ΗΚΚ & ΧΚΚ & Μεταστατική νόσος ήπατος Μιχαήλ Βάιλας MD, MSc (HPB), Pharm.D, PhDc Ακαδημαϊκός Υπότροφος Α΄ Χειρουργική Κλινική ΕΚΠΑ ## Σύγκρουση συμφερόντων εγκύκλιος ΕΟΦ (Αρ. Πρωτ. 47558/04-07-2012) • Ουδεμία ## Liver anatomy ## Liver anatomy ## HCC - the incidence of HCC is greatest in areas where exposure to factors that cause chronic HCC injury is heaviest. - greatest in sub-Saharan Africa and East Asia, where the incidence is more than 20 cases per 100,000 individuals per year - males have up to 5.7 times the HCC incidence observed in females ## Risk factors for HCC - 75% to 80% of primary liver tumours are associated with hepatitis B (seen in 50%-55% of patients with HCC) or hepatitis C (25%-30%) - Among patients with hepatitis B, 20% of HCC cases develop before cirrhosis develops, whereas among patients with hepatitis C, HCC almost always arises in the background of significant cirrhosis and fibrosis Davis GL, Alter MJ, El-Seraq H, Poynard T, Jennings LW. Aging of hepatitis C virus-infected persons in the United States: a multiple cohort model of HCV prevalence and disease progression. *Gastroenterology*. 2010;138:513 #### multistep progression through alterations in various molecular pathways ## Gross features ### Growth patterns categorized by ### Eggel - nodular type - massive - diffuse ## Clinical Presentation and Diagnosis - often presents incidentally as patients are being followed for underlying liver disease or when there is enough tumor progression to cause a mass effect - Right upper quadrant pain - obstructive jaundice - weight loss, anorexia, or onset of ascites - rarely present as a rupture - Physical examination is most often dominated by the signs of cirrhosis, such as jaundice, ascites, cachexia, splenomegaly, hepatomegaly, spider angiomata, or palmar erythema - the physical exam may be normal in patients with HBV or NASH who can experience HCC prior to the development of cirrhosis. ## PARANEOPLASTIC SYNDROMES ASSOCIATED WITH HEPATOCELLULAR CARCINOMA #### Clinical Manifestation Underlying Mechanism Hypoglycemia Increased metabolic activity Insulin-like growth factor II secretion Hypercalcemia Parathyroid hormone-related protein secretion Watery diarrhea Vasoactive intestinal polypeptide, gastrin, or prostaglandin activity Cholesterol dysregulation Erythropoietin secretion Portal hypertension Cytokines secretion Hypercholesterolemia Erythrocytosis Thrombocytopenia Cutaneous Seborrheic keratoses Pityriasis rotunda Dermatomyositis Pemphigus foliaceus Porphyria cutanea tarda ## LABORATORY FINDINGS - Abnormal liver function and elevated liver enzymes (ALT, AST, ALP, Bil, γ-GT) - Viral serologies including hepatitis B surface antigen and hepatitis C antibody tests are also necessary - Thrombocytopenia - A-FP elevated (neither highly sensitive nor specific) - up to 40% of patients with small HCCs have normal AFP levels - can be elevated in patients with active viral hepatitis without cancer - des-carboxyprothrombin (DCP) and the lens culinaris agglutinin-reactive fraction of AFP, termed AFP-L3, are candidate biomarkers that may increase the specificity for HCC when used with serum AFP screening. ## Screening in high-risk population #### NCCN Guidelines Version 1.2021 Hepatocellular Carcinoma NCCN Guidelines Index Table of Contents Discussion HEPATOCELLULAR CARCINOMA (HCC) SCREENING^a ## Biopsy? Is it necessary? #### NCCN Guidelines Version 1.2021 Hepatocellular Carcinoma NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF BIOPSY Indicators for consideration of biopsy, which may include: - Initial biopsy - ▶ Lesion is highly suspicious for malignancy at multiphasic CT or MRI but does not meet imaging criteria for HCC. - Lesion meets imaging criteria¹ for HCC but: - ♦ Patient is not considered at high risk for HCC development (ie, does not have cirrhosis, CHB, or current or prior HCC). - ♦ Patient has cardiac cirrhosis, congential hepatic fibrosis, or cirrhosis due to a vascular disorder such as Budd-Chiari syndrome, hereditary hemorrhagic telangiectasia, or nodular regenerative hyperplasia. b - ♦ Patient has elevated CA 19-9 or carcinoembryonic antigen (CEA) with suspicion of intrahepatic cholangiocarcinoma or cHCC-CCA. - ▶ Confirmation of metastatic disease could change clinical decision-making including enrollment in clinical trials. - ▶ Surgical resection without biopsy should be considered with multidisciplinary review. - Repeat biopsy - ▶ Non-diagnostic biopsy - ▶ Prior biopsy discordant with imaging, biomarkers, or other factors ## Imaging for HCC The pathognomonic radiographic profile is enhancement in the arterial phase followed by washout in the delayed venous phase. Additional common findings are delayed enhancement of the fibrous pseudocapsule, presence of septations, and an internal mosaic pattern. #### Computed tomography - sensitivity and specificity as high as 93% and 97% - Mostly for lesions > 1cm #### Magnetic