

MSK IO

Dimitrios K Filippiadis MD, PhD, MSc, EBIR
Associate Professor of Diagnostic and Interventional Radiology
2nd Department of Radiology, University General Hospital "ATTIKON"
Medical School, National and Kapodistrian University of Athens

FINANCIAL DISCLOSURES

- FOCUSED CRYO: Advisory Board
 - IMACTIS: Advisory Board
- ECO MEDICAL, NANJING: Proctor
- MEDTRONIC: Advisory Board, Proctor
 - CANNON: Advisory Board
 - IMPACKT: Advisory Board, Proctor

- Spine is most common site of osseous metastatic disease
 - 40% will develop spine metastases
 - Most will be lytic and involve the posterior vertebral body
- 53% with solid tumor bone mets suffer spinal skeletal related events (SRE)
- Greater than 25% occupancy of the vertebral body, and involvement of the vertebral endplate or all 3 columns should be considered for prophylactic or therapeutic decompressive and stabilization treatment

- Painful spinal metastases. Multiple pain generators.
- Mechanical pain Caused by the VCF or pathological fracture. Spinal deformity, spine instability and a fracture line. (Goal is to stabilize through fixation or cement augmentation).
- Biological pain Caused by Stretching/irritation of the periosteum: secondary to tumor growth, Tumor growth into surrounding nerves and tissues, or Osteoclast mediated bone resorption and associated release of neuro-stimulating cytokines.

STEPHN MCDEDITATION ST
S IASIOS
RATIONAL ONCO OCH

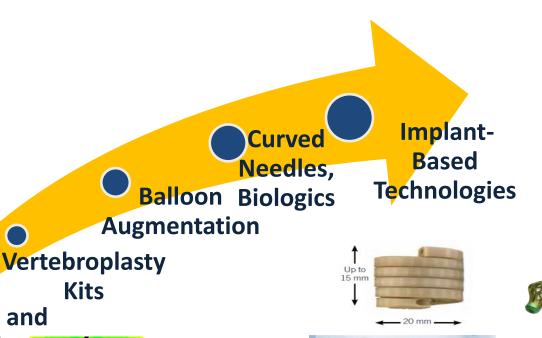
Scoring	System	Treatment Strategy	Modified Treatment Strategy	Scoring	System	Treatment Strategy	Modified Treatment Strategy
	15				2		
	14	Excisional Surgery			25	En bloc Resection	En bloc Resection
	13	Supply and a subort	Excisional Surgery		3		
	12						
· .	11	75754 37		Tombs Score	-4	Intrafesional Resection	Intralesional Resection
oje	10	Palliative Surgery			5		
So	9				- 5%		
Tokuhashi Score	8		Palliative Surgery	00	6		
188	7			E E	- 23	Palliative Surgery	Palliative Surgery
3	6			۴	7.	II. Johnson Carrier	
2	5				100		
	4	Conservative Treatment			8		
	3		Consequative Treatment			200000000000000000000000000000000000000	
Λ.	2		Conservative Treatment	R	9	Supportive Care	SWINDSTERN
7	1				10		Supportive Care
•	0				10		

Aoude A, Amiot LP. A comparison of the modified Tokuhashi and Tomita scores in determining prognosis for patients afflicted with spinal metastasis. Can J Surg. 2014;57(3):188-93.

Spine Instability Neoplastic Score (SINS)

		•				
Location Junctional (occiput-C2, C7–T2, T11–L1, L5–S1)	3	Table 2 Spine Instability Neoplastic Sc	ore			
Mobile spine (C3-C6, L2-L4) Semi-rigid (T3-T10)	2 1	Location	Points	Vertebra	l body collapse	Points
Rigid (S2-S5) Pain relief with recumbency and/or pain with movement/loading of the spine	0	Junctional Mobile spine (C3–C6, L2–L4)	3 2	>50% co	1	3
Yes No (occasional pain but not mechanical)	3 1	Semirigid spine (T3–T10)	1	No colla	pse with body involved	1
Pain free lesion Bone lesion	0	Rigid spine (S2–S5)	0		the above	0
Lytic Mixed (lytic/blastic) Blastic	2 1 0	Pain relief with recumbency/pa with movement or loading	iin	Points	Bone lesion	Points
Radiographic spinal alignment Subluxation/translation present De novo deformity (kyphosis/scoliosis) Normal alignment	4 2 0	Yes No Pain-free lesion		3 2 0	Lytic Mixed Blastic	2 1 0
Vertebral body collapse >50% collapse <50% collapse	3 2	Radiographic spinal alignment	Points	2 000	erolateral lvement	Points
No collapse with >50% body involved None of the above Posterolateral involvement of the spinal elements	1 0	Subluxation/translation present	4	Bila	teral	3
(facet, pedicle or CV joint fracture or replacement with tumor)		De novo deformity Normal alignment	2	Unil Non	ateral e	1 0
Bilateral Unilateral None of the above	3 1 0	Note: Total score 0–6 point 13–18: instability.	ts: stabi	lity; 7–12:	indeterminate s	tability;

Fourney DR, Frangou EM, Ryken TC, et al. Spinal instability neoplastic score: an analysis of reliability and validity from the spine oncology study group. J Clin Oncol 2011;29:3072–7



A walk to the past.....

- 1984...Galibert-Deramond vertebroplasty
- 1989... Lapras-Duquesnel vertebroplasty indications
- 1997...Jensen-Dion vertebroplasty in USA
- 2001...Garfin-Reilley-Lieberman kyphoplasty
- 2002...Verlaan vertebroplasty for traumatic fractures
- 2014...percutaneous vertebral augmentation

Cement and Needles

- Pathologic vs. Traumatic
 - Osteoporotic
- Thoracic vertebral fractures-no kyphotic deformity
- Thoracic vertebral fractures-significant kyphotic deformity
 - Thoraco-lumbar junction fractures
 - Lumbar fractures- loss of, neutral, and hyper-lordotic
 - Sacral fractures—totally different mechanics
 - Cancer related
 - Stable
 - Lytic, mixed
 - Impending or completed fracture
 - Hemangioma
 - Multiple Myeloma Lymphoma

One size does not fit all

-Tailored Approach-

Metastases

Myeloma

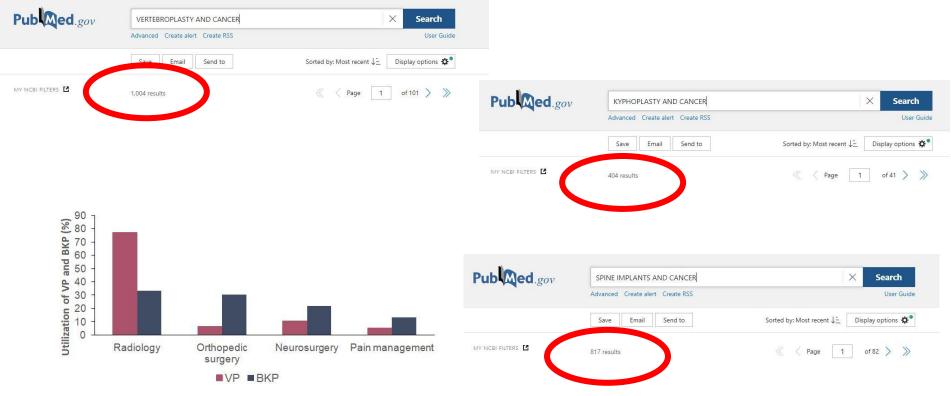
Lymphoma

Leukemia

Pain palliation

Local tumor control

Anterior stabilization


Anti-tumoral effect

Percutaneous Vertebroplasty and Kyphoplasty: Current Status, New Developments and Old Controversies

Dimitrios K. Filippiadis¹ · Stefano Marcia² · Salvatore Masala³ · Frederic Deschamps⁴ · Alexis Kelekis¹

performing vertebral augmentation may be less than from not performing the procedure.

As far as cancer-related fractures are concerned, economic analyses report that the use of kyphoplasty or vertebroplasty may be a cost-effective strategy at commonly accepted willingness-to-pay thresholds [64].

Percutaneous Vertebroplasty or Balloon Kyphoplasty?

An analysis of the Medicare population concludes that BKP has a statistically significant higher survival rate (of 62.8% as compared to 57.3% for PVP) and a 23% lower mortality rate than that for vertebroplasty patients (p < 0.001) [58]. Another analysis of the Medicare Provider and Review File database concludes that BKP tends to have a more striking association with survival than vertebroplasty does, but it is costly and may have a higher rate of subsequent vertebral compression fracture [42]. A UK cost-effectiveness analysis concludes that BKP may be a cost-effective strategy for the treatment of patients

It is evident that throughout the literature there is no clearly proven superiority of one technique over the other; all the aforementioned provocative results and conclusions could easily be related to selection biases. Ideally, a prospective randomized direct comparison of the two methods for the treatment of vertebral compression fractures in similar patient groups would provide the answers. However, the question still remains: How easy is it to design and perform such a study?

Randomized Trials

Up until 2009, there was a great enthusiasm for vertebroplasty mainly driven by the outcomes reported in the everyday clinical practice and by meta-analyses of large observational and retrospective series showing pain reduction, mobility and life quality improvement [72]. In this year, two placebo-controlled vertebroplasty randomized trials were published in the New England Journal of Medicine (NEJM) supporting that pain and pain-related disability improvement in patients with osteoporotic

Cardiovasc Intervent Radiol (2017) 40:331–342 DOI 10.1007/s00270-017-1574-8

CIRSE STANDARDS OF PRACTICE GUIDELINES

CIRSE Guidelines on Percutaneous Vertebral Augmentation

Georgia Tsoumakidou¹⊙ · Chow Wei Too¹ · Guillaume Koch¹ · Jean Caudrelier¹ · Roberto Luigi Cazzato¹ · Julien Garnon¹ · Afshin Gangi¹

Table 1 Table 1 reports response rates to PVP according to different parameters and in different pathologies

Criteria	Success Rate		
1. Pain relief			
Acute osteoporotic fracture	90% [16, 72–77]		
Chronic osteoporotic fractures	80-100% [36, 39]		
Malignant fractures	60-85% [25, 27, 73, 78-80]		
Hemangiomas	80-100% [73, 81-83]		
2. Increased mobility			
Acute osteoporotic fracture	84-93% [16, 75]		
Chronic osteoporotic fracture	50-88% [36, 39]		
3. Reduced requirement for analgesics	91% [16, 75]		

Cement leakage Infection

Fracture of ribs, posterior elements or pedicle

Risk of collapse of the adjacent vertebral body

Allergic reaction

Bleeding from the puncture site

Complications

Published data have placed the symptomatic complication rates of PVP of osteoporotic at 2.2–3.9% [84, 85], and in malignant fractures at <11.5% [71]. Centres planning on starting a PVP programme should aim at keeping their complication rates below the published rates. We recommend a threshold of 2% for all symptomatic complications for PVP performed for osteoporotic indications, and 10% for malignant indications [86].

Wang et al.
World Journal of Surgical Oncology (2022) 20:112
https://doi.org/10.1186/s12957-022-02583-5

World Journal of Surgical Oncology

RESEARCH

Open Access

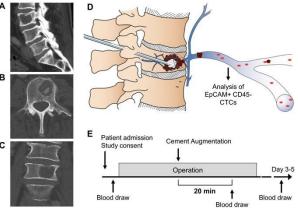
Cement leakage in percutaneous vertebroplasty for spinal metastases: a retrospective study of risk factors and clinical outcomes

Table 3 Multivariate logistic analysis for the occurrence of cement leakage

Features	OR	(95%CI)	P
Tomita classification	2.060	1.124-3.776	0.019
Post-OP chemo/radiotherapy	2.679	0.822-8.734	0.102
Vertebra level	0.724	0.232-2.253	0.577
Posterior wall destruction	19.706	3.653-106.297	0.001
Injected laterality	0.369	0.118-1.151	0.086
Injected volume	0.698	0.476-1.024	0.066

Table 4 Univariate analysis for the occurrence of cement leakage in the spinal canal

Features	Other = 95	Spinal canal = 18	P
Previous chemo/radio- therapy			0.092
No	49 (51.6%)	9 (50.0%)	
Yes	46 (48.4%)	9 (50.0%)	
Tomita classification			0.739
Slow	25 (26.3%)	4 (22.2%)	
Moderate	10 (10.5%)	3 (16.7%)	
Rapid	60 (63.2%)	11 (61.1%)	
Post-OP chemo/radio- therapy			0.359
No	22 (23.2%)	6 (33.3%)	
Yes	73 (76.8%)	12 (66.7%)	
Other metastasis			0.736
No	62 (65.3%)	11 (61.1%)	
Yes	33 (34.7%)	7 (38.9%)	
Vertebra level			0.789
Thoracic	39 (41.1%)	8 (44.4%)	
Lumbar	56 (58.9%)	10 (55.6%)	
Collapse			0.962
No	58 (61.7%)	11 (61.1%)	
Vec	36 (38 394)	7 (38 994)	
Posterior wall destruction			0.001
No	15 (15.8%)	9 (50.0%)	
Yes	80 (84.2%)	9 (50.0%)	
Injected laterality			0.019
Single	38 (40.0%)	2 (11.1%)	
Bilateral	57 (60.0%)	16 (88.9%)	
Injected volume	4.50 (3.00-6.00)	6.00 (4.00-7.12)	0.020



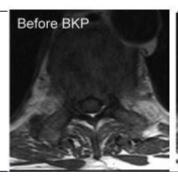
SCIENTIFIC REPORTS

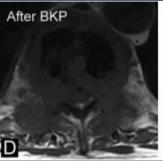
Sci Rep. 2017 Aug 3;7(1):7196. doi: 10.1038/s41598-017-07649-z.

Circulating Tumour Cell Release after Cement Augmentation of Vertebral Metastases.

Mohme M¹, Riethdorf S², Dreimann M³, Werner S², Maire CL⁴, Joosse SA², Bludau F⁵, Mueller V⁵, Neves RPL७, Stoecklein NH७, Lamszus K⁴, Westphal M⁴, Pantel K², Wikman H², Eicker SQ⁴.

Cement augmentation via percutaneous vertebroplasty or kyphoplasty for treatment of spinal metastasis is a well-established treatment option. We assessed whether elevated intrametastatic pressure during cementaugmentation results in an increased dissemination of tumour cells into the vascular circulation. We prospectively collected blood from patients with osteolytic spinal column metastases and analysed the prevalence of circulating tumour cells (CTCs) at three time-points: preoperatively, 20 minutes after cement augmentation, and 3–5 days postoperatively. Enrolling 21 patients, including 13 breast-(61.9%), 5 lung-(23.8%), and one (4.8%) colorectal-, renal-, and prostate-carcinoma patient each, we demonstrate a significant 1.8-fold increase of EpCAM +/K+ CTCs in samples taken 20 minutes post-cement augmentation (P < 0.0001). Despite increased mechanical CTC dissemination due to cement augmentation, follow-up blood draws demonstrated that no long-term increase of CTCs was present. Array-CGH analysis revealed a specific profile of the CTC collected 20 minutes after cement augmentation. This is the first study to report that peripheral CTCs are temporality increased due to we rebral cement augmentation procedures. Our findings provide a rationale for the development of new prophylactic strategies to reduce the increased release of CTC after cement augmentation of osteolytic spinal metastases.

