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A Structural Approach to Selection Bias

Miguel A. Hernán,* Sonia Hernández-Dı́az,† and James M. Robins*

Abstract: The term “selection bias” encompasses various biases in
epidemiology. We describe examples of selection bias in case-
control studies (eg, inappropriate selection of controls) and cohort
studies (eg, informative censoring). We argue that the causal struc-
ture underlying the bias in each example is essentially the same:
conditioning on a common effect of 2 variables, one of which is
either exposure or a cause of exposure and the other is either the
outcome or a cause of the outcome. This structure is shared by other
biases (eg, adjustment for variables affected by prior exposure). A
structural classification of bias distinguishes between biases result-
ing from conditioning on common effects (“selection bias”) and
those resulting from the existence of common causes of exposure
and outcome (“confounding”). This classification also leads to a
unified approach to adjust for selection bias.

(Epidemiology 2004;15: 615–625)

Epidemiologists apply the term “selection bias” to many
biases, including bias resulting from inappropriate selec-

tion of controls in case-control studies, bias resulting from
differential loss-to-follow up, incidence–prevalence bias, vol-
unteer bias, healthy-worker bias, and nonresponse bias.

As discussed in numerous textbooks,1–5 the common
consequence of selection bias is that the association between
exposure and outcome among those selected for analysis
differs from the association among those eligible. In this
article, we consider whether all these seemingly heteroge-
neous types of selection bias share a common underlying
causal structure that justifies classifying them together. We
use causal diagrams to propose a common structure and show
how this structure leads to a unified statistical approach to

adjust for selection bias. We also show that causal diagrams
can be used to differentiate selection bias from what epide-
miologists generally consider confounding.

CAUSAL DIAGRAMS AND ASSOCIATION
Directed acyclic graphs (DAGs) are useful for depicting

causal structure in epidemiologic settings.6–12 In fact, the struc-
ture of bias resulting from selection was first described in the
DAG literature by Pearl13 and by Spirtes et al.14 A DAG is
composed of variables (nodes), both measured and unmeasured,
and arrows (directed edges). A causal DAG is one in which 1)
the arrows can be interpreted as direct causal effects (as defined
in Appendix A.1), and 2) all common causes of any pair of
variables are included on the graph. Causal DAGs are acyclic
because a variable cannot cause itself, either directly or through
other variables. The causal DAG in Figure 1 represents the
dichotomous variables L (being a smoker), E (carrying matches
in the pocket), and D (diagnosis of lung cancer). The lack of an
arrow between E and D indicates that carrying matches does not
have a causal effect (causative or preventive) on lung cancer, ie,
the risk of D would be the same if one intervened to change the
value of E.

Besides representing causal relations, causal DAGs
also encode the causal determinants of statistical associations.
In fact, the theory of causal DAGs specifies that an associa-
tion between an exposure and an outcome can be produced by
the following 3 causal structures13,14:

1. Cause and effect: If the exposure E causes the outcome D,
or vice versa, then they will in general be associated.
Figure 2 represents a randomized trial in which E (anti-
retroviral treatment) prevents D (AIDS) among HIV-
infected subjects. The (associational) risk ratio ARRED

differs from 1.0, and this association is entirely attribut-
able to the causal effect of E on D.

2. Common causes: If the exposure and the outcome share a
common cause, then they will in general be associated
even if neither is a cause of the other. In Figure 1, the
common cause L (smoking) results in E (carrying
matches) and D (lung cancer) being associated, ie, again,
ARRED �1.0.

3. Common effects: An exposure E and an outcome D that
have a common effect C will be conditionally associated if
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the association measure is computed within levels of the
common effect C, ie, the stratum-specific ARRED�C will
differ from 1.0, regardless of whether the crude (equiva-
lently, marginal, or unconditional) ARRED is 1.0. More
generally, a conditional association between E and D will
occur within strata of a common effect C of 2 other
variables, one of which is either exposure or a cause of
exposure and the other is either the outcome or a cause of
the outcome. Note that E and D need not be uncondition-
ally associated simply because they have a common effect.
In the Appendix we describe additional, more complex,
structural causes of statistical associations.

That causal structures (1) and (2) imply a crude asso-
ciation accords with the intuition of most epidemiologists.
We now provide intuition for why structure (3) induces a
conditional association. (For a formal justification, see refer-
ences 13 and 14.) In Figure 3, the genetic haplotype E and
smoking D both cause coronary heart disease C. Nonetheless,
E and D are marginally unassociated (ARRED � 1.0) because
neither causes the other and they share no common cause. We
now argue heuristically that, in general, they will be condi-
tionally associated within levels of their common effect C.

Suppose that the investigators, who are interested in
estimating the effect of haplotype E on smoking status D,
restricted the study population to subjects with heart disease
(C � 1). The square around C in Figure 3 indicates that they
are conditioning on a particular value of C. Knowing that a
subject with heart disease lacks haplotype E provides some
information about her smoking status because, in the absence
of E, it is more likely that another cause of C such as D is
present. That is, among people with heart disease, the pro-
portion of smokers is increased among those without the
haplotype E. Therefore, E and D are inversely associated
conditionally on C � 1, and the conditional risk ratio
ARRED�C�1 is less than 1.0. In the extreme, if E and D were
the only causes of C, then among people with heart disease,

the absence of one of them would perfectly predict the
presence of the other.

As another example, the DAG in Figure 4 adds to the
DAG in Figure 3 a diuretic medication M whose use is a
consequence of a diagnosis of heart disease. E and D are also
associated within levels of M because M is a common effect
of E and D.

