	the		orientation		option,
e.g.,

That	means	the	second-level	sections	will	be	rows,	and	the	third-level	sections	will	be	arranged	as
columns	within	rows.

5.1.2 	Attributes	on	sections

The	second-level	section	headers	may	have	attributes	on	them,	e.g.,	you	can	set	the	width	of	a	column	to
350:

output:

		flexdashboard::flex_dashboard:

				orientation:	rows

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/layout.html#fig:dashboard-start
file:///home/me/bookdown.org/yihui/rmarkdown/dashboard-components.html#dashboard-components

For	the	row-oriented	layout,	you	can	set	the		data-height		attribute	for	rows.	The	 	{.tabset}		attribute
can	be	applied	on	a	column	so	that	the	third-level	sections	will	be	arranged	in	tabs,	e.g.,

5.1.3 	Multiple	pages

When	you	have	multiple	first-level	sections	in	the	document,	they	will	be	displayed	as	separate	pages	on
the	dashboard.	Below	is	an	example,	and	Figure	5.2	shows	the	output.	Note	that	a	series	of	equal	signs	is
the	alternative	Markdown	syntax	for	the	first-level	section	headers	(you	can	use	a	single	pound	sign		#	,
too).

A	narrow	column	{data-width=350}

Two	tabs	{.tabset}

###	Tab	A

###	Tab	B

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/layout.html#fig:dashboard-pages

Page	titles	are	displayed	as	a	navigation	menu	at	the	top	of	the	dashboard.	In	this	example,	we	applied
icons	to	page	titles	through	the		data-icon		attribute.	You	can	find	other	available	icons	from
https://fontawesome.com.

title:	"Multiple	Pages"

output:	flexdashboard::flex_dashboard

Visualizations	{data-icon="fa-signal"}

=====================================	

				

###	Chart	1

				

```{r}

```

				

###	Chart	2

```{r}

```

			

Tables	{data-icon="fa-table"}

=====================================					

###	Table	1

				

```{r}

```

				

###	Table	2

```{r}

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://fontawesome.com/

FIGURE	5.2:	Multiple	pages	on	a	dashboard.

5.1.4 	Story	boards

Besides	the	column	and	row-based	layouts,	you	may	present	a	series	of	visualizations	and	related
commentary	through	the	“storyboard”	layout.	To	enable	this	layout,	you	use	the	option		storyboard	.
Below	is	an	example,	and	Figure	5.3	shows	the	output,	in	which	you	can	see	left/right	navigation	buttons
at	the	top	to	help	you	go	through	all	visualizations	and	associated	commentaries	one	by	one.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/layout.html#fig:dashboard-story

title:	"Storyboard	Commentary"

output:	

		flexdashboard::flex_dashboard:

				storyboard:	true

###	A	nice	scatterplot	here

```{r}

plot(cars,	pch	=	20)

grid()

```

Some	commentary	about	Frame	1.

###	A	beautiful	histogram	on	this	board

```{r}

hist(faithful$eruptions,	col	=	'gray',	border	=	'white',	main	=	'')

```

Some	commentary	about	Frame	2.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

FIGURE	5.3:	An	example	story	board.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

5.2 	Components

A	wide	variety	of	components	can	be	included	in	a	dashboard	layout,	including:

1.	 Interactive	JavaScript	data	visualizations	based	on	HTML	widgets.

2.	 R	graphical	output	including	base,	lattice,	and	grid	graphics.

3.	 Tabular	data	(with	optional	sorting,	filtering,	and	paging).

4.	 Value	boxes	for	highlighting	important	summary	data.

5.	 Gauges	for	displaying	values	on	a	meter	within	a	specified	range.

6.	 Text	annotations	of	various	kinds.

7.	 A	navigation	bar	to	provide	more	links	related	to	the	dashboard.

The	first	three	components	work	in	most	R	Markdown	documents	regardless	of	output	formats.	Only	the
latter	four	are	specific	to	dashboards,	and	we	briefly	introduce	them	in	this	section.

5.2.1 	Value	boxes

Sometimes	you	want	to	include	one	or	more	simple	values	within	a	dashboard.	You	can	use	the
	valueBox()		function	in	the	flexdashboard	package	to	display	single	values	along	with	a	title	and	an
optional	icon.	For	example,	here	are	three	side-by-side	sections,	each	displaying	a	single	value	(see
Figure	5.4	for	the	output):

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/dashboard-components.html#fig:dashboard-valueboxes

FIGURE	5.4:	Three	value	boxes	side	by	side	on	a	dashboard.

The	 	valueBox()		function	is	called	to	emit	a	value	and	specify	an	icon.

The	third	code	chunk	(“Spam	per	Day”)	makes	the	background	color	of	the	value	box	dynamic	using	the
	color		parameter.	Available	colors	include	 	"primary"	,	 	"info"	,	 	"success"	,	 	"warning"	,	and
	"danger"		(the	default	is	 	"primary").	You	can	also	specify	any	valid	CSS	color	(e.g.,		"#ffffff"	,

title:	"Dashboard	Value	Boxes"

output:

		flexdashboard::flex_dashboard:

				orientation:	rows

```{r	setup,	include=FALSE}

library(flexdashboard)

#	these	computing	functions	are	only	toy	examples

computeArticles	=	function(...)	return(45)

computeComments	=	function(...)	return(126)

computeSpam	=	function(...)	return(15)

```

###	Articles	per	Day

```{r}

articles	=	computeArticles()

valueBox(articles,	icon	=	"fa-pencil")

```

###	Comments	per	Day

```{r}

comments	=	computeComments()

valueBox(comments,	icon	=	"fa-comments")

```

###	Spam	per	Day

```{r}

spam	=	computeSpam()

valueBox(

		spam,	icon	=	"fa-trash",

		color	=	ifelse(spam	>	10,	"warning",	"primary")

)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

	"rgb(100,	100,	100)"	,	etc.).

5.2.2 	Gauges

Gauges	display	values	on	a	meter	within	a	specified	range.	For	example,	here	is	a	set	of	three	gauges
(see	Figure	5.5	for	the	output):

FIGURE	5.5:	Three	gauges	side	by	side	on	a	dashboard.

title:	"Dashboard	Gauges"

output:

		flexdashboard::flex_dashboard:

				orientation:	rows

```{r	setup,	include=FALSE}

library(flexdashboard)

```

###	Contact	Rate

```{r}

gauge(91,	min	=	0,	max	=	100,	symbol	=	'%',	gaugeSectors(

		success	=	c(80,	100),	warning	=	c(40,	79),	danger	=	c(0,	39)

))

```

###	Average	Rating	

```{r}

gauge(37.4,	min	=	0,	max	=	50,	gaugeSectors(

		success	=	c(41,	50),	warning	=	c(21,	40),	danger	=	c(0,	20)

))

```

###	Cancellations

```{r}

gauge(7,	min	=	0,	max	=	10,	gaugeSectors(

		success	=	c(0,	2),	warning	=	c(3,	6),	danger	=	c(7,	10)

))

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/dashboard-components.html#fig:dashboard-gauges

There	are	a	few	things	to	note	about	this	example:

1.	 The	 	gauge()		function	is	used	to	output	a	gauge.	It	has	three	required	arguments:		value	,	 	min	,
and	 	max		(these	can	be	any	numeric	values).

2.	 You	can	specify	an	optional		symbol		to	be	displayed	alongside	the	value	(in	the	example	“	%	”	is
used	to	denote	a	percentage).

3.	 You	can	specify	a	set	of	custom	color	“sectors”	using	the		gaugeSectors()		function.	By	default,	the
current	theme’s	“success”	color	(typically	green)	is	used	for	the	gauge	color.	The		sectors		option
enables	you	to	specify	a	set	of	three	value	ranges	(success	,	 	warning	,	and	 	danger),	which
cause	the	gauge’s	color	to	change	based	on	its	value.

5.2.3 	Text	annotations

If	you	need	to	include	additional	narrative	or	explanation	within	your	dashboard,	you	can	do	so	in	the
following	ways:

1.	 You	can	include	content	at	the	top	of	the	page	before	dashboard	sections	are	introduced.

2.	 You	can	define	dashboard	sections	that	do	not	include	a	chart	but	rather	include	arbitrary	content
(text,	images,	and	equations,	etc.).

For	example,	the	following	dashboard	includes	some	content	at	the	top	and	a	dashboard	section	that
contains	only	text	(see	Figure	5.6	for	the	output):

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/dashboard-components.html#fig:dashboard-text

title:	"Text	Annotations"

output:

		flexdashboard::flex_dashboard:

				orientation:	rows

Monthly	deaths	from	bronchitis,	emphysema	and	asthma	in	the

UK,	1974–1979	(Source:	P.	J.	Diggle,	1990,	Time	Series:	A

Biostatistical	Introduction.	Oxford,	table	A.3)

```{r	setup,	include=FALSE}

library(dygraphs)

```

Row	{data-height=600}

###	All	Lung	Deaths

```{r}

dygraph(ldeaths)

```

Row	{data-height=400}

###	Male	Deaths

```{r}

dygraph(mdeaths)

```

>	Monthly	deaths	from	lung	disease	in	the	UK,	1974–1979

###	About	dygraphs

This	example	makes	use	of	the	dygraphs	R	package.	The	dygraphs

package	provides	rich	facilities	for	charting	time-series	data	

in	R.	You	can	use	dygraphs	at	the	R	console,	within	R	Markdown

documents,	and	within	Shiny	applications.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

FIGURE	5.6:	Text	annotations	on	a	dashboard.

Each	component	within	a	dashboard	includes	optional	title	and	notes	sections.	The	title	is	simply	the	text
after	the	third-level	(###)	section	heading.	The	notes	are	any	text	prefaced	with		>		after	the	code	chunk
that	yields	the	component’s	output	(see	the	second	component	of	the	above	example).

You	can	exclude	the	title	entirely	by	applying	the		.no-title		attribute	to	a	section	heading.

5.2.4 	Navigation	bar

By	default,	the	dashboard	navigation	bar	includes	the	document’s		title	,	 	author	,	and	 	date	.	When
a	dashboard	has	multiple	pages	(Section	5.1.3),	links	to	the	various	pages	are	also	included	on	the	left
side	of	the	navigation	bar.	You	can	also	add	social	links	to	the	dashboard.

In	addition,	you	can	add	custom	links	to	the	navigation	bar	using	the		navbar		option.	For	example,	the
following	options	add	an	“About”	link	to	the	navigation	bar:

Navigation	bar	items	must	include	either	a		title		or	 	icon		field	(or	both).	You	should	also	include	a
	href		as	the	navigation	target.	The		align		field	is	optional	(it	can	be	“left”	or	“right”	and	defaults	to
“right”).

title:	"Navigation	Bar"

output:

		flexdashboard::flex_dashboard:

				navbar:

						-	{	title:	"About",	href:	"https://example.com/about"	}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/layout.html#multiple-pages

You	can	include	links	to	social	sharing	services	via	the		social		option.	For	example,	the	following
dashboard	includes	Twitter	and	Facebook	links	as	well	as	a	drop-down	menu	with	a	more	complete	list	of
services:

The	 	social		option	can	include	any	number	of	the	following	services:		"facebook"	,	 	"twitter"	,
	"google-plus"	,	 	"linkedin"	,	and	 	"pinterest"	.	You	can	also	specify		"menu"		to	provide	a
generic	sharing	drop-down	menu	that	includes	all	of	the	services.

title:	"Social	Links"

output:

		flexdashboard::flex_dashboard:

				social:	["twitter",	"facebook",	"menu"]

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

5.3 	Shiny

By	adding	Shiny	to	a	dashboard,	you	can	let	viewers	change	underlying	parameters	and	see	the	results
immediately,	or	let	dashboards	update	themselves	incrementally	as	their	underlying	data	changes	(see
functions	 	reactiveFileReader()		and	 	reactivePoll()		in	the	shiny	package).	This	is	done	by	adding
	runtime:	shiny		to	a	standard	dashboard	document,	and	then	adding	one	or	more	input	controls	and/or
reactive	expressions	that	dynamically	drive	the	appearance	of	the	components	within	the	dashboard.

Using	Shiny	with	flexdashboard	turns	a	static	R	Markdown	report	into	an	interactive	document.	It	is
important	to	note	that	interactive	documents	need	to	be	deployed	to	a	Shiny	Server	to	be	shared	broadly
(whereas	static	R	Markdown	documents	are	standalone	web	pages	that	can	be	attached	to	emails	or
served	from	any	standard	web	server).

Note	that	the	shinydashboard	package	provides	another	way	to	create	dashboards	with	Shiny.

5.3.1 	Getting	started

The	steps	required	to	add	Shiny	components	to	a	dashboard	are:

1.	 Add	 	runtime:	shiny		to	the	options	declared	at	the	top	of	the	document	(YAML	metadata).

2.	 Add	the	 	{.sidebar}		attribute	to	the	first	column	of	the	dashboard	to	make	it	a	host	for	Shiny	input
controls	(note	that	this	step	is	not	strictly	required,	but	this	will	generate	a	typical	layout	for	Shiny-
based	dashboards).

3.	 Add	Shiny	inputs	and	outputs	as	appropriate.

4.	 When	including	plots,	be	sure	to	wrap	them	in	a	call	to		renderPlot()	.	This	is	important	not	only	for
dynamically	responding	to	changes,	but	also	to	ensure	that	they	are	automatically	re-sized	when	their
container	changes.

5.3.2 	A	Shiny	dashboard	example

Here	is	a	simple	example	of	a	dashboard	that	uses	Shiny	(see	Figure	5.7	for	the	output):

title:	"Old	Faithful	Eruptions"

output:	flexdashboard::flex_dashboard

runtime:	shiny

```{r	global,	include=FALSE}

#	load	data	in	'global'	chunk	so	it	can	be	shared

#	by	all	users	of	the	dashboard

library(datasets)

data(faithful)

```

Column	{.sidebar}

--

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://rstudio.github.io/shinydashboard/
file:///home/me/bookdown.org/yihui/rmarkdown/shiny.html#fig:dashboard-shiny

Waiting	time	between	eruptions	and	the	duration	of	the	eruption

for	the	Old	Faithful	geyser	in	Yellowstone	National	Park,

Wyoming,	USA.

```{r}

selectInput(

		"n_breaks",	label	=	"Number	of	bins:",

		choices	=	c(10,	20,	35,	50),	selected	=	20

)

sliderInput(

		"bw_adjust",	label	=	"Bandwidth	adjustment:",

		min	=	0.2,	max	=	2,	value	=	1,	step	=	0.2

)

```

Column

--

###	Geyser	Eruption	Duration

```{r}

renderPlot({

		erpt	=	faithful$eruptions

		hist(

				erpt,	probability	=	TRUE,	breaks	=	as.integer(input$n_breaks),

				xlab	=	"Duration	(minutes)",	main	=	"Geyser	Eruption	Duration",

				col	=	'gray',	border	=	'white'

		)

		

		dens	=	density(erpt,	adjust	=	input$bw_adjust)

		lines(dens,	col	=	"blue",	lwd	=	2)

})

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

FIGURE	5.7:	An	interactive	dashboard	based	on	Shiny.

The	first	column	includes	the		{.sidebar}		attribute	and	two	Shiny	input	controls;	the	second	column
includes	the	Shiny	code	required	to	render	the	chart	based	on	the	inputs.

One	important	thing	to	note	about	this	example	is	the	chunk	labeled		global		at	the	top	of	the	document.
The	 	global		chunk	has	special	behavior	within	flexdashboard:	it	is	executed	only	once	within	the	global
environment,	so	that	its	results	(e.g.,	data	frames	read	from	disk)	can	be	accessed	by	all	users	of	a	multi-
user	dashboard.	Loading	your	data	within	a		global		chunk	will	result	in	substantially	better	startup
performance	for	your	users,	and	hence	is	highly	recommended.

5.3.3 	Input	sidebar

You	add	an	input	sidebar	to	a	flexdashboard	by	adding	the		{.sidebar}		attribute	to	a	column,	which
indicates	that	it	should	be	laid	out	flush	to	the	left	with	a	default	width	of	250	pixels	and	a	special
background	color.	Sidebars	always	appear	on	the	left	no	matter	where	they	are	defined	within	the	flow	of
the	document.

If	you	are	creating	a	dashboard	with	multiple	pages,	you	may	want	to	use	a	single	sidebar	that	applies
across	all	pages.	In	this	case,	you	should	define	the	sidebar	using	a	first-level	Markdown	header.

5.3.4 	Learning	more

Below	are	some	good	resources	for	learning	more	about	Shiny	and	creating	interactive	documents:

1.	 The	official	Shiny	website	(http://shiny.rstudio.com)	includes	extensive	articles,	tutorials,	and
examples	to	help	you	learn	more	about	Shiny.

2.	 The	article	“Introduction	to	Interactive	Documents”	on	the	Shiny	website	is	a	great	guide	for	getting
started	with	Shiny	and	R	Markdown.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://shiny.rstudio.com/
http://shiny.rstudio.com/articles/interactive-docs.html

3.	 For	deploying	interactive	documents,	you	may	consider	Shiny	Server	or	RStudio	Connect:
https://www.rstudio.com/products/shiny/shiny-server/.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.rstudio.com/products/shiny/shiny-server/

Chapter	6 	Tufte	Handouts

The	Tufte	handout	style	is	a	style	that	Edward	Tufte	uses	in	his	books	and	handouts.	Tufte’s	style	is	known
for	its	extensive	use	of	sidenotes,	tight	integration	of	graphics	with	text,	and	well-set	typography.	This	style
has	been	implemented	in	LaTeX	and	HTML/CSS, 	respectively.	Both	implementations	have	been	ported
into	the	tufte	package	(Xie	and	Allaire	2018).	If	you	want	LaTeX/PDF	output,	you	may	use	the
	tufte_handout		format	for	handouts,	and		tufte_book		for	books.	For	HTML	output,	use		tufte_html	,
e.g.,

Figure	6.1	shows	the	basic	layout	of	the	Tufte	style,	in	which	you	can	see	a	main	column	on	the	left	that
contains	the	body	of	the	document,	and	a	side	column	on	the	right	to	display	sidenotes.

FIGURE	6.1:	The	basic	layout	of	the	Tufte	style.

There	are	two	goals	for	the	tufte	package:

1.	 To	produce	both	PDF	and	HTML	output	with	similar	styles	from	the	same	R	Markdown	document.

2.	 To	provide	simple	syntax	to	write	elements	of	the	Tufte	style	such	as	side	notes	and	margin	figures.
For	example,	when	you	want	a	margin	figure,	all	you	need	to	do	is	the	chunk	option		fig.margin	=
TRUE	,	and	tufte	will	take	care	of	the	details	for	you,	so	you	never	need	to	think	about	LaTeX

5

title:	"An	Example	Using	the	Tufte	Style"

author:	"John	Smith"

output:

		tufte::tufte_handout:	default

		tufte::tufte_html:	default

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://en.wikipedia.org/wiki/Edward_Tufte
file:///home/me/bookdown.org/yihui/rmarkdown/tufte-handouts.html#fn5
file:///home/me/bookdown.org/yihui/rmarkdown/tufte-handouts.html#ref-R-tufte
file:///home/me/bookdown.org/yihui/rmarkdown/tufte-handouts.html#fig:tufte-overview

environments	like	 	\begin{marginfigure}	\end{marginfigure}		or	HTML	tags	like				;	the	LaTeX	and	HTML	code	under	the	hood	may	be	complicated,
but	you	never	need	to	learn	or	write	such	code.

You	can	use	the	wizard	in	RStudio	IDE	from	the	menu		File	->	New	File	->	R	Markdown	->	From
Template		to	create	a	new	R	Markdown	document	with	a	default	example	provided	by	the	tufte	package.
Note	that	you	need	a	LaTeX	distribution	if	you	want	PDF	output	(see	Chapter	1).

References

Xie,	Yihui,	and	JJ	Allaire.	2018.	Tufte:	Tufte’s	Styles	for	R	Markdown	Documents.	https://CRAN.R-
project.org/package=tufte.

5.	 See	Github	repositories	https://github.com/tufte-latex/tufte-latex	and
https://github.com/edwardtufte/tufte-css.↩

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/installation.html#installation
https://cran.r-project.org/package=tufte
https://github.com/tufte-latex/tufte-latex
https://github.com/edwardtufte/tufte-css
file:///home/me/bookdown.org/yihui/rmarkdown/tufte-handouts.html#fnref5

6.1 	Headings

The	Tufte	style	provides	the	first	and	second-level	headings	(that	is,		#		and	 	##),	demonstrated	in	the
next	section.	You	may	get	unexpected	output	(and	even	errors)	if	you	try	to	use		###		and	smaller
headings.

In	his	later	books, ,	Tufte	starts	each	section	with	a	bit	of	vertical	space,	a	non-indented	paragraph,	and
sets	the	first	few	words	of	the	sentence	in	small	caps.	To	accomplish	this	using	this	style,	call	the
	newthought()		function	in	tufte	in	an	inline	R	expression	 	̀ r	`	.	Note	that	you	should	not	assume	tufte
has	been	attached	to	your	R	session.	You	should	either	use		library(tufte)		in	your	R	Markdown
document	before	you	call		newthought()	,	or	use	 	tufte::newthought()	.

6.	 Such	as	“Beautiful	Evidence”:	http://www.edwardtufte.com/tufte/books_be.↩

6

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/tufte-headings.html#fn6
http://www.edwardtufte.com/tufte/books_be
file:///home/me/bookdown.org/yihui/rmarkdown/tufte-headings.html#fnref6

6.2 	Figures

6.2.1 	Margin	figures

Images	and	graphics	play	an	integral	role	in	Tufte’s	work.	To	place	figures	in	the	margin,	you	can	use	the
knitr	chunk	option	 	fig.margin	=	TRUE	.	For	example:

As	in	other	Rmd	documents,	you	can	use	the		fig.cap		chunk	option	to	provide	a	figure	caption,	and
adjust	figure	sizes	using	the		fig.width		and	 	fig.height		chunk	options,	which	are	specified	in	inches,
and	will	be	automatically	scaled	down	to	fit	within	the	handout	margin.

Figure	6.2	shows	what	a	margin	figure	looks	like.

FIGURE	6.2:	A	margin	figure	in	the	Tufte	style.

6.2.2 	Arbitrary	margin	content

You	can	include	anything	in	the	margin	using	the	knitr	engine	named	 	marginfigure	.	Unlike	R	code
chunks	 	̀ ``{r}	,	you	write	a	chunk	starting	with	 	̀ ``{marginfigure}		instead,	then	put	the	content	in
the	chunk,	e.g.,

```{r	fig-margin,	fig.margin=TRUE}

plot(cars)

```

```{marginfigure}

We	know	from	_the	first	fundamental	theorem	of	calculus_	that

for	$x$	in	$[a,	b]$:

$$\frac{d}{dx}\left(	\int_{a}^{x}	f(u)\,du\right)=f(x).$$

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/tufte-figures.html#fig:tufte-margin

For	the	sake	of	portability	between	LaTeX	and	HTML,	you	should	keep	the	margin	content	as	simple	as
possible	(syntax-wise)	in	the		marginfigure		blocks.	You	may	use	simple	Markdown	syntax	like
	bold		and	 	_italic_		text,	but	please	refrain	from	using	footnotes,	citations,	or	block-level
elements	(e.g.,	blockquotes	and	lists)	there.

Note	that	if	you	set		echo	=	FALSE		in	your	global	chunk	options,	you	will	have	to	add		echo	=	TRUE		to
the	chunk	to	display	a	margin	figure,	for	example	 	̀ ``{marginfigure,	echo	=	TRUE}	.

6.2.3 	Full-width	figures

You	can	arrange	for	figures	to	span	across	the	entire	page	by	using	the	chunk	option		fig.fullwidth	=
TRUE	,	e.g.,

Other	chunk	options	related	to	figures	can	still	be	used,	such	as		fig.width	,	 	fig.cap	,	and
	out.width	,	etc.	For	full-width	figures,	usually		fig.width		is	large	and	 	fig.height		is	small.	In	the
above	example,	the	plot	size	is	10x2.

Figure	6.3	shows	what	a	full-width	figure	looks	like.

FIGURE	6.3:	A	full-width	figure	in	the	Tufte	style.

6.2.4 	Main	column	figures

Besides	margin	and	full-width	figures,	you	can	certainly	also	include	figures	constrained	to	the	main
column.	This	is	the	default	type	of	figures	in	the	LaTeX/HTML	output,	and	requires	no	special	chunk
options.

Figure	6.4	shows	what	a	figure	looks	like	in	the	main	column.

```{r,	fig.width=10,	fig.height=2,	fig.fullwidth=TRUE}

par(mar	=	c(4,	4,	.1,	.2));	plot(sunspots)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/tufte-figures.html#fig:tufte-full
file:///home/me/bookdown.org/yihui/rmarkdown/tufte-figures.html#fig:tufte-main

FIGURE	6.4:	A	figure	in	the	main	column	in	the	Tufte	style.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

6.3 	Sidenotes

One	of	the	most	prominent	and	distinctive	features	of	this	style	is	the	extensive	use	of	sidenotes.	There	is
a	wide	margin	to	provide	ample	room	for	sidenotes	and	small	figures.	Any	use	of	a	footnote,	of	which	the
Markdown	syntax	is	 	̂ [footnote	content]	,	will	automatically	be	converted	to	a	sidenote.

If	you	would	like	to	place	ancillary	information	in	the	margin	without	the	sidenote	mark	(the	superscript
number),	you	can	use	the		margin_note()		function	from	tufte	in	an	inline	R	expression.	This	function
does	not	process	the	text	with	Pandoc,	so	Markdown	syntax	will	not	work	here.	If	you	need	to	write
anything	in	Markdown	syntax,	please	use	the		marginfigure		block	described	previously.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

6.4 	References

References	can	be	displayed	as	margin	notes	for	HTML	output.	To	enable	this	feature,	you	must	set
	link-citations:	yes		in	the	YAML	metadata,	and	the	version	of		pandoc-citeproc		should	be	at	least
0.7.2.	To	check	the	version	of		pandoc-citeproc		in	your	system,	you	may	run	this	in	R:

If	your	version	of		pandoc-citeproc		is	too	low,	or	you	did	not	set		link-citations:	yes		in	YAML,
references	in	the	HTML	output	will	be	placed	at	the	end	of	the	output	document.