resonance imaging - MRI is becoming the predominant imaging modality for characterizing liver tumors - MRI has the highest sensitivity and specificity for detection of 1- to 2-cm HCC, of 90% and 82%, respectively - MRI better sensitivity (91% vs 81%) and specificity (95% vs 93%), especially for smaller HCC lesions - MRI needs less contrast volume than CT, and injection time is shorter. ## Work-up ### NCCN Guidelines Version 1.2021 Hepatocellular Carcinoma **CLINICAL PRESENTATION** WORKUP Multidisciplinary evaluation^q (assess liver reserve^r and comorbidity) and staging: • H&P • Hepatitis panel^s Bilirubin, transaminases, alkaline phosphatase PT or INR, albumin, BUN, creatinine CBC, platelets • AFP Chest CT^a Bone scan if clinically indicated^a Abdominal/pelvic CT or MRI with contrast, if not previously done or needs updating^a Consider referral to a hepatologist ## Staging systems - Liver Cancer Study Group of Japan staging system - Japanese Integrated Staging score - Chinese University Prognostic Index - Okuda system - Cancer of the Liver Italian Program (CLIP) scoring system - Barcelona Clinic Liver Cancer (BCLC) staging system - American Joint Committee on Cancer/International Union Against Cancer (AJCC/UICC) TNM staging system #### NCCN Guidelines Version 1.2021 Hepatobiliary Cancers NCCN Guidelines Index Table of Contents Discussion American Joint Committee on Cancer (AJCC) TNM Staging for Hepatocellular Cancer (8th ed., 2017) #### Table 1. Definitions for T, N, M **Primary Tumor** | • | Timary ramer | |-----|---| | TX | Primary tumor cannot be assessed | | T0 | No evidence of primary tumor | | T1 | Solitary tumor ≤2 cm, or >2 cm without vascular invasion | | T1a | Solitary tumor ≤2 cm | | T1b | Solitary tumor >2 cm without vascular invasion | | T2 | Solitary tumor >2 cm with vascular invasion, or multiple tumors, none >5 cm | | Т3 | Multiple tumors, at least one of which is >5 cm | | T4 | Single tumor or multiple tumors of any size involving a major
branch of the portal vein or hepatic vein, or tumor(s) with
direct invasion of adjacent organs other than the gallbladder
or with perforation of visceral peritoneum | | | | #### N Regional Lymph Nodes | NX | Regional lymph nodes cannot be assessed | |----|---| | N0 | No regional lymph node metastasis | N1 Regional lymph node metastasis #### M Distant Metastasis M0 No distant metastasis M1 Distant metastasis #### Table 2. AJCC Prognostic Groups | | Т | N | M | |------------|-------|-------|----| | Stage IA | T1a | N0 | M0 | | Stage IB | T1b | N0 | MO | | Stage II | T2 | N0 | MO | | Stage IIIA | Т3 | N0 | MO | | Stage IIIB | T4 | N0 | MO | | Stage IVA | Any T | N1 | MO | | Stage IVB | Any T | Any N | M1 | #### Histologic Grade (G) GX Grade cannot be accessed G1 Well differentiated G2 Moderately differentiated G3 Poorly differentiated G4 Undifferentiated #### Fibrosis Score (F) The fibrosis score as defined by Ishak is recommended because of its prognostic value in overall survival. This scoring system uses a 0-6 scale. F0 Fibrosis score 0-4 (none to moderate fibrosis) F1 Fibrosis score 5-6 (severe fibrosis or cirrhosis) ## Barcelona Clinic Liver Cancer (BCLC) staging system ## Hepatic functional reserve, the most important predictor of mortality risk, is determined by using the CTP score #### CHILD-PUGH SCORE | Chemical and Biochemical Parameters | Scores (Points) for Increasing Abnormality | | | |---|--|----------------|------------| | Chemical and Biochemical Parameters | 1 | 2 | 3 | | Encephalopathy (grade) ¹ | None | 1–2 | 3–4 | | Ascites | Absent | Slight | Moderate | | Albumin (g/dL) | >3.5 | 2.8-3.5 | <2.8 | | Prothrombin time ² | | | | | Seconds over control INR | <4
<1.7 | 4–6
1.7–2.3 | >6
>2.3 | | Bilirubin (mg/dL) • For primary biliary cirrhosis | <2
<4 | 2-3
4-10 | >3
>10 | Class A = 5-6 points; Class B = 7-9 points; Class C = 10-15 points. Class A: Good operative risk Class B: Moderate operative risk Class C: Poor operative risk perioperative mortality CTP class A 10% B 30% C 82% ## Resection? ## The sequential continuous coagulate-cut technique - minimal blood-loss liver transection- #### NCCN Guidelines Version 1.2021 Hepatocellular Carcinoma #### NCCN Guidelines Version 1.2021 Hepatocellular Carcinoma NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF SURGERY - Patients must be medically fit for a major operation. - Hepatic resection is indicated as a potentially curative option in the following circumstances: - Adequate liver function (generally Child-Pugh Class A without portal hypertension, but small series show feasibility of limited resections in patients with mild portal hypertension)¹ - > Solitary mass without major vascular invasion - Adequate future liver remnant (FLR) (at least 20% without cirrhosis and at least 30%-40% with Child-Pugh Class A cirrhosis, adequate vascular and biliary inflow/outflow) - Hepatic resection is controversial in the following circumstances, but can be considered: - Limited and resectable multifocal disease - Major vascular invasion - For patients with chronic liver disease being considered for major resection, preoperative portal vein embolization should be considered.