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The	exposome

• Limited	contribution	of	genetic	factors	to	the	risk	pf	chronic	disease
• 79-90%	attributed	top	exposures
• Exposure	measurement	suboptimal

• Which?
• How?

Exposome measures 
the totality of environmental 
exposures from
conception onwards



Omics	data

High	throughput	biochemical	measures	of	the	abundance	and/or	
structural	features	of	molecules	involved	in	main	biological	processes	
such	as	metabolism	and	its	regulation.



Technologies

• Genomics
• Targeted	(SNPs)	or	untargeted	(WGS)
• Binary	or	continuous	(dosage	data)

• Epigenetics	(DNA	methylation)
• Methylation	sites
• Percentage	of	methylated	cytosines at	each	CpG locus
• Average	over	many	cells,	possibly	of	different	types

• Transcriptomics
• Targeted	(micro-arrays)	or	untargeted	(RNA	sequence)
• Intensities	proportional	to	RNA	abundances	or	sequence	reads

• Metabolomics	/	Proteomics
• Targeted	or	untargeted	(MS	and	NMR)
• Quantified	proteins/metabolites	or	mass	and	retention	times,	or	spectra



Challenges	for	Biomarker	Studies	in	the	‘Omics’	Era

1.	Precious	and	limited	biobanked material,	not	easily	accessed

2.	Single	(spot)	biological	samples

3.	Usually	blood,	not	urine	(which	may	be	better	e.g.	for	metabolomics)

4.	No	cohorts	allow	life-course	epidemiology

5.	In-depth	exposure	assessment	is	limited	by	feasibility	

6.	Lab	measurements	and	omics	have	the	same	limitations	related	to	
sample	size	and	feasibility

7.	Biostatistical approaches	and		causal	interpretation

8.	Ethical	issues



Advantages	of	Omics	data

• Agnostic	view	of	cellular	activity

• Measure	the	main	biological	processes	involved	in	the	regulation	of	

cellular	metabolism

• Use	for	the	Exposome:	Omics	biomarkers	have	the	potential	to	

highlight	internal	responses	to	external	stresses



Main	data	characteristics

• High	dimension
• ranging	from	hundreds	to	millions

• Nature
• continuous/binary/categorical/counts

• Noise/	Measurement	error
• sensitive	to	experimental	conditions

• Stability

Øneed	for	flexible	statistical	framework	to	accommodate	huge	heterogeneity	

in	data,	response	and	dose-response	relationships

Ø(generalised)	linear	models



Heterogeneity

• Nature	of	the	data
• Binary	variables	(haplotype	data)
• Categorical	variables	(e.g.	genotype	data)
• Continuous	variables	(e.g.	%	of	methylation	.	.	.	)

• Dimension:	wide	range	of	scales
• Hundreds	of	measurements	(proteins	levels)
• Tens	of	thousands	of	variables:	(NMR-MS	spectral	data)
• Hundreds	of	thousands	of	variables	(full	genome	scans)

• Correlated	structure	in	the	data:
• Strength	of	the	correlation	varies
• Correlation	structure	can	either	be	‘distance-driven’	(e.g LD	genomics	data)	
or	more	complex	(e.g.	NMR	spectral	data).
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Data	analysis	in	Omics

Tzoulaki et al AJE 2014



Threats	to	the	Validity	of	Molecular	
Epidemiology	Studies

• Bias-systematic	error
• Information	Bias	(imprecision	in	measurements)	
• Confounding

• Statistical	Issues
• Over-emphasis	on	P-values
• Multiple	Comparisons
• Association	≠	Causation



Advances in epigenome-wide association studies for
common diseases

Dirk S. Paul and Stephan Beck

UCL Cancer Institute, University College London, London, WC1E 6BT, UK

Epigenome-wide association studies (EWASs) provide a
systematic approach to uncovering epigenetic variants
underlying common diseases. Discoveries have shed
light on novel molecular mechanisms of disease and
enabled the application of epigenetic variants as bio-
markers. Here, we highlight the recent advances in this
emerging line of research and discuss key challenges for
current and future studies.

Many common diseases in humans are mediated by genetic
and environmental factors. Genome-wide association stud-
ies (GWASs) have been instrumental in identifying com-
mon genetic variants associated with a multitude of
complex traits including common diseases. By contrast,
the systematic assessment of epigenetic variation has
lagged behind. Epigenetic modifications of DNA and his-
tone proteins are heritable (re-established) during cell
division and can induce stable changes in the regulation
of gene expression. Technological advances in high-
throughput DNA analysis have facilitated the genome-
wide examination of epigenetic modifications, primarily
DNA methylation, enabling systematic, large-scale associ-
ation testing with disease phenotypes [1,2]. Publications of
such epigenome-wide association studies (EWASs) have
soared in recent years, revealing novel molecular mecha-
nisms of disease (akin to GWASs) but also substantial
challenges in the interpretation of tentative associations.
Below, we discuss what we consider to be the key issues
concerning the assessment of EWAS findings: cellular
heterogeneity, causal inference, and replication of identi-
fied DNA methylation variable positions (MVPs).