You	can	also	explicitly	disable	this	feature	via	the		margin_references		option,	e.g.,

system2("pandoc-citeproc",	"--version")

output:

		tufte::tufte_html:

				margin_references:	false

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

6.5 	Tables

You	can	use	the		kable()		function	from	the	knitr	package	to	format	tables	that	integrate	well	with	the	rest
of	the	Tufte	handout	style.	The	table	captions	are	placed	in	the	margin	like	figures	in	the	HTML	output.	A
simple	example	(Figure	6.5	shows	the	output):

FIGURE	6.5:	A	table	in	the	Tufte	style.

```{r}

knitr::kable(

		mtcars[1:6,	1:6],	caption	=	'A	subset	of	mtcars.'

)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/tufte-tables.html#fig:tufte-table

6.6 	Block	quotes

We	know	from	the	Markdown	syntax	that	paragraphs	that	start	with		>		are	converted	to	block	quotes.	If
you	want	to	add	a	right-aligned	footer	for	the	quote,	you	may	use	the	function		quote_footer()		from
tufte	in	an	inline	R	expression.	Here	is	an	example:

>	"If	it	weren't	for	my	lawyer,	I'd	still	be	in	prison.

>		It	went	a	lot	faster	with	two	people	digging."

>

>	`r	tufte::quote_footer('---	Joe	Martin')`

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

6.7 	Responsiveness

The	HTML	page	is	responsive	in	the	sense	that	when	the	page	width	is	smaller	than	760px,	sidenotes	and
margin	notes	will	be	hidden	by	default.	For	sidenotes,	you	can	click	their	numbers	(the	superscripts)	to
toggle	their	visibility.	For	margin	notes,	you	may	click	the	circled	plus	signs	to	toggle	visibility	(see	Figure
6.6).

FIGURE	6.6:	The	Tufte	HTML	style	on	narrow	screens.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/tufte-responsiveness.html#fig:tufte-responsive

6.8 	Sans-serif	fonts	and	epigraphs

There	are	a	few	other	things	in	Tufte	CSS	that	we	have	not	mentioned	so	far.	If	you	prefer	sans-serif	fonts,
use	the	function	 	sans_serif()		in	tufte.	For	epigraphs,	you	may	use	a	pair	of	underscores	to	make	the
paragraph	italic	in	a	block	quote,	e.g.,

>	_I	can	win	an	argument	on	any	topic,	against	any	opponent.

>		People	know	this,	and	steer	clear	of	me	at	parties.	Often,

>		as	a	sign	of	their	great	respect,	they	don't	even	invite	me._

>

>	`r	quote_footer('---	Dave	Barry')`

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

6.9 	Customize	CSS	styles

You	can	turn	on/off	some	features	of	the	Tufte	style	in	HTML	output.	The	default	features	enabled	are:

If	you	do	not	want	the	page	background	to	be	lightyellow,	you	can	remove		background		from
	tufte_features	.	You	can	also	customize	the	style	of	the	HTML	page	via	a	CSS	file.	For	example,	if	you
do	not	want	the	subtitle	to	be	italic,	you	can	define

in,	say,	a	CSS	file		my-style.css		(under	the	same	directory	of	your	Rmd	document),	and	apply	it	to	your
HTML	output	via	the		css		option,	e.g.,

There	is	also	a	variant	of	the	Tufte	style	in	HTML/CSS	named	“Envisioned	CSS”.	This	style	can	be
enabled	by	specifying	the	argument		tufte_variant	=	'envisioned'		in	 	tufte_html()	, ,	e.g.,

You	can	see	a	live	example	at	https://rstudio.github.io/tufte/.	It	is	also	available	in	Simplified	Chinese:
https://rstudio.github.io/tufte/cn/,	and	its	 	envisioned		style	can	be	found	at
https://rstudio.github.io/tufte/envisioned/.

7.	 The	actual	Envisioned	CSS	was	not	used	in	the	tufte	package.	Only	the	fonts,	background	color,	and
text	color	are	changed	based	on	the	default	Tufte	style.↩

output:

		tufte::tufte_html:

				tufte_features:	["fonts",	"background",	"italics"]

h3.subtitle	em	{

		font-style:	normal;

}

output:

		tufte::tufte_html:

				tufte_features:	["fonts",	"background"]

				css:	"my-style.css"

7

output:

		tufte::tufte_html:

				tufte_variant:	"envisioned"

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://nogginfuel.com/envisioned-css/
file:///home/me/bookdown.org/yihui/rmarkdown/tufte-css.html#fn7
https://rstudio.github.io/tufte/
https://rstudio.github.io/tufte/cn/
https://rstudio.github.io/tufte/envisioned/
file:///home/me/bookdown.org/yihui/rmarkdown/tufte-css.html#fnref7

Chapter	7 	xaringan	Presentations

We	have	introduced	a	few	HTML5	presentation	formats	in	Chapter	4.	The	xaringan	package	(Xie	2018g)
is	an	R	Markdown	extension	based	on	the	JavaScript	library	remark.js	(https://remarkjs.com)	to	generate
HTML5	presentations	of	a	different	style.	See	Figure	7.1	for	two	sample	slides.

FIGURE	7.1:	Two	sample	slides	created	from	the	xaringan	package.

The	name	“xaringan”	came	from	Sharingan	(http://naruto.wikia.com/wiki/Sharingan)	in	the	Japanese
manga	and	anime	“Naruto”.	The	word	was	deliberately	chosen	to	be	difficult	to	pronounce	for	most	people
(unless	you	have	watched	the	anime),	because	its	author	(me)	loved	the	style	very	much,	and	was
concerned	that	it	would	become	too	popular. 	The	concern	was	somewhat	naive,	because	the	style	is
actually	very	customizable,	and	users	started	to	contribute	more	themes	to	the	package	later.

The	xaringan	package	is	based	on	the	JavaScript	library	remark.js	(https://remarkjs.com);	remark.js	only
supports	Markdown,	and	xaringan	added	the	support	for	R	Markdown	as	well	as	other	utilities	to	make	it
easier	to	build	and	preview	slides.

You	can	learn	more	about	the	background	stories	and	the	usage	of	the	xaringan	package	from	the
documentation	at	http://slides.yihui.name/xaringan/,	which	is	actually	a	set	of	slides	generated	from
xaringan.	You	may	also	read	a	potentially	biased	blog	post	of	mine	to	know	why	I	preferred	xaringan	/
remark.js	for	HTML5	presentations:	https://yihui.name/en/2017/08/why-xaringan-remark-js/.

References

Xie,	Yihui.	2018g.	Xaringan:	Presentation	Ninja.	https://CRAN.R-project.org/package=xaringan.

8.	 The	main	reason	I	stopped	using	LaTeX	Beamer	slides	was	because	of	its	popularity:	when	you
attend	academic	conferences,	you	see	Beamer	slides	everywhere.↩

8

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/presentations.html#presentations
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan.html#ref-R-xaringan
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan.html#ref-R-xaringan
https://remarkjs.com/
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan.html#fig:xaringan-sample
http://naruto.wikia.com/wiki/Sharingan
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan.html#fn8
https://remarkjs.com/
http://slides.yihui.name/xaringan/
https://yihui.name/en/2017/08/why-xaringan-remark-js/
https://cran.r-project.org/package=xaringan
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan.html#fnref8

7.1 	Get	started

You	can	install	either	the	CRAN	version	or	the	development	version	on	GitHub
(https://github.com/yihui/xaringan):

If	you	use	RStudio,	it	is	easy	to	get	started	from	the	menu		File	->	New	File	->	R	Markdown	->	From
Template	->	Ninja	Presentation	,	and	you	will	see	an	R	Markdown	example	in	the	editor.	Press	the
	Knit		button	to	compile	it,	or	use	the	RStudio	addin		Infinite	Moon	Reader		to	live	preview	the	slides:
every	time	you	update	and	save	the	Rmd	document,	the	slides	will	be	automatically	reloaded.

The	main	R	Markdown	output	format	in	this	package	is		moon_reader()	.	See	the	R	help	page		?
xaringan::moon_reader		for	all	possible	configurations.	Below	is	a	quick	example:

#	install	from	CRAN

install.packages('xaringan')

#	or	GitHub

devtools::install_github('yihui/xaringan')

title:	"Presentation	Ninja"

subtitle:	"with	xaringan"

author:	"Yihui	Xie"

date:	"2016/12/12"

output:

		xaringan::moon_reader:

				lib_dir:	libs

				nature:

						highlightStyle:	github

						countIncrementalSlides:	false

One	slide.

Another	slide.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/yihui/xaringan

7.2 	Keyboard	shortcuts

After	opening	slides	generated	from	xaringan	or	remark.js,	you	may	press	the	key		h		(Help)	or	 	?		on
your	keyboard	to	learn	all	possible	keyboard	shortcuts,	which	may	help	you	better	present	your	slides.

To	go	the	previous	slide,	you	may	press		Up	/ 	Left		arrows,	 	PageUp	,	or	 	k	.

To	go	the	next	slide,	you	may	press		Right	/ 	Down		arrows,	 	PageDown	,	 	Space	,	or	 	j	.

You	may	press	 	Home		to	go	to	the	first	slide,	or		End		to	go	to	the	last	slide,	if	you	have	these	keys.

Typing	a	number	and	pressing		Return		(or	 	Enter),	you	can	jump	to	a	specific	slide	with	that	page
number.

Press	 	b		to	black	out	a	slide,	and		m		to	“mirror”	a	slide	(reverse	everything	on	the	slide).	These
techniques	can	be	useful	when	you	do	not	want	the	audience	to	read	the	slide,	e.g.,	when	you	have
solutions	on	a	slide	but	do	not	want	to	show	them	to	your	students	immediately.	I	encourage	you	to	try
	m	;	it	can	be	a	lot	of	fun.	You	can	press	these	keys	again	to	resume	the	normal	slide.

Press	 	f		to	toggle	the	fullscreen	mode.

Press	 	c		to	clone	the	slides	to	a	new	browser	window;	slides	in	the	two	windows	will	be	in	sync	as
you	navigate	through	them.	Press		p		to	toggle	the	presenter	mode.	The	presenter	mode	shows
thumbnails	of	the	current	slide	and	the	next	slide	on	the	left,	presenter	notes	on	the	right	(see	Section
7.3.5),	and	also	a	timer	on	the	top	right.	The	keys		c		and	 	p		can	be	very	useful	when	you	present
with	your	own	computer	connected	to	a	second	screen	(such	as	a	projector).	On	the	second	screen,
you	can	show	the	normal	slides,	while	cloning	the	slides	to	your	own	computer	screen	and	using	the
presenter	mode.	Only	you	can	see	the	presenter	mode,	which	means	only	you	can	see	presenter
notes	and	the	time,	and	preview	the	next	slide.	You	may	press		t		to	restart	the	timer	at	any	time.

Press	 	h		or	 	?		again	to	exit	the	help	page.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan-format.html#xaringan-notes

7.3 	Slide	formatting

The	remark.js	Wiki	contains	detailed	documentation	about	how	to	format	slides	and	use	the	presentation
(keyboard	shortcuts).	The	xaringan	package	has	simplified	several	things	compared	to	the	official
remark.js	guide,	e.g.,	you	do	not	need	a	boilerplate	HTML	file,	you	can	set	the	autoplay	mode	via	an
option	of	 	moon_reader()	,	and	LaTeX	math	basically	just	works.

Please	note	that	remark.js	has	its	own	Markdown	interpreter	that	is	not	compatible	with	Pandoc’s
Markdown	converter,	so	you	will	not	be	able	to	use	any	advanced	Pandoc	Markdown	features	(e.g.,	the
citation	syntax	 	[@key]).	You	may	use	raw	HTML	when	there	is	something	you	desire	that	is	not
supported	by	remark.js.	For	example,	you	can	generate	an	HTML	table	via		knitr::kable(head(iris),
'html')	.

7.3.1 	Slides	and	properties

Every	new	slide	is	created	under	a	horizontal	rule	(---).	The	content	of	the	slide	can	be	arbitrary,	e.g.,	it
does	not	have	to	have	a	slide	title,	and	if	it	does,	the	title	can	be	of	any	level	you	prefer	(#	,	 	##	,	or
	###).

A	slide	can	have	a	few	properties,	including		class		and	 	background-image	,	etc.	Properties	are	written
in	the	beginning	of	a	slide,	e.g.,

The	 	class		property	assigns	class	names	to	the	HTML	tag	of	the	slide,	so	that	you	can	use	CSS	to	style
specific	slides.	For	example,	for	a	slide	with	the		inverse		class,	you	may	define	the	CSS	rules	(to	render
text	in	white	on	a	dark	background):

Then	include	the	CSS	file	(say,		my-style.css)	via	the	 	css		option	of	 	xaringan::moon_reader	:

class:	center,	inverse

background-image:	url("images/cool.png")

#	A	new	slide

Content.

.inverse	{

		background-color:	#272822;

		color:	#d6d6d6;

		text-shadow:	0	0	20px	#333;

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/gnab/remark/wiki

Actually	the	style	for	the		inverse		class	has	been	defined	in	the	default	theme	of	xaringan,	so	you	do	not
really	need	to	define	it	again	unless	you	want	to	override	it.

Other	available	class	names	are		left	,	 	center	,	and	 	right		for	the	horizontal	alignment	of	all
elements	on	a	slide,	and		top	,	 	middle	,	and	 	bottom		for	the	vertical	alignment.

Background	images	can	be	set	via	the		background-image		property.	The	image	can	be	either	a	local	file
or	an	online	image.	The	path	should	be	put	inside		url()	,	which	is	the	CSS	syntax.	You	can	also	set	the
background	image	size	and	position,	e.g.,

All	these	properties	require	you	to	understand	CSS. 	In	the	above	example,	we	actually	used	an	inline
expression	 	xaringan::karl		to	return	a	URL	of	an	image	of	Karl	Broman	(http://kbroman.org),	which	is
one	of	the	highlights	of	the	xaringan	package.

7.3.2 	The	title	slide

There	is	a	special	slide,	the	title	slide,	that	is	automatically	generated	from	the	YAML	metadata	of	your
Rmd	document.	It	contains	the	title,	subtitle,	author,	and	date	(all	are	optional).	This	slide	has	the	classes
	inverse	,	 	center	,	 	middle	,	and	 	title-slide		by	default,	which	looks	like	the	left	image	in	Figure
7.1.	If	you	do	not	like	the	default	style,	you	may	either	customize	the		.title-slide		class,	or	provide	a
custom	vector	of	classes	via	the		titleSlideClass		option	under	the	 	nature		option,	e.g.,

You	can	also	disable	the	automatic	title	slide	via	the		seal		option	and	create	one	manually	by	yourself:

output:

		xaringan::moon_reader:

				css:	"my-style.css"

background-image:	url("`r	xaringan:::karl`")

background-position:	center

background-size:	contain

9

output:

		xaringan::moon_reader:

				nature:

						titleSlideClass:	["right",	"top",	"my-title"]

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan-format.html#fn9
http://kbroman.org/
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan.html#fig:xaringan-sample

7.3.3 	Content	classes

You	can	assign	classes	to	any	elements	on	a	slide,	too.	The	syntax	is		.className[content]	.	This	is	a
very	powerful	feature	of	remark.js,	and	one	of	very	few	features	not	available	in	Pandoc.	Basically	it
makes	it	possible	to	style	any	elements	on	a	slide	via	CSS.	There	are	a	few	built-in	content	classes,
	.left[]	,	 	.center[]	,	and	 	.right[]	,	to	align	elements	horizontally	on	a	slide,	e.g.,	you	may
center	an	image:

The	content	inside	 	[]		can	be	anything,	such	as	several	paragraphs,	or	lists.	The	default	theme	of
xaringan	has	provided	four	more	content	classes:

	.left-column[]		and	 	.right-column[]		provide	a	sidebar	layout.	The	left	sidebar	is	narrow
(20%	of	the	slide	width),	and	the	right	column	is	the	main	column	(75%	of	the	slide	width).	If	you	have
multiple	level-2	(##)	or	level-3	(###)	headings	in	the	left	column,	the	last	heading	will	be
highlighted,	with	previous	headings	being	grayed	out.

	.pull-left[]		and	 	.pull-right[]		provide	a	two-column	layout,	and	the	two	columns	are	of
the	same	width.	Below	is	an	example:

You	can	design	your	own	content	classes	if	you	know	CSS,	e.g.,	if	you	want	to	make	text	red	via		.red[
]	,	you	may	define	this	in	CSS:

output:

		xaringan::moon_reader:

				seal:	false

#	My	Own	Title

###	Author

Whatever	you	want	to	put	on	the	title	slide.

.center[![description	of	the	image](images/foo.png)]

.pull-left[

-	One	bullet.

-	Another	bullet.

]

.pull-right[

![an	image](foo.png)

]

.red	{	color:	red;	}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

7.3.4 	Incremental	slides

When	you	want	to	show	content	incrementally	on	a	slide	(e.g.,	holding	a	funny	picture	until	the	last
moment),	you	can	use	two	dashes	to	separate	the	content.	The	two	dashes	can	appear	anywhere	except
inside	content	classes,	so	you	can	basically	split	your	content	in	any	way	you	like,	e.g.,

There	are	a	few	other	advanced	ways	to	build	incremental	slides	documented	in	the	presentation	at
https://slides.yihui.name/xaringan/incremental.html.

7.3.5 	Presenter	notes

You	can	write	notes	for	yourself	to	read	in	the	presenter	mode	(press	the	keyboard	shortcut		p).	These
notes	are	written	under	three	question	marks		???		after	a	slide,	and	the	syntax	is	also	Markdown,	which
means	you	can	write	any	elements	supported	by	Markdown,	such	as	paragraphs,	lists,	images,	and	so	on.
For	example:

#	Two	dashes

The	easiest	way	to	build	incremental	slides	is...

--

	to	use	two	dashes	`--`	to	separate	content	on	a	slide.

--

You	can	divide	a	slide	in	_any	way	you	want_.

--

-	One	bullet

-	Another	bullet

--

-	And	one	more

--

.center[

![Saw](https://slides.yihui.name/gif/saw-branch.gif)

Don't	saw	your	slides	too	hard.

]

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://slides.yihui.name/xaringan/incremental.html

A	common	mistake	in	presentations,	especially	for	presenters	without	much	experience,	is	to	stuff	a	slide
with	too	much	content.	The	consequence	is	either	a	speaker,	out	of	breath,	reading	the	so	many	words	out
loud,	or	the	audience	starting	to	read	the	slides	quietly	by	themselves	without	listening.	Slides	are	not
papers	or	books,	so	you	should	try	to	be	brief	in	the	visual	content	of	slides	but	verbose	in	verbal
narratives.	If	you	have	a	lot	to	say	about	a	slide,	but	cannot	remember	everything,	you	may	consider	using
presenter	notes.

I	want	to	mention	a	technical	note	about	the	presenter	mode:	when	connecting	to	a	projector,	you	should
make	sure	not	to	mirror	the	two	screens.	Instead,	separate	the	two	displays,	so	you	can	drag	the	window
with	the	normal	view	of	slides	to	the	second	screen.	Figure	7.2	shows	how	to	do	it	from	the	“System
Preferences”	on	macOS	(do	not	check	the	box	“Mirror	Displays”).

FIGURE	7.2:	Separate	the	current	display	from	the	external	display.

7.3.6 	yolo:	true

The	holy	passion	of	Friendship	is	of	so	sweet	and	steady

and	loyal	and	enduring	a	nature	that	it	will	last	through

a	whole	lifetime...

???

if	not	asked	to	lend	money.

---	Mark	Twain

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan-format.html#fig:mirror-display

Inspired	by	a	random	feature	request	from	a	tweet	by	Karthik	Ram,	the	output	format
	xaringan::moon_reader		provided	an	option	named		yolo		(an	acronym	of	“you	only	live	once”).	If	you
set	it	to	true,	a	photo	of	Karl	Broman	(with	a	mustache)	will	be	inserted	into	a	random	slide	in	your
presentation.

The	xaringan	package	is	probably	best	known	for	this	feature.	I	want	to	thank	Karl	for	letting	me	use	this
photo.	It	always	makes	me	happy	for	mysterious	reasons.

A	less	well-known	feature	is	that	you	can	actually	replace	Karl’s	picture	with	other	pictures,	and/or	specify
how	many	times	you	want	a	picture	to	randomly	show	up	in	your	presentation.	For	example:

Developing	software	is	fun,	isn’t	it?

9.	 There	are	many	tutorials	online	if	you	search	for	“CSS	background”,	e.g.,
https://www.w3schools.com/cssref/css3_pr_background.asp.↩

10.	 For	the	full	story	behind	the	mustache,	see	Karl’s	post	at	http://kbroman.org/blog/2014/08/28/the-
mustache-photo/.↩

10

output:

		xaringan::moon_reader:

				yolo:	true

output:

		xaringan::moon_reader:

				yolo:

						img:	kangaroo.jpg

						times:	5

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://twitter.com/_inundata/status/798970002992873472
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan-format.html#fn10
https://www.w3schools.com/cssref/css3_pr_background.asp
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan-format.html#fnref9
http://kbroman.org/blog/2014/08/28/the-mustache-photo/
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan-format.html#fnref10

7.4 	Build	and	preview	slides

You	can	knit	the	source	document	like	other	Rmd	documents	to	view	the	output,	but	it	may	be	tedious	to
have	to	knit	it	over	and	over	again	whenever	you	make	changes.	The	other	way	to	preview	the	slides	is
the	RStudio	addin	“Infinite	Moon	Reader”	or	the	function		xaringan::inf_mr()	,	as	mentioned	in	Section
2.2.	With	this	way,	you	can	continuously	preview	your	slides	just	by	saving	the	source	document.	The
continuous	preview	is	achieved	via	a	local	web	server	launched	by	the	servr	package	(Xie	2018e).

One	distinction	of	 	xaringan::moon_reader		when	compared	to	other	R	Markdown	output	formats	is	that
it	does	not	generate	self-contained	HTML	documents	by	default	(see	Section	3.1.9).	This	means	none	of
the	external	dependencies	such	as	images	or	JavaScript	libraries	will	be	embedded	in	the	HTML	output
file	by	default.	Due	to	technical	difficulties	(remark.js	does	not	use	Pandoc	but	renders	Markdown	in	real
time	in	the	browser),	it	is	hard	to	implement	the	self-contained	mode	well.	If	you	have	to	publish	the	slides
to	a	web	server,	but	it	is	not	convenient	for	you	to	upload	all	the	dependencies,	xaringan	may	not	be	a
good	choice	for	you.	If	you	use	GitHub	Pages	or	Netlify,	this	may	not	be	a	big	problem	(you	commit	or
upload	all	files).

References

Xie,	Yihui.	2018e.	Servr:	A	Simple	Http	Server	to	Serve	Static	Files	or	Dynamic	Documents.
https://github.com/yihui/servr.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/compile.html#compile
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan-preview.html#ref-R-servr
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan-preview.html#ref-R-servr
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#document-dependencies
https://github.com/yihui/servr

7.5 	CSS	and	themes

The	format	 	xaringan::moon_reader		has	a	 	css		option,	to	which	you	can	pass	a	vector	of	CSS	file
paths,	e.g.,

In	theory,	the	file	path	should	contain	the	extension		.css	.	If	a	path	does	not	contain	a	filename
extension,	it	is	assumed	to	be	a	built-in	CSS	file	in	the	xaringan	package.	For	example,	 	default		in	the
above	example	means	 	default.css		in	the	package	under	the	path		xaringan:::pkg_resource()	.	To
see	all	built-in	CSS	files,	call		xaringan:::list_css()		in	R.

When	you	only	want	to	override	a	few	CSS	rules	in	the	default	theme,	you	do	not	have	to	copy	the	whole
file	 	default.css	;	instead,	create	a	new	(and	hopefully	smaller)	CSS	file	that	only	provides	new	CSS
rules.

Users	have	contributed	a	few	themes	to	xaringan.	For	example,	you	can	use	the		metropolis		theme
(https://github.com/pat-s/xaringan-metropolis):

To	see	all	possible	themes:

##		[1]	"default-fonts"				"default"									

##		[3]	"duke-blue"								"hygge-duke"						

##		[5]	"hygge"												"metropolis-fonts"

##		[7]	"metropolis"							"middlebury-fonts"

##		[9]	"middlebury"							"rladies-fonts"			

##	[11]	"rladies"										"robot-fonts"					

##	[13]	"robot"												"rutgers-fonts"			

##	[15]	"rutgers"										"tamu-fonts"						

##	[17]	"tamu"													"uo-fonts"								

##	[19]	"uo"

If	you	also	want	to	contribute	themes,	please	read	the	guide	at	https://yihui.name/en/2017/10/xaringan-
themes.

output:

		xaringan::moon_reader:

				css:	["default",	"extra.css"]

output:

		xaringan::moon_reader:

				css:	[default,	metropolis,	metropolis-fonts]

names(xaringan:::list_css())

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/pat-s/xaringan-metropolis
https://yihui.name/en/2017/10/xaringan-themes

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

7.6 	Some	tips

Lastly,	we	present	a	few	tips	that	may	help	you	make	better	presentations.

7.6.1 	Autoplay	slides

Slides	can	be	automatically	played	if	you	set	the		autoplay		option	under	 	nature		(in	milliseconds).	For
example,	the	next	slide	can	be	displayed	automatically	every	30	seconds	in	a	lightning	talk:

7.6.2 	Countdown	timer

A	countdown	timer	can	be	added	to	every	page	of	the	slides	using	the		countdown		option	under
	nature	.	For	example,	if	you	want	to	spend	one	minute	on	every	page	when	you	give	the	talk,	you	can
set:

Then	you	will	see	a	timer	counting	down	from		01:00	,	to	 	00:59	,	 	00:58	,	…	When	the	time	is	out,	the
timer	will	continue	but	the	time	turns	red.

7.6.3 	Highlight	code	lines

The	option	 	highlightLines:	true		of	 	nature		will	highlight	code	lines	that	start	with		*	,	or	are
wrapped	in	 	{{	}}	,	or	have	trailing	comments		#<<	:

Below	are	a	few	examples:

output:

		xaringan::moon_reader:

				nature:

						autoplay:	30000

output:

		xaringan::moon_reader:

				nature:

						countdown:	60000

output:

		xaringan::moon_reader:

				nature:

						highlightLines:	true

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

Note	that	the	first	way	does	not	give	you	valid	R	code	in	the	source	document,	but	the	latter	two	ways
provide	syntactically	valid	R	code,	and	in	the	output	slides,	you	will	not	see	the	tokens		{{	}}		or	 	#<<	.
The	lines	will	be	highlighted	with	a	yellow	background	by	default.

7.6.4 	Working	offline

To	make	slides	work	offline,	you	need	to	download	a	copy	of	remark.js	in	advance,	because	xaringan	uses
the	online	version	by	default.	You	can	use		xaringan::summon_remark()		to	download	the	latest	or	a
specified	version	of	remark.js.	By	default,	it	is	downloaded	to		libs/remark-latest.min.js	.

Then	change	the	 	chakra		option	in	the	YAML	metadata	to	point	to	this	file,	e.g.,

Making	the	slides	work	offline	can	be	tricky,	since	you	may	have	other	dependencies.	The	remark.js
dependency	is	easy	to	deal	with	because	it	is	a	single	JavaScript	file;	other	dependencies	such	as
MathJax	can	be	extremely	tricky.	If	you	used	Google	web	fonts	in	slides	(the	default	theme	uses	Yanone
Kaffeesatz,	Droid	Serif,	and	Source	Code	Pro),	they	will	not	work	offline	unless	you	download	or	install
them	locally.	The	Heroku	app	google-webfonts-helper	can	help	you	download	fonts	and	generate	the
necessary	CSS.

7.6.5 	Macros

The	Markdown	syntax	of	remark.js	can	be	amazingly	extensible,	because	it	allows	users	to	define	custom
macros	(JavaScript	functions)	that	can	be	applied	to	Markdown	text	using	the	syntax		![:macroName
arg1,	arg2,	...]		or	 	![:macroName	arg1,	arg2](this)	.	For	example,	you	can	define	a	macro
named	 	scale		to	set	the	width	of	an	image:

```r

if	(TRUE)	{

*	message("Very	important!")

}

```

```{r	tidy=FALSE}

if	(TRUE)	{

{{	message("Very	important!")	}}

}

```

```{r	tidy=FALSE}

library(ggplot2)