There is another possible source of association between
2 variables that we have not discussed yet. As a result of
sampling variability, 2 variables could be associated by
chance even in the absence of structures (1), (2), or (3).
Chance is not a structural source of association because
chance associations become smaller with increased sample
size. In contrast, structural associations remain unchanged.
To focus our discussion on structural rather than chance
associations, we assume we have recorded data in every
subject in a very large (perhaps hypothetical) population of
interest. We also assume that all variables are perfectly
measured.

A CLASSIFICATION OF BIASES ACCORDING TO
THEIR STRUCTURE

We will say that bias is present when the association
between exposure and outcome is not in its entirety the result
of the causal effect of exposure on outcome, or more pre-
cisely when the causal risk ratio (CRRED), defined in Appen-
dix A.1, differs from the associational risk ratio (ARRED). In
an ideal randomized trial (ie, no confounding, full adherence
to treatment, perfect blinding, no losses to follow up) such as
the one represented in Figure 2, there is no bias and the
association measure equals the causal effect measure.

Because nonchance associations are generated by struc-
tures (1), (2), and (3), it follows that biases could be classified
on the basis of these structures:

1. Cause and effect could create bias as a result of reverse
causation. For example, in many case-control studies, the
outcome precedes the exposure measurement. Thus, the
association of the outcome with measured exposure could
in part reflect bias attributable to the outcome’s effect on
measured exposure.7,8 Examples of reverse causation bias
include not only recall bias in case-control studies, but
also more general forms of information bias like, for
example, when a blood parameter affected by the presence
of cancer is measured after the cancer is present.

2. Common causes: In general, when the exposure and out-
come share a common cause, the association measure

FIGURE 1. Common cause L of exposure E and outcome D.

FIGURE 2. Causal effect of exposure E on outcome D.

FIGURE 3. Conditioning on a common effect C of exposure E
and outcome D.

FIGURE 4. Conditioning on a common effect M of exposure E
and outcome D.

Hernán et al Epidemiology • Volume 15, Number 5, September 2004

© 2004 Lippincott Williams & Wilkins616

D
ow

nloaded from
 http://journals.lw

w
.com

/epidem
 by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

yw
C

X
1

A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dtw

nfK
Z

B
Y

tw
s=

 on 12/03/2024



differs from the effect measure. Epidemiologists tend to
use the term confounding to refer to this bias.

3. Conditioning on common effects: We propose that this
structure is the source of those biases that epidemiologists
refer to as selection bias. We argue by way of example.

EXAMPLES OF SELECTION BIAS

Inappropriate Selection of Controls in a
Case-Control Study

Figure 5 represents a case-control study of the effect of
postmenopausal estrogens (E) on the risk of myocardial
infarction (D). The variable C indicates whether a woman in
the population cohort is selected for the case-control study
(yes � 1, no � 0). The arrow from disease status D to
selection C indicates that cases in the cohort are more likely
to be selected than noncases, which is the defining feature of
a case-control study. In this particular case-control study,
investigators selected controls preferentially among women
with a hip fracture (F), which is represented by an arrow from
F to C. There is an arrow from E to F to represent the
protective effect of estrogens on hip fracture. Note Figure 5 is
essentially the same as Figure 3, except we have now elab-
orated the causal pathway from E to C.

In a case-control study, the associational exposure–
disease odds ratio (AORED�C � 1) is by definition conditional
on having been selected into the study (C � 1). If subjects
with hip fracture F are oversampled as controls, then the
probability of control selection depends on a consequence F
of the exposure (as represented by the path from E to C
through F) and “inappropriate control selection” bias will
occur (eg, AORED�C � 1 will differ from 1.0, even when like
in Figure 5 the exposure has no effect on the disease). This
bias arises because we are conditioning on a common effect
C of exposure and disease. A heuristic explanation of this
bias follows. Among subjects selected for the study, controls
are more likely than cases to have had a hip fracture. There-
fore, because estrogens lower the incidence of hip fractures,
a control is less likely to be on estrogens than a case, and
hence AORED�C � 1 is greater than 1.0, even though the
exposure does not cause the outcome. Identical reasoning
would explain that the expected AORED�C � 1 would be
greater than the causal ORED even had the causal ORED

differed from 1.0.

Berkson’s Bias
Berkson15 pointed out that 2 diseases (E and D) that are

unassociated in the population could be associated among
hospitalized patients when both diseases affect the probability
of hospital admission. By taking C in Figure 3 to be the
indicator variable for hospitalization, we recognize that Berk-
son’s bias comes from conditioning on the common effect C
of diseases E and D. As a consequence, in a case-control
study in which the cases were hospitalized patients with
disease D and controls were hospitalized patients with disease
E, an exposure R that causes disease E would appear to be a
risk factor for disease D (ie, Fig. 3 is modified by adding
factor R and an arrow from R to E). That is, AORRD�C � 1

would differ from 1.0 even if R does not cause D.

Differential Loss to Follow Up in Longitudinal
Studies

Figure 6a represents a follow-up study of the effect of
antiretroviral therapy (E) on AIDS (D) risk among HIV-

FIGURE 6. Selection bias in a cohort study. See text for details.
FIGURE 5. Selection bias in a case-control study. See text for
details.
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infected patients. The greater the true level of immunosup-
pression (U), the greater the risk of AIDS. U is unmeasured.
If a patient drops out from the study, his AIDS status cannot
be assessed and we say that he is censored (C � 1). Patients
with greater values of U are more likely to be lost to follow
up because the severity of their disease prevents them from
attending future study visits. The effect of U on censoring is
mediated by presence of symptoms (fever, weight loss, diar-
rhea, and so on), CD4 count, and viral load in plasma, all
summarized in the (vector) variable L, which could or could
not be measured. The role of L, when measured, in data
analysis is discussed in the next section; in this section, we
take L to be unmeasured. Patients receiving treatment are at
a greater risk of experiencing side effects, which could lead
them to dropout, as represented by the arrow from E to C. For
simplicity, assume that treatment E does not cause D and so
there is no arrow from E to D (CRRED � 1.0). The square
around C indicates that the analysis is restricted to those
patients who did not drop out (C � 0). The associational risk
(or rate) ratio ARRED�C � 0 differs from 1.0. This “differential
loss to follow-up” bias is an example of bias resulting from
structure (3) because it arises from conditioning on the
censoring variable C, which is a common effect of exposure
E and a cause U of the outcome.