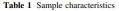




Tumor extravasation following a cement augmentation procedure for vertebral compression fracture in metastatic spinal disease

2-Case patient study involving the phonemonial of 'tumor extravasation' In this paper, the authors describe for the first time an iatrogenic complication secondary to BKP that we characterize as "tumor extravasation."

• Conclusions: Accordingly, the authors advise caution in using BKP when significant epidural tumor is present.



Cardiovasc Intervent Radiol. 2013 Feb;36(1):183-91. doi: 10.1007/s00270-012-0379-z. Epub 2012 Jun 27.

Clinical outcome and safety of multilevel vertebroplasty: clinical experience and results.

Mailli L1, Filippiadis DK, Brountzos EN, Alexopoulou E, Kelekis N, Kelekis A.

Characteristics		N	%
Sex	Male	31	23.8
	Female	99	76.2
Conce	Osteoporosis	77	50.2
	Malignancy	38	29.2
	Hemangioma	13	11.5
No. of treated vertebrae	1-3	94	72.3
	>3	36	27.7
Transpedicular approach	Unilateral	81	86.2
	Bilateral	13	13.8
Leakage	No	86	66.1
	Yes	25	33.8

Table 2 Changes in G-BPI score during the 2-year follow-up period*

G-BPI	Baseline	Day 1	Year 1	Year 2	Change	Mean change (%)	$p^{\mathbf{b}}$	pe
Total	7.9 ± 1.2	2.1 ± 1.5	2.0 ± 1.5	2.0 ± 1.5	-5.9 ± 1.9	-74.7	< 0.001	
Cause								
Osteoporotic	8.1 ± 0.8	2.2 ± 1.4	2.1 ± 1.3	2.1 ± 1.4	-6.0 ± 1.6	-74.1	< 0.001	0.560
Malignancy	7.7 ± 1.8	2.0 ± 1.6	1.9 ± 1.7	1.9 ± 1.7	-5.8 ± 1.6	-75.3	< 0.001	
Hemangioma	7.6 ± 1.1	2.2 ± 2	2.1 ± 1.7	2.0 ± 1.6	-5.6 ± 1.0	-73.7	0.001	
p^{d}	0.137	0.599	0.362	0.326				
No. of treated ver	rtebrae							
1-3	7.9 ± 1.1	2.1 ± 1.6	2.0 ± 1.5	2.0 ± 1.5	-5.9 ± 1.9	-74.7	< 0.001	0.425
>3	8.1 ± 1.3	2.2 ± 1.3	2.0 ± 1.5	2.1 ± 1.6	-6.0 ± 1.8	-74.1	< 0.001	
p^{d}	0.656	0.294	0.694	0.531				
Transpedicular ap	proach							
Unilateral	8.0 ± 1.1	2.1 ± 1.6	2.0 ± 1.5	1.9 ± 1.5	-6.1 ± 1.8	-76.3	< 0.001	0.47
Bilateral	7.6 ± 0.9	2.1 ± 1.0	2.1 ± 0.9	2.0 ± 0.8	-5.6 ± 1.0	-73.7	0.001	
p^{d}	0.169	0.522	0.357	0.335				
Leakage								
No	8.0 ± 1.1	2.1 ± 1.5	1.9 ± 1.3	2.0 ± 1.4	-6.0 ± 1.7	-75.0	< 0.001	0.683
Yes	7.8 ± 1.4	2.1 ± 1.6	2.2 ± 1.8	2.1 ± 1.8	-5.7 ± 2.1	-73.1	< 0.001	
p^{d}	0.639	0.554	0.801	0.772				

CONCLUSION: PVP is an efficient and safe technique for symptomatic vertebral fractures independently of the vertebrae number treated per session.

Value

Safety and Efficacy of **Multilevel** Thoracolumbar **Vertebroplasty** in the Simultaneous Treatment of Six or More Pathologic Compression Fractures. Moulin B, Tselikas L, Gravel G, Al Ahmar M, Delpla A, Yevich S, Hakime A, Territehau C, De Baere T, Deschamps F.

J Vasc Interv Radiol. 2020 Oct;31(10):1683-1689.e1. doi: 10.1016/j.jvir.2020.03.011. Epub 2020 Sep 10.

Study, Year	Pts./	Vertebrae	Mean Levels by	Etiology	Bone-Targeted	RT	NRS	/VAS	NRS/VAS	Opioid	General Status
	Sessions		Session (Range)		Therapy		Preoperative	Postoperative	Decrease (%)	Decrease (%)	Improvement (%)
Mailli et al, 2012 (8)	14/14	92	6.6 (6-8)	Metastasis or osteoporosis	#3	-	8.1 ± 1.3	2.2 ± 1.3	-73%	-	ECOG +66%
Zhang et al, 2017 (21)	60/36	284	4.7(4-8)	Metastasis (including myeloma)	-	-	7.8 ± 1.6	2.1 ± 1.2	-73 %		KPS +20%
Tran Thang et al, 2008 (22)	2834	117	3.4 (1-9)	Metastasis (exclusively myeloma)	-5		7.48	2.1	-72%	−70%	ECOG +55%
Zhang et al, 2013 (23)	4343	126	2.9 (1–6)	Metastasis (exclusively breast cancer)	Bisphosphonates	-	7.6 ± 1.9	2 ± 1,5	-74 %	-	KPS +23%
Present series, 2019	50/50	397	7.9 (6–13)	Metastasis (including myeloma)	Bisphosphonates or denosumab	Yes	5.0 ± 1.8	1.7 ± 1.4	-66%	-39%	22

Note-There were no major complications in any study.

ECOG = Eastern Cooperative Oncology Group; KPS = Karmofsky performance status; NRS = numeric rating scale; RT = radiation therapy; VAS = visual analog scale.

Mean age (y) ± standard deviation	66 ± 10
Sex	
Male	26 (52)
Female	24 (48)
Primitive tumor location	
Multiple myeloma	13 (26)
Breast	12 (24)
Prostate	6 (12)
Lung	6 (12)
Miscellaneous	13 (26)
Vertebroplasty decision	
Pain release	40 (80)
Opioid consumption decrease	10 (20)
Number of levels treated	
6	13 (26)
7	13 (26)
8	8 (16)
9	7 (14)
10	3 (6)
11	2 (4)
12	3 (6)
13	1 (2)
Preprocedure NRS pain intensity	
Mild (0 ≤ NRS score ≤ 2)	10 (20)
Moderate (3 \leq NRS score \leq 5)	18 (36)
Severe (6 ≤ NRS score ≤ 10)	22 (44)
Preprocedural radiation therapy	
Yes	19 (38)
No	31 (62)

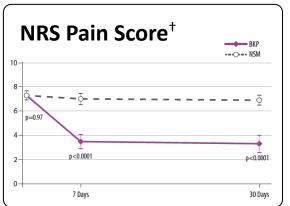
Table 1. Patient Demographic Data and Disease

Characteristics (N = 50)

Characteristic

Note-Values in parentheses are percentages. NRS = numeric rating scale

Conclusions: Multilevel vertebroplasty for \geq 6 pathologic compression fractures is safe and provides significant palliative benefit when performed simultaneously.

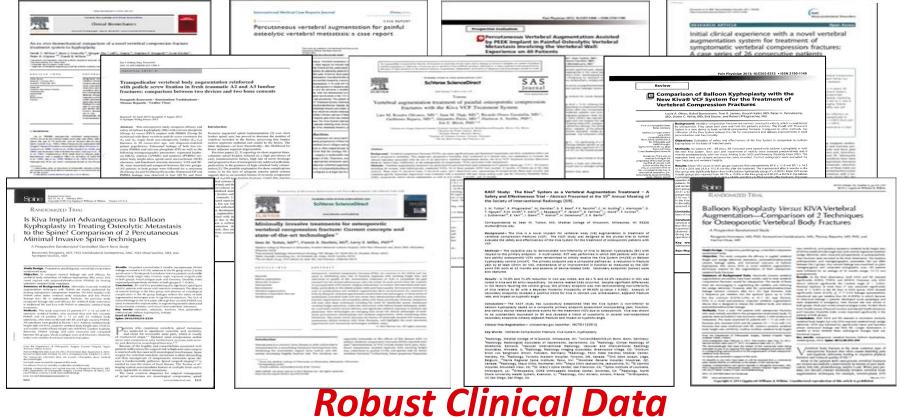


CAncer Patient Fracture Evaluation (CAFE) Study

Balloon Kyphoplasty versus Non-surgical Fracture
 Management for Treatment of Painful Vertebral Body
 Compression Fractures in Patients with Cancer: A
 Multicentre, Randomised Controlled Trial

Berenson et al. 2011:12:225-35, LANCET 2011

Berenson <i>et al</i> . 2011;12:225-3	35. LANCET 2011	
	BKP n = 70	NSM (control) n = 64
Number patients evaluable	68	61
Number of patients not evaluable**	2	3
Patient age, mean (range)	64.8 (38-88)	63.0 (40-83)
Estimated Fx age, months, median	3.4	3.5
Underlying etiology Multiple myeloma Breast cancer Lung cancer Prostate cancer Other [†]	22 (32%) 16 (24%) 7 (10%) 4 (5.9%) 19 (28%)	27 (44%) 12 (20%) 4 (6.6%) 4 (6.6%) 14 (23%)
Bisphosphonate use	30 (44%)	33 (54%)
Steroid use	20 (29%)	25 (41%)
Fractures per patient 1 2 3	24 (35%) 18 (26%) 26 (38%)	27 (44%) 20 (33%) 14 (23%)



		ВКР	NSM (control)
Back-specific Function	RDQ	Improved *§‡	
	Karnofsky	Improved *§‡	
QOL	SF-36 PCS	Improved *§‡	No
	SF-36 MCS	Improved *‡	Change
A -41-14-	Limited Activity Days	Improved *‡	
Activity	Bed Rest Days	Improved *‡	
	NRS	Improved *§‡	Minimal Change **
Back Pain	Analgesic Use	96% @ Baseline dropped to 60% ‡	84% @ Baseline dropped to 72%

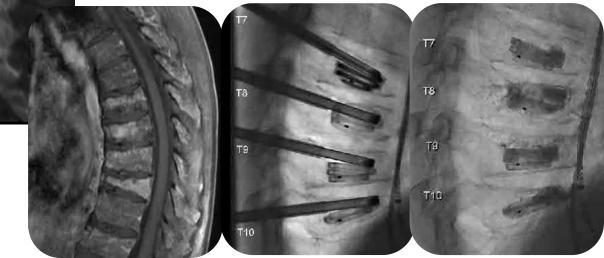
Percutaneous Vertebral Augmentation Assisted by PEEK Implant in Painful Osteolytic Vertebral Metastasis Involving the Vertebral Wall: Experience on 40 Patients

Prospective study of 40 patients suffering from a painful spine malignancy with vertebral wall involvement not responding to conventional therapies

Vertebral augmentation with Kiva intravertebral implant for pain palliation

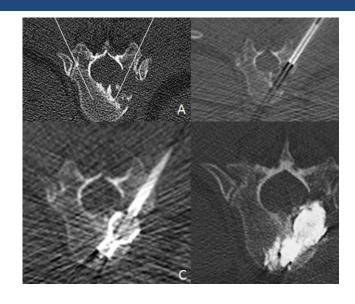
Median pre-treatment VAS of 10 (range 6-10) significantly (P < 0.001) dropped to one (range 0-3), with all patients achieving a clinically relevant benefit on pain at one month

Conclusions: The Kiva System potentially represents a novel and effective minimally invasive treatment option for patients suffering from severe pain due to osteolytic vertebral metastases.



PEEK IMPLANT

Multiple Myeloma
Images courtesy Sean Tutton, M.D., FSIR

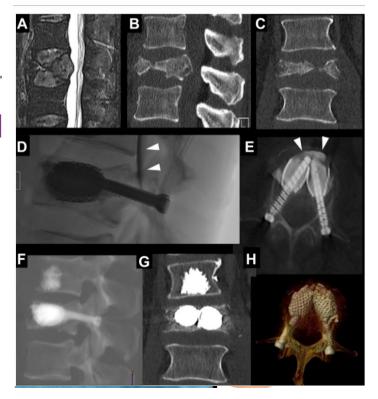


Bladder Ca

ECR 2015 / C-1719

Vertebral body stenting and cement augmentation to restore structural stability in extreme spinal osteolysis,

<u>L. Danieli</u>¹, E. Raz², M. Reinert³, G. Pesce⁴, G. Bonaldi⁵, A. Cianfoni³; ¹Rome/IT, ²New York, NY/US, ³Lugano/CH, ⁴Bellinzona/IT, ⁵Bergamo/IT


J NeuroIntervent Surg 2018; 0:1-7. doi:10.1136/neurintsurg-2018-014481

Spine

ORIGINAL RESEARCH

Stent-screw-assisted internal fixation: the SAIF technique to augment severe osteoporotic and neoplastic vertebral body fractures

Alessandro Cianfoni, ^{1,2} Daniela Distefano, ¹ Maurizio Isalberti, ¹ Michael Reinert, ^{3,4} Pietro Scarone, ⁴ Dominique Kuhlen, ⁴ Joshua A Hirsch, ⁵ Giuseppe Bonaldi ⁶

IASIOS ENBOLLEO CENTRE DI POPULA CINCOCCE

			Mount oncody.
	Rose et al ³⁵ MSKCC (2009)	Boehling et al ³⁶ MDACC (2012)	Cunha et al³ UofT (2012)
Number of patients	71 spinal segments in 62 patients	123 spinal segments in 93 patients	167 spinal segments in 90 patients
Median follow-up (months)	13	14.9	7-4
SBRT median or total dose/ fraction	Median 24 Gy (range 18–24)/1	Total 18 Gy/1 (34%), 27 Gy/3 (49%), 30 Gy/5 (17%)	Total 20-24 Gy/1 (19%), 8-18 Gy/1 (3%), 18-24 Gy/2 (25%), 20-27 Gy/3 (35%), 30 Gy/4 (3%), 25-35 Gy/5 (15%)
Tumour characteristics	65% osteolytic, 18% osteosclerotic, 17% mixed	58% osteolytic, 21% osteosclerotic, 21% mixed	48% osteolytic, 26% osteosclerotic, 26% mixed
Tumour location	9% cervical, 66% thoracic, 25% lumbar- sacral	4% cervical, 54% thoracic, 42% lumbar-sacral	18% cervical, 46% thoracic, 36% lumbar-sacral
Incidence of VCF (%)	39%	20%	11%
Time to VCF (months)	Median 25	Median 3	Median 2 mean 3-3 1-year FFP 87-3%
Salvage interventions (%)	3/27 (11%); 2 surgery, 1 cement	10/25 (40%); 10 cement	9/19 (47%); 3 surgery, 6 cement
Significant predictors of VCF on multivariate proportional hazard analysis	Osteolytic tumour (HR 3-8, 95% CI 1-2–11-4); 41–60% vertebral body involvement (HR 3-9, 95% CI 1-1–14-2)	Age > 55 years (HR 5·67, 95% CI 2·13–19·69); pre-SBRT VCF (HR 4·12, 95% CI 1·82–9·21); osteolytic	Kyphosis/scoliosis (HR 11·1, 95% Cl 3·0–41·7); osteolytic tumour (HR 12·2, 95% Cl 2·6–58·8); lung histology (HR 4·3, 95% Cl

MSKCC=Memorial Sloan-Kettering Cancer Center. MDACC=MD Anderson Cancer Center. UofT=University of Toronto. SBRT=stereotactic body radiotherapy. VCF=vertebral compression fracture. FFP=fracture-free progression. HR=hazard ratio.

tumour (HR 2.76, 95% CI 1.2-7.1)

Table: Summary of studies reporting on VCF after spine stereotactic body radiotherapy

1·2-16); liver histology (HR 34, 95% CI 0·024-192·5). ≥20 Gy dose per fraction (HR

6.82. 95% CI 1.83-25.42)

procedure.