ggplot(mtcars)	+

		aes(mpg,	disp)	+

		geom_point()	+			#<<

		geom_smooth()				#<<

```

output:

		xaringan::moon_reader:

				chakra:	libs/remark-latest.min.js

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://google-webfonts-helper.herokuapp.com/fonts

Then	the	Markdown	text

will	be	translated	to:

Now	you	should	see	that	you	can	use	cleaner	pseudo-Markdown	syntax	to	generate	HTML.

To	insert	macros	in	xaringan	slides,	you	can	save	your	macros	in	a	file	(e.g.,		macros.js),	and	use	the
option	 	beforeInit		under	the	option	 	nature	,	e.g.,

The	 	beforeInit		option	can	be	used	to	insert	arbitrary	JavaScript	code	before	remark.js	initializes	the
slides.	Inserting	macros	is	just	one	of	its	possible	applications.	For	example,	when	you	embed	tweets	from
Twitter	in	slides,	usually	you	need	to	load		https://platform.twitter.com/widgets.js	,	which	can	be
loaded	via	the	 	beforeInit		option.

7.6.6 	Disadvantages

The	xaringan	package	was	originally	designed	for	“ninja”,	meaning	that	if	you	know	CSS,	you	will	be	able
to	freely	customize	the	style,	otherwise	you	can	only	accept	the	default	themes.	Playing	with	CSS	can	be
fun	and	rewarding,	but	it	can	also	easily	waste	your	time.	You	aesthetic	standards	and	taste	may	change
from	time	to	time,	and	you	could	end	up	tweaking	the	styles	all	the	time.

The	HTML	output	file	generated	from	xaringan	is	not	self-contained	by	default,	as	we	mentioned	in	Section
7.4.	If	your	slides	must	be	self-contained	and	cannot	be	served	through	a	web	server,	xaringan	may	not	be
a	good	option	for	you.

HTML	widgets	may	not	work	well	in	xaringan.	This	might	be	improved	in	the	future,	but	it	is	a	little	tricky
technically.

When	printing	the	slides	to	PDF	from	Google	Chrome	(see	Section	4.1.10),	I	recommend	that	you	open
the	slides	and	go	through	all	pages	at	least	once,	to	make	sure	all	content	has	been	rendered	in	the
browser.	Without	navigating	through	all	slides	manually	once,	some	content	may	not	be	printed	correctly
(such	as	MathJax	expressions	and	HTML	widgets).

remark.macros.scale	=	function(w)	{

		var	url	=	this;

		return	'';

};

![:scale	50%](image.jpg)

output:

		xaringan::moon_reader:

				nature:

						beforeInit:	"macros.js"

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/xaringan-preview.html#xaringan-preview
file:///home/me/bookdown.org/yihui/rmarkdown/ioslides-presentation.html#printing-and-pdf-output

Chapter	8 	reveal.js	Presentations

The	revealjs	package	(El	Hattab	and	Allaire	2017)	provides	an	output	format
	revealjs::revealjs_presentation		that	can	be	used	to	create	yet	another	style	of	HTML5	slides
based	on	the	JavaScript	library	reveal.js.	You	may	install	the	R	package	from	CRAN:

To	create	a	reveal.js	presentation	from	R	Markdown,	you	specify	the		revealjs_presentation		output
format	in	the	YAML	metadata	of	your	document.	You	can	create	a	slide	show	broken	up	into	sections	by
using	the	 	#		and	 	##		heading	tags;	you	can	also	create	a	new	slide	without	a	header	using	a	horizontal
rule	(---).	For	example,	here	is	a	simple	slide	show:

See	Figure	8.1	for	two	sample	slides.

install.packages("revealjs")

title:	"Habits"

author:	John	Doe

date:	March	22,	2005

output:	revealjs::revealjs_presentation

#	In	the	morning

##	Getting	up

-	Turn	off	alarm

-	Get	out	of	bed

##	Breakfast

-	Eat	eggs

-	Drink	coffee

#	In	the	evening

##	Dinner

-	Eat	spaghetti

-	Drink	wine

##	Going	to	sleep

-	Get	in	bed

-	Count	sheep

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/revealjs.html#ref-R-revealjs
https://revealjs.com/
file:///home/me/bookdown.org/yihui/rmarkdown/revealjs.html#fig:revealjs-sample

FIGURE	8.1:	Two	sample	slides	created	from	the	revealjs	package.

References

El	Hattab,	Hakim,	and	JJ	Allaire.	2017.	Revealjs:	R	Markdown	Format	for	’Reveal.js’	Presentations.
https://CRAN.R-project.org/package=revealjs.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://cran.r-project.org/package=revealjs

8.1 	Display	modes

The	following	single	character	keyboard	shortcuts	enable	alternate	display	modes:

	'f'	:	enable	fullscreen	mode.

	'o'	:	enable	overview	mode.

Pressing	 	Esc		exits	all	of	these	modes.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

8.2 	Appearance	and	style

There	are	several	options	that	control	the	appearance	of	reveal.js	presentations:

	theme		specifies	the	theme	to	use	for	the	presentation	(available	themes	are		"default"	,
	"simple"	,	 	"sky"	,	 	"beige"	,	 	"serif"	,	 	"solarized"	,	 	"blood"	,	 	"moon"	,	 	"night"	,
	"black"	,	 	"league"	,	and	 	"white").

	highlight		specifies	the	syntax	highlighting	style.	Supported	styles	include		"default"	,
	"tango"	,	 	"pygments"	,	 	"kate"	,	 	"monochrome"	,	 	"espresso"	,	 	"zenburn"	,	and
	"haddock"	.	Pass	null	to	prevent	syntax	highlighting.

	center		specifies	whether	you	want	to	vertically	center	content	on	slides	(this	defaults	to		false).

	smart		indicates	whether	to	produce	typographically	correct	output,	converting	straight	quotes	to
curly	quotes,	 	---		to	em-dashes,	 	--		to	en-dashes,	and	 	...		to	ellipses.	Note	that		smart		is
enabled	by	default.

For	example:

8.2.1 	Smaller	text

If	you	need	smaller	text	for	certain	paragraphs,	you	can	enclose	text	in	the		<small>		tag.	For	example:

output:

		revealjs::revealjs_presentation:

				theme:	sky

				highlight:	pygments

				center:	true

<small>This	sentence	will	appear	smaller.</small>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

8.3 	Slide	transitions

You	can	use	the		transition		and	 	background_transition		options	to	specify	the	global	default	slide
transition	style:

	transition		specifies	the	visual	effect	when	moving	between	slides.	Available	transitions	are
	"default"	,	 	"fade"	,	 	"slide"	,	 	"convex"	,	 	"concave"	,	 	"zoom"		or	 	"none"	.

	background_transition		specifies	the	background	transition	effect	when	moving	between	full	page
slides.	Available	transitions	are	 	"default"	,	 	"fade"	,	 	"slide"	,	 	"convex"	,	 	"concave"	,
	"zoom"		or	 	"none"	.

For	example:

You	can	override	the	global	transition	for	a	specific	slide	by	using	the		data-transition		attribute.	For
example:

You	can	also	use	different	in	and	out	transitions	for	the	same	slide.	For	example:

output:

		revealjs::revealjs_presentation:

				transition:	fade

##	Use	a	zoom	transition	{data-transition="zoom"}

##	Use	a	faster	speed	{data-transition-speed="fast"}

##	Fade	in,	Slide	out	{data-transition="slide-in	fade-out"}

##	Slide	in,	Fade	out	{data-transition="fade-in	slide-out"}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

8.4 	Slide	backgrounds

Slides	are	contained	within	a	limited	portion	of	the	screen	by	default	to	allow	them	to	fit	any	display	and
scale	uniformly.	You	can	apply	full	page	backgrounds	outside	of	the	slide	area	by	adding	a		data-
background		attribute	to	your	slide	header	element.	Four	different	types	of	backgrounds	are	supported:
	color	,	 	image	,	 	video	,	and	 	iframe	.	Below	are	a	few	examples.

Backgrounds	transition	using	a		fade		animation	by	default.	This	can	be	changed	to	a	linear	sliding
transition	by	specifying	the		background-transition:	slide	.	Alternatively,	you	can	set	 	data-
background-transition		on	any	slide	with	a	background	to	override	that	specific	transition.

##	CSS	color	background	{data-background=#ff0000}

##	Full	size	image	background	{data-background="background.jpeg"}

##	Video	background	{data-background-video="background.mp4"}

##	A	background	page	{data-background-iframe="https://example.com"}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

8.5 	2-D	presenations

You	can	use	the		slide_level		option	to	specify	which	level	of	heading	will	be	used	to	denote	individual
slides.	If	 	slide_level		is	2	(the	default),	a	two-dimensional	layout	will	be	produced,	with	level-1	headers
building	horizontally	and	level-2	headers	building	vertically.	For	example:

With	this	layout,	horizontal	navigation	will	proceed	directly	from	“Horizontal	Slide	1”	to	“Horizontal	Slide	2”,
with	vertical	navigation	to	“Vertical	Slide	1”	(and	then	“Vertical	Slide	2”,	etc.)	presented	as	an	option	on
“Horizontal	Slide	1”.	See	Figure	8.1	for	an	example	(note	the	arrows	at	the	bottom	right	on	the	slides).

#	Horizontal	Slide	1

##	Vertical	Slide	1

##	Vertical	Slide	2

#	Horizontal	Slide	2

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/revealjs.html#fig:revealjs-sample

8.6 	Custom	CSS

You	can	add	your	own	CSS	to	a	reveal.js	presentation	using	the		css		option:

If	you	want	to	override	the	appearance	of	particular	HTML	element	document-wide,	you	need	to	qualify	it
with	the	 	.reveal	section		preface	in	your	CSS.	For	example,	to	change	the	default	text	color	in
paragraphs	to	blue,	you	would	use:

8.6.1 	Slide	IDs	and	classes

You	can	also	target	specific	slides	or	classes	of	slice	with	custom	CSS	by	adding	IDs	or	classes	to	the
slides	headers	within	your	document.	For	example,	the	following	slide	header

would	enable	you	to	apply	CSS	to	all	of	its	content	using	either	of	the	following	CSS	selectors:

8.6.2 	Styling	text	spans

You	can	apply	classes	defined	in	your	CSS	file	to	spans	of	text	by	using	a		span		tag.	For	example:

output:

		revealjs::revealjs_presentation:

				css:	styles.css

.reveal	section	p	{

		color:	blue;

}

##	Next	Steps	{#nextsteps	.emphasized}

#nextsteps	{

			color:	blue;

}

.emphasized	{

			font-size:	1.2em;

}

Pay	attention	to	this!

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

8.7 	reveal.js	options

Reveal.js	has	many	additional	options	to	configure	its	behavior.	You	can	specify	any	of	these	options	using
	reveal_options	.	For	example:

You	can	find	documentation	on	the	various	available	reveal.js	options	here:
https://github.com/hakimel/reveal.js#configuration.

title:	"Habits"

output:

		revealjs::revealjs_presentation:

				self_contained:	false

				reveal_options:

						slideNumber:	true

						previewLinks:	true

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/hakimel/reveal.js#configuration

8.8 	reveal.js	plugins

You	can	enable	various	reveal.js	plugins	using	the		reveal_plugins		option.	Plugins	currently	supported
plugins	are	listed	in	Table	8.1.

TABLE	8.1:	The	currently	supported	reveal.js	plugins.

Plugin Description

notes Present	per-slide	notes	in	a	separate	browser	window.

zoom Zoom	in	and	out	of	selected	content	with	Alt+Click.

search
Find	a	text	string	anywhere	in	the	slides	and	show	the	next
occurrence	to	the	user.

chalkboard Include	handwritten	notes	within	a	presentation.

Note	that	the	use	of	plugins	requires	that	the		self_contained		option	be	set	to		false	.	For	example,
this	presentation	includes	both	the	“notes”	and	“search”	plugins:

You	can	specify	additional	options	for	the		chalkboard		plugin	using	 	reveal_options	.	For	example:

title:	"Habits"

output:

		revealjs::revealjs_presentation:

				self_contained:	false

				reveal_plugins:	["notes",	"search"]

title:	"Habits"

output:

		revealjs::revealjs_presentation:

				self_contained:	false

				reveal_plugins:	["chalkboard"]

				reveal_options:

						chalkboard:

								theme:	whiteboard

								toggleNotesButton:	false

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/reveal-js-plugins.html#tab:revealjs-plugins

8.9 	Other	features

Refer	to	Section	3.1	for	the	documentation	of	other	features	of	reveal.js	presentations,	including	figure
options	(Section	3.1.5),	MathJax	equations	(Section	3.1.8),	keeping	Markdown	(Section	3.1.10.1),
document	dependencies	(Section	3.1.9),	header	and	before/after	body	inclusions	(Section	3.1.10.2),
custom	templates	(Section	3.1.10.3),	Pandoc	arguments	(Section	3.1.10.5),	and	shared	options	(Section
3.1.11).	Also	see	Section	4.1.2	for	incremental	bullets.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#html-document
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#figure-options
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#mathjax-equations
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#keeping-markdown
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#document-dependencies
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#includes
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#custom-templates
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#pandoc-arguments
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#shared-options
file:///home/me/bookdown.org/yihui/rmarkdown/ioslides-presentation.html#incremental-bullets

Chapter	9 	Community	Formats

Most	output	formats	introduced	in	this	book	are	created	and	maintained	by	the	RStudio	team.	In	fact,	other
members	in	the	R	community	have	also	created	a	number	of	R	Markdown	output	formats.	We	mention
those	formats	that	we	are	aware	of	in	this	chapter.	If	you	have	developed	or	know	other	formats,	please
feel	free	to	suggest	that	we	add	them	to	the	page	https://rmarkdown.rstudio.com/formats.html.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://rmarkdown.rstudio.com/formats.html

9.1 	Lightweight	Pretty	HTML	Documents

When	designing	the	rmarkdown	package,	we	wished	it	could	produce	output	documents	that	look	pleasant
by	default,	especially	for	HTML	documents.	Pandoc	does	not	really	style	the	HTML	documents	when
converting	Markdown	to	HTML,	but	rmarkdown	does.	As	we	mentioned	in	Section	3.1.4,	the	themes	of
HTML	documents	are	based	on	Bootswatch,	which	actually	relies	on	the	Bootstrap	library
(https://getbootstrap.com).	Although	these	themes	look	pretty,	the	major	disadvantage	is	that	their	file
sizes	are	relatively	large.	The	size	of	an	HTML	document	created	from	an	empty	R	Markdown	document
with	the	 	html_document		format	is	about	600Kb,	which	is	roughly	the	total	size	of	all	CSS,	JavaScript,
and	font	files	in	the	default	theme.

If	you	are	concerned	about	the	file	size	but	still	want	a	fancy	theme,	you	may	consider	the	prettydoc
package	(Qiu	2018),	which	has	bundled	a	few	pretty	themes	(yet	small	in	size).	This	package	provides	an
output	format	 	prettydoc::html_pretty	.	An	empty	R	Markdown	document	with	this	format	generates
an	HTML	file	of	about	70Kb.

9.1.1 	Usage

The	usage	of	 	prettydoc::html_pretty		is	very	similar	to		html_document	,	with	two	major	differences:

The	 	theme		option	takes	different	values.	The	currently	supported	themes	are		"cayman"	,
	"tactile"	,	 	"architect"	,	 	"leonids"	,	and	 	"hpstr"	.	Figure	9.1	shows	the	appearance	of	the
	leonids		theme.	See	https://github.com/yixuan/prettydoc	for	screenshots	of	more	themes.

The	 	highlight		option	takes	 	null	,	 	"github"	,	or	 	"vignette"	.

Below	is	an	example	of	the	YAML	metadata	of	an	R	Markdown	document	that	uses	the
	prettydoc::html_pretty		output	format:

title:	"Your	Document	Title"

author:	"Document	Author"

date:	"2018-04-16"

output:

		prettydoc::html_pretty:

				theme:	leonids

				highlight:	github

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#appearance-and-style
https://getbootstrap.com/
file:///home/me/bookdown.org/yihui/rmarkdown/prettydoc.html#ref-R-prettydoc
file:///home/me/bookdown.org/yihui/rmarkdown/prettydoc.html#fig:prettydoc
https://github.com/yixuan/prettydoc

FIGURE	9.1:	The	leonids	theme	of	the	prettydoc	package.

9.1.2 	Package	vignettes

The	 	prettydoc::html_pretty		can	be	particularly	useful	for	R	package	vignettes.	We	have	mentioned
the	 	html_vignette		format	in	Section	3.8	that	also	aims	at	smaller	file	sizes,	but	that	format	is	not	as
stylish.	To	apply	the	 	prettydoc::html_pretty		format	to	a	package	vignette,	you	may	use	the	YAML
metadata	below:

Do	not	forget	to	change	the	vignette	title,	author,	and	the	index	entry.	You	should	also	add		prettydoc		to
the	 	Suggests		field	of	your	package		DESCRIPTION		file,	and	the	two	package	names		knitr,
rmarkdown		to	the	 	VignetteBuilder		field.

References

Qiu,	Yixuan.	2018.	Prettydoc:	Creating	Pretty	Documents	from	R	Markdown.	https://CRAN.R-
project.org/package=prettydoc.

title:	"Vignette	Title"

author:	"Vignette	Author"

output:	prettydoc::html_pretty

vignette:	>

		%\VignetteIndexEntry{Vignette	Title}

		%\VignetteEngine{knitr::rmarkdown}

		%\VignetteEncoding{UTF-8}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/r-package-vignette.html#r-package-vignette
https://cran.r-project.org/package=prettydoc

9.2 	The	rmdformats	package

The	rmdformats	package	(Barnier	2017)	provides	several	HTML	output	formats	of	unique	and	attractive
styles,	including:

	material	:	A	format	based	on	the	Material	design	theme	for	Bootstrap	3.	With	this	format,	every
first-level	section	will	become	a	separate	page.	See	Figure	9.2	for	what	this	format	looks	like
(“Introduction”	and	“Including	Plots”	are	two	first-level	sections).

	readthedown	:	It	features	a	sidebar	layout.	The	table	of	contents	is	displayed	in	the	sidebar	on	the
left.	As	you	scroll	on	the	page,	the	current	section	header	will	be	automatically	highlighted	(and
expanded	if	necessary)	in	the	sidebar.

	html_clean	:	A	simple	and	clean	HTML	template,	with	a	dynamic	table	of	contents	at	the	top-right	of
the	page.

	html_docco	:	A	simple	template	inspired	by	the	Docco	project.

Do	not	forget	the		rmdformats::		prefix	when	you	use	these	formats,	e.g.,

FIGURE	9.2:	The	Material	Design	theme	in	the	rmdformats	package.

These	output	formats	have	some	additional	features	such	as	responsiveness	and	code	folding.	Please
refer	to	the	GitHub	repository	of	the	rmdformats	package	for	more	information:
https://github.com/juba/rmdformats.

References

output:	rmdformats::material

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/rmdformats.html#ref-R-rmdformats
https://github.com/FezVrasta/bootstrap-material-design
file:///home/me/bookdown.org/yihui/rmarkdown/rmdformats.html#fig:rmdformats-material
https://github.com/jashkenas/docco
https://github.com/juba/rmdformats

Barnier,	Julien.	2017.	Rmdformats:	HTML	Output	Formats	and	Templates	for	’Rmarkdown’	Documents.
https://CRAN.R-project.org/package=rmdformats.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://cran.r-project.org/package=rmdformats

9.3 	Shower	presentations

Shower	(https://github.com/shower/shower)	is	a	popular	and	customizable	HTML5	presentation
framework.	See	Figure	9.3	for	what	it	looks	like.

FIGURE	9.3:	A	few	sample	slides	created	via	the	Shower	presentation	framework.

The	R	package	rmdshower	(https://github.com/mangothecat/rmdshower)	is	built	on	top	of	Shower.	You
may	install	it	from	GitHub:

You	can	create	a	Shower	presentation	with	the	output	format		rmdshower::shower_presentation	,	e.g.,

See	the	help	page		?rmdshower::shower_presentation		for	all	possible	options	of	this	format.

devtools::install_github("mangothecat/rmdshower")

title:	"Hello	Shower"

author:	"John	Doe"

output:	rmdshower::shower_presentation

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/shower/shower
file:///home/me/bookdown.org/yihui/rmarkdown/shower-presentations.html#fig:shower
https://github.com/mangothecat/rmdshower

Chapter	10 	Websites

Most	R	Markdown	applications	are	single	documents.	That	is,	you	have	a	single	R	Markdown	source
document,	and	it	generates	a	single	output	file.	However,	it	is	also	possible	to	work	with	multiple	Rmd
documents	in	a	project,	and	organize	them	in	a	meaningful	way	(e.g.,	pages	can	reference	each	other).

Currently	there	are	two	major	ways	to	build	multiple	Rmd	documents:	blogdown	(Xie,	Hill,	and	Thomas
2017;	Xie	2018a)	for	building	websites,	and	bookdown	(Xie	2016,	2018b)	for	authoring	books.	In	this
chapter,	we	briefly	introduce	the	blogdown	package.	For	the	full	reference,	please	read	the	official
blogdown	book	by	Xie,	Hill,	and	Thomas	(2017).	In	fact,	the	rmarkdown	package	also	has	a	built-in	site
generator,	which	was	not	covered	in	detail	by	the	blogdown	book,	so	we	will	introduce	it	in	Section	10.5.

With	blogdown,	you	can	write	a	blog	post	or	a	general	page	in	an	Rmd	document,	or	a	plain	Markdown
document.	These	source	documents	will	be	built	into	a	static	website,	which	is	essentially	a	folder
containing	static	HTML	files	and	associated	assets	(such	as	images	and	CSS	files).	You	can	publish	this
folder	to	any	web	server	as	a	website.	Because	it	is	only	a	single	folder,	it	can	be	easy	to	maintain.	For
example,	you	do	not	need	to	worry	about	databases	as	you	do	if	you	use	dynamic	systems	like
WordPress.

Because	the	website	is	generated	from	R	Markdown,	the	content	is	more	likely	to	be	reproducible,	and
also	easier	to	maintain	(no	cut-and-paste	of	results).	Using	Markdown	means	your	content	could	be	more
portable	in	the	sense	that	you	may	convert	your	pages	to	PDF	or	other	formats	in	the	future,	and	you	are
not	tied	to	the	default	HTML	format.	For	example,	you	may	be	able	to	convert	a	blog	post	to	a	journal
paper,	or	several	posts	to	a	book.	One	more	benefit	of	using	blogdown	is	that	the	Markdown	syntax	is
based	on	bookdown’s	extended	syntax,	which	means	it	is	highly	suitable	for	technical	writing.	For
example,	you	may	write	math	equations,	insert	figures	or	tables	with	captions,	cross-reference	them	with
figure	or	table	numbers,	add	citations,	and	present	theorems	or	proofs.

References

Xie,	Yihui,	Alison	Presmanes	Hill,	and	Amber	Thomas.	2017.	Blogdown:	Creating	Websites	with	R
Markdown.	Boca	Raton,	Florida:	Chapman;	Hall/CRC.	https://github.com/rstudio/blogdown.

Xie,	Yihui.	2018a.	Blogdown:	Create	Blogs	and	Websites	with	R	Markdown.
https://github.com/rstudio/blogdown.

Xie,	Yihui.	2016.	Bookdown:	Authoring	Books	and	Technical	Documents	with	R	Markdown.	Boca	Raton,
Florida:	Chapman;	Hall/CRC.	https://github.com/rstudio/bookdown.

Xie,	Yihui.	2018b.	Bookdown:	Authoring	Books	and	Technical	Documents	with	R	Markdown.
https://github.com/rstudio/bookdown.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/websites.html#ref-xie2017
file:///home/me/bookdown.org/yihui/rmarkdown/websites.html#ref-R-blogdown
file:///home/me/bookdown.org/yihui/rmarkdown/websites.html#ref-R-blogdown
file:///home/me/bookdown.org/yihui/rmarkdown/websites.html#ref-xie2016
file:///home/me/bookdown.org/yihui/rmarkdown/websites.html#ref-R-bookdown
file:///home/me/bookdown.org/yihui/rmarkdown/websites.html#ref-R-bookdown
file:///home/me/bookdown.org/yihui/rmarkdown/websites.html#ref-xie2017
file:///home/me/bookdown.org/yihui/rmarkdown/rmarkdown-site.html#rmarkdown-site
https://github.com/rstudio/blogdown
https://github.com/rstudio/blogdown
https://github.com/rstudio/bookdown
https://github.com/rstudio/bookdown

10.1 	Get	started

You	can	install	blogdown	from	CRAN.	If	you	want	to	test	the	development	version,	you	may	also	install	it
from	GitHub:

The	easiest	way	to	get	started	with	a	blogdown-based	website	is	to	create	a	website	project	from	RStudio:
	File	->	New	Project	.	If	you	do	not	use	RStudio,	you	may	call	the	function		blogdown::new_site()	.

The	first	time	when	you	create	a	new	website,	blogdown	will	do	a	series	of	things	behind	the	scenes:	it
downloads	Hugo	(the	default	static	site	generator),	creates	a	website	skeleton,	installs	a	theme,	adds
some	example	posts,	builds	the	site,	and	serves	it	so	that	you	can	see	the	website	in	your	browser	(or
RStudio	Viewer	if	you	are	in	RStudio).	It	will	not	go	through	all	these	steps	again	the	next	time	when	you
work	on	this	website.	All	you	need	in	the	future	is		blogdown::serve_site()	,	or	equivalently,	the
RStudio	addin	“Serve	Site”.

Every	time	you	open	a	website	project,	you	only	need	to	serve	the	site	once,	and	blogdown	will	keep
running	in	the	background,	listening	to	changes	in	your	source	files,	and	rebuilding	the	website
automatically.	All	you	have	to	do	is	create	new	posts,	or	edit	existing	posts,	and	save	them.	You	will	see
the	automatic	live	preview	as	you	save	the	changes	(unless	you	have	errors	in	a	source	document).

There	are	a	few	RStudio	addins	to	help	you	author	your	posts:	you	can	use	the	“New	Post”	addin	to	create
a	new	post,	the	“Update	Metadata”	addin	to	update	the	YAML	metadata	of	a	post,	and	the	“Insert	Image”
addin	to	insert	an	image	in	a	post.

#	from	CRAN

install.packages("blogdown")

#	or	the	development	version	from	GitHub

devtools::install_github("rstudio/blogdown")

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

10.2 	The	directory	structure

The	default	site	generator	in	blogdown	is	Hugo	(https://gohugo.io).	A	basic	Hugo	website	usually	contains
the	following	files	and	directories:

	config.toml	

	content/	

	static/	

	themes/	

	public/	

The	configuration	file	 	config.toml		can	be	used	to	specify	options	for	the	Hugo	website,	e.g.,

Some	options	are	provided	by	Hugo	itself,	such	as		title		and	 	baseURL	;	you	may	refer	to
https://gohugo.io/getting-started/configuration/	for	all	built-in	options.	Some	options	are	provided	by	the
Hugo	theme,	and	you	need	to	read	the	documentation	of	the	specific	theme	to	know	the	additional	options.

All	source	Markdown	or	R	Markdown	files	should	be	placed	under	the		content/		directory.	The	directory
structure	under	 	content/		can	be	arbitrary.

The	 	static/		directory	contains	static	assets	such	as	images	and	CSS	files.	Everything	under
	static/		will	be	copied	to	the		public/		directory	when	Hugo	generates	the	website.	For	example,
	static/images/foo.png		will	be	copied	to		public/images/foo.png	,	and	if	you	want	to	include	this
image	in	your	post,	you	may	use		![title](/images/foo.png)		in	Markdown	(the	leading		/		typically
indicates	the	root	of		public/).

You	can	download	multiple	themes	to	the		themes		directory.	To	activate	a	theme,	specify	its	folder	name
in	the	 	theme		option	in	 	config.toml	.	You	can	find	a	lot	of	Hugo	themes	from	https://themes.gohugo.io.
Remember,	the	best	theme	is	always	the	next	one,	i.e.,	one	that	you	have	not	used	before.	I	recommend
that	you	start	with	a	simple	theme	(such	as	the	default	hugo-lithium	theme	in	blogdown,	hugo-xmin,	or
hugo-tanka),	and	write	a	substantial	number	of	posts	before	seriously	investing	time	in	choosing	or
tweaking	a	theme.

After	you	serve	a	site	using	blogdown,	your	site	will	be	continuously	built	to	the		public/		directory	by
default.	You	can	upload	this	folder	to	any	web	server	to	deploy	the	website.	However,	if	you	know	GIT,
there	is	an	even	easier	way	to	publish	your	website,	to	be	introduced	in	the	next	section.

Hugo	is	very	powerful	and	customizable.	If	you	want	to	learn	more	technical	details	about	it,	you	may	read
Chapter	2	of	the	blogdown	book.

baseURL	=	"/"

languageCode	=	"en-us"

title	=	"A	Hugo	website"

theme	=	"hugo-lithium-theme"

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://gohugo.io/
https://gohugo.io/getting-started/configuration/
https://themes.gohugo.io/
https://github.com/yihui/hugo-lithium
https://github.com/yihui/hugo-xmin
https://github.com/road2stat/hugo-tanka

10.3 	Deployment

There	are	multiple	ways	to	deploy	a	website,	such	as	using	your	own	web	server,	GitHub	Pages,	or
Amazon	S3.	We	only	mention	one	in	this	chapter:	Netlify	(https://www.netlify.com).	It	provides	both	free
and	paid	plans.	For	personal	users,	the	free	plan	may	be	enough,	because	many	useful	features	have
been	included	in	the	free	plan,	e.g.,	the	Hugo	support,	CDN	(content	delivery	network)	for	high	availability
and	performance	of	your	website,	HTTPS,	binding	your	custom	domain,	and	301/302	redirects.

Netlify	currently	supports	GitHub,	GitLab,	and	Bitbucket.	You	may	log	in	using	one	of	these	accounts	at
https://app.netlify.com,	and	create	a	new	website	from	your	GIT	repository	that	contains	the	source	of	your
website.	Note	that	you	do	not	need	to	commit	or	push	the		public/		directory	in	GIT	(in	fact,	I	recommend
that	you	ignore	this	directory	in		.gitignore).

When	creating	a	new	site	on	Netlify,	you	can	specify	the	build	command	to	be		hugo	,	the	publish
directory	to	be	 	public		(unless	you	changed	the	setting		publishDir		in	 	config.toml),	and	also	add
an	environment	variable	 	HUGO_VERSION		with	a	value	of	a	suitable	Hugo	version	(e.g.,		0.39).	To	find
the	Hugo	version	on	your	local	computer,	call	the	function		blogdown::hugo_version()	.	You	may	want
to	use	the	same	Hugo	version	on	Netlify.

Netlify	will	assign	a	random	subdomain	of	the	form		xxx-xxx-1234.netlify.com		to	you.	You	may
change	it	to	a	meaningful	domain	name,	or	request	a	free		*.rbind.io		domain	name	from
https://github.com/rbind/support/issues	if	you	like	it.

If	possible,	I	strongly	recommend	that	you	enable	HTTPS	for	your	websites	(why?).	HTTPS	is	free	on
Netlify,	so	you	really	do	not	have	a	reason	not	to	enable	it.

Once	your	GIT	repository	is	connected	with	Netlify,	you	only	need	to	push	source	files	to	the	repository	in
the	future,	and	Netlify	will	automatically	rebuild	your	website.	This	is	called	“continuous	deployment”.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.netlify.com/
https://app.netlify.com/
https://github.com/rbind/support/issues
https://https.cio.gov/everything/

10.4 	Other	site	generators

Currently	blogdown	has	limited	support	for	two	other	popular	site	generators:	Jekyll	and	Hexo.	You	can
find	detailed	instructions	on	how	to	configure	blogdown	for	these	site	generators	in	Chapter	5	of	the
blogdown	book.	Note	that	neither	Pandoc’s	Markdown	nor	HTML	widgets	are	supported	if	you	use	Jekyll
or	Hexo	with	blogdown.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://jekyllrb.com/
https://hexo.io/

10.5 	rmarkdown’s	site	generator

Before	blogdown	was	invented,	the	rmarkdown	package	had	provided	a	simple	site	generator	that	did	not
rely	on	a	third-party	site	generator	like	Hugo.	If	you	feel	Hugo	is	too	complex	for	you,	and	you	only	want	to
build	a	few	Rmd	documents	into	a	website,	this	built-in	site	generator	may	be	a	good	choice.	A	main
restriction	of	this	site	generator	is	that	it	assumes	all	Rmd	documents	are	under	a	flat	directory	(i.e.,	no
pages	under	subdirectories).	It	also	has	fewer	features	compared	to	Hugo	(e.g.,	no	RSS	feeds).

You	can	render	collections	of	R	Markdown	documents	as	a	website	using	the
	rmarkdown::render_site()		function.	We	will	call	such	websites	“R	Markdown	websites”	in	this	section.
The	RStudio	IDE	(version	1.0	or	higher)	also	includes	integrated	support	for	developing	R	Markdown
websites.

10.5.1 	A	simple	example

To	start	with,	let’s	walk	through	a	very	simple	example,	a	website	that	includes	two	pages	(Home		and
	About)	and	a	navigation	bar	to	switch	between	them.

First,	we	need	a	configuration	file		_site.yml	:

Then	two	Rmd	files,		index.Rmd	:

and	 	about.Rmd	:

name:	"my-website"

navbar:

		title:	"My	Website"

		left:

				-	text:	"Home"

						href:	index.html

				-	text:	"About"

						href:	about.html

title:	"My	Website"

Hello,	Website!

title:	"About	This	Website"

More	about	this	website.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

Note	that	the	minimum	requirement	for	any	R	Markdown	website	is	that	it	have	an		index.Rmd		file	as	well
as	a	 	_site.yml		file.	If	you	execute	the		rmarkdown::render_site()		function	from	within	the	directory
containing	the	website,	the	following	will	occur:

1.	 All	of	the	 	*.Rmd		and	 	*.md		files	in	the	root	website	directory	will	be	rendered	into	HTML.	Note,
however,	that	Markdown	files	beginning	with		_		are	not	rendered	(this	is	a	convention	to	designate
files	that	are	to	be	included	by	top	level	Rmd	documents	as	child	documents).

2.	 The	generated	HTML	files	and	any	supporting	files	(e.g.,	CSS	and	JavaScript)	are	copied	into	an
output	directory	(_site		by	default).

The	HTML	files	within	the		_site		directory	are	now	ready	to	deploy	as	a	standalone	static	website.

The	full	source	code	for	the	simple	example	above	can	be	found	in	the		hello-website		folder	in	the
repository	https://github.com/rstudio/rmarkdown-website-examples.

10.5.2 	Site	authoring

10.5.2.1 	RStudio

RStudio	includes	a	variety	of	features	intended	to	make	developing	R	Markdown	websites	more
productive.

All	of	the	RStudio	features	for	website	authoring	described	below	require	the	use	of	an	RStudio	Project
tied	to	your	website’s	directory.	See	the	documentation	on	RStudio	Projects	for	additional	information	on
how	to	create	and	use	projects.

As	you	work	on	the	individual	pages	of	your	website,	you	can	render	them	using	the		Knit		button	just	as
you	do	with	conventional	standalone	R	Markdown	documents	(see	Figure	10.1).

FIGURE	10.1:	Knit	a	single	page	of	a	website.

Knitting	an	individual	page	will	only	render	and	preview	that	page,	not	the	other	pages	in	the	website.

To	render	all	of	the	pages	in	the	website,	you	use	the		Build		pane,	which	calls
	rmarkdown::render_site()		to	build	and	then	preview	the	entire	site	(see	Figure	10.2).

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/rstudio/rmarkdown-website-examples
https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects
file:///home/me/bookdown.org/yihui/rmarkdown/rmarkdown-site.html#fig:site-page
file:///home/me/bookdown.org/yihui/rmarkdown/rmarkdown-site.html#fig:site-build

FIGURE	10.2:	Build	an	entire	website	in	RStudio.

RStudio	supports	“live	preview”	of	changes	that	you	make	to	supporting	files	within	your	website	(e.g.,
CSS,	JavaScript,	Rmd	partials,	R	scripts,	and	YAML	config	files).

Changes	to	CSS	and	JavaScript	files	always	result	in	a	refresh	of	the	currently	active	page	preview.
Changes	to	other	files	(e.g.,	shared	scripts	and	configuration	files)	trigger	a	rebuild	of	the	active	page	(this
behavior	can	be	disabled	via	the	options	dialog	available	from	the		Build		pane).

Note	that	only	the	active	page	is	rebuilt,	so	once	you	are	happy	with	the	results	of	rendering	you	should
make	sure	to	rebuild	the	entire	site	from	the		Build		pane	to	ensure	that	all	pages	inherit	your	changes.

When	working	iteratively	on	a	page,	you	might	find	it	more	convenient	to	preview	it	side-by-side	with	the
editor	rather	than	in	an	external	window.	You	can	configure	RStudio	to	do	this	using	the	options	menu	on
the	editor	toolbar	(see	Figure	10.3).

FIGURE	10.3:	Preview	a	page	side-by-side	with	the	editor	in	RStudio.

10.5.2.2 	Command	line

If	you	are	not	working	within	RStudio	and/or	want	to	build	sites	from	the	command	line,	you	can	call	the
	render_site()		function	directly	from	within	the	website	directory.	Pass	no	arguments	to	render	the
entire	site	or	a	single	file	in	order	to	render	just	that	file:

#	render	the	entire	site

rmarkdown::render_site()

#	render	a	single	file	only

rmarkdown::render_site("about.Rmd")

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/rmarkdown-site.html#fig:site-preview

To	clean	up	all	of	the	files	generated	via		render_site()	,	you	can	call	the		clean_site()		function,
which	will	remove	all	files	generated	by	rendering	your	site’s	Markdown	documents,	including	knitr’s
	*_cache		directories.	You	can	specify	the		preview	=	FALSE		option	to	just	list	the	files	to	be	removed
rather	than	actually	removing	them:

10.5.2.3 	knitr	caching

If	your	website	is	time	consuming	to	render,	you	may	want	to	enable	knitr’s	caching	during	the
development	of	the	site,	so	that	you	can	more	rapidly	preview.	To	enable	caching	for	an	individual	chunk,
just	add	the	 	cache	=	TRUE		chunk	option:

To	enable	caching	for	an	entire	document,	add		cache	=	TRUE		to	the	global	chunk	option	defaults:

Note	that	when	caching	is	enabled	for	an	Rmd	document,	its		*_files		directory	will	be	copied	rather
than	moved	to	the		_site		directory	(since	the	cache	requires	references	to	generated	figures	in	the
	*_files		directory).

10.5.3 	Common	elements

10.5.3.1 	Content

Typically	when	creating	a	website,	there	are	various	common	elements	you	want	to	include	on	all	pages
(e.g.,	output	options,	CSS	styles,	header	and	footer	elements,	etc.).	Here	are	additions	in	three	files	to	the
example	above	to	make	use	of	common	elements:

	_site.yml	:

#	list	which	files	will	be	removed

rmarkdown::clean_site(preview	=	TRUE)

#	actually	remove	the	files

rmarkdown::clean_site()

```{r,	cache	=	TRUE}

data	<-	longComputation()

```

```{r	setup,	include=FALSE}

knitr::opts_chunk$set(cache	=	TRUE)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

	footer.html	:

	styles.css	

Note	that	we	have	included	an		output		element	within	our	 	_site.yml		file.	This	defines	shared	output
options	for	all	R	Markdown	documents	within	a	site.	Note	that	individual	documents	can	also	include	their
own	 	output		options,	which	will	be	merged	with	the	common	options	at	render	time.

