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Complex	Traits:		
Mul+factorial	Inheritance	

•  Complex	traits/disorders	vs.	Mendelian	inherited		
disorders	

•  Complex	disorders:	
– No	Mendelian	mode	of	inheritance	
– Mul+ple	suscep+bility	loci	
–  Incomplete	penetrance	
– Major	environmental	risk	factors	

•  Public	health	importance	

Genetic  
Variants 

Non-genetic  
factors 

Trait /  
Disease 



Types	of	gene+c	varia+ons	

•  Copy	number	varia+ons	(CNVs):		
Interindividual	varia+ons	in	the		
number	of	copies	of	a	specific	gene		
or	chromosomal	region.	

•  Inser+ons	and	dele+ons	(Indels):		
Regions	of	DNA	that	are	either		
inserted	into	or	deleted	from	the		
genome.	

•  Single	nucleo+de	polymorphisms		
(SNPs):	Single	base	pair	changes	in		
the	genome	in	a	popula+on.	



Single	Nucleo+de	Polymorphisms:		
SNPs	

•  SNPs	–	DNA	sequence	varia+ons	that	occur	when	a	single	
nucleo+de	is	changed	

•  Alleles	at	this	SNP	are	“G”	and	“T”	

•  SNPs	are	the	most	common	form	of	varia+on	in	the	human	genome	

•  SNPs	are	catalogued	in	several	databases	
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Using	SNPs	to	Track	Predisposi+on	to		
Disease	



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Francis Collins, 2008 

© Francis Collins, 2008 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Francis Collins, 2008 
© Francis Collins, 2008 



Scope	of	a	Gene+c	Associa+on	Study	

•  Candidate	gene	
–  Known	func+onal	variants	
–  Variants	with	unknown	func+on	in	exons,	regulatory		
regions	

•  Genome-wide	
–  Test	for	associa+on	with	hundreds	of	thousands		
(millions)	of	SNPs	spread	across	the	en+re	genome.	

– Many	design	strategies	possible	for	distribu+ng	
markers	



Genome-Wide	Associa+on	Studies	

•  Candidate-gene	associa+on	
– Greater	power	to	iden+fy	smaller	gene+c	effects	
– Rely	on	a	priori	knowledge	about	disease	e+ology	
– Low	replica+on	rate.	

•  Genome-wide	associa+on	studies	
– Agnos+c	search	
– Needs	large	sample	size	
– Robust	findings	



How	many	SNPs	should	be	studied?	



Costs	of	a	Genome-wide	associa+on		
study	in	2,000	individuals	

 
Year 

Number of  
SNPs 

Costs per  
SNP 

 
Total costs 

 
2001 

 
10,000,000 

 
$ 1.00 

 
$20,000,000,000 



Microarray	technology	



SNP	Chips:	Number	and	Placement	of		
SNPs	

•  A	“typical”	SNP	chip	has	at	least	300,000	SNPs		
distributed	across	the	genome. 	Nowadays		
even	>1	million.	

•  The	new	chips	can	also	measure	some	types		
of	copy	number	varia+on.	



Coverage	and	efficiency	in	current	SNP	chips		
	



Can	we	skip	some	of	the	SNPs?	

Hirschhorn	&	Daly,	Nat	Rev	Genet	2005	



Linkage	Disequilibrium	(LD)	

•  LD	is	the	correla+on	between	SNPs	

•  LD	is	observed	in	various	regions	of	the	genome,	not		
only	nearby	the	genes	causing	the	diseases	or	in		
coding	regions	

•  Measure	of	LD:	r2,	D’	
•  r2	gets	values	from	0	to	1;	0	denotes	independent	

variants	whereas	1	denotes	that	variants	are	in	total	
LD	



Linkage	Disequilibrium	(LD)	

•  LD	varies	depending	on	region	of	genome	
•  LD	between	two	SNPs	decreases	with	distance	

16 



LD	and	Proxy	

•  Due	to	LD,	one	SNP	may	serve	as	proxy	for	
others	

Christensen and Murray, N Engl J Med 2007; 356:1094-1097 



Can	one	SNP	tag	others?	