VERTEBRAL AUGMENTATION

The Use of Vertebral Augmentation and External Beam Radiation Therapy in the Multimodal Management of Malignant Vertebral Compression Fractures

retrospective analysis of 201 cases of patients with cancer and MCFs who received both external beam radiation therapy (EBRT) and VA in only 4% of cases did patients report worsening of their fracture-related pain post-

there was no difference in pain outcomes with regard to sequencing of EBRT and VA

Conclusions: The majority of patients with MCFs have excellent palliation with this approach.

In patients who receive both EBRT and VA, the sequence in which they are given does not affect pain improvement outcomes.

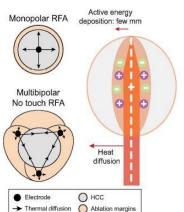
Interaction of radiation therapy and radiofrequency kyphoplasty in the treatment of myeloma patients

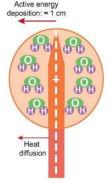
86 myeloma patients with VCF were treated with RF+KP followed by radiation therapy (RFK group) or vice versa (RT group)

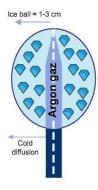
Both groups achieved comparable outcomes in height restoration, pain reduction and impact of functional Impairment but:

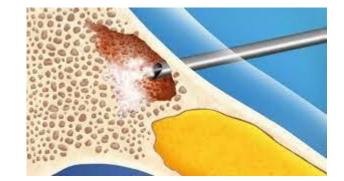
More cement leakages and additional fractures were noted in the RT group

Conclusions: With regard to higher rates of bone cement extrusion and additional fractures we recommend to perform radiation therapy before radiofrequency kyphoplasty though






Radiofrequency ablation


Microwave ablation

Cryoablation

ALWAYS COMBINE WITH CEMENT INJECTION AVOID PATHOLOGIC FRACTURES

Advantages

Well evaluated treatment (reference)

Multibipolar mode: increases volume and predicibility (margin) of ablation zones

Limitations

(target: >5 mm)

Thermal injury of adjacent structure

> Heat sink effect (near major vessels) Multibipolar mode is less sensitive to heat sink effect

Advantages

Higher and faster temperature picks reached than with RFA (less sensitive to heat sink effect than monopolar RFA)

Limitations

No reliable end point to set the amount of energy deposition

Advantages

Easy monitoring with imaging of ice ball progression

Limitations

Cryoshock w device

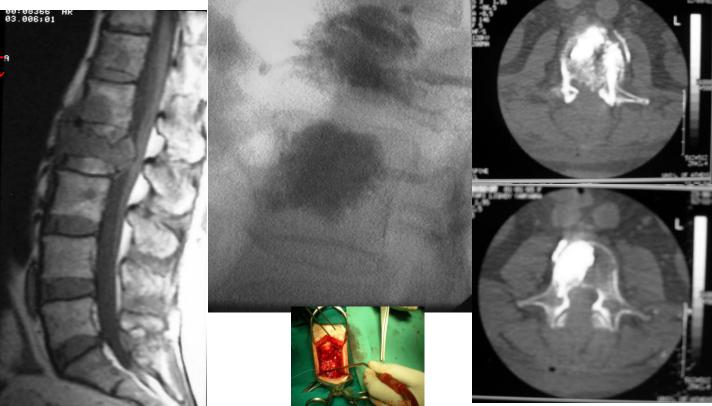
Limited clinic available with devices

Percutaneous bone tumor management

(PMMA) provides pain relief and bone strengthening in patients with malignant bone tumors.

PMMA is suitable for treatment of fractures involving weight-bearing bones, such as vertebral body.

This procedure is performed in a palliative intent and does not stop tumor progression; thus, it should be considered as a complement, not a replacement, to other treatment modalities for cancer



Contents lists available at ScienceDirect

Journal of Bone Oncology

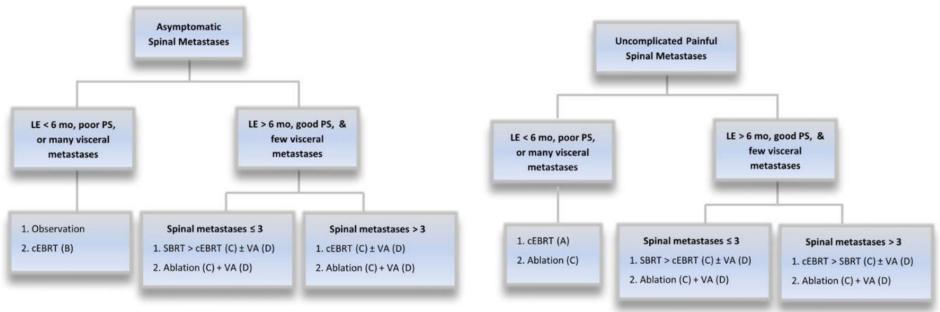
journal homepage: www.elsevier.com/locate/jbo

Keview articl

Future directions for bone metastasis research – highlights from the 2015 bone and the Oncologist new updates conference (BONUS)

Ricardo Fernandes^a, Peter Siegel^b, Svetlana Komarova^{b,c}, John Hilton^{a,d}, Christina Addison^a, Mohammed F K Ibrahim^a, Joel Werier^{a,e}, Kristopher Dennis^f, Gurmit Singh^a, Eitan Amir^b, Virginia Jarvis^a, Urban Emmenegger¹, Sasha Mazzarello⁴, Mark Clemons^{a,d,*}

evaluate patient prognosis in this setting could be invaluable. Minimally invasive techniques such as radiofrequency ablation, percutaneous cryoplasty, cementoplasty, and vertebroplasty can be effective in patients who are poor surgical candidates or who have a specific lesion that can be addressed by these techniques. Surgical stabilization is


European Society of Medical Oncology (ESMO)

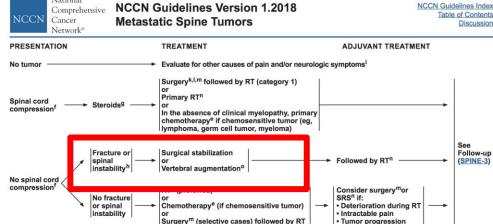
Acute procedural pain	latrogenic pain causes	Comorbidity-related pain	Pain in cancer survivors
Adjuvant setting			
- Diagnostic intervention	- Surgery	- Cardiovascular	- Follow-up procedures
- Lumbar puncture ± headache	- Chemotherapy	- Pulmonary	- Persisting postsurgical pain
- Transthoracic needle biopsy	- Hormonal therapy	- Diabetic neuropathy	 Persisting anticancer drug-related pain
- Endoscopy ± visceral dilatation - Bone marrow aspiration/biopsy - Blood sampling - Central line position - Arterial line injections - Medication of kinulers - Medication of kinulers - Medication of kinulers - Medication	- Targeted therapy	- Vasomotor headache	 Persisting RT-related pain
	- Osteonecrosis of the jaw	– Fibromyalgia	 Postherpetic neuralgia
	- RT	- May be worsened by anticancer	
	- Steroids (pain due to skin lesions, periph-	treatments and/or cancer-related	
	eral neuropathy, mucositis, aseptic femoral	pain	
	head necrosis, infections)	- Postherpetic neuralgia	
- Myelography and lumbar puncture		- Acute thrombosis pain	
- Thoracentesis			
Neo-adjuvant setting - As adjuvant setting plus diagnostic and prognostic tissue biopsy	As adjuvant setting without surgery-related pain	- As adjuvant setting	- As adjuvant setting
Locally advanced setting			
- As adjuvant setting plus pleurodesis, tumour embolisation,	- As adjuvant setting plus cryosurgery, ther-	- As adjuvant setting	- As adjuvant setting
suprapubic catheterisation and nephrostomy insertion	mal ablation, TACE, spinal/epidural injec-		
	soria ia opioia rijotragesa		
Metastatic setting			
 As locally advanced setting plus liver, lung or soft tissue dagnostic biopsies, wound care and movement procedural pain 	- As neo-adjuvent setting	- As adjuvant setting	 As adjuvant setting plus synergistic pai effects between latrogenic and disease related causes in long-term cancer survivors

The Metastatic Spine Disease Multidisciplinary Working Group Algorithms

ADAM N. WALLACE, CLIFFORD G. ROBINSON, JEFFREY MEYER, NAM D. TRAN, AFSHIN GANGI, MATTHEW R. CALISTROM, SAMUEL T. CHAO, BRIAN A. VAN TINE, JONATHAN M. MORRIS, BRIAN M. BRUEL, JEREMIAH LONG, ROBERT D. TIMMERMAN, JACOB M. BUCHOWSKI, JACK W. JENNINGS

The Oncologist 2015;20:1205–1215; first published on September 9, 2015; http://dx.doi.10.1634/theoncologist. 2015-0085

NCCN Guidelines Version 1.2020 Adult Cancer Pain


NCCN Guidelines Index Table of Contents Discussion

MANAGEMENT STRATEGIES FOR SPECIFIC CANCER PAIN SYNDROMES

Moderate to severe cancer pain is treated with opioids as indicated (PAIN-3 and PAIN-4); these interventions are meant to complement opioid management, Adjuvant analgesics are used depending on the pain diagnosis, comorbidities, and potential for drug interactions, Integrative interventions should also be optimized. (See PAIN-J)

- · Pain from mucositis, pharyngitis, and esophagitis;
- Gabapentin, pregabalin
- Local anesthetic formulations/oral care protocols
- For more information, see https://www.ons.org/pep/mucositis
- Bone pain without oncologic emergency:
- NSAIDs, acetaminophen, or steroids^a
- See Non-Opioid Analgesic (Nonsteroidal Anti-Inflammatory Drugs [NSAIDs] and Acetaminophen) Prescribing (PAIN-K)
- Consider bone-modifying agents (eg. bisphosphonates.
- Diffuse bone pain: Consider hormonal therapy or chemotherapy.
- ♦ Consider local RT, nerve block (eg, rib pain), vertebral augmentation, or percutaneous ablation techniques. Assess for impending fracture with plain radiographs.
- Consider physical medicine evaluation.
- Consider orthopedic consultation for stabilization, if feasible.
- Consider referral to a pain specialist for interventional consultation. See Interventional Strategies (PAIN-M)

- Bowel obstruction
- > Evaluate etiology of bowel obstruction. If resulting from cancer. consider surgical intervention.
- For medical management of partial bowel obstruction, consider corticosteroids^a and/or metoclopramide
- Palliative management of bowel obstruction could include bowel rest, nasogastric suction (or percutaneous gastrostomy drainage), corticosteroids, a H2 blockers, anticholinergics (ie, scopolamine, hyoscyamine, glycopyrrolate), antiemetics (see PAIN-F 2 of 3), and or octreotide
- Nerve pain
 - or inflammation: ♦ Trial of corticost roidsa
- Neuropathic pain: ◊ Trial of antidepr sant, see PAIN-G and/or
- ◊ Trial of anticonv sant, see PAIN-G
- Ocnsider trial of topical agent, see PAIN-G
- For refractory pain, consider referral to a pain specialist and/or the use of interventional strategies. See Interventional Strategies (PAIN-M)
- · Painful lesions that are likely to respond to antineoplastic therapies Consider trial of radiation, hormones, or chemotherapy.
- · For severe refractory pain in the imminently dying, consider palliative sedation (See NCCN Guidelines for Palliative Care).



National Comprehensive Cancer Network. Adult Cancer Pain (Version 2.2014).

• Radiotherapy

Chemotherapy

Ferrus Oxide

Radioisotopes

Thermal Cement

Acrylic cement added with antiblastics in the treatment of bone metastases

ULTRASTRUCTURAL AND IN VITRO ANALYSIS

M. A. Rosa, G. Maccauro, A. Sgambato, R. Ardito, G. Falcone, V. De Santis, F. Muratori

From the Catholic University, Rome, Italy

ELSEVIER

Contents lists available at ScienceDirect

Acta Biomaterialia

PMMA-based bone cements containing magnetite particles for the hyperthermia of cancer

M. Kawashita*, K. Kawamura, Z. Li Grahute School of Biomedical Engineering, Toboliu University, Sendol 980-8579, Japan

Pain Physician 2009; 12:887-891 • ISSN 1533-3159

Focused Review

Polymethylmethacrylate and Radioisotopes in Vertebral Augmentation: An Explanation of Underlying Principles

Ariel E. Hirsch, MD¹, Barry S. Rosenstein, PhD², David C. Medich, PhD, CHP³, Christopher B. Martel, CHP³, and Joshua A. Hirsch, MD¹

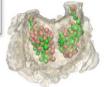
Antimitotic Agents

Cytotoxic effect of drugs eluted from polymethylmethacrylate on stromal giant-cell tumour cells

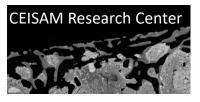
AN IN VITRO STUDY

Acrylic cement added with antiblastics in the treatment of bone metastases

ULTRASTRUCTURAL AND IN VITRO ANALYSIS


M. A. Rosa, G. Maccauro, A. Sgambato, R. Ardito, G. Falcone, V. De Santis,
F. Muratori

From the Catholic University, Rome, Italy



 Bisphosphonate Release from a CPC for Osteosarcoma

VERTEBRAL AUGMENTATION

Which Lesion will benefit from which procedure

MDT

What is the objective ??

- Construct should be durable
- Allow Fast Mobilization
- Provide biomechanical Stability

RF ABLATION

Dimitrios K Filippiadis MD, PhD, MSc, EBIR
Associate Professor of Diagnostic and Interventional Radiology
2nd Radiology Dpt, University General Hospital "ATTIKON"
Medical School, National and Kapodistrian University of Athens

PMMA and new fractures

OUTLINE:

- Products in the market
 - Ind- Cl
 - Technique
 - Literature data
- Ready for prime time?