Global epigenetic patterns, such as the genome-wide
distribution of DNA methylation marks, vary substantially
across different cell lineages and cell types. Exogenous
(e.g., smoking, diet, and medication) and endogenous
(e.g., senescence) factors, as well as pathogenic (e.g., in-
flammatory) conditions, have an effect on cellular compo-
sition. Therefore, EWASs depend on analytical tools that
determine epigenetic variation with respect to both con-
founding cellular heterogeneity and phenotype of interest.
The importance of adjusting for the proportions of different
cell populations was emphasised by Liu et al. [3] in an
EWAS for rheumatoid arthritis, a common autoimmune

disease. The authors probed DNA methylation marks in
whole blood. Indeed, whole blood has proven to be the
tissue of choice for most EWASs owing to its ease of
accessibility. Importantly, they found that the proportions
of the major circulating leukocytes differ between cases
and controls. Statistical methods are capable of inferring
and correcting for such cellular heterogeneity, either with
[4] or without [5,6] the use of reference data sets. Following
reference-based adjustment, Liu et al. achieved a substan-
tial reduction of spurious association signals attributed to
cellular heterogeneity. Conversely, the detected changes in
cell type composition based on global epigenetic patterns
between cases and controls may in some studies delineate
disease pathogenesis or progression itself, thereby inform-
ing biomarker discovery (Figure 1).

Epigenetic variation can contribute to the development
of a disease or be a consequence of it (also known as reverse
causality). Distinguishing between the two processes pre-
sents a major challenge for EWASs. In an early EWAS for
type I diabetes, another common autoimmune disease, a
longitudinal cohort consisting of individuals that were
profiled both before and after disease diagnosis and treat-
ment was analysed [7]. Rakyan et al. found evidence of
DNA methylation changes that precede clinical diagnosis,
potentially contributing to the aetiology of overt type I
diabetes. However, large prospective cohorts that enable
the assessment of temporal origins of epigenetic changes
are scarce, highlighting the need for alternative
approaches. To this end, Dick et al. [8] supplemented their
EWAS for body mass index (BMI), a measure of obesity,
with a methylation quantitative trait loci (metQTL) anal-
ysis. This assessed the possibility of the identified MVPs
being driven by genetic variants. The study identified BMI-
associated MVPs at the HIF3A gene locus, and the most
significant MVP was found to have a larger impact on BMI
than previously reported genetic associations at the well-
studied FTO gene locus. Two genetic variants were identi-
fied upstream of HIF3A that showed an independent effect
on DNA methylation levels. However, these genetic variants
were not associated with BMI, suggesting that the increased
DNA methylation levels at the locus are likely to be a
consequence of increased BMI rather than a cause. The
finding that these MVPs were associated with BMI in sub-
cutaneous adipose but not skin tissue further strengthened
this notion. Nonetheless, the identified non-causal epigenet-
ic changes may still be meaningful as diagnostic or prognos-
tic biomarkers. In addition to metQTL analysis, causal
dependency can also be assessed by Mendelian randomisa-
tion that has been specifically adapted for EWAS [11].

Spotlight
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Metabolic Profiling And The Metabolome-Wide Association
Study: Significance Level For Biomarker Identification

Marc Chadeau-Hyam†,#, Timothy M D Ebbels‡,#, Ian J Brown†, Queenie Chan†, Jeremiah
Stamler¶, Chiang Ching Huang¶, Martha L Daviglus¶, Hirotsugu Ueshima§, Liancheng
Zhao||, Elaine Holmes‡,⊥, Jeremy K Nicholson‡,⊥, Paul Elliott*,†,⊥, and Maria De Iorio*,†

Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London
W2 1PG, UK, Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine,
Imperial College, London SW7 2AZ, UK, Department of Preventive Medicine, Feinberg School of
Medicine, Northwestern University, Chicago, Illinois 60611, US, Department of Health Science,
Shiga University of Medical Science, Otsu, Japan, Department of Epidemiology, Fu Wai Hospital
and Cardiovascular Institute, Chinese Academy of Medical Sciences, Beijing, People’s Republic
of China, and MRC-HPA Center for Environment and Health, Imperial College London UK

Abstract
High throughput metabolic profiling via the metabolome-wide association study (MWAS) is a
powerful new approach to identify biomarkers of disease risk, but there are methodological
challenges: high dimensionality, high level of collinearity, the existence of peak overlap within
metabolic spectral data, multiple testing and selection of a suitable significance threshold.

We define the metabolome-wide significance level (MWSL) as the threshold required to control
the family wise error rate through a permutation approach. We used 1H NMR spectroscopic
profiles of 24 hour urinary collections from the INTERMAP study. Our results show that the
MWSL primarily depends on sample size and spectral resolution. The MWSL estimates can be
used to guide selection of discriminatory biomarkers in MWA studies.

