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Complex Traits:
Multifactorial Inheritance

* Complex traits/disorders vs. Mendelian inherited
disorders

 Complex disorders:
— No Mendelian mode of inheritance

— Multiple susceptibility loci _
Genetic
— Incomplete penetrance Variants \
- | Trait/

— Major environmental risk factors

V Disease
Non-genetic

factors
* Public health importance



Types of genetic variations

Copy number variations (CNVs): Other
Interindividual variations in the Indel 0.42m
: . 5.95m 1%)

number of copies of a specific gene (11%} ﬁ SNP

. MNP 47.8m

or chromosomal region. (88%)

77k |
(0.1 %)/\

~

Insertions and deletions (Indels):
Regions of DNA that are either
inserted into or deleted from the
genome.

Single nucleotide polymorphisms
(SNPs): Single base pair changes in
the genome in a population.



Single Nucleotide Polymorphisms:
SNPs

SNPs — DNA sequence variations that occur when a single
nucleotide is changed

EEENEEEIEE

A”eles at thlS SNP are an and n-I-n
SNPs are the most common form of variation in the human genome

SNPs are catalogued in several databases



Using SNPs to Track Predisposition to
Disease
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Scope of a Genetic Association Study

 Candidate gene
— Known functional variants

— Variants with unknown function in exons, regulatory
regions

e Genome-wide
— Test for association with hundreds of thousands
(millions) of SNPs spread across the entire genome.

— Many design strategies possible for distributing
markers



Genome-Wide Association Studies

* Candidate-gene association
— Greater power to identify smaller genetic effects
— Rely on a priori knowledge about disease etiology

— Low replication rate.

* Genome-wide association studies
— Agnostic search
— Needs large sample size
— Robust findings
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Costs of a Genome-wide association
study in 2,000 individuals

Number of Costs per

Year SNPs SNP Total costs

2001 10,000,000 $1.00 $20,000,000,000




Microarray technology
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SNP Chips: Number and Placement of
SNPs

* A “typical” SNP chip has at least 300,000 SNPs
distributed across the genome. Nowadays
even >1 million.

* The new chips can also measure some types
of copy number variation.



Coverage and efficiency in current SNP chips

Table 1 Chip size, the lowest MAF covered by the chip, the number of non-synonymous SNPs, and design notes of recent lllumina and
Affymetrix chips according to their datasheets provided by the companies

Chip size Lowest Number (non-
in number MAF synonymous
(SNPs) captured SNPs) Based on Note
Affymetnx
Axiom Genome-Wide Human EU ~600000 1% 10648 HapMap, Single Nuclectide Targeting European population
(Axiom GW EU) Polymorphism database (dbSNP),
1000 GP
Axiom Genome-Wide Human ASI ~600000 1% 10346 HapMap, dbSNP, 1000 GP Targeting Asian population
(Axiom GW ASI)
Axiom Genome-Wide Human CHB ~1200000 2% 10560 HapMap, dbSNP, 1000 GP Targeting CHB subpopulation
(Axiom GW CHB)
Axiom Genome-Wide Human PanAFR ~2 200000 2% 12250 HapMap, dbSNP, 1000 GP, Southem  Targeting African population
(Axiom GW PanAFR) African Genomes Project
Wllumina
Human OmniExpress ~700000 5% 15062 HapMap Optimized tag SNP
Human OmnilS-8 ~1000000 5% 5641 1000GP Optimized tag SNP
Human Omni2.5-8 ~2 500000 2.5% 41900 1000GP Targeting common and rare variants
Human Omni2.58-8 ~2 500000 1% 57360 1000GP Targeting rare variants

htt p:4fwww.affymetrix.comésu pport/technicalid atasheets/axiom _ceu_arrayplate_datasheet.pdf, hitp:/Awvww.affymetrix.com/sup porttechnical/datasheets/axiom_asi_arrayplate_datasheet pdf,

htt p:A'www.affymetrix.comésu pport/technical datasheets/axiom _chb_1_2 _array_plate_set_datasheet.pdf, hitp JAwww.affy metrix.convsup port/technical/datasheets/axiom_panafr_amayplate_datasheet. pdf,
htt p:4'www. illumina.com/documents/productsdatasheets/datasheet_human_omni_express.pdf, hitp:/fres.illumina.com/documents/products/d atasheets/datasheet_human_omnils.pdf,

htt p:A'res.illumina.comidocuments/prod ucts/datas heets/datasheet_human_omni2.5.pdf, hitp:/ires.illumina.com/docu ments/products/datasheets/datasheet_omni25s. pdf.