ISSUES TO CONSIDER PRIOR TO ABLATION:

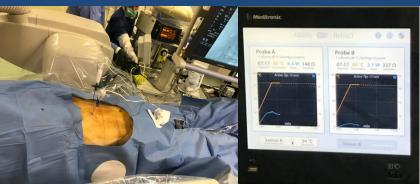
- CLINICAL
- Local vs Diffuse bone pain
- "Mechanic" vs "Inflammatory" pain
- Performance status

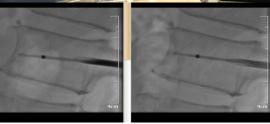
- TECHNICAL
- Review recent cross sectional imaging (x rays, CT, MRI, PET/CT)
- Lesion shape / location / lytic vs blastic
- Impeding pathologic fracture (SINS)
- Vascularity
- Close by sensitive structures

Why to use:

Minimally invasive approach

well-tolerated
even in
patients with
comorbidities or
with extensive
disease


Overall
morbidity of
the procedure
is low impressive
and reliable
pain relief


May assist in liquefying the tumor and allowing for better fill of the cement

VIRTUES AND SINS	RFA	MWA	CA	HIFU
ABLATION ZONE SIZE - SHAPE	++	+++	++++	+
INTRA-PROCEDURAL PAIN	+	+++	++++	++++
EQUIPMENT – SET UP	+++	++++	++	+
LITERATURE DATA	++++	++	++++	++
COST	++++	++++	++	+
TIME CONSUMING	++	++++	+	+
HEAT SINK EFFECT	+	++++	++	+++

Patients who benefit from RFA

- with focalized pain from metastatic spinal tumor
- ✓ with radio-resistant tumors
- ✓ with persistent and/or recurrent pain after radiation therapy
- ✓ with posteriorly positioned metastatic tumors
- ✓ who have reached their maximum radiation dose limit
- ✓ with focalized pain and symptoms preventing palliative radiation.
- ✓ cannot undergo other palliative treatments due to concurrent systemic treatments
- ✓ in which myelosuppression is of concern

- Indications for Use.
 - indicated for palliative treatment in spinal procedures by ablation of metastatic malignant lesions in a vertebral body
- Risks and Contraindications
 - Use of device is contraindicated in patients with heart pacemakers or other electronic device implants

OSTEOID OSTEOMA –

spinal osteoid osteoma

- Lumbar spine > cervical spine > thoracic spine > sacrum
- Most commonly the nidus is located in the neural arch
- radicular pain, gait disturbance, limb atrophy, and painful scoliosis due to asymmetric muscle spasm
- when scoliosis is present, the nidus typically is on the concave side of the lumbar curvature

• Chai FW et al Radiologic Diagnosis of Osteoid Osteoma: From Simple to Challenging Findings. Radiographics 2010; 30:737–749

• Jackson et al. Osteoid osteoma and osteoblastoma: similar histologic lesions with different natural histories.

Clin Orthop Relat Res 1977 (128):303-313

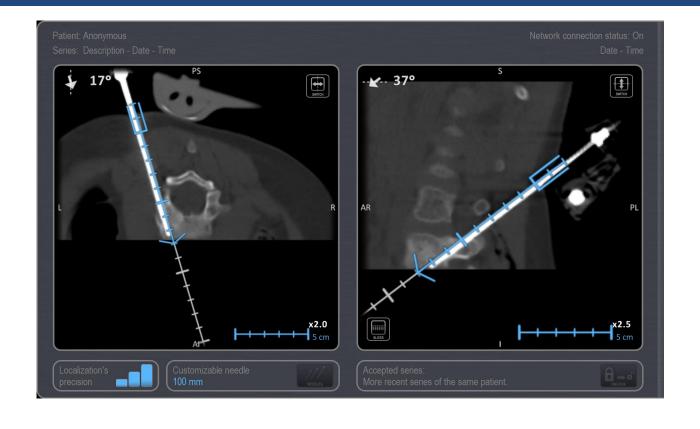
•Saifuddin et al. Osteoid osteoma and osteoblastoma of the spine: factors associated with the presence of scoliosis. Spine (Phila Pa 1976) 1998;23(1): 47–53

RFA OSTEOID OSTEOMA

Radiology. 2003 Oct;229(1):171-5. Epub 2003 Aug 27.

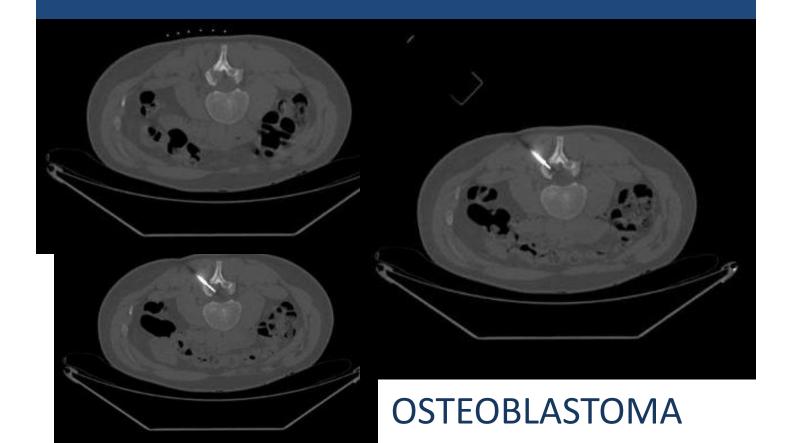
Ablation of osteoid osteomas with a per Osteoid osteoma: percutaneous treatment with radiofrequency energy.

[Indexed for MEDLINE]


osteoid osteoma

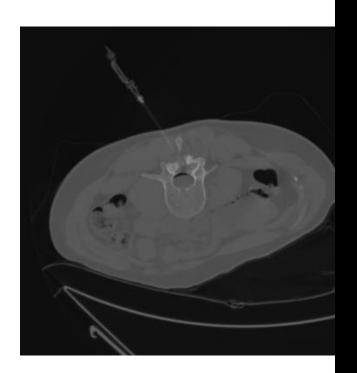
Rosenthal DI1, Hornicek FJ, Torriani M, Gebhardt MC, Mankin HJ. Rosenthal DI 1, J Bone Joint Surg Br. 2001 Apr;83(3):391-6. Percutaneous radiofrequency ® Author information Lindner NJ¹, J Vasc Interv Radiol. 2001 Jun;12(6):7 Abstract Abstract PURPOSE: To report our experience with technical success, complications, and long-term clinical success of radiofrequency (RF) ablation of Osteoid ostec Author i Osteoid osteoma: CT osteoid osteoma. to perform ab Abstract Woertier K1, Vestring I. Boettner F MATERIALS AND METHODS: After needle biopsy, computed tomography (CT)-quided percutaneous RF ablation was performed with general completely re $\,$ We treated $\,_{\bigoplus}\,$ Author information or spinal anesthesia. With an RF electrode, the lesion was heated to 90 degrees C for 6 minutes. Patient age and sex, lesion size and procedures. location, biopsy results, and complications were recorded. Clinical success was assessed at a minimum of 2 years after the procedure. PMID: 1549690 3 mm) secti Abstract Significance of patient age and sex and lesion location and size as a predictor of biopsy result was tested by means of chi2 analysis. In allow the pa PURPOSE: To evaluate compuladdition, effects of patient age and sex, lesion location and size, and biopsy results on clinical success were tested with the Fisher exact test. minutes. Th with regard to technical and clil RESULTS: During an 11-year period, 263 patients who were suspected of having osteoid osteoma underwent 271 ablation procedures. All procedure V MATERIALS AND METHODS: | procedures were technically successful. There were two anesthesia-related complications (aspiration, cardiac arrest) and two minor complication pelvis, n = 2; humerus, n = 1; u procedure-related complications (cellulitis, sympathetic dystrophy). Results at biopsy were positive in 73% (197 of 271 biopsies). Two-year PMID: 113414 cases after one (n = 10) or two follow-up data were available for 126 procedures. The other procedures had been performed more recently or the patients could not be Indexed for M general or spinal anesthesia. A contacted. There was complete relief of symptoms after 112 of the 126 procedures (89%). For procedures performed as the initial treatment. coaxial drill system or an 11-ga the success rate was 91% (107 of 117 procedures). Procedures for recurrent lesions had a significantly lower success rate (six of 10 rigid RF electrode with a diame procedures [60%], P <.001). Clinical outcome was not dependent on biopsy result, patient age or sex, or lesion size or location. placed within the center of the CONCLUSION: CT-guided percutaneous RF ablation of osteoid osteoma is a safe and effective technique. permanent relief of pain and re ablation, treatment was regard, Copyright RSNA, 2003 RESULTS: All procedures were comment in recurrence of pain 3, 5, and 7 r Radiofrequency thermoablation in the treatment of osteoid osteoma. [Radiology, 2004] successfully in a second proce PMID: 12944597 DOI: 10.1148/radiol.2291021053 CONCLUSION: CT-guided perc

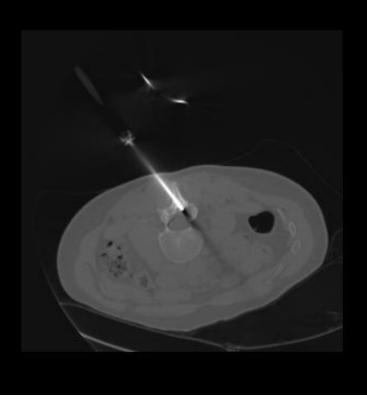
STRATEGIC – quality assurance



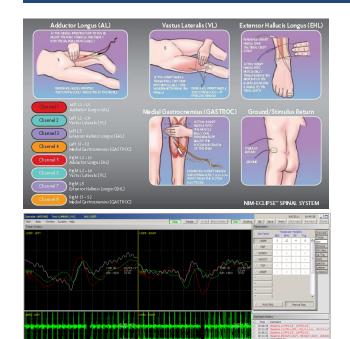
 On routine histologic analysis is essentially indistinguishable from OO - tumor size of 2 cm or larger is the main histopathologic criterion to distinguish this lesion from OO

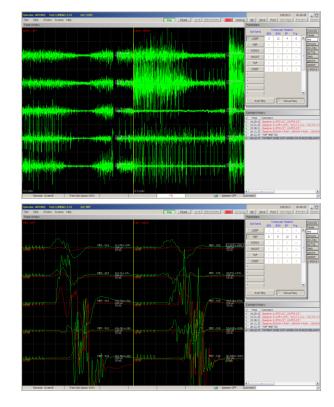
 Patients are usually younger than 30 years of age and the lesion is more common in males (by x2:1)


National and Kapodistrian University of Athens 2-L3 FACET JOINT LESION



L2-L3 FACET JOINT LESION





L2-L3 FACET JOINT LESION

National and Kapodistrian University of Athens 2-L3 FACETJOINT LESION

NCCN Guidelines Version 1.2021 Adult Cancer Pain

NCCN Guidelines Index Table of Contents Discussion

INTERVENTIONAL STRATEGIES

Interventional consultation¹

- Major indications for referral:
- Pain likely to be relieved with nerve block (eg, pancreas/upper abdomen with celiac plexus block, lower abdomen with superior hypogastric plexus block, intercostal nerve)
- Failure to achieve adequate analgesia and/or the presence of intolerable adverse effects (may be handled with intraspinal agents, blocks, spinal cord

Current Oncology Reports

Nat

 $(2019)\ 21:105$

https://doi.org/10.1007/s11912-019-0844-9

PALLIATIVE MEDICINE (A JATOI, SECTION EDITOR)

The Role of Ablation in Cancer Pain Relief

Dimitrios K. Filippiadis 1 • Steven Yevich 2 • Frederic Deschamps 3 • Jack W. Jennings 4 • Sean Tutton 5 • Alexis Kelekis 1

(ie, peripheral neuropathy, neuralgias, complex regional pain syndrome)

- Percutaneous ablation techniques for bone lesions
 - Specific therapies for bone pain are outside the scope of this guideline. Other resources (eg, <u>Filippiadis</u>
 2019) may be referred to for more information
- 1 Patient prognosis should be communicated to interventional pain colleagues as an important consideration when selecting interventional pain therapies.
- ² Infection, coagulopathy, very short life expectancy, distorted anatomy, patient unwillingness, medications that increase risk for bleeding (eg, anti-angiogenesis agents such as bevacizumab), or technical expertise is not available.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

72

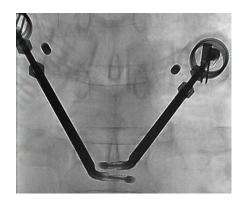
Benefits of Simultaneous RF Ablation?

Benefits of Simultaneous Bilateral Ablation

- Efficiently generate large areas of ablation with limited overlapping zones
- Spatial relationship between conductive heating and convective cooling
 - Generates 2 areas of resistive & conductive heating in relative close proximity
 - Reduces effect of convective cooling (heat sink)
- Reducing temperature delta between areas of resistive heating and adjacent tissue, decreasing distance heat must be conducted
- Reduces power required to conduct heat through tissue, lowering incidence of increased impedance

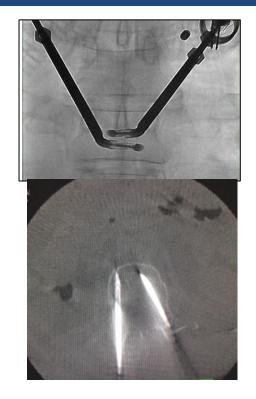
Challenges in Simultaneous RF Ablation?

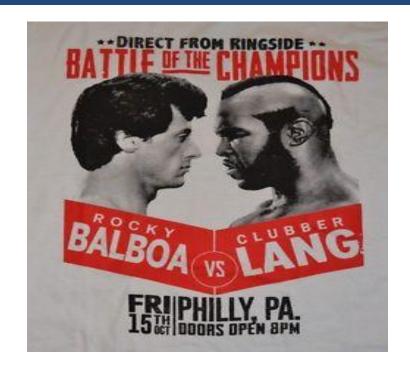
- Location of electrodes
 - Optimal location in VB and proximity of dual electrodes
 - VB anatomy (large size, oblique pedicle orientation)
 - Tumor location (posterior, diffuse)

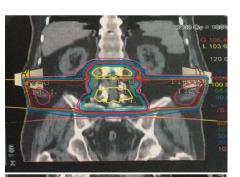

- Limitations of straight electrodes
 - Limit access to posterior third
 - Difficult to reorient, achieve optimal proximity of electrodes required to achieve coalescence

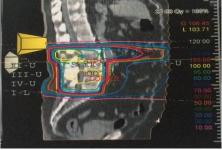
Procedural considerations in SBA with STAR

- Proximity of Electrodes:
 - Should not touch after electrode fully extended
 - AP view landmark
 - spinous process. Electrodes on either side of the spinous process


If overlapping distance equivalent to width of SpineSTAR





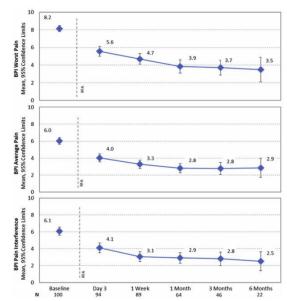

CAN WE CHALLENGE RTH?

Neurogenic & Bone Cancer Pain

The Metastatic Spine Disease Multidisciplinary Working Group Algorithms

ADAM N. WALLACE, CLIFFORD G. ROBINSON, JEFFREY MEYER, NAM D. TRAN, AFSHIN GANGI, MATTHEW R. CALLSTROM, SAMULE T. CHAO, BRIAN A. VAN TINE, JONATHAN M. MORRIS, BRIAN M. BRUEL, JEREMIAH LONG, ROBERT D. TIMMERMAN, JACOB M. BUCHOWSKI, JACK W. JENNINGS

CASE # Unipedicular Approach


Radiofrequency Ablation for the Palliative Treatment of Bone Metastases:

Outcomes from the Multicenter OsteoCool Tumor Ablation Post-Market Study

(OPuS One Study) in 100 Patients

100 patients (87-13 spine-sacrum/illium), 14 centers 97% of ablations were followed by cementoplasty Variable neoplasmatic substrate
Mean worst pain score decreased from 8.2±1.7 at baseline to 3.5 ± 3.2 at 6 mo

Conclusions: Results from this study show rapid (within 3 d) and statistically significant pain improvement with sustained long-term relief through 6 mo in patients treated with RF ablation for metastatic bone disease.