In a simulation study, we compare statistical performance of the MWSL approach to two variants
of orthogonal partial least squares (OPLS) method with respect to statistical power, false positive
rate and correspondence of ranking of the most significant spectral variables. Our results show that
the MWSL approach as estimated by the univariate t-test is not outperformed by OPLS and offers
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Proteome-wide association studies identify
biochemical modules associated with a wing-size
phenotype in Drosophila melanogaster
Hirokazu Okada1, H. Alexander Ebhardt1, Sibylle Chantal Vonesch1, Ruedi Aebersold1,2 & Ernst Hafen1,2

The manner by which genetic diversity within a population generates individual phenotypes is

a fundamental question of biology. To advance the understanding of the genotype–phenotype

relationships towards the level of biochemical processes, we perform a proteome-wide

association study (PWAS) of a complex quantitative phenotype. We quantify the variation of

wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using

SWATH mass spectrometry. In spite of the very large genetic variation (1/36 bp) between the

lines, proteome variability is surprisingly small, indicating strong molecular resilience of

protein expression patterns. Proteins associated with adult wing size form tight co-variation

clusters that are enriched in fundamental biochemical processes. Wing size correlates with

some basic metabolic functions, positively with glucose metabolism but negatively with

mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power

of PWAS to filter functional variants from the large genetic variability in natural populations.
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A N A LY S I S

Candidate gene and genome-wide association studies (GWAS)  
have identified genetic variants that modulate risk for  
human disease; many of these associations require further 
study to replicate the results. Here we report the first  
large-scale application of the phenome-wide association  
study (PheWAS) paradigm within electronic medical records 
(EMRs), an unbiased approach to replication and discovery 
that interrogates relationships between targeted genotypes  
and multiple phenotypes. We scanned for associations  
between 3,144 single-nucleotide polymorphisms (previously 
implicated by GWAS as mediators of human traits) and  
1,358 EMR-derived phenotypes in 13,835 individuals of 
European ancestry. This PheWAS replicated 66% (51/77) of 
sufficiently powered prior GWAS associations and revealed  
63 potentially pleiotropic associations with P < 4.6 × 10−6 
(false discovery rate < 0.1); the strongest of these novel 
associations were replicated in an independent cohort  
(n = 7,406). These findings validate PheWAS as a tool to  
allow unbiased interrogation across multiple phenotypes  
in EMR-based cohorts and to enhance analysis of the  
genomic basis of human disease.

In recent years, GWAS have provided a powerful systematic method 
to investigate the impact of common genomic variations on human 
pathophysiology. Since 2005, more than 1,500 GWAS have identi-
fied genomic variants associated with nearly 250 diseases and traits1;  
a number of the associations had been identified previously by 
focused genetic studies. These are recorded in the National Human 
Genome Research Institute’s (NHGRI) web-accessible GWAS cata-
log (“NHGRI Catalog”)1 (Catalog of Published Genome-Wide 
Association Studies, http://www.genome.gov/26525384). The majority  
of GWAS investigate a single disease or trait; the accrual of such a 

large number of single variant–phenotype associations has led to the 
serendipitous identification of single loci associated with multiple 
diseases, or pleiotropy. Notable examples include variants at 9p21.3, 
which were associated initially with early myocardial infarction2 and 
subsequently with intracranial aneurysm and abdominal aortic aneu-
rysms3; variants in the human leukocyte antigen (HLA) region and 
IL23R, which were associated initially with inflammatory bowel dis-
ease4 and subsequently with a variety of other autoimmune diseases5,6; 
and PTPN22 R602W, which was associated initially with lower risk 
of Crohn’s disease and subsequently with a higher risk of rheuma-
toid arthritis and other autoimmune diseases7. A recent analysis  
of the NHGRI catalog noted pleiotropy in 17% of genes and 4.6% of 
single-nucleotide polymorphisms (SNPs) with reported phenotype 
associations in the catalog8.

An alternative and complementary approach to query genotype-
phenotype associations and to detect pleiotropy is the PheWAS. With 
PheWAS, associations between a specific genetic variant and a wide 
range of physiological and/or clinical outcomes and phenotypes can 
be explored either by using algorithms to parse EMR data9 or by 
analyzing data collected in observational cohort studies10. Previous 
small-scale EMR studies have provided initial support for the ability of 
the EMR-based PheWAS to replicate individual genotype-phenotype 
associations and to uncover novel associations11–13. However,  
whether EMR data or PheWAS methods can be used to discover 
genetic associations with a wide range of phenotypes has not been 
systematically studied.

