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The exposome

* Limited contribution of genetic factors to the risk pf chronic disease

* 79-90% attributed top exposures
* Exposure measurement suboptimal
* Which?
* How?

An individual’s
exposures

Individual’s unique
characteristics

Exposome measures

the totality of environmental
exposures from

conception onwards

Epigeneticand
genetic changes




Omics data

High throughput biochemical measures of the abundance and/or
structural features of molecules involved in main biological processes
such as metabolism and its regulation.
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Technologies

e Genomics

» Targeted (SNPs) or untargeted (WGS)
 Binary or continuous (dosage data)

» Epigenetics (DNA methylation)
* Methylation sites
* Percentage of methylated cytosines at each CpG locus
* Average over many cells, possibly of different types

* Transcriptomics
» Targeted (micro-arrays) or untargeted (RNA sequence)
* Intensities proportional to RNA abundances or sequence reads

* Metabolomics / Proteomics
» Targeted or untargeted (MS and NMR)
* Quantified proteins/metabolites or mass and retention times, or spectra



Challenges for Biomarker Studies in the ‘Omics’ Era
1. Precious and limited biobanked material, not easily accessed
2. Single (spot) biological samples
3. Usually blood, not urine (which may be better e.g. for metabolomics)
4. No cohorts allow life-course epidemiology
5. In-depth exposure assessment is limited by feasibility

6. Lab measurements and omics have the same limitations related to
sample size and feasibility

7. Biostatistical approaches and causal interpretation

8. Ethical issues



Advantages of Omics data

* Agnostic view of cellular activity

* Measure the main biological processes involved in the regulation of

cellular metabolism

» Use for the Exposome: Omics biomarkers have the potential to

highlight internal responses to external stresses



Main data characteristics

High dimension
* ranging from hundreds to millions

Nature
 continuous/binary/categorical/counts

Noise/ Measurement error
* sensitive to experimental conditions

Stability

»need for flexible statistical framework to accommodate huge heterogeneity

in data, response and dose-response relationships

»(generalised) linear models



Heterogeneity

* Nature of the data
 Binary variables (haplotype data)
» Categorical variables (e.g. genotype data)
e Continuous variables (e.g. % of methylation . . .)

* Dimension: wide range of scales
* Hundreds of measurements (proteins levels)
* Tens of thousands of variables: (NMR-MS spectral data)
* Hundreds of thousands of variables (full genome scans)

e Correlated structure in the data:

» Strength of the correlation varies

 Correlation structure can either be ‘distance-driven’ (e.g LD genomics data)
or more complex (e.g. NMR spectral data).
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Data analysis in Omics

MS: Peak detection, retention time alignment, NMR: Full resolution, NMR and MS: scalin
Preprocessing peak integration, quality control analysis, drift binning, peak fitting, il normali.;_ation 9

correction alignment

Unsupervised exploratory visualization of data, usually through principal components analysis, to identify outliers

Exploratory analysis 2 P
P h y and main sources of variation

Univariate analysis Univariate regression analysis using the f.uII resollutlon spectra or.bmned data to determine which signals are
associated with phenotype of interest

. . . . Other multivariable methods may include
o . Multivariate statistical techniques with : g : Cross-
Multivariate analy5|s> orthogonal partial least square methods >> penalized regression approaches and BayeS|ar> alidation

variable selection (still not widely used)

v

Statistical threshold Calculation of the level of s.tatlstlcal significance (to allow fgr mu.Itnp.Ig testing) through Bonferonni or false
discovery rate or Metabolome Wide Significance Level

Quantification and Metabolite Identify unknown metabolites through targeted MS assays for structural identification or
identification quantification through bioinformatics tools

Pathway analyses > Pathway enrichment analysis >> Genetic determinants of metabolomics traits

N NS N N NS NS N NS

External validation > External, independent replication of findings

Tzoulaki et al AJE 2014



Threats to the Validity of Molecular
Epidemiology Studies

* Bias-systematic error
 Information Bias (imprecision in measurements)
e Confounding

e Statistical Issues
e Over-emphasis on P-values
e Multiple Comparisons
* Association # Causation



Advances in epigenome-wide association studies for

common diseases

Dirk S. Paul and Stephan Beck

UCL Cancer Institute, University College London, London, WC1E 6BT, UK

Epi id jation dies (EWASs) provide a
systematic approach to uncovering epigenetic variants

underlying ies have shed
light on novel lecul. hani of di and

bled the lication of ic variants as bio-
markers. Here, we highlight the recent advances in this
emerging line of r h and di key chall for

current and future studies.