² - Patients meeting the United Network for Organ Sharing (UNOS) criteria ([single lesion ≥2 cm and ≤5 cm, or 2 or 3 lesions ≥1 cm and ≤3 cm] www.unos.org) should be considered for transplantation (cadaveric or living donation). ## Κακοήθη νεοπλάσματα του ήπατος Θεραπευτικές επιλογές ## Χειρουργικές επιλογές - Resection - Ηπατεκτομή (μερική) - Μεταμόσχευση ήπατος (ολική ηπατεκτομή) - Radiofrequency Ablation (RFA) - Resection with RFA - Microwave Ablation (MA) - Cryosurgery ## Συντηρητικές επιλογές - Selective Internal Radiation Therapy (SIRT) - Hepatic artery infusion (port or pump) (HAI) - Chemoembolization - Alcohol ablation (PEI) - Chemotherapy - Radiation ### FUTURE LIVER REMNANT (FLR) Right portal vein embolization (PVE) and segment IV embolization for a large hepatocellular carcinoma First Department of Surgery, NKUOA MS, Laiko Genera #### Indications for PVE To increase the safety of major resection FLR <20% in absence of underlying liver disease FLR <40% if underlying liver disease In combination with transarterial chemoembolization Segment IV embolization for extended right hepatectomy #### Contraindications for PVE Vascular invasion or thrombosis of portal vein Tumor extension to FLR Uncorrectable coagulopathy Renal failure Portal hypertension Improvement in overall survival (OS) after major hepatectomy (resection of >3 liver segments) for hepatocellular carcinoma over time (n = 630) ## Outcomes of resection - Only 10-15% candidates for resection - Ineffective systemic chemotherapy (sorafenib?) - Recurrence occurring in 50% and 80% of patients within 5 years - the more common is a second primary lesion - 5-year survival rates after resection range from 30% to 60% ## Prognostic factors - Cirrhosis (recurrence) - invasion of major vessels - microvascular invasion - and both the number of tumors and tumor size (not for solitary lesions) ## Transplantation Absence of both: 1 Macroscopic vascular invasion 2 Extrahepatic spread 4-year survival rate of 74%, similar to that for patients who received a liver transplant but did not have HCC. ## Transplantation - University of California San Francisco (UCSF) criteria - ✓ single tumor less than 6.5 cm or fewer than three tumors, - ✓ the total diameter of all being less than 8 cm and the - ✓ largest tumor less than 4.5 cm controversial because 5-year overall survival rates of patients who met these criteria and underwent transplant ranged from 38% to 93%. ## Local ablative therapies - Radiofrequency Ablation (high-frequency alternating current heat up to 120°C, resulting in denaturing of proteins and coagulative necrosis). Better for <3cm. Equivalent to resection!!!! - Percutaneous Ethanol Injection (achieves complete necrosis of tumors smaller than 3 cm, and 50% necrosis in 3- to 5-cm tumors) - Transcatheter Arterial Chemoembolization (survival rates in use of TACE in unresectable HCC at 1, 2, and 3 years at 96%, 77%, and 47%, respectively) - Microwave ablation (1- and 5-year survival rates of 93% and 51%, respectively) ## Cholangiocarcinoma # Epidemiology and risk factors - Incidence in the United States has been estimated at 1 to 2 per 100,000 - more common among Native Americans and Japanese Americans - Most patients are diagnosed after the age of 65 #### TABLE 65-3: RISK FACTORS FOR BILE DUCT CANCER Primary sclerosing cholangitis Liver flukes infestation (Opisthorchis viverrini and Clonorchis sinensis) Choledochal cysts Caroli disease Hepatolithiasis Chemicals (eg, Thorotrast and dioxin) Hepatitis C Lynch syndrome II Bile duct adenoma and multiple biliary papillomatosis # Pathology - Most ICC poorly differentiated adenocarcinoma - Extrahepatic hilar and distal cholangiocarcinomas are categorized into - three macroscopic subtypes: - ✓sclerosing 70%, - ✓nodular (20% - ✓and papillary (5% to 10%) | CCA
Subtype | Dimansions | Location
(Intra or Extra-hepatic) | Pathology | Method of Spread | Symptoms of Bile Duct Obstruction? | |-----------------------------|--|--|---|--|--| | Mass forming | Central mass;
depends on location
(IH up to 15 cm;
EH 1–2 cm) | Intra-hepatic Estra-hepatic | Gray white mass Poor cellular differentiation Well defined, wavy, or lobulated borders May have central fibrosis and necrosis | Grows outward into lumen Invades liver parenchyma
through peribiliary
venous plexus Intranepatic metastasis
is common in
advanced stages | Symptoms occasionally occur | | | | | ~ | | | | Periductal-
infiltrating | 0.5-6 cm long
up to 1cm in the
case of EH tumcrs) | | Concentric thickening of bille duct wall Later stages appear branch-like Usually highly differentiated | Invades bile duct wal Spreads along axis cf bile ducts | Viscous mucus produced
