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Abstract Although functional magnetic resonance imag-

ing (fMRI) has long been used to assess task-related brain

activity in neuropsychiatric disorders, it has not yet become

a widely available clinical tool. Resting-state fMRI (rs-

fMRI) has been the subject of recent attention in the fields

of basic and clinical neuroimaging research. This method

enables investigation of the functional organization of the

brain and alterations of resting-state networks (RSNs) in

patients with neuropsychiatric disorders. Rs-fMRI does not

require participants to perform a demanding task, in con-

trast to task fMRI, which often requires participants to

follow complex instructions. Rs-fMRI has a number of

advantages over task fMRI for application with neuropsy-

chiatric patients, for example, although applications of task

fMR to participants for healthy are easy. However, it is

difficult to apply these applications to patients with psy-

chiatric and neurological disorders, because they may have

difficulty in performing demanding cognitive task. Here,

we review the basic methodology and analysis techniques

relevant to clinical studies, and the clinical applications of

the technique for examining neuropsychiatric disorders,

focusing on mood disorders (major depressive disorder and

bipolar disorder) and dementia (Alzheimer’s disease and

mild cognitive impairment).

Keywords Resting-state functional magnetic resonance

imaging (rs-fMRI) � Functional connectivity (FC) � Major

depressive disorder (MDD) � Bipolar disorder (BD) �
Dementia � Alzheimer’s disease (AD)

Introduction

Resting-state functional magnetic resonance imaging (rs-

fMRI), or resting-state functional connectivity MRI (rs-

fcMRI), is an emerging functional brain imaging method

(Greicius et al. 2003). This technique investigates the func-

tional integration of neural networks at rest when no par-

ticular sensorimotor or cognitive task is imposed. The brain,

even at rest, exhibits a highly organized pattern of correlated

activity across a set of remote regions, and this phenomenon

can be observed through changes in brain hemodynamics, a

surrogate marker of summed synaptic and neuronal activi-

ties. As with the conventional task fMRI, rs-fMRI typically

measures blood oxygenation level-dependent (BOLD) sig-

nals reflecting brain hemodynamics. However, one principle

of rs-fcMRI contrasts with the conventional task fMRI

methods, which measure the modulation of BOLD signals in

response to externally controlled tasks or stimuli. Instead, rs-

fMRI investigates naturally occurring low-frequency (typi-

cally 0.01–0.08 Hz) fluctuations in BOLD signals, consid-

ered to reflect physiologically meaningful changes of

spontaneous neural activity in the resting-state networks

(RSNs). The analysis of RSNs has recently received atten-

tion as a clinical tool (Lowe et al. 2000; Lee et al. 2013).

Mounting evidence from clinical rs-fMRI studies has indi-

cated that rs-fMRI may be a promising tool for investigating

pathophysiological characteristics of RSNs associated with

neuropsychiatric disorders (Wu et al. 2011a; Broyd et al.

2009). Rs-fMRI has a number of advantages over task fMRI

& T. Hanakawa

hanakawa@ncnp.go.jp

T. Takamura

t.takamura@ncnp.go.jp

1 Department of Advanced Neuroimaging, Integrative Brain

Imaging Center, National Center of Neurology and

Psychiatry, Kodaira, Tokyo, Japan

123

J Neural Transm (2017) 124:821–839

DOI 10.1007/s00702-017-1710-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s00702-017-1710-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00702-017-1710-2&amp;domain=pdf


for the diagnosis of neuropsychiatric disorders (Grotegerd

et al. 2013), which will be discussed in this article.

In this review, we aim to summarize the utility of rs-

fMRI studies for examining neuropsychiatric disorders. We

will concentrate on two types of neuropsychiatric disor-

ders, namely mood disorders (MD) and cognitive disorders

(dementia), because the early diagnosis of these disorders

poses important clinical challenges. MD is characterized by

disturbances of positive or negative emotional states. MD

includes major depressive disorder (MDD), which is

characterized by at least 2 weeks of low mood that is

present across most situations, and bipolar disorder (BD),

which is characterized by abnormally pronounced shifts in

mood between ‘‘up’’ and ‘‘down’’ states. Differential

diagnosis of MDD and BD is important, because MDD and

BD require different therapeutic strategies. However,

diagnosis is clinically challenging, because BD often ini-

tially presents with several depressive episodes, followed

by manic episodes (Bowden 2001). As the diagnosis of BD

requires both manic and hypomanic episodes, many

patients are initially diagnosed and treated for MDD

(Muzina et al. 2007).

Depressive symptoms result not only from MD, but also

from stress reactions and a diverse range of neuropsychi-

atric disorders including dementia, Parkinson’s disease,

and organic damage to the brain. Differential diagnosis of

MDD and early stage dementia is important, particularly in

elderly populations. Moreover, MD and cognitive disorders

often overlap. Some researchers have proposed that MDD

is a prodromal sign, or possibly a prodromal symptom, of

dementia (Green et al. 2003; Muliyala and Varghese 2010).

Alzheimer’s disease (AD) is the most common form of

dementia, characterized by memory loss at an early stage

of the disease, and then evolving into widespread decline in

many cognitive domains. Pathologically, AD is a neu-

rodegenerative disorder involving widespread neuronal cell

loss, neurofibrillary tangles, and senile plaques in the brain

(Selkoe 1994). Dementia with Lewy bodies (DLB) is the

second most common form of neurodegenerative dementia

(20% of cases at autopsy) after AD (50–60% of cases at

autopsy) (McKeith et al. 1996). AD primarily presents with

deficits in episodic and working memory (Gold and Budson

2008; Yetkin et al. 2006), while DLB is characterized by

decline in attentional and visuoperceptual abilities (Cal-

deron et al. 2001; Collerton et al. 2003). Fronto-temporal

lobar degeneration is another type of neurodegenerative

dementia (Neary et al. 2005). Mild cognitive impairment

(MCI) in many cases represents a transitional, pre-de-

mentia phase preceding all types of dementias including

AD. MCI is classified into amnestic and non-amnestic

types. Amnestic MCI, once diagnosed, has a conversion

rate of 41% to AD after 1 year and 64% after 2 years. The

conversion rate of amnestic MCI is higher than that of non-

amnestic MCI (Bharath et al. 2016). Differential diagnosis

of these several types of dementia at an early stage is

challenging because of the heterogeneity of each disease

and the overlap of symptoms across dementias.

Rs-fMRI potentially provides a versatile technique for

clinicians to determine the neuropathology of patients

suffering from mood and cognitive disorders. Moreover, rs-

fMRI may become an important technique to provide

useful information for the early diagnosis of these disorders

in the near future. In addition, rs-fMRI methods are

evolving into valuable tools for clinical systems neuro-

science (Hanakawa 2015). Here, we overview the basic

principles of the technology, the analysis techniques

applied to patient populations, and findings from rs-fMRI

studies of mood and cognitive disorders.

Introduction to resting-state fMRI

A brief overview of functional MRI methodology

Neural/synaptic activity requires energy in the brain. This

energy requirement is primarily fulfilled by adenosine

triphosphates generated aerobically from glucose and oxy-

gen supplied via arterial blood flow. Thus, changes in local

neural/synaptic activity are accompanied by changes in

regional blood flow (Roy and Sherrington 1890), glucose

metabolism (Sokoloff et al. 1977), and oxygen consumption

(Fox and Raichle 1986). This is the consequence of a com-

plex sequence of cellular, metabolic, and vascular processes,

collectively known as ‘‘neurovascular coupling’’. Moreover,

changes in the oxygenation, blood flow, and blood volumes

are called ‘‘hemodynamic changes’’. These hemodynamic

changes induce changes in the relative concentration of

diamagnetic oxyhemoglobin and paramagnetic deoxyhe-

moglobin, which induces inhomogeneity of magnetic fields.

This inhomogeneity of magnetic fields can be detected by

imaging with a T2*-weighted MRI sequence with a typical

spatial resolution of 2–3 mm. These MRI signal changes,

using deoxyhemoglobin as an internal contrast medium, are

referred to as ‘‘BOLD’’ effects (Ogawa et al. 1990). The

technology for detecting changes in BOLD signals associ-

ated with cognitive and sensorimotor tasks is now widely

known as ‘‘task functional magnetic resonance imaging’’

(task fMRI). BOLD signals peak around several seconds

after a stimulus. Brain activity can thus be investigated,

albeit indirectly, using fMRI with a spatial resolution of

2–3 mm and the time resolution of seconds.