OPuS One safety summary

0

delayed skeletalrelated fractures or neurologic injuries reported.

- delayed skeletal-related fractures or neurologic injuries reported.
- device, therapy, and/or procedure-related adverse events in 6 patients (2.9%; 6/206) reported
 - 3 considered serious: intra-abdominal fluid collection, pneumonia, respiratory failure.
- deaths (40%; 82/206) deaths reported during the course of the study.
 - All deaths were classified by the Clinical Events Committee and Investigator.
 - None were related to the device, therapy, or procedure.

conclusion

Levy J, David E, Hopkins T, et al. Improvement in quality of life in patients treated for painful osseous metastases with radiofrequency ablation: The OPuS One Study. Abstract presented at the Society for Interventional Radiology Annual Scientific Meeting. Virtual. 2021.

1 2 3

In a large, multicenter prospective global prospective trial, RFA demonstrated to be a clinically impactful palliative treatment option for patients with metastatic bone lesions.

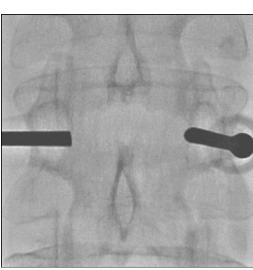
RFA provided swift (3 days post RFA), significant, and sustained (12 months post RFA) improvements in pain relief and quality of life.

RFA is safe with no delayed skeletal-related events fractures reported during study.

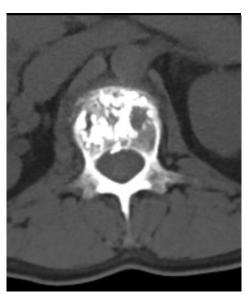
Case

- 41yo Male Patient
- Sacral lesion biopsied: Hemangiopericytoma
- Treated by RF

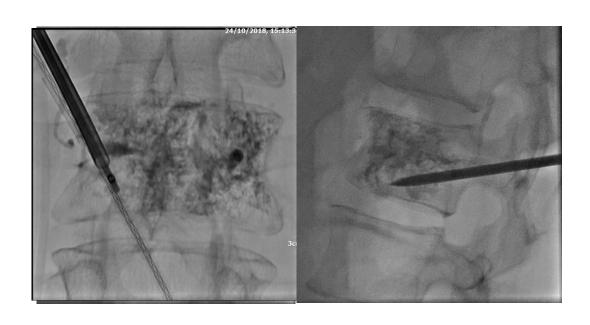



New Lytic L1 Lesion

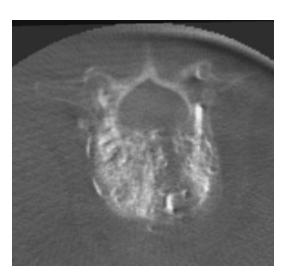
Osteocool and Augmentation

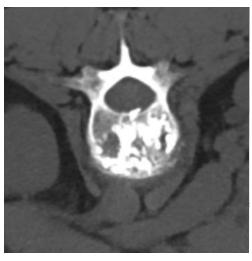


Bilateral Augmentation



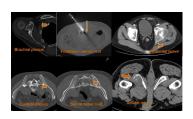
10 months later

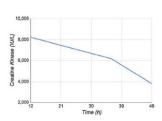




Re-Treatment of LtP Ablation

RE-TREATMENT OF LTP AUGMENTATION





Avoiding Complications:

- Neural injury
- Applicator placement damage
- Fracture risk
- Inadvertent osteochondral injury
- Large tumor treatment and tumor lysis

Passive thermal protection

- Thermocouples
- Intra-operative neurological monitoring systems

(neurodiagnostic EEG, EMG and evoked potential electrodes

and accessories, electrostimulation of peripheral nerves)

Active thermal protection - insulation

- CO₂ air
- Hydrodissection
- Skin warming/cooling Tsoumakidou et al CVIR 2013
 Filippiadis et al Insights Imaging 201
 Kurup et al CVIR 2017

IR-RTH COLLABORATION

 COMMON AIM: to cure/control tumor or to relieve symptoms with as little collateral damage to normal tissue as possible

 COMMON ORIGIN: for more than half a century, both fields were intimately linked in terms of training and clinical practice

IR-RTH STRATEGIC COLLABORATION

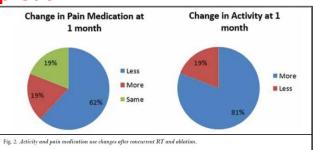
- DEFINE EVIDENCE-BASED CRITERIA: for choosing or combining these two modalities (size, nature and location of tumor + vulnerable adjacent structures + status of the affected organ patient's choice)
- COMMITMENT TO WORK TOGETHER IN PROMINENT CENTERS:
 "the Athenian experience" facility / staff for outpatient clinics / ward support for inpatients

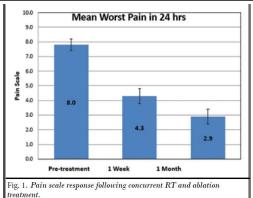
RFA + conventional EBRT

Feasibility study of RFA adjunctive effect in combination with RT

	RT only n=30	RFA+RT n=15	P-value
Overall response	60%	93%	< .05
Complete pain relief	17%	53%	< .05
Time to Pain Relief	9 wks	3 wks	<.01
Recurrent pain Retreatment need	26.6%	6.7%	NS

- Safe and may be more effective than EBRT alone
- Improved degree, rate, duration of pain relief in painful spinal metastases




CLINICAL - Complimentary

Combined Ablation and Radiation Therapy of Spinal Metastases: A Novel Multimodality Treatment Approach

21 patients, 36 spinal mets
Concurrent treatment: <4 wk between RT+ Ablation
Variable neoplasmatic substrate
Mean worst pain score decreased from
8.0±2.3 at baseline to 2.9 ± 3.3 at 1 mo

Conclusions: Percutaneous ablation and concurrent RT is safe and effective in palliating painful spinal metastases and can be effective in those who have radiation resistant tumor histology

CLINICAL – Complimentary

Interaction of radiation therapy and radiofrequency kyphoplasty in the treatment of myeloma patients

86 myeloma patients with VCF were treated with RF+KP followed by radiation therapy (RFK group) or vice versa (RT group)

Both groups achieved comparable outcomes in height restoration, pain reduction and impact of functional Impairment but:

More cement leakages and additional fractures were noted in the RT group

Conclusions: With regard to higher rates of bone cement extrusion and additional fractures we recommend to perform radiation therapy before radiofrequency kyphoplasty though

CLINICAL – Complimentary

Radiofrequency thermoablation (RFA) and radiotherapy (RT) combined treatment for bone metastases: a systematic review

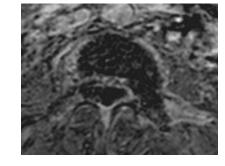
3 studies, 92 patients

Conclusions: The RFA-RT combined strategy appears to be promising in terms of efficiency and safety with adequate pain control and quality of life improvement

Piras et al Eur Rev Med Pharmacol Sci. 2021;25(10):3647-3654

Author (year)	Study design	n/N	Treatment	RT details	Main findings among patients with RFA-RT treatment.
Di Staso et al ³¹	Observational, retrospective, historical controlled	45/45 ed I	RFA-RT (15) vs. RT alone (30).	The nominal prescribed dose was 20 Gy delivered in 5 fractions of 4 Gy	RFA-RT is safe and more effective than RI alone Complete pain response 16.6% (5/30 with RT and 53.3% (8/15) with RFA-RI (p=0.027) 12 weeks-overall response rate 59.9% (18 patients) for RT and 93.3% (14 patients) for RFA-RT (p=0.048).
Greenwood et al ³² RT w RF	Observational, retrospective, historical controlled	21/21	RFA-RT (21 patients)	The majority of patients received 30 Gy in 10 fractions (12/22). Other treatment regimens included SBRT (6/22), 20 Gy in 5 fractions (1/22), and 8 Gy in a single fraction (1/22). Two treatment regimens were unknown	Decreased mean worst pain scores from 8.0 pre-procedure to 4.3 (p<0.02) at 1 week as 2.9 (p<0.003) at 4 weeks post-treatment. Local tumor control rates 92% (12/13) and 100% (10/10) at 3- and 6-month follow-up (despite systemic metastatic progression)
	Observational, retrospective, controlled	26/26 d R		Eleven lesions treated with 3D-CRT received a median dose of 30 Gy in 3 Gy daily fractions and 1 patient received a single fraction of 8 Gy. Two patients underwent SBRT at 28 days post-RFA, both receiving 35 Gy in 5 fractions	No significant difference in pain scores between groups $(p=0.96)$. Combined RFA-RT treatment showed a significant benefit both in time to LF $(p=.002)$ and in OS $(p=0.0045)$

PATIENT FOLLOW UP



1 mo:

• Baseline MRI after treatment to allow post-ablation inflammation to subside (FAT-SAT+GD)

6-8 weeks:

 PET-CT scanning (requested by the oncologists) to evaluate systemic response, at which time evaluation of the ablated lesion can be performed

Subsequent imaging:

- At the discretion of the treating medical or surgical oncologist to assess for local tumor control
- When the patient complains of new or increasing pain at the site of ablation

TAKE HOME MESSAGE

- Osteoid osteoma: ablation is the GOLD STANDARD therapy
- RFA: cumulative data on terms of results evidence for long term efficacy
- Osteoblastoma: more aggressive ablation session (esp in long bones)
- Know the anatomy and take care of sensitive structures - Bone is injured during all forms of ablation

TAKE HOME.....

- BONE ABLATION CONCERNS
- Access to the lesion
- Extent of ablation zone
- Protection of surrounding sensitive structures (nerves, joints, skin etc)
- Large sized tumors (technically challenging myoglobinuria)
- Combo treatments (osseous augmentation, TAE)

TAKE HOME.....

- BONE ABLATION
- Feasible, safe and efficacious technique aiming for pain palliation ± functional restoration
- Included in the NCCN Guidelines for Adult Cancer Pain

- Multiple ablation techniques available
- Optimize selection: patient (lesion) tailored approach to maximize efficacy

ROLE OF IO IN OLIGOMETASTATIC BONE DISEASE

Dimitrios K Filippiadis MD, PhD, MSc, EBIR
Assistant Professor of Diagnostic and Interventional Radiology
2nd Radiology Dpt, University General Hospital "ATTIKON"
Medical School, National and Kapodistrian University of Athens

CANCER STATISTICS

- More than 1.4 million patients are diagnosed with cancer annually in the United States
- 70% will develop bone metastases
- Scandinavian Skeletal Metastasis Registry:
 - the incidence of cancer has increased by 18% during the last decade
 - cancer mortality rates have remained nearly constant (+2%)

CANCER STATISTICS

- Skeletal system: third most important filter for cancer metastases after lungs and liver
- Spine: the most common site of osseous metastatic disease

WHY SPINE?

- Presence of vascular red marrow in adult vertebrae
- Communication of deep thoracic and pelvic veins with valveless vertebral venous plexuses

DEFINING TERMS

- Oligometastatic disease
 - <3-5 lesions, <3-5cm diameter
 - » Gangi et al. Quality Improvement Guidelines for Bone Tumour Management. CVIR 2010 33:706–713
- the presence of 1 and 5 distant metastases in <2 organs, although the exact number of metastases that should be considered remains debatable
 - deSouza et al. Strategies and technical challenges for imaging oligometastatic disease. EJCANCER 2017; XX:1-11

tumor

Ablation zone

- Ablation with curative intent
 - Ablation volume Safety margin (A0)

MANAGEMENT OF BONE METASTASES

MULTIDISCIPLINARY INPUT:

- Medical oncologists
- Radiation oncologists
- Surgeons (Ortho and/or Neuro)
- Interventional Radiologists

- CTH / bone-modifying agents
 - RTH/SBRT
- Surgical techniques
- Minimally invasive interventions (percutaneous/trans-arterial)

MANAGEMENT OF BONE

METASTASES

SURGERY:

- Technically challenging and morbid, prolonged recovery, delay systemic therapies
- Metastasectomy is associated with higher complication rates

RTH:

- Applied in areas that have not reached limit
- Limited by cumulative radiation tolerance of nearby organs
- Based on tumor histology (eg sarcoma, melanoma GIST, RCC, NSCLC)
- Does not improve stability (weakens adjacent bone with effect 2013–721 pathologic fracture)

 Meyer et al Eur Urol 2017; 1-4

MANAGEMENT OF BONE METASTASES

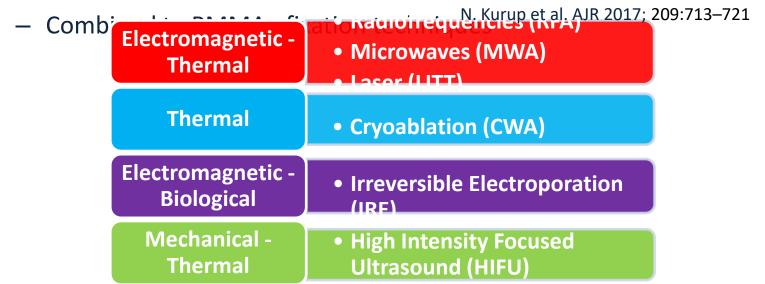
	Rose et al ³⁵ MSKCC (2009)	Boehling et al ³⁶ MDACC (2012)	Cunha et al³ UofT (2012)
Number of patients	71 spinal segments in 62 patients	123 spinal segments in 93 patients	167 spinal segments in 90 patients
Median follow-up (months)	13	14-9	7-4
SBRT median or total dose/ fraction	Median 24 Gy (range 18–24)/1	Total 18 Gy/1 (34%), 27 Gy/3 (49%), 30 Gy/5 (17%)	Total 20-24 Gy/1 (19%), 8-18 Gy/1 (3%), 18-24 Gy/2 (25%), 20-27 Gy/3 (35%), 30 Gy/4 (3%), 25-35 Gy/5 (15%)
Tumour characteristics	65% osteolytic, 18% osteosclerotic, 17% mixed	58% osteolytic, 21% osteosclerotic, 21% mixed	48% osteolytic, 26% osteosclerotic, 26% mixed
Tumour location	9% cervical, 66% thoracic, 25% lumbar- sacral	4% cervical, 54% thoracic, 42% lumbar-sacral	18% cervical, 46% thoracic, 36% lumbar-sacral
Incidence of VCF (%)	39%	20%	11%
Time to VCF (months)	Median 25	Median 3	Median 2, mean 3·3, 1-year FFP 87·3%
Salvage interventions (%)	3/27 (11%); 2 surgery, 1 cement augmentation procedure	10/25 (40%); 10 cement augmentation procedures	9/19 (47%); 3 surgery, 6 cement augmentation procedures
Significant predictors of VCF on multivariate proportional	Osteolytic tumour (HR 3-8, 95% CI 1-2–11-4); 41–60% vertebral body	Age > 55 years (HR 5·67, 95% CI 2·13–19·69): pre-SBRT VCF (HR 4·12.	Kyphosis/scoliosis (HR 11·1, 95% Cl 3·0–41·7); osteolytic tumour (HR 12·2, 95% Cl
nazaro analysis	Involvement (HK 3·9, 95% CI 1·1–14·2)	95% CI 1-82–9-21); osteolytic tumour (HR 2-76, 95% CI 1-2–7-1)	2·6–58·8); lung histology (HR 4·3, 95% Cl 1·2–16); liver histology (HR 34, 95% Cl 0·024–192·5), ≥20 Gy dose per fraction (HR

compression fracture_EEP_fracture_free progression_HD_hazard ratio

MSKCC=Memorial Sloan-Kettering Cancer Center. MDACC=MD Anderson Cancer Center. UofT=University of Toronto. SBRT=stereotactic body radiotherapy. VCF=vertebral