Here, we expanded the PheWAS disease classifications to analyze 
the diverse spectrum of phenotypes in the NHGRI Catalog using 
EMR data and refined the statistical methods over previous pub-
lications9,11–13. We repurposed extant EMR and GWAS data from 
five institutions in the Electronic Medical Records and Genomics 
(eMERGE) Network14. We report the results of the largest PheWAS 
to date, involving 3,144 SNPs in the NHGRI Catalog. Our objectives 
were to validate PheWAS as a systematic method to detect pleiotropy 
by replicating known NHGRI Catalog results in EMR-derived data, 
to discover new associations for all available SNPs in the NHGRI 
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Epidemiology and Prevention

A Nutrient-Wide Association Study on Blood Pressure
Ioanna Tzoulaki, PhD;* Chirag J. Patel, PhD;* Tomonori Okamura, MD, PhD; Queenie Chan, PhD;

Ian J. Brown, PhD; Katsuyuki Miura, MD, PhD; Hirotsugu Ueshima, MD, PhD; Liancheng Zhao, MD;
Linda Van Horn, PhD; Martha L. Daviglus, MD, PhD; Jeremiah Stamler, MD;

Atul J. Butte, MD, PhD; John P.A. Ioannidis, MD, DSc; Paul Elliott, MB BS, PhD

Background—A nutrient-wide approach may be useful to comprehensively test and validate associations between nutrients
(derived from foods and supplements) and blood pressure (BP) in an unbiased manner.

Methods and Results—Data from 4680 participants aged 40 to 59 years in the cross-sectional International Study of Macro/
Micronutrients and Blood Pressure (INTERMAP) were stratified randomly into training and testing sets. US National Health and
Nutrition Examination Survey (NHANES) four cross-sectional cohorts (1999–2000, 2001–2002, 2003–2004, 2005–2006) were
used for external validation. We performed multiple linear regression analyses associating each of 82 nutrients and 3 urine
electrolytes with systolic and diastolic BP in the INTERMAP training set. Significant findings were validated in the INTERMAP
testing set and further in the NHANES cohorts (false discovery rate !5% in training, P!0.05 for internal and external validation).
Among the validated nutrients, alcohol and urinary sodium-to-potassium ratio were directly associated with systolic BP, and dietary
phosphorus, magnesium, iron, thiamin, folacin, and riboflavin were inversely associated with systolic BP. In addition, dietary folacin
and riboflavin were inversely associated with diastolic BP. The absolute effect sizes in the validation data (NHANES) ranged from
0.97 mm Hg lower systolic BP (phosphorus) to 0.39 mm Hg lower systolic BP (thiamin) per 1-SD difference in nutrient variable.
Inclusion of nutrient intake from supplements in addition to foods gave similar results for some nutrients, though it attenuated the
associations of folacin, thiamin, and riboflavin intake with BP.

Conclusions—We identified significant inverse associations between B vitamins and BP, relationships hitherto poorly
investigated. Our analyses represent a systematic unbiased approach to the evaluation and validation of nutrient-BP
associations. (Circulation. 2012;126:2456-2464.)

Key Words: blood pressure ! diet ! epidemiology ! nutrition assessment

Dietary habits have long been related to complex diseases,
such as cancer and cardiovascular diseases, but the role of

many nutrients and food groups in disease merits further
investigation despite intensive research efforts.1–3 Epidemiolog-
ical studies often test associations of single nutrients with disease
or examine food patterns (eg, the Mediterranean diet), which are
often difficult to characterize. Recently, a study design analo-
gous to genome-wide association studies (GWAS), the
environment-wide association study, has been proposed to
search for and analytically validate environmental factors asso-
ciated with complex diseases.4,5 Instead of testing 1 only or a

few associations at a time, an environment-wide association
study evaluates multiple environmental factors for association,
with proper adjustment for multiplicity of comparisons. The
emerging significant associations are then validated across dif-
ferent datasets, as is commonly done in GWAS.4,5

Editorial see p 2447
Clinical Perspective on p 2464

Here, we extend the environment-wide association study
approach to evaluate multiple associations between a wide
range of nutrients and blood pressure (BP). We used data
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An Environment-Wide Association Study (EWAS) on Type
2 Diabetes Mellitus
Chirag J. Patel1,2,3, Jayanta Bhattacharya4, Atul J. Butte1,2,3*

1 Department of Pediatrics and Medicine, Stanford University School of Medicine, Stanford, California, United States of America, 2 Stanford Center for Biomedical

Informatics Research, Stanford University School of Medicine, Stanford, California, United States of America, 3 Lucile Packard Children’s Hospital, Palo Alto, California,

United States of America, 4 Center For Primary Care and Outcomes Research, Stanford University School of Medicine, Stanford, California, United States of America

Abstract

Background: Type 2 Diabetes (T2D) and other chronic diseases are caused by a complex combination of many genetic and
environmental factors. Few methods are available to comprehensively associate specific physical environmental factors with
disease. We conducted a pilot Environmental-Wide Association Study (EWAS), in which epidemiological data are
comprehensively and systematically interpreted in a manner analogous to a Genome Wide Association Study (GWAS).

Methods and Findings: We performed multiple cross-sectional analyses associating 266 unique environmental factors with
clinical status for T2D defined by fasting blood sugar (FBG) concentration $126 mg/dL. We utilized available Centers for
Disease Control (CDC) National Health and Nutrition Examination Survey (NHANES) cohorts from years 1999 to 2006. Within
cohort sample numbers ranged from 503 to 3,318. Logistic regression models were adjusted for age, sex, body mass index
(BMI), ethnicity, and an estimate of socioeconomic status (SES). As in GWAS, multiple comparisons were controlled and
significant findings were validated with other cohorts. We discovered significant associations for the pesticide-derivative
heptachlor epoxide (adjusted OR in three combined cohorts of 1.7 for a 1 SD change in exposure amount; p,0.001), and
the vitamin c-tocopherol (adjusted OR 1.5; p,0.001). Higher concentrations of polychlorinated biphenyls (PCBs) such as
PCB170 (adjusted OR 2.2; p,0.001) were also found. Protective factors associated with T2D included b-carotenes (adjusted
OR 0.6; p,0.001).