A body of research based on these assumptions has

demonstrated that task fMRI can be used to create ‘‘acti-

vation maps’’ of signal changes associated with a variety of

tasks (movement, perception, attention, emotion, reward,

memory, cognitive, and many other tasks). fMRI signals
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primarily reflect incoming input to (i.e., synaptic activity),

and local processing of, neuronal ensembles in a given area

in addition to output neuronal spiking activity (Logothetis

et al. 2001). However, task fMRI has several technical

caveats. First, it should be noted that low-frequency

domains of the BOLD signal time-course include various

types of physiological noise caused by respiration and

pulsation (Birn et al. 2008). This poses a problem in the

interpretation of task fMRI data, since demanding tasks

likely evoke changes in respiration and pulsation, which

would in turn affect fMRI signals. Another limitation of

task fMRI is that the interpretation depends on task per-

formance, which may substantially differ across individu-

als and study groups. Hence, the interpretation of task

fMRI data is often difficult when applied to patients with

neuropsychiatric disorders, because those patients typically

have difficulty in performing demanding tasks. Thus,

methods for examining the resting state may be useful for

circumventing these issues.

Basics of resting-state fMRI

Traditionally, fMRI has been used to measure changes of

BOLD signals associated with task conditions that are

alternated with or inserted into no-task or control condi-

tions. In contrast, resting-state fMRI (rs-fMRI) rests on the

acquisition of BOLD fMRI time-series data continuously at

rest. As such, participants are not required to perform any

motor/cognitive task or to pay attention to any particular

stimulus. Participants are typically instructed to clear their

minds and not to engage in specific thoughts or visual

images. It should be noted that ‘‘resting’’ conditions sub-

stantially differ across studies. A resting condition may

refer to an eyes-open condition with or without a fixation

target, or an eyes-closed condition. The most appropriate

method for controlling the ‘‘resting state’’ remains an open

question. However, at minimum, it is advised to monitor

sleepiness with an adequate questionnaire and other phys-

iological parameters when possible.

The advent of rs-fMRI arose from the observation that

correlations could be identified across the nodes of func-

tional networks through the analysis of low-frequency

fluctuations extracted from resting-state BOLD fMRI time-

series data. Biswal and colleagues (1995) were the first to

propose that the analysis of spontaneous BOLD fluctua-

tions revealed distinct neural networks. They reported a

high correlation of signal fluctuations, which were most

pronounced in the range of 0.08–0.1 Hz, between the

bilateral sensorimotor cortices. In addition, they examined

the sensorimotor cortex using task fMRI, and found that rs-

fMRI identified the same parts of the sensorimotor cortex

identified with task MRI. This inter-regional correlation of

low-frequency fluctuations is thought to reflect the state of

functional connectivity (FC) between remote brain regions

constituting the ‘‘resting-state networks’’ (RSNs). The

finding that RSN activity can be detected by rs-fMRI has

been well replicated, along with the finding that RSNs

overlap with task-related networks (Beckmann et al. 2005).

Resting-state networks (RSNs)

The default mode network (DMN) is one of the most

commonly examined RSNs. The DMN was originally

discovered using positron emission tomography, as a set of

brain regions most strongly ‘‘deactivated’’ by demanding

cognitive tasks in comparison with a condition without a

task (i.e., resting state; Raichle et al. 2001). The finding

that DMN can be detected using rs-fMRI triggered the

surge of broad interest in rs-fMRI (Barkhof et al. 2014).

The previous studies have used a variety of analysis

methods to examine FC in RSNs during rest in healthy

participants (Damoiseaux et al. 2006; Beckmann et al.

2005). RSNs include the DMN, medial and lateral visual

networks, fronto-parietal network (Yeo et al. 2011; Smith

et al. 2009), salience network, executive network (Seeley

et al. 2007), attention network (Yeo et al. 2011), sensory-

motor network, auditory network, cerebellar network

(Smith et al. 2009), basal ganglia network, frontal cortical

network, cognitive control network, and affective network.

Many previous rs-fMRI studies of neuropsychiatric disor-

ders have focused on the DMN and the salience network in

particular.

Advantages of rs-fMRI over task fMRI for clinical

applications

Without imposing an external task, rs-fMRI analyzes

spontaneous fluctuations of BOLD signals, which reflect

intrinsic changes in synaptic/neural activity over time. This

task-free protocol has strong advantages over the conven-

tional task fMRI for clinical applications. First, rs-fMRI

does not require a complex set-up for stimulus presenta-

tion, response recording, or task timing control which are

prerequisites for task fMRI studies. Such systems are often

expensive, because all equipment must be compatible with

strongly magnetic environments. Second, because of the

task-free nature, rs-fMRI is less demanding for both par-

ticipants and investigators in terms of time (no preparation

time needed) and effort. Thus, dropouts or exclusion of

participants due to poor compliance with instructions (e.g.,

head motion) or the incidental failure of experimental

controls is less likely to affect rs-fMRI studies. Third, the

interpretation of rs-fMRI data is simpler than that of task
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fMRI, since it is not influenced by task performance. Dif-

ferences in task performance affect fMRI signals, and thus

the results of task fMRI are often confounded by individual

differences in task performance. This is particularly prob-

lematic in patient studies, since differences in task per-

formance across groups are inherent (e.g., cognitively

impaired patients would be expected to show poor cogni-

tive performance, by definition, in comparison with control

groups). Fourth, rs-fMRI provides information about

functional networks, the level at which many neuropsy-

chiatric disorders involve underlying pathophysiological

changes.

Analysis methods of rs-fMRI applied to clinical

studies

A variety of methods have been proposed for the pro-

cessing and analysis of rs-fMRI data. Rs-fMRI methods

can be classified into two groups: model-dependent

(model-driven) approaches and model-free (data-driven)

approaches. For clinical studies, both types of method are

applicable to the analysis of rs-fMRI (van den Heuvel and

Hulshoff Pol 2010). Popular statistical methods are seed-

based analysis, independent component analysis (ICA), and

graph analysis.

Model-dependent: seed-based analysis

One traditional approach is a model-based voxel-wise

analysis to examine the degree of FC from a seed region

to another region, yielding FC (seed-to-seed analysis), or

to all the other voxels in the whole brain, yielding an FC

map (seed-to-voxel analysis; (Fox and Raichle 2007).

This approach is a model-based approach, because a seed

region needs to be specified a priori and, to do so, a model

of the pattern of FC or FC of interest must be known

before the analysis. After setting up a seed region as a

volume of interest (VOI), this analysis can inspect FC as a

parameter representing temporally coherent fluctuations

of BOLD signals between anatomically distinct brain

regions. Because the seed-to-voxel analysis is straight-

forward and provides comprehensible results, it has tra-

ditionally been the most popular technique. Since the

seed-based comparison of FC can be performed on the

basis of the general linear model, it is straightforward to

apply for the comparison of FCs between groups. As such,

the seed-based analysis may have more diagnostic power

than model-free methods such as ICA to differentiate

between patients with AD and healthy subjects (Koch

et al. 2012).

Model-free: independent component analysis (ICA)

Model-free methods attempt to find a reduced set of tem-

poral basis functions, such that time-course can be well

approximated by a linear combination of these temporal

bases. ICA is a signal processing technique that separates

observed signals into a set of spatiotemporal components

mathematically independent of each other. ICA has suc-

cessfully been used for the investigation of hidden neuronal

activation patterns measured with BOLD fMRI (Beckmann

and Smith 2004). In an ICA analysis of fMRI data,

observable spatially distributed BOLD time-series data are

hypothesized to be a linear mixture of spatially indepen-

dent maps, each of which has particular temporal dynam-

ics. Thus, ICA applied to rs-fcMRI data identifies RSNs as

spatially independent components corresponding to RSN

maps, accompanied by information about signal variation

time-courses attached to each RNS. An advantage of ICA

is that it does not require a priori assumptions about the

seed regions or neural networks. Furthermore, ICA can

separate signals that do not necessarily reflect neural/sy-

naptic activity, so that ICA is widely applied to the removal

of noises in rs-fMRI data (Beckmann et al. 2005). How-

ever, one of the problems in ICA analysis is that there is

not a straightforward way to infer physiological meaning of

separated ICA components. The ‘‘dual regression’’ method

has been introduced to overcome this limitation of statis-

tical inference for the comparison of ICA components

between groups (Filippini et al. 2009). The dual regression

method takes both spatial and temporal aspects of RSN

information into account to create subject-specific spa-

tiotemporal maps, unlike other back-reconstruction tech-

niques (Filippini et al. 2009). Moreover, not only is the

temporally concatenated ICA dual regression approach

reliable, it also produces more robust results than template

matching ICA performed on an individual level (Zuo et al.