As	part	of	our	common	output	options,	we	have	specified	an	HTML	footer	(via	the		include:	after-
body:		option)	and	a	CSS	stylesheet.	You	can	also	include	HTML	before	the	body	or	in	the	document’s
	<head>		tag	(see	Section	3.1.10.2).

In	addition	to	whatever	common	options	you	define,	there	are	two	output	options	that	are	automatically	set
when	rendering	a	site:

1.	 The	 	self_contained		option	is	set	 	FALSE	;	and

2.	 The	 	lib_dir		option	is	set	to		site_libs	.

These	options	are	set	so	that	dependent	files	(e.g.,	jQuery,	Bootstrap,	and	HTML	widget	libraries)	are
shared	across	all	documents	within	the	site	rather	than	redundantly	embedded	within	each	document.

10.5.3.2 	R	scripts

If	you	have	R	code	that	you	would	like	to	share	across	multiple	R	Markdown	documents	within	your	site,
you	can	create	an	R	script	(e.g.,		utils.R)	and	source	it	within	your	Rmd	files.	For	example:

name:	"my-website"

navbar:

		title:	"My	Website"

		left:

				-	text:	"Home"

						href:	index.html

				-	text:	"About"

						href:	about.html

output:

		html_document:

				theme:	cosmo

				highlight:	textmate

				include:

						after_body:	footer.html

				css:	styles.css

<p>Copyright	©	2016	Skynet,	Inc.	All	rights	reserved.</p>

blockquote	{

		font-style:	italic

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#includes

10.5.3.3 	Rmd	partials

You	may	have	common	fragments	of	R	Markdown	that	you	want	to	share	across	pages	within	your	site.	To
share	Rmd	fragments,	you	should	name	them	with	a	leading	underscore	(_),	and	then	include	them
within	their	parent	Rmd	document	using	the		child		chunk	option.	For	example:

	about.Rmd	:

	_session-info.Rmd	:

The	leading	underscore	is	an	indicator	to	the	site	generation	engine	that	the	Rmd	is	a	partial	document	to
be	included	in	other	documents,	so	it	is	not	compiled	as	a	standalone	document	during	site	rendering.

The	full	source	code	for	the	above	example	can	be	found	in	the		common-element		folder	in	the	repository
https://github.com/rstudio/rmarkdown-website-examples.

10.5.4 	Site	navigation

The	 	navbar		element	of	 	_site.yml		can	be	used	to	define	a	common	navigation	bar	for	your	website.
You	can	include	internal	and	external	links	on	the	navigation	bar	as	well	as	drop-down	menus	for	sites	with
a	large	number	of	pages.

Here	is	a	navigation	bar	definition	in		_site.yml		that	makes	use	of	a	variety	of	features:

```{r}

source("utils.R")

```

title:	"About	This	Website"

More	about	this	website.

```{r,	child="_session-info.Rmd"}

```

Session	information:

```{r}

sessionInfo()

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/rstudio/rmarkdown-website-examples

This	example	demonstrates	a	number	of	capabilities	of	navigation	bars:

1.	 You	can	use	the		type		field	to	choose	between	the		default		and	 	inverse		navigation	bar	styles
(each	theme	includes	distinct	colors	for	“default”	and	“inverse”	navigation	bars).

2.	 You	can	align	navigational	items	either	to	the		left		or	to	the	 	right	.

3.	 You	can	include	menus	on	the	navigation	bar,	and	those	menus	can	have	separators	(text:	"-----
---------")	and	internal	headings	(text		without	a	corresponding	 	href).

4.	 You	can	include	both	internal	and	external	links	on	the	navigation	bar.

5.	 You	can	use	icons	on	the	navigation	bar.	Icons	from	three	different	icon	sets	are	available.

Font	Awesome
Ionicons
Bootstrap	Glyphicons

When	referring	to	an	icon,	you	should	use	its	full	name	including	the	icon	set	prefix	(e.g.,		fa-
github	,	 	ion-social-twitter	,	and	 	glyphicon-time).

10.5.4.1 	HTML	navigation	bar

name:	"my-website"

navbar:

		title:	"My	Website"

		type:	inverse

		left:

				-	text:	"Home"

						icon:	fa-home

						href:	index.html

				-	text:	"About"

						icon:	fa-info

						href:	about.html

				-	text:	"More"

						icon:	fa-gear

						menu:

								-	text:	"Heading	1"

								-	text:	"Page	A"

										href:	page-a.html

								-	text:	"Page	B"

										href:	page-b.html

								-	text:	"---------"

								-	text:	"Heading	2"

								-	text:	"Page	C"

										href:	page-c.html

								-	text:	"Page	D"

										href:	page-d.html

		right:

				-	icon:	fa-question	fa-lg

						href:	https://example.com

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://fontawesome.com/icons
http://ionicons.com/
https://getbootstrap.com/components/

If	you	want	to	have	even	more	control	over	the	appearance	and	behavior	of	the	navigation	bar,	you	can
define	it	in	HTML	rather	than	YAML.	If	you	include	a	file	named		_navbar.html		in	your	website	directory,
it	will	be	used	as	the	navigation	bar.	Here	is	an	example	of	navigation	bar	defined	in	HTML:
https://github.com/rstudio/rmarkdown-website/blob/master/_navbar.html.

Full	documentation	on	syntax	of	Bootstrap	navigation	bars	can	be	found	here:
http://getbootstrap.com/components/.

10.5.5 	HTML	generation

R	Markdown	includes	many	facilities	for	generation	of	HTML	content	from	R	objects,	including:

The	conversion	of	standard	R	output	types	(e.g.,	textual	output	and	plots)	within	code	chunks	done
automatically	by	knitr.

A	variety	of	ways	to	generate	HTML	tables,	including	the		knitr::kable()		function	and	other
packages	such	as	kableExtra	and	pander.

A	large	number	of	available	HTML	widgets	that	provide	rich	JavaScript	data	visualizations.

As	a	result,	for	many	R	Markdown	websites	you	will	not	need	to	worry	about	generating	HTML	output	at	all
(since	it	is	created	automatically).

10.5.5.1 	The	htmltools	package

If	the	facilities	described	above	do	not	meet	your	requirements,	you	can	also	generate	custom	HTML	from
your	R	code	using	the	htmltools	package	(RStudio	and	Inc.	2017).	The	htmltools	package	enables	you	to
write	HTML	using	a	convenient	R	based	syntax	(this	is	the	same	core	HTML	generation	facility	used	by	the
shiny	package).

Here	is	an	example	of	an	R	function	that	creates	a	Bootstrap	thumbnail	div:

You	can	write	functions	that	build	HTML	like	the	one	above,	then	call	them	from	other	R	code	that
combines	them	with	your	data	to	produce	dynamic	HTML.	An	R	code	chunk	that	makes	use	of	this
function	might	look	like	this:

library(htmltools)

thumbnail	<-	function(title,	img,	href,	caption	=	TRUE)	{

		div(class	=	"col-sm-4",

						a(class	=	"thumbnail",	title	=	title,	href	=	href,

								img(src	=	img),

								div(class	=	if	(caption)	"caption",

												if	(caption)	title)

)

)

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/rstudio/rmarkdown-website/blob/master/_navbar.html
http://getbootstrap.com/components/
file:///home/me/bookdown.org/yihui/rmarkdown/rmarkdown-site.html#ref-R-htmltools

10.5.6 	Site	configuration

The	 	_site.yml		file	has	a	number	of	options	that	affect	site	output,	including	where	it	is	written	and	what
files	are	included	and	excluded	from	the	site.	Here	is	an	example	that	makes	use	of	a	few	of	these	options:

The	 	name		field	provides	a	suggested	URL	path	for	your	website	when	it	is	published	(by	default	this	is
just	the	name	of	the	directory	containing	the	site).

The	 	output_dir		field	indicates	which	directory	to	copy	site	content	into	("_site"		is	the	default	if	none
is	specified).	It	can	be		"."		to	keep	all	content	within	the	root	website	directory	alongside	the	source
code.

10.5.6.1 	Included	files

The	 	include		and	 	exclude		fields	enable	you	to	override	the	default	behavior	vis-a-vis	what	files	are
copied	into	the	output	directory.	By	default,	all	files	within	the	website	directory	are	copied	into	the	output
directory	save	for	the	following:

1.	 Files	beginning	with	 	.		(hidden	files).

2.	 Files	beginning	with	 	_	.

3.	 Files	known	to	contain	R	source	code	(e.g.,		*.R	,	 	*.s	,	 	*.Rmd),	R	data	(e.g.,		*.RData	,
	*..rds),	or	configuration	data	(e.g.,		*..Rproj	,	 	rsconnect).

The	 	include		and	 	exclude		fields	of	 	_site.yml		can	be	used	to	override	this	default	behavior
(wildcards	can	be	used	to	specify	groups	of	files	to	be	included	or	excluded).

Note	that	 	include		and	 	exclude		are	not	used	to	determine	which	Rmd	files	are	rendered:	all	of	them
in	the	root	directory	save	for	those	named	with	the		_		prefix	will	be	rendered.

10.5.7 	Publishing	websites

R	Markdown	websites	are	static	HTML	sites	that	can	be	deployed	to	any	standard	web	server.	All	site
content	(generated	documents	and	supporting	files)	are	copied	into	the		_site		directory,	so	deployment
is	simply	a	matter	of	moving	that	directory	to	the	appropriate	directory	of	a	web	server.

```{r,	echo=FALSE}

thumbnail("Apple",	"images/apple.png",

										"https://en.wikipedia.org/wiki/Apple")

thumbnail("Grape",	"images/grape.png",

										"https://en.wikipedia.org/wiki/Grape")

thumbnail("Peach",	"images/peach.png",

										"https://en.wikipedia.org/wiki/Peach")

```

name:	"my-website"

output_dir:	"_site"

include:	["import.R"]

exclude:	["docs.txt",	"*.csv"]

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

10.5.8 	Additional	examples

Here	are	some	additional	examples	of	websites	created	with	R	Markdown:

The	rmarkdown	documentation:	https://rmarkdown.rstudio.com.	This	website	was	created	using	R
Markdown.	There	are	a	large	number	of	pages	(over	40)	that	are	organized	using	sub-menus	on	the
navigation	bar.	Disqus	comments	are	included	on	each	page	via	an		after_body		option.	The	source
code	is	at	https://github.com/rstudio/rmarkdown/tree/gh-pages.

The	flexdashboard	documentation:	https://rmarkdown.rstudio.com/flexdashboard/.	It	illustrates	using
an	R	script	to	dynamically	generate	HTML	thumbnails	of	flexdashboard	examples	from	YAML.	The
source	code	is	at	https://github.com/rstudio/rmarkdown/tree/gh-pages/flexdashboard.

10.5.9 	Custom	site	generators

So	far	we	have	described	the	behavior	of	the	default	site	generation	function,
	rmarkdown::default_site()	.	It	is	also	possible	to	define	a	custom	site	generator	that	has	alternate
behaviors.

10.5.9.1 	Site	generator	function

A	site	generator	is	an	R	function	that	is	bound	to	by	including	it	in	the		site:		field	of	the	 	index.Rmd		or
	index.md		file.	For	example:

A	site	generation	function	should	return	a	list	with	the	following	elements:

	name	:	The	name	for	the	website	(e.g.,	the	parent	directory	name).

	output_dir	:	The	directory	where	the	website	output	is	written	to.	This	path	should	be	relative	to	the
site	directory	(e.g.,	 	"."		or	 	"_site").

	render	:	An	R	function	that	can	be	called	to	generate	the	site.	The	function	should	accept	the
	input_file	,	 	output_format	,	 	envir	,	 	quiet	,	and	 	encoding		arguments.

	clean	:	An	R	function	that	returns	relative	paths	to	the	files	generated	by		render_site()	.	These
files	are	the	ones	to	be	removed	by	the		clean_site()		function.

Note	that	the	 	input_file		argument	will	be	 	NULL		when	the	entire	site	is	being	generated.	It	will	be	set
to	a	specific	filename	if	a	front-end	tool	is	attempting	to	preview	it	(e.g.,	RStudio	IDE	via	the		Knit	
button).

When	 	quiet	=	FALSE	,	the	 	render		function	should	also	print	a	line	of	output	using	the		message()	
function	indicating	which	output	file	should	be	previewed.	For	example:

title:	"My	Book"

output:	bookdown::gitbook

site:	bookdown::bookdown_site

if	(!quiet)

		message("\nOutput	created:	",	output)

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://rmarkdown.rstudio.com/
https://github.com/rstudio/rmarkdown/tree/gh-pages
https://rmarkdown.rstudio.com/flexdashboard/
https://github.com/rstudio/rmarkdown/tree/gh-pages/flexdashboard

Emitting	this	line	enables	front-ends	like	RStudio	to	determine	which	file	they	should	open	to	preview	the
website.

10.5.9.2 	Examples

See	the	source	code	of	the		rmarkdown::default_site		function	for	an	example	of	a	site	generation
function.	The	bookdown	package	also	implements	a	custom	site	generator	via	its
	bookdown::bookdown_site		function.

References

RStudio,	and	Inc.	2017.	Htmltools:	Tools	for	Html.	https://CRAN.R-project.org/package=htmltools.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://cran.r-project.org/package=htmltools

Chapter	11 	HTML	Documentation	for	R	Packages

R	has	a	built-in	HTML	help	system	that	can	be	accessed	via		help.start()	.	From	this	system,	you	can
see	the	HTML	help	pages	of	functions	and	objects	in	all	packages,	as	well	as	other	information	about
packages	such	as	the		DESCRIPTION		file	and	package	vignettes.	However,	this	system	is	usually
dynamically	launched	(via	a	local	web	server),	and	it	is	not	straightforward	to	turn	it	into	a	static	website
that	can	be	viewed	without	starting	R.

The	pkgdown	package	(Wickham	and	Hesselberth	2018)	makes	it	easy	to	build	a	documentation	website
for	an	R	package,	which	can	help	you	organize	different	pieces	of	the	package	documentation	(e.g.,
README,	help	pages,	vignettes,	and	news)	with	a	more	visually	pleasant	style.	The	navigation	can	also
be	easier	for	users	than	R’s	built-in	help	system.	This	website	can	be	published	to	any	web	server	(e.g.,
GitHub	Pages	or	Netlify).	An	example	is	pkgdown’s	own	website:	http://pkgdown.r-lib.org	(see	Figure
11.1).

FIGURE	11.1:	A	screenshot	of	the	pkgdown	website.

References

Wickham,	Hadley,	and	Jay	Hesselberth.	2018.	Pkgdown:	Make	Static	Html	Documentation	for	a	Package.
https://CRAN.R-project.org/package=pkgdown.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/pkgdown.html#ref-R-pkgdown
http://pkgdown.r-lib.org/
file:///home/me/bookdown.org/yihui/rmarkdown/pkgdown.html#fig:pkgdown
https://cran.r-project.org/package=pkgdown

11.1 	Get	started

You	can	install	pkgdown	from	CRAN,	or	its	development	version	from	GitHub,	and	find	more	information
from	its	GitHub	repository	(https://github.com/r-lib/pkgdown).

After	it	is	installed,	you	can	call	the	function		pkgdown::build_site()		in	the	root	directory	of	your	source
package.	It	will	build	a	website	to	the		docs/		directory,	which	can	be	turned	into	an	online	website	via
GitHub	Pages	or	Netlify.

install.packages("pkgdown")

#	Or	the	development	version

devtools::install_github("r-lib/pkgdown")

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/r-lib/pkgdown
https://help.github.com/articles/configuring-a-publishing-source-for-github-pages/

11.2 	Components

A	pkgdown	website	consists	of	these	components:	the	home	page,	function	reference,	articles,	news,	and
the	navigation	bar.	You	may	configure	these	components	via	a	file		_pkgdown.yml	.

11.2.1 	Home	page

The	home	page	is	generated	from	the	first	existing	file	of	the	following	files	in	your	source	package:

	index.Rmd	

	README.Rmd	

	index.md	

	README.md	

Other	meta	information	about	the	package,	such	as	the	package	license	and	author	names,	will	be
displayed	automatically	as	a	sidebar	on	the	home	page.

11.2.2 	Function	reference

The	reference	pages	look	like	R’s	own	help	pages.	In	fact,	these	pages	are	generated	from	the		*.Rd	
files	under	 	man/	.	Compared	to	R’s	own	help	pages,	pkgdown	offers	a	few	more	benefits:	the	examples
on	a	help	page	(if	they	exist)	will	be	evaluated	so	that	you	can	see	the	output,	and	function	names	are
automatically	linked	so	you	can	click	on	a	name	to	navigate	to	the	help	page	of	another	function.	What	is
more,	pkgdown	allows	you	to	organize	the	list	of	all	functions	into	groups	(e.g.,	by	topic),	which	can	make
it	easier	for	users	to	find	the	right	function	in	a	list.	By	default,	all	functions	are	listed	alphabetically	just	like
R’s	help	system.	To	group	functions	on	the	list	page,	you	need	to	provide	a		reference		key	in
	_pkgdown.yml	,	e.g.,

As	you	can	see	from	the	above	example,	you	may	list	the	names	of	functions	in	the		contents		field,	or
provide	a	pattern	to	let	pkgdown	match	the	names.	There	are	three	ways	to	match	function	names:
	starts_with()		to	match	names	that	start	with	a	string,		ends_width()		for	an	ending	pattern,	and
	matches()		for	an	arbitrary	regular	expression.

11.2.3 	Articles

reference:

		-	title:	"One	Topic"

				desc:	"These	functions	are	awesome..."

				contents:

						-	awesome_a

						-	awesome_b

						-	cool_c

		-	title:	"Another	Topic"

				desc:	"These	functions	are	boring..."

				contents:

						-	starts_with("boring_")

						-	ugh_oh

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

Package	vignettes	in	the	R	Markdown	format	under	the		vignettes/		directories	will	be	built	as	“articles”
for	a	pkgdown-based	website.	Note	that	Rmd	files	under	subdirectories	will	also	be	built.	The	list	of	articles
will	be	displayed	as	a	drop-down	menu	in	the	navigation	bar.

If	you	have	a	vignette	that	has	the	same	base	name	as	the	package	name	(e.g.,	a	vignette		foo.Rmd		in	a
package	foo),	it	will	be	displayed	as	the	“Get	started”	menu	item	in	the	navigation	bar.

11.2.4 	News

If	the	source	package	has	a	news	file		NEWS.md	,	it	will	be	parsed	and	rendered	to	HTML	pages	that	can
be	accessed	via	the	“Changelog”	menu	in	the	navigation	bar.

11.2.5 	Navigation	bar

The	navigation	bar	in	pkgdown	is	based	on	the	rmarkdown	site	generator.	You	can	learn	how	to	customize
it	from	Section	10.5.4,	if	you	are	not	satisfied	by	the	default	navigation	bar.	Please	note	that	you	need	to
specify	the	 	navbar		field	in	 	_pkgdown.yml		instead	of	 	_site.yml	.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/rmarkdown-site.html#site-navigation

Chapter	12 	Books

We	have	introduced	the	basics	of	R	Markdown	in	Chapter	3,	which	highlighted	how	HTML,	PDF,	and	Word
documents	can	be	produced	from	an	R	workflow.	However,	larger	projects	can	become	difficult	to	manage
in	a	single	R	Markdown	file.	The	bookdown	package	(Xie	2016,	2018b)	addresses	this	limitation,	and
offers	several	key	improvements:

Books	and	reports	can	be	built	from	multiple	R	Markdown	files.

Additional	formatting	features	are	added,	such	as	cross-referencing,	and	numbering	of	figures,
equations,	and	tables.

Documents	can	easily	be	exported	in	a	range	of	formats	suitable	for	publishing,	including	PDF,	e-
books	and	HTML	websites.

This	book	itself	was	created	using	bookdown,	and	acts	as	an	example	of	what	can	be	achieved.	Despite
the	name	containing	the	word	“book”,	bookdown	is	not	only	for	books,	and	it	can	be	used	for	long	reports,
dissertations,	or	even	single	R	Markdown	documents	(see	Section	12.4.4).	It	also	works	with	other
computing	languages	such	as	Python	and	C++	(see	Section	2.7).	If	you	want,	you	can	even	write
documents	irrelevant	to	computing,	such	as	a	novel.

In	this	chapter,	we	cover	the	basics	of	bookdown,	and	explain	how	to	start	a	bookdown	project.	Much	of
the	the	content	is	based	on	the	work	“bookdown:	Authoring	Books	and	Technical	Documents	with	R
Markdown”	(https://bookdown.org/yihui/bookdown/)	of	Xie	(2016),	which	provides	more	detailed
explanations	of	the	concepts	highlighted.

References

Xie,	Yihui.	2016.	Bookdown:	Authoring	Books	and	Technical	Documents	with	R	Markdown.	Boca	Raton,
Florida:	Chapman;	Hall/CRC.	https://github.com/rstudio/bookdown.

Xie,	Yihui.	2018b.	Bookdown:	Authoring	Books	and	Technical	Documents	with	R	Markdown.
https://github.com/rstudio/bookdown.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/documents.html#documents
file:///home/me/bookdown.org/yihui/rmarkdown/books.html#ref-xie2016
file:///home/me/bookdown.org/yihui/rmarkdown/books.html#ref-R-bookdown
file:///home/me/bookdown.org/yihui/rmarkdown/books.html#ref-R-bookdown
file:///home/me/bookdown.org/yihui/rmarkdown/bookdown-output.html#a-single-document
file:///home/me/bookdown.org/yihui/rmarkdown/language-engines.html#language-engines
https://bookdown.org/yihui/bookdown/
file:///home/me/bookdown.org/yihui/rmarkdown/books.html#ref-xie2016
https://github.com/rstudio/bookdown
https://github.com/rstudio/bookdown

12.1 	Get	started

You	can	install	either	the	CRAN	version	or	the	development	version	on	GitHub
(https://github.com/rstudio/bookdown):

If	you	use	RStudio,	you	can	start	a	new	bookdown	project	from	the	menu		File	->	New	Project	->	New
Directory	->	Book	Project	using	bookdown	. 	Open	the	R	Markdown	file		index.Rmd	,	and	click	the
button	 	Build	Book		on	the	 	Build		tab	of	RStudio.	This	will	compile	the	book	and	display	the	HTML
version	within	the	RStudio	Viewer,	which	looks	like	Figure	12.1.

FIGURE	12.1:	The	HTML	output	of	the	bookdown	template.

You	may	add	or	change	the	R	Markdown	files,	and	hit	the		Knit		button	again	to	preview	the	book.	If	you
prefer	not	to	use	RStudio,	you	may	also	compile	the	book	through	the	command	line	using
	bookdown::render_book()	.

11.	 Alternatively,	the	command	 	bookdown:::bookdown_skeleton(getwd())		will	create	a	skeleton
project	in	your	current	working	directory.↩

#	install	from	CRAN

install.packages("bookdown")

#	or	GitHub

devtools::install_github("rstudio/bookdown")

11

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/rstudio/bookdown
file:///home/me/bookdown.org/yihui/rmarkdown/bookdown-start.html#fn11
file:///home/me/bookdown.org/yihui/rmarkdown/bookdown-start.html#fig:bookdown-template
file:///home/me/bookdown.org/yihui/rmarkdown/bookdown-start.html#fnref11

12.2 	Project	structure

Below	shows	the	basic	structure	of	a	default	bookdown	project:

As	a	summary	of	these	files:

	index.Rmd	:	This	is	the	only	Rmd	document	to	contain	a	YAML	frontmatter	as	described	within
Chapter	2,	and	is	the	first	book	chapter.

Rmd	files:	A	typical	bookdown	book	contains	multiple	chapters,	and	one	chapter	lives	in	one	Rmd	file.

	_bookdown.yml	:	A	configuration	file	for	bookdown.

	_output.yml	:	It	specifies	the	formatting	of	the	HTML,	LaTeX/PDF,	and	e-books.

	preamble.tex		and	 	style.css	:	They	can	be	used	to	adjust	the	appearance	and	styles	of	the	book
output	document(s).	Knowledge	of	LaTeX	and/or	CSS	is	required.

These	files	are	explained	in	greater	detail	in	the	following	subsections.

12.2.1 	Index	file

By	default,	all	Rmd	files	are	merged	to	render	the	book.	The		index.Rmd		file	is	the	first	file	when	merging
all	Rmd	files.	You	should	and	should	only	specify	the	YAML	metadata	in	this	file,	e.g.,

directory/

├──		index.Rmd

├──	01-intro.Rmd

├──	02-literature.Rmd

├──	03-method.Rmd

├──	04-application.Rmd

├──	05-summary.Rmd

├──	06-references.Rmd

├──	_bookdown.yml

├──	_output.yml

├──		book.bib

├──		preamble.tex

├──		README.md

└──		style.css

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/basics.html#basics

12.2.2 	Rmd	files

The	rest	of	Rmd	files	must	start	immediately	with	the	chapter	title	using	the	first-level	heading,	e.g.,		#
Chapter	Title	.

01-intro.Rmd

02-literature.Rmd

By	default,	bookdown	merges	all	Rmd	files	by	the	order	of	filenames,	e.g.,		01-intro.Rmd		will	appear
before	 	02-literature.Rmd	.	Filenames	that	start	with	an	underscore		_		are	skipped.

12.2.3 	 	_bookdown.yml	

The	 	_bookdown.yml		file	allows	you	to	specify	optional	settings	to	build	the	book.	For	example,	you	may
want	to	override	the	order	in	which	files	are	merged	by	including	the	field		rmd_files	:

12.2.4 	 	_output.yml	

The	 	_output.yml		file	is	used	to	specify	the	book	output	formats	(see	Section	12.4).	Here	is	a	brief
example:

title:	"A	Minimal	Book	Example"

author:	"Yihui	Xie"

date:	"`r	Sys.Date()`"

site:	bookdown::bookdown_site

documentclass:	book

bibliography:	[book.bib,	packages.bib]

biblio-style:	apalike

link-citations:	yes

description:	"This	is	a	minimal	example	of	using

		the	bookdown	package	to	write	a	book."

#	Introduction

This	chapter	is	an	overview	of	the	methods	that

we	propose	to	solve	an	**important	problem**.

#	Literature

Here	is	a	review	of	existing	methods.

rmd_files:	["index.Rmd",	"02-literature.Rmd",	"01-intro.Rmd"]

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/bookdown-output.html#bookdown-output

bookdown::gitbook:

		lib_dir:	assets

		split_by:	section

		config:

				toolbar:

						position:	static

bookdown::pdf_book:

		keep_tex:	yes

bookdown::html_book:

		css:	toc.css

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

12.3 	Markdown	extensions

The	bookdown	package	expands	upon	the	Markdown	syntax	outlined	in	Section	2.5,	and	provides
additional	powerful	features	that	assist	longer	documents	and	academic	writing.

12.3.1 	Number	and	reference	equations

Section	2.5.3	highlighted	how	equations	can	be	created	using	LaTeX	syntax	within	Markdown.	To	number
equations,	put	them	in	the		equation		environments,	and	assign	labels	to	them	using	the	syntax
	(\#eq:label)	.	Equation	labels	must	start	with	the	prefix		eq:		in	bookdown.	For	example:

It	renders	the	equation	below	(12.1):

\[\begin{equation}	E=mc^2	\tag{12.1}	\end{equation}\]

12.3.2 	Theorems	and	proofs

Theorems	and	proofs	provide	environments	that	are	commonly	used	within	articles	and	books	in
mathematics.	To	write	a	theorem,	you	can	use	the	syntax	below:

For	example:

Theorem	12.1	(Pythagorean	theorem)	For	a	right	triangle,	if	\(c\)	denotes	the	length	of	the	hypotenuse	and

\(a\)	and	\(b\)	denote	the	lengths	of	the	other	two	sides,	we	have

\[a^2	+	b^2	=	c^2\]

Theorems	can	be	numbered	and	cross-referenced,	as	you	can	see	from	Theorem	12.1.	The	 	proof	
environment	behaves	similarly	to	theorem	environments	but	is	unnumbered.

Variants	of	the	 	theorem		environments	include:	 	lemma	,	 	corollary	,	 	proposition	,	 	conjecture	,
	definition	,	 	example	,	and	 	exercise	.	Variants	of	the		proof		environments	include	 	remark		and
	solution	.	The	syntax	for	these	environments	is	similar	to	the		theorem		environment,	e.g.,
	̀ ``{lemma}	.

12.3.3 	Special	headers

There	are	two	special	types	of	first-level	headers	than	can	be	used	in	bookdown:

A	part	can	be	created	using		#	(PART)	Part	Title	{-}		before	the	chapters	that	belong	to	this	part.

\begin{equation}

		E=mc^2

		(\#eq:emc)

\end{equation}

```{theorem}

Here	is	my	theorem.