Manv common diseases in humans are mediated bv genetic

disease. The authors probed DNA methylation marks in
whole blood. Indeed, whole blood has proven to be the
tissue of choice for most EWASs owing to its ease of
accessibility. Importantly, they found that the proportions
of the major circulating leukocytes differ between cases
and controls. Statistical methods are capable of inferring
and correcting for such cellular heterogeneity, either with
[4] or without [5,6] the use of reference data sets. Following
reference-based adjustment, Liu et al. achieved a substan-
tial reduction of spurious association signals attributed to
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Proteome-wide association studies identify
biochemical modules associated with a wing-size
phenotype in Drosophila melanogaster

Hirokazu Okada', H. Alexander Ebhardt, Sibylle Chantal Vonesch', Ruedi Aebersold"2 & Ernst Hafen'2

Systematic comparison of phenome-wide association
study of electronic medical record data and
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Published in final edited form as:
J Proteome Res. 2010 September 3; 9(9): 4620-4627. doi:10.1021/pr1003449.

Metabolic Profiling And The Metabolome-Wide Association
Study: Significance Level For Biomarker Identification

Marc Chadeau-Hyam'#, Timothy M D Ebbels*#, lan J Brown®, Queenie Chant, Jeremiah
Stamler', Chiang Ching Huang', Martha L DaviglusT, Hirotsugu Ueshima$, Liancheng
Zhaoll, Elaine Holmest:+, Jeremy K Nicholsont:L, Paul Elliott™t:1, and Maria De lorio™T
Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London
W2 1PG, UK, Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine,
Imperial College, London SW7 2AZ, UK, Department of Preventive Medicine, Feinberg School of
Medicine, Northwestern University, Chicago, lllinois 60611, US, Department of Health Science,
Shiga University of Medical Science, Otsu, Japan, Department of Epidemiology, Fu Wai Hospital
and Cardiovascular Institute, Chinese Academy of Medical Sciences, Beijing, People’s Republic
of China, and MRC-HPA Center for Environment and Health, Imperial College London UK

genome-wide association study data

Joshua C Denny'*, Lisa Bastarache?, Marylyn D Ritchie?, Robert ] Carroll?, Raquel Zink?, Jonathan D Mosley’,
Julie R Field*, Jill M Pulley**, Andrea H Ramirez!, Erica Bowton*, Melissa A Basford?, David S Carrell®,

Peggy L Peissig’, Abel N Kho®, Jennifer A Pacheco’, Luke V Rasmussen!?, David R Crosslin!!, Paul K Crane'?,
Jyotishman Pathak'®, Suzette ] Bielinski!4, Sarah A Pendergrass’, Hua Xu'%, Lucia A Hindorff!®,

Rongling Li', Teri A Manolio6, Christopher G Chute'3, Rex L Chisholm!7, Eric B Larson®, Gail P Jarvik!112,
Murray H Brilliant'8, Catherine A McCarty!?, Iftikhar ] Kullo®, Jonathan L Haines?', Dana C Crawford?!,

Daniel R Masys” & Dan M Roden®?

Candidate gene and genome-wide association studies (GWAS)
have identified genetic variants that modulate risk for

human disease; many of these associations require further
study to replicate the results. Here we report the first

large number of single variant-phenotype associations has led to the
serendipitous identification of single loci associated with multiple
diseases, or pleiotropy. Notable examples include variants at 9p21.3,
which were associated initially with early myocardial infarction’ and
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A Nutrient-Wide Association Study on Blood Pressure

Ioanna Tzoulaki, PhD;* Chirag J. Patel, PhD;* Tomonori Okamura, MD, PhD; Queenie Chan, PhD;
Ian J. Brown, PhD; Katsuyuki Miura, MD, PhD; Hirotsugu Ueshima, MD, PhD; Liancheng Zhao, MD;
Linda Van Horn, PhD; Martha L. Daviglus, MD, PhD; Jeremiah Stamler, MD;

Atul J. Butte, MD, PhD; John P.A. Ioannidis, MD, DSc; Paul Elliott, MB BS, PhD

Background—A nutrient-wide approach may be useful to comprehensively test and validate associations between nutrient
(derived from foods and supplements) and blood pressure (BP) in an unbiased manner.

Methods and Results—Data from 4680 participants aged 40 to 59 years in the cross-sectional International Study of Macro
Micronutrients and Blood Pressure (INTERMAP) were stratified randomly into training and testing sets. US National Health anc
Nutrition Examination Survey (NHANES) four cross-sectional cohorts (1999-2000, 2001-2002, 2003-2004, 2005-2006) wer
used for external validation. We performed multiple linear regression analyses associating each of 82 nutrients and 3 urin
electrolytes with systolic and diastolic BP in the INTERMAP training set. Significant findings were validated in the INTERMALI
testing set and further in the NHANES cohorts (false discovery rate <5% in training, P<<0.05 for internal and external validation)
Among the validated nutrients, alcohol and urinary sodium-to-potassium ratio were directly associated with systolic BP, and dietar’
phosphorus, magnesium, iron, thiamin, folacin, and riboflavin were inversely associated with systolic BP. In addition, dietary folacii
and riboflavin were inversely associated with diastolic BP. The absolute effect sizes in the validation data (NHANES) ranged fron
0.97 mm Hg lower systolic BP (phosphorus) to 0.39 mm Hg lower systolic BP (thiamin) per 1-SD difference in nutrient variable
Inclusion of nutrient intake from supplements in addition to foods gave similar results for some nutrients, though it attenuated th
associations of folacin, thiamin, and riboflavin intake with BP.