by the tumor can impede
bile flow and produce
intermittent obstructive
symptoms | | | | | | | | | Intraductal growing | Usually small and flat;
later stages may fill
bile duct lumen | A STATE OF THE STA | Tumors within lumen Frond-like fo dings | Spreads superficially along
mucosal surface Sloughing of tumor
cells can initiate
secondary tumors Invasive intraductal CCA
can also occur | Narrowing of bile ducts eventually leads to symptoms | # Clinical Presentation and Diagnosis | Extra-Hepatic CCA | Intra-Hepatic CCA | |---|--| | Painless, jaundice 90% Cholangitis 10% Rare: Paraneoplastic syndromes Diabetes Hypoglycemia Hypercalcemia Porphyria cutanea tarda Migratory thrombophlebitis Acantosis nigricans | Aspecific symptoms: Abdominal pain Diminished appetite Weight loss Malaise Night sweats Cholestasis Incidental mass | ## ICC management algorithm NCCN Guidelines Version 1.2021 № Biliary Tract Cancers: Intrahepatic Cholangiocarcinoma NCCN Guidelines Index Table of Contents Discussion ## Extrahepatic CCA management algorithm NCCN Guidelines Version 1.2021 Biliary Tract Cancers: Extrahepatic Cholangiocarcinoma NCCN Guidelines Index Table of Contents Discussion #### PRIMARY TREATMENT PRESENTATION AND WORKUP See Adjuvant Treatment Surgical exploration^g Resectable^e ► Resection^e ► and Consider laparoscopic staging Surveillance Resectable e → Consider preoperative biliary • H&P (EXTRA-2) drainage Multiphasic abdominal/ Unresectable, see below Multidisciplinary review pelvic CT/MRI (assess for vascular invasion) • Biliary drainage, h if indicated with IV contrasta Pain Options:k Biopsy^f (only after determining Chest CT +/- contrast^a Jaundice Systemic therapy^I Cholangiography^b transplant status) Progression Abnormal Clinical trial Consider CEA^c ▶ MSI/MMR testing^I on or after LFTs **≯**Unresectable^f → EBRT with concurrent • Consider CA 19-9^c Additional molecular testing^J systemic Obstruction fluoropyrimidine^{m,n} therapy LFTs ♦ TMB testing or Palliative EBRTⁿ Consider endoscopic Consider referral to transplant abnormality Best supportive care ultrasound (EUS) after center on imaging surgical consultation • Biliary drainage, h if indicated Consider serum IgG4 Options:K Progression to rule out autoimmune Biopsy Metastatic Systemic therapy^I on or after cholangitis^d ▶ MSI/MMR testing¹ disease Clinical trial systemic Additional molecular testing^J Best supportive care therapy ◊ TMB testing ## **Imaging** - Thin section (minimum 2.5 mm reconstructed at 1.25 mm), high-resolution CT performed with rapid intravenous contrast bolus in arterial and portovenous phases can accurately determine resectability in the majority of cases. - MRI with MRCP can better delineate intrahepatic tumor extension and precise biliary radicle involvement but has limited vascular accuracy. - If both modalities are used, resectability should be predicted more than 75% of the time ## Staging # Bismuth-Corlette system staging system Staging criteria for intrahepatic cholangiocarcinoma resemble those used for other primary hepatic tumors, and staging criteria for distal cholangiocarcinoma resemble those used for other periampullary carcinomas. #### American Joint Committee on Cancer (AJCC) TNM Staging for Intrahepatic Bile Duct Tumors (8th ed., 2017) | Tabl | e 5. D | efinitions for T, N, M | |------|--------|--| | Т | | Primary Tumor | | TX | | Primary tumor cannot be assessed | | T0 | | No evidence of primary tumor | | Tis | | Carcinoma in situ (intraductal tumor) | | T1 | | Solitary tumor without vascular invasion, ≤5 cm or >5 cm | | | T1a | Solitary tumor ≤5 cm without vascular invasion | | | T1b | Solitary tumor >5 cm without vascular invasion | | T2 | | Solitary tumor with intrahepatic vascular invasion or multiple tumors, with or without vascular invasion | | T3 | | Tumor perforating the visceral peritoneum | | T4 | | Tumor involving local extrahepatic structures by direct invasion | | N | | Regional Lymph Nodes | | NX | | Regional lymph nodes cannot be assessed | | N0 | | No regional lymph node metastasis | | N1 | | Regional lymph node metastasis present | | М | | Distant Metastasis | | M0 | | No distant metastasis | | American Joint Committee on Cancer (AJCC) | |---| | NM Staging for Perihilar Bile Duct Tumors (8th ed., 2017) | Distant metastasis present | Table 7. | Definitions for T, N, M | |----------|--| | Т | Primary Tumor | | TX | Primary tumor cannot be assessed | | T0 | No evidence of primary tumor | | Tis | Carcinoma in situ/high-grade dysplasia | | T1 | Tumor confined to the bile duct, with extension up to the muscle layer or fibrous tissue | | T2 | Tumor invades beyond the wall of the bile duct to surrounding adipose tissue, or tumor invades adjacent hepatic parenchyma | | T2a | Tumor invades beyond the wall of the bile duct to surrounding adipose tissue | | T2b | Tumor invades adjacent hepatic parenchyma | | T3 | Tumor invades unilateral branches of the portal vein or hepatic artery | | Т4 | Tumor invades main portal vein or its branches bilaterally, or the common hepatic artery; or unilateral second-order biliary radicals bilaterally with contralateral portal vein or hepatic artery involvement | | N | Regional Lymph Nodes | |----|---| | NX | Regional lymph nodes cannot be assessed | | N0 | No regional lymph node metastasis | | N1 | One to three positive lymph nodes typically involving the