Conclusions and Significance: Despite difficulty in ascertaining causality, the potential for novel factors of large effect
associated with T2D justify the use of EWAS to create hypotheses regarding the broad contribution of the environment to
disease. Even in this study based on prior collected epidemiological measures, environmental factors can be found with
effect sizes comparable to the best loci yet found by GWAS.
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Introduction

It is becoming clear that most non-communicable diseases are a
result of a complex combination of genetic processes and the
environment [1]. Despite the contribution of both genetics and
environment to disease, many recent studies have emphasized the
genetic components. For example, the Genome-wide Association
Study (GWAS) is a low-cost and popular framework used by
researchers to evaluate genetic factors that correlate with disease
status on a genome-wide scale [2]. As of this writing, 370
publications using this method have been cataloged, with 16 just
for Type 2 Diabetes Mellitus (T2D) [3]. Multiple loci markers have
been found through these studies that heightens risk for T2D when
present [4]. While GWAS has enabled the generation of new
hypotheses regarding the relation of genetics to T2D, the genetic
markers found have poor penetrance [5,6]. Further, these genetic

markers do not explain a significant portion of T2D in context of
other factors [7,8].

Perhaps the lack of impact of GWAS comes from not
comprehensively considering environmental factors in disease.
T2D provides an specific example: while genetics play a large role
[9–11], specific environmental factors are also emerging as risk
factors for the disease [12]. It is clear that we need to measure and
assess both types of factors to better understand complex disease
[1].

The current paradigm to search for the effects of multiple
environmental chemicals utilizes molecular tools and model
systems [13,14]; however, there is a gap between these data and
human disease. Epidemiological searches for environmental
factors associated with disease have been hampered by the lack
of a ‘‘chip’’ or standard bioassays that can broadly survey these
factors. We propose borrowing the GWAS methodology to create

PLoS ONE | www.plosone.org 1 May 2010 | Volume 5 | Issue 5 | e10746



Environment	wide	association	study	on	type	
2	diabetes



Normal Disease

Gene by gene 2-tailed t-test; P<0.05 
significant

Multiple Comparison Problem in ‘Omics’ studies



Normal Disease

Conclude: Gene 16 associated with disease

Multiple Comparison Problem in ‘Omics’ studies



Limitations	of	x-WAS	studies

Aims and constraints of *-WAS

Data definition:

Predictor matrix:
- n observations
- p variables

X
n Response matrix:

- n observations
- q variables

Y
n

p q

Aim: identify which of the p variables in X (OMICs data) are associated with
the outcome Y (disease status or (mixtures of) exposure(s))

• The n < p situation:
◦ More predictors than observations

⇒ numerically intractable statistical inferences
◦ Three main approaches have been proposed to get a situation

where n > p

MSc Epidemiology – Advanced Topics in Biostatsistics: OMICs data (I) – February 24, 2017 – p. 7/23

The n < p situation:
◦More predictors than observations
à numerically intractable statistical inferences
◦ n > p
à univariate approaches
à dimension reductions techniques
à variable selection methods



Univariate	methods

• Each	X	with	each	Y
• Each	measurement	with	the	outcome
• Common	in	GWAS

Univariate approaches

• Principle: assess the association between each column of X and the
outcome Y

• Model formulation: linear model for individual i and predictor j

Yi = α+ βXij + ϵij ,

where:
◦ Yi is the measured outcome (possibly multivariate)
◦ Xij is the observed value for jth predictor
◦ α is the intercept
◦ β is the regression coefficient
◦ ϵij is the residual error measuring the random deviation from the

linear relationship

⇒ p models are estimated (one per predictor)

MSc Epidemiology – Advanced Topics in Biostatsistics: OMICs data (I) – February 24, 2017 – p. 8/23
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Multiple	Comparisons

•However….need	to	consider	the	number	of	tests	
performed-P<0.05	means	we	accept	the	risk	of	
erroneously	rejecting	H0	 in	5%	of	the	cases	(i.e.	
willing	to	accept	5%	false	positives)

•Each	comparisons	carries	a	5%	error	probability	so	if	
we	perform	20	tests,	likely	to	detect	1	false	positive

•The	association	between	gene	16	and	disease	may	be	
real	but	we	do	not	have	sufficient	data	to	make	that	
claim



Probability	of	≥1	False	Positives	by	Chance

# Genes tested (N) Incidence False 
Positives

Probability of 
detecting ≥ false 
+ves

1 1/20 5%
2 1/10 10%
20 1 64%
100 5 99.4%

If set P-value at <0.05

100(1-0.95N)