2010). The dual regression approach is performed at three

stages. First, using ICA, the concatenated multiple rs-fMRI

data sets are decomposed into large-scale patterns of FC in

the subject population. Second, subject-specific temporal

dynamics and associated spatial maps are identified within

each subject’s rs-fMRI data set. Finally, the spatial maps

are collected across the subjects for each group. The dif-

ferences between the groups are then tested using voxel-

wise non-parametric permutation testing, yielding spatial

maps characterizing between-subject/group differences.

Graph analysis

Graph theory is an advanced network analysis method,

and has previously been applied in several clinical rs-

fcMRI studies (Sanz-Arigita et al. 2010). A graph theory-
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based analysis regards the whole brain as a single inter-

woven network, which consists of nodes and edges that

correspond to brain regions and the pathways between

them, respectively. In practice, VOIs are set up as sets of

nodes according to a brain atlas or function localizer task

(Smith et al. 2011) to create a covariance matrix. How-

ever, recent developments have enabled graph analysis at

a voxel level (Dai et al. 2015). Graph analysis provides

various metrics that describe features of network topol-

ogy. The metrics include ‘‘centrality’’, ‘‘cluster coeffi-

cient’’, ‘‘characteristic path length’’, and ‘‘betweenness’’.

In addition, exploratory graph analysis can be performed

without any a prior hypothesis about network topology.

The metrics estimated at the subject level can be grouped

and assessed using the conventional statistical tests to

search for group differences. However, it should be noted

that graph-derived metrics are sometimes difficult to

interpret from behavioral and pathophysiological points

of view.

Subsidiary methods: machine learning (ML)

The ML or brain ‘‘decoding’’ technique provides an

important complementary method, which may aid the

development of effective, reliable rs-fMRI methodology

for the early diagnosis of neuropsychiatric conditions.

Support vector machine (SVM) methods have widely

been used to achieve this objective. SVM is a supervised,

multivariate classification method, generating a ‘‘hy-

perplane’’ that defines the boundary of different data

labels (e.g., a patient group and a control group). SVM

requires a supervised training phase during which

parameters defining a hyperplane are trained based on

labeled data, so that distances between the hyperplane

and the data points closest to the hyperplane are maxi-

mized. In practice, FCs are typically retrieved from pairs

of VOIs, forming a covariance matrix (Craddock et al.

2009; Zeng et al. 2012). A classifier is trained by these

FCs retrieved from a part of the entire data set. In a test

phase, a new data set (not used for training) is fed into

the trained classifier for blind separation (Cao et al.

2014). SVM has been applied to neuroimaging data (Lao

et al. 2004; Mourao-Miranda et al. 2005) and has already

been applied in many clinical rs-fMRI studies (Fan et al.

2005; Kawasaki et al. 2007).

Applications of rs-fMRI to Alzheimer’s disease

and other dementias

A number of previous studies have demonstrated the

potential utility of rs-fMRI for identifying patients with

Alzheimer’s disease (AD) and other dementias.

Seed-based analysis

Since a seed-based analysis requires an a priori model of

the seed regions, the previous rs-fMRI studies have focused

on FC involving brain regions already implicated in

dementia, including the hippocampus. Wang and col-

leagues (2006) reported increased FC between the left

hippocampus and the right dorsolateral prefrontal cortex

(dlPFC) in patients with AD compared with healthy con-

trols. In contrast, the right hippocampus exhibited dis-

rupted FC with the medial prefrontal cortex (mPFC) and

ventral anterior cingulate cortex (ACC). Notably, these

regions with reduced connectivity are part of the DMN.

The right hippocampus also showed reduced FC with other

DMN-related brain regions such as the posterior cingulate

cortex (PCC) and temporal cortex (Wang et al. 2006)

(Fig. 1a). Zarei and colleagues (2013) analyzed FCs asso-

ciated with three functional sub-regions (head, body, and

tail) of the bilateral hippocampi. They showed that patients

with AD had stronger connectivity between the PFC and

the head of the hippocampus, and weaker connectivity with

the PCC in the body of the hippocampus, compared with

controls (Zarei et al. 2013).

PCC, a hub of the DMN, has been the subject of

substantial attention in AD research. Zhang and col-

leagues (2009) studied dementia (possible or probable

AD) at the early stages and reported lateralized discon-

nection between the PCC and the left hippocampus. In

addition, the results revealed that the PCC exhibited

reduced FC with the primary visual cortices, inferior

temporal cortex, precuneus, and thalamus. Adjoining the

PCC, the retrosplenial cortex is another important seed

region (Zhang et al. 2009) (Fig. 1b). Dillen and col-

leagues (2016) investigated FC patterns of both the PCC

and retrosplenial cortex in prodromal-mild AD, subjective

cognitive impairment and healthy seniors. The retrosple-

nial cortex seed revealed higher FC with the mPFC and

lateral occipital areas in prodromal AD, whereas the PCC

seed exhibited higher FC with the lingual gyrus. This

study indicates the distinction of FC between the retros-

plenial cortex and the PCC at the early stage of AD

(Dillen et al. 2016). Zhang and colleagues (2010) reported

that patterns of DMN disconnection were enhanced with

the progression of AD, reflecting alterations of FC in AD-

affected brains along a continuum. Among the nodes of

the DMN, the mPFC and precuneus were found to exhibit

the most conspicuous connectivity deficits. Besides the

DMN, the amygdala has also been found to be a vul-

nerable structure in the early stages of AD (Zhang et al.

2010). In a voxel-wise FC analysis using the amygdala as

a seed, Yao and colleagues (2013) reported that FC was

decreased between the amygdala and the other limbic

regions (hippocampus, para-hippocampal gyrus, superior
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temporal gyrus, and middle cingulate cortex) in AD and

MCI. They also found decreased FC between the amyg-

dala and several non-limbic regions (inferior frontal cor-

tex, putamen, and sensory-motor network). The

involvement of the non-limbic/non-DMN network in

pathophysiology of AD was also suggested by another

seed-based rs-fMRI study (Yao et al. 2013). Brier and

colleagues (2012) employed five RSNs (DMN, dorsal

attention network, control network, salience network, and

sensory-motor network) as seeds, revealing that all RSNs

were affected, in association with the severity of AD

(Brier et al. 2012).

Seed-based analysis of rs-fMRI has been applied for

examining DLB. Kenny and colleagues (2012) used the

hippocampi, PCC, precuneus, and primary visual cortices

as seeds, and compared FC across DLB, AD, and healthy

controls. DLB patients exhibited greater connectivity

involving the PCC, while AD patients exhibited greater FC

of the left hippocampus in comparison with controls, as

reported previously (e.g., Wang et al. 2006). Specifically,

in DLB, the right PCC showed significantly greater con-

nectivity with the cerebellum, ACC, and globus pallidus,

compared with controls. However, the results from the

precuneus and primary visual cortex seeds did not show

Default mode network

Alzheimer’s disease vs. Helthy Controls

Increase Decrease

a. Seed region: hippocampus

Seed region

b. Seed region: PCC

DLPFC

medial PFC/vACC

Visual cortex

Primary
motor cortex

Right 
side

hippocampus

Right 
side

DLPFC

ITC

O
FC

OFC

Fig. 1 Functional connectivity

in resting-state in Alzheimer’s

disease (AD). Regions of

connectivity loss or increase in

AD, a case of hippocampus

(Wang et al. 2006) and b PCC

(Zhang et al. 2009) in DMN.