hilar, cystic duct, common bile duct, hepatic artery, posterior
pancreatoduodenal, and portal vein I/wmph nodes | Four or more positive lymph nodes from the sites described for N1 #### Table 6. AJCC Prognostic Groups | Т | N | M | |-------|----------------------------|---| | Tis | N0 | M0 | | T1a | N0 | M0 | | T1b | N0 | M0 | | T2 | N0 | M0 | | T3 | N0 | M0 | | T4 | N0 | M0 | | Any T | N1 | M0 | | Any T | Any N | M1 | | | Tis T1a T1b T2 T3 T4 Any T | Tis N0 T1a N0 T1b N0 T2 N0 T3 N0 T4 N0 Any T N1 | #### Histologic Grade (G) GX Grade cannot be assessed G1 Well differentiated G2 Moderately differentiated G3 Poorly differentiated | M | Distant Metastasi | |----|--------------------| | MO | No distant metasta | M1 Distant metastasis #### Table 8. AJCC Prognostic Groups | | Т | N | M | |------------|-------|-------|----| | Stage 0 | Tis | N0 | MO | | Stage I | T1 | N0 | MO | | Stage II | T2a-b | N0 | MO | | Stage IIIA | T3 | N0 | MO | | Stage IIIB | T4 | N0 | MO | | Stage IIIC | Any T | N1 | MO | | Stage IVA | Any T | N2 | MO | | Stage IVB | Any T | Any N | M1 | #### Histologic Grade (G) GX Grade cannot be assessed G1 Well differentiated G2 Moderately differentiated G3 Poorly differentiated # Surgery In the absence of effective chemotherapy or radiation therapy, surgical resection remains the mainstay of curative treatment for cholangiocarcinoma. Within this context, the ability to affect a margin-negative RO complete resection is critical. # Χολαγγειοκαρκίνωμα (CCA) - Extrahepatic CCA - Perihilar - > Bismuth type I or II without vascular invasion : local tumor excision - ➤ Bismuth type IIIa or IIIb : right or left hepatectomy - resection of the adjacent caudate lobe may be required - > Also resect all extrahepatic biliary tree - >+ lymph node dissection of the hepatoduodenal ligament - Distal - Pancreaticoduodenectomy - > + lymph node dissection of the hepatoduodenal ligament - Intrahepatic: as for HCC - + lymph node dissection of the hepatoduodenal ligament 47 # Surgery for pCCA **Figure 1.** Left hepatectomy with caudate lobe resection for perihilar cholangiocarcinoma (pCCA) (Bismuth IIIb). • R0 resection number of tumors vascular invasion • lymph node metastases ## Unresectability criteria Medical contraindication to surgical intervention Advanced cirrhosis or portal hypertension Inadequate size of future liver remnant Bilateral second-order biliary radicle involvement Bilateral hepatic artery and/or portal venous branch Bilateral hepatic artery and/or portal venous branch involvement Involvement of unilateral hepatic artery with contralateral ductal spread Main portal vein involvement or encasement Lobar atrophy with contralateral second-order biliary radicle involvement Lobar atrophy with contralateral portal vein involvement N2 nodal involvement Distant metastases ## Outcomes and prognosis - Fewer than 50% of patients with perihilar cholangiocarcinoma are able to undergo curative resection. Reported 5-year postoperative survival rates range from approximately 10% to 50%. - intrahepatic cholangiocarcinoma, reported 3-year survival rates following curative resection with negative margins range from 22% to 66%. - For patients with distal cholangiocarcinoma, 5-year survival rates following pancreaticoduodenectomy range from 15% to 25% in most reported series. - Among patients with node-negative disease, 5-year postoperative survival rates as high as 54% have been reported # Liver transplant pCCA | Mayo Clinic Protocol | External beam radiation therapy (45 Gy in 30 fractions, 1.5 Gy twice daily) Brachytherapy (20 Gy at 1 cm in approximately 20–25 h)—administered 2 weeks following completion of external beam radiation therapy Capecitabine—administered until the time of transplantation, held during perioperative period for staging Abdominal exploration for staging—as time nears for deceased donor transplantation or day prior to living donor transplantation Liver transplantation | |----------------------|---| | Inclusion Criteria | Diagnosis of pCCA (transcatheter biopsy or brush cytology, CA 19–9 > 100 mg/mL and/or a mass on cross-sectional imaging with a malignant appearing stricture on cholangiography) Unresectable tumor above cystic duct (pancreatoduodenectomy for microscopic involvement of CBD, resectable pCCA arising in PSC) Radial tumor diameter 3 cm Absence of intrahepatic and extrahepatic metastases Candidate for liver transplantation | | Exclusion Criteria | Intrahepatic cholangiocarcinoma Uncontrolled infection