Probability of Error and Number of Comparisons



Expected Number of Errors and Number of 
Comparisons



Multiple	Comparison	Problem	in	‘Omics’	
studies

• On	the	‘omics’	scale	problem	is	magnified..
• ~10,000	genes	on	an	array
• Each	gene-disease	association	has	5%	chance	of	being	false	positive	(Type	I	
error)

• So	by	chance	alone,	we	should	detect	500	significant	associations…..
• For	α=0.05	and	2.5x106 SNPs:	125,000	FP



Source Example

Multiple outcomes a cohort study looking at the incidence of breast 
cancer, colon cancer, and lung cancer

Multiple predictors an observational study with 40 dietary predictors 
or a trial with 4 randomization groups

Subgroup analyses a randomized trial that tests the efficacy of an 
intervention in 20 subgroups based on 
prognostic factors 

Multiple definitions for the exposures and 
outcomes

an observational study where the data analyst tests 
multiple different definitions for “moderate 
drinking” (e.g., 5 drinks per week, 1 drink per 
day, 1-2 drinks per day, etc.) 

Multiple time points for the outcome (repeated 
measures)

a study where a walking test is administered at 1 
months, 3 months, 6 months, and 1 year

Multiple looks at the data during sequential 
interim monitoring

a 2-year randomized trial where the efficacy of the 
treatment is evaluated by a Data Safety and 
Monitoring Board at 6 months, 1 year, and 18 
months

Sources of Multiple Comparisons



Correction	for	Multiple	Comparisons

• Major	research	issue	for	biostatisticians…debate	as	to	the	best	approach

• Two	ways	to	control	for	multiple	testing:

• Controlling	the	Family-Wise	Error	Rate	(FWER)
• Traditional	methods	for	controlling	for	multiple	testing	such	as	Bonferroni	correction	
(α/n)	
• may	be	too	conservative	(↑	false	negatives)

• Controlling	the	False	Discovery	Rate	(FDR)
• False	discovery	rate	(FDR;	Benjamin-Hochberg	Test)	now	more	commonly	applied	to	
‘omics’	data	sets

àmultiple testing correction is achieved by either adjusting the 
p-value, or by altering the cut-off value



Correction	for	Multiple	Comparisons

• What	is	the	probability	of	at	least	one	type	I	error?	α
• Family-wise	error	rate	(FWER)=	α	=	p(V>=1)

• Single	step	FWER	αʹ=α/pà FWER	<=α
• Stepwise	approaches:	sequentially	compare	the	sorted	P-values	to	a	
threshold	that	depends	on	their	rank
• Too	stringent

	

Multiple Testing correction Strategies

Outcome of p tests.

H0 true H0 false Total
H0 rejected V S R
H0 accepted U T p-R

Total p0 p-p0 p

• FWER control:
◦ FWER=α=p(V ≥ 1): the probability to have at least one FP
◦ Aim: define the per-test significance α′ ensuring

p(V = 0) ≥ (1− α), where α is arbitrarily set.
• Single step FWER control procedures:

◦ Bonferroni correction: α′=α/p, ensures FWER≤ α

◦ Šidák approaches: α′=1− (1− α)1/p, ensures FWER=α, but
assumes independent tests.

MSc Epidemiology – Advanced Topics in Biostatsistics: OMICs data (I) – February 24, 2017 – p. 10/23



Correction	for	Multiple	Comparisons

• Correlated	predictors:	if	correlated	X	same	features	are	partially	
tested	many	times
• p	models	but	less	than	p	independent	tests
• Resample	techniques
• Effective	Number	of	Tests	(ENT)
• the	number	of	independent	tests	that	would	be	required	to	obtain	the	same	
significance	level	using	Bonferroni
	

Multiple Testing correction Strategies

Outcome of p tests.

H0 true H0 false Total
H0 rejected V S R
H0 accepted U T p-R

Total p0 p-p0 p

• FWER control:
◦ FWER=α=p(V ≥ 1): the probability to have at least one FP
◦ Aim: define the per-test significance α′ ensuring

p(V = 0) ≥ (1− α), where α is arbitrarily set.
• Single step FWER control procedures:

◦ Bonferroni correction: α′=α/p, ensures FWER≤ α

◦ Šidák approaches: α′=1− (1− α)1/p, ensures FWER=α, but
assumes independent tests.

MSc Epidemiology – Advanced Topics in Biostatsistics: OMICs data (I) – February 24, 2017 – p. 10/23





500 cases and equal number of controls, assuming 7,100 spectral 
variables, the metabolome-wide significance level was estimated at P = 
2 × 10−5 (α = 5%), resulting in a 60% reduction in the effective number 
of tests compared with Bonferonni correction



Multiple Testing in practice: single step FWER control

Outcome of p=50 tests: a list of 50 p-values
• 22 predictors have a p-value<0.05 (expected average #FP=2.5)
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Multiple Testing in practice: single step FWER control

Outcome of p=50 tests: a list of 50 p-values

• Bonferroni correction: α′ = 0.05/50 = 0.001
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False	Discovery	Rate	(FDR)

• Q is	set	to	be		0 when	R=0

• FDR	=	expectation	of	Q	=	E(V/R;	R>0)

• Benjamin-Hochberg	Test	(rank	all	P-values)

• FDR	is	less	stringent	than	FWER

• FWER	control	at	5%	ensures	that	over	100	experiments	<5	contain	one	FP

• FDR	control:	over	the	100	experiments	the	average	#FP	≤	5	
• ⇒ FDR	control	may	be	preferred	in	an	exploratory	context

Multiple Testing correction Strategies

Outcome of p tests.