The yellow is showed increase

and blue is decrease. Green of

square is showed seed region.

Mask of DMN is referred to yeo

and colleagues (Yeo et al. 2011)
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significant differences in FC between the groups. This

finding may seem surprising, considering that visual

symptoms, such as hallucination, are a hallmark of DLB

(Kenny et al. 2012). However, using the precuneus as a

seed region, Galvin and colleagues (2011) showed that

DLB patients exhibited decreased connectivity between the

precuneus and primary visual cortex, compared with AD

patients or controls. Furthermore, DLB patients showed

reduced precuneus connectivity with the mPFC and hip-

pocampus compared with controls. In addition, DLB

patients showed positive correlations between the pre-

cuneus and putamen where AD patients and controls

showed anti-correlations. Thus, connectivity with PCC/

precuneus may help differentiate between DLB, AD, and

healthy older people (Galvin et al. 2011).

ICA

Greicius and colleagues (2004) were the first to apply ICA

analysis of rs-fMRI to dementia. Using the ICA-based

analyses, several other studies replicated the results from

seed-based rs-fMRI studies, which indicated reduced

DMN-hippocampus FC in AD (Wu et al. 2011b; Schwindt

et al. 2013; Binnewijzend et al. 2012). Pasquini and col-

leagues (2015) investigated FC related to the DMN using

both local (limited search volume) and global (whole-brain

exploratory) methods. The analysis of global connectivity

replicated reduced DMN/hippocampus FC in AD. How-

ever, the analysis of local connectivity suggested a fine-

graded abnormality in DMN-hippocampus FC in AD and

related disorders. Local connectivity in the hippocampus

was increased in AD and MCI compared with controls,

while local connectivity in PCC was reduced in AD com-

pared with MCI and controls. Importantly, increased hip-

pocampal connectivity was negatively correlated with

performance in a delayed memory task in patients with

dementia (Pasquini et al. 2015). Damoiseaux and col-

leagues (2012) used ICA and separated the DMN into three

sub-networks (anterior, posterior, and ventral DMN). They

reported decreased connectivity in the posterior DMN and

increased connectivity in the anterior and ventral DMN in a

baseline investigation. At the follow-up stage, FC was

reduced in all three sub-networks of DMN. This result

suggests that FC may show differential changes over time

across the sub-networks of DMN as AD progresses

(Damoiseaux et al. 2012).

An advantage of ICA-based analyses over seed-based

analyses is that multiple RSNs can be systematically

examined. Castellazzi and colleagues (2014) developed a

strategy for selecting RSNs of interest and applied the

technology with AD, MCI, and control groups. The ICA

analysis first identified 15 RSNs. Although all 15 RSNs

showed some differences across the groups, the RSNs were

ranked according to the magnitude and extension of FC

alterations. This procedure yielded six significant RSNs:

the DMN, frontal cortical network, lateral visual network,

cerebellar network, and basal ganglia network. Notably, the

prefrontal cortex and mesial temporal cortex (hippocam-

pus) exhibited common alterations across different RSNs,

suggesting a hub-like role of those two regions in dementia

(Castellazzi et al. 2014). Adriaanse and colleagues (2014)

examined FC in the early onset AD patients (\65 years

old), late-onset AD patients (C65 years old), and young

and older control participants. Compared to late-onset AD

patients, the early onset AD patients exhibited reduced FC

in five RSNs: the auditory network, sensory-motor net-

work, dorsal visual network, and DMN. Thus, RSNs may

be more widely disrupted in early onset AD than late-onset

AD (Adriaanse et al. 2014).

ICA analysis has been applied to the comparison of AD

with other types of dementia. Franciotti and colleagues

(2013) assessed whether typical DLB patients exhibit dif-

ferent FC patterns compared with AD patients. Direct

comparison between AD and DLB patients failed to reveal

significant group differences. In AD, however, FC in the

DMN was found to be lower than that of controls, and this

reduction was mainly ascribed to a decrease in FC

involving the PCC. In DLB patients, the engagement of the

PCC was no different from that of controls. In DLB

patients, compared with controls, FC was reduced for the

interhemispheric network and for the right fronto-parietal

networks, and this reduction was correlated with the level

of cognitive fluctuation in DLB (Franciotti et al. 2013). In a

study by Lowther and colleagues (2014), DLB patients

showed reduced FC in the DMN, salience network and

executive network compared with AD patients and con-

trols, whereas DLB patients showed increased FC in the

basal ganglia network. Overall, several network features

retrieved with ICA can provide valuable information for

differentiating between AD and DLB (Lowther et al.

2014).

Graph analysis

Sanz-Arigita and colleagues (2010) compared AD patients

and healthy controls using several metrics obtained using

graph analysis. They found abnormalities in global (char-

acteristic path length) rather than local (cluster coefficient)

metrics in AD patients, suggesting a conversion from a

small world network to less optimal network topologies in

AD. These abnormalities in global graph metrics were

particularly evident for the connections between the frontal

lobe and parietal/occipital lobes, in accord with suggested

anterior–posterior disconnections in AD (Sanz-Arigita

et al. 2010). Toussaint et al. (2014) combined ICA and

graph analysis for rs-fMRI data derived from young and
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older healthy subjects and patients with AD. ICA was first

used to identify sub-systems of the DMN. Network features

were retrieved using graph analysis. For the comparison

between the young and older subjects, long-range fronto-

parietal interactions were decreased (lower global effi-

ciency) with age, but local coupling within each lobe was

increased (higher local clustering) with age (Toussaint

et al. 2014). The decreases in fronto-parietal interactions,

particularly in the precuneus–PCC, were more pronounced

in patients with AD compared with the older control

patients, consistent with the findings of Sanz-Arigita and

colleagues (2010). This study highlights the value of the

complementary use of ICA and graph analysis for exam-

ining rs-fMRI. Kim and colleagues (2015) investigated

changes in topological measures of the brain network

among a diverse sample of participants, ranging from

healthy subjects to patients with prodromal and interme-

diate stages of AD. They compared seven graph analysis-

derived parameters: the characteristic path length, cluster-

ing coefficient, global efficiency, local efficiency,

betweenness centrality, assortativity, and modularity. The

results indicated non-monotonic changes (higher in MCI

and the prodromal stage of AD compared with the other

groups) as AD progressed in several network properties

(global efficiency, local efficiency, and betweenness cen-

trality; (Kim et al. 2015). Graph analysis conventionally

uses a set of VOIs to construct a connectivity matrix;

however, recent developments have enabled graph analysis

at a voxel level. Dai and colleagues (2015) investigated

intrinsic FC patterns of whole-brain networks, using voxel-

based graph theory analysis. It was suggested that patho-

physiology of AD selectively affects highly connected hub

regions of brain networks, involving the medial and lateral

prefrontal and parietal cortices, insula, and thalamus. AD

patients also showed disrupted connectivity within the

DMN, saliency network, and executive network. Moreover,

the nodal connectivity strength in the PCC-precuneus was

highly relevant for distinguishing individuals with AD

from healthy subjects. This study highlights the value and

feasibility of voxel-level graph analysis (Dai et al. 2015).

Brief summary of rs-fMRI studies in dementia

Studies using seed-based analysis have supported the

association between AD pathophysiology and previously

identified anatomical structural abnormalities in particular

brain areas, including the hippocampus and PCC. In par-

ticular, alteration of FC involving the hippocampus and

PCC/retrosplenial cortex has been found to be related to

disease severity. Seed-based analysis of rs-fMRI applied to

DLB revealed that connectivity with PCC/precuneus may

help distinguish among DLB patients, AD patients and

healthy older people. Studies using ICA analysis have

revealed similar results to seed-based investigations.

However, ICA allows for semi-automatic and objective

identification of different RSNs, including sub-systems of

the DMN. ICA-based studies also revealed that the PFC

and mesial temporal cortex constitute a functional hub, the

abnormality of which affects multiple RSNs in AD

patients. Graph analysis has provided a new perspective in

the analysis of rs-fMRI, and its clinical relevance should be

tested and replicated in studies with large samples.