Tags: 

SNP 1 
SNP 3 
SNP 6 

3 in total 

Test for association: 

SNP 1 
SNP 3 
SNP 6 
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After Carlson et al. (2004) AJHG 74:106 



Map	of	the	tagging	SNPs	

•  Map	of	the	rela+onships	among	SNPs	is	useful	
•  Such	a	map	varies	by	ethnic	groups	

Christensen and Murray, N Engl J Med 2007; 356:1094-1097 



www.hapmap.org 



2009  2015 

Genomic	informa+on	in	mapping		
complex	disease	genes	



Efficiency	and	power	
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Average marker density (per kb) 
P.I.W. de Bakker et al. (2005) Nat Genet  

~300,000 tag SNPs  
needed to cover common  
variation in whole genome  

in CEU 



Why	are	They	Possible	Now?	
•  Genotyping	Technology:	

–  Now	have	ability	to	type	hundreds	of	thousands	(or	millions)	of		
SNPs	in	one	reac+on	on	a	“SNP	chip.”	

–  The	cost	can	be	as	low	as	£19	per	person.	

•  Design	and	analysis:	

–  Availability	of	SNP	databases,	HapMap,	1000KG	and	other	
resources	to		iden+fy	the	SNPs	and	design	SNP	chips.	

 
–  Faster	computers	to	carry	out	the	millions	of	calcula+ons	make		
implementa+on	possible.	



Costs	of	a	Genome-wide	associa+on		
study	in	2,000	individuals	

 
Year 

 
Number of SNPs 

 
Costs per SNP 

 
Total costs 

 
2001 

 
10,000,000 

 
$ 1.00 

 
$20,000,000,000 

 
2007 

 
500,000 

 
$ 0.001 

 
$1,000,000 



First	GWAs	in	2005	

•  The	first	successful	GWA		
study	was	published	in		
2005	

•  Among	116,204	single-		
nucleo+de	polymorphisms		
genotyped,	an	intronic		
and	common	variant	in		
the	complement	factor	H		
gene	(CFH)	was	strongly		
associated	with	AMD	

Klein Rj et al. Science 2005 



T2D	GWA	studies	in	2007	

•  By	the	end	of	2007	from		
a	total	of	9	genes	6	
were	described	in	GWA		
studies	for	T2D	



Steps	for	conduc+ng	a	GWAS	

Ziegler A, et al. Biometrical J 2008;8- 



Calling	of	genotypes	

Ziegler A, et al. Biometrical J 2008;8-28 



GWA	QC	procedure	steps	(1)	

•  Genotype	call	rate	(i.e.,	assignment	of	genotypes	to		
subjects):	95%	cut-off	for	missing	data	for	each	SNP	

•  Reproducibility	across	genotyping	plaoorms	and		
technologies:	99%	within	plaoorm,	95%	across		
plaoorms	

•  MAF:	threholds	based	on	interest,	imputa+on	
quality	etc	

•  HWE	in	the	controls:	exclude	SNPs	if	P<10-6	



GWA	QC	procedure	steps	(2)	

•  Sample	call	rate:	exclude	subjects	with	many	
SNPs	missing	(e.g.,	>10%)	

 
•  Autosomal	heterozygosity	

•  Relatedness	check	

•  Gender	check	



Imputa+on	of	SNPs	
•  Genotyping	arrays	include	a	limited	number	of	SNPs	

•  Imputa+on	is	to	es+mate	the	unmeasured	or	missing	SNPs	

•  Es+ma+on	is	based	on	measured	SNPs	and	external	info	

•  Why	imputa+on?	
–  Increase	GWAS	power	
–  Improves	fine-mapping	
–  Imputes	Indels	
–  Allow	for	combining	data	across	different	plaoorms	(e.g.,	Affy	&		
Illumina)	(for	replica+on	/	meta-analysis)	



Imputa+on	increases	the	power	

TCF7L2 gene region & T2D from the WTCCC data 



Imputa+on	Example	
Observed Genotypes 

.  .  .  .  A  .  .  .  .  .  .  .  A  .  .  .  .  A  .  .  . 

.  .  .  .  G  .  .  .  .  .  .  .  C  .  .  .  .  A  .  .  . 

Reference Haplotypes 

C G A G A T C T C C T T C T T C T G T G C 
C G A G A T C T C C C G A C C T C A T G G 
C C A A G C T C T T T T C T T C T G T G C 
C G A A G C T C T T T T C T T C T G T G C 
C G A G A C T C T C C G A C C T T A T G C 
T G G G A T C T C C C G A C C T C A T G G 
C G A G A T C T C C C G A C C T T G T G C 
C G A G A C T C T T T T C T T T T G T A C 
C G A G A C T C T C C G A C C T C G T G C 
C G A A G C T C T T T T C T T C T G T G C 

Study	
Sample	

Reference	
Panel	

Gonçalo Abecasis hqp://www.sph.umich.edu/csg/abecasis/MACH	



Iden+fy	Match	with	Reference	

C  G  A  A  G  C  T  C  T   T  T  T  C  T  T 

Observed Genotypes 

.    .    .    .   A   .   .   .   .   .   .    .   A   .   .   .   .   A  .   .        . 