Prior radiation or chemotherapy Prior biliary resection or attempt resection Intrahepatic metastases Evidence of extrahepatic disease History of other malignancy within 5 years Transperitoneal biopsy (including percutaneous and EUS-guided FNA) | pCCA: perihilar cholangiocarcinoma; PSC: primary sclerosis cholangitis, CA19-9: Carbohydrate Antigen 19-9; CBD: common bile duct; EUS: endoscopic ultrasound; FNA: guided fine-needle aspiration. - ✓ 5-year recurrence free survival of 65% for Klatskin - ✓ there is an emerging body of evidence for the efficacy of LT in selected patients with iCCA ### **CRLM** - Hepatic metastases comprise approximately 90% of hepatic malignancies - Approximately 50% of patients with CRC will develop metastases during their course of disease, and up to 25% will have liver metastases at the time of presentation - Selected patients undergoing modern chemotherapeutic regimens in combination with complete metastasectomy can achieve durable 5-year survival rates exceeding 50% **TABLE 134.1** Survival Outcomes in Patients With Metastatic Colorectal Cancer Treated With Modern Combined Chemotherapy and Resection | Study | No. of
Patients | Initially
Resectable | Regimen | Disease-Free
Survival | Overall
Survival | |--|--------------------|-------------------------|------------------------------|-------------------------------------|---------------------| | EORTC 40983 ^{25,26} phase III | 152 | Yes | Surgery | 28.1% | 47.8% | | RCT (EPOC) | 151 | | FOLFOX + Surgery + FOLFOX | 36.2% | 51.2% | | Valore at al 28 mbass III DOT | 150 | Vac | E Ell : leves verie | (3 yr) $P = .041$ | (5 yr) P = NS | | Ychou et al. ²⁸ phase III RCT | 153
153 | Yes | 5-FU + leucovorin
FOLFIRI | 46%
51% | 71.6%
72.7% | | | 100 | | FOLFINI | (2 yr) P = .44 | (3 yr) P = .69 | | Adam et al. ²⁹ | 701 | No | FOLFOX | NA | 34% | | Additional. | 701 | 110 | 1 ou ox | 101 | (5 yr) | | Wein et al.30 phase II trial | 20 | Yes | FOLFOX | 52% | 80% | | • | | | | (2 yr) | (2-yr DSS) | | Taieb et al31 phase II trial | 47 | Yes | FOLFOX followed by FOLFIRI | 47% | 89% | | | | | | (2 yr) | (2 yr) | | Barone et al. ³² | 40 | No | FOLFIRI | NA | 63.5% | | | | | | | (2 yr) | | Masi et al. ³³ | 196 | No | FOLFOX/FOLFIRI? | 29% | 42% | | E DEAT | | | 5 - 5 | (5 yr) | (5 yr) | | First-BEAT trial ³⁴ | 107 | No | Bev + 5-FU based | NA | 89% | | N016966 study ³⁴ | 34 | No | Placebo + XELOX/FOLFOX | NA | (2 yr)
82.3% | | 100 16966 Study | 34
44 | NO | Bev + XELOX/FOLFOX | INA | 90.9% | | | 44 | | Bev + ALLOWFOLFOX | | (2 yr) | | New EPOC ²⁷ | 117 | Yes | FOLFOX or XELOX | 20.5 months | NA | | | 119 | | Above regimen + cetuximab | 14.1 months
(PFS) <i>P</i> = .03 | | BEAT, Bevacizumab Expanded Access Trial; Bev, bevacizumab; DSS, disease-specific survival; EORTC, European Organization for Research and Treatment of Cancer; FOLFIRI, 5-fluorouracil, leucovorin, and irinotecan; FOLFOX, 5-fluorouracil, leucovorin, and oxaliplatin; 5-FU, 5-fluorouracil; NA, not available or not reported; NS, not significant; PFS, progression-free survival; RCT, randomized controlled trial; XELOX, capecitabine and oxaliplatin. Fig 5. The use of novel chemotherapeutics increased between 1998 and 2006, with a rapid change in 2004. (*) Compared with irinotecan use in 1998 and normalized by yearly patient volume. Details of normalization under Methods. Kopetz S, Chang GJ, Overman MJ, Eng C, Sargent DJ, Larson DW, Grothey A, Vauthey JN, Nagorney DM, McWilliams RR. Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol. 2009 Aug 1;27(22):3677-83. ## mCRC #### **General Prognostic factors** # Five clinical parameters were selected, as criteria for | Table 54-10 Clinical Risk Score and Survival in 1001 Patients 1. Preoperative CE Table 54-10 Clinical Risk Score and Survival in 1001 Patients Undergoing Liver Resection for Metastatic Colorectal Cancer* | | | | | | me prediction. | |---|-------------------|--------|--------|--------|--|---------------------| | 1. Freoperative CL | Survival Rate (%) | | | | | , | | 2. LN status of prir | SCORE | 1 YEAR | 3 YEAR | 5 YEAR | MEDIAN SURVIVAL (MO) | from the primary to | | ' | 0 | 93 | 72 | 60 | 74 | months | | 3. Disease free into | 1 | 91 | 66 | 44 | 51 | ımors > 1 | | 4 = | 2 | 89 | 60 | 40 | 47 | vel > 200 ng/ml, | | 4. Extrahepatic dis | 3 | 86 | 42 | 20 | 33 | <i>G,</i> , | | 5. Resection marg | 4 | 70 | 38 | 25 | 20 | patic tumor > 5 cm, | | J. Nesection marg | 5 | 71 | 27 | 14 | 22 | | | Adapted from Fong Y, Fortner J, Sun RL, et al: Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: Analysis of 1001 consecutive cases. Ann Surg 230:309–318, 1999. *Each of the following five risk factors equals one point: node-positive primary, disease-free interval <12 months, >one tumor, size >5 cm, carcinoembryonic antigen level >200 ng/mL. Score is total number of points in an individual patient. | | | | | I for patients with %, whereas that points was 14% | | Fong et al.Ann Surg. 1999 Sep;230(3):309-18; #### **TABLE 134.2** Nonsurgical Regional Therapies for Metastatic Colorectal Cancer to the Liver | Treatment Modality | Limitations | Outcomes | Complications | |---|---|---|--| | RFA ⁵⁰ | Higher recurrence compared with resection | Up to 84% local recurrence rate | Morbidity 5%-30%: abscess, hemorrhage, bile leak | | | Lesion proximity to blood