Conclusions—We identified significant inverse associations between B vitamins and BP, relationships hitherto poorly
investigated. Our analyses represent a systematic unbiased approach to the evaluation and validation of nutrient-Bl
associations. (Circulation. 2012;126:2456-2464.)



INTERMAP
17 samples (N=4,680 men and women)
82 nutrients from foods
73 nutrients from foods and supplements
3 24-h urine excretion biomarkers

}

Random 50/50 split per sample

/\

Training Set Testing Set
17 samples (N=2,354) 17 samples (N=2,326)
Association testing per country Association testing per country
Combine results (inverse variance) Combine results (inverse variance)

v

Estimate False Discovery Rate

(FDR)
J FDR <0.05 (5%) P<0.05
y \%
| Tentative Validation I
NHANES

4 surveys (N=3,831-4,247 men and women)
56 nutrients from foods and supplements in common
with INTERMAP
11 blood nutrient biomarkers

|

Association testing per survey
Combine results (random effects)

l P<0.05

I NHANES validation |
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An Environment-Wide Association Study (EWAS) on Type
2 Diabetes Mellitus

Chirag J. Patel*3, Jayanta Bhattacharya®, Atul J. Butte'->3+

1 Department of Pediatrics and Medicine, Stanford University School of Medicine, Stanford, California, United States of America, 2 Stanford Center for Biomedical
Informatics Research, Stanford University School of Medicine, Stanford, California, United States of America, 3 Lucile Packard Children’s Hospital, Palo Alto, California,
United States of America, 4 Center For Primary Care and Outcomes Research, Stanford University School of Medicine, Stanford, California, United States of America

Abstract

Background: Type 2 Diabetes (T2D) and other chronic diseases are caused by a complex combination of many genetic and
environmental factors. Few methods are available to comprehensively associate specific physical environmental factors with
disease. We conducted a pilot Environmental-Wide Association Study (EWAS), in which epidemiological data are
comprehensively and systematically interpreted in a manner analogous to a Genome Wide Association Study (GWAS).

Methods and Findings: We performed multiple cross-sectional analyses associating 266 unique environmental factors with
clinical status for T2D defined by fasting blood sugar (FBG) concentration =126 mg/dL. We utilized available Centers for
Disease Control (CDC) National Health and Nutrition Examination Survey (NHANES) cohorts from years 1999 to 2006. Within
cohort sample numbers ranged from 503 to 3,318. Logistic regression models were adjusted for age, sex, body mass index
(BMI), ethnicity, and an estimate of socioeconomic status (SES). As in GWAS, multiple comparisons were controlled and
significant findings were validated with other cohorts. We discovered significant associations for the pesticide-derivative
heptachlor epoxide (adjusted OR in three combined cohorts of 1.7 for a 1 SD change in exposure amount; p<<0.001), and
the vitamin y-tocopherol (adjusted OR 1.5; p<<0.001). Higher concentrations of polychlorinated biphenyls (PCBs) such as
PCB170 (adjusted OR 2.2; p<<0.001) were also found. Protective factors associated with T2D included B-carotenes (adjusted
OR 0.6; p<<0.001).
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Multiple Comparison Problem in ‘Omics’ studies