.    .    .    .   G   .   .   .   .   .   .    .   C   .   .   .   .   A   .   .       . 
 

Reference Haplotypes 

C G A G A T C T C C T T C T T C T G T G C  C G A G A T 
C T C C C G A C C T C A T G G  C C A A G C T C T T T T 
C T T C T G T G C  C G A A G C T C T T T T C T T C T G 
T G C  C G A G A C T C T C C G A C C T T A T G C  T G G 
G A T C T C C C G A C C T C A T G G  C G A G A T C T C 
C C G A C C T T G T G C  C G A G A C T C T T T T C T T 
T T G T A C  C  G  A  G  A  C  T  C  T  C  C  G  A  C  C  T  
C  G  T  G  C 

C  T  G  T  G  C 

Gonçalo Abecasis hqp://www.sph.umich.edu/csg/abecasis/MACH	



Phase	chromosomes,	impute	missing		
genotypes	

Observed Genotypes 

Reference Haplotypes 

C G A G A T C T C C T T C T T C T G T G C  C G A G A T 
C T C C C G A C C T C A T G G  C C A A G C T C T T T T 
C T T C T G T G C  C G A A G C T C T T T T C T T C T G T 
G C  C G A G A C T C T C C G A C C T T A T G C  T G G G 
A T C T C C C G A C C T C A T G G  C G A G A T C T C C 
C G A C C T T G T G C  C G A G A C T C T T T T C T T T T 
G T A C  C G A G A C T C T C C G A C C T C G T G C  C  
G  A  A  G  C  T  C  T  T  T   T  C  T  T  C  T  G  T  G     C 

c g a g A t c t c c c g A c c t c A t g g 
c g a a G c t c t t t t C t t t c A t g g 

hqp://www.sph.umich.edu/csg/abecasis/MACH	Gonçalo Abecasis 



Reference	Panels	

hqp://www.interna+onalgenome.org	

hqp://www.haplotype-reference-consor+um.org	

~90M	variants	

~39M	variants	



Other	Reference	Panels	



Imputa+on	Servers	



Genotype	imputa+on	in	GWAS	

Marchini J, et al. Nat Rev Gen 2010;499-5 



Confounding	by	Ancestry		
(Popula+on	Stra+fica+on)	

Genetic  
variation 

•  Distor+on	of	the	rela+onship	between	the		
gene+c	risk	factor	and	the	outcome	of	interest		
due	to	ancestry	that	is	related	to	both	the		
frequency	of	the	puta+ve	gene+c	risk	factor		
and	whether	or	not	subject	is	a	case	or	a		
control.	

Ancestry 

Case/Control  
Status 



Spurious	associa+on	due	to	popula+on		
stra+fica+on	

•  Distribu+on	of		
genotypes	differs		
between	cases	and		
controls	

•  Might	 conclude	 that		
allele	 A	 (or	 genotype		
AA)	related	to	disease	

T T  

A T  

AA 

Genotype 

Cases Controls 



Popula+on	Stra+fica+on	

•  Unequal	distribu+on	of		
non-disease-related	
alleles	between	cases		
and	controls	

•  Any	allele	more		
common	in	popula+on		
with	increased	risk	of		
disease	may	appear	to		
be	associated	with		
disease	

Cases 

Pop 1 

Pop 2 

Controls 

Pop 1 

Pop 2 

T T  

A T  

AA 

Genotype 



Using	the	GWA	Data	to	Avoid		
Popula+on	Stra+fica+on	

•  The	informa+on	on	the	genome-wide	markers	
could	be	used	to:	

 
– Es+mate	ancestry	groups	and	remove	extreme	
outliers	

 
– Es+mate	infla+on	of	test	sta+s+c	and	adjust	for	it	



Iden+fying	and	correc+ng	for		
popula+on	stra+fica+on	

•  Genomic	control	
– SNPs	are	used	to	calculate	background	infla+on	in		
test	sta+s+c	(due	to	popula+on	stra+fica+on)	

– Significant	associa+ons	are	excluded	
– Diminishes	the	sta+s+cal	power	

•  Adjustment	for	popula+on	stra+fica+on	
– Principal	components	analysis,	
adjustment/matching	for	top	PC’s	