H0 true H0 false Total
H0 rejected V S R
H0 accepted U T p-R

Total p0 p-p0 p

• FWER control:
◦ FWER=α=p(V ≥ 1): the probability to have at least one FP
◦ Aim: define the per-test significance α′ ensuring

p(V = 0) ≥ (1− α), where α is arbitrarily set.
• Single step FWER control procedures:

◦ Bonferroni correction: α′=α/p, ensures FWER≤ α

◦ Šidák approaches: α′=1− (1− α)1/p, ensures FWER=α, but
assumes independent tests.
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Benjamin-Hochberg	FDR
Multiple Testing in practice: step-wise FDR control

• Benjamini-Hochberg FDR: Starts form the largest p-value and
compares to α′ = α ∗ (p/k) (nominal 0.05 for the largest p-value)
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Step 1: cutoff=0.05*50/50=0.05
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⇒ k=1 largest p-value is not significant at 0.05, update the cut-off
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Order	p	values	– start	with	max
Calculate	critical	value	α(k/p)
Find	largest	p	value	that	is	smaller	than	critical	value



Benjamin-Hochberg	FDR
Multiple Testing in practice: step-wise FDR control

• Benjamini-Hochberg FDR: Starts form the largest p-value and
compares to α′ = α ∗ (p/k) (nominal 0.05 for the largest p-value)
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Calculate	critical	value	α(k/p)
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Multiple Testing in practice: step-wise FDR control

• Benjamini-Hochberg FDR: Starts form the largest p-value and
compares to α′ = α ∗ (p/k) (nominal 0.05 for the largest p-value)
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⇒ k=2 is not significant set k=3, update the cut-off
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Benjamin-Hochberg	FDR
Multiple Testing in practice: step-wise FDR control

• Benjamini-Hochberg FDR: Starts form the largest p-value and
compares to α′ = α ∗ (p/k) (nominal 0.05 for the largest p-value)
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Multiple Testing in practice: step-wise FDR control

• Benjamini-Hochberg FDR: Starts form the largest p-value and
compares to α′ = α ∗ (p/k) (nominal 0.05 for the largest p-value)
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⇒ k=2 is not significant set k=3, update the cut-off
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Multiple Testing in practice: step-wise FDR control

• Benjamini-Hochberg FDR: Starts form the largest p-value and
compares to α′ = α ∗ (p/k) (nominal 0.05 for the largest p-value)
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Benjamin-Hochberg	FDR
Multiple Testing in practice: step-wise FDR control

• Benjamini-Hochberg FDR: Starts form the largest p-value and
compares to α′ = α ∗ (p/k) (nominal 0.05 for the largest p-value)
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Multiple Testing in practice: step-wise FDR control

• Benjamini-Hochberg FDR: Starts form the largest p-value and
compares to α′ = α ∗ (p/k) (nominal 0.05 for the largest p-value)
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Multiple Testing in practice: step-wise FDR control

• Benjamini-Hochberg FDR: Starts form the largest p-value and
compares to α′ = α ∗ (p/k) (nominal 0.05 for the largest p-value)
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Multiple Testing in practice: step-wise FDR control

• Benjamini-Hochberg FDR: Starts form the largest p-value and
compares to α′ = α ∗ (p/k) (nominal 0.05 for the largest p-value)
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Two-Stage	Study	Designs

• Most	widely	accepted	designs	for	‘omics’	studies	now….

• Discovery	(training	set):	large	sample	size,	identify	discoveries	(FDR)

• Validation	(test	set):	independent	from	discovery	set



Genetic/phenotypic data QC → N=458,577
Exclude samples with high missingness/heterozygosity, 

sex discordance, QC failures, missing covariates, 
pregnant, retracted informed consent

restrict to Europeans using PCA

Two-stage analysis
Follow-up SNPs with P < 1 × 10-6 for any BP trait

(with concordant direction of effect for UKB vs ICBP)

Independent Replication meta-analysis
→ Lookups of sentinel SNPs 

in MVP (N=220,520) and EGCUT (N=28,742)
→ combined meta-analysis (N=1,006,863)

(i) genome-wide significant (P < 5 × 10-8) in combined meta
(ii) P < 0.01 in replication meta-analysis

(iii) concordant direction of effect

325 novel replicated loci
from two-stage analysis

SBP (130), DBP (91), PP (104)

92 newly replicated loci 
(previously published without 

independent replication)