Applications of rs-fMRI to mood disorders

Major depressive disorder (MDD)

Seed-based analysis Several rs-fMRI studies have high-

lighted dysfunctional DMN activity in MDD. Peng and

colleagues (2015) measured FC in first-episode, medica-

tion-naive patients with MDD and healthy controls, using a

node of DMN (precuneus) as a seed region. The results

revealed that MDD patients exhibited stronger anti-corre-

lation between the precuneus and the sensory processing/

premotor regions than controls. In other words, the inher-

ently inverse relationship of spontaneous activity between

DMN and non-DMN areas was exaggerated in MDD (Peng

et al. 2015). Chen and colleagues (2015a, b) performed a

seed-based FC analysis in the first-episode, treatment-naı̈ve

MDD patients. The researchers used a seed in the PCC and

identified 12 DMN nodes (PCC, dorsal/ventral mPFC,

medial temporal cortex, inferior parietal cortex, superior

frontal cortex, thalamus, and cerebellum). Region-to-re-

gion connectivity of MDD, compared with healthy con-

trols, exhibited lower FC between the PCC and dorsal

mPFC, between the PCC and right inferior parietal cortex/

angular gyrus, and between the left thalamus and cerebel-

lum (Chen et al. 2015b). In a study by Liu and colleagues

(2012), patients with MDD were found to exhibit decreased

FC between the cerebellum and the DMN/executive net-

work as well as increased FC between the cerebellum and

the temporal pole/middle frontal cortex (Liu et al. 2012).

Prefrontal regions have long been implicated in the

pathophysiology of MDD. Sheline and colleagues (2010)

used the DMN, cognitive control network, and affective

network as seed regions. Despite starting from these sep-

arate seeds, increased FC in MDD converged onto the

bilateral dorsal prefrontal areas, leading the authors to term

these prefrontal areas the ‘‘dorsal nexus’’. In MDD, this

‘‘dorsal nexus’’ exhibited extremely strong connectivity

with large parts of PFC (dorsolateral, dorsomedial, and

ventromedial areas), ACC (dorsal, pregenual, and subgen-

ual areas), and PCC/precuneus (Sheline et al. 2010). Other

rs-fMRI studies have also reported alterations of FC

involving the PFC in MDD. In a comparison of the first-

episode MDD patients and healthy controls, Ye and
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colleagues (2012) used the right dorsolateral PFC as a seed

and investigated resting-state FC alterations in MDD. The

results revealed that MDD patients exhibited increased FC

between the right dorsolateral PFC and the left dorsal ACC,

left para-hippocampal gyrus, thalamus, and pre-central

gyrus compared with healthy controls, along with

decreased FC with the right parietal lobe (Ye et al. 2012).

A study using the left and right dorsolateral PFC as seeds

reported that the left dorsolateral PFC exhibited increased

FC with the middle frontal gyrus, parietal lobe, post- and

pre-central gyrus, precuneus, superior temporal gyrus,

inferior parietal lobule, and cingulate regions (Shen et al.

2015). The basal ganglia have also been implicated in

MDD by several seed-based rs-fMRI studies. Kerestes and

colleagues (2015) used subdivisions of the striatum (ventral

striatum/nucleus accumbens, dorsal caudate, dorsocaudal

putamen, and ventrorostral putamen) as seed regions. A

comparison between moderate-to-severe medication-free

patients with MDD and healthy controls revealed a diffuse

pattern of increased FC between the dorsal caudate and

ventrolateral PFC bilaterally (Kerestes et al. 2015).

Several rs-fMRI studies have investigated the underly-

ing mechanisms of inter-individual differences in response

to treatment in MDD. Lui and colleagues (2011) evaluated

FC in patients with treatment-resistant MDD (TRD) and

treatment-responsive MDD (TSD) and healthy controls,

using 13 seeds (hippocampi, insula, dorsolateral PFC,

amygdala, putamen and thalami bilaterally, and ACC).

Both groups of MDD patients exhibited reduced FC in the

bilateral prefrontal-limbic-thalamic areas compared with

healthy controls. In a comparison between TSD and TRD,

TSD patients revealed more distributed decreases in FC

especially in the ACC and in the amygdala, hippocampus,

and insula. In contrast, TRD patients showed disrupted FC

mainly in the PFC and thalami. These results suggest that

distinct functional deficits in distributed brain networks

may characterize TRD and TSD (Lui et al. 2011). In an rs-

fMRI study using cerebellar seeds (Guo et al. 2013), both

TRD and TSD patients exhibited a similar pattern of

abnormal cerebellar–cerebral FC involving the PFC, DMN,

visual recognition network, and para-hippocampal gyrus.

However, TRD patients exhibited more decreased cere-

bellar–DMN FC than TSD patients. Ma and colleagues

(2012) combined structural and functional MR to examine

whether abnormalities in gray matter volume might relate

to alterations of FC in TRD and TSD. First, a structural

MRI analysis revealed gray matter abnormalities in the

right middle temporal cortex (MTG) and bilateral caudate

among TSD patients, compared with TRD patients and

healthy controls. Reduced MTG volume was shown in both

TSD and TRD patients, while that of the caudate was only

seen in TRD patients. Second, a seed-based analysis was

applied to rs-fMRI to examine the effect of gray matter

abnormalities on FC. An rs-fMRI analysis using a right

MTG seed showed altered FC, particularly with the DMN.

Analysis using a caudate seed was performed in the frontal

areas in both groups, but some differences in FC were only

found between TRD and TSD patients. Altered FC with the

right middle orbitofrontal cortex was shown in TRD, while

altered FC was found in the right inferior frontal gyrus,

middle frontal cortex, superior frontal cortex and dlPFC in

TSD. The two subtypes of MDD had some common and

some differential abnormalities in FC and gray matter

volume, which may reflect depressive ‘‘traits’’ and

‘‘states’’, respectively (Ma et al. 2012).

ICA Greicius and colleagues (2007) applied ICA analysis

to MDD patients and healthy controls. After ICA was used

to isolate the DMN, the results revealed increased DMN-

related FC in the orbitofrontal cortex, subgenual cingulate

cortex, thalamus, and precuneus in MDD. This study was

the first to demonstrate DMN abnormalities in MDD

(Greicius et al. 2007). Zhu and colleagues (2012) showed

increased FC in the mPFC and ACC, and decreased FC in

the PCC/precuneus in the first-episode, medication-naı̈ve

young adults with MDD compared with healthy controls.

This result suggests dissociation of FC between the anterior

and posterior regions of DMN in MDD (Zhu et al. 2012).

Likewise, Li and colleagues (2013) reported dissociation of

the anterior and the posterior sub-networks of DMN in

MDD. Although MDD patients exhibited increased FC in

both anterior and posterior DMN sub-networks, antide-

pressant medication normalized FC in the posterior sub-

network, but not the anterior sub-network (Li et al. 2013).

Graph analysis Peng and colleagues (2014) applied

graph analysis to patients with first-episode, medication-

naive MDD. For global brain modularity (i.e., ‘‘small-

worldness’’), no difference was observed between MDD

patients and controls. For local modularity, however,

abnormalities were found in eight regions, including the

orbitofrontal cortex and amygdala. These findings suggest

altered modular architecture in MDD (Peng et al. 2014).

Brief summary Seed- and ICA-based rs-fMRI studies of

MDD have suggested the involvement of the DMN and

prefrontal areas in addition to cognitive and affective

RSNs. Importantly, some studies have discovered differ-

ential involvement of DMN sub-networks between TRD

and TSD, casting new light on pharmaceutical rs-fMRI

studies in MDD. ICA studies have also consistently indi-

cated that RSNs, especially the DMN, are poorly regulated

in patients with MDD (Zhu et al. 2012; Lemogne et al.

2012). However, the direction of changes has not been

consistent across rs-fMRI studies (as seen in dementia).

Early studies using graph analysis of rs-fMRI have begun
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to reveal abnormal network architecture in MDD patients

compared with controls.

Bipolar disorders (BD)

Seed-based analysis Torrisi and colleagues (2013) stud-

ied euthymic patients with BD, focusing on the bilateral

amygdalae and ventrolateral PFC, which are implicated in

emotion regulation. Compared with healthy controls,

euthymic patients with BD exhibited higher FC between

the right ventrolateral PFC and amygdala. The results

suggested that the ACC mediated this abnormal FC, since

the ACC exhibited positive connectivity with both the right

amygdala and right ventrolateral PFC (Torrisi et al. 2013).