An intuitive explanation of the bias follows. If a treated
subject with treatment-induced side effects (and thereby at a
greater risk of dropping out) did in fact not drop out (C � 0),
then it is generally less likely that a second cause of dropping
out (eg, a large value of U) was present. Therefore, an inverse
association between E and U would be expected. However, U
is positively associated with the outcome D. Therefore, re-
stricting the analysis to subjects who did not drop out of this
study induces an inverse association (mediated by U) between
exposure and outcome, ie, ARRED�C � 0 is not equal to 1.0.

Figure 6a is a simple transformation of Figure 3 that
also represents bias resulting from structure (3): the associa-
tion between D and C resulting from a direct effect of D on
C in Figure 3 is now the result of U, a common cause of D
and C. We now present 3 additional structures, (Figs. 6b–d),
which could lead to selection bias by differential loss to
follow up.

Figure 6b is a variation of Figure 6a. If prior treatment
has a direct effect on symptoms, then restricting the study to
the uncensored individuals again implies conditioning on the
common effect C of the exposure and U thereby introducing
a spurious association between treatment and outcome. Fig-
ures 6a and 6b could depict either an observational study or an
experiment in which treatment E is randomly assigned, because
there are no common causes of E and any other variable. Thus,
our results demonstrate that randomized trials are not free of
selection bias as a result of differential loss to follow up because
such selection occurs after the randomization.

Figures 6c and d are variations of Figures 6a and b,
respectively, in which there is a common cause U* of E and
another measured variable. U* indicates unmeasured life-
style/personality/educational variables that determine both
treatment (through the arrow from U* to E) and either
attitudes toward attending study visits (through the arrow
from U* to C in Fig. 6c) or threshold for reporting symptoms
(through the arrow from U* to L in Fig. 6d). Again, these 2
are examples of bias resulting from structure (3) because the
bias arises from conditioning on the common effect C of both
a cause U* of E and a cause U of D. This particular bias has
been referred to as M bias.12 The bias caused by differential
loss to follow up in Figures 6a–d is also referred to as bias
due to informative censoring.

Nonresponse Bias/Missing Data Bias
The variable C in Figures 6a–d can represent missing

data on the outcome for any reason, not just as a result of loss
to follow up. For example, subjects could have missing data
because they are reluctant to provide information or because
they miss study visits. Regardless of the reasons why data on
D are missing, standard analyses restricted to subjects with
complete data (C � 0) will be biased.

Volunteer Bias/Self-selection Bias
Figures 6a–d can also represent a study in which C is

agreement to participate (yes � 1, no � 0), E is cigarette
smoking, D is coronary heart disease, U is family history of
heart disease, and U* is healthy lifestyle. (L is any mediator
between U and C such as heart disease awareness.) Under any
of these structures, there would be no bias if the study
population was a representative (ie, random) sample of the
target population. However, bias will be present if the study
is restricted to those who volunteered or elected to participate
(C � 1). Volunteer bias cannot occur in a randomized study
in which subjects are randomized (ie, exposed) only after
agreeing to participate, because none of Figures 6a–d can
represent such a trial. Figures 6a and b are eliminated because
exposure cannot cause C. Figures 6c and d are eliminated
because, as a result of the random exposure assignment, there
cannot exist a common cause of exposure and any another
variable.

Healthy Worker Bias
Figures 6a–d can also describe a bias that could arise

when estimating the effect of a chemical E (an occupational
exposure) on mortality D in a cohort of factory workers. The
underlying unmeasured true health status U is a determinant
of both death (D) and of being at work (C). The study is
restricted to individuals who are at work (C � 1) at the time
of outcome ascertainment. (L could be the result of blood
tests and a physical examination.) Being exposed to the
chemical is a predictor of being at work in the near future,
either directly (eg, exposure can cause disabling asthma), like
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in Figures 6a and b, or through a common cause U* (eg,
certain exposed jobs are eliminated for economic reasons and
the workers laid off) like in Figures 6c and d.

This “healthy worker” bias is an example of bias
resulting from structure (3) because it arises from condition-
ing on the censoring variable C, which is a common effect of
(a cause of) exposure and (a cause of) the outcome. However,
the term “healthy worker” bias is also used to describe the
bias that occurs when comparing the risk in certain group of
workers with that in a group of subjects from the general
population. This second bias can be depicted by the DAG in
Figure 1 in which L represents health status, E represents
membership in the group of workers, and D represents the
outcome of interest. There are arrows from L to E and D
because being healthy affects job type and risk of subsequent
outcome, respectively. In this case, the bias is caused by
structure (1) and would therefore generally be considered to
be the result of confounding.

These examples lead us to propose that the term selec-
tion bias in causal inference settings be used to refer to any
bias that arises from conditioning on a common effect as in
Figure 3 or its variations (Figs. 4–6).