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/markdown-syntax.html#markdown-syntax
file:///home/me/bookdown.org/yihui/rmarkdown/markdown-syntax.html#math-expressions
file:///home/me/bookdown.org/yihui/rmarkdown/bookdown-markdown.html#eq:emc
file:///home/me/bookdown.org/yihui/rmarkdown/bookdown-markdown.html#thm:pyth

Appendices	 	#	(APPENDIX)	Appendix	{-}	:	All	chapters	after	this	header	will	be	treated	as	the
appendix.	The	numbering	style	of	these	chapters	will	be		A	,	 	B	,	 	C	,	etc.,	and	sections	will	be
numbered	as	 	A.1	,	 	A.2	,	and	so	on.

12.3.4 	Text	references

A	text	reference	is	a	paragraph	with	a	label.	The	syntax	is		(ref:label)	text	,	where	 	label		is	a
unique	identifier,	and	 	text		is	a	Markdown	paragraph.	For	example:

Then	you	can	use		(ref:foo)		to	refer	to	the	full	text.	Text	references	can	be	used	anywhere	in	the
document,	and	are	particularly	useful	when	assigning	a	long	caption	to	a	figure	or	including	Markdown
formatting	in	a	caption.	For	example:

12.3.5 	Cross	referencing

The	bookdown	package	extends	cross-referencing	in	R	Markdown	documents	and	allows	section	headers,
tables,	figures,	equations,	and	theorems	to	be	cross-referenced	automatically.	This	only	works	for
numbered	environments,	and	therefore	requires	figures	and	tables	to	be	assigned	a	label.	Cross-
references	are	made	in	the	format		\@ref(type:label)	,	where	 	label		is	the	chunk	label	and		type		is
the	environment	being	referenced.	As	examples:

Headers:

Figures:

Tables:

(ref:foo)	Define	a	text	reference	**here**.

Some	text.

(ref:cool-plot)	A	boxplot	of	the	data	`iris`	in	**base**	R.

```{r	cool-plot,	fig.cap='(ref:cool-plot)'}

boxplot(Sepal.Length	~	Species,	data	=	iris)

```

#	Introduction	{#intro}

This	is	Chapter	\@ref(intro)

See	Figure	\@ref(fig:cars-plot)

```{r	cars-plot,	fig.cap="A	plot	caption"}

plot(cars)		#	a	scatterplot

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

Theorems:

Equations:

Note	that	only	alphanumeric	characters	(a-z	,	 	A-Z	,	 	0-9),	 	-	,	 	/	,	and	 	:		are	allowed	in	these
labels.

See	Table	\@ref(tab:mtcars)

```{r	mtcars}

knitr::kable(mtcars[1:5,	1:5],	caption	=	"A	caption")

```

See	Theorem	\@ref(thm:boring)

```{theorem,	boring}

Here	is	my	theorem.

```

See	equation	\@ref(eq:linear)

\begin{equation}

a	+	bx	=	c		(\#eq:linear)

\end{equation}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

12.4 	Output	Formats

The	bookdown	package	includes	the	following	output	formats:

HTML:
	gitbook	

	html_book	

	tufte_html_book	

PDF:
	pdf_book	

e-book:
	epub_book	

Single	documents:
	html_document2	

	tufte_html2	

	pdf_document2	

	tufte_handout2	

	tufte_book2	

	word_document2	

12.4.1 	HTML

Although	multiple	formats	are	available	for	HTML	books	in	bookdown,	we	will	focus	on	the	Gitbook	style,
which	appears	to	be	the	most	popular	format.	It	provides	a	clean	style,	with	a	table	of	contents	on	the	left.
The	design	is	fully	responsive	to	make	the	content	suitable	for	both	mobile	and	desktop	devices.

The	output	format	 	bookdown::gitbook		is	built	upon	 	rmarkdown::html_document	,	which	was
explained	in	Section	3.1.	The	main	difference	between	rendering	in	R	Markdown	and	bookdown	is	that	a
book	will	generate	multiple	HTML	pages	by	default.	To	change	the	way	the	HTML	pages	are	split,	the
	split_by		argument	can	be	specified.	This	defaults	to		split_by:	chapter	,	but	readers	may	prefer	to
use	 	split_by:	section		if	there	are	many	sections	within	chapters,	in	which	case	a	chapter	page	may
be	too	long.

12.4.2 	LaTeX/PDF

There	are	limited	differences	between	the	output	of		pdf_book()		in	bookdown	compared	to
	pdf_document()		in	rmarkdown.	The	primary	purpose	of	the	new	format	is	to	resolve	the	labels	and
cross-references	written	in	the	syntax	described	in	Section	12.3.5.

Pandoc	supports	LaTeX	commands	in	Markdown.	Therefore	if	the	only	output	format	that	you	want	for	a
book	is	LaTeX/PDF,	you	may	use	the	syntax	specific	to	LaTeX,	such	as		\newpage		to	force	a	page	break.
A	major	disadvantage	of	this	approach	is	that	LaTeX	syntax	is	not	portable	to	other	output	formats,
meaning	that	these	changes	will	not	be	transferred	to	the	HTML	or	e-book	outputs.

12.4.3 	E-books

The	e-book	formats	can	be	read	on	devices	like	smartphones,	tablets,	or	special	e-readers	such	as	Kindle.
You	can	create	an	e-book	of	the	EPUB	format	with		bookdown::epub_book	.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#html-document
file:///home/me/bookdown.org/yihui/rmarkdown/bookdown-markdown.html#cross-referencing

12.4.4 	A	single	document

We	highlighted	in	Section	12.3	that	bookdown	extends	the	syntax	provided	by	R	Markdown,	allowing
automatic	numbering	of	figures	/	tables	/	equations,	and	cross-referencing	them.	You	may	use	bookdown
within	single-file	R	Markdown	documents	to	benefit	from	these	features.	The	functions
	html_document2()	,	 	tufte_html2()	,	 	pdf_document2()	,	 	word_document2()	,
	tufte_handout2()	,	and	 	tufte_book2()		are	designed	for	this	purpose.	To	use	this	in	a	traditional	R
Markdown	document,	you	can	replace	the	output	YAML	option	as	follows:

title:	"Document	Title"

output:	bookdown::pdf_document2

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/bookdown-markdown.html#bookdown-markdown

12.5 	Editing

In	this	section,	we	explain	how	to	edit,	build,	preview,	and	serve	the	book	locally.

12.5.1 	Build	the	book

To	build	all	Rmd	files	into	a	book,	you	can	call	the	function		bookdown::render_book()	.	It	uses	the
settings	specified	in	the		_output.yml		(if	it	exists).	If	multiple	output	formats	are	specified	in	it,	all	formats
will	be	built.	If	you	are	using	RStudio,	this	can	be	done	through	the		Build		tab.	Open	the	drop	down
menu	 	Build	Book		if	you	only	want	to	build	one	format.

FIGURE	12.2:	The	 	Build		tab	within	RStudio	highlighting	bookdown	output	formats.

12.5.2 	Preview	a	chapter

Building	the	whole	book	can	be	slow	when	the	size	of	the	book	is	big	or	your	book	contains	large	amounts
of	computation.	We	can	use	the		preview_chapter()		function	in	bookdown	to	only	build	a	single	chapter
at	a	time.	Equivalently,	you	can	click	the		Knit		button	in	RStudio.

12.5.3 	Serve	the	book

Instead	of	running	 	render_book()		or	 	preview_chapter()		each	time	you	want	to	view	the	changes,
you	can	use	the	function		bookdown::serve_book()		to	start	a	live	preview	of	the	book.	Any	time	a	Rmd
file	is	saved,	the	book	will	be	recompiled	automatically,	and	the	preview	will	be	updated	to	reflect	the
changes.

12.5.4 	RStudio	addins

The	bookdown	package	comes	with	two	addins	for	RStudio	which	assist	the	editing	of	books:

“Preview	Book”:	this	calls		bookdown::serve_book()		to	compile	and	serve	the	book.

“Input	LaTeX	Math”:	provides	a	text	box	which	allows	you	to	write	LaTeX	equations,	to	avoid	common
errors	when	typing	the	raw	LaTeX	math	expressions.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

12.6 	Publishing

You	can	generate	books	for	both	physical	and	electronic	distribution.	This	section	outlines	some	of	the
main	options.

12.6.1 	RStudio	Connect

The	easiest	way	to	publish	books	online	is	through	https://bookdown.org,	which	is	a	website	provided	by
RStudio	to	host	your	books	for	free.	Books	can	be	pushed	to	this	website	by	using
	bookdown::publish_book()	.	You	will	need	to	sign	up	for	an	account	at	https://bookdown.org/connect/,
and	your	login	details	will	be	used	to	authorize	bookdown	the	first	time	you	call	the		publish_book()	
function.

12.6.2 	Other	services

You	can	host	your	book	online	with	many	other	web	services,	such	as	Netlify	or	GitHub	(via	GitHub
Pages).	Because	the	output	from		bookdown::render_book()		is	a	collection	of	static	files,	you	can	host
them	using	the	same	methods	of	hosting	normal	web	pages.

12.6.3 	Publishers

You	can	consider	publishing	physical	copies	of	your	book	with	a	publisher	or	using	self-publishing.	Many
publishers	provide	LaTeX	style	classes	that	can	be	used	to	set	the	overall	appearance	of	the	book,	and
these	can	be	used	easily	by	setting	the		documentclass		option	in	the	YAML	metadata	of		index.Rmd	.
Further	customization	of	the	appearance	of	the	PDF	book	can	be	achieved	by	altering	the	LaTeX	preamble
via	the	 	includes:	in_header		option	of	 	bookdown::pdf_book	.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://bookdown.org/
https://bookdown.org/connect/
https://pages.github.com/

Chapter	13 	Journals

Academic	journals	often	have	strict	guidelines	on	the	formatting	for	submitted	articles.	As	of	today,	few
journals	directly	support	R	Markdown	submissions,	but	many	support	the	LaTeX	format.	While	you	can
convert	R	Markdown	to	LaTeX	(see	Section	3.3),	different	journals	have	different	typesetting	requirements
and	LaTeX	styles,	and	it	may	be	slow	and	frustrating	for	all	authors	who	want	to	use	R	Markdown	to	figure
out	the	technical	details	about	how	to	properly	convert	a	paper	based	on	R	Markdown	to	a	LaTeX
document	that	meets	the	journal	requirements.

The	rticles	package	(Allaire,	Xie,	R	Foundation,	et	al.	2018)	is	designed	to	simplify	the	creation	of
documents	that	conform	to	submission	standards.	A	suite	of	custom	R	Markdown	templates	for	popular
journals	is	provided	by	the	package	such	as	those	shown	in	Figure	13.2.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/pdf-document.html#pdf-document
file:///home/me/bookdown.org/yihui/rmarkdown/journals.html#ref-R-rticles
file:///home/me/bookdown.org/yihui/rmarkdown/rticles-templates.html#rticles-templates

FIGURE	13.1:	Two	journal	templates	in	the	rticles	package	(PLOS	and	Springer).

Understanding	of	LaTeX	is	recommended,	but	not	essential,	to	use	this	package.	R	Markdown	templates
may	sometimes	inevitably	contain	LaTeX	code,	but	usually	we	can	use	the	simpler	Markdown	and	knitr
syntax	to	produce	elements	like	figures,	tables,	and	math	equations	as	explained	in	Chapter	2.

References

Allaire,	JJ,	Yihui	Xie,	R	Foundation,	Hadley	Wickham,	Journal	of	Statistical	Software,	Ramnath
Vaidyanathan,	Association	for	Computing	Machinery,	et	al.	2018.	Rticles:	Article	Formats	for	R	Markdown.
https://CRAN.R-project.org/package=rticles.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/basics.html#basics
https://cran.r-project.org/package=rticles

13.1 	Get	started

You	can	install	and	use	rticles	from	CRAN	as	follows:

We	would	recommend	the	development	version	of	the	package	from	GitHub,	as	it	contains	the	most	up-to-
date	versions	along	with	several	new	templates.

If	you	are	using	RStudio,	you	can	easily	access	the	templates	through		File	->	New	File	->	R
Markdown	.	This	will	open	the	dialog	box	where	you	can	select	from	one	of	the	available	templates	as
shown	in	Figure	13.2.

FIGURE	13.2:	The	R	Markdown	template	window	in	RStudio	showing	available	rticles	templates.

If	you	are	using	the	command	line,	you	can	use	the		rmarkdown::draft()		function,	which	requires	you
to	specify	a	template,	e.g.,

#	Install	from	CRAN

install.packages("rticles")

#	Or	install	development	version	from	GitHub

devtools::install_github("rstudio/rticles")

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/rticles-start.html#fig:rticles-setup

rmarkdown::draft(

		"MyJSSArticle.Rmd",	template	=	"jss_article",

		package	=	"rticles"

)

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

13.2 	rticles	templates

The	rticles	package	provides	templates	for	various	journals	and	publishers,	including:

JSS	articles	(Journal	of	Statistical	Software)
R	Journal	articles
CTeX	documents
ACM	articles	(Association	of	Computing	Machinery)
ACS	articles	(American	Chemical	Society)
AMS	articles	(American	Meteorological	Society)
PeerJ	articles
Elsevier	journal	submissions
AEA	journal	submissions	(American	Meteorological	Society)
IEEE	Transaction	journal	submissions
Statistics	in	Medicine	journal	submissions
Royal	Society	Open	Science	journal	submissions
Bulletin	de	l’AMQ	journal	submissions
MDPI	journal	submissions
Springer	journal	submissions

The	full	list	is	available	within	the	R	Markdown	templates	window	in	RStudio,	or	through	the	command
	getNamespaceExports("rticles")	.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

13.3 	Using	a	template

Templates	have	an	extended	YAML	section	compared	to	the	basic	R	Markdown	template,	which	allows
you	to	specify	additional	details	relevant	to	the	custom	template.	Below	is	an	example	of	the	YAML	section
for	the	Springer	template:

As	the	Rmd	documents	are	built	using	customized	templates,	you	may	not	be	able	to	use	the	YAML
metadata	to	control	the	layout	of	the	document	as	described	in	Section	3.3,	unless	the	template	supports
such	metadata.	For	example,	adding		toc:	true		may	not	add	a	table	of	contents.	Commands	that
control	the	building	process	may	still	be	used	though,	including		keep_tex:	true	,	or	those	that	configure
knitr	chunk	options	(e.g.,	 	fig_width).

title:	Title	here

subtitle:	Do	you	have	a	subtitle?	If	so,	write	it	here

titlerunning:	Short	form	of	title	(if	too	long	for	head)

authorrunning:

		Short	form	of	author	list	if	too	long	for	running	head

thanks:	|

		Grants	or	other	notes	about	the	article	that	should	go

		on	the	front	page	should	be	placed	here.	General

		acknowledgments	should	be	placed	at	the	end	of	the	article.

authors:

		-	name:	Author	1

				address:	Department	of	YYY,	University	of	XXX

				email:	abc@def

		-	name:	Author	2

				address:	Department	of	ZZZ,	University	of	WWW

				email:	djf@wef

keywords:

		-	key

		-	dictionary

		-	word

MSC:

		-	MSC	code	1

		-	MSC	code	2				

abstract:	|

		The	text	of	your	abstract.		150	--	250	words.

bibliography:	bibliography.bib

output:	rticles::springer_article

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/pdf-document.html#pdf-document

13.4 	LaTeX	content

As	the	only	output	format	of	the	rticles	formats	is	PDF,	the	content	of	the	documents	may	include	raw
LaTeX	formatting.	This	means	you	may	use	LaTeX	to	produce	figures	and	tables	(if	you	have	to),	e.g.,

Unless	you	have	specific	requirements	for	using	LaTeX,	we	recommend	that	you	use	the	R	Markdown
syntax.	This	keeps	you	work	generally	more	readable	(in	terms	of	the	source	document),	and	less	prone	to
formatting	errors.	For	example,	the	above	code	block	would	be	better	represented	as:

\begin{figure}[ht]

\centering

\includegraphics[width=\linewidth]{foo}

\caption{An	example	image.}

\label{fig:foo}

\end{figure}

```{r	foo,	out.width="100%",	fig.cap="An	example	image."}

knitr::include_graphics("foo.png")

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

13.5 	Linking	with	bookdown

As	explained	in	Section	12.3,	bookdown	offers	several	extensions	to	the	Markdown	syntax,	which	can	be
particularly	useful	for	academic	writing,	including	cross-referencing	of	figures	and	tables.	All	rticles	output
formats	are	based	on		rmarkdown::pdf_document	,	and	we	can	use	them	as	the	“base	formats”	for
	bookdown::pdf_document2	,	e.g.,

You	can	substitute	 	rticles::peerj_article		with	the	template	you	actually	intend	to	use.

output:

		bookdown::pdf_document2:

				base_format:	rticles::peerj_article

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/bookdown-markdown.html#bookdown-markdown

13.6 	Contributing	templates

If	you	take	a	look	at	the	GitHub	repository	of	rticles	(https://github.com/rstudio/rticles),	you	will	see	that	a
lot	of	the	templates	have	been	contributed	by	the	R	community.	If	you	are	interested	in	improving	them	or
adding	more	journal	templates,	you	may	want	to	read	Chapter	17,	which	outlines	how	a	template	can	be
made	for	R	Markdown.	Basically	these	templates	are	defined	to	translate	the	Pandoc	variables	from	the
YAML	frontmatter	and	the	body	of	the	R	Markdown	document	into	LaTeX.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/rstudio/rticles
file:///home/me/bookdown.org/yihui/rmarkdown/document-templates.html#document-templates

Chapter	14 	Interactive	Tutorials

The	learnr	package	(Schloerke,	Allaire,	and	Borges	2018)	makes	it	easy	to	turn	any	R	Markdown
document	into	an	interactive	tutorial.	Tutorials	consist	of	content	along	with	interactive	components	for
checking	and	reinforcing	understanding.	Tutorials	can	include	any	or	all	of	the	following:

1.	 Narrative,	figures,	illustrations,	and	equations.

2.	 Code	exercises	(R	code	chunks	that	users	can	edit	and	execute	directly).

3.	 Quiz	questions.

4.	 Videos	(currently	supported	services	include	YouTube	and	Vimeo).

5.	 Interactive	Shiny	components.

Tutorials	automatically	preserve	work	done	within	them,	so	if	a	user	works	on	a	few	exercises	or	questions
and	returns	to	the	tutorial	later,	they	can	pick	up	right	where	they	left	off.

This	chapter	is	only	a	brief	summary	of	learnr’s	full	documentation	at	https://rstudio.github.io/learnr/.	If	you
are	interested	in	building	more	sophisticated	tutorials,	we	recommend	that	you	read	the	full
documentation.

References

Schloerke,	Barret,	JJ	Allaire,	and	Barbara	Borges.	2018.	Learnr:	Interactive	Tutorials	for	R.
https://CRAN.R-project.org/package=learnr.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/learnr.html#ref-R-learnr
https://rstudio.github.io/learnr/
https://cran.r-project.org/package=learnr

14.1 	Get	started

To	create	a	learnr	tutorial,	first	install	the	learnr	package	with:

Then	you	can	select	the	“Interactive	Tutorial”	template	from	the	“New	R	Markdown”	dialog	in	the	RStudio
IDE	(see	Figure	14.1).

FIGURE	14.1:	Create	an	interactive	tutorial	in	RStudio.

If	you	do	not	use	RStudio,	it	is	also	easy	to	create	a	tutorial:	add		runtime:	shiny_prerendered		and	the
output	format	 	learnr::tutorial		to	the	YAML	metadata,	use		library(learnr)		within	your	Rmd	file
to	activate	the	tutorial	mode,	and	then	add	the	chunk	option		exercise	=	TRUE		to	turn	code	chunks	into
exercises.	Your	tutorial	users	can	edit	and	execute	the	R	code	and	see	the	results	right	within	their	web
browser.

Below	is	a	minimal	tutorial	example:

install.packages("learnr")

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/learnr-start.html#fig:learnr-template

To	run	this	tutorial,	you	may	hit	the	button	“Run	Document”	in	RStudio,	or	call	the	function
	rmarkdown::run()		on	this	Rmd	file.	Figure	14.2	shows	what	the	tutorial	looks	like	in	the	browser.	Users
can	do	the	exercise	by	editing	the	code	and	running	it	live	in	the	browser.

FIGURE	14.2:	A	simple	example	tutorial.

We	strongly	recommend	that	you	assign	unique	chunk	labels	to	exercises	(e.g.,	the	above	example	used
the	label	 	addition),	because	chunk	labels	will	be	used	as	identifiers	for	learnr	to	save	and	restore	user
work.	Without	these	identifiers,	users	could	possibly	lose	their	work	in	progress	the	next	time	when	they
pick	up	the	tutorial.

title:	"Hello,	Tutorial!"

output:	learnr::tutorial

runtime:	shiny_prerendered

```{r	setup,	include=FALSE}

library(learnr)

```

This	code	computes	the	answer	to	one	plus	one,	change	it

so	it	computes	two	plus	two:

```{r	addition,	exercise=TRUE}

1	+	1

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/learnr-start.html#fig:learnr-hello

14.2 	Tutorial	types

There	are	two	main	types	of	tutorial	documents:

1.	 Tutorials	that	are	mostly	narrative	and/or	video	content,	and	also	include	some	runnable	code	chunks.
These	documents	are	very	similar	to	package	vignettes	in	that	their	principal	goal	is	communicating
concepts.	The	interactive	tutorial	features	are	then	used	to	allow	further	experimentation	by	the
reader.

2.	 Tutorials	that	provide	a	structured	learning	experience	with	multiple	exercises,	quiz	questions,	and
tailored	feedback.

The	first	type	of	tutorial	is	much	easier	to	author	while	still	being	very	useful.	These	documents	will
typically	add	 	exercise	=	TRUE		to	selected	code	chunks,	and	also	set		exercise.eval	=	TRUE		so	the
chunk	output	is	visible	by	default.	The	reader	can	simply	look	at	the	R	code	and	move	on,	or	play	with	it	to
reinforce	their	understanding.

The	second	type	of	tutorial	provides	much	richer	feedback	and	assessment,	but	also	requires	considerably
more	effort	to	author.	If	you	are	primarily	interested	in	this	sort	of	tutorial,	there	are	many	features	in	learnr
to	support	it,	including	exercise	hints	and	solutions,	automated	exercise	checkers,	and	multiple	choice
quizzes	with	custom	feedback.

The	most	straightforward	path	is	to	start	with	the	first	type	of	tutorial	(executable	chunks	with	pre-
evaluated	output),	and	then	move	into	more	sophisticated	assessment	and	feedback	over	time.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

14.3 	Exercises

Exercises	are	interactive	R	code	chunks	that	allow	readers	to	directly	execute	R	code	and	see	its	results.
We	have	shown	a	simple	exercise	in	Figure	14.2.

Exercises	can	include	hints	or	solutions	as	well	as	custom	checking	code	to	provide	feedback	on	user
answers.

14.3.1 	Solutions

To	create	a	solution	to	an	exercise	in	a	code	chunk	with	the	chunk	label		foo	,	you	add	a	new	code	chunk
with	the	chunk	label		foo-solution	,	e.g.,

When	a	solution	code	chunk	is	provided,	there	will	be	a		Solution		button	on	the	exercise	(see	Figure
14.3).	Users	can	click	this	button	to	see	the	solution.

FIGURE	14.3:	A	solution	to	an	exercise.

14.3.2 	Hints

Sometimes	you	may	not	want	to	give	the	solutions	directly	to	students,	but	provide	hints	instead	to	guide
them.	Hints	can	be	either	Markdown-based	text	content	or	code	snippets.

To	create	a	hint	based	on	custom	Markdown	content,	add	a		<div>		tag	with	an	 	id		attribute	that	marks
it	as	hint	for	your	exercise	(e.g.,		filter-hint).	For	example:

```{r	filter,	exercise=TRUE}

#	Change	the	filter	to	select	February	rather	than	January

nycflights	<-	filter(nycflights,	month	==	1)

```

```{r	filter-solution}

nycflights	<-	filter(nycflights,	month	==	2)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/learnr-start.html#fig:learnr-hello
file:///home/me/bookdown.org/yihui/rmarkdown/learnr-exercises.html#fig:learnr-solution

The	content	within	the		<div>		will	be	displayed	underneath	the	R	code	editor	for	the	exercise	whenever
the	user	presses	the		Hint		button.

If	your	Pandoc	version	is	higher	than	2.0	(check		rmarkdown::pandoc_version()),	you	can	also	use	the
alternative	syntax	to	write	the		<div>	:

To	create	a	hint	with	a	code	snippet,	you	add	a	new	code	chunk	with	the	label	suffix		-hint	,	e.g.,

You	can	also	provide	a	sequence	of	hints	that	reveal	progressively	more	of	the	solution	as	desired	by	the
user.	To	do	this,	create	a	sequence	of	indexed	hint	chunks	(e.g.,		-hint-1	,	 	-hint-2	,	 	-hint-3	,	etc.)
for	your	exercise	chunk.	For	example:

```{r	filter,	exercise=TRUE}

#	filter	the	flights	table	to	include	only	United	and

#	American	flights

flights

```

<div	id="filter-hint">

Hint:	You	may	want	to	use	the	dplyr	`filter`	function.

</div>

:::{#filter-hint}

Hint:	You	may	want	to	use	the	dplyr	`filter`	function.

:::

```{r	filter,	exercise=TRUE}

#	filter	the	flights	table	to	include	only	United	and

#	American	flights

flights

```

```{r	filter-hint}

filter(flights,	...)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


```{r	filter,	exercise=TRUE}

#	filter	the	flights	table	to	include	only	United	and

#	American	flights

flights

```

```{r	filter-hint-1}

filter(flights,	...)

```

```{r	filter-hint-2}

filter(flights,	UniqueCarrier	==	"AA")

```

```{r	filter-hint-3}

filter(flights,	UniqueCarrier	==	"AA"	|	UniqueCarrier	==	"UA")

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

14.4 	Quiz	questions

You	can	include	one	or	more	multiple-choice	quiz	questions	within	a	tutorial	to	help	verify	that	readers
understand	the	concepts	presented.	Questions	can	either	have	a	single	or	multiple	correct	answers.

Include	a	question	by	calling	the		question()		function	within	an	R	code	chunk,	e.g.,

Figure	14.4	shows	what	the	above	question	would	look	like	within	a	tutorial.

FIGURE	14.4:	A	question	in	a	tutorial.

The	functions	 	question()		and	 	answer()		have	several	other	arguments	for	more	features	that	allow
you	to	customize	the	questions	and	answers,	such	as	custom	error	messages	when	the	user’s	answer	is
wrong,	allowing	users	to	retry	a	question,	multiple-choice	questions,	and	multiple	questions	in	a	group.
See	their	help	pages	in	R	for	more	information.

```{r	letter-a,	echo=FALSE}

question("What	number	is	the	letter	A	in	the	English	alphabet?",

		answer("8"),

		answer("14"),

		answer("1",	correct	=	TRUE),

		answer("23")

)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/learnr-quiz.html#fig:learnr-question

14.5 	Videos

You	can	include	videos	published	on	either	YouTube	or	Vimeo	within	a	tutorial	using	the	standard
Markdown	image	syntax.	Note	that	any	valid	YouTube	or	Vimeo	URL	will	work.	For	example,	the	following
are	all	valid	examples	of	video	embedding:

Videos	are	responsively	displayed	at	100%	of	their	container’s	width	(with	height	automatically	determined
based	on	a	16x9	aspect	ratio).	You	can	change	this	behavior	by	adding	attributes	to	the	Markdown	code
where	you	reference	the	video.

You	can	specify	an	alternate	percentage	for	the	video’s	width	or	an	alternate	fixed	width	and	height.	For
example:

{width="90%"}

{width="560"	height="315"}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

14.6 	Shiny	components

Tutorials	are	essentially	Shiny	documents,	which	we	will	introduce	in	Chapter	19.	For	that	reason,	you	are
free	to	use	any	interactive	Shiny	components	in	tutorials,	not	limited	to	exercises	and	quiz	questions.

The	Shiny	UI	components	can	be	written	in	normal	R	code	chunks.	For	the	Shiny	server	logic	code
(rendering	output),	you	need	to	add	a	chunk	option		context="server"		to	code	chunks.	For	example:

Again,	since	tutorials	are	Shiny	applications,	they	can	be	deployed	using	the	same	methods	mentioned	in
Section	19.2.

```{r,	echo=FALSE}

sliderInput("bins",	"Number	of	bins:",	30,	min	=	1,	max	=	50)

plotOutput("distPlot")

```

```{r,	context="server"}

output$distPlot	=	renderPlot({

		x	=	faithful[,	2]		#	Old	Faithful	Geyser	data

		bins	=	seq(min(x),	max(x),	length.out	=	input$bins	+	1)

		hist(x,	breaks	=	bins,	col	=	'darkgray',	border	=	'white')

})

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/shiny-documents.html#shiny-documents
file:///home/me/bookdown.org/yihui/rmarkdown/shiny-deploy.html#shiny-deploy

14.7 	Navigation	and	progress	tracking

Each	learnr	tutorial	includes	a	table	of	contents	on	the	left	that	tracks	student	progress	(see	Figure	14.5).
Your	browser	will	remember	which	sections	of	a	tutorial	a	student	has	completed,	and	return	a	student	to
where	he/she	left	off	when	the	tutorial	is	reopened.

FIGURE	14.5:	Keeping	track	of	the	student’s	progress	in	a	tutorial.

You	can	optionally	reveal	content	by	one	sub-section	at	a	time.	You	can	use	this	feature	to	let	students	set
their	own	pace,	or	to	hide	information	that	would	spoil	an	exercise	or	question	that	appears	just	before	it.

To	use	progressive	reveal,	set	the		progressive		option	to	 	true		in	the	 	learnr::tutorial		output
format	in	the	YAML	metadata,	e.g.,

The	 	allow_skip		option	above	indicates	that	students	can	skip	any	sections,	and	move	directly	to	the
next	section	without	completing	exercises	in	the	previous	section.

title:	"Programming	basics"

output:

		learnr::tutorial:

				progressive:	true

				allow_skip:	true

runtime:	shiny_prerendered

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/learnr-nav.html#fig:learnr-progress

Chapter	15 	Parameterized	reports

One	of	the	many	benefits	of	working	with	R	Markdown	is	that	you	can	reproduce	analysis	at	the	click	of	a
button.	This	makes	it	very	easy	to	update	any	work	and	alter	any	input	parameters	within	the	report.
Parameterized	reports	extend	this	one	step	further,	and	allow	users	to	specify	one	or	more	parameters	to
customize	the	analysis.	This	is	useful	if	you	want	to	create	a	report	template	that	can	be	reused	across
multiple	similar	scenarios.	Examples	may	include:

Showing	results	for	a	specific	geographic	location.

Running	a	report	that	covers	a	specific	time	period.

Running	a	single	analysis	multiple	times	for	different	assumptions.