Favre and colleagues (2014) used a seed-based correlation

method to explore FC with the ventromedial PFC (a DMN

seed) in the whole brain. Euthymic patients with BD

exhibited a loss of anti-correlation between the mPFC and

the right dlPFC, and abnormal hyper-connectivity between

the mPFC and right amygdala (Favre et al. 2014).

A notable feature of BD is that the same patients exhibit

different states of mood. These states may be accompanied

by different states of RSNs, which could be assessed using

rs-fMRI. Rey and colleagues (2016) investigated FC in

euthymic and non-euthymic patients with BD, focusing on

brain regions implicated in emotion regulation and self-

referential processing. Compared with controls, BD

patients exhibited increased FC between the left amygdala

and left subgenual ACC/PCC overall. However, non-

euthymic BD patients exhibited decreased FC between the

right amygdala and subgenual ACC, whereas euthymic BD

patients exhibited decreased FC between PCC and sub-

genual ACC. This study also indicated that subgenual

ACC–PCC and subgenual ACC–amygdala connections

were related to rumination tendency in non-euthymic BD

(Rey et al. 2016). In the comparison between manic and

euthymic states in BD patients, Brady and colleagues

(2016) revealed that manic BD patients exhibited

decreased FC between the amygdala and ACC compared to

euthymic BD patients. Another study with seeds in bilateral

amygdala reported that both manic and non-manic BD

patients exhibited reduced FC between the bilateral

amygdala and orbitofrontal cortex, striatum, lingual gyrus,

and PCC, compared with controls (Li et al. 2015). How-

ever, right amygdala–hippocampal connectivity was

decreased in manic states but increased in non-manic

states. Overall, BD in different mood states most likely

exhibits a contrasting pattern of FC involving the amygdala

and DMN, including the hippocampus (Brady et al. 2016).

Using the whole hippocampus as a seed, Samudra and

colleagues (2015), demonstrated broadly distributed

reduction of FC in psychosis, including BD patients,

compared with healthy controls. Patients with psychosis

showed reduced hippocampal FC with the PCC, superior

temporal gyrus, thalamus, and cerebellum, with a tendency

for more left-sided disconnection. When separate seeds

were placed in the anterior and posterior sectors of the

hippocampus, reductions in FC with the anterior hip-

pocampal seed were found in the ACC, superior temporal

gyrus, and thalamus (Samudra et al. 2015).

ICA ICA has been applied for comparing BD with related

psychiatric disorders. Ongur and colleagues (2010) exam-

ined DMN alterations in manic BD patients and acute

schizophrenia (SZ) patients. The results indicated that BD

might be characterized by a reduction of coherence in

several nodes within the DMN, including the hippocampus,

as well as involving abnormal recruitment of the pontine,

lateral parietal, and occipital regions in the DMN (Ongur

et al. 2010). In another study of SZ and BD patients,

Khadka and colleagues (2013) identified abnormal activity

in seven RSNs: fronto-occipital, midbrain/cerebellum,

frontal/thalamic/basal ganglia, meso/para-limbic, posterior

DMN, fronto-temporal/para-limbic and sensory-motor

networks. In particular, abnormal FC in the meso/para-

limbic and posterior DMN was common among SZ and BD

patients. This result is consistent with the notion that SZ

and psychotic BD share pathophysiological mechanisms

(Khadka et al. 2013). Recently, Goya-Maldonado and

colleagues (2016) demonstrated that characteristic changes

in large-scale networks could distinguish between bipolar

MD (BD) and unipolar MD (MDD). BD and MDD

patients, despite similar depressive symptoms, were found

to exhibit clear differences in the fronto-parietal network,

cingulo-opercular network, and DMN (Goya-Maldonado

et al. 2016).

In a comparison between euthymic BD patients and

healthy controls, Lois and colleagues (2014) performed an

ICA inter-network connectivity analysis that revealed

increased FC between the meso/para-limbic and the right

fronto-parietal network. However, this finding remains

inconclusive, because the abnormal connectivity pattern

did not correlate with variables related to the clinical

course of BD (Lois et al. 2014). In contrast, Ford and

colleagues (2013) used ICA analysis to examine FC cor-

related with the bipolarity index in a group of MDD and

BD patients. The scores of trait bipolarity were positively

correlated with FC involving the DMN, the right puta-

men/claustrum extending into the insula as well as a neg-

ative correlation with FC in the left postcentral gyrus,

extending into the PCC. Furthermore, increased FC

between the putamen and DMN represented a marker

distinguishing between BD and MDD (Ford et al. 2013).

Brief summary Rs-fMRI studies in BD have thus far

identified abnormal functional connectivity between
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several brain regions. Seed-based studies have concen-

trated on the DMN, hippocampus ,and amygdala, impli-

cating the DMN and affective networks in the

pathophysiology of BD. Research using ICA has identified

more extensive RSNs, not limited to the DMN, as under-

lying mechanisms of BD. These RSNs include fronto-

parietal and meso/para-limbic networks, possibly explain-

ing cognitive abnormalities in BD.

Application of machine learning (ML)

to neuropsychiatric disorders

ML has typically been applied to neuroimaging for the

‘‘decoding’’ of brain signals. After an ML-based classifier

is trained with a data set (learning), the classifier then

attempts to classify a new data set (prediction). If this

technology becomes established as part of routine clinical

practice, rs-fMRI may become an immensely valuable tool

for clinical practice. ML has recently been used to examine

rs-fMRI data obtained from patients with MDD, BD, and

neurodegenerative disorders such as AD. Below, we

describe the findings of clinical studies using SVM, which

is currently the most widely used ML technology.

In two previous ML studies of MDD, Craddock and

colleagues (2009) and Zeng and colleagues (2012) applied

SVMs to the classification of healthy controls and patients

with MDD. Craddock and colleagues (2009) defined fea-

ture vectors for a linear kernel SVM as the correlation

scores between pairs from 15 selected regions, and then

examined the performance of two different feature selec-

tion methods: reliability filter (RF) and reliability reverse

feature elimination (RRFE). While RF determines a

threshold for multivariate patterns using partial least

squares, RRFE minimizes prediction error. The results

indicated that SVM successfully classified whether patients

belonged to the healthy group or the MDD group. Classi-

fication accuracy was 95% when RF was used for feature

selection, and 85% when RRFE was used. These findings

suggest that the performance of SVM classification

depends in part on the method of feature selection (Crad-

dock et al. 2009). Zeng and colleagues (2012) reported that

a multivariate pattern analysis of FC with linear SVM had

an accuracy of 94.3% for distinguishing MDD patients

from healthy controls. The Kendall tau rank correlation

coefficient was used as a feature extraction method to

preserve the best discriminating FC, and exclude the rest.

The majority of FC alterations with high discriminative

power were located in the DMN, affective networks, visual

areas, and cerebellum. In particular, FC between the

amygdala, ACC, para-hippocampal gyrus, and hippocam-

pus exhibited high discriminative power in classification.

These results demonstrated that multivariate pattern anal-

ysis of whole-brain rs-fMRI allowed researchers to

distinguish MDD patients from healthy controls (Zeng

et al. 2012).

Several clinical studies proposed that the combination of

different MRI modalities might improve imaging-based

classification of AD (Zhang et al. 2011; Sui et al. 2013).

However, several recent studies found better classification

performance with a single MRI modality (Dyrba et al.

2015; Dai et al. 2012). Zhang and colleagues (2011) per-

formed a multi-modal group comparison, by combining

structural MRI, functional PET and CSF protein level to

differentiate healthy controls, MCI patients, and AD

patients. The classification accuracy was 93% for healthy

versus AD and 76% for healthy versus MCI (Zhang et al.

2011). To distinguish patients with AD from healthy con-

trols, Dai and colleagues (2012) applied graph analysis to a

single MRI modality and proposed a methodological

framework (multi-modal imaging) and multi-level charac-

teristics with a multi-classifier. The application of this

technology to an rs-fMRI data set consisting of AD and

controls led to a classification accuracy of 89% with a

sensitivity of 88% and a specificity of 91% (Dai et al.