Normal Disease
Gene 1 0.701365258| 0.847689154| 0.945472154| 0.644555058| 0.868802591 0.553831918| 0.218928503| 0.973412306| 0.999717081| 0.030886471 0.258952072!
Gene 2 0.019693544| (.998953774| 0.79541506| 0.784368111 0.786279804: 0.488011858| 0.109621914] 0.370060164| 0.699715047| 0.906833389| 0.477616141,
Gene 3 0.823234225( 0.009390884| 0.173507675| 0.86814406] 0.781284479! 0.084611403| 0.697086945| 0.592397243| 0.158629413) 0.387556786 C.5174'SC4CS:
Gene 4 0.831201089( 0.672332684| 0.709812715| 0.614300625| 0.0580842821 0057314805 0.036616132( 0.515439251| 0.824838113| 0.902083252| 06419580221
Gone 5 ___ | 0.51604G089] 0.498722217] 0.582979716]_0.909020223] 00899304317 0 4359874T5[ 0300954006 0.401800688]_0.96287023] 0.721856108] 0550259337
Gene 6 0.314244277| 0.693208332| 0.507662222| 0.910433429] 0.642351872! 0.650730411| 0.694156972( 0.852770501| 0.165252532( 0.503087392| 0.803471832"
Gene 7 0.834701125( 0.875853007| 0.538782775| 0.544151697( 0.431703428, 0.40012504| 0.090574576| 0.778406248| 0.099311443| 059307239 0.146904711
Gene 8 0.632542712| 0.320787292| 0.573479184| 0.600636977| 0.280344438' 0.840668539| 0.953859038| 0.93067047| 0.183795382( 0.638818057 C.19466'3534:
Gene 9 0.613812632| 0.943127333| 0.769148665| 0.740696336( 0.7561615191 0.225290514| 0.998161929| 0.192950694] 0.152709112( 0.672583819| 0.104214484!
Gene 10 0.326036635| 0.138067146] 0.613085022| 0.782722541 0.055087176[ 0105971326 0.80495784| 0.619088186] 0.798195475| 0.416937562| 0.379330623)
Gene 11 0.634973714( 0.556111533| 0.843606126| 0.770987963| 0.243204132' 0.625448193| 0.774526794| 0.350605578] 0.36276179) 0.835054279 0.893488236:
Gene 12 0.985398561( 0.057168022( 0.567125297| 0.763013231] 0.413766748 0.327217012| 0.311404135( 0.134875146| 0.517469133| 0.95852008| 06346667111
Gene 13 0.12216374| 0.4336368925| 0.669994608| 0929084475 0.946953019{ 0.204031316| 0.656656377| 0.009321932| 0.637010051] 0.141680378| 0.194537816,
Gene 14 0414223175 0.383942752| 0.682146127] 0.918495607| 0.3824678271 0.782112064| 0.333122917( 0.143586717| 0.898119274| 0.557894875| 0.941420468"
Gene 15 0.285074498( 0.155930996| 0.330072963| 0.383671395| 0.716007409, 0.864141357| 0.400873804| 0.781127202 0.92330326( 0.021729016( 0.2405064681
Gene 16 0.672888773| 0.772635752| 0.674517227| 0.765489034 0.713345501' 0.317341191| 0.415206224| 0.385831293( 0.378462402| 0.7305072682 C.0369322€':
Gene 17 0.016216298| 0.008760328] 0.122856594| 0.911411537( 0.0542315621 0.094487454| 0.345526591| 0.057715898] 0.016620408/ 0.8738592| 0.821530687!
Gene 18 0.551922437| 0.097837061| 0.6162674| 0.410259157 0.913703161: 0.789701193| 0026344507 0.093459699| 0.202196191| 0.500586608| 0.44261104,
Gene 19 0.88922594| 0.629840151( 0.642071927| 0.437341731] 0.349580595' 0.717605676| 0.253664017( 0.661060437| 0.682633708| 0.585084141 0.9'35814376:
Gene 20 0.679047253| 0.610385651| 0.984636956| 0.522444804 0.9837144695 0.008354579| 0.54121905| 0.910083448| 0.862391892| 0.104260295 C.23427917!

Gene by gene 2-tailed t-test; P<0.05
significant
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Lene 19 U.ZDOY(48YY| V. 190¥UYY0| U.OSUUILY0S| U001 13¥0| V.M 10WUI4UY| U.0D414130(| U.SYUDIJ0U4| U.ID1141L9L4 UYLIIUILD| VULTTLIUI0D| U.£8UDU0400
Gene 16 0.672888773| 0.772635752| 0.674517227| 0.765489034| 0.713345501' 0.317341191] 0.415206224| 0.385831293| 0.378462402| 0.730507282| 0.00693228
Gene 17 UUTDZT0LY0] L.UUBIDUSLD| U 1ZZ0000%&| UYTIRTI93(| U.UDRLZITIDZ! U.UYGKD/424| U.J802Z0091| U.UDI120¥0| U.UTDDZLUSUD V.07 30094 U.BL103U0%(!
Gene 18 0.551922437| 0.097837061| 0.6162674| 0.410259157 0.913703161: 0.789701193| 0026344507 0.093459699| 0.202196191| 0.500586608| 0.44261104,
Gene 19 0.88922594| 0.629840151( 0.642071927| 0.437341731] 0.349580595' 0.717605676| 0.253664017( 0.661060437| 0.682633708| 0.585084141 0.9'35814376:
Gene 20 0.679047253| 0.610385651| 0.984636956| 0.522444804 0.9837144695 0.008354579| 0.54121905| 0.910083448| 0.862391892| 0.104260295 C.23427917!

Conclude: Gene 16 associated with disease



Limitations of x-WAS studies

p R . q

X Y

n Predictor matrix: Response matrix: | |n
- n observations - n observations
- p variables - g variables

The n < p situation:

o More predictors than observations

—> numerically intractable statistical inferences
°n>p

-> univariate approaches

—> dimension reductions techniques

—> variable selection methods



Univariate methods

e Each X with each Y
 Each measurement with the outcome
e Common in GWAS

Y = a+ 6X5 + €5,

where:

(@)

@)

@)

Y, is the measured outcome (possibly multivariate)
X,;; 18 the observed value for j th predictor

« 1s the intercept

3 is the regression coefficient

€;; 18 the residual error measuring the random deviation from the
linear relationship

= p models are estimated (one per predictor)
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Multiple Comparisons