Es+ma+ng	the	ancestry	groups	



Iden+fying	outliers	
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PCs	pick	up	fine	popula+on	structure	

Razib,	Current	Biology	2008	



Run	GWAS	analysis	

•  Running	GWAS	is	actually	repeatedly	running	
a	regression	model	for	all	SNPs	

•  Normally	a	QQ-plot	is	used	to	check	the	
distribu+on	of	the	pvalues	

•  Manhaqan	plots	are	used	to	get	an	overview		
of	the	findings	

•  Regional	plots	are	used	to	take	a	close	look	at	
every	locus	



Models	of	inheritance	

Gene+c	Epidemiology:	Methods	and	Protocols.	Evangelou	(ed)	
Ch.	2:	Key	concepts	in	gene+c	epidemiology	



Es+mate	infla+on	of	test	sta+s+c	
•  Q-Q	plot	is	a	plot	to	compare	two	probability	distribu+ons	

•  In	GWA	studies,	QQ-plots	compare	the	distribu+on	of	p-		
values	of	GWAS	with	a	distribu+on	when	no	associa+ons	

•  When	no	real	associa+on	is	found	the	two	distribu+ons	are	
similar	and	the	points	will	lie	on	the	iden+ty	line	(y	=	x)	

 
•  Devia+ons	from	the	iden+ty	line	could	be	due	to:	

–  True	associa+ons	
–  Popula+on	stra+fica+on	



Quan+le-quan+le	(QQ)	plot	

Most	SNPs	are	on	the		
line,	but	want	a	few	hits		
off	the	line	(true		
significant	associa+ons!)	



QQ-plots	in	GWAS	



-log	plot	(Manhaqan	plot)	
FGB 

IRF1 

PCCB 
NLRP3 

Dehghan et al. Circ Cardiovasc Genet. 2009 



Regional	plot	

Dehghan et al. Circ Cardiovasc Genet. 2009 



Mul+ple	Tes+ng	Issue	

Bonferroni	correc5on	
1. Assume	all	tests	performed	are	independent	
2. Es+mate	number	of	independent	polymorphisms		
in	genome	

3. Threshold	oyen	considered	appropriate:	5x10-8	
4. Recently	more	conserva+ve	thresholds	are	used		
such	as	1x10-8		or	1x10-9	



Mul+ple	Tes+ng	Issue	

Permuta5on	
•  Permute	case	and	control	status,	perform	all		
tests,	record	the	most	significant	p-value	among		
those	tests	and	then	re-permute	case-control		
status	and	test	again. 	Repeat	many	+mes.	

•  P-value	for	most	significant	test	is	the	propor+on		
of	permuta+ons	that	had	a	“best”	p-value	as		
small	or	smaller	than	the	one	you	observe	with		
the	observed	data	(the	data	with	the	right	case		
and	control	labels).	



n = 2500 
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Minor allele frequency (%) 
Loos, Lindgren, Li, unpublished data 



Meta-analysis	

•  Large	sample	sizes	are	needed	

•  Combine	mul+ple	studies	to	increase	power	

•  Either	combine	p-values	(Fisher’s	test),	or		
coefficient	es+mates	+	standard	error	(beqer)	



WTCCC	
T2D	Cases	 Controls	

Vs.	

Meta-analysis	of	
genome-wide	associa+on	studies	

DGI	
T2D	Cases	 Controls	

Vs.	

Fusion	
T2D	Cases	 Controls	

Vs.	

DIAGRAM	(DIAbetes	Gene5cs	Replica5on	And	Meta-analysis)consor5um	

imputa+on	
imputa+on	

imputa+on	
 

Meta-analysis	



Interpre+ng	the	Sta+s+cal	Results	

•  If	you	iden+fy	a	SNP	that	is	significantly	associated	with		
disease,	there	are	three	possibili+es:	
–  There	is	a	causal	rela+onship	between	SNP	and	disease	
–  The	marker	is	in	linkage	disequilibrium	with	a	causal	locus	
–  False	posi+ve	

•  Many	poten+al	sources	of	systema+c	errors	that	might		
lead	to	false	posi+ve	results.	
–  Genotyping	quality	control	issues	par+cularly	important	
–  Popula+on	stra+fica+on	



False	posi+ve	

•  This	may	occur	specially	when	the	pvalue	is	
borderline.	