vessels | Survival benefit not
established | | | | Lesion size >5 cm | | | | Cryoablation ⁵¹ | Similar to RFA, but possible
higher rate of
complications | Local recurrence rate: 10%–60% | Morbidity 15%-30%: hemorrhage bile leak, cryoshock syndrome, myoglobinuria | | HAI ⁵² | Laparotomy needed to | Response rate >50% | Hepatobiliary toxicity | | | implant infusion device | No proven survival benefit | Pump complications | | | Limited centers with experience | • | Gastritis/duodenitis | | Radioembolization (yttrium 90 | Emerging experience | Response rate: 44% | Morbidity: 24% | | microspheres) ⁵³ | | Progression-free survival: 16–18 months | Abdominal pain and fever
Gastritis/duodenitis | | | | Combined with systemic
chemotherapy or HAI | Radiation hepatitis | | Conformal/stereotactic | Low liver tolerance to | Median survival: 17 months | Radiation hepatitis: 5% | | radiotherapy ⁵⁴ | radiation | Local control rates >60% | Skin erythema | | | Lesion proximity to adjacent organs | | Chest wall pain | | Irreversible electroporation ^{55,56} | Emerging experience | NA | Abscess, bile leak | HAI, Hepatic artery infusion; NA, not available; RFA, radiofrequency ablation. ## In 2006 the AHPBA, SSO, SSAT put the Indications for hepatectomy for mCRC. - > The American consensus suggested CRLMs should be considered resectable if - (i) the disease can be completely resected (regardless of margin), - (ii) two adjacent liver segments can be spared with adequate vascular inflow and outflow and biliary drainage, - (iii) the volume of the liver remaining after resection, i.e. the 'future liver remnant' (FLR), will be adequate ## **mCRC** # Contraindications for Hepatectomy today - non-treatable primary tumor - locoregional recurrence - widespread pulmonary disease - peritoneal disease - extensive nodal disease, such as retroperitoneal, mediastinal or portal nodes - bone or CNS metastases. (Category of evidence II; strength of recommendation B) ### Surgical strategies to improve resectability Portal vein embolization - Two-stage hepatectomy - Repeat hepatectomy - Extreme liver surgery - Extrahepatic colorectal disease ## **mCRC** # Predicting poorer outcome after resection of colorectal liver metastases - Positive resection margin - Extrahepatic disease - Node positive (stage 3) primary colorectal cancer - Disease free interval from primary tumour <1 year - Largest metastasis >5 cm - Number of metastases >1 - CEA >200 ng/ml - Age of patient Nordlinger et al. Cancer 1996; 77: 1254-62 Fong et al. Annals of Surgery 1999; 230: 309-15 First Department of Surgery, NKUOA MS, Laiko General Hospital. 62 # NCCN Guidelines Version 2.2021 Colon Cancer NCCN Guidelines Index Table of Contents Discussion # NCCN Guidelines Version 2.2021 Colon Cancer NCCN Guidelines Index Table of Contents Discussion TREATMENT Resectable^h synchronous liver and/or lung metastases only ADJUVANT TREATMENT^b (UP TO 6 MO PERIOPERATIVE TREATMENT) (resected metastatic disease) Synchronous or staged colectomy with liver or lung resection (preferred) and/or local therapy^z Neoadjuvant therapy (for 2-3 months) FOLFOX (preferred) or CAPEOX (preferred) or FOLFIRI (category 2B) or FOLFOXIRI (category 2B) followed by |FOLFOX (preferred) or CAPEOX (preferred) synchronous or staged colectomy and resection of Capecitabine or 5-FU/leucovorin metastatic disease Colectomy, followed by chemotherapy (for 2-3 months) FOLFOX (preferred) or CAPEOX (preferred) or FOLFIRI (category 2B) or FOLFOXIRI (category 2B) and staged resection of metastatic disease Consider ([Nivolumab ± ipilimumab] or pembrolizumab [preferred]) (dMMR/MSI-H only)aa followed by synchronous or staged colectomyy and resection of → See Surveillance (COL-8) ➤ See Surveillance (COL-8) metastatic disease #### Approach to CRLM #### • Simultaneous: Liver metastases and the primary tumor are resected in the same operation (Vogt, 1991) #### Sequential bowel-first: First resection of the CRC and then the liver metastases. With or without Chemo during the interval #### Sequential liver first (reverse approach): Resection first of all liver metastases after preoperative chemotherapy and later the CRC (Mentha G, 2006) - ✓ Rationale1 : the lesion that kills the patient is the metastasis - ✓ Rationale 2: metastases usually determine resectability - ✓ Rationale 3:progression of the CRLM during treatment of the primary tumour #### Is there a difference? | | Sequential
Colon first
N= 72 | Simultaneous
Colon & Liver
N= 43 | Sequential
Liver first