* However....need to consider the number of tests
performed-P<0.05 means we accept the risk of
erroneously rejecting H, in 5% of the cases (i.e.
willing to accept 5% false positives)

* Each comparisons carries a 5% error probability so if
we perform 20 tests, likely to detect 1 false positive

* The association between gene 16 and disease may be
real but we do not have sufficient data to make that

claim




Probability of 21 False Positives by Chance

If set P-value at <0.05

# Genes tested (N) | Incidence False Probability of

Positives detecting > false
+ves
1 1/20 5%
2 1/10 10%
20 1 64%
100 5 99.4%

100(1-0.95N)



Probability of Error and Number of Comparisons

Familywise error probability by number of comparisons
1 T T T T T T T I 7
line 1 —

Probability of error

A | | | | | | | | |

a %) ca 38 40 1% (=% ’a =17 =1 1608
Number of comparisons




Expected Number of Errors and Number of
Comparisons

Expected errors by number of comparisons
3 I I I I I I I I I
line 1

expected errors

a | | | | | | | | |

a 18 28 38 448 58 68 748 =17 24 168
Number of comparisons




Multiple Comparison Problem in ‘Omics’
studies

* On the ‘omics’ scale problem is magnified..

* ~10,000 genes on an array

* Each gene-disease association has 5% chance of being false positive (Type |
error)

* So by chance alone, we should detect 500 significant associations.....
e For =0.05 and 2.5x10° SNPs: 125,000 FP



Sources of Multiple Comparisons

Source

Multiple outcomes

Multiple predictors

Subgroup analyses

Multiple definitions for the exposures and
outcomes

Multiple time points for the outcome (repeated
measures)

Multiple looks at the data during sequential
interim monitoring

Example

a cohort study looking at the incidence of breast
cancer, colon cancer, and lung cancer

an observational study with 40 dietary predictors
or a trial with 4 randomization groups

a randomized trial that tests the efficacy of an
intervention in 20 subgroups based on
prognostic factors

an observational study where the data analyst tests
multiple different definitions for “moderate
drinking” (e.g., 5 drinks per week, 1 drink per
day, 1-2 drinks per day, etc.)

a study where a walking test is administered at 1
months, 3 months, 6 months, and 1 year

a 2-year randomized trial where the efficacy of the
treatment is evaluated by a Data Safety and
Monitoring Board at 6 months, 1 year, and 18
months




Correction for Multiple Comparisons

* Major research issue for biostatisticians...debate as to the best approach
* Two ways to control for multiple testing:

e Controlling the Family-Wise Error Rate (FWER)

* Traditional methods for controlling for multiple testing such as Bonferroni correction
(a/n)

* may be too conservative (1" false negatives)

e Controlling the False Discovery Rate (FDR)

* False discovery rate (FDR; Benjamin-Hochberg Test) now more commonly applied to
‘omics’ data sets

->multiple testing correction is achieved by either adjusting the
p-value, or by altering the cut-off value



Correction for Multiple Comparisons

Hg true | Hy false | Total
Hg rejected \Y S R
Hy accepted U T p-R
Total Po ppo | P

* What is the probability of at least one type | error? a
* Family-wise error rate (FWER)=a = p(V>=1)

* Single step FWER a’'=a/p > FWER <=a

 Stepwise approaches: sequentially compare the sorted P-values to a
threshold that depends on their rank
* Too stringent



Correction for Multiple Comparisons

Hg true | Hy false | Total
Hg rejected \Y S R
Hy accepted U T p-R
Total Po p-po | P

 Correlated predictors: if correlated X same features are partially
tested many times

* p models but less than p independent tests
* Resample techniques

 Effective Number of Tests (ENT)

* the number of independent tests that would be required to obtain the same
significance level using Bonferroni
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variables, the metabolome-wide significance level was estimated at P =
2 x 107 (o0 = 5%), resulting in a 60% reduction in the effective number
of tests compared with Bonferonni correction



Outcome of p=50 tests: a list of 50 p-values

e 22 predictors have a p-value<0.05 (expected average #FP=2.5)
FWER

log1o(p - value)

FWER 5%

Predictor

= which of these 22 are likely TP?



Outcome of p=350 tests: a list of 50 p-values

e Bonferroni correction: o’ = 0.05/50 = 0.001

Bonferroni

log1o(p - value)

|...._.._Bonferroni 5%: 0.001___ __ ________ S

T T T T T
0 10 20 30 40
Predictor

= 11 predictors are associated (FWER 5%)

T
50




False Discovery Rate (FDR)

Hg true | Hy false | Total
Hy rejected \Y S R
Hy accepted U T p-R
Total Po p-po | P

O — 7 Of false discoveries _

# Of discoveries

* Qissettobe 0 when R=0
* FDR = expectation of Q = E(V/R; R>0)
* Benjamin-Hochberg Test (rank all P-values)

* FDR is less stringent than FWER
* FWER control at 5% ensures that over 100 experiments <5 contain one FP