In addition to the examples given here, DAGs have
been used to characterize various other selection biases. For
example, Robins7 explained how certain attempts to elimi-
nate ascertainment bias in studies of estrogens and endome-
trial cancer could themselves induce bias16; Hernán et al.8

discussed incidence–prevalence bias in case-control studies
of birth defects; and Cole and Hernán9 discussed the bias that
could be introduced by standard methods to estimate direct
effects.17,18 In Appendix A.2, we provide a final example: the
bias that results from the use of the hazard ratio as an effect
measure. We deferred this example to the appendix because
of its greater technical complexity. (Note that standard DAGs
do not represent “effect modification” or “interactions” be-
tween variables, but this does not affect their ability to
represent the causal structures that produce bias, as more
fully explained in Appendix A.3).

To demonstrate the generality of our approach to se-
lection bias, we now show that a bias that arises in longitu-
dinal studies with time-varying exposures19 can also be
understood as a form of selection bias.

Adjustment for Variables Affected by Previous
Exposure (or its causes)

Consider a follow-up study of the effect of antiretrovi-
ral therapy (E) on viral load at the end of follow up (D � 1
if detectable, D � 0 otherwise) in HIV-infected subjects. The
greater a subject’s unmeasured true immunosuppression level
(U), the greater her viral load D and the lower the CD4 count
L (low � 1, high � 0). Treatment increases CD4 count, and
the presence of low CD4 count (a proxy for the true level of
immunosuppression) increases the probability of receiving

treatment. We assume that, in truth but unknown to the data
analyst, treatment has no causal effect on the outcome D. The
DAGs in Figures 7a and b represent the first 2 time points of
the study. At time 1, treatment E1 is decided after observing
the subject’s risk factor profile L1. (E0 could be decided after
observing L0, but the inclusion of L0 in the DAG would not
essentially alter our main point.) Let E be the sum of E0 and
E1. The cumulative exposure variable E can therefore take 3
values: 0 (if the subject is not treated at any time), 1 (if the
subject is treated at time one only or at time 2 only), and 2 (if
the subject is treated at both times). Suppose the analyst’s
interest lies in comparing the risk had all subjects been
always treated (E � 2) with that had all subjects never been
treated (E � 0), and that the causal risk ratio is 1.0 (CRRED

� 1, when comparing E � 2 vs. E � 0).
To estimate the effect of E without bias, the analyst

needs to be able to estimate the effect of each of its compo-
nents E0 and E1 simultaneously and without bias.17 As we
will see, this is not possible using standard methods, even
when data on L1 are available, because lack of adjustment for
L1 precludes unbiased estimation of the causal effect of E1

whereas adjustment for L1 by stratification (or, equivalently,
by conditioning, matching, or regression adjustment) pre-
cludes unbiased estimation of the causal effect of E0.

Unlike previous structures, Figures 7a and 7b contain a
common cause of the (component E1 of) exposure E and the
outcome D, so one needs to adjust for L1 to eliminate

FIGURE 7. Adjustment for a variable affected by previous
exposure.

Epidemiology • Volume 15, Number 5, September 2004 Structural Approach to Selection Bias

© 2004 Lippincott Williams & Wilkins 619

D
ow

nloaded from
 http://journals.lw

w
.com

/epidem
 by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

yw
C

X
1

A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dtw

nfK
Z

B
Y

tw
s=

 on 12/03/2024



confounding. The standard approach to confounder control is
stratification: the associational risk ratio is computed in each
level of the variable L1. The square around the node L1

denotes that the associational risk ratios (ARRED�L � 0 and
ARRED�L � 1) are conditional on L1. Examples of stratifica-
tion-based methods are a Mantel-Haenzsel stratified analysis
or regression models (linear, logistic, Poisson, Cox, and so
on) that include the covariate L1. (Not including interaction
terms between L1 and the exposure in a regression model is
equivalent to assuming homogeneity of ARRED�L � 0 and
ARRED�L � 1.) To calculate ARRED�L � l, the data analyst has
to select (ie, condition on) the subset of the population with
value L1 � l. However, in this example, the process of
choosing this subset results in selection on a variable L1

affected by (a component E0 of) exposure E and thus can
result in bias as we now describe.

Although stratification is commonly used to adjust for
confounding, it can have unintended effects when the asso-
ciation measure is computed within levels of L1 and in
addition L1 is caused by or shares causes with a component
E0 of E. Among those with low CD4 count (L1 � 1), being
on treatment (E0 � 1) makes it more likely that the person is
severely immunodepressed; among those with a high level of
CD4 (L1 � 0), being off treatment (E0 � 0) makes it more
likely that the person is not severely immunodepressed. Thus,
the side effect of stratification is to induce an association
between prior exposure E0 and U, and therefore between E0

and the outcome D. Stratification eliminates confounding for
E1 at the cost of introducing selection bias for E0. The net bias
for any particular summary of the time-varying exposure that
is used in the analysis (cumulative exposure, average expo-
sure, and so on) depends on the relative magnitude of the
confounding that is eliminated and the selection bias that is
created. In summary, the associational (conditional) risk ratio
ARRED�L1

, could be different from 1.0 even if the exposure
history has no effect on the outcome of any subjects.

Conditioning on confounders L1 which are affected by
previous exposure can create selection bias even if the con-
founder is not on a causal pathway between exposure and
outcome. In fact, no such causal pathway exists in Figures 7a
and 7b. On the other hand, in Figure 7C the confounder L1 for
subsequent exposure E1 lies on a causal pathway from earlier
exposure E0 to an outcome D. Nonetheless, conditioning on
L1 still results in selection bias. Were the potential for
selection bias not present in Figure 7C (e.g., were U not a
common cause of L1 and D), the association of cumulative
exposure E with the outcome D within strata of L1 could be
an unbiased estimate of the direct effect18 of E not through L1

but still would not be an unbiased estimate of the overall
effect of E on D, because the effect of E0 mediated through
L1 is not included.