European Journal of Human Genetics



Can we skip some of the SNPs?

Direct association Indirect association

Hirschhorn & Daly, Nat Rev Genet 2005



Linkage Disequilibrium (LD)

LD is the correlation between SNPs

LD is observed in various regions of the genome, not
only nearby the genes causing the diseases or in
coding regions

Measure of LD: r2, D’

r’ gets values from 0 to 1; O denotes independent
variants whereas 1 denotes that variants are in total
LD



Linkage Disequilibrium (LD)

e LD varies depending on region of genome

LD between two SNPs decreases with distance
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LD and Proxy

* Due to LD, one SNP may serve as proxy for
others

SNP 3t SNP 4 SNP5
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Christensen and Murray, N Engl J Med 2007; 356:1094-1097



Can one SNP tag others?

AT GIA GIC TIC GIC AIC .
1 2 3 4 5 6 Tags:
| I . SNP 1
I SNP 3
Sl © G S 3 in total
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SNP 3
SNP 6

After Carlson et al. (2004) AJHG 74:106



Map of the tagging SNPs

* Map of the relationships among SNPs is useful
* Such a map varies by ethnic groups

Christensen and Murray, N Engl J Med 2007; 356:1094-1097
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Genomic information in mapping
complex disease genes
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Efficiency and power
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Why are They Possible Now?

e Genotyping Technology:

— Now have ability to type hundreds of thousands (or millions) of
SNPs in one reaction on a “SNP chip.”

— The cost can be as low as £19 per person.

* Design and analysis:

— Availability of SNP databases, HapMap, 1000KG and other
resources to identify the SNPs and design SNP chips.

— Faster computers to carry out the millions of calculations make
implementation possible.



Costs of a Genome-wide association
study in 2,000 individuals

Number of SNPs Costs per SNP Total costs
“ 10,000,000 $1.00 $20,000,000,000
2007 500,000 $0.001 $1,000,000




First GWAs in 2005

 The first successful GWA
study was published in :
2005
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* Among 116,204 single-
nucleotide polymorphisms
genotyped, an intronic
and common variant in
the complement factor H
gene (CFH) was strongly
associated with AMD

SNPs

Klein Rj et al. Science 2005



T2D GWA studies in 2007

By the end of 2007 from
a total of 9 genes 6
were described in GWA
studies for T2D
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Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and
Triglyceride Levels

Diabetes Genetics Initiative of Broad Institute of Harvard and MIT. Lund University, and Novartis Institutes for BioMedical
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A genome-wide association study
identifies novel risk loci for type 2 diabetes
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A variant in CDKALI influences insulin response and risk
of type 2 diabetes
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Marten H Hofker!'12, Cisca Wijmenga'®'4, Claus Christiansen®, Daniel ] Rader’, Charles Rotimi®, Mark Gurney',
Juliana C N Chan?, Oluf Pedersen®?,Gunnar Sigurdsson?, Jeffrey R Gulcher!, Unnur Thorsteinsdottir?,
Augustine Kong' & Kari Stefansson'




Steps for conducting a GWAS

Biological question

-

Sampling & selection of array

<

Preparation of genomic DNA

{

Hybridization of arrays

||

Array scan/ Image analysis

it

Normalization / Genotype calling

It

Quality control

T

High level analyses I

Genotypes

Haplotypes

Interactions I

+

Validation of initial findings (stage 2; independent confirmation)

Figure 1 Succession of design, experimental and data analy-
Sis steps in a genome-wide association study.