 
•  Most	of	the	highly	significant	findings	are	true	

•  Heterogeneity	should	be	considered	



Replica+on	

•  GWA	studies	are	hypothesis-genera+ng	
(agnos+c	approach)	

 
•  The	hypothesis	should	be	tested	in	an	
independent	sample	

 
•  When	you	have	not	reached	genome-wide	
significance	level	



Replica+on	

•  To	replicate:	
– Significance	threshold	=	0.05/#of	SNPs	(??)	
– Same	gene+c	model	(e.g.	addi+ve,	dominant)	
– Same	direc+on	
– Sufficient	sample	size	for	replica+on	
– Control	for	popula+on	stra+fica+on	in	replica+on		
samples	



Non-replica+ons	

•  Not	necessarily	a	false	posi+ve	
– Underpowered	(Winner’s	curse)	
– Ethnic	background	(LD	structures)	
– Phenotype	defini+on	(subphenotype/phenotype)	
– Popula+on	stra+fica+on	
– Different	covariates	
– .	
– .	
– False	posi+ve!	



Replica+on	challenges	and	solu+ons	

•  Providing	enough	sample	size	is	challenging	
•  Harmonized	phenotyping	is	not	always		
possible	

•  Split	the	sample?	



One-stage	designs	

•  Increase	power	by	combining	all	available	
resources	

•  Replica+on	sample	may	not	have	enough	
power	to	replicate	signals	

•  P-value	threshold?	
	



Collabora+on	is	the	key	to	successful	
GWAS	

•  Large	consor+a	were	formed	to	provide	the		
infrastructure	for	replica+on	and	pooling	the	data	

•  Building	trust	and	agreeable	regula+ons	were	the	
ini+al	challenges	

 
•  Different	genotyping	plaoorms	and	measurement		
methods	are	s+ll	a	challenge	is	all	collabora+ve		
projects	



General	consor+a	
The	Cohorts	for	Heart	and	Aging	Research	in	Genomic	Epidemiology	

The Framingham  
Heart Study 

The Atherosclerosis Risk in  
Communities (ARIC) Study 

Cardiovascular Health Study  
(CHS) 

Age, Gene, Environment,  
Susceptibility (AGES) Study 

The Rotterdam Study 



c	

UK	

FUSION	(US/Finland)	
DGI	(US/Sweden/Finland)		
DeCODE	

KORA	

Roqerdam	
DGDG	(France/Canada)		
EUROSPAN	

The	DIAGRAM+	consor+um	

EASD,	Vienna,	September	2009	

Disease	Consor+a	



Gene+c	analysis	of	over	one	million	people	iden+fies	
535	novel	loci	associated	with	blood	pressure	traits	

Going	beyond	the	1	M	par+cipants	



Study	design	
Genetic/phenotypic data QC → N=458,577

Exclude samples with high missingness/heterozygosity, 
sex discordance, QC failures, missing covariates, 

pregnant, retracted informed consent
restrict to Europeans using PCA

Two-stage analysis
Follow-up SNPs with P < 1 × 10-6 for any BP trait

(with concordant direction of effect for UKB vs ICBP)

Independent Replication meta-analysis
→ Lookups of sentinel SNPs 

in MVP (N=220,520) and EGCUT (N=28,742)
→ combined meta-analysis (N=1,006,863)

(i) genome-wide significant (P < 5 × 10-8) in combined meta
(ii) P < 0.01 in replication meta-analysis

(iii) concordant direction of effect

325 novel replicated loci
from two-stage analysis

SBP (130), DBP (91), PP (104)

92 newly replicated loci 
(previously published without 

independent replication)

535 novel  loci
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Genetic/phenotypic data QC → N=299,024
150,134 previously published (54 cohorts), centrally QC-ed

Plus 148,890 samples from 23 newly QC-ed cohorts. 
Including study-level GC-adjustment

European samples only

ICBP data
N=299,024 from 77 different cohorts

UK Biobank data
N=502,620 with genetic & phenotypic data

One-stage analysis
Consider any novel sentinel lookup SNPs which do 

not replicate from 2-stage analysis

→ UKB-ICBP Internal Replication

(i) P < 5 × 10-9 from UKB+ICBP discovery meta
(ii) P < 0.01 in UKB GWAS

(iii) P < 0.01 in ICBP GWAS meta-analysis
(iv) concordant direction of effect UKB vs ICBP

210 novel loci from one-stage analysis
(internally replicated)

SBP (60), DBP (103), PP (47)

Exclude all SNPs in 274 known BP loci, using SNPs previously reported at time of analysis
Locus Definition: (r2 ≥ 0.1; 1Mb region ±500kb from sentinel SNP)

