

Key physical principles of H-MRS

Chemical shift

J-coupling

- Echo time (TE)
- Editing

Key physical principles of H-MRS

- Chemical shift
- J-coupling
- Echo time (TE)
- Editing

TE 30 ms

PCr

Glx

2

1

Cho

NAA

Protocol design

troscopy: it requires slice selection pulses limited coverage

- * Multiple voxel (spectroscopic) techniques: extensive (rectangular) coverage; non-uniform metabolite excitation across (PRESS) box and some external signal may contaminate.
- ❖ Smallest possible FOV (R-L < A-P) may result into 20-30% scan time saving.</p>
- * Fast MRSI: turbo MRSI, PEPSI, spiral MRSI, SENSE-MRI
- Lipid suppression (saturation bands, inversion pulses, frequency selective saturation pulses)
- Higher B₀
- Water suppression

Brain metabolites

N-acetyl-Aspartate (NAA)

Relatively high concentrations, dependent on brain site Related to neurones density,

Never high peaks in brain tumours

Creatine / Phosphocreatine (Cr/PCr)

Short-term energy deposit

Spatially independent distribution; internal reference (?)

Choline (Cho)

Synthesis of neurotransmitter AclCho, membrane component PCho

Cho-changes associated with high cell membrane activity and with immunohistological proliferation marker Ki-67

Myo-Inositol (Ins or mI): Marker of gliosis

Lactate: Product of anaerobic glycolysis

hypoxia, stroke, infection, rapid growing tumors

Glutamate and glutamine (Glx)

Glu is the most abundant amino acid in the brain. Astrocytes convert Glu to Gln. Glu-Gln cycle consumes 80-90% of the total cortical glucose usage.

GABA, GSH, Glc

Neurooncology-baseline diagnostics

Neurooncology – differential diagnosis

Neurooncology – surveillance diagnostics

Baseline

@ 6 months

Neurooncology – surveillance diagnostics

Baseline

@ 3 months

Neurooncology – surveillance diagnostics pseudoprogression

6 months after combined chemoradiation

Neurooncology – surveillance diagnostics radionecrosis

Oncometabolites

Neurocytoma

Oncometabolites

Oncometabolites

	Conc [au]	CRLB [%]
2HG	0.357个	14%
Asp	_	_
GABA	0.149个	21%
Gln	0.420个	7%
Glu	0.198↓	20%
GPC	0.268个	2%
GSH	0.177个	11%
Ins	0.508个	5%
Lac	0.247个	15%
NAA	0.402↓	5%
NAAG	0.209↓	9%
PCr	0.611个	11%
Scyllo	0.054个	13%
Tau	0.251个	12%

Caveats

Baseline brain tumour (meningiomas, low-grade glioma, GBM, metastases) staging accuracy: 90%

GBM versus metastasis accuracy: 78%

Combining short and long TE MRS diagnostic accuracy: 98% for the main childhood brain tumour types (pilocytic astrocytoma, medulloblastoma, and ependymoma)

Öz et al. Radiology 2014

MRS accuracy for differentiation of tumour relapse from unspecific changes: 63%

Combined with perfusion MRI accuracy increases to 90%

Seeger, ... Bisdas. Acad Radiol 2014

CAVEAT

Pilocytic astrocytomas often present with spectra similar to those of high-grade tumours.

Be sure for the spectrum quality before utilising it for diagnosis.

MRS in paediatric neuroimaging

- Metabolite levels are age dependent.
- Normal levels reached around:
 - Choline 4-5 y
 - NAA 3-5 y
 - − Myo-In − 1.5-2 y
 - Creatine 1-1.5 y
- Most noteable changes within 1st y

Leucoencephalopathies

For the age of the child not appropriate myelination seen as T2 hyperintense white matter changes.

In some diseases the leucoencephalopathy distribution pattern is almost pathognomonic

Different causes: Hypomyelination, demyelination, tissue rarefication

Leucoencephalopathies

- Hypomyelination
 - Relatively normal metabolite levels, usually no Lac and normal NAA
- Demyelination
 - Cho increase, Lac increase, NAA decrease
- Tissue rarefication
 - Decrease of Cho, Cr, NAA; Lac increase

Hypomyelination

Oligodendrocytes fail to build myelin sheaths

- Delayed myelination
- Pelizaeus-Merzbacher disease and Pelizaeus-Merzbacher like disease
- Jacobsen snydrome (11q-)
- 18q- deletion (18q22.3 q23)

Pelizaeus-Merzbacher disease

Cho: $(\uparrow),(\downarrow),\leftrightarrow$, NAA: \leftrightarrow , Cr: \leftrightarrow , Ins: (\uparrow)

Demyelination

Active destruction / loss of myelin sheaths → increase in Cho

- Adrenoleukodystrophy (ALD)
- Metachromatic leukodystrophy (MLD)
- Globoid cell leukodystrophy (GLD) Krabbe disease

Cho: ↑, NAA: (↓), Cr: ↔, Ins: ↑, Lac ↑

Lactate → Disease activity, active demyelination

 $NAA \downarrow \rightarrow$ Disease progression, neuronal loss

Leucoencephalopathy: MRS specific patterns

- Maple syrup urine disease (MSUD)
- Canavan disease
- Nonketotic hyperglycinaemia

Maple Syrup Urine Syndrome

Canavan disease

Cho: \leftrightarrow ,(\downarrow), NAA: \uparrow , Cr: \leftrightarrow , Ins: \uparrow

Nonketotic hyperglycinemia

Culjat M et al., J Comput Assist Tomogr, 2010

Other metabolic diseases: MRS patterns

MRS patterns in metabolic disease without typical WM pattern:

- Phenylketonuria (PKU) peak at 7.37 ppm
- Creatine deficiency syndrome missing creatine peak

Dezortova M et al., 2008, Magn Reson Mater Phy

Mitochondrial encephalopathies

Mitochondrial encephalopathies

Encephalitis

MRS: pearls and pitfalls

- IH-MRS does not require additional hardware
- Collection of peaks of different metabolites
- Single-voxel, 2D- and 3D-acquisitions
- New techniques enable detection of oncometabolites (eg 2-HG)
- Metabolic tumour profiling, staging, differentiation between tumour necrosis and recurrence
- Excellent clinical applications in neuropaediatrics

- H-MRS is susceptible to field inhomogeneities (manual field shimming often needed)
- Acquisitions near skull and ventricles may be contaminated with lipids
- Partial volume averaging and noisy spectra may underestimate the pathology
- Overlapping resonances (eg glutamine, glutamate) need advanced postprocessing
- Limited clinical applications in neurodegeneration