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1Chapter 3

2Quality Control of Common and Rare Variants

3Kalliope Panoutsopoulou and AU1Klaudia Walter

4Abstract

5Thorough data quality control (QC) is a key step to the success of high-throughput genotyping approaches.
6Following extensive research several criteria and thresholds have been established for data QC at the sample
7and variant level. Sample QC is aimed at the identification and removal (when appropriate) of individuals
8with (1) low call rate, (2) discrepant sex or other identity-related information, (3) excess genome-wide
9heterozygosity and homozygosity, (4) relations to other samples, (5) ethnicity differences, (6) batch effects,
10and (7) contamination. Variant QC is aimed at identification and removal or refinement of variants with
11(1) low call rate, (2) call rate differences by phenotypic status, (3) gross deviation from Hardy-Weinberg
12Equilibrium (HWE), (4) bad genotype intensity plots, (5) batch effects, (6) differences in allele frequencies
13with published data sets, (7) very low minor allele counts, (8) low imputation quality score, (9) low variant
14quality score log-odds, and (10) few or low quality reads.

15Key words Genome-wide association study, Whole genome sequencing, Sample quality control,
16Variant quality control

171 Introduction

18High-throughput approaches such as genome-wide association
19scans (GWAS) and whole genome sequencing (WGS) technologies
20are used to interrogate the genotypes of tens of thousands of
21individuals at hundreds of thousands or millions of sites across the
22genome for association with diseases or other complex traits. Rig-
23orous quality control (QC) at the sample and variant level is crucial
24to the success of the study because it can dramatically reduce the
25number of false positive or false negative findings down the line.
26Extensive research over the past 10 years in the field of GWAS has
27established several commonly accepted criteria and thresholds for
28sample and variant QC after the genotype calling process
29[1, 2]. Most of these quality control steps are applicable to sequenc-
30ing data but additional filters have, and will constantly be developed
31as these technologies evolve. Here, we describe the most commonly
32applied sample and variant QC steps in datasets from GWAS and
33low-depth WGS studies. We recommend that most of the QC
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34steps, and in particular the example thresholds that are presented
35here based on previous research are tested for suitability and
36adapted to each study.

372 Sample Quality Control

38The aim of performing sample quality control is to remove
39low-quality samples often caused by poor DNA quality and/or
40insufficient quantity and/or contamination; and to identify indivi-
41duals with discordant information based on other sources, acciden-
42tal swaps, samples that show batch effects, duplicated and related
43samples and ethnic outliers. It is recommended that QC at the
44sample level is best carried out before variant QC because it can
45adversely influence variant QC metrics. In addition, sample QC
46metrics can also be influenced by bad quality variants so variants
47with high missing genotype rates should not be taken into consid-
48eration when calculating these metrics. This can be achieved by
49pre-filtering the dataset for bad quality variants before proceeding
50to sample QC. With the exception of the sex determination QC all
51other sample QC steps are carried out using autosomal SNPs only.

2.1 Sample Call Rate 52The proportion of missing genotypes per sample is a good indicator
53of DNA quality. Samples with high proportion of missing geno-
54types (i.e., low call rate) will typically fail other sample QC metrics
55and if they are not removed from the data they could lead to
56spurious associations. Previous GWAS studies have excluded sub-
57jects with missing genotype rate greater than 2%–5%. However,
58because this threshold depends on several study-specific factors an
59empirical threshold should be determined by examining the distri-
60bution of the missing genotype proportion per individual across all
61study samples.
62

2.2 Sex
Discrepancies and
Other Identity Checks

63Self-reported sex is usually available from subject enrolment but the
64sex of an individual can also be inferred from X chromosome
65genetic data. Discrepancies between these two sources of informa-
66tion may indicate sample swaps or sample contamination or incor-
67rect data entry for self-reported sex. These can be investigated
68further by feeding back conflicting sex information to the collection
69centers. Having the correct sex information is also important in
70studies where sex is included as a covariate in the analysis or to
71stratify males and females for calculating effect sizes in separate in
72studies of sexual dimorphic traits.
73Before a genotyping or sequencing experiment takes place,
74some labs run smaller-scale marker assays in Sequenom MassAR-
75RAY iPLEX and Fluidigm platforms. Sex determination markers
76contained in these platforms can be used to estimate genetic sex and
77this can serve as a basic concordance test between genetically
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78estimated and self-reported sex information. However, typically in
79GWAS or WGS experiments sex is inferred by calculating mean
80homozygosity across all variants on the X chromosome. Women
81have two copies of the X chromosome whereas males have only one
82copy so they cannot be heterozygous for typed variants on this
83chromosome. The most commonly used quality control software
84(PLINK) [3, 4] will call a sample male if the X chromosome
85homozygosity rate is more than 0.8; a female call is made if this
86estimate is less than 0.2. Samples that fall between these two thresh-
87olds are ambiguous and often this correlates with poor call rate
88and/or contamination. In rare instances this can be attributed to
89chromosomal abnormalities.
90Further checks for sample identity can be performed by check-
91ing concordance of genotypes for the same individuals at a set of
92variants genotyped in more than one platform. For example, geno-
93type concordance of a panel of variants from Sequenom/Fluidigm
94platforms can be checked against genotypes derived from GWAS or
95WGS for the same individuals at these markers. And genotypes
96derived from a sequencing experiment can be compared against
97genotypes derived from a GWAS experiment if these exist for the
98same or a subset of common individuals. When enough overlapping
99markers are available the degree of relatedness between samples can
100be estimated by calculating genome-wide IBD as described in the
101relatedness QC section.
102

2.3 Heterozygosity 103Excess genome-wide heterozygosity is also a very good indicator of
104poor DNA quality and/or sample contamination. In the case of
105rare SNPs, excess heterozygosity can also be caused by differences
106in ethnicity of the samples assayed. On the other hand, excess
107genome-wide homozygosity may indicate some degree of
108inbreeding.
109The mean genome-wide heterozygosity of a sample is the
110fraction or the proportion of non-missing genotypes that are het-
111erozygous in relation to all the genotypes. This metric is platform-
112and sample-specific; it varies according to the marker content, the
113proportion of rare to common variants that have been assayed and
114the population examined. The threshold is therefore best deter-
115mined by examining the distribution of mean genome-wide het-
116erozygosity of all samples separately for common and rare SNPs. A
117reasonable approach is to remove samples that are plus or minus
1183 standard deviations from the mean as shown in Fig. 1.
119

2.4 Relatedness 120Having related individuals in the data may be desirable due to the
121study design (for example family-based studies or isolated popula-
122tions) but can also be introduced accidentally (cryptically related
123and/or duplicated samples). Estimating relatedness with genetic
124data is an important step in the QC process; the goal is to validate
125known (recorded) relationships, to identify pedigree errors, to

Quality Control



126decide on the analysis strategy that correctly accounts for related/
127duplicated samples, or to remove the related/duplicated pairs (usu-
128ally one individual from a related pair) from downstream analysis.
129For family-based studies differences between recorded and esti-
130mated relationships could indicate sample swaps or adoption, mis-
131attributed paternity, etc. For case-control and population-based
132cohorts cryptically related or accidentally duplicated individuals
133can significantly inflate the significance of the association study
134results. These individuals are either removed from the analysis or
135kept in, but the data will then require analysis with approaches that
136appropriately account for relatedness, for example linear mixed
137models (LMMs).
138In a homogeneous sample, the degree of relatedness between
139samples can be estimated by calculating genome-wide IBD (iden-
140tity-by-descent) given IBS (identity-by-state) information. IBS is a
141term used to describe two identical alleles or two identical segments
142or sequences of DNA. An IBS segment is identical by descent in
143two or more individuals if they have inherited it from a common
144ancestor without recombination. Duplicated samples and monozy-
145gotic twins are expected to share 2 alleles IBD at every locus so the
146proportion of IBD equals 1, for parent-offspring pairs IBD is 0.5
147and this value halves for second-degree (0.25), third-degree rela-
148tives (0.125), and so on. IBS/IBD calculations are affected by
149linkage disequilibrium (LD) so it is recommended to remove highly
150correlated markers by a method called LD-pruning as well as com-
151plex regions such as the MHC (Major Histocompatibility Com-
152plex) region before the IBD calculations take place. In practise,

Fig. 1 (a) Heterozygosity versus call rate. Individuals with mean heterozygosity more or less than three
standard deviations (SD) from the mean are labeled in red. (b) Discordance is strongly correlated with
heterozygosity, where discordance (in %) is calculated from a comparison between sequenced and genotyped
variants (modified from the UK10K cohorts study). The lines at 2SD and 3SD mark the two times and three
times standard deviation from the sample mean of the heterozygous rate and the lines at 3% and 5% show
cutoffs for the discordance rate. A threshold at 3SD would capture more or less samples with a discordance
rate of >5%
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153because of fluctuations that can be introduced by the LD structure
154and by genotyping/sequencing errors the threshold of the propor-
155tion of IBD > 0.9 is used to identify individuals that are duplicated
156and the threshold of the proportion of IBD> 0.2 is used to identify
157individuals that are second-degree or closer relatives. In outbred
158populations, samples that may show an unexpectedly large number
159of relationships with other samples at even lower IBD thresholds
160may indicate subtle contamination.
161

2.5 Ethnicity 162Population stratification can be a major confounding factor in
163genetic association studies. If undetected, it can lead to inflation
164of the test statistic and false positive associations due to the differ-
165ences in allele frequency between the different populations. To
166guard against it, studies in outbred populations try to match indi-
167viduals for broad ethnic background upon recruitment and then
168rely on statistical approaches to remove ethnic outliers or to correct
169for subtle population stratification. We present below two of the
170most commonly used approaches to identify and remove ethnic
171outliers and admixed individuals.
172Ethnic outliers can be identified by principal component analy-
173sis (PCA) [5] or multidimensional scaling approaches (MDS) [3]
174which cluster individuals depending on their genetic similarity.
175Genetic data from sampled individuals can be analyzed alone or
176merged with genetic data from samples of known ethnicity from
177source populations or publically available datasets. Publically avail-
178able datasets comprising samples with known ethnicities are getting
179larger and more diverse; the widely used 1000 Genomes Project
180data contains genotypes of 2504 individuals from 26 populations
181[6]. Clustering of samples can be visualized onto a two-dimensional
182projection on axes of genetic variation termed principal compo-
183nents. Ethnic outliers are typically removed from the dataset but
184more subtle population stratification may not be picked up during
185this step; however, it can be corrected or accounted for downstream
186of the QC process. For example, including principal components as
187covariates in the association analysis, genomic control, linear mixed
188models, and LD score regression are approaches that can correct for
189subtle population stratification.
190For whole genome sequence data the number of singletons per
191sample can also be used to identify samples with different ancestry.
192In general, there is a positive correlation between the number of
193singletons called and the read coverage (or depth) of the sequenced
194fragments, where read coverage or depth means how many
195sequenced fragments overlap each nucleotide on average after
196alignment to a reference genome. However, samples from different
197ancestries will appear as outliers when plotting the number of
198singletons versus average read depth for each sample (Fig. 2).
199
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2.6 Batch Effects 200Batch effects between samples in a single experiment can introduce
201bias in the analysis and lead to noise and false positive associations.
202Batch effects can be introduced by several sources, for example due
203to different sources of DNA (saliva vs. blood), different collections,
204DNA extraction, genotyping or sequencing centers, as well as
205different chips and sequencing platforms available. Batch effects
206are highly undesirable and best avoided by careful planning at the
207start of the study. Often, studies combine samples post-hoc and
208genotyping/sequencing processes are carried out in batches over a
209long period of time making the introduction of these effects
210unavoidable. QC fails partitioned per plate can identify batch
211effects for samples on different plates. Fortunately, gross batch
212effects are picked up by PCA or MDS; the principal components
213that are capturing this can be used as covariates in the analysis to
214eliminate some of this variation. Samples that have been geno-
215typed/sequenced in duplicate could be useful to detect suspected
216batch effects particularly if these are more subtle. It is also possible
217to identify a subset of genotypes that cause this bias and remove
218these markers from further analysis as described in the variant QC
219section.
220

2.7 Sequence-
Specific Checks for
Sample Contamination

221Additional checks for sample contamination can be performed for
222WGS data. For example, if array-based genotypes are available, it is
223possible to estimate the degree of the sample contamination and
224even to detect the source of the contamination by calculating like-
225lihoods based on two-sample mixture models with the publicly
226available software VerifyBamID (http://genome.sph.umich.edu/
227wiki/VerifyBamID) [7]. VerifyBamID requires two input files, a
228file in VCF format that contains external genotypes or allele fre-
229quency information, and a file in BAM format that contains the

Fig. 2 Depth versus number of singletons. Samples with different ancestries,
depending on the population, might be distinguished by a higher number of
singletons, i.e., variants that are not shared with other samples in the cohort
(modified from the UK10K cohorts study)

Kalliope Panoutsopoulou and Klaudia Walter



230sequenced reads. There are two options available, free-mix and
231chip-mix. The first option, free-mix, can be used for estimating
232contamination if only sequence data are available, and the second
233option, chip-mix, can be used for estimating contamination or
234sample swaps when also array-based genotype data are available. If
235CHIPMIX! 0.02 and/or FREEMIX! 0.02, it means that 2% or
236more of non-reference bases are observed in reference sites. In
237those cases, it is recommended to inspect the data more carefully
238for the possibility of contamination.
239An alternative way to check for sample contamination is to
240compare the genotypes from the sequence data with the genotypes
241from existing GWAS data. If the overall discordance or the
242non-reference discordance (NRD) appears to be high between the
243two data sources, then this also points to sample contamination
244(Fig. 1). The NRD is calculated only from the non-reference
245(or alternative) genotypes, which usually represent the minor
246alleles, but not exclusively. In a variant call set based on sequenced
247reads the reference allele (REF) and the alternative allele (ALT) are
248clearly allocated, since reference genomes are being used for align-
249ing the sequenced reads from next generation sequencing plat-
250forms. Mostly ALT will be the minor allele, but in some cases it
251will be the major allele. Often a few samples will be contaminated
252and they will appear as outliers. However, if the outliers appear as a
253smear or as a long tail of the main distribution, it might reveal a
254widespread low level sample contamination which should be exam-
255ined more closely.
256

2573 Variant Quality Control

258Variant QC usually follows after the individuals that fail sample QC
259have been removed from the dataset. As with sample QC, variant
260QC is performed to ensure that only high-quality variants are
261included in downstream analysis. The main steps are described
262below.

3.1 Genotype
Call Rate

263As with sample call rate, variants with high degree of missingness
264across study samples constitute low-quality variants that can intro-
265duce false positive associations and hinder the identification of truly
266associated variants. To determine an appropriate threshold, the
267distribution of missing data proportion for each variant should be
268examined. Typically, GWAS studies exclude variants with missing
269call rate above 2%–5%. For low-frequency or rare variants a more
270stringent threshold is recommended and this is typically set at 1%.
271
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3.2 Call Rate
Differences by
Phenotypic Status

272Spurious associations can be introduced when call rate differs sig-
273nificantly by case/control status [8]. This can be examined with a
274chi square test of non-random missingness in cases versus controls.
275Removal of variants with p < 10"4 has been reported in the
276literature.
277

3.3 Deviation from
Hardy-Weinberg
Equilibrium (HWE)

278In a relatively homogeneous population, gross departures from
279HWE can be indicative of genotyping error. This is evaluated by
280calculating Hardy-Weinberg test statistics for each variant using an
281exact test. However, departures from HWE may also be due to
282selection and therefore, in a case-control study this QC step is
283usually performed in controls. Various HWE p-value exact thresh-
284olds have been employed in GWAS ranging from less stringent to
285more stringent (p < 5 # 10"12 to p < 0.0001) and studies have
286chosen to either remove the variants that fail this filter or flag them
287for further scrutiny.
288

3.4 Genotype Cluster
Plots

289Genotype calling algorithms vary in their ability to call common
290and rare variants correctly. Therefore, for each associated variant
291one needs to scrutinize its genotype cluster plots. These are scatter
292plots of normalized probe intensities for each individual. For a
293bi-allelic common variant a good quality cluster plot is expected
294to show three clearly distinct clusters: one for the individuals who
295are homozygotes for the major allele, one for the heterozygotes
296and one for the homozygotes of the minor allele (Fig. 3). Upon

Fig. 3 Genotype intensity (cluster) plots for a rare variant. Depicted in blue are the individuals that are
homozygotes for the major allele (AA), in green are the heterozygotes (AB), and in red is the homozygote for
the minor allele (BB). Missing calls are depicted in gray. (a) Shows a good cluster plot (b) shows a bad cluster
plot where several heterozygotes have not been called
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297visual inspection variants with overlapping clusters and/or samples
298that have not been called or have been incorrectly assigned to a
299cluster should be removed from the analysis. Genotype calling is
300even more problematic for rare variants. The minor allele cluster
301may be composed of none or a few calls and any missing or incor-
302rectly assigned calls for rare variants will have a bigger effect on the
303apparent association with a trait or disease. Therefore, it is recom-
304mended that removal of rare variants based on imperfect clustering
305is more stringent than for common variants.
306

3.5 Variants Causing
Batch Effects

307As discussed in the sample QC section there are instances where
308batch effects could be alleviated by removing the variants that cause
309them, obviating the need for correcting for batch effects on a
310genome-wide scale. As examples we present two different
311approaches that were used to remove batch effects in two high
312profile GWAS and WGS studies, the African Genome Variation
313Project [9] and the UK10K project [10]. In the former, principal
314component analysis showed clear batch effects between samples
315that were typed on two versions of the Illumina HumanOmni
3162.5 M platform, the octo and the quad Beadchips. The principal
317components that captured this separation were identified and SNP
318loadings were calculated along these principal components in order
319to remove highly weighted SNPs. The authors checked the corre-
320lation of SNP weights and genotype discrepancy between a subset
321of samples that were typed on both platforms and found this to be
322highly correlated. Subtle chip effects and/or chip effects at rare
323variants may not be picked up by the PCA approach. For example,
324panel A of Fig. 3 shows the genotype calls of cases that were typed
325on one version of the Illumina Human CoreExome Beadchip
326(v1.0) and panel B shows the genotype calls of controls that were
327typed on the next version of the same chip (v1.1). In panel B several
328heterozygotes have not been called. A genotype concordance test
329where missing calls are not taken into account will not pick this up
330this either. A stringent threshold for call rate differences by pheno-
331typic status should remove most of these variants but the best way
332to ensure that these have been called accurately is by examining the
333genotype intensity plots.
334In the UK10K project [10] where ~4000 samples from two
335cohorts were sequenced in two different centers batch effects were
336visualized in a multidimensional scaling analysis by labeling the
337samples by cohort and sequencing center (Fig. 4). Then logistic
338regression models were fitted using sequencing center as the case/
339control status to test for allele frequency differences between the
340two centers and by treating the cohort of origin as a covariate.
341Variants that showed a significant association with sequencing cen-
342ter were removed from further analysis. However, this approach can
343be only used for variants that are not too rare (e.g., MAF > 1%).
344
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3.6 Allele Frequency
Comparisons with
1000G and UK10K

345To analyze the overall quality of the variant calling, the allele
346frequencies of the call set can be compared to an existing published
347data set such as the 1000 Genomes Project [6] or the UK10K
348Project [10] in a case-control analysis manner. Variant sites that
349differ greatly in allele frequencies could be removed to boost the
350quality of the call set. Additionally, common variants with allele
351frequency greater than 5% should be mostly shared with those
352large-scale sequencing data sets.
353

3.7 MAF and Minor
Allele Count (MAC)
Filters

354MAF filters are optional but they can eliminate a lot of noise in the
355data. This is particularly important for studies that have been typed
356on older genotyping platforms and called with earlier versions of
357genotype calling algorithms with poor performance at calling rare
358variants. Imposing a MAF filter of less than 1% across all samples is
359strongly recommended if the data is to be used for imputation.
360Minor allele count filters for cases and controls in separate are more
361robust to study sample size and are more effective filters for partic-
362ularly unbalanced case/control designs. In an unbalanced study
363design the MAC but not necessarily the MAF will be different in
364cases and controls which can invalidate the assumptions of the
365association test, inflate the test statistic, and lead to spurious asso-
366ciations at low frequency or rare variants [11].
367

3.8 Imputation to Fill
in Missing Genotypes
and Post
Imputation QC

368A large proportion of the genotypes that will be removed by the
369variant quality control steps above will be captured by genotype
370imputation [12–14]. In addition, imputation using the latest refer-
371ence panel by the HRC Consortium (McCarthy AU2et al. 2016) (com-
372prising 64,976 haplotypes at 39,235,157 SNPs constructed using
373whole genome sequence data from 20 studies of predominantly
374European ancestry) will lead to accurate genotype imputation at

Fig. 4 Sample batch effects. (a) A multi-dimensional scaling analysis (MDS) highlights the sample batch
effects for two cohorts sequenced at two different centers over some period of time by plotting the first
component against the second component. (b) The first two MDS components after removing the batch effect.
Both panels show data adapted from the UK10K cohorts study
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375minor allele frequencies as low as 0.1%. Imputation is a probabilistic
376approach and the accuracy depends on many factors including the
377density and content of the platform used to genotype the SNPs, as
378well as the ethnicity of the study population. The most widely used
379metric for imputation accuracy is the imputation information score
380which ranges from 0 to 1. Variants with imputation information
381score <0.3–0.4 are considered low quality and are typically
382removed from downstream analysis. In practise these filters are
383best determined by sequential filtering and examination of the
384inflation in a quantile-quantile (QQ) plot.
385

3.9 Sequence-Based
Variant Quality
Score QC

386The procedure of the variant quality score recalibration (VQSR)
387aims at calculating a new quality score VQSLOD (variant quality
388score log-odds) that is supposed to be well calibrated and therefore
389allows fine-tuning of the specificity and sensitivity of the variant call
390set (https://software.broadinstitute.org/gatk). In other words,
391fine-tuning the specificity and sensitivity means maximizing the
392number of variants called and minimizing the false positive rate at
393the same time. The VQSR method uses machine learning algo-
394rithms, i.e., Gaussian mixture models, to help distinguish between
395true and false variants by combining annotations from several
396sources (e.g., read depth, mapping quality, and inbreeding coeffi-
397cient) and by training them against a trustworthy set of variants.
398This approach results in determining a threshold for the VQSLOD
399score from the sensitivity/specificity of the variant call set against
400the training set to filter out the low-quality variants.
401

3.10 Imputation
Refinement for
Low-Depth
Sequencing Data

402For cost reasons most whole genome sequencing studies so far were
403sequenced at low read depth, i.e., less than ~10# (a read depth of
40410# means that each nucleotide was covered on average by
40510 sequenced reads). To improve the quality of variants in regions
406that were covered only by a few or low-quality reads, the idea is to
407borrow information from other samples. Therefore, it is customary
408to add a genotype imputation step, which helps in refining the
409genotypes by phasing them into haplotypes first and then filling in
410missing or low-quality genotypes by searching for similar haplo-
411types. This approach is based on Hidden Markov Models (HMM)
412that calculate a probability of each genotype for each of the missing
413genotypes [12–14].
414

415 References

417 1. TheWellcome Trust Case Control Consortium
418 (2007) Genome-wide association study of
419 14,000 cases of seven common diseases and
420 3,000 shared controls. Nature 447
421 (7145):661–678. https://doi.org/10.1038/
422 nature05911

4232. Anderson CA, Pettersson FH, Clarke GM et al
424(2010) Data quality control in genetic case-
425control association studies. Nat Protoc 5
426(9):1564–1573. https://doi.org/10.1038/
427nprot.2010.116

4283. Purcell S, Neale B, Todd-Brown K et al (2007)
429PLINK: a tool set for whole-genome

Quality Control



430 association and population-based linkage ana-
431 lyses. Am J Hum Genet 81(3):559–575.
432 https://doi.org/10.1086/519795

433 4. Chang CC, Chow CC, Tellier LC et al (2015)
434 Second-generation PLINK: rising to the chal-
435 lenge of larger and richer datasets. Gigascience
436 4:7. https://doi.org/10.1186/s13742-015-
437 0047-8

438 5. Reich D, Price AL, Patterson N (2008) Princi-
439 pal component analysis of genetic data. Nat
440 Genet 40(5):491–492. https://doi.org/10.
441 1038/ng0508-491

442 6. 1000 Genomes Project Consortium, Auton A,
443 Brooks LD et al (2015) A global reference for
444 human genetic variation. Nature 526
445 (7571):68–74. https://doi.org/10.1038/
446 nature15393

447 7. Jun G, Flickinger M, Hetrick KN et al (2012)
448 Detecting and estimating contamination of
449 human DNA samples in sequencing and
450 array-based genotype data. Am J Hum Genet
451 91(5):839–848. https://doi.org/10.1016/j.
452 ajhg.2012.09.004

453 8. Clayton DG, Walker NM, Smyth DJ et al
454 (2005) Population structure, differential bias
455 and genomic control in a large-scale, case-con-
456 trol association study. Nat Genet 37
457 (11):1243–1246. https://doi.org/10.1038/
458 ng1653

4599. Gurdasani D, Carstensen T, Tekola-Ayele F
460et al (2015) The African genome variation
461project shapes medical genetics in Africa.
462Nature 517(7534):327–332. https://doi.
463org/10.1038/nature13997

46410. Walter K, Min JL, Huang J et al (2015) The
465UK10K project identifies rare variants in health
466and disease. Nature 526(7571):82–90.
467https://doi.org/10.1038/nature14962

46811. Ma C, Blackwell T, Boehnke M et al (2013)
469Recommended joint and meta-analysis strate-
470gies for case-control association testing of sin-
471gle low-count variants. Genet Epidemiol 37
472(6):539–550. https://doi.org/10.1002/gepi.
47321742

47412. Browning BL, Browning SR (2009) A unified
475approach to genotype imputation and
476haplotype-phase inference for large data sets
477of trios and unrelated individuals. Am J Hum
478Genet 84(2):210–223. https://doi.org/10.
4791016/j.ajhg.2009.01.005

48013. Fuchsberger C, Abecasis GR, Hinds DA
481(2015) minimac2: faster genotype imputation.
482Bioinformatics 31(5):782–784. https://doi.
483org/10.1093/bioinformatics/btu704

48414. Howie B, Marchini J, Stephens M (2011)
485Genotype imputation with thousands of gen-
486omes. G3 (Bethesda) 1(6):457–470. https://
487doi.org/10.1534/g3.111.001198

Kalliope Panoutsopoulou and Klaudia Walter



Author Queries
Chapter No.: 3 394545_1_En

Query Refs. Details Required Author’s response

AU1 Please check whether the affiliation and corre-
spondence details are presented correctly.

AU2 Please provide complete details for Ref.
"McCarthy et al. 2016".