* FDR control: over the 100 experiments the average #FP < 5

* = FDR control may be preferred in an exploratory context



Benjamin-Hochberg FDR

Order p values — start with max

Calculate critical value a(k/p)
Find largest p value that is smaller than critical value

log1o(p - value)

T T T T T T
0 10 20 30 40 50
Predictor

= k=1 largest p-value is not significant at 0.05, update the cut-off



Benjamin-Hochberg FDR

Order p values — start with max
Calculate critical value a(k/p)
Find largest p value that is smaller than critical value

Benjamini Hochberg FDR

log1o(p - value)

T T T T T
0 10 20 30 40
Predictor

= k=2 is not significant set £=3, update the cut-off

T
50




Benjamin-Hochberg FDR

Order p values — start with max

Calculate critical value a(k/p)

Find largest p value that is smaller than critical value
Benjamini Hochberg FDR

logo(p - value)

T T T T T
0 10 20 30 40
Predictor

= k getting close to significance

T
50




Benjamin-Hochberg FDR

Order p values — start with max

Calculate critical value a(k/p)

Find largest p value that is smaller than critical value
Benjamini Hochberg FDR

Step 31: cutoff=0.05*20/50=0.02

log1o(p - value)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

T T T T T T
0 10 20 30 40 50
Predictor

= k=31 significant; the 30 15! assoc. are NOT signif. with FDR<5%



Two-Stage Study Designs

* Most widely accepted designs for ‘omics’ studies now....
* Discovery (training set): large sample size, identify discoveries (FDR)

* Validation (test set): independent from discovery set



UK Biobank data ] [ ICBP data ]

Replication

|

Validation

1]
© [ N=502,620 with genetic & phenotypic data N=299,024 from 77 different cohorts
(]
Genetic/phenotypic data QC — N=458,577 Genetic/phenotypic data QC — N=299,024
Exclude samples with high missingness/heterozygosity, 150,134 previously published (54 cohorts), centrally QC-ed
8 sex discordance, QC failures, missing covariates, Plus 148,890 samples from 23 newly QC-ed cohorts.
pregnant, retracted informed consent Including study-level GC-adjustment
restrict to Europeans using PCA European samples only
UK Biobank GWAS analysis ICBP-Plus meta-analysis
UKB GWAS of HRC imputed SNPs ICBP-GWAS of imputed SNPs (1000G or HRC panels)
BP ~ SNP + sex + age + age? + BMI + array Fixed effects inverse variance weighted meta-analysis;
using BOLT-LMM stringent meta-level QC-filtering
> — LD Score Regression — GC-adjustment
2 I
3
o L
a [ UKB+ICBP- GWAS Discovery meta-analysis (N=757,601) ]

v

Exclude all SNPs in 274 known BP loci, using SNPs previously reported at time of analysis
Locus Definition: (r2 > 0.1; 1Mb region +500kb from sentinel SNP)
(also fully exclude HLA region: chr6:25-34 Mb)

-

-

(i) genome-wide significant (P < 5 x 10-8) in combined meta (i) P < 0.01 in ICBP GWAS meta-analysis

Two-stage analysis \
Follow-up SNPs with P < 1 x 106 for any BP trait / One-stage analysis
(with concordant direction of effect for UKB vs ICBP) Consider any novel sentinel lookup SNPs which do

not replicate from 2-stage analysis
Independent Replication meta-analysis

— Lookups of sentinel SNPs — UKB-ICBP Internal Replication
in MVP (N=220,520) and EGCUT (N=28,742)
— combined meta-analysis (N=1,006,863) (i) P < 5 x 10 from UKB+ICBP discovery meta

(i) P < 0.01 in UKB GWAS

(ii) P < 0.01 in replication meta-analysis Qv) concordant direction of effect UKB vs ICBy
(iii) concordant direction of effect

{ ' l l

210 novel loci from one-stage analysis

325 novel replicated loci 92 newly replicated loci ! .
from two-stage analysis (previously published without (internally replicated)
SBP (130), DBP (91), PP (104) independent replication) SBP (60), DBP (103), PP (47)

2 535 novel loci <




INTERMAP
17 samples (N=4,680 men and women)
82 nutrients from foods
73 nutrients from foods and supplements
3 24-h urine excretion biomarkers

}

Random 50/50 split per sample

/\

Training Set Testing Set
17 samples (N=2,354) 17 samples (N=2,326)
Association testing per country Association testing per country
Combine results (inverse variance) Combine results (inverse variance)

v

Estimate False Discovery Rate

(FDR)
J FDR <0.05 (5%) P<0.05
y \%
| Tentative Validation I
NHANES

4 surveys (N=3,831-4,247 men and women)
56 nutrients from foods and supplements in common
with INTERMAP
11 blood nutrient biomarkers

|

Association testing per survey
Combine results (random effects)

l P<0.05

I NHANES validation |




TwinGene
Longitudinal study of
12,591 men and women
(age: 47-93) nested within
the Swedish Twin
Register, conducted
between 2004-2009.
N=12,591

Longitudinal study
initiated in 1970-1973
by inclusion of 50-
year old men living in
Uppsala County,
Sweden.

|~ “Longitudinal study”
initiated in 2001 by '
- . 1
inclusion of 70-year '
old men and women |
living in Uppsala, H
Sweden. H

1

Serum samples from
incident CHD events and
a matched sub-cohort
(controls) stratified on age

Plasma samples from
participants at the 71
year-old investigation

Serum samples
from participants.