ADJUSTING FOR SELECTION BIAS
Selection bias can sometimes be avoided by an ade-

quate design such as by sampling controls in a manner to
ensure that they will represent the exposure distribution in the
population. Other times, selection bias can be avoided by
appropriately adjusting for confounding by using alternatives
to stratification-based methods (see subsequently) in the pres-
ence of time-dependent confounders affected by previous
exposure.

However, appropriate design and confounding adjust-
ment cannot immunize studies against selection bias. For ex-
ample, loss to follow up, self-selection, and, in general, missing
data leading to bias can occur no matter how careful the
investigator. In those cases, the selection bias needs to be
explicitly corrected in the analysis, when possible.

Selection bias correction, as we briefly describe, could
sometimes be accomplished by a generalization of inverse
probability weighting20–23 estimators for longitudinal studies.
Consider again Figures 6a–d and assume that L is measured.
Inverse probability weighting is based on assigning a weight
to each selected subject so that she accounts in the analysis
not only for herself, but also for those with similar charac-
teristics (ie, those with the same vales of L and E) who were
not selected. The weight is the inverse of the probability of
her selection. For example, if there are 4 untreated women,
age 40–45 years, with CD4 count �500, in our cohort study,
and 3 of them are lost to follow up, then these 3 subjects do
not contribute to the analysis (ie, they receive a zero weight),
whereas the remaining woman receives a weight of 4. In
other words, the (estimated) conditional probability of re-
maining uncensored is 1/4 � 0.25, and therefore the (esti-
mated) weight for the uncensored subject is 1/0.25 � 4.
Inverse probability weighting creates a pseudopopulation in
which the 4 subjects of the original population are replaced
by 4 copies of the uncensored subject.

The effect measure based on the pseudopulation, in
contrast to that based on the original population, is unaffected
by selection bias provided that the outcome in the uncensored
subjects truly represents the unobserved outcomes of the
censored subjects (with the same values of E and L). This
provision will be satisfied if the probability of selection (the
denominator of the weight) is calculated conditional on E and
on all additional factors that independently predict both
selection and the outcome. Unfortunately, one can never be
sure that these additional factors were identified and recorded
in L, and thus the causal interpretation of the resulting
adjustment for selection bias depends on this untestable
assumption.

One might attempt to remove selection bias by strati-
fication (ie, by estimating the effect measure conditional on
the L variables) rather than by weighting. Stratification could
yield unbiased conditional effect measures within levels of L
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under the assumptions that all relevant L variables were
measured and that the exposure does not cause or share a
common cause with any variable in L. Thus, stratification
would work (ie, it would provide an unbiased conditional
effect measure) under the causal structures depicted in Fig-
ures 6a and c, but not under those in Figures 6b and d. Inverse
probability weighting appropriately adjusts for selection bias
under all these situations because this approach is not based
on estimating effect measures conditional on the covariates L,
but rather on estimating unconditional effect measures after
reweighting the subjects according to their exposure and their
values of L.

Inverse probability weighting can also be used to adjust
for the confounding of later exposure E1 by L1, even when
exposure E0 either causes L1 or shares a common cause with
L1 (Figs. 7a–7c), a situation in which stratification fails.
When using inverse probability weighting to adjust for con-
founding, we model the probability of exposure or treatment
given past exposure and past L so that the denominator of a
subject’s weight is, informally, the subject’s conditional
probability of receiving her treatment history. We therefore
refer to this method as inverse-probability-of-treatment
weighting.22

One limitation of inverse probability weighting is that
all conditional probabilities (of receiving certain treatment or
censoring history) must be different from zero. This would
not be true, for example, in occupational studies in which the
probability of being exposed to a chemical is zero for those
not working. In these cases, g-estimation19 rather than inverse
probability weighting can often be used to adjust for selection
bias and confounding.

The use of inverse probability weighting can provide
unbiased estimates of causal effects even in the presence of
selection bias because the method works by creating a pseu-
dopopulation in which censoring (or missing data) has been
abolished and in which the effect of the exposure is the same
as in the original population. Thus, the pseudopopulation
effect measure is equal to the effect measure had nobody been
censored. For example, Figure 8 represents the pseudopula-
tion corresponding to the population of Figure 6a when the
weights were estimated conditional on L and E. The censor-
ing node is now lower-case because it does not correspond to
a random variable but to a constant (everybody is uncensored
in the pseudopopulation). This interpretation is desirable

when censoring is the result of loss to follow up or nonre-
sponse, but questionably helpful when censoring is the result
of competing risks. For example, in a study aimed at estimat-
ing the effect of certain exposure on the risk of Alzheimer’s
disease, we might not wish to base our effect estimates on a
pseudopopulation in which all other causes of death (cancer,
heart disease, stroke, and so on) have been removed, because
it is unclear even conceptually what sort of medical interven-
tion would produce such a population. Another more prag-
matic reason is that no feasible intervention could possibly
remove just one cause of death without affecting the others as
well.24

DISCUSSION
The terms “confounding” and “selection bias” are used

in multiple ways. For instance, the same phenomenon is some-
times named “confounding by indication” by epidemiologists
and “selection bias” by statisticians/econometricians. Others use
the term “selection bias” when “confounders” are unmeasured.
Sometimes the distinction between confounding and selection
bias is blurred in the term “selection confounding.”