(also fully exclude HLA region: chr6:25-34 Mb)

ICBP-Plus meta-analysis 
ICBP-GWAS of imputed SNPs (1000G or HRC panels)
Fixed effects inverse variance weighted meta-analysis; 

stringent meta-level QC-filtering

UK Biobank GWAS analysis  
UKB GWAS of HRC imputed SNPs

BP ~ SNP + sex + age + age2 + BMI + array
using BOLT-LMM 

→ LD Score Regression → GC-adjustment

UKB+ICBP- GWAS Discovery meta-analysis (N=757,601)



Manhaqan	Plot	excluding	known	variants	



Early	devia+on	due	to	large	power	



How	could	the	gene+c	data	be	used	in		
clinic?	

•  Drug	target	

•  Precision	medicine	



Risk	predic+on		

•  Risk	predic+on	is		
widely	used	for		
clinical	prac+ce	e.g.		
in		cardiology	

•  Various	risk	scores		
have	so	far	been		
developed	



Circ Cardiovasc Genet. 2012 

Circulation 2010 

New England Journal of Medicine 2009 





Missing	Heritability?	



Missing	Heritability?	



Varia+on	explained	

•  The	varia+on	explained	is	yet	very	small	for	
many	traits	

 
•  By	doubling	the	sample	size,	the	number	of		
iden+fied	loci	is	more	than	double,	however,		
the	%	variance	explained	is	normally	increased	
~	50%	(rule	of	thumb!)	



Reasons	for	missing	heritability	
•  “Common	disease,	common	variant”	is	incorrect	–	study	rarer	

variants	
 
•  Calcula+on	of	heritability	effects	is	wrong?	

•  Not	enough	common	variants	of	small	effect	detected	

•  Structural	or	other	genomic	variants	more	important	

•  Difficult	to	analyse	gene-gene/gene-environment	interac+ons	and		
in	general	high-dimensional	and	systems	biology	data	(i.e.,		
combina+on	of	genomic,	transcriptomic,	proteomic,	metabolomic		
data)	



Reasons	for	missing	heritability	

Low power  
to detect  

small  
effects 

Missing heritability 

Low  
coverage  
of the rare  
variants 

Complex  
interaction  
between  
genes 



Αλληλεπίδραση	γονιδίων	 Large sample sizes 
are required to 
support evidence of 
gene-gene 
interactions 

Gene-Gene	interac+ons	



Gene-environment	interac+ons	
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Summary 
Background The cost of genomic information has fallen steeply, but the clinical translation of genetic risk estimates 
remains unclear. We aimed to undertake an integrated analysis of a complete human genome in a clinical context. 

Methods We assessed a patient with a family history of vascular disease and early sudden death. Clinical assessment 
included analysis of this patient’s full genome sequence, risk prediction for coronary artery disease, screening for 
causes of sudden cardiac death, and genetic counselling. Genetic analysis included the development of novel methods 
for the integration of whole genome and clinical risk. Disease and risk analysis focused on prediction of genetic risk 
of variants associated with mendelian disease, recognised drug responses, and pathogenicity for novel variants. We 
queried disease-specifi c mutation databases and pharmacogenomics databases to identify genes and mutations with 
known associations with disease and drug response. We estimated post-test probabilities of disease by applying 
likelihood ratios derived from integration of multiple common variants to age-appropriate and sex-appropriate pre-
test probabilities. We also accounted for gene-environment interactions and conditionally dependent risks.

Findings Analysis of 2·6 million single nucleotide polymorphisms and 752 copy number variations showed increased 
genetic risk for myocardial infarction, type 2 diabetes, and some cancers. We discovered rare variants in three genes 
that are clinically associated with sudden cardiac death—TMEM43, DSP, and MYBPC3. A variant in LPA was 
consistent with a family history of coronary artery disease. The patient had a heterozygous null mutation in CYP2C19 
suggesting probable clopidogrel resistance, several variants associated with a positive response to lipid-lowering 
therapy, and variants in CYP4F2 and VKORC1 that suggest he might have a low initial dosing requirement for 
warfarin. Many variants of uncertain importance were reported. 

Interpretation Although challenges remain, our results suggest that whole-genome sequencing can yield useful and 
clinically relevant information for individual patients.

Funding National Institute of General Medical Sciences; National Heart, Lung And Blood Institute; National Human 
Genome Research Institute; Howard Hughes Medical Institute; National Library of Medicine, Lucile Packard 
Foundation for Children’s Health; Hewlett Packard Foundation;  Breetwor Family Foundation.