Controlling	the	behavior	of	knitr	(e.g.,	specify	if	you	want	the	code	to	be	displayed	or	not).

In	this	chapter,	we	discuss	the	use	of	parameterized	reports,	and	explain	how	we	can	interactively	define
the	parameters	to	compile	the	results.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

15.1 	Declaring	parameters

Parameters	are	specified	using	the		params		field	within	the	YAML	section.	We	can	specify	one	or	more
parameters	with	each	item	on	a	new	line.	As	an	example:

All	standard	R	types	that	can	be	parsed	by		yaml::yaml.load()		can	be	included	as	parameters,
including	 	character	,	 	numeric	,	 	integer	,	and	 	logical		types.	We	can	also	use	R	objects	by
including	 	!r		before	R	expressions.	For	example,	we	could	include	the	current	date	with	the	following	R
code:

Any	R	expressions	included	within	the	parameters	are	executed	before	any	code	in	the	document,
therefore	any	package	dependencies	must	be	explicitly	stated	using	the		package::function		notation
(e.g.,	 	!r	lubridate::today()),	even	if	the	package	is	loaded	later	in	the	Rmd	document.

title:	My	Document

output:	html_document

params:

		year:	2018

		region:	Europe

		printcode:	TRUE

		data:	file.csv

title:	My	Document

output:	html_document

params:

		date:	!r	Sys.Date()

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

15.2 	Using	parameters

You	can	access	the	parameters	within	the	knitting	environment	and	the	R	console	in	RStudio. 	The
values	are	contained	within	a	read-only	list	called		params	.	In	the	previous	example,	the	parameters	can
be	accessed	as	follows:

Parameters	can	also	be	used	to	control	the	behavior	of	knitr.	For	example,	the	knitr	chunk	option	 	echo	
controls	whether	to	display	the	program	code,	and	we	can	set	this	option	globally	in	a	document	via	a
parameter:

12.	 Parameters	will	not	be	available	immediately	after	loading	the	file,	but	require	any	line	of	the	report	to
be	executed	first.↩

12

params$year

params$region

params:

		printcode:	false		#	or	set	it	to	true

```{r,	setup,	include=FALSE}

#	set	this	option	in	the	first	code	chunk	in	the	document

knitr::opts_chunk$set(echo	=	params$printcode)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/params-use.html#fn12
file:///home/me/bookdown.org/yihui/rmarkdown/params-use.html#fnref12

15.3 	Knitting	with	parameters

There	are	three	ways	in	which	a	parameterized	report	can	be	knitted:

Using	the	 	Knit		button	within	RStudio.

	rmarkdown::render()		with	the	 	params		argument.

Using	an	interactive	user	interface	to	input	parameter	values.

15.3.1 	The	 	Knit		button

By	using	the	 	Knit		button	in	RStudio	or	calling		rmarkdown::render()		function,	the	default	values
listed	in	the	YAML	metadata	(if	specified)	will	be	used.

15.3.2 	Knit	with	custom	parameters

Even	if	your	document	has	the		params		field	in	the	YAML	metadata,	you	can	actually	override	it	by
providing	a	custom	list	of	parameter	values	to	the	function		rmarkdown::render()	.	For	example:

We	do	not	have	to	explicitly	state	all	parameters	in	the		params		argument.	Any	parameters	not	specified
will	default	to	the	values	specified	in	the	YAML	metadata.	For	example,	this	will	only	override	the		region	
parameter:

You	may	want	to	integrate	these	changes	into	a	function.	Such	a	function	could	also	be	used	to	create	an
output	file	with	a	different	filename	for	each	of	the	different	combination	of	parameters.	In	the	following
example,	a	new	file		Report-region-year.pdf		is	created	for	each	set	of	parameters:

rmarkdown::render("MyDocument.Rmd",	params	=	list(

		year	=	2017,

		region	=	"Asia",

		printcode	=	FALSE,

		file	=	"file2.csv"

))

rmarkdown::render("MyDocument.Rmd",	params	=	list(

		region	=	"Asia"

))

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

15.3.3 	The	interactive	user	interface

We	can	use	a	graphical	user	interface	(GUI)	based	on	Shiny	to	interactively	input	the	parameters	of	a
report.	The	user	interface	can	be	called	by	either		rmarkdown::render("MyDocument.Rmd",	params	=
"ask")		or	clicking	the	drop-down	menu	behind	the		Knit		button	and	choosing	 	Knit	with
Parameters		in	RStudio.	Figure	15.1	shows	the	GUI	of	rmarkdown	asking	for	inputting	parameters.

FIGURE	15.1:	Input	parameter	values	interactively	for	parameterized	reports.

The	input	controls	for	different	types	of	parameters	can	be	customized	by	specifying	additional	sub-items
within	the	parameter	specification	in	YAML.	For	example,	sliders,	check	boxes,	and	text	input	boxes	can
all	be	used	for	input	controls.

In	addition,	we	can	also	specify	constraints	of	the	values	allowed	in	each	parameter.	For	example,	we	may
only	want	our	model	to	be	run	for	years	between	2010	and	2018.	This	is	particularly	beneficial	if	you	would
like	other	users	to	interact	with	the	report,	as	it	prevents	users	from	attempting	to	run	reports	outside	of	the
designed	limits.

Adapting	our	above	example	to	include	some	settings:

render_report	=	function(region,	year)	{

		rmarkdown::render(

				"MyDocument.Rmd",	params	=	list(

						region	=	region,

						year	=	year

),

				output_file	=	paste0("Report-",	region,	"-",	year,	".pdf")

)

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/params-knit.html#fig:params-input

This	results	in	the	user	interface	for	the	parameters	as	shown	in	Figure	15.2.

title:	My	Document

output:	html_document

params:

		year:

				label:	"Year"

				value:	2017

				input:	slider

				min:	2010

				max:	2018

				step:	1

				sep:	""

		region:

				label:	"Region:"

				value:	Europe

				input:	select

				choices:	[North	America,	Europe,	Asia,	Africa]

		printcode:

				label:	"Display	Code:"

				value:	TRUE

		data:

				label:	"Input	dataset:"

				value:	results.csv

				input:	file

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/params-knit.html#fig:params-controls

FIGURE	15.2:	Custom	controls	for	parameters.

The	type	of	Shiny	control	used	is	controlled	by	the		input		field.	Table	15.1	shows	the	input	types
currently	supported	(see	the	help	page	for	the	associated	Shiny	function	for	additional	attributes	that	can
be	specified	to	customize	the	input,	e.g.,		?shiny::checkboxInput).

TABLE	15.1:	Possible	input	types	and	the	associated	Shiny	functions	for	parameterized	reports.

Input	Type Shiny	Function

checkbox checkboxInput

numeric numericInput

slider sliderInput

date dateInput

text textInput

file fileInput

radio radioButtons

select selectInput

password passwordInput

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/params-knit.html#tab:params-types

15.4 	Publishing

Parameterized	reports	are	supported	by	the	publishing	platform	RStudio	Connect
(https://www.rstudio.com/products/connect/).	If	you	publish	a	parameterized	report	to	an	RStudio	Connect
server,	you	will	be	able	to	compile	reports	by	interactively	choosing	different	parameter	values	on	the
server,	and	easily	store/navigate	through	different	reports	built	previously.	You	may	watch	a	video
demonstration	at	https://bit.ly/rsc-params.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.rstudio.com/products/connect/
https://bit.ly/rsc-params

Chapter	16 	HTML	Widgets

We	briefly	mentioned	HTML	widgets	in	the	beginning	of	this	book	in	Section	2.8.1.	The	htmlwidgets
package	(Vaidyanathan	et	al.	2018)	provides	a	framework	for	creating	R	bindings	to	JavaScript	libraries.
HTML	Widgets	can	be:

Used	at	the	R	console	for	data	analysis	just	like	conventional	R	plots.

Embedded	within	R	Markdown	documents.

Incorporated	into	Shiny	web	applications.

Saved	as	standalone	web	pages	for	ad-hoc	sharing	via	Email	and	Dropbox,	etc.

There	have	been	many	R	packages	developed	based	on	the	HTML	widgets	framework,	to	make	it	easy	for
R	users	to	create	JavaScript	applications	using	pure	R	syntax	and	data.	It	is	not	possible	to	introduce	all
these	R	packages	in	this	chapter.	Readers	should	read	the	documentation	of	specific	widget	packages	for
the	usage.	This	chapter	is	mainly	for	developers	who	want	to	bring	more	JavaScript	libraries	into	R,	and	it
requires	reasonable	familiarity	with	the	JavaScript	language.

References

Vaidyanathan,	Ramnath,	Yihui	Xie,	JJ	Allaire,	Joe	Cheng,	and	Kenton	Russell.	2018.	Htmlwidgets:	HTML
Widgets	for	R.	https://github.com/ramnathv/htmlwidgets.

13.	 Note	that	interactivity	only	works	when	the	output	format	is	HTML,	including	HTML	documents	and
presentations.	If	the	output	format	is	not	HTML,	it	is	possible	to	automatically	create	and	embed	a
static	screenshot	of	the	widget	instead.	See	Section	2.8.1	for	more	information.↩

13

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/interactive-documents.html#intro-widgets
file:///home/me/bookdown.org/yihui/rmarkdown/html-widgets.html#ref-R-htmlwidgets
file:///home/me/bookdown.org/yihui/rmarkdown/html-widgets.html#fn13
https://github.com/ramnathv/htmlwidgets
file:///home/me/bookdown.org/yihui/rmarkdown/interactive-documents.html#intro-widgets
file:///home/me/bookdown.org/yihui/rmarkdown/html-widgets.html#fnref13

16.1 	Overview

By	following	a	small	set	of	conventions,	it	is	possible	to	create	HTML	widgets	with	very	little	code.	All
widgets	include	the	following	components:

1.	 Dependencies.	These	are	the	JavaScript	and	CSS	assets	used	by	the	widget	(e.g.,	the	library	for
which	you	are	creating	a	wrapper).

2.	 R	binding.	This	is	the	function	that	end-users	will	call	to	provide	input	data	to	the	widget	and	specify
various	options	for	how	the	widget	should	render.	This	also	includes	some	short	boilerplate	functions
required	to	use	the	widget	within	Shiny	applications.

3.	 JavaScript	binding.	This	is	the	JavaScript	code	that	glues	everything	together,	passing	the	data	and
options	gathered	in	the	R	binding	to	the	underlying	JavaScript	library.

HTML	widgets	are	always	hosted	within	an	R	package,	and	should	include	all	of	the	source	code	for	their
dependencies.	This	is	to	ensure	that	R	code	that	renders	widgets	is	fully	reproducible	(i.e.,	it	does	not
require	an	Internet	connection	or	the	ongoing	availability	of	an	Internet	service	to	run).

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

16.2 	A	widget	example	(sigma.js)

To	start	with,	we	will	walk	through	the	creation	of	a	simple	widget	that	wraps	the	sigma.js	graph
visualization	library.	When	we	are	done,	we	will	be	able	to	use	it	to	display	interactive	visualizations	of
GEXF	(Graph	Exchange	XML	Format)	data	files.	For	example	(see	Figure	16.1	for	the	output,	which	is
interactive	if	you	are	reading	the	HTML	version	of	this	book):

FIGURE	16.1:	A	graph	generated	using	the	sigma.js	library	and	the	sigma	package.

There	is	remarkably	little	code	required	to	create	this	binding.	Next	we	will	go	through	all	of	the
components	step	by	step.	Then	we	will	describe	how	you	can	create	your	own	widgets,	including
automatically	generating	basic	scaffolding	for	all	of	the	core	components.

16.2.1 	File	layout

Let’s	assume	that	our	widget	is	named	sigma	and	is	located	within	an	R	package	of	the	same	name.	Our
JavaScript	binding	source	code	file	is	named	sigma.js.	Since	our	widget	will	read	GEXF	data	files,	we	will
also	need	to	include	both	the	base		sigma.min.js		library	and	its	GEXF	plugin.	Here	are	the	files	that	we
will	add	to	the	package:

library(sigma)

d	=	system.file("examples/ediaspora.gexf.xml",	package	=	"sigma")

sigma(d)

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://sigmajs.org/
http://gexf.net/
file:///home/me/bookdown.org/yihui/rmarkdown/htmlwidgets-sigma.html#fig:sigma

Note	the	convention	that	the	JavaScript,	YAML,	and	other	dependencies	are	all	contained	within	the
	inst/htmlwidgets		directory,	which	will	subsequently	be	installed	into	a	package	sub-directory	named
	htmlwidgets	.

16.2.2 	Dependencies

Dependencies	are	the	JavaScript	and	CSS	assets	used	by	a	widget,	included	within	the
	inst/htmlwidgets/lib		directory.	They	are	specified	using	a	YAML	configuration	file	that	uses	the	name
of	the	widget	as	its	base	filename.	Here	is	what	our	sigma.yaml	file	looks	like:

The	dependency	 	src		specification	refers	to	the	directory	that	contains	the	library,	and		script		refers	to
specific	JavaScript	files.	If	your	library	contains	multiple	JavaScript	files	specify	each	one	on	a	line
beginning	with	 	-		as	shown	above.	You	can	also	add		stylesheet		entries,	and	even	 	meta		or	 	head	
entries.	Multiple	dependencies	may	be	specified	in	one	YAML	file.	See	the	documentation	on	the
	htmlDependency()		function	in	the	htmltools	package	for	additional	details.

16.2.3 	R	binding

We	need	to	provide	users	with	an	R	function	that	invokes	our	widget.	Typically	this	function	will	accept
input	data	as	well	as	various	options	that	control	the	widget’s	display.	Here	is	the	R	function	for	the
	sigma		widget:

R/

|	sigma.R

inst/

|--	htmlwidgets/

|			|--	sigma.js

|			|--	sigma.yaml

|			|--	lib/

|			|			|--	sigma-1.0.3/

|			|			|			|--	sigma.min.js

|			|			|			|--	plugins/

|			|			|			|			|--	sigma.parsers.gexf.min.js

dependencies:

		-	name:	sigma

				version:	1.0.3

				src:	htmlwidgets/lib/sigma-1.0.3

				script:

						-	sigma.min.js

						-	plugins/sigma.parsers.gexf.min.js

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

The	function	takes	two	classes	of	input:	the	GEXF	data	file	to	render,	and	some	additional	settings	that
control	how	it	is	rendered.	This	input	is	collected	into	a	list	named		x	,	which	is	then	passed	on	to	the
	htmlwidgets::createWidget()		function.	This	 	x		variable	will	subsequently	be	made	available	to	the
JavaScript	binding	for	 	sigma		(to	be	described	in	the	next	section).	Any	width	or	height	parameter
specified	is	also	forwarded	to	the	widget	(widgets	size	themselves	automatically	by	default,	so	typically	do
not	require	an	explicit	width	or	height).

We	want	our	sigma	widget	to	also	work	in	Shiny	applications,	so	we	add	the	following	boilerplate	Shiny
output	and	render	functions	(these	are	always	the	same	for	all	widgets):

16.2.4 	JavaScript	binding

#'	@import	htmlwidgets

#'	@export

sigma	=	function(

		gexf,	drawEdges	=	TRUE,	drawNodes	=	TRUE,	width	=	NULL,

		height	=	NULL

)	{

		#	read	the	gexf	file

		data	=	paste(readLines(gexf),	collapse	=	"\n")

		#	create	a	list	that	contains	the	settings

		settings	=	list(drawEdges	=	drawEdges,	drawNodes	=	drawNodes)

		#	pass	the	data	and	settings	using	'x'

		x	=	list(data	=	data,	settings	=	settings)

		#	create	the	widget

		htmlwidgets::createWidget(

				"sigma",	x,	width	=	width,	height	=	height

)

}

#'	@export

sigmaOutput	=	function(outputId,	width	=	"100%",	height	=	"400px")	{

		htmlwidgets::shinyWidgetOutput(

				outputId,	"sigma",	width,	height,	package	=	"sigma"

)

}

#'	@export

renderSigma	=	function(expr,	env	=	parent.frame(),	quoted	=	FALSE)	{

		if	(!quoted)	{	expr	=	substitute(expr)	}	#	force	quoted

		htmlwidgets::shinyRenderWidget(

				expr,	sigmaOutput,	env,	quoted	=	TRUE

)

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

The	third	piece	in	the	puzzle	is	the	JavaScript	required	to	activate	the	widget.	By	convention,	we	will	define
our	JavaScript	binding	in	the	file		inst/htmlwidgets/sigma.js	.	Here	is	the	full	source	code	of	the
binding:

HTMLWidgets.widget({

		name:	"sigma",

		type:	"output",

		factory:	function(el,	width,	height)	{

				//	create	our	sigma	object	and	bind	it	to	the	element

				var	sig	=	new	sigma(el.id);

				return	{

						renderValue:	function(x)	{

								//	parse	gexf	data

								var	parser	=	new	DOMParser();

								var	data	=	parser.parseFromString(x.data,	"application/xml");

								//	apply	settings

								for	(var	name	in	x.settings)

										sig.settings(name,	x.settings[name]);

								//	update	the	sigma	object

								sigma.parsers.gexf(

										data,										//	parsed	gexf	data

										sig,											//	sigma	object

										function()	{

												//	need	to	call	refresh	to	reflect	new	settings

												//	and	data

												sig.refresh();

										}

);

						},

						resize:	function(width,	height)	{

								//	forward	resize	on	to	sigma	renderers

								for	(var	name	in	sig.renderers)

										sig.renderers[name].resize(width,	height);		

						},

						//	make	the	sigma	object	available	as	a	property	on	the

						//	widget	instance	we	are	returning	from	factory().	This

						//	is	generally	a	good	idea	for	extensibility	--	it	helps

						//	users	of	this	widget	interact	directly	with	sigma,

						//	if	needed.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

We	provide	a	name	and	type	for	the	widget,	plus	a		factory		function	that	takes	 	el		(the	HTML	element
that	will	host	this	widget),		width	,	and	 	height		(width	and	height	of	the	HTML	element,	in	pixels	—	you
can	always	use	 	offsetWidth		and	 	offsetHeight		for	this).

The	 	factory		function	should	prepare	the	HTML	element	to	start	receiving	values.	In	this	case,	we
create	a	new	 	sigma		element	and	pass	it	to	the		id		of	the	DOM	element	that	hosts	the	widget	on	the
page.

We	are	going	to	need	access	to	the		sigma		object	later	(to	update	its	data	and	settings),	so	we	save	it	as
a	variable	 	sig	.	Note	that	variables	declared	directly	inside	of	the		factory		function	are	tied	to	a
particular	widget	instance	(el).

The	return	value	of	the		factory		function	is	called	a	widget	instance	object.	It	is	a	bridge	between	the
htmlwidgets	runtime,	and	the	JavaScript	visualization	that	you	are	wrapping.	As	the	name	implies,	each
widget	instance	object	is	responsible	for	managing	a	single	widget	instance	on	a	page.

The	widget	instance	object	you	create	must	have	one	required	method,	and	may	have	one	optional
method:

1.	 The	required	 	renderValue		method	actually	pours	our	dynamic	data	and	settings	into	the	widget’s
DOM	element.	The	 	x		parameter	contains	the	widget	data	and	settings.	We	parse	and	update	the
GEXF	data,	apply	the	settings	to	our	previously-created		sig		object,	and	finally	call		refresh		to
reflect	the	new	values	on-screen.	This	method	may	be	called	repeatedly	with	different	data	(i.e.,	in
Shiny),	so	be	sure	to	account	for	that	possibility.	If	it	makes	sense	for	your	widget,	consider	making
your	visualization	transition	smoothly	from	one	value	of		x		to	another.

2.	 The	optional	 	resize		method	is	called	whenever	the	element	containing	the	widget	is	resized.	The
only	reason	not	to	implement	this	method	is	if	your	widget	naturally	scales	(without	additional
JavaScript	code	needing	to	be	invoked)	when	its	element	size	changes.	In	the	case	of	sigma.js,	we
forward	the	sizing	information	on	to	each	of	the	underlying	sigma	renderers.

All	JavaScript	libraries	handle	initialization,	binding	to	DOM	elements,	dynamically	updating	data,	and
resizing	slightly	differently.	Most	of	the	work	on	the	JavaScript	side	of	creating	widgets	is	mapping	these
three	functions,	 	factory	,	 	renderValue	,	and	 	resize	,	correctly	onto	the	behavior	of	the	underlying
library.

The	sigma.js	example	uses	a	simple	object	literal	to	create	its	widget	instance	object,	but	you	can	also	use
class	based	objects	or	any	other	style	of	object,	as	long	as		obj.renderValue(x)		and
	obj.resize(width,	height)		can	be	invoked	on	it.

You	can	add	additional	methods	and	properties	on	the	widget	instance	object.	Although	they	will	not	be
called	by	htmlwidgets	itself,	they	might	be	useful	to	users	of	your	widget	that	know	some	JavaScript	and
want	to	further	customize	your	widget	by	adding	custom	JS	code	(e.g.,	using	the	R	function
	htmlwidgets::onRender()).	In	this	case,	we	add	a	property		s		to	make	the	sigma	object	itself
available.

						s:	sig

				};

		}

});

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

16.2.5 	Demo

Our	widget	is	now	complete!	If	you	want	to	test	drive	it	without	reproducing	all	of	the	code	locally	you	can
install	it	from	GitHub	as	follows:

Here	is	the	code	to	try	it	out	with	some	sample	data	included	with	the	package:

If	you	execute	this	code	in	the	R	console,	you	will	see	the	widget	displayed	in	the	RStudio	Viewer	(or	in	an
external	browser	if	you	are	not	running	RStudio).	If	you	include	it	within	an	R	Markdown	document,	the
widget	will	be	embedded	into	the	document.

We	can	also	use	the	widget	in	a	Shiny	application:

library(sigma)

library(htmlwidgets)

library(magrittr)

d	=	system.file("examples/ediaspora.gexf.xml",	package	=	"sigma")

sigma(d)	%>%	onRender("function(el,	x)	{

		//	this.s	is	the	sigma	object

		console.log(this.s);

}")

devtools::install_github('jjallaire/sigma')

library(sigma)

sigma(system.file("examples/ediaspora.gexf.xml",	package	=	"sigma"))

library(shiny)

library(sigma)

gexf	=	system.file("examples/ediaspora.gexf.xml",	package	=	"sigma")

ui	=	shinyUI(fluidPage(

		checkboxInput("drawEdges",	"Draw	Edges",	value	=	TRUE),

		checkboxInput("drawNodes",	"Draw	Nodes",	value	=	TRUE),

		sigmaOutput('sigma')

))

server	=	function(input,	output)	{

		output$sigma	=	renderSigma(

				sigma(gexf,

										drawEdges	=	input$drawEdges,

										drawNodes	=	input$drawNodes)

)

}

shinyApp(ui	=	ui,	server	=	server)

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

16.3 	Creating	your	own	widgets

16.3.1 	Requirements

To	implement	a	widget,	you	can	create	a	new	R	package	that	in	turn	depends	on	the	htmlwidgets	package.
You	can	install	the	package	from	CRAN	as	follows:

While	it	is	not	strictly	required,	the	step-by-step	instructions	below	for	getting	started	also	make	use	of	the
devtools	package,	which	you	can	also	install	from	CRAN:

It	is	also	possible	to	implement	a	widget	without	creating	an	R	package,	but	it	requires	you	to	understand
more	about	HTML	dependencies	(htmltools::htmlDependency()).	We	have	given	an	example	in
Section	16.5.

16.3.2 	Scaffolding

To	create	a	new	widget,	you	can	call	the		scaffoldWidget()		function	to	generate	the	basic	structure	for
your	widget.	This	function	will:

Create	the	 	.R	,	 	.js	,	and	 	.yaml		files	required	for	your	widget;

If	provided,	take	a	Bower	package	name	and	automatically	download	the	JavaScript	library	(and	its
dependencies)	and	add	the	required	entries	to	the		.yaml		file.

This	method	is	highly	recommended,	as	it	ensures	that	you	get	started	with	the	right	file	structure.	Here	is
an	example	that	assumes	you	want	to	create	a	widget	named	‘mywidget’	in	a	new	package	of	the	same
name:

This	creates	a	simple	widget	that	takes	a	single		text		argument	and	displays	that	text	within	the	widgets
HTML	element.	You	can	try	it	like	this:

install.packages("htmlwidgets")

install.packages("devtools")

#	create	package	using	devtools

devtools::create("mywidget")

#	navigate	to	package	dir

setwd("mywidget")

#	create	widget	scaffolding

htmlwidgets::scaffoldWidget("mywidget")

#	install	the	package	so	we	can	try	it

devtools::install()

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/htmlwidgets-advanced.html#htmlwidgets-advanced
https://bower.io/

This	is	the	most	minimal	widget	possible,	and	does	not	yet	include	a	JavaScript	library	to	interface	to	(note
that	 	scaffoldWidget()		can	optionally	include	JavaScript	library	dependencies	via	the		bowerPkg	
argument).	Before	getting	started	with	development,	you	should	review	the	introductory	example	above	to
make	sure	you	understand	the	various	components,	and	also	review	the	additional	articles	and	examples
linked	to	in	the	next	section.

16.3.3 	Other	packages

Studying	the	source	code	of	other	packages	is	a	great	way	to	learn	more	about	creating	widgets:

1.	 The	networkD3	package	illustrates	creating	a	widget	on	top	of	D3,	using	a	custom	sizing	policy	for	a
larger	widget,	and	providing	multiple	widgets	from	a	single	package.

2.	 The	dygraphs	package	illustrates	using	widget	instance	data,	handling	dynamic	re-sizing,	and	using
magrittr	to	decompose	a	large	and	flat	JavaScript	API	into	a	more	modular	and	pipeable	R	API.

3.	 The	sparkline	package	illustrates	providing	a	custom	HTML	generation	function	(since	sparklines
must	be	housed	in				rather	than	 	<div>		elements).

If	you	have	questions	about	developing	widgets	or	run	into	problems	during	development,	please	do	not
hesitate	to	post	an	issue	on	the	project’s	GitHub	repository:
https://github.com/ramnathv/htmlwidgets/issues.

library(mywidget)

mywidget("hello,	world")

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/christophergandrud/networkD3
http://d3js.org/
https://github.com/rstudio/dygraphs/
https://github.com/htmlwidgets/sparkline
https://github.com/ramnathv/htmlwidgets/issues

16.4 	Widget	sizing

In	the	spirit	of	HTML	widgets	working	just	like	plots	in	R,	it	is	important	that	HTML	widgets	intelligently	size
themselves	to	their	container,	be	it	the	RStudio	Viewer,	a	figure	in	a	knitr	document,	or	a	UI	panel	within	a
Shiny	application.	The	htmlwidgets	framework	provides	a	rich	mechanism	for	specifying	the	sizing
behavior	of	widgets.

This	sizing	mechanism	is	designed	to	address	the	following	constraints	that	affect	the	natural	size	of	a
widget:

The	kind	of	widget	it	is.	Some	widgets	may	only	be	designed	to	look	good	at	small,	fixed	sizes	(like
sparklines)	while	other	widgets	may	want	every	pixel	that	can	be	spared	(like	network	graphs).

The	context	into	which	the	widget	is	rendered.	While	a	given	widget	might	look	great	at	960px	by
480px	in	an	R	Markdown	document,	the	same	widget	would	look	silly	at	that	size	in	the	RStudio
Viewer	pane,	which	is	typically	much	smaller.

Widget	sizing	is	handled	in	two	steps:

1.	 First,	a	sizing	policy	is	specified	for	the	widget.	This	is	done	via	the		sizingPolicy		argument	to	the
	createWidget		function.	Most	widgets	can	accept	the	default	sizing	policy	(or	override	only	one	or
two	aspects	of	it)	and	get	satisfactory	sizing	behavior	(see	details	below).

2.	 The	sizing	policy	is	used	by	the	framework	to	compute	the	correct	width	and	height	for	a	widget	given
where	it	is	being	rendered.	This	size	information	is	then	passed	to	the		factory		and	 	resize	
methods	of	the	widget’s	JavaScript	binding.	It	is	up	to	the	widget	to	forward	this	size	information	to	the
underlying	JavaScript	library.

16.4.1 	Specifying	a	sizing	policy

The	default	HTML	widget	sizing	policy	treats	the	widget	with	the	same	sizing	semantics	as	an	R	plot.
When	printed	at	the	R	console,	the	widget	is	displayed	within	the	RStudio	Viewer	and	sized	to	fill	the
Viewer	pane	(modulo	any	padding).	When	rendered	inside	an	R	Markdown	document,	the	widget	is	sized
based	on	the	default	size	of	figures	in	the	document.

Note	that	for	most	widgets	the	default	sizing	behavior	is	fine,	and	you	will	not	need	to	create	a	custom
sizing	policy.	If	you	need	a	slightly	different	behavior	than	the	default,	you	can	also	selectively	override	the
default	behavior	by	calling	the		sizingPolicy()		function	and	passing	the	result	to		createWidget()	.
For	example:

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

Below	are	two	examples:

The	networkD3	package	uses	custom	sizing	policies	for	all	of	its	widgets.	The		simpleNetwork	
widget	eliminates	padding	(as	D3.js	is	already	providing	padding),	and	specifies	that	it	wants	to	fill	up
as	much	space	as	possible	when	displayed	in	a	standalone	web	browser:

The	 	sankeyNetwork		widget	requires	much	more	space	than	is	afforded	by	the	RStudio	Viewer	or	a
typical	knitr	figure,	so	it	disables	those	automatic	sizing	behaviors.	It	also	provides	a	more	reasonable
default	width	and	height	for	knitr	documents:

Table	16.1	shows	the	various	options	that	can	be	specified	within	a	sizing	policy.	Note	that	the	default
width,	height,	and	padding	will	be	overridden	if	their	values	for	a	specific	viewing	context	are	provided
(e.g.,	 	browser.defaultWidth		will	override	 	defaultWidth		when	the	widget	is	viewed	in	a	web
browser).	Also	note	that	when	you	want	a	widget	a	fill	a	viewer,	the	padding	is	still	applied.

htmlwidgets::createWidget(

		"sigma",

		x,

		width	=	width,

		height	=	height,

		sizingPolicy	=	htmlwidgets::sizingPolicy(

				viewer.padding	=	0,

				viewer.paneHeight	=	500,

				browser.fill	=	TRUE

)

)

sizingPolicy(padding	=	0,	browser.fill	=	TRUE)

sizingPolicy(viewer.suppress	=	TRUE,

													knitr.figure	=	FALSE,

													browser.fill	=	TRUE,

													browser.padding	=	75,

													knitr.defaultWidth	=	800,

													knitr.defaultHeight	=	500)

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/htmlwidgets-size.html#tab:sizing-policy

TABLE	16.1:	Options	that	can	be	specified	within	a	sizing	policy.

Option Description

defaultWidth
Default	widget	width	in	all	contexts	(browser,
viewer,	and	knitr).

defaultHeight
Similar	to	 	defaultWidth	,	but	for	heights
instead.

padding The	padding	(in	pixels)	in	all	contexts.

viewer.defaultWidth Default	widget	width	within	the	RStudio	Viewer.

viewer.defaultHeight Similar	to	 	viewer.defaultWidth	.

viewer.padding Padding	around	the	widget	in	the	RStudio	Viewer
(defaults	to	15	pixels).

viewer.fill
When	displayed	in	the	RStudio	Viewer,
automatically	size	the	widget	to	the	viewer
dimensions.	Default	to	 	TRUE	.

viewer.suppress

Never	display	the	widget	within	the	RStudio
Viewer	(useful	for	widgets	that	require	a	large
amount	of	space	for	rendering).	Defaults	to
	FALSE	.

viewer.paneHeight
Request	that	the	RStudio	Viewer	be	forced	to	a
specific	height	when	displaying	this	widget.

browser.defaultWidth
Default	widget	width	within	a	standalone	web
browser.

browser.defaultHeight Similar	to	 	browser.defaultWidth	.

browser.padding
Padding	in	a	standalone	browser	(defaults	to	40
pixels).

browser.fill
When	displayed	in	a	standalone	web	browser,
automatically	size	the	widget	to	the	browser
dimensions.	Defaults	to	 	FALSE	.

browser.external

Always	use	an	external	browser	(via
	browseURL()).	Defaults	to	 	FALSE	,	which	will
result	in	the	use	of	an	internal	browser	within
RStudio	v1.1	and	higher.

knitr.defaultWidth
Default	widget	width	within	documents	generated
by	knitr	(e.g.,	R	Markdown).

knitr.defaultHeight Similar	to	 	knitr.defaultWidth	.

knitr.figure
Apply	the	default	knitr	 	fig.width		and
	fig.height		to	the	widget	rendered	in	R
Markdown.	Defaults	to	 	TRUE	.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

16.4.2 	JavaScript	resize	method

Specifying	a	sizing	policy	allows	htmlwidgets	to	calculate	the	width	and	height	of	your	widget	based	on
where	it	is	being	displayed.	However,	you	still	need	to	forward	this	sizing	information	on	to	the	underlying
JavaScript	library	for	your	widget.

Every	JavaScript	library	handles	dynamic	sizing	a	bit	differently.	Some	do	it	automatically,	some	have	a
	resize()		call	to	force	a	layout,	and	some	require	that	size	be	set	only	along	with	data	and	other	options.
Whatever	the	case	it	is,	the	htmlwidgets	framework	will	pass	the	computed	sizes	to	both	your		factory	
function	and	 	resize		function.	Here	is	a	sketch	of	a	JavaScript	binding:

What	you	do	with	the	passed	width	and	height	is	up	to	you,	and	depends	on	the	re-sizing	semantics	of	the
underlying	JavaScript	library.	A	couple	of	illustrative	examples	are	included	below:

In	the	 	dygraphs		widget	(https://rstudio.github.io/dygraphs),	the	implementation	of	re-sizing	is
relatively	simple,	since	the	dygraphs	library	includes	a	 	resize()		method	to	automatically	size	the
graph	to	its	enclosing	HTML	element:

In	the	 	forceNetwork		widget	(https://christophergandrud.github.io/networkD3/#force),	the	passed
width	and	height	are	applied	to	the		<svg>		element	that	hosts	the	D3	network	visualization,	as	well
as	forwarded	on	to	the	underlying	D3	force	simulation	object:

HTMLWidgets.widget({

		name:	"demo",

		type:	"output",

		factory:	function(el,	width,	height)	{

				return	{

						renderValue:	function(x)	{

						},

						resize:	function(width,	height)	{

						}

				};

		}

});

resize:	function(width,	height)	{

		if	(dygraph)

				dygraph.resize();

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://rstudio.github.io/dygraphs
https://christophergandrud.github.io/networkD3/#force

As	you	can	see,	re-sizing	is	handled	in	a	wide	variety	of	fashions	in	different	JavaScript	libraries.	The
	resize		method	is	intended	to	provide	a	flexible	way	to	map	the	automatic	sizing	logic	of	htmlwidgets
directly	into	the	underlying	library.

factory:	function(el,	width,	height)	{

		var	force	=	d3.layout.force();

		d3.select(el).append("svg")

				.attr("width",	width)

				.attr("height",	height);

		return	{

				renderValue:	function(x)	{

						//	implementation	excluded

				},

				resize:	function(width,	height)	{

						d3.select(el).select("svg")

								.attr("width",	width)

								.attr("height",	height);

						force.size([width,	height]).resume();

				}

		};

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

16.5 	Advanced	topics

This	section	covers	several	aspects	of	creating	widgets	that	are	not	required	by	all	widgets,	but	are	an
essential	part	of	getting	bindings	to	certain	types	of	JavaScript	libraries	to	work	properly.	Topics	covered
include:

Transforming	JSON	representations	of	R	objects	into	representations	required	by	JavaScript	libraries
(e.g.,	an	R	data	frame	to	a	D3	dataset).

Passing	JavaScript	functions	from	R	to	JavaScript	(e.g.,	a	user-provided	formatting	or	drawing
function)

Generating	custom	HTML	to	enclose	a	widget	(the	default	is	a		<div>	,	but	some	libraries	require	a
different	element,	e.g.,	a).

Creating	a	widget	without	creating	an	R	package	in	the	first	place.

16.5.1 	Data	transformation

R	objects	passed	as	part	of	the		x		parameter	to	the	 	createWidget()		function	are	transformed	to	JSON
using	the	internal	function		htmlwidgets:::toJSON()	 ,	which	is	basically	a	wrapper	function	of
	jsonlite::toJSON()		by	default.	However,	sometimes	this	representation	is	not	what	is	required	by	the
JavaScript	library	you	are	interfacing	with.	There	are	two	JavaScript	functions	that	you	can	use	to
transform	the	JSON	data.

16.5.1.1 	HTMLWidgets.dataframeToD3()

R	data	frames	are	represented	in	“long”	form	(an	array	of	named	vectors)	whereas	D3	typically	requires
“wide”	form	(an	array	of	objects	each	of	which	includes	all	names	and	values).	Since	the	R	representation
is	smaller	in	size	and	much	faster	to	transmit	over	the	network,	we	create	the	long-form	representation	of
R	data,	and	then	transform	the	data	in	JavaScript	using	the		dataframeToD3()		helper	function.

Here	is	an	example	of	the	long-form	representation	of	an	R	data	frame:

After	we	apply	 	HTMLWidgets.dataframeToD3()	,	it	will	become:

14

{

		"Sepal.Length":	[5.1,	4.9,	4.7],

		"Sepal.Width":	[3.5,	3,	3.2],

		"Petal.Length":	[1.4,	1.4,	1.3],

		"Petal.Width":	[0.2,	0.2,	0.2],

		"Species":	["setosa",	"setosa",	"setosa"]

}	

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/htmlwidgets-advanced.html#fn14

As	a	real	example,	the		simpleNetwork		(https://christophergandrud.github.io/networkD3/#simple)	widget
accepts	a	data	frame	containing	network	links	on	the	R	side,	and	transforms	it	to	a	D3	representation
within	the	JavaScript	 	renderValue		function:

16.5.1.2 	HTMLWidgets.transposeArray2D()

Sometimes	a	2-dimensional	array	requires	a	similar	transposition.	For	this	the		transposeArray2D()	
function	is	provided.	Here	is	an	example	array:

[

		{

				"Sepal.Length":	5.1,

				"Sepal.Width":	3.5,

				"Petal.Length":	1.4,

				"Petal.Width":	0.2,

				"Species":	"setosa"

		},

		{

				"Sepal.Length":	4.9,

				"Sepal.Width":	3,

				"Petal.Length":	1.4,

				"Petal.Width":	0.2,

				"Species":	"setosa"

		},

		{

				"Sepal.Length":	4.7,

				"Sepal.Width":	3.2,

				"Petal.Length":	1.3,

				"Petal.Width":	0.2,

				"Species":	"setosa"

		}

]	

renderValue:	function(x)	{

		//	convert	links	data	frame	to	d3	friendly	format

		var	links	=	HTMLWidgets.dataframeToD3(x.links);

		//	...	use	the	links,	etc	...

}

[

		[5.1,	4.9,	4.7,	4.6,	5,	5.4],

		[3.5,	3,	3.2,	3.1,	3.6,	3.9],

		[1.4,	1.4,	1.3,	1.5,	1.4,	1.7],

		[0.2,	0.2,	0.2,	0.2,	0.2,	0.4],

		["setosa",	"setosa",	"setosa",	"setosa",	"setosa",	"setosa"]

]	

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://christophergandrud.github.io/networkD3/#simple

	HTMLWidgets.transposeArray2D()		can	transpose	it	to:

As	a	real	example,	the	dygraphs	widget	uses	this	function	to	transpose	the	“file”	(data)	argument	it	gets
from	the	R	side	before	passing	it	on	to	the	dygraphs	library:

16.5.1.3 	Custom	JSON	serializer

You	may	find	it	necessary	to	customize	the	JSON	serialization	of	widget	data	when	the	default	serializer	in
htmlwidgets	does	not	work	in	the	way	you	have	expected.	For	widget	package	authors,	there	are	two
levels	of	customization	for	the	JSON	serialization:	you	can	either	customize	the	default	values	of
arguments	for	 	jsonlite::toJSON()	,	or	just	customize	the	whole	function.

1.	 	jsonlite::toJSON()		has	a	lot	of	arguments,	and	we	have	already	changed	some	of	its	default
values.	Below	is	the	JSON	serializer	we	use	in	htmlwidgets	at	the	moment:

[

		[5.1,	3.5,	1.4,	0.2,	"setosa"],

		[4.9,	3,	1.4,	0.2,	"setosa"],

		[4.7,	3.2,	1.3,	0.2,	"setosa"],

		[4.6,	3.1,	1.5,	0.2,	"setosa"],

		[5,	3.6,	1.4,	0.2,	"setosa"],

		[5.4,	3.9,	1.7,	0.4,	"setosa"]

]	

renderValue:	function(x)	{

				//	...	code	excluded	...

				//	transpose	array

				x.attrs.file	=	HTMLWidgets.transposeArray2D(x.attrs.file);

				//	...	more	code	excluded	...

}

function(x,	...,	dataframe	=	"columns",	

		null	=	"null",	na	=	"null",	auto_unbox	=	TRUE,	

		digits	=	getOption("shiny.json.digits",	

				16),	use_signif	=	TRUE,	force	=	TRUE,	

		POSIXt	=	"ISO8601",	UTC	=	TRUE,	rownames	=	FALSE,	

		keep_vec_names	=	TRUE,	strict_atomic	=	TRUE)	{

		if	(strict_atomic)	

				x	<-	I(x)

		jsonlite::toJSON(x,	dataframe	=	dataframe,	

				null	=	null,	na	=	na,	auto_unbox	=	auto_unbox,	

				digits	=	digits,	use_signif	=	use_signif,	

				force	=	force,	POSIXt	=	POSIXt,	

				UTC	=	UTC,	rownames	=	rownames,	

				keep_vec_names	=	keep_vec_names,	

				json_verbatim	=	TRUE,	...)

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://rstudio.github.io/dygraphs

For	example,	we	convert	data	frames	to	JSON	by	columns	instead	of	rows	(the	latter	is
	jsonlite::toJSON	’s	default).	If	you	want	to	change	the	default	values	of	any	arguments,	you	can
attach	an	attribute	 	TOJSON_ARGS		to	the	widget	data	to	be	passed	to		createWidget()	,	e.g.,

We	changed	the	default	value	of		digits		from	16	to	7,	and		na		from	 	null		to	 	string		in	the
above	example.	It	is	up	to	you,	the	package	author,	whether	you	want	to	expose	such	customization
to	users.	For	example,	you	can	leave	an	extra	argument	in	your	widget	function	so	that	users	can
customize	the	behavior	of	the	JSON	serializer:

You	can	also	use	a	global	option		htmlwidgets.TOJSON_ARGS		to	customize	the	JSON	serializer
arguments	for	all	widgets	in	the	current	R	session,	e.g.

2.	 If	you	do	not	want	to	use	jsonlite,	you	can	completely	override	the	serializer	function	by	attaching	an
attribute	 	TOJSON_FUNC		to	the	widget	data,	e.g.,

Here	 	MY_OWN_JSON_FUNCTION		can	be	an	arbitrary	R	function	that	converts	R	objects	to	JSON.	If	you
have	also	specified	the		TOJSON_ARGS		attribute,	it	will	be	passed	to	your	custom	JSON	function,	too.

fooWidget	=	function(data,	name,	...)	{

		#	...	process	the	data	...

		params	=	list(foo	=	data,	bar	=	TRUE)

		#	customize	toJSON()	argument	values

		attr(params,	'TOJSON_ARGS')	=	list(

				digits	=	7,	na	=	'string'

)

		htmlwidgets::createWidget(name,	x	=	params,	...)

}

fooWidget	=	function(

		data,	name,	...,	JSONArgs	=	list(digits	=	7)

)	{

		#	...	process	the	data	...

		params	=	list(foo	=	data,	bar	=	TRUE)

		#	customize	toJSON()	argument	values

		attr(params,	'TOJSON_ARGS')	=	JSONArgs

		htmlwidgets::createWidget(name,	x	=	params,	...)

}

options(htmlwidgets.TOJSON_ARGS	=	list(

		digits	=	7,	pretty	=	TRUE

))

fooWidget	=	function(data,	name,	...)	{

		#	...	process	the	data	...

		params	=	list(foo	=	data,	bar	=	TRUE)

		#	customize	the	JSON	serializer

		attr(params,	'TOJSON_FUNC')	=	MY_OWN_JSON_FUNCTION

		htmlwidgets::createWidget(name,	x	=	params,	...)

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

16.5.2 	Passing	JavaScript	functions

As	you	would	expect,	character	vectors	passed	from	R	to	JavaScript	are	converted	to	JavaScript	strings.
However,	what	if	you	want	to	allow	users	to	provide	custom	JavaScript	functions	for	formatting,	drawing,	or
event	handling?	For	this	case,	the	htmlwidgets	package	includes	a	 	JS()		function	that	allows	you	to
request	that	a	character	value	is	evaluated	as	JavaScript	when	it	is	received	on	the	client.

For	example,	the	 	dygraphs		widget	(https://rstudio.github.io/dygraphs)	includes	a	 	dyCallbacks	
function	that	allows	the	user	to	provide	callback	functions	for	a	variety	of	contexts.	These	callbacks	are
“marked”	as	containing	JavaScript	so	that	they	can	be	converted	to	actual	JavaScript	functions	on	the
client:

Another	example	is	in	the		DT		(DataTables)	widget	(https://rstudio.github.io/DT),	where	users	can	specify
an	 	initCallback		with	JavaScript	to	execute	after	the	table	is	loaded	and	initialized:

If	multiple	arguments	are	passed	to		JS()		(as	in	the	above	example),	they	will	be	concatenated	into	a
single	string	separated	by		\n	.

16.5.3 	Custom	widget	HTML

Typically	the	HTML	“housing”	for	a	widget	is	just	a		<div>		element,	and	this	is	correspondingly	the
default	behavior	for	new	widgets	that	do	not	specify	otherwise.	However,	sometimes	you	need	a	different
element	type.	For	example,	the		sparkline		widget	(https://github.com/htmlwidgets/sparkline)	requires	a
			element,	so	it	implements	the	following	custom	HTML	generation	function:

library(dygraphs)

dyCallbacks(

		clickCallback	=	JS(...)

		drawCallback	=	JS(...)

		highlightCallback	=	JS(...)

		pointClickCallback	=	JS(...)

		underlayCallback	=	JS(...)

)

datatable(head(iris,	20),	options	=	list(

		initComplete	=	JS(

				"function(settings,	json)	{",

				"$(this.api().table().header()).css({

						'background-color':	'#000',

						'color':	'#fff'

					});",

				"}")

))

sparkline_html	=	function(id,	style,	class,	...){

		tags$span(id	=	id,	class	=	class)

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://rstudio.github.io/dygraphs
https://rstudio.github.io/DT
https://github.com/htmlwidgets/sparkline

Note	that	this	function	is	looked	up	within	the	package	implementing	the	widget	by	the	convention
	widgetname_html	,	so	it	need	not	be	formally	exported	from	your	package	or	otherwise	registered	with
htmlwidgets.

Most	widgets	will	not	need	a	custom	HTML	function,	but	if	you	need	to	generate	custom	HTML	for	your
widget	(e.g.,	you	need	an		<input>		or	a	 			rather	than	a	 	<div>),	you	should	use	the	htmltools
package	(as	demonstrated	by	the	code	above).

16.5.4 	Create	a	widget	without	an	R	package

As	we	mentioned	in	Section	16.3,	it	is	possible	to	create	a	widget	without	creating	an	R	package	in	the	first
place.	Below	is	an	example:

The	widget	simply	shows	a	blinking	character	string,	and	you	can	specify	the	time	interval.	The	key	of	the
implementation	is	the	HTML	dependency,	in	which	we	used	the		head		argument	to	embed	the	JavaScript
binding.	The	value	of	the		src		argument	is	a	little	hackish	due	to	the	current	restrictions	in	htmltools
(which	might	be	removed	in	the	future).	In	the		renderValue		method,	we	show	or	hide	the	text
periodically	using	the	JavaScript	function		setInterval()	.

14.	 Note	that	it	is	not	exported	from	htmlwidgets,	so	you	are	not	supposed	to	call	this	function	directly.↩

#'	@param	text	A	character	string.

#'	@param	interval	A	time	interval	(in	seconds).

blink	=	function(text,	interval	=	1)	{

		htmlwidgets::createWidget(

				'blink',	list(text	=	text,	interval	=	interval),

				dependencies	=	htmltools::htmlDependency(

						'blink',	'0.1',	src	=	c(href	=	''),	head	=	'

<script>

HTMLWidgets.widget({

		name:	"blink",

		type:	"output",

		factory:	function(el,	width,	height)	{

				return	{

						renderValue:	function(x)	{

								setInterval(function()	{

										el.innerText	=	el.innerText	==	""	?	x.text	:	"";

								},	x.interval	*	1000);

						},

						resize:	function(width,	height)	{}

				};

		}

});

</script>'

)

)

}

blink('Hello	htmlwidgets!',	.5)

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/htmlwidgets-create.html#htmlwidgets-create
file:///home/me/bookdown.org/yihui/rmarkdown/htmlwidgets-advanced.html#fnref14

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

Chapter	17 	Document	Templates

When	you	create	a	new	R	Markdown	document	from	the	RStudio	menu		File	->	New	File	->	R
Markdown	,	you	will	see	a	default	example	document	(a	template)	in	the	RStudio	editor.	In	fact,	you	can
create	custom	document	templates	by	yourself,	which	can	be	useful	if	you	need	to	create	a	particular	type
of	document	frequently	or	want	to	customize	the	appearance	of	the	final	report.	The	rticles	package	in
Chapter	13	is	a	good	example	of	custom	templates	for	a	range	of	journals.	Some	additional	examples	of
where	a	template	could	be	used	include:

Creating	a	company	branded	R	Markdown	template	that	includes	a	logo	and	branding	colors.

Updating	the	default	YAML	settings	to	include	standard	fields	for		title	,	 	author	,	 	date	,	or
default	 	output		options.

Customizing	the	layout	of	the	output	document	by	adding	additional	fields	to	the	YAML	metadata.	For
example,	you	can	add	a		department		field	to	be	included	within	your	title	page.

Once	created,	templates	are	easily	accessed	within	RStudio,	and	will	appear	within	the	“New	R
Markdown”	window	as	shown	in	Figure	17.1.

FIGURE	17.1:	Selecting	R	Markdown	templates	within	RStudio.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/journals.html#journals
file:///home/me/bookdown.org/yihui/rmarkdown/document-templates.html#fig:templates-select

This	chapter	explains	how	to	create	templates	and	share	them	within	an	R	package.	If	you	would	like	to
see	some	real-world	examples,	you	may	check	out	the	source	package	of	rticles
(https://github.com/rstudio/rticles).	The	 	rmarkdown::html_vignette		format	is	also	a	relatively	simple
example	(see	both	its	R	source	code	and	the	template	structure).	In	addition,	Michael	Harper	has	kindly
prepared	more	examples	in	the	repository	https://github.com/mikey-harper/example-rmd-templates.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/rstudio/rticles
https://github.com/rstudio/rmarkdown/tree/master/inst/rmarkdown/templates/html_vignette
https://github.com/mikey-harper/example-rmd-templates

17.1 	Template	structure

R	Markdown	templates	should	be	contained	within	an	R	package,	which	can	be	easily	created	from	the
menu	 	File	->	New	Project		in	RStudio	(choose	the	project	type	to	be	“R	Package”).	If	you	are	already
familiar	with	creating	R	packages,	you	are	certainly	free	to	use	your	own	favorite	way	to	create	a	new
package.

Templates	are	located	within	the		inst/rmarkdown/templates		directory	of	a	package.	It	is	possible	to
contain	multiple	templates	in	a	single	package,	with	each	template	stored	in	a	separate	sub-directory.	As	a
minimal	example,	 	inst/rmarkdown/templates/my_template		requires	the	following	files:

The	 	template.yaml		specifies	how	the	template	is	displayed	within	the	RStudio	“From	Template”	dialog
box.	This	YAML	file	must	have	a		name		and	a	 	description		field.	You	can	optionally	specify
	create_dir:	true		if	you	want	to	a	new	directory	to	be	created	when	the	template	is	selected.	As	an
example	of	the	 	template.yaml		file:

You	can	provide	a	brief	example	R	Markdown	document	in		skeleton.Rmd	,	which	will	be	opened	in
RStudio	when	the	template	is	selected.	We	can	add	section	titles,	load	commonly	used	packages,	or
specify	default	YAML	parameters	in	this	skeleton	document.	In	the	following	example,	we	specify	the
default	output	format	to		bookdown::html_document2	,	and	select	a	default	template		flatly	:

template.yaml

skeleton/skeleton.Rmd

name:	My	Template

description:	This	is	my	template

title:	"Untitled"

author:	"Your	Name"

output:

		bookdown::html_document2:

				toc:	true

				fig_caption:	true

				template:	flatly

##	Introduction

##	Analysis

##	Conclusions

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

17.2 	Supporting	files

Sometimes	a	template	may	require	supporting	files	(e.g.,	images,	CSS	files,	or	LaTeX	style	files).	Such
files	should	be	placed	in	the		skeleton		directory.	They	will	be	automatically	copied	to	the	directory	where
the	new	document	is	created.	For	example,	if	your	template	requires	a	logo	and	CSS	style	sheet,	they	can
be	put	under	the	directory		inst/rmarkdown/templates/my_template	:

We	can	refer	to	these	files	within	the		skeleton.Rmd		file,	e.g.,

template.yaml

skeleton/skeleton.Rmd

skeleton/logo.png

skeleton/styles.css

title:	"Untitled"

author:	"Your	Name"

output:

		html_document:

				css:	styles.css

![logo](logo.png)

#	Introduction

#	Analysis