Ziegler A, et al. Biometrical J 200838+



Calling of genotypes

T T
200 300 400 500 €00 700

1000 1500 100
d§
§-
8 " "1
g g1
g - s g -
200 400 600 ac0 1000 2000 3000 2000
g f g4
g
gq
g_
g -
g - : i
g £
& o
- :
a . & E ~
s00 1000 1500 2000 2500 00 e o  ss 1000 1200 1400

Ziegler A, et al. Biometrical J 2008;8-28}



GWA QC procedure steps (1)

Genotype call rate (i.e., assignment of genotypes to
subjects): 95% cut-off for missing data for each SNP

Reproducibility across genotyping platforms and
technologies: 99% within platform, 95% across
platforms

MAF: threholds based on interest, imputation
quality etc

HWE in the controls: exclude SNPs if P<10-6



GWA QC procedure steps (2)

Sample call rate: exclude subjects with many
SNPs missing (e.g., >10%)

Autosomal heterozygosity
Relatedness check

Gender check



Imputation of SNPs

Genotyping arrays include a limited number of SNPs
Imputation is to estimate the unmeasured or missing SNPs
Estimation is based on measured SNPs and external info

Why imputation?

— Increase GWAS power
— Improves fine-mapping
— Imputes Indels

— Allow for combining data across different platforms (e.g., Affy &
Illumina) (for replication / meta-analysis)



Imputation increases the power

15/i=

10 —

—log10 P value for additive test

114.2 114.4 114.6 114.8 115.0 115.2 115.4

Chromosomal position (Mb)

TCF7L2 gene region & T2D from the WTCCC data



Imputation Example

Observed Genotypes

Study
Sample
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CGAGATCTCCTTCTTCTGTGOC
CGAGATCTCCCGACCTCATGG
CCAAGCTCTTTTCTTCTGTGOC
CGAAGCTCTTTTCTTCTGTGOC
CGAGACTCTCCGACCTTATGOC
TGGGATCTCCCGACCTCATGG
CGAGATCTCCCGACCTTGTGOC
CGAGACTCTTTTCTTTTGTAC
CGAGACTCTCCGACCTCGTGC
CGAAGCTCTTTTCTTCTGTGOC

Reference
Panel

http://www.sph.umich.edu/csg/abecasis/MACH

Goncgalo Abecasis




ldentify Match with Reference

Observed Genotypes

AL DAL L0 AL
G C

Reference Haplotypes

CGAGATCTCCTTCTTCTGTGC CGAGAT
CTCCCGACCTCATGG CCAAGCTCTTTT
CTTCTGTGC CGAAGCTCTTTTCTTCTG
TGC CGAGACTCTCCGACCTTATGC TGG
GATCTCCCGACCTCATGG CGAGATCTC
CCGACCTTGTGC CGAGACTCTTTTCTT
TTGTACCGAGACTCTCCGACCT
CGTGOC

CTGTGC
CGAAGCTCT TTTCTT

Gongalo Abecasis http://www.sph.umich.edu/csg/abecasis/MACH




Phase chromosomes, impute missing
genotypes

Observed Genotypes

A ctcccgAcctcAt gf
G tcttttCtttcATt g
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Reference Haplotypes

CGAGATCTCCTTCTTCTGTGC CGAGAT
CTCCCGACCTCATGG CCAAGCTCTTTT
CTTCTGTGC CGAAGCTCTTTTCTTCTGT
GC CGAGACTCTCCGACCTTATGC TGGG
ATCTCCCGACCTCATGG CGAGATCTCC
CGACCTTGTGC CGAGACTCTTTTCTTTT
GTAC CGAGACTCTCCGACCTCGTGC C
GAAGCTCTTTTCTTCTGTG C

Gongalo Abecasis http://www.sph.umich.edu/csg/abecasis/MACH




Reference Panels

IGSR: The International Genome Sample Resource

Providing ongoing support for the 1000 Genomes Project data

B e 2
1000 Genomes Project ~90M variants http://www.internationalgenome.org
1000 Genomes Release Variants Individuals Populations VCF Alignments Supporting Data
Phase 3 84.4 million 2504 26 VCF Alignments Supporting Data
Phase 1 37.9 million 1092 14 VCF Alignments Supporting Data
Pilot 14.8 million 179 & VCF Alignments Supporting Data

The Haplotype Reference Consortium

~39M variants
http://www.haplotype-reference-consortium.org



Other Reference Panels

UK10K

Rare Genetic Variants in Health and Disease

The 100,000 Genomes Project

2o The project will sequence 100,000 genomes from around 70,000
2 people. Participants are NHS patients with a rare disease, plus
their families, and patients with cancer.