535 novel  loci
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Genetic/phenotypic data QC → N=299,024
150,134 previously published (54 cohorts), centrally QC-ed

Plus 148,890 samples from 23 newly QC-ed cohorts. 
Including study-level GC-adjustment

European samples only

ICBP data
N=299,024 from 77 different cohorts

UK Biobank data
N=502,620 with genetic & phenotypic data

One-stage analysis
Consider any novel sentinel lookup SNPs which do 

not replicate from 2-stage analysis

→ UKB-ICBP Internal Replication

(i) P < 5 × 10-9 from UKB+ICBP discovery meta
(ii) P < 0.01 in UKB GWAS

(iii) P < 0.01 in ICBP GWAS meta-analysis
(iv) concordant direction of effect UKB vs ICBP

210 novel loci from one-stage analysis
(internally replicated)

SBP (60), DBP (103), PP (47)

Exclude all SNPs in 274 known BP loci, using SNPs previously reported at time of analysis
Locus Definition: (r2 ≥ 0.1; 1Mb region ±500kb from sentinel SNP)

(also fully exclude HLA region: chr6:25-34 Mb)

ICBP-Plus meta-analysis 
ICBP-GWAS of imputed SNPs (1000G or HRC panels)
Fixed effects inverse variance weighted meta-analysis; 

stringent meta-level QC-filtering

UK Biobank GWAS analysis  
UKB GWAS of HRC imputed SNPs

BP ~ SNP + sex + age + age2 + BMI + array
using BOLT-LMM 

→ LD Score Regression → GC-adjustment

UKB+ICBP- GWAS Discovery meta-analysis (N=757,601)





doi:10.1371/journal.pgen.1004801.g001 



Working	Solutions

•Data	analysis	in	‘omics’	studies	is	challenging….
•Control	for	multiple	testing	is	a	necessity
•The	Gold	Standard	is	biological	replication
•Training	Sets	and	test	sets	should	have	no	
members	in	common
•Set	up	design	as	rigorously	as	possible	(in	advance)
• Training	sets	are	proof	of	principle
• Test	sets	are,	theoretically,	validation



1. Analyses are exploratory. The authors have mined the data for 
associations rather than testing a limited 
number of a priori hypotheses. 

2. Many tests have been performed, but 
only a few p-values are “significant”.

If there are no associations present, .05*k 
significant p-values (p<.05) are expected 
to arise just by chance, where k is the 
number of tests run.

3. The “significant” p-values are modest in 
size.

The closer a p-value is to .05, the more likely 
it is a chance finding. According to one 
estimate*, about 1 in 2 p-values <.05 is a 
false positive, 1 in 6 p-values <.01 is a 
false positive, and 1 in 56 p-values <.0001 
is a false positive.

4. The pattern of effect sizes is 
inconsistent.

If the same association has been evaluated in 
multiple ways, an inconsistent pattern of 
effect sizes (e.g., risk ratios both above 
and below 1) is indicative of chance.   

5. The p-values are not adjusted for 
multiple comparisons

Adjustment for multiple comparisons can help 
control the study-wide false positive rate. 

Factors to consider in evaluating (molecular) 
epidemiologic data



Types	of	Validation	for	Biomarkers

•Analytical	validation
•When	there	is	a	gold	standard
• Sensitivity,	specificity

• No	gold	standard
• Reproducibility	and	robustness

•Clinical	validation
• Does	the	biomarker	predict	what	it’s	supposed	to	predict	
for	independent	data

•Clinical	utility
• Does	use	of	the	biomarker	result	in	patient	benefit
• Depends	on	available	treatments	and	practice	standards



Univariate	approaches

• Advantages
• Computational	efficiency
• Model	Flexibility
• Generalized	linear	models
• No	need	to	model	correlation	structure	in	x
• Adjustment	for	confounders	easy

• Limitations
• Restricted	to	parametric	marker	outcomes	relationship
• Models	do	not	account	for	potential	combined	effects	of	X	factors
• Multivariate	approaches



Multivariate	approaches

• Dimension	Reduction	techniques:
• Aim:	Identify	summary	covariates	(components)	constructed	as	linear	
combinations	of	original	variables	which	accurately	reconstruct	in	a	lower	
dimension	the	structure	of	the	original	data
• Main	approaches:	unsupervised	(e.g.	PCA)	and	supervised	(e.g.	PLS-based	
approaches)
• Main	limitation:	results	may	not	guarantee	easy	interpretability	⇒need	to	
ensure	sparsity	of	the	results

• Variable	selection	techniques:
• Aim:	identify	a	sparse	set	of	predictors	that	jointly	predicts	Y
• Two	main	approaches:	penalised regression	(e.g.	lasso	approaches),	and	
Bayesian	Variable	Selection	approaches	(BVS)
• ⇒variable	selection	approaches	implicitly	correct	for	multiple	testing



M.	Chadeau-Hyam et	al.	Deciphering	the	Complex:	Methodological
Overview	of	Statistical	Models	to	Derive	OMICS-Based	Biomarkers.
Environ	Mol Mutagen,	2013	Aug;9(8).