Underlying population

Population undergoing
metabolomics profiling

and sex. (1991-1994). N=970 (Table S1)
N=1,670 N=1,028
¢ Primary aim: Discovery of novel
Association between CHD biomarkers and clinical
metabolic features utility
and incident 131
CHD events Univariable analysis:
/ (median follow-up: 10 32 metabolites found
Replication of 32 years). associated (15% FDR)
metabolites for Table S2
association with 282
incident CHD events Replication in TwinGene:
(median follow-up: 3.9 5 replicated metabolites
years) (P-value < 0.05)
Table S2
* Multivariable analysis:

Association with incident CHD adjusting for main
cardiovascular risk factors
(Table 1; Table S3)

) 2

Association between 4 LysoPCs, 8 LysoPC/PC ratio and
incident CHD

(Table S4) \
i Association ¢
between 4
metabolites and 4 metabolites significantly
cardiovascular risk associated with CHD
factors, markers of

oxidative stress,
inflammation and

3 metabolites associated with
CHD independent of reported
risk factors

Targeted Lyso-PC
analysis:
1 additional metabolite

Clinical utility of the 4
metabolites combined
(Table S5)

Secondary aim: Exploration the

subclinical biological mechanisms and
Association between 4 metabolites and main cardiovascular evaluation of potential causal
cardiovascular risk factors disease effects of four metabolites
(Figure 2) (Figure 2) associated with CHD

v v v

GWAS of 4 metabolites (Table 2; Figure S3)

2 2 )

Association between 4 metabolites and candidate SNPs and SNPs associated with

(Figure 2; Figure S4)

v v v

Mendelian randomization analysis (Figure 3)

¥ )
Sensitivity analysis: extension to 20-years follow-up
(Table S7);
adjustment for additional potential confounders
(Table S8)

doi:10.1371/journal.pgen.1004801.g001




Working Solutions

* Data analysis in ‘omics’ studies is challenging....
* Control for multiple testing is a necessity
* The Gold Standard is biological replication

* Training Sets and test sets should have no
members in common

 Set up design as rigorously as possible (in advance)

e Training sets are proof of principle
e Test sets are, theoretically, validation



Factors to consider in evaluating (molecular)
epidemiologic data

1. Analyses are exploratory.

2. Many tests have been performed, but
only a few p-values are “significant”.

3. The “significant” p-values are modest in
size.

4. The pattern of effect sizes is
Inconsistent.

5. The p-values are not adjusted for
multiple comparisons

The authors have mined the data for
associations rather than testing a limited
number of a priori hypotheses.

If there are no associations present, .05*k
significant p-values (p<.05) are expected
to arise just by chance, where k is the
number of tests run.

The closer a p-value is to .05, the more likely
it is a chance finding. According to one
estimate™®, about 1 in 2 p-values <.05 is a
false positive, 1 in 6 p-values <.01 is a
false positive, and 1 in 56 p-values <.0001
is a false positive.

If the same association has been evaluated in
multiple ways, an inconsistent pattern of
effect sizes (e.g., risk ratios both above
and below 1) is indicative of chance.

Adjustment for multiple comparisons can help
control the study-wide false positive rate.




Types of Validation for Biomarkers

* Analytical validation
* When there is a gold standard
* Sensitivity, specificity
* No gold standard
* Reproducibility and robustness
* Clinical validation
* Does the biomarker predict what it’s supposed to predict
for independent data
* Clinical utility
* Does use of the biomarker result in patient benefit
* Depends on available treatments and practice standards



Univariate approaches

* Advantages
* Computational efficiency
* Model Flexibility

* Generalized linear models
* No need to model correlation structure in x
* Adjustment for confounders easy

* Limitations
* Restricted to parametric marker outcomes relationship

* Models do not account for potential combined effects of X factors
e Multivariate approaches



Multivariate approaches

* Dimension Reduction techniques:

* Aim: Identify summary covariates (components) constructed as linear
combinations of original variables which accurately reconstruct in a lower
dimension the structure of the original data

* Main approaches: unsupervised (e.g. PCA) and supervised (e.g. PLS-based
approaches)

* Main limitation: results may not guarantee easy interpretability =need to
ensure sparsity of the results

* Variable selection techniques:
* Aim: identify a sparse set of predictors that jointly predicts Y

* Two main approaches: penalised regression (e.g. lasso approaches), and
Bayesian Variable Selection approaches (BVS)

» =variable selection approaches implicitly correct for multiple testing



M. Chadeau-Hyam et al. Deciphering the Complex: Methodological
Overview of Statistical Models to Derive OMICS-Based Biomarkers.
Environ Mol Mutagen, 2013 Aug;9(8).