2012). Dyrba and colleagues (2015) reported a similar

result. The authors developed a multiple-kernel SVM

classifier based on diffusion MRI, gray matter volume, and

derivatives of graph-theoretical analysis of rs-fMRI data

(local clustering coefficient and shortest path length).

Classification based on a single modality revealed area-

under-the-curve (AUC) values of the receiver-operating

characteristic (ROC) curve of approximately 80% for rs-

fMRI, 87% for diffusion MRI, and 86% for gray matter

volume (Dyrba et al. 2015). The combination of all three

modalities did not improve the classification accuracy

(82%).

Brief summary and comments

The application of ML to rs-fMRI allows for the semi-

automatic labeling of data sets (e.g., distinguishing a

patient group and a healthy group). The distinguishing

features are typically related to FC between VOIs, but

other features such as graph-derived parameters have

already been reported to be useful. Although application of

ML to rs-fMRI is a promising technique, it should be noted

that high discrimination accuracy might result from over-

fitting to the data when the training data is not sufficiently

large.

Discussion

This review provides that an overview of the ways rs-fMRI

technology has been applied to the study of neuropsychi-

atric disorders. For clinical applications, rs-fMRI methods

Clinical utility of resting-state functional connectivity magnetic resonance imaging for… 831

123



have a number of advantages over other functional imaging

methods. Importantly, rs-fMRI does not rely on active

participation by patients. Thus, rs-fMRI may be the sole

form of fMRI suitable for uncooperative populations for

which an adequate level of performance may be difficult to

attain. Similar to other functional imaging methods, patient

immobility is essential for rs-fMRI, since movement-re-

lated artifacts can significantly impair the detection of

spontaneous brain activity. However, since rs-fMRI can be

performed (and RSN activity can still be detected) in

patients under sedation, patients (e.g., pediatric patients)

may be sedated if necessary to attain an acceptable level of

immobility (Greicius et al. 2008; Kiviniemi et al. 2003).

Moreover, rs-fMRI is free from the potentially confound-

ing effects of differences in the level of task performance.

Early studies using these methods have uncovered a

wide array of brain regions that exhibit group-wise dif-

ferences between neuropsychiatric disorders and control

subjects. Many RSNs have been implicated in the patho-

physiology of neuropsychiatric disorders, particularly the

DMN, which is particularly active during rest and is

deactivated during a variety of tasks. Moreover, the DMN

is likely to be involved in the pathophysiology of dementia.

One of the first clinical studies of rs-fMRI revealed that AD

patients exhibited disrupted FC in the PCC, a hub of the

DMN, and in the hippocampi (Greicius et al. 2004). Sec-

ond, in patients with MDD, all nodes of DMN have been

found to exhibit abnormal resting FC. These findings

strongly suggest pervasive involvement of DMN in the

pathophysiology of MD. To better understand how the

DMN interacts with the pathophysiology of MD, continu-

ous cross-referencing with task fMRI studies is needed. In

a study of MDD, for example, the ‘‘dorsal nexus’’ including

the dorsal PFC shows increased connectivity with three

important cognitive-affective networks: the cognitive

control network, DMN, and affective network (Sheline

et al. 2010). In future studies, the function of the ‘‘dorsal

nexus’’ should be explored with task fMRI, since its

function is not well understood.

However, the results of many previous rs-fMRI studies

should be interpreted with caution because of small sample

sizes, heterogeneity of patients, and differences in

methodological approach. In most rs-fMRI studies dis-

cussed in this review, sample sizes have been relatively

small (Table 1). Theoretically, studies with larger samples

should provide more reliable results. Laird and colleagues

(2011) investigated intrinsic connectivity networks using a

large data set derived from the Brain Map database (Laird

et al. 2011, 2013). The spatial topographies derived from

the Brain Map networks matched the set of RSNs derived

from a 306-subject data set (Biswal et al. 2010) more

closely than the set of RSNs derived from a 36-subject data

set (Smith et al. 2009). Thus, it is likely that with an

increased sample size, delineation of RSNs will become

more stable. It has been suggested that rs-fMRI studies

with small samples (\50 subjects) have a substantial risk of

producing false negative results (Lieberman and Cun-

ningham 2009), and the currently recommended sample

size is over 100 participants. Although clinical applications

of rs-fMRI appear to be promising, more work is needed

before rs-fMRI will be routinely useful in clinical settings.

Developments in MRI acquisition and preprocessing

techniques have enabled the effective removal of prob-

lematic motion artifacts (Satterthwaite et al. 2013; Feis

et al. 2015). However, one of the most important limita-

tions of rs-fMRI studies is the need of vigorous correction

for physiological artifacts resulting from respiration and

cardiac activity. With current fMRI technology, low-fre-

quency noise from the cardiac and respiratory cycle still

affects the results of rs-fMRI. The ICA method is often

applied to extract the physiological noise, and Griffanti and

colleagues (2015) used ICA-based artifact removal in a

clinical population, highlighting the importance of sensi-

tive analysis of fMRI data for detecting FC alterations

(Griffanti et al. 2015).

It should be borne in mind that intrinsic fluctuations as

detected by rs-fMRI are small and variable, resulting in a

large inter-individual variability in the RNS. Moreover, the

degree of inter-individual variability may differ across

brain regions/networks. In fact, a study on the inter-indi-

vidual variability of rs-fMRI has shown that unimodal

brain region has a low individual variability and polymodal

association cortices have high individual variability

(Mueller et al. 2013). The inter-individual variability seems

to pose an issue against the clinical utility of rs-fMRI.

Importantly, Finn and colleagues (2015) have demon-

strated that individual variability in functional connectivity

is reproducible across different rs-fMRI sessions (Finn

et al. 2015). Consistently, a few other studies showed that

functional connectivity was reproducible within a partici-

pant over a month (Chen et al. 2015a) or even over a period

of 3.5 years (Choe et al. 2015). Using this ‘stable’ inter-

individual variability, Finn and colleagues (2015) have

even shown that inter-individual variability in rs-fMRI can

be used as a ‘‘fingerprint’’ of a person (Finn et al. 2015).

Hence, evidence is available in support for the robustness

and stability of rs-fMRI measurement over time. To argue

for the clinical utility, the issue is the degree of inter-in-

dividual variability induced by a disease process in com-

parison with that of in non-pathological conditions. This is

an important open question, which should be answered in

the future studies, and answers to this question might differ

depending on what kind of neuropsychiatric pathology is

questioned. However, a very recent rs-fMRI study of

depression has shown that, when properly analyzed, rs-

fMRI can provide information to help differentiate subtle
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Table 1 Studies examining rs-fMRI for mood and cognitive disorders or healthy controls

Alzheimers disease and other dementia

References Subjects Method

Wang et al. (2006) 13 AD (8 F) 70.1 years, 13 HCs (8 F) 69.5 years Seed-

based

Zarei et al. (2013) 16 AD (8 F) 69.5 years, 22 HCs (13 F) 70.7 years Seed-

based

Zhang et al. (2009) 16 Mild AD (10 F) 71.6 years, 16 HCs (9 F) 71.3 years Seed-

based

Dillen et al. (2016) 24 Prodromal AD (10 F) 71 years (55–78 years), 27 SCI (15 F) 65.7 years (51–79 years), 25 HCs (10 F)

62.4 years (50–73 years)

Seed-

based

Zhang et al. (2010) 39 AD (21 F) 74.3 years (62–84 years): 16 mild AD (10 F) 71.6 years, 11 moderate AD (5 F) 76.6 years,

12 severe AD (6 F) 72.0 years, 16 HCs (9 F) 71.3 years

Seed-

based

Yao et al. (2013) 35 AD (23 F) 72.4 years, 27 MCI (14 F) 73.8 years, 27 NC (11 F) 69.2 years Seed-

based

Brier et al. (2012) 510 (270 F) 77 years: 386 CDR 0, 91 CDR 0.5, 33 CDR 1 Seed-

based

Kenny et al. (2012) 16 AD 77.3 years, 15 DLB 80.6 years, 16 HCs 76.3 years Seed-

based

Galvin et al. (2011) 35 AD (22 F) 75.3 years, 15 DLB (4 F) 71.7 years, 38 HCs (26 F) 73.9 years Seed-

based

Binnewijzend et al.