Introduction
Technological advance has greatly reduced the cost of 
genetic information. However, the explanatory power and 
path to clinical translation of risk estimates for common 
variants reported in genome-wide association studies 
remain unclear. Much of the reason lies in the presence of 
rare and structural genetic variation. Since we are now able 
to rapidly and inexpensively sequence complete genomes,1–5 
comprehensive genetic risk assessment and individ ualisa-
tion of treatment might be possible.6 How ever, present ana-
lytical methods are insuffi  cient to make genetic data 
accessible in a clinical context, and the clinical usefulness of 
these data for individual patients has not been formally 
assessed. We aimed to undertake an inte grated 
analysis of a complete human genome in a clinical context. 

Methods
Patient
A patient with a family history of vascular disease and 
early sudden death was assessed at Stanford’s Center for 
Inherited Cardiovascular Disease by a cardiologist (EAA) 

and a board-certifi ed genetic counsellor (KEO). We took 
the patient’s medical history and he was clinically 
assessed. A four-generation pedigree was drawn. In view 
of his family history, he underwent electrocardiography, 
an echocardiogram, and a cardiopulmonary exercise test. 

Genome analysis
Technical details of genome sequencing for this patient 
have been described previously.7 In brief, genomic DNA 
was purifi ed from 2 mL of whole blood and sequenced 
with a Heliscope (Helicos BioSciences, Cambridge, MA, 
USA) genome sequencer. We mapped sequence data to 
the National Center for Biotechnology Information 
reference human genome build 36 using the open-source 
aligner IndexDP (Helicos BioSciences, Cambridge, MA, 
USA).7 Base calling was done with the UMKA algorithm.7 
A subset of single nucleotide polymorphism calls were 
independently validated with the Illumina BeadArray 
(San Diego, CA, USA) and all variants reported here and 
discussed with the patient were validated with Sanger 
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tumours. This variant might increase probability of future 
development of hyperparathyroidism or parathyroid 
tumours through a loss-of-heterozygosity mechanism. 
Consistent with a variant in a gene previously associated 
with osteoarthritis, there was a family history of 
osteoarthritis and the patient reported chronic knee pain 
without a formal diagnosis.

We noted 63 clinically relevant previously described 
pharmacogenomic variants (table 3, table 4; webappendix 
p 11)32–45 and six novel, non-conservative, aminoacid-
changing single nucleotide polymorphisms in genes that 
are important for drug response. There was a heterozygous 
null mutation in CYP2C19, the gene product of which is 
important for metabolism of many drugs, including 
proton-pump inhibitors, antiepileptic drugs, and the 
antiplatelet agent clopidogrel. Notably, the rate of 
cardiovascular events is raised in patients with CYP2C19 
loss-of-function mutations who take clopidogrel.46 
Additionally, the patient had two types of distinct genetic 
variations related to decreased maintenance dosing of 
warfarin. The patient had the single most important 
variant in VKORC1 associated with a low maintenance 
dose,47 and was homozygous for a CYP4F2 single 

nucleotide polymorphism that is associated with reduced 
dosing.48 Thus, if prescription of warfarin became 
necessary, loading could be individually tailored for this 
patient, with lowered expected doses. The patient had 
several variants that are associated with good response to 
statins (including reduced risk of myopathy) and one 
variant suggesting that he might need a raised dose to 
achieve a good response. Finally, the patient was wild type 
(with no copy number variations) for genes for important 
drug-metabolising enzymes (CYP2D6, CYP2C9, and 
CYP3A4) aff ecting hundreds of drug responses.

Although genome-wide association studies have provided 
strong association of many common variants with disease, 
integration of these small odds ratios in the context of the 
individual patient remains challenging. In particular, 
additive or multiplicative models of even strongly associated 
single nucleotide polymorphisms can add little to the 
classifi ed status of the patient.49,50 Furthermore, these 
approaches take no account of previous probability of 
disease. To counter some of these concerns, we adopted 
established methods from within evidence-based medicine 
that have rarely been applied to clinical genetics. We 
estimated pre-test probabilities from referenced sources 
for 121 diseases (webappendix p 7). Of the 55 diseases for 
which we could estimate a post-test probability, genetic 
risk was consistently increased (LR >2) for eight diseases 
and decreased (<0·5) for seven diseases (fi gure 3). The 
advantage of plotting pre-test and post-test probabilities is 
shown by several examples—eg, although the patient has 
increased genetic risk for Graves’ disease, because the pre-
test probability of this disease is very low, post-test 
probability also remains low. Conversely, although the 
patient has a low genetic contribution to his risk for 
prostate cancer, his estimated pre-test probability is high, 
resulting in a high overall post-test probability. 