Available

Method Family Model Outcome type . Comment
Implementation
Linear regression Continuous Im? i ) ) )
Logistic regression Categorical/Binary . All linear models are special cases of generalls_ed linear
Poisson regression Count data glm models. When running any of the GLM on multiple
- - g - outcomes, results are equivalent to those obtained on
Univariate Linear mixed models Continuous Ime4. nime? each outcome independently
Approaches Generalized linear mixed models (GLM) Any kind of outcome (incl. survival data) ’
Generalized additive models (GAM) Continuous/Categorical/Binary/Count data When running any of the GAM on multiple outcomes,
mecy? results are equivalent to those obtained on each
Generalized additive mixed models (GAMM) Continuous/Categorical /Binary/Count data 8 outcome independently. The package ngcv includes an
L2 (ridge) penalization capacity
Principal Components Analysis (PCA) Continuous prcomp?
Discriminant Analysis (DA) Categorical/Binary Ida? ) ) ) )
Discriminant Analysis of Principal Components Conti , All dimension reduction techniques can accommodate
(DAPC) ontinuous adegenet multivariate outcomes. PCA and DAPC are
Dimension } Continuous/ Categorical (and binary) for unsuperv!sed (i.e. do not account for the ¥ in
Reducti Partial Least Square (PLS) DA variants of the algorithms pls? constructing latent variables), CCA and all PLS-based
eauction g approaches are supervised. & a PLS will soon be
techniques Canonical Correlation Analysis (CCA) Continuous CCA? submitted to CRAN
OPLS/O2PLS/ONPLS Cont/nL_/ous/ Categor/ca{ (and binary) for StarPLS?
DA variants of the algorithms
Penalized (sparse) dimension regression methods Continuous/ Categorical (and binary) for mixOmics? These implementations include non-penalized versions
(sPCA, sPLS, sPLS-DA) DA variants of the algorithms as a special case
: : ; ; ; P ridge package adds logistic regression, as well as
Ridge regression Continuous/Categorical /Binary Im.ridge?3, ridge automatic selection of the penalty parameter
Latest implementation of lasso methods accommodate
Lasso/Elastic net regression Any kind of outcome glmnet? multivariate outcomes. Variants of the lasso approach
Regularization (e.g. bolasso, fused lasso, ...) are implemented in
and Variable separate packages
Selection Shotgun Stochastic search (SSS) Continuous/Categorical/Binary € stand-alone SSS and pi MASS can accommodate any quantitative
application outcome. They differ in their prior specifications and
i MASS Conti Cat ical/Bi C* stand-alone search algorithms. Neither can handle multivariate
p ontinuous/Categorical/Binary application outcomes
Evolutionary Stochastic Search (ESS GUESS) Continuous outcome R2GUESS? Accommodate multivariate outcomes
ﬁxsﬁz%’gdels (Shrinkage) Correlation Network Continuous/Qualitative GeneNet? Can accommodate continuous outcomes

+unction included in the st a&s package; 2R package available on CRAN; Function included in the MASS package;
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Abstract

Analyses of circulating metabolites in large prospective epidemiological studies could lead to improved prediction and
better biological understanding of coronary heart disease (CHD). We performed a mass spectrometry-based non-targeted
metabolomics study for association with incident CHD events in 1,028 individuals (131 events; 10 y. median follow-up) with
validation in 1,670 individuals (282 events; 3.9 y. median follow-up). Four metabolites were replicated and independent of
main cardiovascular risk factors [lysophosphatidylcholine 18:1 (hazard ratio [HR] per standard deviation [SD]
increment=0.77, P-value<0.001), lysophosphatidylcholine 18:2 (HR =0.81, P-value<<0.001), monoglyceride 18:2 (MG 18:2;
HR=1.18, P-value=0.011) and sphingomyelin 28:1 (HR=0.85, P-value =0.015)]. Together they contributed to moderate
improvements in discrimination and re-classification in addition to traditional risk factors (C-statistic: 0.76 vs. 0.75; NRI: 9.2%).
MG 18:2 was associated with CHD independently of triglycerides. Lysophosphatidylcholines were negatively associated with
body mass index, C-reactive protein and with less evidence of subclinical cardiovascular disease in additional 970
participants; a reverse pattern was observed for MG 18:2. MG 18:2 showed an enrichment (P-value =0.002) of significant
associations with CHD-associated SNPs (P-value=1.2x10" 7 for association with rs964184 in the ZNF259/APOAS region) and
a weak, but positive causal effect (odds ratio =1.05 per SD increment in MG 18:2, P-value =0.05) on CHD, as suggested by
Mendelian randomization analysis. In conclusion, we identified four lipid-related metabolites with evidence for clinical
utility, as well as a causal role in CHD development.