Go°NL

GENOMEoftheNETHERLANDS




Imputation Servers

Michigan Imputation Server 21.6M

This server provides a free genotype imputation service. You can upload GWAS genotypes (VCF or 23andMe Genomes
format) and receive phased and imputed genomes in retun. Our server offers imputation from HapMap, 1000
Genomes (Phase 1 and 3), CAAPA and the updated Haplotype Reference Consortium (HRC version r1.1) panel

Leam more or follow us on Twitter. 8 y 445

Users

Sanger Imputation Service

This is a free genotype imputation and phasing service provided by the Wellcome Sanger Institute. You can
upload GWAS data in VCF or 23andMe format and receive imputed and phased genomes back. Click here to
leam more and follow us on Twitter.



Genotype imputation in GWAS

Box 1 | How genotype imputation works

b Testing association at typed SNPs may not d Reference set of haplotypes, for example, HapMap

lead to a clear signal

—logy, p-value

a Genotype data with missing data at
untyped SNPs (grey question marks)
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¢ Each sample is phased and the haplotypes
are modelled as a mosaic of those in the
haplotype reference panel
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f Testing association at imputed SNPs may
boost the signal

—logl0 p-value

e The reference haplotypes are used to
impute alleles into the samples to create
imputed genotypes (orange)

Marchini J, et al. Nat Rev Gen 2010;499-5



Confounding by Ancestry
(Population Stratification)

* Distortion of the relationship between the
genetic risk factor and the outcome of interest
due to ancestry that is related to both the
frequency of the putative genetic risk factor
and whether or not subject is a case or a

control.
Ancestry

*
*
*
*
*
*
*
*
*
*
*
‘Q
*

*
*
*
4

Genetic » Case/Control
variation Status




Spurious association due to population
stratification

e Distribution of
genotypes differs
between cases and
controls

Cases Controls

Genotype

TT
AT
AA

* Might conclude that
allele A (or genotype
AA) related to disease




Population Stratification

 Unequal distribution of

non-disease-related Cases Controls

alleles between cases N Pop - N
and controls _ Pop 1
* Any allele more Pop 2 _
common in population Pop 2
with increased risk of
disease may appear to
y app Genotype

be associated with

. TT
disease AT
AA



Using the GWA Data to Avoid
Population Stratification

* The information on the genome-wide markers
could be used to:

— Estimate ancestry groups and remove extreme
outliers

— Estimate inflation of test statistic and adjust for it



ldentifying and correcting for
population stratification

e Genomic control

— SNPs are used to calculate background inflation in
test statistic (due to population stratification)

— Significant associations are excluded
— Diminishes the statistical power

e Adjustment for population stratification

— Principal components analysis,
adjustment/matching for top PC’s



Estimating the ancestry groups
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MDS2
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ldentifying outliers
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PCs pick up fine population structure
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Run GWAS analysis

Running GWAS is actually repeatedly running
a regression model for all SNPs

Normally a QQ-plot is used to check the
distribution of the pvalues

Manhattan plots are used to get an overview
of the findings

Regional plots are used to take a close look at
every locus



Models of inheritance

Table 3
Penetrances under standard genetic models

Genetic model

Genotype Genotype (general) Recessive Dominant Additive
AA (reference) fo 0 0 0
AB A 0 1 1
BB f 1 1 2
Table 4

Genotype relative risks for genotypes AB, BB (where B is the risk allele)
compared to the baseline genotype AA under standard genetic models