We elected to refer to the presence of common causes
as “confounding” and to refer to conditioning on common
effects as “selection bias.” This structural definition provides
a clearcut classification of confounding and selection bias,
even though it might not coincide perfectly with the tradi-
tional, often discipline-specific, terminologies. Our goal,
however, was not to be normative about terminology, but
rather to emphasize that, regardless of the particular terms
chosen, there are 2 distinct causal structures that lead to these
biases. The magnitude of both biases depends on the strength
of the causal arrows involved.12,25 (When 2 or more common
effects have been conditioned on, an even more general
formulation of selection bias is useful. For a brief discussion,
see Appendix A.4.)

The end result of both structures is the same: noncom-
parability (also referred to as lack of exchangeability) be-
tween the exposed and the unexposed. For example, consider
a cohort study restricted to firefighters that aims to estimate
the effect of being physically active (E) on the risk of heart
disease (D) (as represented in Fig. 9). For simplicity, we have
assumed that, although unknown to the data analyst, E does
not cause D. Parental socioeconomic status (L) affects the

FIGURE 8. Causal diagram in the pseudopopulation created by
inverse–probability weighting. FIGURE 9. The firefighters’ study.
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risk of becoming a firefighter (C) and, through childhood diet,
of heart disease (D). Attraction toward activities that involve
physical activity (an unmeasured variable U) affects the risk
of becoming a firefighter and of being physically active (E).
U does not affect D, and L does not affect E. According to our
terminology, there is no confounding because there are no
common causes of E and D. Thus, if our study population had
been a random sample of the target population, the crude
associational risk ratio ARRED would have been equal to the
causal risk ratio CRRED of 1.0.

However, in a study restricted to firefighters, the
crude ARRED and CRRED would differ because condition-
ing on a common effect C of causes of exposure and
outcome induces selection bias resulting in noncompara-
bility of the exposed and unexposed firefighters. To the
study investigators, the distinction between confounding
and selection bias is moot because, regardless of nomen-
clature, they must stratify on L to make the exposed and
the unexposed firefighters comparable. This example dem-
onstrates that a structural classification of bias does not
always have consequences for either the analysis or inter-
pretation of a study. Indeed, for this reason, many epide-
miologists use the term “confounder” for any variable L on
which one has to stratify to create comparability, regard-
less of whether the (crude) noncomparability was the result
of conditioning on a common effect or the result of a
common cause of exposure and disease.

There are, however, advantages of adopting a structural
or causal approach to the classification of biases. First, the
structure of the problem frequently guides the choice of
analytical methods to reduce or avoid the bias. For example,
in longitudinal studies with time-dependent confounding,
identifying the structure allows us to detect situations in
which stratification-based methods would adjust for con-
founding at the expense of introducing selection bias. In those
cases, inverse probability weighting or g-estimation are better
alternatives. Second, even when understanding the structure
of bias does not have implications for data analysis (like in
the firefighters’ study), it could still help study design. For
example, investigators running a study restricted to firefight-
ers should make sure that they collect information on joint
risk factors for the outcome and for becoming a firefighter.
Third, selection bias resulting from conditioning on preexpo-
sure variables (eg, being a firefighter) could explain why
certain variables behave as “confounders” in some studies but
not others. In our example, parental socioeconomic status
would not necessarily need to be adjusted for in studies not
restricted to firefighters. Finally, causal diagrams enhance
communication among investigators because they can be
used to provide a rigorous, formal definition of terms such as
“selection bias.”
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APPENDIX

A.1. Causal and Associational Risk Ratio
For a given subject, E has a causal effect on D if the subject’s
value of D had she been exposed differs from the value of D
had she remained unexposed. Formally, letting Di, e � 1 and
Di,e � 0 be subject’s i (counterfactual or potential) outcomes
when exposed and unexposed, respectively, we say there is a
causal effect for subject i if Di, e � 1 � Di, e � 0. Only one of
the counterfactual outcomes can be observed for each subject
(the one corresponding to his observed exposure), ie, Di, e �
Di if Ei � e, where Di and Ei represent subject i’s observed
outcome and exposure. For a population, we say that there is
no average causal effect (preventive or causative) of E on D if
the average of D would remain unchanged whether
the whole population had been treated or untreated, ie, when
Pr(De � 1 � 1) � Pr(De � 0 � 1) for a dichotomous D.
Equivalently, we say that E does not have a causal effect on D
if the causal risk ratio is one, ie, CRRED � Pr(De � 1 � 1)/
Pr(De � 0 � 1) � 1.0. For an extension of counterfactual theory
and methods to complex longitudinal data, see reference 19.

In a DAG, CRRED � 1.0 is represented by the lack of
a directed path of arrows originating from E and ending on D
as, for example, in Figure 5. We shall refer to a directed path
of arrows as a causal path. On the other hand, in Figure 5,
CRREC � 1.0 because there is a causal path from E to C
through F. The lack of a direct arrow from E to C implies that
E does not have a direct effect on C (relative to the other
variables on the DAG), ie, the effect is wholly mediated
through other variables on the DAG (ie, F).

For a population, we say that there is no association
between E and D if the average of D is the same in the subset
of the population that was exposed as in the subset that was
unexposed, ie, when Pr(D � 1�E � 1) � Pr(D � 1�E � 0) for
a dichotomous D. Equivalently, we say that E and D are
unassociated if the associational risk ratio is 1.0, ie,
ARRED � Pr(D � 1�E � 1) / Pr(D � 1�E � 0) � 1.0. The
associational risk ratio can always be estimated from obser-
vational data. We say that there is bias when the causal risk
ratio in the population differs from the associational risk
ratio, ie, CRRED � ARRED.