N= 27 | | |--------------------|------------------------------------|--|------------------------------------|----------| | Morbidity | 51 % | 47 % | 31 % | p NS | | Mortality | 3 % | 5 % | 4 % | p NS | | Survival (5 years) | <u>48 %</u> | <u>55 %</u> | <u>39 %</u> | p NS | | N° M1 | 3 | 1 | 4 | p < 0.05 | | Major Hepatectomy | 66 % | 35 % | 89 % | p< 0.05 | Brouquet A, Mortenson MM, Vauthey J-N et al. Surgical Strategies for Synchronous Colorectal Liver Metastases in 156 Consecutive Patients: Classic, Combined or Reverse Strategy? J Am Coll Surg **2010**; 210: 934-941 ### Careful patient selection is necessary A NSQIP Review of Major Morbidity and Mortality of Synchronous Liver Resection for Colorectal Metastasis Stratified by Extent of Liver Resection and Type of Colorectal Resection Christopher R. Shubert^{1,2} • Elizabeth B. Habermann² • John R. Bergquist^{1,2} Cornelius A. Thiels^{1,2} • Kristine M. Thomsen² • Walter K. Kremers² • Michael L. Kendrick¹ • Robert R. Cima^{2,3} • David M. Nagorney¹ ### Long-term oncologic outcomes for simultaneous resection of synchronous metastatic liver and primary colorectal cancer Gerd R. Silberhumer MD ^{a, d}, Philip B. Paty MD ^a, Brian Denton MS, MA ^c, Jose Guillem MD ^a, Mithat Gonen MD ^c, Raphael L.C. Araujo MD, PhD ^b, Garret M. Nash MD ^a, Larissa K. Temple MD ^a, Peter J. Allen MD ^b, Ronald P. DeMatteo MD ^b, Martin R. Weiser MD ^a, W. Douglas Wong MD ^a, William R. Jarnagin MD ^b, Michael I. D'Angelica MD ^b, Yuman Fong MD ^e [△] ⊠ | Number of
studies | Number of patients (Simult/Delayed) | Statistical method, estimated effect, (95%CI) | p-value | l ² (%) | |----------------------|--|---|--|---| | 7 | 286/452 | MD = 11.04 (-5.04, 27.13) | 0.181 | 95 | | 9 | 479/734 | SMD = -0.23 (-0.70, 0.24) | 0.343 | 93 | | 21 | 1431/2728 | OR = 1.08 (0.91, 1.28) | 0.383 | 56 | | 10 | 549/998 | Peto OR = 1.17 (0.72,1.89) | 0.531 | 0 | | 5 | 302/588 | OR = 1.34 (0.76, 2.37 | 0.313 | 0 | | 10 | 504/958 | Peto OR = 0.70 (0.43, 1.14) | 0.151 | 0 | | 5 | 340/379 | Peto OR = 0.77 (0.45,1.31) | 0.342 | 45 | | 7 | 449/689 | Peto OR = 1.15 (0.67, 2.00) | 0.613 | 0 | | 6 | 354/708 | Peto OR = 1.51 (0.76, 3.00) | 0.243 | 0 | | 20 | 1313/2606 | Peto OR = 1.37 (0.83, 2.24) | 0.221 | 55 | | 13 | 883/915 | MD = -6.27 (-8.20, -4.34) | <0.001 | 94 | | 13 | 883/915 | SMD = -1.36 (-2.04, -0.67) | <0.001 | 97 | | 17 | 1253/1604 | HR = 0.97 (0.88, 1.08) | 0.601 | 0 | | 13 | 1096/1403 | HR = 0.98 (0.88, 1.09) | 0.751 | 0 | | | 5tudies 7 9 21 10 5 10 5 7 6 20 13 13 17 | studies (Simult/Delayed) 7 286/452 9 479/734 21 1431/2728 10 549/998 5 302/588 10 504/958 5 340/379 7 449/689 6 354/708 20 1313/2606 13 883/915 13 883/915 17 1253/1604 | studies (Simult/Delayed) effect, (95%CI) 7 286/452 MD = 11.04 (-5.04, 27.13) 9 479/734 SMD = -0.23 (-0.70, 0.24) 21 1431/2728 OR = 1.08 (0.91, 1.28) 10 549/998 Peto OR = 1.17 (0.72,1.89) 5 302/588 OR = 1.34 (0.76, 2.37 10 504/958 Peto OR = 0.70 (0.43, 1.14) 5 340/379 Peto OR = 0.77 (0.45,1.31) 7 449/689 Peto OR = 1.15 (0.67, 2.00) 6 354/708 Peto OR = 1.51 (0.76, 3.00) 20 1313/2606 Peto OR = 1.37 (0.83, 2.24) 13 883/915 MD = -6.27 (-8.20, -4.34) 13 883/915 SMD = -1.36 (-2.04, -0.67) 17 1253/1604 HR = 0.97 (0.88, 1.08) | studies (Simult/Delayed) effect, (95%CI) 7 286/452 MD = 11.04 (-5.04, 27.13) 0.181 9 479/734 SMD = -0.23 (-0.70, 0.24) 0.343 21 1431/2728 OR = 1.08 (0.91, 1.28) 0.383 10 549/998 Peto OR = 1.17 (0.72,1.89) 0.531 5 302/588 OR = 1.34 (0.76, 2.37 0.313 10 504/958 Peto OR = 0.70 (0.43, 1.14) 0.151 5 340/379 Peto OR = 0.77 (0.45,1.31) 0.342 7 449/689 Peto OR = 1.15 (0.67, 2.00) 0.613 6 354/708 Peto OR = 1.51 (0.76, 3.00) 0.243 20 1313/2606 Peto OR = 1.37 (0.83, 2.24) 0.221 13 883/915 MD = -6.27 (-8.20, -4.34) <0.001 | Gavriilidiset al. Simultaneous versus delayed hepatectomyfor synchronous colorectal liver metastases: a systematic review and meta-analysis. HBP 2018. #### Summary Scientific Evidence • No differences in survival... ... in selected cases • No differences in complications... ... in selected cases • Simultaneous: shorter length of hospital stay and lower costs Liver first approach: severe liver disease and asymptomatic primary tumour #### Indications and clinical recommendations ### Simultaneous approach - ✓Patients fit for surgery - √"Easy" hepatic resection - ✓Uncomplicated primary tumor ✓ Specialized surgeons #### Indications and clinical recommendations ### SEQUENTIAL COLON FIRST Surgery - Symptomatic CRC - Patient not fit for simultaneous - Surgeon not an expert in liver surgery - Doubtful resectability of CCR - Complex surgery of the CRC and the M1 #### Indications and clinical recommendations #### • LIVER FIRST Surgery ✓Asymptomatic primary tumor ✓Unresectable or borderline resectable liver M1 ✓Risk of M1 progression during treatment of the primary ## Summary - Multidisciplinary treatment strategies - Selection of patients - Planification for an appropriate timing - Complex surgical procedures requiring surgical expertise