Genetic model

Recessive Additive
y1=1 Multiplicative y, =17,
Dominant Y2=17, ri=rnry>1 y>1

Genotype GRR 73 =7, =7 7 >1 Y2=77 Y2 = 271
AB n Y 1 Y Y
BB r2 v y r’ 2y

Under the additive model, y, can also be expressed as 2y, — 1 [17],although y, = 2y, is

commonly used [18]

Genetic Epidemiology: Methods and Protocols. Evangelou (ed)
Ch. 2: Key concepts in genetic epidemiology
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Estimate inflation of test statistic

Q-Q plot is a plot to compare two probability distributions

In GWA studies, QQ-plots compare the distribution of p-
values of GWAS with a distribution when no associations

When no real association is found the two distributions are
similar and the points will lie on the identity line (y = x)

Deviations from the identity line could be due to:
— True associations
— Population stratification



Chi-squared (from trend test)

Quantile-quantile (QQ) plot

35

e o Most SNPs are on the

p=4x10"°

line, but want a few hits
off the line (true
significant associations!)

30
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Expected value of chi-squared given its rank within the chi-squared values for all SNPs
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-log plot (Manhattan plot)
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Regional plot
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Multiple Testing Issue

Bonferroni correction
1. Assume all tests performed are independent

2. Estimate number of independent polymorphisms
In genome

3. Threshold often considered appropriate: 5x10-8

4. Recently more conservative thresholds are used
such as 1x108 or 1x10-°



Multiple Testing Issue

Permutation

* Permute case and control status, perform all
tests, record the most significant p-value among
those tests and then re-permute case-control
status and test again. Repeat many times.

e P-value for most significant test is the proportion
of permutations that had a “best” p-value as
small or smaller than the one you observe with
the observed data (the data with the right case
and control labels).



Effect size
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Meta-analysis

* Large sample sizes are needed
* Combine multiple studies to increase power

e Either combine p-values (Fisher’s test), or
coefficient estimates + standard error (better)



Meta-analysis of

genome-wide association studies
DIAGRAM (DIAbe!:es Genetics Replicatiom And Meta-analysis)consortium
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Interpreting the Statistical Results

* |f you identify a SNP that is significantly associated with
disease, there are three possibilities:

— There is a causal relationship between SNP and disease
— The marker is in linkage disequilibrium with a causal locus
— False positive

* Many potential sources of systematic errors that might
lead to false positive results.
— Genotyping quality control issues particularly important
— Population stratification



False positive

* This may occur specially when the pvalue is
borderline.

* Most of the highly significant findings are true

* Heterogeneity should be considered



Replication

« GWA studies are hypothesis-generating
(agnostic approach)

* The hypothesis should be tested in an
independent sample

* When you have not reached genome-wide
significance level



Replication

* Toreplicate:
— Significance threshold = 0.05/#of SNPs (?7?)
— Same genetic model (e.g. additive, dominant)
— Same direction
— Sufficient sample size for replication

— Control for population stratification in replication
samples



Non-replications

* Not necessarily a false positive
— Underpowered (Winner’s curse)
— Ethnic background (LD structures)
— Phenotype definition (subphenotype/phenotype)
— Population stratification
— Different covariates

— False positive!



Replication challenges and solutions

* Providing enough sample size is challenging

* Harmonized phenotyping is not always
possible

e Split the sample?



One-stage designs

Increase power by combining all available
resources

Replication sample may not have enough
power to replicate signals

P-value threshold?



Collaboration is the key to successful
GWAS

e Large consortia were formed to provide the
infrastructure for replication and pooling the data

* Building trust and agreeable regulations were the
initial challenges

* Different genotyping platforms and measurement
methods are still a challenge is all collaborative
projects



General consortia

The Cohorts for Heart and Aging Research in Genomic Epidemiology

. Age, Gene, Environment,
!B Ssusceptibility (AGES) Study

/ The Rotterdam'S

Cardiovascular Health Study
(CHS)

w3
’dg’ﬁe Framingham
~ ' Heart Study

L.