A.2. Hazard Ratios as Effect Measures
The causal DAG in Appendix Figure 1a describes a

randomized study of the effect of surgery E on death at times
1 (D1) and 2 (D2). Suppose the effect of exposure on D1 is
protective. Then the lack of an arrow from E to D2 indicates
that, although the exposure E has a direct protective effect
(decreases the risk of death) at time 1, it has no direct effect
on death at time 2. That is, the exposure does not influence
the survival status at time D2 of any subject who would
survive past time 1 when unexposed (and thus when ex-
posed). Suppose further that U is an unmeasured haplotype

that decreases the subject’s risk of death at all times. The
associational risk ratios ARRED1

and ARRED2
are unbiased

measures of the effect of E on death at times 1 and 2,
respectively. (Because of the absence of confounding,
ARRED1

and ARRED2
equal the causal risk ratios CRRED1

and
CRRED2

, respectively.) Note that, even though E has no direct
effect on D2, ARRED2

(or, equivalently, CRRED2
) will be less

than 1.0 because it is a measure of the effect of E on total
mortality through time 2.

Consider now the time-specific associational hazard
(rate) ratio as an effect measure. In discrete time, the hazard
of death at time 1 is the probability of dying at time 1 and thus
is the same as ARRED1

. However, the hazard at time 2 is the
probability of dying at time 2 among those who survived past
time 1. Thus, the associational hazard ratio at time 2 is then
ARRED2

�D1 � 0. The square around D1 in Appendix Figure
1a indicates this conditioning. Exposed survivors of time 1
are less likely than unexposed survivors of time 1 to have the
protective haplotype U (because exposure can explain their
survival) and therefore are more likely to die at time 2. That
is, conditional on D1 � 0, exposure is associated with a
higher mortality at time 2. Thus, the hazard ratio at time 1 is
less than 1.0, whereas the hazard ratio at time 2 is greater than
1.0, ie, the hazards have crossed. We conclude that the hazard
ratio at time 2 is a biased estimate of the direct effect of
exposure on mortality at time 2. The bias is selection bias
arising from conditioning on a common effect D1 of exposure
and of U, which is a cause of D2 that opens the noncausal (ie,
associational) path E3 D14 U3 D2 between E and D2.13 In
the survival analysis literature, an unmeasured cause of death
that is marginally unassociated with exposure such as U is
often referred to as a frailty.

In contrast to this, the conditional hazard ratio
ARRED2�D1 � 0,U at D2 given U is equal to 1.0 within each
stratum of U because the path E3 D14 U3 D2 between E
and D2 is now blocked by conditioning on the noncollider U.
Thus, the conditional hazard ratio correctly indicates the
absence of a direct effect of E on D2. The fact that the
unconditional hazard ratio ARRED2�D1

� 0 differs from the
common-stratum specific hazard ratios of 1.0 even though U

Appendix Figure 1. Effect of exposure on survival.
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is independent of E, shows the noncollapsibility of the hazard
ratio.26

Unfortunately, the unbiased measure ARRED2�D1 � 0,U

of the direct effect of E on D2 cannot be computed because U
is unobserved. In the absence of data on U, it is impossible to
know whether exposure has a direct effect on D2. That is, the
data cannot determine whether the true causal DAG generat-
ing the data was that in Appendix Figure 1a versus that in
Appendix Figure 1b.

A.3. Effect Modification and Common Effects
in DAGs

Although an arrow on a causal DAG represents a direct
effect, a standard causal DAG does not distinguish a harmful
effect from a protective effect. Similarly, a standard DAG
does not indicate the presence of effect modification. For
example, although Appendix Figure 1a implies that both E
and U affect death D1, the DAG does not distinguish among
the following 3 qualitatively distinct ways that U could
modify the effect of E on D1:

1. The causal effect of exposure E on mortality D1 is in
the same direction (ie, harmful or beneficial) in both
stratum U � 1 and stratum U � 0.

2. The direction of the causal effect of exposure E on
mortality D1 in stratum U � 1 is the opposite of that
in stratum U � 0 (ie, there is a qualitative interaction
between U and E).

3. Exposure E has a causal effect on D1 in one stratum
of U but no causal effect in the other stratum, eg, E
only kills subjects with U � 0.

Because standard DAGs do not represent interaction, it
follows that it is not possible to infer from a DAG the
direction of the conditional association between 2 marginally
independent causes (E and U) within strata of their common
effect D1. For example, suppose that, in the presence of an
undiscovered background factor V that is unassociated with E
or U, having either E � 1 or U � 1 is sufficient and necessary
to cause death (an “or” mechanism), but that neither E nor U
causes death in the absence of V. Then among those who died
by time 1 (D1 � 1), E and U will be negatively associated,
because it is more likely that an unexposed subject (E � 0)
had U � 1 because the absence of exposure increases the
chance that U was the cause of death. (Indeed, the logarithm
of the conditional odds ratio ORUE�D1

� 1 will approach
minus infinity as the population prevalence of V approaches
1.0.) Although this “or” mechanism was the only explanation
given in the main text for the conditional association of
independent causes within strata of a common effect; none-
theless, other possibilities exist. For example, suppose that in
the presence of the undiscovered background factor V, having
both E � 1 and U � 1 is sufficient and necessary to cause
death (an “and” mechanism) and that neither E nor U causes
death in the absence of V. Then, among those who die by time

1, those who had been exposed (E � 1) are more likely to have
the haplotype (U � 1), ie, E and U are positively correlated. A
standard DAG such as that in Appendix Figure 1a fails to
distinguish between the case of E and U interacting through an
“or” mechanism from the case of an “and” mechanism.

Although conditioning on common effect D1 always
induces a conditional association between independent causes
E and U in at least one of the 2 strata of D1 (say, D1 � 1),
there is a special situation under which E and U remain
conditionally independent within the other stratum (say, D1 �
0). This situation occurs when the data follow a multiplicative
survival model. That is, when the probability, Pr�D1 � 0� U
� u, E � e�, of survival (ie, D1 � 0) given E and U is equal
to a product g(u) h(e) of functions of u and e. The multipli-
cative model Pr�D1 � 0� U � u, E � e� � g(u) h(e) is
equivalent to the model that assumes the survival ratio Pr�D1

� 0� U � u, E � e�/Pr�D1 � 0� U � 0, E � 0� does not
depend on u and is equal to h(e). (Note that if Pr�D1 � 0� U
� u, E � e� � g(u) h(e), then Pr�D1 � 1� U � u, E � e� �
1 – �g(u) h(e)� does not follow a multiplicative mortality
model. Hence, when E and U are conditionally independent
given D1 � 0, they will be conditionally dependent given D1

� 1.)
Biologically, this multiplicative survival model will

hold when E and U affect survival through totally indepen-
dent mechanisms in such a way that U cannot possibly
modify the effect of E on D1, and vice versa. For example,
suppose that the surgery E affects survival through the re-
moval of a tumor, whereas the haplotype U affects survival
through increasing levels of low-density lipoprotein-choles-
terol levels resulting in an increased risk of heart attack
(whether or not a tumor is present), and that death by tumor
and death by heart attack are independent in the sense that
they do not share a common cause. In this scenario, we can
consider 2 cause-specific mortality variables: death from
tumor D1A and death from heart attack D1B. The observed
mortality variable D1 is equal to 1 (death)when either D1A or
D1B is equal to 1, and D1 is equal to 0 (survival) when both
D1A and D1B equal 0. We assume the measured variables are
those in Appendix Figure 1a so data on underlying cause of
death is not recorded. Appendix Figure 2 is an expansion of
Appendix Figure 1a that represents this scenario (variable D2

is not represented because it is not essential to the current

Appendix Figure 2. Multiplicative survival model.
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discussion). Because D1 � 0 implies both D1A � 0 and D1B

� 0, conditioning on observed survival (D1 � 0) is equivalent
to simultaneously conditioning on D1A � 0 and D1B � 0 as
well. As a consequence, we find by applying d-separation13 to
Appendix Figure 2 that E and U are conditionally indepen-
dent given D1 � 0, ie, the path, between E and U through the
conditioned on collider D1 is blocked by conditioning on the
noncolliders D1A and D1B.8 On the other hand, conditioning
on D1 � 1 does not imply conditioning on any specific values
of D1A and D1B as the event D1 � 1 is compatible with 3
possible unmeasured events D1A � 1 and D1B � 1, D1A � 1
and D1B � 0, and D1A � 0 and D1B � 1. Thus, the path
between E and U through the conditioned on collider D1 is
not blocked, and thus E and U are associated given D1 � 1.

What is interesting about Appendix Figure 2 is that by
adding the unmeasured variables D1A and D1B, which function-
ally determine the observed variable D1, we have created an
annotated DAG that succeeds in representing both the condi-
tional independence between E and U given D1 � 0 and the their
conditional dependence given D1 � 1. As far as we are aware,
this is the first time such a conditional independence structure
has been represented on a DAG.

If E and U affect survival through a common mecha-
nism, then there will exist an arrow either from E to D1B or
from U to D1A, as shown in Appendix Figure 3a. In that case,
the multiplicative survival model will not hold, and E and U
will be dependent within both strata of D1. Similarly, if the
causes D1A and D1B are not independent because of a com-
mon cause V as shown in Appendix Figure 3b, the multipli-
cative survival model will not hold, and E and U will be
dependent within both strata of D1.

In summary, conditioning on a common effect always
induces an association between its causes, but this association
could be restricted to certain levels of the common effect.

A.4. Generalizations of Structure (3)
Consider Appendix Figure 4a representing a study

restricted to firefighters (F � 1). E and D are unassociated
among firefighters because the path EFACD is blocked by C.
If we then stratify on the covariate C like in Appendix Figure
4b, E and D are conditionally associated among firefighters in
a given stratum of C; yet C is neither caused by E nor by a
cause of E. This example demonstrates that our previous
formulation of structure (3) is insufficiently general to cover
examples in which we have already conditioned on another
variable F before conditioning on C. Note that one could try
to argue that our previous formulation works by insisting that
the set (F,C) of all variables conditioned be regarded as a
single supervariable and then apply our previous formulation
with this supervariable in place of C. This fix-up fails because
it would require E and D to be conditionally associated within
joint levels of the super variable (C, F) in Appendix Figure 4c
as well, which is not the case.

However, a general formulation that works in all set-
tings is the following. A conditional association between E and
D will occur within strata of a common effect C of 2 other
variables, one of which is either the exposure or statistically
associated with the exposure and the other is either the outcome
or statistically associated with the outcome.

Clearly, our earlier formulation is implied by the new
formulation and, furthermore, the new formulation gives
the correct results for both Appendix Figures 4b and 4c. A
drawback of this new formulation is that it is not stated
purely in terms of causal structures, because it makes
reference to (possibly noncausal) statistical associations.
Now it actually is possible to provide a fully general
formulation in terms of causal structures but it is not
simple, and so we will not give it here, but see references
13 and 14.

Appendix Figure 3. Multiplicative survival model does not
hold. Appendix Figure 4. Conditioning on 2 variables.
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