(2012)

39 AD (16 F) 67 years, 23 MCI (8 F) 71 years, 43 HCs (20 F) 69 years ICA

Schwindt et al.

(2013)

16 AD (4 F) 72.2 years, 18 HCs (6 F) 71.0 ICA

Wu et al. (2011b) 15 AD (9 F) 64.0 years (53–79 years), 16 HCs (9 F) 65.1 years (47–79 years) ICA

Pasquini et al. (2015) 21 AD (13 F) 72.3 years, 22 MCI (11 F) 65.3 years, 22 HCs (16 F) 66.3 years ICA

Damoiseaux et al.

(2012)

21 AD (12 F) 64.2 years, 18 HCs (6 F) 62.7 years ICA

Castellazzi et al.

(2014)

14 AD (10 F) 70.34 years, 12 MCI (8 F) 73.6 years, 16 HCs (12 F) 69.0 years ICA

Adriaanse et al.

(2014)

48 AD: 20 early onset (6 F) 59 years, 28 late-onset (11 F) 72 years, 46 HCs: 15 young (6 F) 61 years, 31

Old (14 F) 72 years

ICA

Franciotti et al.

(2013)

18 AD (7 F) 76 years, 18 DLB (9 F) 75 years, 15 HCs (5 F) 74 years ICA

Lowther et al. (2014) 13 AD (6 F) 75.5 years, 15 DLB (6 F) 80.6 years, 40 HCs (20 F) 77.8 years ICA

Sanz-Arigita et al.

(2010)

18 Mild AD (9 F) 70.7 years (59–79 years), 21 HCs (13 F) 70.7 years (60–81 years) Graph

analysis

Toussaint et al.

(2014)

20 AD (9 F) 62 years, 38 HCs: 19 young (7 F) 20 years, 19 elderly (4 F) 61 years Graph

analysis

Kim et al. (2015) 71 AD (41 F): 25 CDR 0.5 (15 F) 70.0 years, 36 CDR 1 (20 F) 72.6 years, 10 CDR 2 (6 F) 70.9 years, 50

aMCI (28 F) 70.4, 31 HCs (26 F) 67.6 years

Graph

analysis

Dai et al. (2015) 32 AD (18 F) 71.3 years (52–86 years), 38 HCs (25 F) 68.4 years (50–86 years) Graph

analysis

Major depressive disorder

Peng et al. (2015) 16 MDD (9 F) 34.4 years, 16 HCs (9 F) 33.8 years Seed-

based

Chen et al. (2015a, b) 36 MDD (24 F) 32.1 years, 38 HCs (23 F) 30.8 years Seed-

based

Liu et al. (2012) 20 MDD (14 F) 28.4 years, 20 HCs (16 F) 29.0 years Seed-

based

Sheline et al. (2010) 18 MDD (7 F) 35.9 years, 17 HCs (12 F) 30.9 years Seed-

based

Ye et al. (2012) 22 MDD (14 F) 46.7 years, 30 HCs (19 F) 45.9 years Seed-

based
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differences in symptoms belonging to a single disease

entity at an individual level. Furthermore, using each

subtype diagnosis and features in functional connectivity,

they were able to predict patients’ responses to transcranial

magnetic stimulation at individual levels (Drysdale et al.

2017). This new evidence promises the utility of rs-fMRI in

clinical settings at an individual level.

Conclusion

Rs-fMRI has many advantages over task fMRI for clinical

applications. Many early studies have already suggested

that cognitive, affective, sensorimotor RSNs can be

retrieved with rs-fMRI in the resting-state brain. Clinical

rs-fMRI studies have shown that differences in intrinsic

activity in resting-state brain reflect the pathophysiology of

neuropsychiatric diseases, not limited to MD and dementia.

Moreover, RSN activity provides information with value

for distinguishing clinical populations into groups, such as

healthy and patient groups.

Despite several limitations in the current body of clini-

cal rs-fMRI studies, improvement of acquisition and

analysis methods is currently under intensive investigation.

In this regard, it should be noted that MRI is not the only

way to capture spontaneous fluctuation of brain activity.

Since Berger, it has been well known that electric signals

recorded from the brain shows fluctuation of brain rhythms,

while subjects are at rest. The combination of fMRI and

other neurophysiological measurements to examine rest-

ing-state fluctuations of brain status would become a

powerful tool to hunt for biomarkers of neuropsychiatric

Table 1 continued

Alzheimers disease and other dementia

References Subjects Method

Shen et al. (2015) 16 MDD 25–50 years, 16 HCs 25–50 years Seed-

based

Kerestes et al. (2015) 21 MDD (11 F) 19.3 years, 21 HCs (11 F) 19.2 years Seed-

based

Lui et al. (2011) 21 MDD: 32 non-refractory (11 F) 32 years, 28 Refractory (10 F) 33 years, 48 HCs (17 F) 35 years Seed-

based

Guo et al. (2013) 23 TRD (12 F) 27.4 years, 19 TSD (9 F) 28.1 years, 19 HCs (9 F) 24.4 years Seed-

based

Ma et al. (2012) 18 TRD (7 F) 27.4 years, 17 TSD (7 F) 26.7 years, 17 HCs (7 F) 24.2 years Seed-

based

Greicius et al. (2007) 28 MDD (16 F) 38.5 years, 20 HCs (11 F) 35.4 years ICA

Zhu et al. (2012) 32 MDD (14 F) 20.5 years, 33 HCs (14 F) 20.3 years ICA

Li et al. (2013) 24 Pretreatment MDD (16 F) 31.8 years, 16 posttreatment MDD (13 F) 32.6 years, 29 HCs (20 F) 33.6

years

ICA

Peng et al. (2014) 16 MDD (9 F) 34.4 years, 16 HCs (9 F) 33.8 years Graph

theory

Bipolar disorder

Torrisi et al. (2013) 20 BD (10 F) 42.1 years, 20 HCs (10 F) 39.8 years Seed-

based

Favre et al. 2014) 20 BD-euthymic (11 F) 42.0 years, 20 HCs (10 F) 43.7 years Seed-

based

Rey et al. (2016) 15 BD-euthymic (6 F) 41.4 years, 12 BD-non-euthymic (9 F) 42.6 years, 15 HCs-EU (6 F) 40.8 years, 12

HCs-NE (9 F) 40.8 years

Seed-

based

Brady et al. (2016) 28 BD-manic (8 F) 27.5 years, 24 BD-euthymic (8 F) 30.9 years, 23 HCs (7 F) 29.7 years Seed-

based

Samudra et al. (2015) 21 SZ (7 F) 38.1 years, 40 SAD (22 F) 39.0 years, 27 BD (8 F) 39.7 years, 65 HCs (36 F) 40.0 years Seed-

based

Ongur et al. (2010) 17 BD (8 F) 34.4 years, 14 SZ (6 F) 42.3 years, 15 HCs (6F) 37.9 years ICA

Khadka et al. (2013) 64 BD (29 F) 35.1 years, 70 SZ (27 F) 37.4, 118 HCs (63 F) 36.4 ICA

Goya-Maldonado

et al. (2016)

20 BD (13 F) 35.8 years, 20 unipolar (14 F) 35.6 years, 20 HCs (13 F) 36.2 years ICA

Lois et al. (2014) 30 BD (17 F) 40.8 years, 35 HCs (20 F) 41.9 years ICA

Ford et al. (2013) 15 MDD (5 F) 20.6 years, 15 BD-Type1 (11 F) 19.8 years ICA
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disorders. For example, simultaneous electroencephalo-

gram (EEG)-fMRI can observe neurophysiological states in

high temporal and spatial resolution, despite technical

challenges (Omata et al. 2013). The establishment of

clinical biomarker with rs-fMRI may refine the staging and

classification of the patients and may help predict the

effects of treatment (Drysdale et al. 2017). Such technique

can be further sophisticated by combining possibly with

other measurements such as EEG, given the development

of easy-to-use, next-generation EEG-fMRI technique.

Therefore, we conclude that clinical rs-fMRI, possibly in

combination with other measurement for spontaneous

fluctuation of brain activity, will likely become a clinically

important tool in the near future.
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