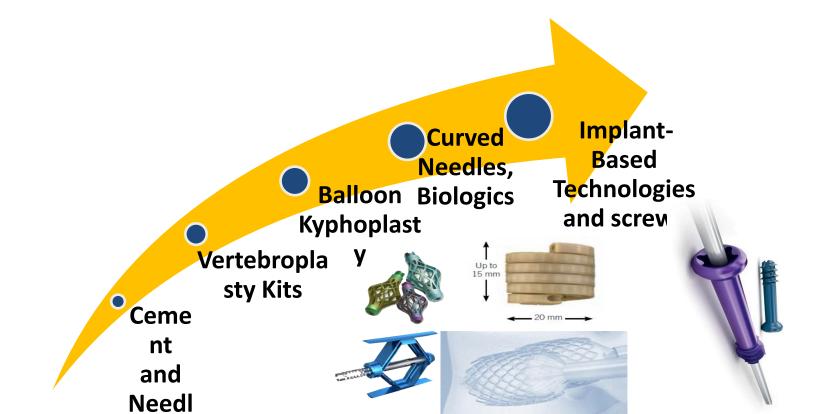
Table: Summary of studies reporting on VCF after spine stereotactic body radiotherapy

6.82, 95% CI 1.83-25.42)

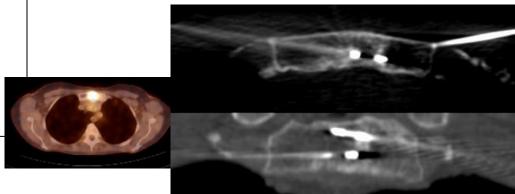


MANAGEMENT OF BONE METASTASES

ABLATION:


- Effective tumor destruction irrespective of histology
- Minimally invasive

AUGMENTATION TECHNIQUES

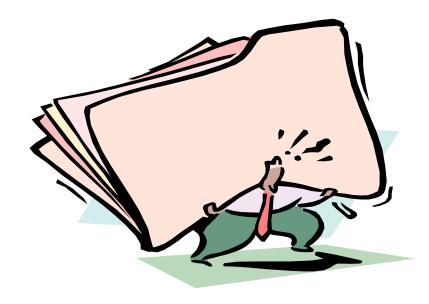

AUGMENTATION TECHNIQUES

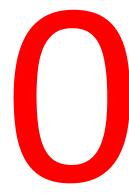
- Visible ablation zone
- Large-sized ablation zone ability to geometrically design the ablation zone (simultaneous use of up to 8 cryoprobes)
- Blastic lesions: ability of ice to penetrate bone
- Conscious sedation

- Time consuming (mean duration 3h and 5 min)
- High cost

Callstrom MA, Kurup N. Percutaneous ablation for bone and soft tissue metastases—why cryoablation? Skeletal Radiol (2009) 38:835–839

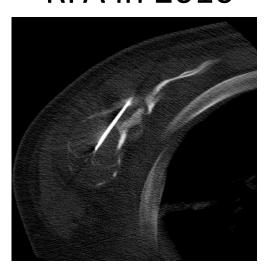
VIRTUES AND SINS	RFA	MWA	CA	IRE
ABLATION ZONE SIZE - SHAPE	++	+++	++++	++
INTRA-PROCEDURAL PAIN	+	+++	++++	++++
EQUIPMENT – SET UP	+++	++++	++	+
LITERATURE DATA	++++	+++	+++	+
COST	++++	++++	++	+
TIME CONSUMING	++	++++	+	+
HEAT SINK EFFECT	+	++++	++	++++



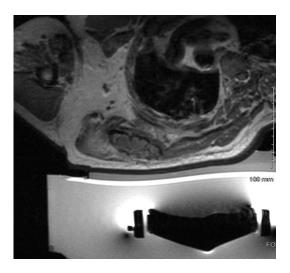


MANAGEMENT OF BONE METASTASES

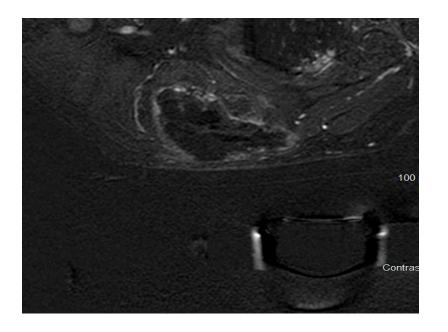
Randomized Trials Ablation vs. Surgery / RTH Randomized Trials RFA vs. MWA vs CWA

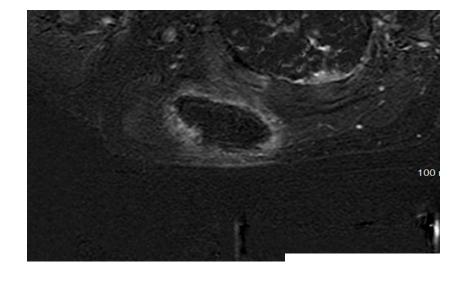


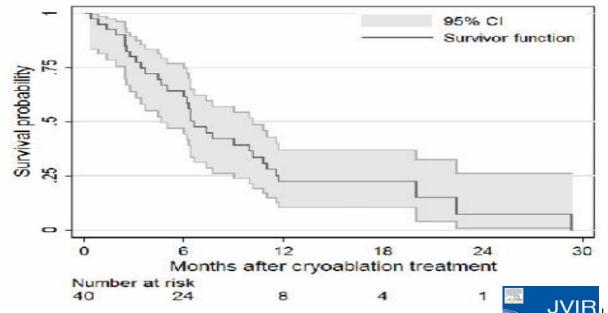



• RFA in 2010

Recurrent disease in 2016




MRgFUS Planning



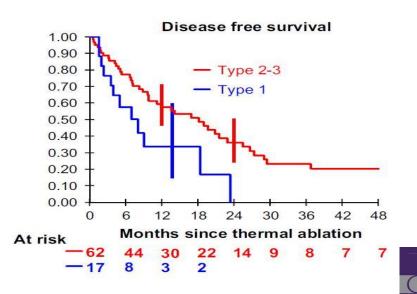
Author	Year	Tumor histology	Sites	Ablation modality	Average size (cm)	No. of patients (no. of tumors)	Local control No. (%) or %/y	Survival (%/y)	Follow-up (mo)	Major comp (no., %) ^a
Vaswani ⁶²	2018	Sarcoma	MSK	RFA, CA	3.0 ^b	13 (13) ^b	100/y ^b	NR	12 ^b	3 (5)
Ma ⁵³	2018	NSCLC	Bone	RFA, CA	3.6	45 (76)	17 (68)	NR	12	2 (2.6)
Gardner ⁵⁴	2017	RCC	Bone	CA	3.4	40 (50)	41/50 (82)	31(77/y 26/5 y)	35	4 (8)
Erie ⁵⁵	2017	Prostate	MSK	RFA, CA	1.6	16 (18)	15 (83)	100/2 y	27	0
Aubry ²⁴	2017	Mixed	MSK	MWA	5.5	13 (16)	4 (36.3)	NR	12	0
Tomasian ⁴¹	2016	Mixed	Spine	CA	NR	14 (31)	30 (96.7)	NR	10	0
Wallace ⁵⁶	2016	Mixed	Spine	RFA	NR	NR (55)	70/y	NR	7.9	0
Deschamps ⁵⁷	2014	Mixed	Bone	RFA, CA	NR	89 (122)	67/y	91/1	22.8	11 (9)
Welch ⁵⁸	2014	Renal	c	RFA, CA	NR	NR (46)	43 (93)	NR	22.5	0
McMenomy ⁵⁹	2013	Mixed	MSK	CA	2	40 (52)	45 (87)	91/y, 84/2 y	21	2 (5)
Bang ⁶⁰	2012	NSCLC	c	CA	3.1	8 (18)	17 (94)	NR	11	2 (11)
Bang ⁶¹	2012	Renal	С	CA	3.7	27 (48)	47 (97)	NR	16	1 (2)

McMenomy et al. Percutaneous cryoablation of musculoskeletal oligometastatic disease for complete remission

Oligometastatic patients (<5 lesions)
43 patients with MSK lesions
CWA

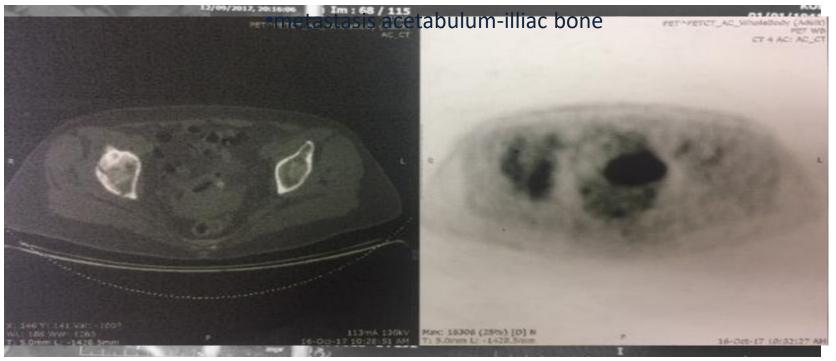
size and number of metastases length of disease-free interval Treatment adequacy of primary tumor presence of multiple metastatic sites

Percutaneous Cryoablation of Musculoskeletal Oligometastatic Disease for Complete Remission

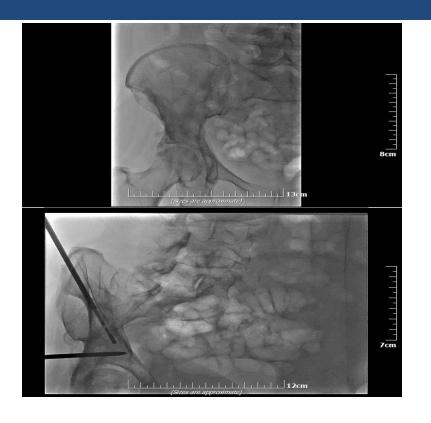

Brendan P. McMenomy, MD, A. Nicholas Kurup, MD, Geoffrey B. Johnson, MD, PhD, Rickey E. Carter, PhD, Robert R. McWilliams, MD, Svetomir N. Markovic, MD, PhD, Thomas D. Atwell, MD, Grant D. Schmit, MD, Jonathan M. Morris, MD, David A. Woodrum, MD, Adam J. Weisbrod, MD, Peter S. Rose, MD, and Matthew R. Callstrom, MD, PhD

JVIR 2013; 24:207

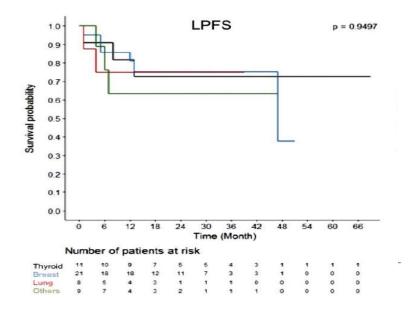
Barral et al F Percutaneous Thermal Ablation of Breast Cancer Metastases in Oligometastatic Patients


Oligometastatic patients (<5 lesions) 18/79 patients (23%) with bone lesions RFA - CWA

PTA is associated with prolonged OS, PFS, and local control of oligometastatic breast cancer regardless of the location of the metastases. Increasing tumor burden (>4 cm) and triple-negative and higtological subtype are significantly associated



- 59 y-o female
 - Breast Ca



Cazzato et al. Percutaneous image-guided ablation of bone metastases: local tumor control in oligometastatic patients

Oligometastatic patients (≤3 lesions)

46 patients – 49 lesions

Thyroid, Breast, Lung, Others

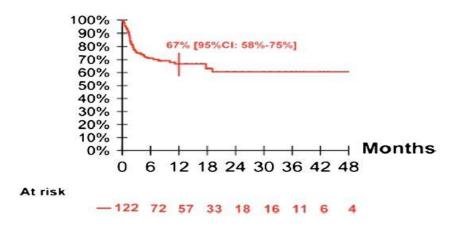
RFA – CWA (20% + consolidation)

34 mo fu

Lesion size >2cm predicted local tumor progression

Similar LPFS rates among all the different

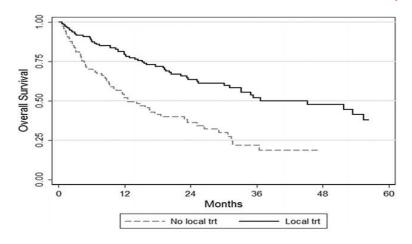
tumor histologies


Percutaneous image-guided ablation of bone metastases: local tumor control in oligometastatic patients

Roberto Luigi Cazzato, Pierre Auloge, Pierre De Marini, Chloé Rousseau, Jeanie Betsy Chiang, Guillaume Koch, Jean Caudrelier, Pramod Rao, Julien Garnon & Afshin Gangi

Deschamps et al. Thermal ablation techniques: a curative treatment of bone metastases in selected patients?

Oligometastatic patients (≤3 lesions) 141 patients – 152 ablation sessions - 193 lesions Thyroid, Breast, Kidney, Pheochromocytoma, Others RFA – CWA (+ consolidation in weight bearing locations) 22.8 mo fu Oligometastatic and/or metachronous diseases are good prognostic factors for local success Small-size (<2 cm) bone metastases and no cortical erosion are good prognostic factors


DOI 10.1007/s00330-014-3202-1

Thermal ablation techniques: a curative treatment of bone metastases in selected patients?