Disease Consortia

The DIAGRAM+ consortium
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Genetic analysis of over one million people identifies
535 novel loci associated with blood pressure traits



© UK Biobank data ICBP data
© N=502,620 with genetic & phenotypic data N=299,024 from 77 different cohorts
(]
Genetic/phenotypic data QC — N=458,577 Genetic/phenotypic data QC — N=299,024
Exclude samples with high missingness/heterozygosity, 150,134 previously published (54 cohorts), centrally QC-ed
8 sex discordance, QC failures, missing covariates, Plus 148,890 samples from 23 newly QC-ed cohorts.
pregnant, retracted informed consent Including study-level GC-adjustment
restrict to Europeans using PCA European samples only
UK Biobank GWAS analysis ICBP-Plus meta-analysis
UKB GWAS of HRC imputed SNPs ICBP-GWAS of imputed SNPs (1000G or HRC panels)
BP ~ SNP + sex + age + age? + BMI + array Fixed effects inverse variance weighted meta-analysis;
using BOLT-LMM stringent meta-level QC-filtering
> — LD Score Regression — GC-adjustment
2 I
3
0 L
a [ UKB+ICBP- GWAS Discovery meta-analysis (N=757,601) ]
Exclude all SNPs in 274 known BP loci, using SNPs previously reported at time of analysis
Locus Definition: (r2 2 0.1; 1Mb region +500kb from sentinel SNP)
(also fully exclude HLA region: chr6:25-34 Mb)
/ Two-stage analysis \ l
Follow-up SNPs with P <1 x 10 for any BP trait One-stage analysis
(with concordant direction of effect for UKB vs ICBP) Consider any novel sentinel lookup SNPs which do
g not replicate from 2-stage analysis
= Independent Replication meta-analysis
8 — Lookups of sentinel SNPs — UKB-ICBP Internal Replication
i in MVP (N=220,520) and EGCUT (N=28,742)
% — combined meta-analysis (N=1,006,863) (i) P < 5 x 10° from UKB+ICBP discovery meta
(04 (ii) P < 0.01 in UKB GWAS
(i) genome-wide significant (P < 5 x 10-%) in combined meta (iii) P < 0.01 in ICBP GWAS meta-analysis
(ii) P < 0.01 in replication meta-analysis Qv) concordant direction of effect UKB vs ICBy
(iii) concordant direction of effect
— | J’
c v v _ _
0 325 novel replicated loci 92 newly replicated loci 210 novel loci from one-stage analysis
© from two-stage analysis (previously published without (internally replicated)
B | SBP(130), DBP (91), PP (104) independent replication) SBP (60), DBP (103), PP (47)
©
= ( 1
\l 535 novel loci )

Study design



Manhattan Plot excluding known variants
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How could the genetic data be used in
clinic?

* Drug target

* Precision medicine



Risk prediction

* Risk prediction is
widely used for
clinical practice e.g.
in cardiology

e Various risk scores
have so far been
developed




New England Journal of Medicine 2009

Genetic Risk Prediction — Are We There Yet?

major goal of the Human

Genome Project was to facili-
tate the identification of inherit-
ed genetic variants that increase
or decrease the risk of comp
diseases. The completion of t
International HapMap Project a
the development of new methc
for genotyping individual DI
samples at 500,000 or more |
have led to a wave of discover
through genomewide associati
studies. These analyses have idi
tified common genetic varia
that are associated with the r
of more than 40 diseases and |
man phenotypes. Several com;
nies have begun offering dire
to-consumer testing that uses |

tests of genetic predisposition to
important diseases would have
major clinical, social, and econom-
ic ramifications. But the ereat ma-

Peter Kraft, Ph.D., and David J. Hunter, M.B., B.S., Sc.D., M.P.H. '

est relative risks are almost cer-
tainly overrepresented in the first
wave of findings from genome-
wide association studies. since

Genetic Cardiovascular Risk Prediction

George Thanassoulis, MD; Ramachandran S. Vasan, MD

ajor advances in genetics, including the sequencing of
the human genome in 2001'2 and the publication of the
HapMap in 2005,? have paved the way for a revolution in our
understanding of the genetics of complex diseases, including

cardiovascular disease (CVD). A
results and failure to replicate put
ciations, high-throughput technolo
than 500 000 genetic markers ki
polymorphisms [SNPs]) and novel
a virtual explosion of novel genet
complex human diseases. In the
advances have been remarkably
many novel genetic associations -
(MI) and cardiovascular risk fac
pressure, diabetes, and obesity. 2
studies has always been to prov
biology of CVD. However, a high
these discoveries has been to usc
usher in a new era of personalized
genetic information into risk pre

Will We Get There?