```{r}

knitr::kable(mtcars[1:5,	1:5])

```

#	Conclusion

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

17.3 	Custom	Pandoc	templates

An	R	Markdown	is	first	compiled	to	Markdown	through	knitr,	and	then	converted	to	an	output	document
(e.g.,	PDF,	HTML,	or	Word)	by	Pandoc	through	a	Pandoc	template.	While	the	default	Pandoc	templates
used	by	R	Markdown	are	designed	to	be	flexible	by	allowing	parameters	to	be	specified	in	the	YAML,
users	may	wish	to	provide	their	own	template	for	more	control	over	the	output	format.

You	can	make	use	of	additional	YAML	fields	from	the	source	document	when	designing	a	Pandoc
template.	For	example,	you	may	wish	to	have	a		department		field	to	be	added	to	your	title	page,	or
include	an	 	editor		field	to	be	displayed	below	the	author.	We	can	add	additional	variables	to	the	Pandoc
template	by	surrounding	the	variable	in	dollar	signs	($)	within	the	template.	Most	variables	take	values
from	the	YAML	metadata	of	the	R	Markdown	document	(or	command-line	arguments	passed	to	Pandoc).
We	may	also	use	conditional	statements	and	for-loops.	Readers	are	recommended	to	check	the	Pandoc
manual	for	more	details:	https://pandoc.org/MANUAL.html#using-variables-in-templates.	Below	is	an
example	of	a	very	minimal	Pandoc	template	for	HTML	documents	that	only	contains	two	variables
($title$		and	 	$body$):

For	R	Markdown	to	use	the	customized	template,	you	can	specify	the		template		option	in	the	output
format	(provided	that	the	output	format	supports	this	option),	e.g.,

If	you	wish	to	design	your	own	template,	we	recommend	starting	from	the	default	Pandoc	templates
included	within	the	rmarkdown	package	(https://github.com/rstudio/rmarkdown/tree/master/inst/rmd)	or
Pandoc’s	built-in	templates	(https://github.com/jgm/pandoc-templates).

<html>

		<head>

				<title>$title$</title>

		</head>

		<body>

		$body$

		</body>

</html>

output:

		html_document:

				template:	template.html

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://pandoc.org/MANUAL.html#using-variables-in-templates
https://github.com/rstudio/rmarkdown/tree/master/inst/rmd
https://github.com/jgm/pandoc-templates

17.4 	Sharing	your	templates

As	templates	are	stored	within	packages,	it	is	easy	to	distribute	them	to	other	users.	If	you	decide	not	to
take	the	normal	approach	of	publishing	your	package	to	CRAN,	you	may	consider	using	GitHub	to	host
your	package	instead,	in	which	case	users	can	also	easily	install	your	package	and	templates:

To	find	out	more	about	packages	and	the	use	of	GitHub,	you	may	refer	to	the	book	“R	Packages”
(Wickham	2015)	(http://r-pkgs.had.co.nz/git.html).

References

Wickham,	Hadley.	2015.	R	Packages.	1st	ed.	O’Reilly	Media,	Inc.

if	(!requireNamespace("devtools"))	install.packages("devtools")

devtools::install_github("username/packagename")

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/template-share.html#ref-wickham2015
http://r-pkgs.had.co.nz/git.html

Chapter	18 	Creating	New	Formats

The	rmarkdown	package	has	included	many	built-in	document	and	presentation	formats.	At	their	core,
these	formats	are	just	R	functions.	When	you	include	an	output	format	in	the	YAML	metadata	of	a
document,	you	are	essentially	specifying	the	format	function	to	call	and	the	parameters	to	pass	to	it.

We	can	create	new	formats	for	R	Markdown,	which	makes	it	easy	to	customize	output	formats	to	use
specific	options	or	refer	to	external	files.	Defining	a	new	function	can	be	particularly	beneficial	if	you	have
generated	a	new	template	as	described	in	Chapter	17,	as	it	allows	you	to	use	your	custom	templates
without	having	to	copy	any	files	to	your	local	directory.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/document-templates.html#document-templates

18.1 	Deriving	from	built-in	formats

The	easiest	way	to	create	a	new	format	is	to	write	a	function	that	calls	one	of	the	built-in	formats.	These
built-in	formats	are	designed	to	be	extensible	enough	to	serve	as	the	foundation	of	custom	formats.	The
following	example,	 	quarterly_report	,	is	based	on		html_document		but	alters	the	default	options:

The	new	format	defined	has	the	following	behavior:

1.	 Provides	an	option	to	determine	whether	a	table	of	contents	should	be	generated	(implemented	by
passing	 	toc		through	to	the	base	format).

2.	 Sets	a	default	height	and	width	for	figures	(note	that	this	is	intentionally	not	user-customizable	so	as
to	encourage	a	standard	for	all	reports	of	this	type).

3.	 Disables	the	default	Bootstrap	theme	and	provides	custom	CSS	in	its	place.

4.	 Adds	a	standard	header	to	every	document.

Note	that	(3)	and	(4)	are	implemented	using	external	files	that	are	stored	within	the	package	that	defines
the	custom	format,	so	their	locations	need	to	be	looked	up	using	the		system.file()		function.

quarterly_report	=	function(toc	=	TRUE)	{

		#	locations	of	resource	files	in	the	package

		pkg_resource	=	function(...)	{

				system.file(...,	package	=	"mypackage")

		}

		css				=	pkg_resource("reports/styles.css")

		header	=	pkg_resource("reports/quarterly/header.html")

		#	call	the	base	html_document	function

		rmarkdown::html_document(

				toc	=	toc,	fig_width	=	6.5,	fig_height	=	4,

				theme	=	NULL,	css	=	css,

				includes	=	rmarkdown::includes(before_body	=	header)

)

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

18.2 	Fully	custom	formats

Another	lower-level	approach	is	to	define	a	format	directly	by	explicitly	specifying	knitr	options	and	Pandoc
command-line	arguments.	At	its	core,	an	R	Markdown	format	consists	of:

1.	 A	set	of	knitr	options	that	govern	how	Rmd	is	converted	to	Markdown.

2.	 A	set	of	Pandoc	options	that	govern	how	Markdown	is	converted	to	the	final	output	format	(e.g.,
HTML).

3.	 Some	optional	flags	and	filters	(typically	used	to	control	handling	of	supporting	files).

You	can	create	a	new	format	using	the		output_format()		function	in	rmarkdown.	Here	is	an	example	of
a	simple	format	definition:

The	knitr	and	Pandoc	options	can	get	considerably	complicated	(see	help	pages		?
rmarkdown::knitr_options		and	 	?rmarkdown::pandoc_options		for	details).	The	 	clean_supporting	
option	indicates	that	you	are	not	creating	self-contained	output	(like	a	PDF	or	HTML	document	with
base64	encoded	resources),	and	therefore	want	to	preserve	supporting	files	like	R	plots	generated	during
knitting.

You	can	also	pass	a		base_format		to	the	 	output_format()		function	if	you	want	to	inherit	all	of	the
behavior	of	an	existing	format	but	tweak	a	subset	of	its	options.

If	there	are	supporting	files	required	for	your	format	that	cannot	be	easily	handled	by	the		includes	
option	(see	Section	3.1.10.2),	you	will	also	need	to	use	the	other	arguments	to		output_format		to
ensure	they	are	handled	correctly	(e.g.,	use	the		intermediates_generator		to	copy	them	into	the	place
alongside	the	generated	document).

The	best	way	to	learn	more	about	creating	fully	custom	formats	is	to	study	the	source	code	of	the	existing
built-in	formats	(e.g.,	 	html_document		and	 	pdf_document):
https://github.com/rstudio/rmarkdown/tree/master/R.	In	some	cases,	a	custom	format	will	define	its	own
Pandoc	template,	which	was	discussed	in	Section	17.3.

#'	@importFrom	rmarkdown	output_format	knitr_options	pandoc_options

simple_html_format	=	function()	{

		#	if	you	don't	use	roxygen2	(see	above),	you	need	to	either

		#	library(rmarkdown)	or	use	rmarkdown::

		output_format(

				knitr	=	knitr_options(opts_chunk	=	list(dev	=	'png')),

				pandoc	=	pandoc_options(to	=	"html"),

				clean_supporting	=	FALSE

)

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/html-document.html#includes
https://github.com/rstudio/rmarkdown/tree/master/R
file:///home/me/bookdown.org/yihui/rmarkdown/template-pandoc.html#template-pandoc

18.3 	Using	a	new	format

New	formats	should	be	stored	within	a	package	and	installed	onto	your	local	system.	This	allows	the
format	to	be	provided	to	the	document	YAML.	Assuming	our	example	format		quarterly_report		is	in	a
package	named	mypackage,	we	can	use	it	as	follows:

This	means	to	use	the		quarterly_report()		function	defined	in	mypackage	as	the	output	format,	and	to
pass	 	toc	=	TRUE		as	a	parameter	to	the	function.

title:	"Habits"

output:

		mypackage::quarterly_report:

				toc:	true

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

Chapter	19 	Shiny	Documents

We	have	briefly	introduced	Shiny	documents	in	Section	2.8.2.	Shiny	is	a	very	powerful	framework	for
building	web	applications	based	on	R.	It	is	out	of	the	scope	of	this	book	to	make	a	comprehensive
introduction	to	Shiny	(which	is	too	big	a	topic).	We	recommend	that	readers	who	are	not	familiar	with	Shiny
learn	more	about	it	from	the	website	https://shiny.rstudio.com	before	reading	this	chapter.

Unlike	the	more	traditional	workflow	of	creating	static	reports,	you	can	create	documents	that	allow	your
readers	to	change	the	parameters	underlying	your	analysis	and	see	the	results	immediately	in	Shiny	R
Markdown	documents.	In	the	example	shown	in	Figure	2.8,	the	histogram	will	be	automatically	updated	to
reflect	the	number	of	bins	selected	by	the	reader.

A	picture	is	worth	a	thousand	words,	and	a	Shiny	document	can	potentially	show	you	a	thousand	pictures
as	you	interact	with	it.	The	readers	are	no	longer	tied	to	the	fixed	analysis	and	conclusions	in	the	report.
They	may	explore	other	possibilities	by	themselves,	and	possibly	make	new	discoveries	or	draw	different
conclusions.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/interactive-documents.html#intro-shiny
https://shiny.rstudio.com/
file:///home/me/bookdown.org/yihui/rmarkdown/interactive-documents.html#fig:shiny

19.1 	Getting	started

You	can	turn	any	HTML-oriented	R	Markdown	documents	to	Shiny	documents	by	adding		runtime:
shiny		to	the	YAML	metadata	as	a	top-level	field,	e.g.,

Note	that	the	output	format	of	the	R	Markdown	document	must	be	an	HTML	format.	That	is,	the	document
should	generate	a	web	page	(a		*.html		file).	Non-HTML	formats	such	as		pdf_document		and
	word_document		will	not	work	with	the	Shiny	runtime.	Please	also	note	that	some	presentation	formats
are	also	HTML	formats,	such	as		ioslides_presentation	,	 	slidy_presentation	,	and
	revealjs::revealjs_presentation	.

You	can	also	create	a	new	Shiny	document	from	the	RStudio	menu		File	->	New	File	->	R	Markdown	,
and	choose	the	document	type	“Shiny”	(see	Figure	19.1).

FIGURE	19.1:	Create	a	new	Shiny	document	in	RStudio.

To	run	a	Shiny	document	in	RStudio,	you	need	to	click	the	button	“Run	Document”	on	the	editor	toolbar
(RStudio	will	automatically	replace	the	“Knit”	button	with	“Run	Document”	when	it	detects	a	Shiny
document).	If	you	do	not	use	RStudio,	or	want	to	run	the	document	in	the	R	console	for	troubleshooting,
you	can	call	the	function		rmarkdown::run()		and	pass	the	filename	to	it.

title:	"Shiny	Document"

output:	html_document

runtime:	shiny

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/shiny-start.html#fig:shiny-new-document

You	can	embed	Shiny	inputs	and	outputs	in	your	document.	Outputs	are	automatically	updated	whenever
inputs	change.	In	the	following	example,	we	create	a	numeric	input	(numericInput)	with	the	name
	rows	,	and	then	refer	to	its	value	via		input$rows		when	generating	output:

FIGURE	19.2:	Increase	the	number	of	rows	in	the	table	in	a	Shiny	document.

In	the	above	example,	the	output	code	was	wrapped	in	a	call	to		renderTable()	.	There	are	many	other
render	functions	in	Shiny	that	can	be	used	for	plots,	printed	R	output,	and	more.	This	example	uses
	renderPlot()		to	create	dynamic	plot	output:

```{r,	echo=FALSE}

numericInput("rows",	"How	many	cars?",	5)

renderTable({

		head(cars,	input$rows)

})

```

```{r,	echo=FALSE}

sliderInput("bins",	"Number	of	bins:",	30,	min	=	1,	max	=	50)

renderPlot({

		x				=	faithful[,	2]		#	Old	Faithful	Geyser	data

		bins	=	seq(min(x),	max(x),	length.out	=	input$bins	+	1)

		#	draw	the	histogram	with	the	specified	number	of	bins

		hist(x,	breaks	=	bins,	col	=	'darkgray',	border	=	'white')

})

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

FIGURE	19.3:	Change	the	number	of	bins	of	a	histogram	in	a	Shiny	document.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

19.2 	Deployment

Shiny	documents	must	be	supported	by	a	live	R	session	running	behind	the	scenes.	When	you	run	a
Shiny	document	locally,	it	uses	your	local	R	session.	Usually	only	you	can	see	and	interact	with	the
document.	If	you	want	to	share	the	document	with	people	who	do	not	have	R	installed,	or	do	not	want	to
run	the	document	locally,	you	will	have	to	deploy	the	document	on	a	server,	and	share	the	URL	of	the
document.	Then	other	people	only	need	a	web	browser	to	visit	your	document.

There	are	two	ways	to	deploy	a	Shiny	document.	You	can	either	use	a	hosted	service	provided	by
RStudio,	or	set	up	your	own	server.	The	first	way	is	technically	easier,	but	sometimes	you	may	not	be
allowed	to	use	an	external	hosted	service,	so	you	have	to	install	the	required	software	(Shiny	Server	or
RStudio	Connect)	on	your	own	server	to	deploy	the	Shiny	documents.

19.2.1 	ShinyApps.io

You	can	publish	Shiny	documents	to	the	ShinyApps	(https://shinyapps.io)	hosted	service.	To	do	this	you,
should	ensure	that	you	have:

1.	 An	account	on	ShinyApps	(use	the	signup	form	to	request	an	account).

2.	 A	latest	version	of	the	rsconnect	R	package.	You	can	install	this	as	follows:

You	can	then	deploy	an	interactive	Shiny	document	in	the	same	way	that	you	currently	deploy	normal
Shiny	applications.	From	the	working	directory	containing	the	document(s),	just	execute:

If	you	are	using	RStudio,	you	can	also	use	the		Publish		button	available	at	the	top-right	of	the	window
when	running	a	Shiny	document	(see	Figure	19.4).

install.packages("rsconnect")

rsconnect::deployApp()

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://shinyapps.io/
file:///home/me/bookdown.org/yihui/rmarkdown/shiny-deploy.html#fig:shiny-deploy

FIGURE	19.4:	Deploy	a	Shiny	document	to	ShinyApps.io.

If	there	is	a	file	named		index.Rmd		in	the	directory,	it	will	be	served	as	the	default	document	for	that
directory,	otherwise	an	explicit	path	to	the	Rmd	file	should	be	specified	in	the	URL	if	you	want	to	visit	this
Rmd	document.	For	example,	the	URL	for		index.Rmd		deployed	to	ShinyApps	may	be	of	the	form
	https://example.shinyapps.io/appName/	,	and	the	URL	for		test.Rmd		may	be	of	the	form
	https://example.shinyapps.io/appName/test.Rmd	.

19.2.2 	Shiny	Server	/	RStudio	Connect

Both	Shiny	Server	(https://www.rstudio.com/products/shiny/shiny-server/)	and	RStudio	Connect
(https://www.rstudio.com/products/connect/)	can	be	used	to	publish	Shiny	documents.	They	require
knowledge	about	Linux.	Installing	and	configuring	them	should	normally	be	a	task	for	your	system
administrator	if	you	are	not	familiar	with	Linux	or	do	not	have	the	privilege.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.rstudio.com/products/shiny/shiny-server/
https://www.rstudio.com/products/connect/

19.3 	Embedded	Shiny	apps

Besides	embedding	individual	Shiny	inputs	and	outputs	in	R	Markdown,	it	is	also	possible	to	embed	a
standalone	Shiny	application	within	a	document.	There	are	two	ways	to	do	this:

1.	 Defining	the	application	inline	using	the		shinyApp()		function;	or

2.	 Referring	to	an	external	application	directory	using	the		shinyAppDir()		function.

Both	functions	are	available	in	the	shiny	package	(not	rmarkdown),	which	will	be	automatically	loaded
when	 	runtime:	shiny		is	specified	in	the	YAML	metadata	of	the	document,	so	you	do	not	have	to	call
	library(shiny)		to	load	shiny	(although	it	does	not	hurt	if	you	load	a	package	twice).

19.3.1 	Inline	applications

This	example	uses	an	inline	definition:

Note	the	use	of	the		height		parameter	to	determine	how	much	vertical	space	the	embedded	application
should	occupy.

19.3.2 	External	applications

This	example	embeds	a	Shiny	application	defined	in	another	directory:

```{r,	echo=FALSE}

shinyApp(

		ui	=	fluidPage(

				selectInput("region",	"Region:",

																choices	=	colnames(WorldPhones)),

				plotOutput("phonePlot")

		),

		server	=	function(input,	output)	{

				output$phonePlot	=	renderPlot({

						barplot(WorldPhones[,input$region]*1000,

														ylab	=	"Number	of	Telephones",	xlab	=	"Year")

				})

		},

		options	=	list(height	=	500)

)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

Note	that	in	all	of	R	code	chunks	above,	the	chunk	option		echo	=	FALSE		is	used.	This	is	to	prevent	the	R
code	within	the	chunk	from	rendering	to	the	output	document	alongside	the	Shiny	components.

```{r,	echo	=	FALSE}

shinyAppDir(

		system.file("examples/06_tabsets",	package="shiny"),

		options	=	list(width	=	"100%",	height	=	700)

)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

19.4 	Shiny	widgets

Shiny	widgets	enable	you	to	create	re-usable	Shiny	components	that	are	included	within	an	R	Markdown
document	using	a	single	function	call.	Shiny	widgets	can	also	be	invoked	directly	from	the	console	(useful
during	authoring)	and	show	their	output	within	the	RStudio	Viewer	pane	or	an	external	web	browser.

19.4.1 	The	 	shinyApp()		function

At	their	core,	Shiny	widgets	are	mini-applications	created	using	the		shinyApp()		function.	Rather	than
creating	a	 	ui.R		and	 	server.R		(or	 	app.R)	as	you	would	for	a	typical	Shiny	application,	you	pass	the
UI	and	server	definitions	to	the		shinyApp()		function	as	arguments.	We	have	given	an	example	in
Section	19.3.1.

The	simplest	type	of	Shiny	widget	is	just	an	R	function	that	returns	a		shinyApp()	.

19.4.2 	Example:	k-Means	clustering

The	rmdexamples	package	(https://github.com/rstudio/rmdexamples)	includes	an	example	of	a	Shiny
widget	implemented	in	this	fashion.	The		kmeans_cluster()		function	takes	a	single		dataset		argument
and	returns	a	Shiny	widget	to	show	the	result	of	k-Means	clustering.	You	can	use	it	within	an	R	Markdown
document	like	this:

Figure	19.5	shows	what	the	widget	looks	like	inside	a	running	document.

```{r,	echo	=	FALSE}

library(rmdexamples)

kmeans_cluster(iris)

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
file:///home/me/bookdown.org/yihui/rmarkdown/shiny-embedded.html#shiny-embed-inline
https://github.com/rstudio/rmdexamples
file:///home/me/bookdown.org/yihui/rmarkdown/shiny-widgets.html#fig:shiny-widget-kmeans

FIGURE	19.5:	A	Shiny	widget	to	apply	k-Means	clustering	on	a	dataset.

Below	is	the	source	code	of	the		kmeans_cluster()		function:

19.4.3 	Widget	size	and	layout

kmeans_cluster	=	function(dataset)	{

		library(shiny)		

		vars	=	names(dataset)

		shinyApp(

				ui	=	fluidPage(

						fluidRow(style	=	"padding-bottom:	20px;",

								column(4,	selectInput('xcol',	'X	Variable',	vars)),

								column(4,	selectInput('ycol',	'Y	Variable',	vars,

																														selected	=	vars[2])),

								column(4,	numericInput('clusters',	'Cluster	count',	3,

																															min	=	1,	max	=	9))

),

						fluidRow(

								plotOutput('kmeans',	height	=	"400px")		

)

),

				server	=	function(input,	output,	session)	{

						#	Combine	the	selected	variables	into	a	new	data	frame

						selectedData	=	reactive({

								dataset[,	c(input$xcol,	input$ycol)]

						})

						clusters	=	reactive({

								kmeans(selectedData(),	input$clusters)

						})

						output$kmeans	=	renderPlot(height	=	400,	{

								res	=	clusters()

								par(mar	=	c(5.1,	4.1,	0,	1))

								plot(selectedData(),

													col	=	res$cluster,	pch	=	20,	cex	=	3)

								points(res$centers,	pch	=	4,	cex	=	4,	lwd	=	4)

						})

				},

				options	=	list(height	=	500)

)

}

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

Shiny	widgets	may	be	embedded	in	various	places	including	standard	full	width	pages,	smaller	columns
within	pages,	and	even	HTML5	presentations.	For	the	widget	size	and	layout	to	work	well	in	all	of	these
contexts,	we	recommend	that	the	total	height	of	the	widget	is	no	larger	than	500	pixels.	This	is	not	a	hard
and	fast	rule,	but	HTML5	slides	can	typically	only	display	content	less	than	500px	in	height,	so	if	you	want
your	widget	to	be	usable	within	presentations,	this	is	a	good	guideline	to	follow.

You	can	also	add	an	explicit		height		argument	to	the	function	that	creates	the	widget	(default	to	500	so	it
works	well	within	slides).

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

19.5 	Multiple	pages

You	can	link	to	other	Shiny	documents	by	using	the	Markdown	link	syntax	and	specifying	the	relative	path
to	the	document,	e.g.,		[Another	Shiny	Document](another.Rmd)	.	If	you	click	the	link	to	another	Rmd
document	on	one	page,	that	Rmd	document	will	be	launched	as	the	current	interactive	Shiny	document.

Currently,	only	one	document	can	be	active	at	a	time,	so	documents	cannot	easily	share	state,	although
some	primitive	global	sharing	is	possible	via	the	R	script		global.R		(see	the	help	page		?
rmarkdown::run).

By	default,	it	is	only	possible	to	link	to	R	Markdown	files	in	the	same	directory	subtree	as	the	file	on	which
	rmarkdown::run()		was	invoked	(e.g.,	you	cannot	link	to		../foo.Rmd).	You	can	use	the		dir	
argument	of	 	rmarkdown::run()		to	indicate	the	directory	to	be	treated	as	the	root.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

19.6 	Delayed	rendering

A	Shiny	document	is	typically	rendered	every	time	it	is	shown,	and	is	not	shown	to	the	user	until	the
rendering	is	complete.	Consequently,	a	document	that	is	large	or	contains	expensive	computations	may
take	some	time	to	load.

If	your	document	contains	interactive	Shiny	components	that	do	not	need	to	be	rendered	right	away,	you
can	wrap	Shiny	code	in	the		rmarkdown::render_delayed()		function.	This	function	saves	its	argument
until	the	document’s	rendering	is	done	and	has	been	shown	to	the	user,	then	evaluates	it	and	injects	it	into
the	output	document	when	the	computation	is	finished.

Here	is	an	example	that	demonstrates	how		render_delayed()		works.	The	code	enclosed	within	the
	render_delayed()		call	will	execute	only	after	the	document	has	been	loaded	and	displayed	to	the	user:

```{r,	echo	=	FALSE}

rmarkdown::render_delayed({

		numericInput("rows",	"How	many	cars?",	5)

		renderTable({

				head(cars,	input$rows)

		})

})

```

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

19.7 	Output	arguments	for	render	functions

In	a	typical	Shiny	application,	you	specify	an	output	element	in	the	UI	using	functions	like		plotOutput()	
and	 	verbatimTextOutput()	,	and	render	its	content	using	functions	like		renderPlot()		and
	renderPrint()	.

By	comparison,	in	a	Shiny	document,	the	UI	elements	are	often	implicitly	and	automatically	created	when
you	call	the	 	renderXXX()		functions.	For	example,	you	may	want	to	use	a		renderPlot()		function
without	having	to	create	a		plotOutput()		slot	beforehand.	In	this	case,	Shiny	helpfully	associates	the
corresponding	output	object	to	each		renderXXX()		function,	letting	you	use	Shiny	code	outside	of	a	full
Shiny	app.	However,	some	functionality	can	be	lost	in	this	process.	In	particular,		plotOutput()		can	take
in	some	optional	arguments	to	set	things	like	width	and	height,	or	allow	you	to	click	or	brush	over	the	plot
(and	store	that	information).

To	pass	options	from		renderXXX()		to	 	xxxOutput()	,	you	can	use	the		outputArgs		argument,	if	it	is
available	to	specific	 	renderXXX()		functions.	For	example,	suppose	that	you	want	to	render	a	plot	and
specify	its	width	to	be	200px	and	height	to	be	100px.	Then	you	should	use:

No	matter	how	many	output	arguments	you	want	to	set	(all	the	way	from	zero	to	all	possible	ones),
	outputArgs		always	takes	in	a	list	(the	default	is	an	empty	list,	which	sets	no	output	arguments).	If	you
try	to	pass	in	a	non-existent	argument,	you	will	get	an	error	like	the	following	message	(in	this	example,
you	tried	to	set	an	argument	named		not_an_argument):

To	see	 	outputArgs		in	action,	run	the	R	Markdown	document	below	or	visit
https://gallery.shinyapps.io/output-args/	for	the	live	version	online.	The	document	is	interactive:	brush	over
the	image	and	see	the		xmin	,	 	xmax	,	 	ymin	,	and	 	ymax		values	change	(printed	right	under	the	image).

```{r,	echo	=	FALSE}

renderPlot({

		plot(yourData)

},	outputArgs	=	list(width	=	"200px",	height	=	"100px")

)

```

Error:	Unused	argument:	in	`outputArgs`,	`not_an_argument`

is	not	an	valid	argument	for	the	output	function

title:	Setting	output	args	via	render	functions

runtime:	shiny

output:	html_document

This	interactive	Rmd	document	makes	use	of	the	`outputArgs`

argument	now	available	to	all	Shiny	`render`	functions.	To

give	an	example,	this	allows	you	to	set	arguments	to

`imageOutput`	through	`renderImage`.	This	means	that	you

don't	have	to	create	a	`ui`	object	just	to	be	able	to	brush

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://gallery.shinyapps.io/output-args/

over	an	image.	Note	that	this	only	applies	to	snippets	of

Shiny	code	during	an	interactive	Rmd	(and	not	to	embedded

full	apps	--	the	ones	you	need	to	call	`shinyApp`	to	run).

##	Brushing	over	an	image	(and	storing	the	data)

```{r	setup,	echo=FALSE}

library(datasets)

generateImage	=	function()	{

		outfile	=	tempfile(fileext	=	'.png')

		png(outfile)

		par(mar	=	c(0,0,0,0))

		image(volcano,	axes	=	FALSE)

		contour(volcano,	add	=	TRUE)

		dev.off()

		list(src	=	outfile)

}

```

```{r	image}

renderImage({

		generateImage()

},	deleteFile	=	TRUE,	

			outputArgs	=	list(brush	=	brushOpts(id	=	"plot_brush"),

																					width	=	"250",

																					height	=	"250px")

)

```

Here	is	some	of	the	brushing	info	sent	to	the	server:

(brush	over	the	image	to	change	the	data)

```{r	brush	info}

renderText({	

		print(input$plot_brush)

		brush	=	input$plot_brush

		paste0("xmin:	",	brush$xmin,	";	",

									"xmax:	",	brush$xmax,	";	",

									"ymin:	",	brush$ymin,	";	",

									"ymax:	",	brush$ymax)

})

```

###	Resizing	a	plot

```{r	plot}

renderPlot({	

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


19.7.1 	A	caveat

We	want	to	emphasize	that	you	can	only	use	this	functionality	within	a	Shiny	R	Markdown	document	(i.e.,
you	must	set	 	runtime:	shiny		in	the	YAML	metadata).	But	even	if	that	is	the	case,	this	is	only	applicable
to	pieces	of	Shiny	code	that	render	output	without	the	corresponding	explicit	output	elements	in	the	UI.	If
you	embed	a	full	Shiny	application	in	your	document	and	try	to	use		outputArgs	,	it	will	be	ignored	and
print	the	following	warning	to	the	R	Markdown	console	(in	this	case,	your		ui		function	would	be
something	like	 	ui	=	plotOutput("plot")	):

The	same	will	happen	if	you	try	to	use		outputArgs		in	any	other	context,	such	as	inside	a	regular	(i.e.,
not	embedded)	Shiny	app.	The	rationale	is	that	if	you	are	already	specifying	a		ui		function	with	all	the
	output		objects	made	explicit,	you	should	set	their	arguments	directly	there	instead	of	going	through	this
round-about	way.

		plot(cars)	

},	outputArgs	=	list(width	=	"75%",	

																					height	=	"250px")

)

```

Warning	in	`output$plot`(...)	:

Unused	argument:	outputArgs.	The	argument	outputArgs	is	only

meant	to	be	used	when	embedding	snippets	of	Shiny	code	in	an

R	Markdown	code	chunk	(using	runtime:	shiny).	When	running	a

full	Shiny	app,	please	set	the	output	arguments	directly	in

the	corresponding	output	function	of	your	UI	code.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

References

Allaire,	JJ,	Jeffrey	Horner,	Vicent	Marti,	and	Natacha	Porte.	2017.	Markdown:	’Markdown’	Rendering	for	R.
https://CRAN.R-project.org/package=markdown.

Allaire,	JJ,	Kevin	Ushey,	and	Yuan	Tang.	2018.	Reticulate:	Interface	to	’Python’.	https://CRAN.R-
project.org/package=reticulate.

Allaire,	JJ,	Yihui	Xie,	Jonathan	McPherson,	Javier	Luraschi,	Kevin	Ushey,	Aron	Atkins,	Hadley	Wickham,
Joe	Cheng,	Winston	Chang,	and	Richard	Iannone.	2018.	Rmarkdown:	Dynamic	Documents	for	R.

Allaire,	JJ,	Yihui	Xie,	R	Foundation,	Hadley	Wickham,	Journal	of	Statistical	Software,	Ramnath
Vaidyanathan,	Association	for	Computing	Machinery,	et	al.	2018.	Rticles:	Article	Formats	for	R	Markdown.
https://CRAN.R-project.org/package=rticles.

Barnier,	Julien.	2017.	Rmdformats:	HTML	Output	Formats	and	Templates	for	’Rmarkdown’	Documents.
https://CRAN.R-project.org/package=rmdformats.

Bion,	Ricardo,	Robert	Chang,	and	Jason	Goodman.	2018.	“How	R	Helps	Airbnb	Make	the	Most	of	Its
Data.”	The	American	Statistician	72	(1).	Taylor	&	Francis:	46–52.
https://doi.org/10.1080/00031305.2017.1392362.

Chang,	Winston.	2017.	Webshot:	Take	Screenshots	of	Web	Pages.	https://CRAN.R-
project.org/package=webshot.

Chang,	Winston,	Joe	Cheng,	JJ	Allaire,	Yihui	Xie,	and	Jonathan	McPherson.	2018.	Shiny:	Web

Application	Framework	for	R.	https://CRAN.R-project.org/package=shiny.

Cheng,	Joe,	Bhaskar	Karambelkar,	and	Yihui	Xie.	2018.	Leaflet:	Create	Interactive	Web	Maps	with	the

Javascript	’Leaflet’	Library.	https://CRAN.R-project.org/package=leaflet.

El	Hattab,	Hakim,	and	JJ	Allaire.	2017.	Revealjs:	R	Markdown	Format	for	’Reveal.js’	Presentations.
https://CRAN.R-project.org/package=revealjs.

Hartgerink,	Chris	HJ,	Jelte	M	Wicherts,	and	Marcel	ALM	van	Assen.	2017.	“Too	Good	to	Be	False:
Nonsignificant	Results	Revisited.”	Collabra:	Psychology	3	(1).	The	Regents	of	the	University	of	California.

Iannone,	Richard,	JJ	Allaire,	and	Barbara	Borges.	2018.	Flexdashboard:	R	Markdown	Format	for	Flexible

Dashboards.	https://CRAN.R-project.org/package=flexdashboard.

Knuth,	Donald	E.	1984.	“Literate	Programming.”	The	Computer	Journal	27	(2).	British	Computer	Society:
97–111.

Li,	Changcheng.	2018.	JuliaCall:	Seamless	Integration	Between	R	and	’Julia’.	https://CRAN.R-
project.org/package=JuliaCall.

Lowndes,	Julia	S	Stewart,	Benjamin	D	Best,	Courtney	Scarborough,	Jamie	C	Afflerbach,	Melanie	R
Frazier,	Casey	C	O’Hara,	Ning	Jiang,	and	Benjamin	S	Halpern.	2017.	“Our	Path	to	Better	Science	in	Less
Time	Using	Open	Data	Science	Tools.”	Nature	Ecology	&	Evolution	1	(6).	Nature	Publishing	Group.

Qiu,	Yixuan.	2018.	Prettydoc:	Creating	Pretty	Documents	from	R	Markdown.	https://CRAN.R-
project.org/package=prettydoc.

R	Core	Team.	2018.	R:	A	Language	and	Environment	for	Statistical	Computing.	Vienna,	Austria:	R
Foundation	for	Statistical	Computing.	https://www.R-project.org/.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://cran.r-project.org/package=markdown
https://cran.r-project.org/package=reticulate
https://cran.r-project.org/package=rticles
https://cran.r-project.org/package=rmdformats
https://doi.org/10.1080/00031305.2017.1392362
https://cran.r-project.org/package=webshot
https://cran.r-project.org/package=shiny
https://cran.r-project.org/package=leaflet
https://cran.r-project.org/package=revealjs
https://cran.r-project.org/package=flexdashboard
https://cran.r-project.org/package=JuliaCall
https://cran.r-project.org/package=prettydoc
https://www.r-project.org/

RStudio,	and	Inc.	2017.	Htmltools:	Tools	for	Html.	https://CRAN.R-project.org/package=htmltools.

Schloerke,	Barret,	JJ	Allaire,	and	Barbara	Borges.	2018.	Learnr:	Interactive	Tutorials	for	R.
https://CRAN.R-project.org/package=learnr.

Vaidyanathan,	Ramnath,	Yihui	Xie,	JJ	Allaire,	Joe	Cheng,	and	Kenton	Russell.	2018.	Htmlwidgets:	HTML

Widgets	for	R.	https://github.com/ramnathv/htmlwidgets.

Vanderkam,	Dan,	JJ	Allaire,	Jonathan	Owen,	Daniel	Gromer,	and	Benoit	Thieurmel.	2018.	Dygraphs:
Interface	to	’Dygraphs’	Interactive	Time	Series	Charting	Library.	https://CRAN.R-
project.org/package=dygraphs.

Wickham,	Hadley.	2015.	R	Packages.	1st	ed.	O’Reilly	Media,	Inc.

Wickham,	Hadley,	and	Jay	Hesselberth.	2018.	Pkgdown:	Make	Static	Html	Documentation	for	a	Package.
https://CRAN.R-project.org/package=pkgdown.

Xie,	Yihui.	2015.	Dynamic	Documents	with	R	and	Knitr.	2nd	ed.	Boca	Raton,	Florida:	Chapman;	Hall/CRC.
https://yihui.name/knitr/.

———.	2016.	Bookdown:	Authoring	Books	and	Technical	Documents	with	R	Markdown.	Boca	Raton,
Florida:	Chapman;	Hall/CRC.	https://github.com/rstudio/bookdown.

———.	2018a.	Blogdown:	Create	Blogs	and	Websites	with	R	Markdown.
https://github.com/rstudio/blogdown.

———.	2018b.	Bookdown:	Authoring	Books	and	Technical	Documents	with	R	Markdown.
https://github.com/rstudio/bookdown.

———.	2018c.	DT:	A	Wrapper	of	the	Javascript	Library	’Datatables’.	https://rstudio.github.io/DT.

———.	2018d.	Knitr:	A	General-Purpose	Package	for	Dynamic	Report	Generation	in	R.
https://yihui.name/knitr/.

———.	2018e.	Servr:	A	Simple	Http	Server	to	Serve	Static	Files	or	Dynamic	Documents.
https://github.com/yihui/servr.

———.	2018f.	Tinytex:	Helper	Functions	to	Install	and	Maintain	Tex	Live,	and	Compile	Latex	Documents.
https://CRAN.R-project.org/package=tinytex.

———.	2018g.	Xaringan:	Presentation	Ninja.	https://CRAN.R-project.org/package=xaringan.

Xie,	Yihui,	and	JJ	Allaire.	2018.	Tufte:	Tufte’s	Styles	for	R	Markdown	Documents.	https://CRAN.R-
project.org/package=tufte.

Xie,	Yihui,	Alison	Presmanes	Hill,	and	Amber	Thomas.	2017.	Blogdown:	Creating	Websites	with	R

Markdown.	Boca	Raton,	Florida:	Chapman;	Hall/CRC.	https://github.com/rstudio/blogdown.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://cran.r-project.org/package=htmltools
https://cran.r-project.org/package=learnr
https://github.com/ramnathv/htmlwidgets
https://cran.r-project.org/package=dygraphs
https://cran.r-project.org/package=pkgdown
https://yihui.name/knitr/
https://github.com/rstudio/bookdown
https://github.com/rstudio/blogdown
https://github.com/rstudio/bookdown
https://rstudio.github.io/DT
https://yihui.name/knitr/
https://github.com/yihui/servr
https://cran.r-project.org/package=tinytex
https://cran.r-project.org/package=xaringan
https://cran.r-project.org/package=tufte
https://github.com/rstudio/blogdown

	Botón:

