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4Abstract

5Genetic association studies have made a major contribution to our understanding of the genetics of
6complex disorders over the last 10 years through genome-wide association studies (GWAS). In this chapter,
7we review the key concepts that underlie the GWAS approach. We will describe the “common disease,
8common variant” theory, and will review how we finally afforded to capture the common variance in
9genome to make GWAS possible. Finally, we will go over technical aspects of GWAS such as genotype
10imputation, epidemiologic designs, analysis methods, and considerations such as genomic inflation, multi-
11ple testing, and replication.
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141 Introduction

15It has long been known that the risk of complex disorders such as
16cardiovascular diseases, type 2 diabetes, or cancer is highly affected
17by the genetic background of the individual, however, the exact
18genetic structures that convey the risk were unknown. Researchers
19have applied different approaches in recent decades to pinpoint the
20genes that predispose individuals to complex disorders. In this
21chapter we focus on the genome-wide association study or
22GWAS, a novel approach that has revolutionized the study of
23genetics of complex disorders. This approach examines the whole
24genome in an agnostic system for regions where DNA sequence
25variations regulate a complex trait or affect the risk of the disease.
26The findings of GWAS could have several implications. It could
27either be used to identify individuals who are at a higher risk of the
28disease or to shed light on pathways that underlie complex disease.
29The latter not only enhances our knowledge of the disease, but may
30also contribute to developing novel medications. Alternatively, this
31information could be used in the context of precision medicine to
32tailor the medication for better effects or less adverse effects. In this
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33chapter, we will briefly review the technology, study design, and
34analytical methods that are used in GWAS.

352 Genetic Association Versus Linkage Study

2.1 Genetic Variants 36The genome or the totality of the genetic material of a cell varies
37from individual to individual. The variations could be existence of
38an excess piece of DNA (insertion), missing pieces (delete), or
39single nucleotide mutations [1]. When mutations are present in
40more than 1% of the population, they are called single nucleotide
41polymorphism or SNP. However, in recent years, mutations are
42referred to as rare or low-frequency SNPs in the literature. Given
43their simplicity, abundance, and dispersion across the whole
44genome, SNPs were the first and yet are the most common type
45of variation that is studied in GWAS. Insertion and deletions
46(Indel)s are also studied in recent GWAS next to SNPs.
47

2.2 Common or Rare
Variants

48Variants have different frequencies. Some are present in a small
49proportion of the population and some others are very common.
50There are also private variants that are only identified in one indi-
51vidual. So far millions of variants are discovered in humans and
52sequencing further individuals will discover more novel variants.
53The novel variants, of course, are likely to be rare variants in general
54population. However, any rare or low-frequency variant may be
55common in a specific ethnic group or an isolated population.
56The frequency of the variants is commonly expressed by minor
57allele frequency (MAF). The fraction indicates the abundance of the
58less common variant in the pool of alleles in the reference popula-
59tion. For instance, a MAF of 0.3 means that 30% of the alleles
60carried by the populations are the one that is less common in the
61reference population. The frequencies could be different in study
62population than the reference population. As a result, MAF in a
63sample may sometimes exceed 0.5.
64

2.3 Common Disease
Common Variant
Hypothesis

65Common disease, common variant hypothesis, is one of the foun-
66dations of GWAS. This hypothesis states that common disorders are
67likely to be influenced by common genetic variants. On one hand,
68given that common diseases occur in a large proportion of the
69population, the causal genes could not be rare. On the other
70hand, the causal variants should, in comparison with rare variants,
71have a small effect. Otherwise, nearly all who have inherited the
72deleterious variants should develop the disease which is in contrast
73to the multifactorial nature of the complex diseases. For instance, a
74single high penetrance variant with a MAF of 0.30 should lead to a
75disease that happens in nearly 30% of the population. Therefore,
76common variants by definition cannot have high penetrance. How-
77ever, genetic studies have shown that complex disorders such as
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78cardiovascular diseases and cancer are highly heritable. The conclu-
79sion is that common diseases are caused by multiple genetic
80variants.
81In recent decade GWAS has tested the common disease, com-
82mon variant hypothesis for a wide range of traits and diseases
83[2]. Although the variants that are identified are continuously
84increasing, the small effect of genetic variants has led to small
85percentage of variance explained by these variants. This supports
86the common disease common variant hypothesis, although this
87does not exclude the role of rare variants in developing common
88diseases next to common variants.
89

2.4 Genome-Wide
Approaches for
Monogenic and
Complex Disorders

90Genome-wide search for genetic risk factors has been done in two
91methods: genome-wide linkage study (GWLS) and GWAS. GWLS
92looks for physical segments of the genome that is linked to a given
93trait or disease. It compares the inheritance of traits or diseases with
94inheritance of DNA segments in a pedigree. GWLS was applied
95successfully to identify rare genetic variants that contribute to
96monogenic disorders or highly penetrant traits. It was also applied
97to multifactorial traits and diseases to map their regulating locus.
98Nevertheless, it had limited success when it was applied to common
99disorders like coronary artery disease, asthma, diabetes, or psychi-
100atric disorders. Therefore, it was concluded that the genetic archi-
101tecture of common disorders is different from rare disorders and
102will require different investigation approaches [3].
103GWAS, however, is based on use of a large number of SNPsor
104other markers that are genotyped in known linkage regions and is
105studied in unrelated individuals. Compared to GWLS, GWAS have
106several advantages. First, it has a better genetic resolution. The
107resolution is in centimorgan range for GWLS and in kilobases for
108GWAS. Therefore, GWAS pinpoints the causal gene in a better way.
109In fact, the most significant SNP in GWAS is either the causal
110variant or is located in its vicinity. GWLS, however, highlights a
111large region that may include up to hundreds of genes. GLWS are
112also difficult to be used for late-onset diseases. A researcher should
113find family pedigrees including a couple of generations. However,
114GWAS could be applied to general populations with different age
115distributions. Finally, GWLS is the most efficient when one gene is
116inherited in a family but when it comes to multiple genes in general
117population, GWAS provide a better statistical power [4].
118In conclusion, the most efficient approach to study genetics of a
119trait or disorder depends on the magnitude of effect and allele
120frequency of the variants that will be used. The variants with large
121effects are not likely to be common. Common variants with small
122effect are the ones that are targeted by GWAS and rare variants with
123large effect are best studied by GWLS. Rare variants with small
124effects are a real challenge to study and are not investigated much in
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125recent years. Sequencing in large sample sizes may be an approach
126for this type of genetic effects.
127

1283 Capturing the Common Variation in Genome

3.1 Linkage
Disequilibrium

129Genetic variants that are located on a chromosome are inherited
130together. However, this tie is broken apart through generations by
131genetic recombination. Genetic recombination involves the pairing
132of homologous chromosomes during meiosis. In a population with
133random mating, recombination events decrease the correlation
134between genetic variants and eventually all alleles in the population
135become independent. When two variants are inherited independent
136of each other, they are called “in linkage equilibrium.” Likewise,
137the correlation that may remain between two variants is referred to
138as “linkage disequilibrium” or LD. LD describes the degree to
139which a genetic variant is inherited together with another genetic
140variant in a population over time. LD between two genetic variants
141could be different from one population to another depending on
142the distance from the founder population, and mating patterns. For
143instance, the genome of African and African-descent populations,
144due to being the oldest human population, have gone through
145more recombination events and therefore include smaller corre-
146lated regions compared to other ethnic groups such as Caucasians
147or Asians.
148The level of linkage disequilibrium between two genes is
149measured by various indices [5]. The coefficient of linkage disequi-
150librium (D) is defined as

D ¼ PAB " PA # PBð Þ

151where PA and PB are the allele frequency at two loci and PAB is
152the frequency of A and B occurring together (AB haplotype). D is
153a difficult coefficient to interpret since its range of possible values
154depends on the frequencies of the two alleles. As an alternative,D

0
is

155defined as D divided by the maximum difference between the
156observed and expected allele frequencies (D

0
¼ D/Dmin). D

0
varies

157between" 1 and 1. AD
0
of 1 or" 1means that there is no evidence

158for recombination between the markers. If allele frequencies are the
159same, the two variants give the same information and
160could be used as surrogates for each other. A D

0
of 0 indicates

161that the two variants are inherited independent of each other
162(in perfect equilibrium).

163An alternative to D
0
is the correlation coefficient (r2) that is

164expressed as
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r2 ¼
D ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PA 1"PAð ÞPB 1"PBð Þ
p

"

165Correlation coefficient or r2 is between 0 and 1. Higher values
166indicate that the genetic variants are highly correlated and in
167essence include the same genetic variance. The implication of a
168high LD for genetic studies is that genotyping and study of only
169one of the variants may be enough and the second variant includes
170redundant information.

171Given that LD is usually high between close by variants in a
172region, the genome could be broken down into pieces with high
173LD. These pieces are called LD blocks. By use of this concept, one
174can study a limited number of variants and yet capture the whole
175genetic variation of the genome. The short listed genetic variants
176that are used in such an approach are called “tagging” variants.
177

3.2 Human HapMap
Project

178In order to achieve a short list of SNPs that could represent the
179whole genome, we needed a comprehensive set of information on
180the LD pattern of the genome. The HapMap international Project
181was an effort to draw the inheritance pattern of LD blocks in
182different ethnic groups and to interrogate the common variation
183in human genome [6]. The project conducted whole genome
184sequencing techniques to identify common SNPs and characterize
185their LD pattern. It was done primarily in a number of European
186descent populations, the Yoruba population of African origin, Han
187Chinese individuals from Beijing, and Japanese individuals from
188Tokyo. The data from the HapMap project indicated that more
189than 80% of the common variation in human genome could be
190captured by studying approximately 500,000–1,000,000 SNPs
191across the genome. The first wave of the GWAS were based on
192nearly 2,500,000 SNPs that were introduced by the HapMap
193project. Later, other sequencing projects such as the 1000 Genome
194project or local sequencing efforts were used as a backbone
195for GWAS.
196Although the HapMap project played a crucial role in making
197GWAS possible, its website where the data could be browsed is not
198available since June 2016. This is mainly due to the fact that more
199recent projects such as the 1000 Genome project are becoming the
200standard for research in population genetics and genomics.
201

3.3 Aiming for
Indirect Associations

202GWAS were aiming to look up the whole genome for variants that
203modify the physiology of human body and regulate a trait or affect
204the risk of a disease. To this end, one should take a challenging and
205exhaustive effort of studying all genetic variants across the genome.
206However, the short list of SNPs provided by projects such as
207HapMap allowed us to study the association of such biologically
208functional variants even if the variant was not present in the short
209list. The LD between the HapMap chosen SNP and the functional
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210variant allowed indirect examination of the association between the
211variant and the trait or disease of interest [7]. Although this
212approach increases the coverage of the genome, one should be
213careful when it comes to interpreting the results of a GWAS. The
214identified SNPs in GWAS are in most cases not the main functional
215variant that regulates the trait or causes the disease. It is in fact a
216tagging SNP that is in high LD with the functional variant in the
217region.
218

2194 How Did We Afford to Cover the Whole Genome?

4.1 Genotyping
Technologies

220Although the HapMap project introduced a short list of few hun-
221dred thousand SNPs to cover the common variance of the genome,
222genotyping so many SNPs with low-throughput methods that was
223available in 1990s was a real challenge. In fact, the availability of
224microarray technology for high-throughput genotyping with a
225reasonable pricing gave birth to GWAS. Most of genotyping arrays
226are manufactured by two companies, Illumina (San Diego, CA) and
227Affymetrix (Santa Clara, CA). Illumina and Affymetrix use two
228different platforms. The first generations of these arrays were
229mainly designed for European descent populations. Therefore,
230their coverage of the common variation was better in Caucasians
231than in Asians or African descent populations [8].
232

4.2 Imputations 233When genome-wide association studies became a possibility, it was
234soon clear that the sample sizes that are available at every center are
235not large enough to address the small effects of common variants
236for complex disorders and traits. Therefore, studies started to form
237consortia to combine their data in meta-analyses. One major chal-
238lenge, however, was the differences between platforms. This meant
239that every study had a different set of SNPs and the overlapping
240SNPs were limited. It was known, however, that once the LD
241patterns are clear, the alleles for untyped variants could be estimated
242based on genotyped variants. This process was named genotype
243imputation since it estimates the missing variants that are not
244genotyped by the genotyping array. In early days, HapMap was
245the only reference panel that was available and the data imputed
246based on this reference panel gave birth to the first wave of GWAS.
247HapMap included nearly 2,500,000 SNPs and this set were the list
248of SNPs that all studies imputed their data. A few years later, the
2491000 Genome project provided an alternative imputation platform
250including a much larger set of SNPs as well as Indels [9]. Recently,
251the Haplotype Reference Consortium (HRC) has collected a large
252reference panel of human haplotypes by combining sequencing
253data from various populations. The HRC reference panels include
254a comprehensive bank of genetic variants and their haplotypes
255which not only increases the number of variants that could be
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256imputed but also adds to the accuracy of the genotype imputation
257(especially for low-frequency variants) [10].
258Genotype imputation is based on information provided by
259haplotypes. In the first step, the variants are linked together based
260on the most common haplotypes (phasing). Second, the haplotypes
261are compared to the reference panel. The haplotypes available at the
262reference panel are normally denser and include more variants
263compared to the genotyped data. The missing variants in the
264study population are filled out using the data from the reference
265panel. In many instances, however, several haplotypes from the
266reference panel matches the data set. Several solutions could be
267applied in such instances. A simple method is to use the most likely
268allele. Such data is called “best guess” imputed data and is expressed
269as discrete numbers as 0, 1, or 2 (number of the coded alleles). An
270alternative is to form the data as a combination of the number of
271alleles and their probabilities, thus take the uncertainty into
272account. This data is expressed on a continuous scale from 0 to
2732 and called “dosage data.”
274Every population should primarily be imputed using a refer-
275ence panel with a similar ethnic background. However, a cosmo-
276politan reference panel that includes haplotypes from various ethnic
277groups may also improve the imputation quality since every indi-
278vidual may carry small haplotypes from a far ancestor from a differ-
279ent ethnic group.
280

2815 Epidemiologic Design of GWAS

282GWAS could be done in different epidemiologic designs depending
283on the characteristics of the phenotype and data. Phenotypes could
284either be quantitative (e.g., height) or categorical (often dichoto-
285mous, e.g., diseased/healthy). Quantitative traits could also be
286broken down into categorical variables (e.g., recoding BMI into
287normal weight, overweight, and obese), however, this is not recom-
288mended from a statistical perspective since information is lost due
289to the categorization and statistical power is reduced. Quantitative
290traits could be studied in a cross-sectional design. Given that
291genetic data is constant over time. It is yet acceptable if DNA
292samples were collected in a different round of the study than
293phenotype measurement. Nevertheless, the potential effect of sur-
294vival between the two rounds on the results, if relevant, should not
295be overlooked. Binary outcomes are commonly studied in a case-
296control design. Such designs are popular since they allow the inves-
297tigator to collect a large number of diseased cases from disease
298registries, hospital admissions, or large epidemiologic studies. A
299relevant set of individuals are used as controls. Such designs, how-
300ever, mostly rely on cross-sectional identification of the diseased
301cases which are called “prevalent cases.” The downside of using
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302prevalent cases is that they do not represent all those who have
303developed the disease in a population. For instance, prevalent cases
304of coronary artery disease do not include cases of sudden cardiac
305death or under represent those who have passed away shortly after
306MI due to arrhythmias. If the survival after the disease is affected by
307genetic factors, a GWAS on prevalent cases could be misleading. In
308such an instance, the alleles that are associated with a better survival
309after disease could be mistakenly picked up as risk allele for the
310disease since they are enriched in prevalent cases. This is known as
311Neyman’s bias or incidence-prevalence bias [11]. To avoid this bias,
312a prospective setting suits the study best to ensure that a represen-
313tative set of cases are included in the study.

3146 Statistical Analysis of GWAS

6.1 Genetic Model 315One of the first assumptions that should be made for a GWAS is the
316genetic inheritance model. Single variants could affect the pheno-
317type or disease in an additive, recessive/dominant, or multiplicative
318model. The additive model assumes that there is a linear uniform
319increase in the risk by adding further copies of the risk allele. In
320GWAS the additive model is most commonly used model since the
321exact inheritance model is not known the variants and additive
322model has reasonable power to detect variants that have additive
323or dominant effect [12]. The power of this approach, however, is
324limited if the inheritance model is recessive. Moreover, applying an
325additive model does not allow identifying the underlying genetic
326model. Some GWAS examine the best inheritance model fit of their
327findings in a secondary analysis. Alternatively, some studies repeat
328their analysis based on several inheritance models but adjust their
329significance threshold for the number of tests.
330

6.2 Univariate
Analysis

331The main analysis in GWAS is normally a regression model.
332Depending on the nature of the phenotype, a linear, logistic, or
333Cox regression model is applied. Quantitative phenotypes are com-
334monly analyzed using linear regression models. The genetic var-
335iants are the independent factors and the quantitative trait is the
336dependent variable in the model. Normal distribution is not a strict
337prerequisite for a linear regression model. However, transforma-
338tions are used when the phenotype is severely skewed. Although
339transformation will make the beta estimates difficult to interpret, it
340helps in avoiding the results to be driven by outliers. Dichotomous
341phenotypes such as diseases are analyzed either using logistic
342regression models or if time to event data is provided, a Cox
343regression model.
344GWAS are mainly done primarily in an age and sex adjusted
345model. Further adjustment, if applicable, could be done for study
346site or population substructure. Given that genetic variants are
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347inherited randomly, confounding by environmental risk factors is
348not a major issue. However, confounding by population substruc-
349ture should be evaluated and adjusted. Every population may be
350composed of people with different ancestral backgrounds and
351therefore allele frequencies could vary across subpopulations.
352When the phenotype or the risk of disease is different among
353these subpopulations, the test statistics will be inflated across the
354genome. To illustrate this inflation QQ-plots are used to plot the
355distribution of the observed test statistics against the distribution of
356the test statistics under a null hypothesis. The deviation of the
357observed test statistics could be measured and expressed as λ. This
358index is equal to 1, when there is no genomic inflation. Measures
359above 1.05 are commonly unacceptable in HapMap imputed data
360and are dealt with either by adjusting for principle components
361representing population stratification in the regression model or
362correcting the test statistics for the genomic inflation.
363

6.3 Multivariate
Adjustments

364Although the findings in an age and sex adjusted model are not
365likely to be driven by confounding bias, researchers are sometimes
366interested in examining the effect of adjustment for certain factors
367mainly, aiming to examine their potential mediatory role. It should
368be noted that adjustment comes at the cost of higher degrees of
369freedom and may negatively affect the statistical power.
370

6.4 GWIS 371Next to the single variant analysis, researchers are sometimes inter-
372ested in studying the interaction effect between genetic variants or
373between the variants and environmental risk factors. Such an analy-
374sis for the whole genome is called genome-wide interaction analysis
375or GWIS. Although valid interaction could be valuable and may
376have clinical and public health implications, the very small interac-
377tion effects have so far hampered the efforts to identify robust
378interactions. Significant, validated, and robust interactions are
379very scarce. Applying GWIS to study gene-gene interaction has an
380extra challenge. Given that every GWAS includes hundreds of
381thousands of genetic variants, the interaction between all variants
382will include billions of tests which is computationally exhaustive
383and statistically underpowered. To prune the list of SNPs some
384investigators use single variant analysis results and pick up the
385most significant variants, presumably with an arbitrary significance
386threshold. However, this approach has the downside of overlook-
387ing variants that are purely epistatic, i.e., the effect is only shown in
388the presence of a certain allele of the other interaction genetic
389variant. Such associations are likely to be overlooked in single
390variant analysis. Another approach is to limit the analysis to a
391specific pathway or make a short list of the variants based on their
392biological relevance.
393
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6.5 Conditional
Analysis

394In GWAS, commonly, every identified locus is represented by the
395most significant genetic variant in a genomic region. It is assumed
396that either the other genetic variants are showing a signal due to
397their correlation with the sentinel variant or the sentinel SNP is
398capturing the largest amount of variance from the functional variant
399in the region. In practice, however, there could be multiple causal
400variants and the variants in the array could capture different frac-
401tions of the variance of the causal variant. Therefore, multiple
402variants could represent different associations that are independent
403of each other. Identifying independent variants in a region could
404help to increase the proportion of variance that could be explained
405by the genetic variants.
406Conditional analysis is the conventional analytical method to
407identify independent associations in one locus. To this end, the
408analysis is repeated for all variants in that locus, adjusted for the
409sentinel SNP. If the statistical power is large enough, further
410genetic variants could be identified. This procedure should be
411conducted over and over to identify further independent associa-
412tions. Although this procedure is straightforward when it is done
413for a single study, it would be administratively cumbersome and
414time consuming when a large meta-analysis of summary statistics is
415done. The researcher needs to contact the participating studies to
416conduct the analysis, collect the data, run the meta-analysis, and
417perform the cycle over and over to make sure that no further signals
418are left. An alternative approach is introduced where summary-level
419statistical data and a LD reference panel is used to identify multi-
420variant loci. The method is implemented in GCTA, statistical soft-
421ware that is nowadays used for this purpose [13, 14].
422

6.6 Multiple Testing 423Statistical tests are considered significant in classic epidemiologic
424when the p value is smaller than 0.05. This threshold, however,
425should be adjusted when the hypothesis is examined using multiple
426tests since the chances of false positive or spurious findings increase
427by the number of tests. Therefore, adjustment for multiple testing
428is very crucial to the validity of the findings. Although conservative
429approaches toward multiple testing could ensure the validity of the
430findings, an ultimate approach should not hamper the statistical
431power of the study to identify genetic variants with small effects.
432The most commonly applied method to deal with multiple
433testing is the Bonferroni correction where the significance thresh-
434old is divided by the number of tests. In GWAS, millions of variants
435are tested to identify the one that is associated with the phenotype
436of interest. In a GWAS where 500,000 variants were genotyped, the
437significance threshold will be 0.05/500,000 ¼ 1 # 10"7. The
438HapMap imputed GWAS, however, are commonly using
4395 # 10"8 as the genome-wide significant threshold. This threshold
440is justified based on an assumption that the contemporary arrays
441include correlated variants and effectively include one million tests
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442[15]. Although GWAS based on extended reference panels such as
4431000 Genomes should consider more stringent significance thresh-
444old, many of them are yet using 5 # 10"8.
445An alternative approach to take care of multiple testing is false
446discovery rate (FDR). The FDR estimates the rate of type I error
447and enables the investigator to set a threshold where the proportion
448of false positive results are under a certain limit. In practice it is very
449common to choose an FDR of 5%. This means that 5% of the
450associations above this threshold are likely to be false positive
451(null hypothesis wrongly rejected) [16].
452A third option is to perform permutation. To this end, the
453phenotype of interest is shuffled hundreds or thousands of times
454across the population to produce databases where the genotype and
455phenotype are distributed similar to the original dataset but they
456are not associated with each other. The analysis is repeated each
457time and the test statistics represent an empirical distribution of the
458test statistics under null hypothesis. Permutation could be done by
459several statistical packages including PLINK which is popular in
460running GWAS [17].
461

6.7 Replication 462GWAS are hypothesis free studies that examine the whole genome
463in an agnostic approach. The function of GWAS could therefore be
464considered hypothesis generating. To test this hypothesis, the asso-
465ciation should be validated in an independent sample. This step is
466known as replication. Although the value of the replication for
467GWAS findings is widely appreciated, there are inconsistencies in
468identifying the associations that deserve replication, defining a
469proper replication study and criterion for refuting the finding
470based on the replication results.
471Any replication effort should be done under the same circum-
472stances as in the discovery. The inheritance model, definition of the
473phenotype, and covariate adjustment should be identical. One
474major challenge, however, is to provide sufficient sample size.
475Associations are commonly stronger in GWAS than replication
476studies, a phenomenon known as the winner’s curse that compli-
477cates the sample size estimation for replication studies [18]. Lack of
478replication in a small population set is always difficult to interpret. It
479is not possible to find out whether the association is absent due to
480the false positive association in discovery panel or lack of power in
481the replication set.
482The replication study should also be done in an identical sample
483that is independent of the discovery set. Once the finding is repli-
484cated in a similar population, the association could be extended to
485other ethnic groups by replicating it in those populations. Some
486studies use the latter both as a mean for replication and generaliza-
487tion. Although replicated associations could be considered repli-
488cated and generalized, lack of association in a different ethnic group
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489is difficult to interpret. It may be due to a difference in LD pattern
490across populations or false positive finding in the discovery panel.
491

4927 Concluding Note

493It is no exaggeration to say that GWAS have revolutionized the field
494of human genetics. Thousands of genetic loci are introduced in
495association with various complex traits and disorders in recent
496decade using GWAS. Many of the findings refer to pathways and
497mechanisms that were not in the radar due to our limited biological
498knowledge. The discoveries are expected to continue as larger
499sample sizes and better imputation platforms are becoming avail-
500able. At the same time, next generation sequencing seems to move
501GWAS one step forward by providing a comprehensive DNA
502sequence readout of the genome. Despite this advancement, geno-
503typing technologies are likely to keep their role as a valid technique
504for GWAS due to their cheaper prices, larger available sample sizes,
505and simpler analytical methods. In fact, sequencing further indivi-
506duals may improve current reference panels and help the microarray
507genotyping technology as a rival for sequencing technologies by
508advancing the imputation quality of low-frequency variants.

509 References

511 1. 1000 Genomes Project Consortium, Abecasis
512 GR, Altshuler D et al (2010) A map of human
513 genome variation from population-scale
514 sequencing. Nature 467(7319):1061–1073.
515 https://doi.org/10.1038/nature09534

516 2. Hindorff LA, Sethupathy P, Junkins HA et al
517 (2009) Potential etiologic and functional
518 implications of genome-wide association loci
519 for human diseases and traits. Proc Natl Acad
520 Sci U S A 106(23):9362–9367. https://doi.
521 org/10.1073/pnas.0903103106

522 3. Hirschhorn JN, DalyMJ (2005) Genome-wide
523 association studies for common diseases and
524 complex traits. Nat Rev Genet 6(2):95–108.
525 https://doi.org/10.1038/nrg1521

526 4. Risch N, Merikangas K (1996) The future of
527 genetic studies of complex human diseases.
528 Science 273(5281):1516–1517

529 5. Guo SW (1997) Linkage disequilibrium mea-
530 sures for fine-scale mapping: a comparison.
531 Hum Hered 47(6):301–314

532 6. International HapMap Consortium (2005) A
533 haplotype map of the human genome. Nature
534 437(7063):1299–1320. https://doi.org/10.
535 1038/nature04226

536 7. Wang DG, Fan JB, Siao CJ et al (1998) Large-
537 scale identification, mapping, and genotyping

538of single-nucleotide polymorphisms in the
539human genome. Science 280
540(5366):1077–1082

5418. Li M, Li C, Guan W (2008) Evaluation of
542coverage variation of SNP chips for genome-
543wide association studies. Eur J Hum Genet 16
544(5):635–643. https://doi.org/10.1038/sj.
545ejhg.5202007

5469. 1000 Genomes Project Consortium, Abecasis
547GR, Auton A et al (2012) An integrated map of
548genetic variation from 1,092 human genomes.
549Nature 491(7422):56–65. https://doi.org/
55010.1038/nature11632

55110. McCarthy S, Das S, Kretzschmar W et al
552(2016) A reference panel of 64,976 haplotypes
553for genotype imputation. Nat Genet 48
554(10):1279–1283. https://doi.org/10.1038/
555ng.3643

55611. Hill G, Connelly J, Hebert R et al (2003)
557Neyman’s bias re-visited. J Clin Epidemiol 56
558(4):293–296

55912. Lettre G, Lange C, Hirschhorn JN (2007)
560Genetic model testing and statistical power in
561population-based association studies of quanti-
562tative traits. Genet Epidemiol 31(4):358–362.
563https://doi.org/10.1002/gepi.20217

Abbas Dehghan



564 13. Yang J, Lee SH, Goddard ME et al (2011)
565 GCTA: a tool for genome-wide complex trait
566 analysis. Am J Hum Genet 88(1):76–82.
567 https://doi.org/10.1016/j.ajhg.2010.11.011

568 14. Yang J, Ferreira T, Morris AP et al (2012)
569 Conditional and joint multiple-SNP analysis
570 of GWAS summary statistics identifies addi-
571 tional variants influencing complex traits. Nat
572 Genet 44(4):369–375., S361-363. https://
573 doi.org/10.1038/ng.2213

574 15. Pe’er I, Yelensky R, Altshuler D et al (2008)
575 Estimation of the multiple testing burden for
576 genomewide association studies of nearly all
577 common variants. Genet Epidemiol 32
578 (4):381–385. https://doi.org/10.1002/gepi.
579 20303

58016. van den Oord EJ (2008) Controlling false dis-
581coveries in genetic studies. American journal of
582medical genetics part B, neuropsychiatric
583genetics: the official publication of the interna-
584tional society of. Psychiatr Genet 147B
585(5):637–644. https://doi.org/10.1002/
586ajmg.b.30650

58717. Purcell S, Neale B, Todd-Brown K et al (2007)
588PLINK: a tool set for whole-genome associa-
589tion and population-based linkage analyses.
590Am J Hum Genet 81(3):559–575. https://
591doi.org/10.1086/519795

59218. Zollner S, Pritchard JK (2007) Overcoming
593the winner’s curse: estimating penetrance para-
594meters from case-control data. Am J Hum
595Genet 80(4):605–615. https://doi.org/10.
5961086/512821

Genome-Wide Association Studies



Author Queries
Chapter No.: 4 394545_1_En

Query Refs. Details Required Author’s response

AU1 Please check whether the affiliation and corre-
spondence details are presented correctly.