Circulation 2010

these factors, a number of risk prediction algorithm scores
have been developed, including the Framingham risk score,
that provide an estimate of the 10-year risk (and recently, the
30-year risk) of CVD.**® Generally speaking, the metrics

Clinical Utility of Genetic Variants for
Cardiovascular Risk Prediction
A Futile Exercise or Insufficient Data?

Emanuele Di Angelantonio, MD, MSc, PhD; Adam S. Butterworth, MSc, PhD

Estimalion of an individual’s cardiovascular disease (CVD)
risk usually involves measurement of risk factors cor-
related with risk of CVD to identify people who may espe-
cially benefit from preventive action, such as lifestyle advice
or pharmacologic agents.' Since the Framingham Risk Score
was first developed, several other risk-prediction algorithms
have been proposed, each involving a core set of the same
established risk factors (ie, age, sex, smoking, blood pressure,
and total cholesterol), but differing in their inclusion of vari-
ous other characteristics (eg, ethnicity or presence of diabetes
mellitus).? The challenge in recent years has been to improve
existing CVD risk-prediction models by including additional
information to the traditional risk factors generally included in
risk scores. Several additional soluble biochemical factors have

been advocated for inclusion, but contradictory evidenc

Until a few years ago, genetic epidemiologic studies of
CVD were predominantly candidate gene studies involving
focused investigation of relatively few genetic variants based
on plausible biological hypotheses. Many of these studies
had anticipated identification of variants that are common in
populations with moderate-to-large effects on disease risk.
However, the combination of the low prior odds of the vari-
ants selected for study, inadequate power (ie, small sample
size), and overliberal declarations of significance, resulted in
the reporting of many seemingly positive findings that remain
unreplicated or directly refuted.” In recent years, genome-wide
association studies (GWAS) have demonstrated that so-called
hypothesis-free global-testing methods can advance discovery
and understanding of genetic variants in relation to chronic

been reported on the incremental predictive gain afford Cer Ca rd IOVGSC Genet 201 2
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Missing Heritability?

<

The case of the missing heritability |

When scientists opened up the human genome, they expected to find the genetic components of
common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on
six places where the missing loot could be stashed away.



Missing Heritability?

EDITORIAL

Missing Heritability and GWAS Utility

Clifton Bogardus*

doi:10.1038/0by.2008.613

Vol 4618 October 2009|doi:10.1038/nature08494 nature

REVIEWS

Finding the missing heritability of complex
diseases

Th Teri A. Manolio', Francis S. Collins?, Nancy J. Cox®, David B. Goldstein*, Lucia A. Hindorff’, David J. Hunter®,
e case c Mark I. McCarthy’, Erin M. Ramos®, Lon R. Cardon®, Aravinda Chakravarti’, Judy H. Cho'®, Alan E. Guttmacher’,
Augustine Kong'', Leonid Kruglyak'?, Elaine Mardis'?, Charles N. Rotimi'*, Montgomery Slatkin'®, David Valle’®,
When scientists opened upt AliceS. Whittemore'®, Michael Boehnke'?, Andrew G. Clark'®, Evan E. Eichler'®, Greg Gibson®, Jonathan L. Haines?',

common traits and diseases. Trudy F. C. Mackay™, Steven A. McCarroll* & Peter M. Visscher™
six places where the missing loot could be stashed away.



Variation explained

* The variation explained is yet very small for
many traits

* By doubling the sample size, the number of
identified loci is more than double, however,
the % variance explained is normally increased

~ 50% (rule of thumb!)