Raised genetic risk did not always translate into high 
post-test probability. Post-test probabilities that were an 
order of magnitude higher or lower than pre-test 
probabilities were rare. Any decision towards acting on 
these predictions will necessarily be a function of the 
post-test probability threshold for action (eg, the post-test 
probability of type 2 diabetes), the consequences of action 
(eg, regular testing for fasting blood sugar), and the 
usefulness and eff ectiveness of action.

Figure 3: Clinical risk incorporating genetic-risk estimates for major diseases 
We calculated post-test probabilities by multiplying reported pre-test probabilities or disease prevalence (in white 
men in the patient’s age range; webappendix p 16) with a series of independent likelihood ratios for every patient 
allele. Only 32 diseases with available pre-test probabilities, more than one associated single nucleotide 
polymorphism, and with reported genotype frequencies are shown. Disorders such as abdominal aortic aneurysm 
and progressive supranuclear palsy are not listed, because they have only one available single nucleotide 
polymorphism. Backs of the arrowheads show pre-test probabilities and arrows point in the direction of change in 
probability. Blue lines show lowered post-test probabilities, and red increased post-test probabilities. n=number of 
independent single nucleotide polymorphisms used in calculation of post-test probability for that disorder.
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Figure 4: Contribution of individual alleles to overall risk of myocardial 
infarction (A), type 2 diabetes (B), prostate cancer (C), and Alzheimer’s 
disease (D)
We ordered single nucleotide polymorphisms (SNPs) with associations 
established from genome-wide association studies in decreasing order of 
sample size and number of studies showing association. Darkest colours show 
polymorphisms with the most studies reporting association with disease, and 
size of boxes scales with the logarithm of the number of samples used to 
calculate the likelihood ratio (LR). SNPs at the top of every graph are reported in 
the most and largest studies, and we have the most confi dence in their 
association with disease. We calculated test probabilities using the pre-test 
estimate as a starting point, and serially stepping down the list of SNPs and 
calculating an updated post-test probability including the contribution of that 
genotype. *Gene related to the SNP, if known. †Number of studies reporting an 
association. ‡Number of samples used to calculate the LR.
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Increased genetic risk for myocardial infarction took 
the form of fi ve single nucleotide polymorphisms 
associated with susceptibility to myocardial infarction 
and two protective polymorphisms (fi gure 4). The 
patient also had risk markers at the locus (9p21) that is 
most replicated in genome-wide association studies (an 
example is rs1333049, which is associated with an odds 
ratio of 1·5 for early onset myocardial infarction51—this 
marker is part of a commercial genetic risk test for 
myocardial infarction). Furthermore, the patient had 

one copy of the previously studied variant of LPA 
encoding the apolipoprotein A precursor. Notably, the 
patient had a very high lipoprotein(a) concentration 
(285 nmol/L, reference value <75 nmol/L; table 1), 
which is associated with increased risk of cardiovascular 
events. This variant is associated with a fi ve-fold 
increased median plasma lipoprotein(a) concentration, 
a 1·7 to two-fold15 increased risk of coronary artery 
disease, and a three-fold16 adjusted odds ratio versus 
non-carriers for severe coronary artery disease. This 
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Figure 5: Gene-environment interaction  
A conditional dependency diagram for diseases represented in the patient’s genetic-risk profi le. Only diseases for which calculable post-test risk probabilities were 
greater than 10% are shown. For every disease, text size is proportional to post-test risk probability. Solid black arrows are shown between disease names if one 
disease predisposes a patient to the other. Environmental factors that are potentially modifi able are shown around the circumference, and dashed arrows are shown 
between an environmental factor and a disease if the factor has been frequently reported in association with the cause of the disease. Text and circle sizes for 
environmental factors are proportional to the number of diseases that each factor is associated with in the circuit. Colour intensity of the circle for each 
environmental factor represents maximum post-test risk probability amongst diseases directly associated with that factor. NSAID=non-steroidal anti-infl ammatory 
drug. MAO=monoamine oxidase.





Ways	forward…	

•  Further	gene+c	discovery	(larger	sample	size)	
•  Denser	genotyping	
•  Whole	genome	sequencing	
•  Systems	biology	approaches	
•  Development	of	clinically	useful	risk	predic+on		
models	

•  Other	transla+on	