E. Deschamps • G. Farouil • N. Ternes • A. Gaudin A. Hakime · L. Tselikas · C. Teriitehau · E. Baudin A. Auperin • T. de Baere

Falk et al. Effect on Survival of Local Ablative Treatment of Metastases from Sarcomas: A Study of the French Sarcoma Group

Oligometastatic sarcoma patients (1-5 lesions)
281 patients, 164/281 patients received local treatment
35 (16.4%) RFA
25.7 mo fu

paradigm shift regarding the treatment of oligometastatic cancer supports the evidence for sarcomas

Original Article

Effect on Survival of Local Ablative Treatment of Metastases from Sarcomas: A Study of the French Sarcoma Group

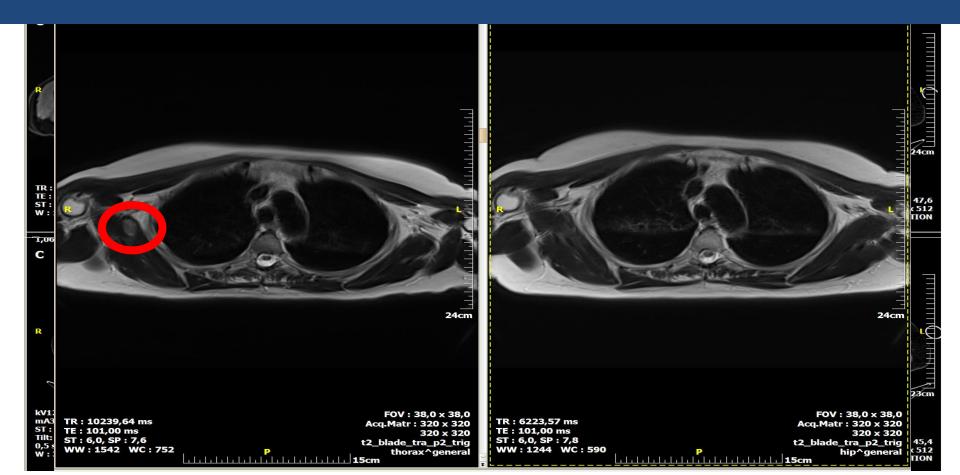
A.T. Falk *, L. Moureau-Zabotto †, M. Ouali ‡, N. Penel §, A. Italiano ¶, J.-O. Bay ||**, T. Olivier ††, M.-P. Sunyach ‡‡, P. Boudou-Roquette §§, S. Salas ¶¶, C. Le Maignan ||||, A. Ducassou ***, N. Isambert †††, E. Kalbacher ‡‡‡, C. Pan §§§, E. Saada *, F. Bertucci †, A. Thyss *, J. Thariat * for the Groupe Sarcome Francais-Groupe D'etude Des Tumeurs Osseuses

Vaswani et al. Radiographic Local Tumor Control and Pain Palliation of Sarcoma Metastases within the Musculoskeletal System with Percutaneous Thermal Ablation

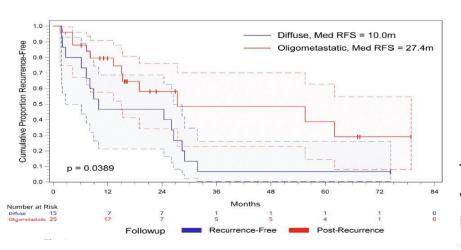

Oligometastatic sarcoma patients (1-5 lesions)

Table 5 Cumulative local tumor control rates according to tumor histology at 3 months, 6 months, 9 months, and 1 year >3 months # with Oligometastatic disease >6 months >9 months ≥1 year

Epithelioid Hemangioendothelioma 93% (13/14) 93% (13/14) 92% (11/12) 92% (11/12) 100% (3/3) 100% (1/1) Liposarcoma 83% (5/6) 83% (5/6) Leiomyosarcoma 86% (6/7) 83% (5/6) 100% (7/7) Angiosarcoma 100% (3/3) 100% (3/3) 100% (3/3) 67% (2/3) Osteosarcoma 0% (0/2) 0% (0/2) 0% (0/2)33% (1/3) 0% (0/3) 0% (0/3) 0% (0/3) Ewing sarcoma Myxofibrosarcoma 100% (1/1) Chondrosarcoma 100% (1/1) 0% (0/1) 0% (0/1) 0% (0/1) Synovial sarcoma 100% (1/1) 10 0 No follow-up 24


local tumor control (17%; 11/64) RFA or CWA 12 mo fu

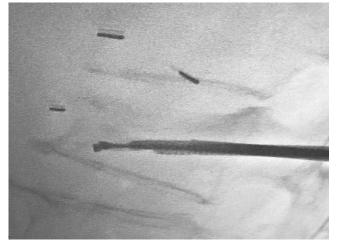
treatment in the setting of oligometastatic disease offers potential for remission



Gardner et al. Cryoablation of Bone Metastases from Renal Cell Carcinoma for Local Tumor Control

40 patients – 50 bone meta
25/40 (62.5%) oligometastatic disease
CWA - 35 mo fu
Patients with oligometastatic disease
experienced better local tumor control (96% [24 of 25])
compared with patients who had >5 metastases (53.3%
[8 of 15]) (p = 0.001)

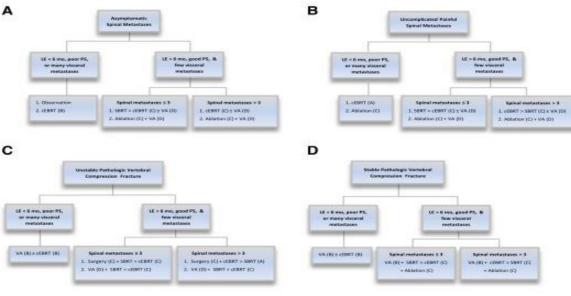
The local tumor-control rate was better for lesions for which a larger mean difference between maximum iceball diameter and maximum lesion diameter was achieved $(2.2 \pm 0.9 \text{ cm})$ for those without recurrence versus $1.35 \pm 1.2 \text{ cm}$ leading to Serior Metastases from Repal Cell O.005).





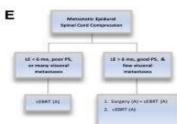
LATION FOR OLIGOMETASTATIC DISEA 🦸

THERAPEUTIC ALGORITHM


- Bone-only oligometastatic patients
 - Are we ready for curative ablation?
 - Is curative ablation ready for prime time?
 - Access to RT modern equipment varies greatly throughout Europe
 - <1/3 of RTH centers are fully equipped for SBRT
 - Grau C et al Radiother Oncol. 2014;112(2):155- 64.
 - Bonet M et al Clinics in Oncology 2018

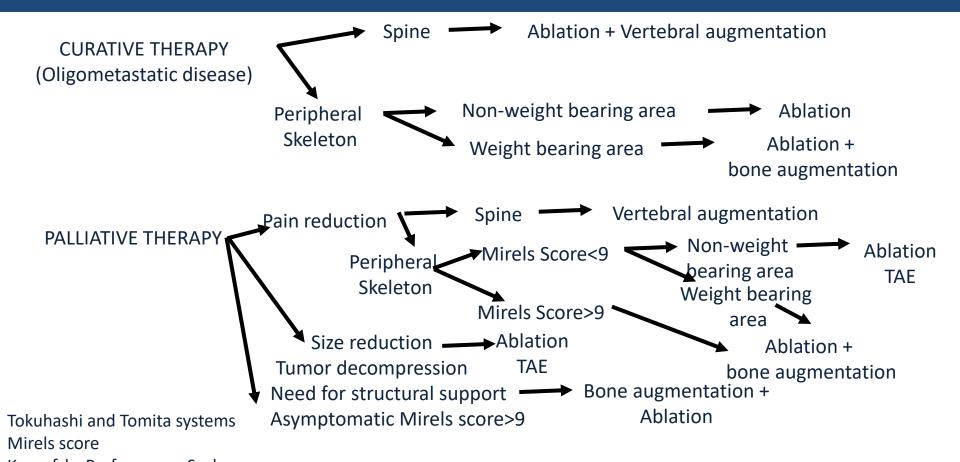
2015-0085

LATION FOR OLIGOMETASTATIC DISEA



The Metastatic Spine Disease Multidisciplinary Working **Group Algorithms**

ADAM N. WALLACE, CLIFFORD G. ROBINSON, JEFFREY MEYER, NAM D. TRAN, AFSHIN GANGI, MATTHEW R. CALLSTROM, SAMUEL T. CHAO, BRIAN A. VAN TINE, JONATHAN M. MORRIS, BRIAN M. BRUEL, JEREMIAH LONG, ROBERT D. TIMMERMAN, JACOB M. BUCHOWSKI, JACK W. JENNINGS


The Oncologist 2015;20:1205-1215; first published on September 9, 2015; http://dx.doi.10.1634/theoncologist.

THERAPEUTIC ALGORITHM

FUTURE DIRECTIONS

- Multi-disciplinary (tumour board meetings)
- Multi-modality
- Combination of treatments
- REMEMBER:
 - THERE IS A NEED FOR A LOT MORE DATA
 - THERE IS A NEED FOR THERAPEUTIC ALGORITHM IN PERIPHERAL SKELETON

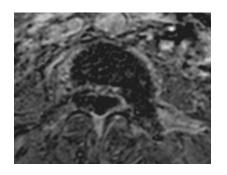
RECIST vs mRECIST

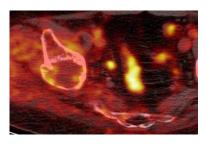
Target lesions							
Response category	RECIST	mRECIST					
CR	Disappearance of all target lesions	Disappearance of any intratumoral arterial enhancement in all target lesions					
PR	At least a 30% decrease in the sum of the diameters of target lesions, taking as reference the baseline sum of the diameters of target lesions	At least a 30% decrease in the sum of the diameters of viable (enhancement in the arterial phase) target lesions, taking as reference the baseline sum of the diameters of target lesions					
SD	Any cases that do not qualify for either PR or PD	Any cases that do not qualify for either PR or PD					
PD	An increase of at least 20% in the sum of the diameters of target lesions, taking as reference the smallest sum of the diameters of target lesions recorded since treatment started						
Non-target lesions							
Response category	RECIST	mRECIST					
CR	Disappearance of all non-target lesions	Disappearance of any intratumoral arterial enhancemer in all non-target lesions					
IR/SD	Persistence of one or more non-target lesions	Persistence of intratumoral arterial enhancement in one or more non-target lesions					
PD	Appearance of one or more new lesions and/or unequivocal progression of existing non-target lesions	Appearance of one or more new lesions and/or unequivocal progression of existing non-target lesions					
mRECIST recommen	ndations	207 300					
Pleural effusion and ascites	Cytopathologic confirmation of the neoplastic nature of ar required to declare PD.	ny effusion that appears or worsens during treatment is					
Porta hepatis lymph node	Lymph nodes detected at the porta hepatis can be considern.	dered malignant if the lymph node short axis is at least 2					
Portal vein thrombosis	Malignant portal vein thrombosis should be considered as a non-measurable lesion and thus included in the non-target lesion group.						
New lesion	A new lesion can be classified as HCC if its longest diameter is at least 1 cm and the enhancement pattern is typical for HCC. A lesion with atypical radiological pattern can be diagnosed as HCC by evidence of at least 1 cm interval growth.						

RECIST, Response Evaluation Criteria In Solid Tumors; mRECIST, modified Response Evaluation Criteria In Solid Tumors; CR, complete response; PR, partial response; IR, incomplete response; SD, stable disease; PD, progressive disease.

"Adapted from Llovet et al. [149] and Lencioni and Llovet [100].

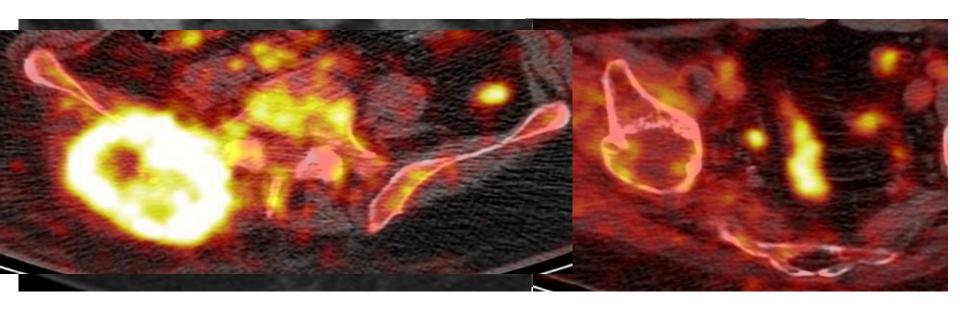
1 mo:


 Baseline MRI after treatment to allow post-ablation inflammation to subside (FAT-SAT+GD)


6-8 weeks:

 PET-CT scanning (requested by the oncologists) to evaluate systemic response, at which time evaluation of the ablated lesion can be performed

- At the discretion of the treating medical or surgical oncologist to assess for local tumor control
- When the patient complains of new or increasing pain at the site of ablation



- [18F]-fluoro-2-deoxy-D-glucose (FDG)
- Pre-procedural: ability to detect tumors that are occult on conventional anatomic cross-sectional imaging and to identify metabolically active portions of tumors
- Intra- procedural:
 - the fusion of PET images obtained at the beginning of the procedure with CT images obtained intermittently during the procedure
 - fusion of intraprocedural CT images with pre-ablation PET
 - direct use of PET images for needle guidance
- Post-ablation: evaluate treatment adequacy, local tumor recurrence, and progression of musculoskeletal metastatic disease

TAKE HOME MESSAGES......

Metastatic substrate

- esp. Prostate, Breast, Melanoma, RCC, NSCLC, Thyroid
- Ca prostate: biochemical response
- RCC: Increased survival
- Breast Ca: subtype dependent increased survival
- Sarcoma: increased survival

Lesion characteristics

- Size <2cm</p>
- No cortical erosion
- Ablation technique ± structural augmentation

TAKE HOME MESSAGES......

- Uncertainty whether local therapy improves survival outcome or rather represents a selected population with better prognosis
- Criteria for appropriate application of ablation to limited metastases are not well established
- Understand timing and role of local treatment in MDT approach
- Appropriate case selection, thoughtful technique, proper fu

Bone tumours: thermal ablation with or without consolidation

Dimitrios K Filippiadis MD, PhD, MSc, EBIR
Assistant Professor of Diagnostic and Interventional Radiology
2nd Department of Radiology, University General Hospital "ATTIKON"
Medical School, National and Kapodistrian University of Athens

NCCN Guidelines Version 1.2021 Adult Cancer Pain

NCCN Guidelines Index Table of Contents Discussion

INTERVENTIONAL STRATEGIES

Interventional consultation¹

- Major indications for referral:
- Pain likely to be relieved with nerve block (eg, pancreas/upper abdomen with celiac plexus block, lower abdomen with superior hypogastric plexus block, intercostal nerve)
- Failure to achieve adequate analgesia and/or the presence of intolerable adverse effects (may be handled with intraspinal agents, blocks, spinal cord

Current Oncology Reports

Nat

 $(2019)\ 21:105$

https://doi.org/10.1007/s11912-019-0844-9

PALLIATIVE MEDICINE (A JATOI, SECTION EDITOR)

The Role of Ablation in Cancer Pain Relief

Dimitrios K. Filippiadis 1 • Steven Yevich 2 • Frederic Deschamps 3 • Jack W. Jennings 4 • Sean Tutton 5 • Alexis Kelekis 1

(ie, peripheral neuropathy, neuralgias, complex regional pain syndrome)

- Percutaneous ablation techniques for bone lesions
 - Specific therapies for bone pain are outside the scope of this guideline. Other resources (eg, <u>Filippiadis</u> 2019) may be referred to for more information
- 1 Patient prognosis should be communicated to interventional pain colleagues as an important consideration when selecting interventional pain therapies.
- ² Infection, coagulopathy, very short life expectancy, distorted anatomy, patient unwillingness, medications that increase risk for bleeding (eg, anti-angiogenesis agents such as bevacizumab), or technical expertise is not available.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

72

ISSUES TO CONSIDER PRIOR TO ABLATION:

- CLINICAL
- Local vs Diffuse bone pain
- "Mechanic" vs "Inflammatory" pain
- Performance status

- TECHNICAL
- Review recent cross sectional imaging (x rays, CT, MRI, PET/CT)
- Lesion shape / location / lytic vs blastic
- Impeding pathologic fracture (Mirels score, Harrington criteria, SINS)
- Vascularity
- Close by sensitive structures

A.N. Walace et al. The Oncologist 2015;20:1205–1215 Ratasvuori M et al. Surg Oncol 2013;22:132-138

Radiofrequency (RFA)

Cryoablation (CWA)

Microwaves (MWA)