Reasons for missing heritability

“Common disease, common variant” is incorrect — study rarer
variants

Calculation of heritability effects is wrong?
Not enough common variants of small effect detected

Structural or other genomic variants more important

Difficult to analyse gene-gene/gene-environment interactions and
in general high-dimensional and systems biology data (i.e.,
combination of genomic, transcriptomic, proteomic, metabolomic
data)



Reasons for missing heritability

Low
coverage

LOW poWEr; Complex

interaction
between
genes

to detect
small
effects

of the rare
variants

\ : /

Missing heritability




Gene-Gene interactions

Large sample sizes

S are required to
o support evidence of
gene-gene
*oesg interactions
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Gene-environment interactions
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Reference

Kypreou KP et al. J Invest Dermatol; 2016

Stefanaki | et al. PLoS One; 2013

Table 2. Risk prediction performance for the four
different models of predictors in the Greek dataset

AUC 95% CI
Phenotypic risk factors only’ 0.764 0.741-0.787
Phenotypic risk factors + GRSgws 0.775 0.752-0.797
Phenotypic risk factors + GRSy, 0.775 0.752-0.798

Abbreviations: AUC, area under the receiver operating characteristic
curve; Cl, confidence interval; GRS, genetic risk score; GWS, genome-
wide significant.

'Risk factors are sex, age, eye color, hair color, skin color, phototype, and
tanning ability.



Whole exome and whole genome sequencing

Copyright © 2012 University of

Human Genome Epidemiology (HUGE) Review

Genome-wide Significant Associations for Variants With Minor Allele Frequency
of 5% or Less—An Overview: A HUGE Review

Orestis A. Panagiotou, Evangelos Evangelou, and John P. A. loannidis*



In the near future

* Exome sequencing-Whole genome sequencing

Cost reductions

$100M e
|

l $10M

Personal Genome

Precise Medicine

$1K
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Clinical assessment incorporating a personal genome

Euan A Ashley, Atul ) Butte, Matthew T Wheeler, Rong Chen, Teri E Klein, Frederick E Dewey, Joel T Dudley, Kelly E Ormond, Aleksandra Pavlovic,
Alexander A Morgan, Dmitry Pushkarev, Norma F Neff, Louanne Hudgins, Li Gong, Laura M Hodges, Dorit S Berlin, Caroline F Thorn,

Katrin Sangkuhl, Joan M Hebert, Mark Woon, Hersh Sagreiya, Ryan Whaley, Joshua W Knowles, Michael F Chou, Joseph V Thakuria,

Abraham M Rosenbaum, Alexander Wait Zaranek, George M Church, Henry T Greely, Stephen R Quake, Russ B Altman
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Figure 3: Clinical risk incorporating genetic-risk estimates for major diseases
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Before providing your sample, register your kit at
www.23andme.com/start

Your sampile will NOT be processs
(®) onagene-ox

Register this kit now at:
www.23andme.com/start
Your sample will NOT be processed unless it is registered.
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HOME MY RESULTS FAMILY & FRIENDS RESEARCH & COMMUNITY Cyrus:
Average:

HEALTH RISKS -
This is the ¢

of Gout for someone with Cyrus's genotype
compared to average.

SHOW RESULTS FOR ED REPORTS »

Read more »

7 23andMe Research Discoveries were made possible by 23andMe members who to

NOTE: This result applies to people
Elevated Risk ¢ of European ancestry. We cannot yet estimate
= risk for those with Multiple ancestries

NAME CONFIDENCE YOUR ancestry. (more) VERAGE

Alzheimer's Disease ik 12.6% 7.2% 1.75x =
Chronic Kidney Disease ik 5.0% 3.4% 1.45x ¢
Restless Legs Syndrome ik 2.5% 2.0% 1.25x 1
Exfoliation Glaucoma Friink 2.2% 0.7% 290x 1
Celiac Disease ik 0.59% 0.12% 4.98x !
Esophageal Squamous Cell Carcinoma (ESCC) ik 0.43% 0.36% Ta¥E
Stomach Cancer (Gastric Cardia OeGe 0.28% 0.23% 1.22x

Adenocarcinoma)



Ways forward...

Further genetic discovery (larger sample size)
Denser genotyping

Whole genome sequencing

Systems biology approaches

Development of clinically useful risk prediction
models

Other translation