High Intensity Focused Ultrasound (HIFU)

- Pain palliation ± functional restoration
- Necrotize tumorperiosteum interface
- Tumor decompression
- Inflammation reduction
- Inhibition of osteoclast activity

Why to use:

Minimally invasive approach

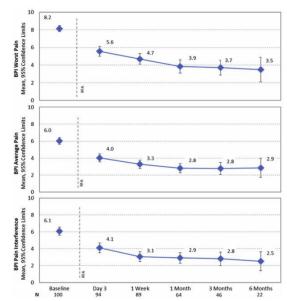
Well-tolerated
even in
patients with
comorbidities or
with extensive
disease

Overall
morbidity of
the procedure
is low impressive
and reliable
pain relief

May assist in liquefying the tumor and allowing for better fill of the cement

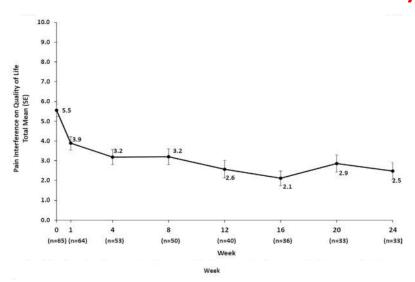
The Role of Ablation in Cancer Pain Relief

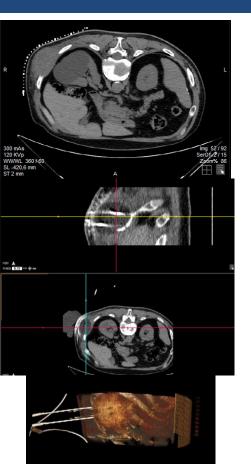
 Table 1
 Recent studies applying ablation modalities for pain reduction in metastatic bone disease


Author (year)	Number of patients (Lesions)	Location	Tumor Substrate	Ablation Modality Used	Pain Reduction Score (NVS units)	
Vaswani et al. (2018) [43]	41 (64)	Peripheral skeleton	Sarcoma	CWA or RFA	8 → 3	
Ma et al. (2018) [44]	45 (76)	Peripheral skeleton	NSCLC	CWA or RFA	$7.5 \rightarrow 3.7$	
Deib et al. (2019) [45]	65 (77)	Peripheral skeleton	Metastatic disease of various substrate	MWA	$6.32 \rightarrow 2.01$	
Pusceddu et al. (2016) [46]	35 (37)	Peripheral skeleton	Metastatic disease of various substrate	MWA	$6.8 \rightarrow 0.7$	
Coupal et al. (2017) [47]	48 (48)	Pelvis	Metastatic disease of various substrate	CWA	$7.9 \rightarrow 1.2$	
Gallucher et al. (2019) [48]	16 (18)	Peripheral skeleton	Metastatic disease of various substrate	CWA	$3.3 \rightarrow 1.2$	
Cazzato et al. (2018) [49]	11(11)	Spine	Metastatic disease of various substrate	Bipolar RFA	$7.8 \rightarrow 3.5$	

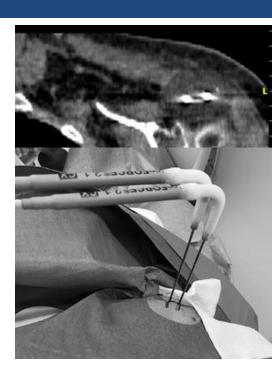
Radiofrequency Ablation for the Palliative Treatment of Bone Metastases:
Outcomes from the Multicenter OsteoCool Tumor Ablation Post-Market Study
(OPuS One Study) in 100 Patients

100 patients (87-13 spine-sacrum/illium), 14 centers 97% of ablations were followed by cementoplasty Variable neoplasmatic substrate Mean worst pain score decreased from 8.2 ± 1.7 at baseline to 3.5 ± 3.2 at 6 mo


Conclusions: Results from this study show rapid (within 3 d) and statistically significant pain improvement with sustained long-term relief through 6 mo in patients treated with RF ablation for metastatic bone disease.

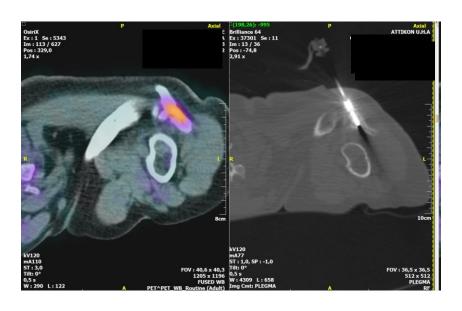


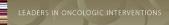
Cryoablation for Palliation of Painful Bone Metastases: The MOTION Multicenter Study


65 patients
Variable neoplasmatic substrate
Pain palliation – life quality improvement

Conclusions: Cryoablation of metastatic bone tumors provided rapid and durable pain palliation, improved quality of life, and offered an alternative to opioids for pain control.

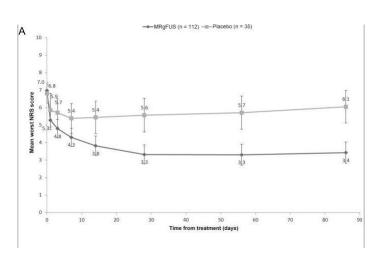
Percutaneous microwave ablation of bone tumors: a systematic review


Seven non-comparative studies
249 patients and 306 tumors
Meta – myeloma - OO
Variable ablation protocols
4.0% clinically significant complications


Study	Pain at 1 n	nonth			Pain at last recorded follow-up				
	Estimate	Standard Error	95% CI	Weight (%)	Estimate	Standard Error	95% CI	Weight (%)	
Deib et al AJR (2019)	4.3	0.2	3.9-4.7	21.2	4.3	0.2	3.9-4.7	20.6	
Pusceddu et al CVIR (2016)	6.1	0.3	5.5-6.6	20.4	6.6	0.2	6.1 - 7.1	20.3	
Wei et al Skel Radiol (2015)	5.9	0.4	5.2-6.6	19.2	6.2	0.3	5.6-6.8	19.8	
Khan et al AJNR (2018)	4.8	0.2	4.4-5.3	21.2	4.4	0.2	4.0-4.8	20.5	
Kastler et al JVIR (2014) 5.7		0.4	4.9-5.4	18.0	5.1	0.4	4.3-5.9	18.9	
Total (random effect)	5.3	0.4	4.6-6.1		5.3	0.5	4.3-6.3		

CI, confidence intervals

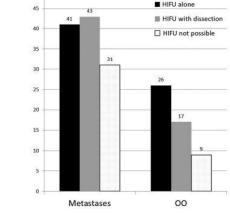
Conclusions: MWA is effective in achieving pain relief at short- (1 month) and mid-term (4-6 months) for painful OO and malignant bone tumors, respectively. Although MWA seems safe, further prospective studies are warranted to further assess this aspect, and to standardize MWA protocols.



Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results

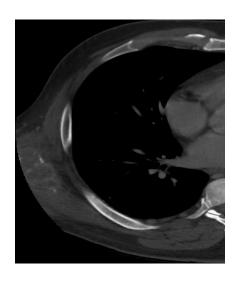
- 149 patients
- 112 (MR-guided HIFU)-35 (sham)
- Response rate for the primary endpoint:
 - 64.3% in the MRgFUS arm
 - 20.0% in the placebo arm (P < .001)

Conclusion: This multicenter phase III trial demonstrated that MRgFUS is a safe and effective, noninvasive treatment for alleviating pain resulting from bone metastases in patients that have failed standard treatments.

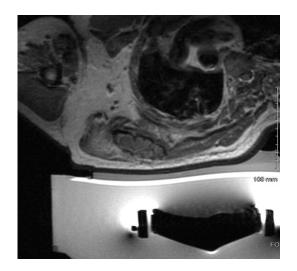

Hurwitz et J Natl Cancer Inst . 2014;106(5):dju082.

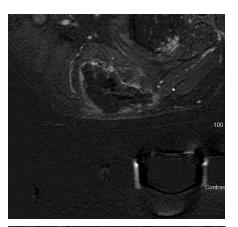
Targetability of osteoid osteomas and bone metastases by MR-guided high intensity focused ultrasound (MRgHIFU)

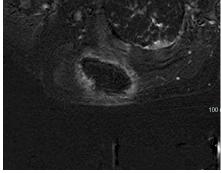
- 115 metastatic lesions (43 pelvis)
 - HIFU may be performed alone
 - HIFU may be performed using protection of surrounding structures or bone consolidation
 - HIFU is not feasible


Conclusion: MRgHIFU cannot be systematically performed non-invasively on bone tumors.

Combination with minimally-invasive thermo-protective techniques may increase the number of eligible cases.

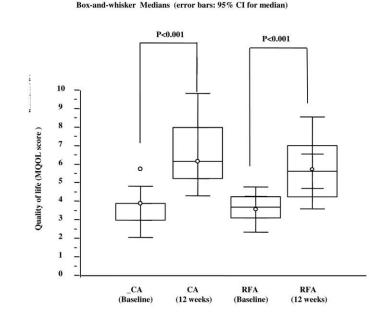

Bing et IJH 2018; 35(1):471-479




Recurrent disease in 2016

MRgFUS Planning

Randomized Ablation Trials


Treatment of osteolytic solitary painful osseous metastases with radiofrequency ablation or cryoablation: A retrospective study by propensity analysis

50 patients (25/25 : RFA/CWA)

CA only significantly improves the rate of CR CA only decreases the requirement of narcotic

medications

A significant improvement in self-rated QoL was observed in both groups

Percutaneous image-guided thermal ablation of bone metastases: a retrospective propensity study comparing the safety profile of radiofrequency ablation and cryoablation

274 patients (53/221 : RFA/CWA) similar rates of major complications with RFA and CA higher rates of minor complications with RFA due to preponderant post-procedural pain

	Bone tumor					
Type of intervention	location	Management				
Systemic multi- modal analgesia	All tumors	 Non-opioid drugs (paracetamol, NSAID, nefopam) Opioids: 				
		Tramadol for moderate painMorphine for severe pain				
Central nerve block	From T10 to the feet	– Epidural injection of 5–10 ml Naropin 2%				
Peripheral nerve block	Limbs	– Local injection 10–20 ml Naropin 2–7.5%				

Conclusions: Similar low rates of major complications are expected with RFA and CA of BM. In the post-operative period, RFA appears more painful than CA, thus warranting for adoption of dedicated analgesic protocols for patients undergoing RFA.

De Marini et al Int J Hyperthermia . 2020;37(1):1386-1394.

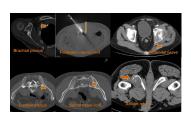
Complications Following Percutaneous Imageguided Radiofrequency Ablation of Bone Tumors: A 10-year Dual-Center Experience

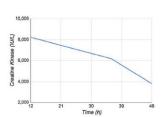
Complications of Percutaneous Bone Tumor Cryoablation: A 10-year Experience

- 169 patients (48.8% pelvis)
- major complication rate was 2.3%
- most frequent event: secondary fracture
- immediate postoperative pain 18%

Risk factors for complications are tumor size greater than 3 cm and previous radiation therapy

- 239 patients 320 lesions
- major complication rate was 2.5%
 - secondary fracture 1.2%


Major complications are associated with age >70 years and use of more than three cryoprobes



Avoiding Complications:

- Neural injury
- Applicator placement damage
- Fracture risk
- Inadvertent osteochondral injury
- Large tumor treatment and tumor lysis

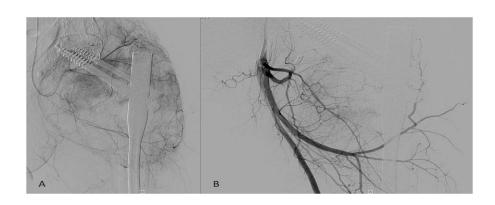
Passive thermal protection

- Thermocouples
- Intra-operative neurological monitoring systems

(neurodiagnostic EEG, EMG and evoked potential electrodes

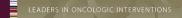
and accessories, electrostimulation of peripheral nerves)

Active thermal protection - insulation

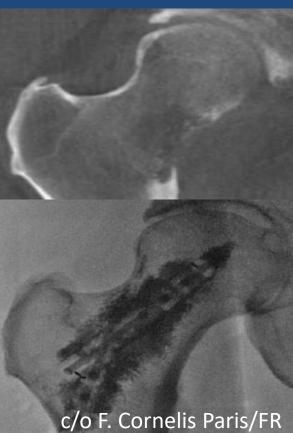

- CO₂ air
- Hydrodissection
- Skin warming/cooling Tsoumakidou et al CVIR 2013
 Filippiadis et al Insights Imaging 201
 Kurup et al CVIR 2017



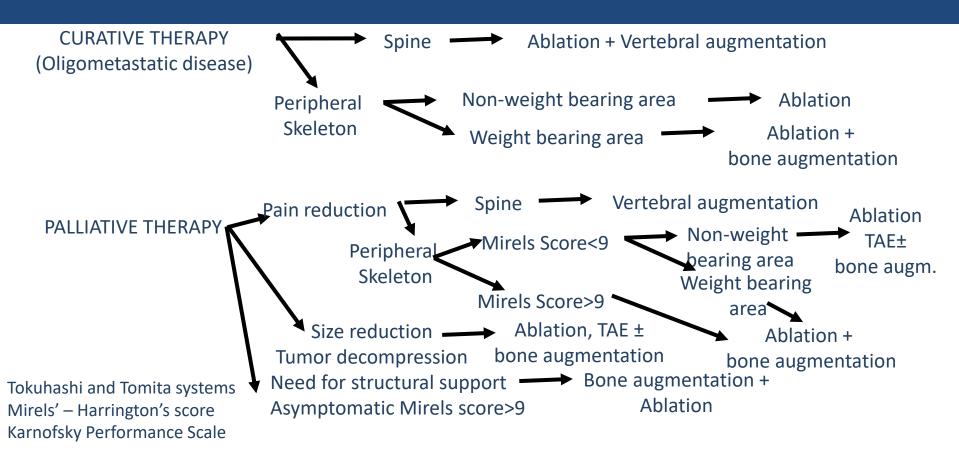
Ablation + surgery
Ablation + RTH
Ablation + TAE
Ablation + Osseous augmentation
Ablation + Cementoplasty + embolization

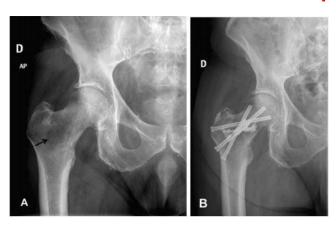



- Clinical presentation
 (no symptoms vs mechanic pain)
- Localization, size, type of the lesion
- Associated destruction of bony cortex
 - Previous local therapies
 - Presence of pathological fracture



References	Authors	Main indication for PC	No of patients	No of lesions in the pelvic bone	No of lesions in the long bones	No of lesions in other locations	Additional treatment combined with PC	Needle diameter G)	Mean volume of injected cement (mL)	Maximal volume of cement (mL)
7]	Couraud et al.	Pain palliation	31	47	3	1	Balloon kyphoplasty — number not reported	11	N.R	N.R
17]	Fares et al.	Pain palliation	30	20	10	1	RFA — 30 lesions	11 or 13	2.7	N.R
18]	Tian et al.	Pain palliation	38	46	8	1000	RFA - 54 lesions	11 or 13	6.6	28
19]	Sun et al.	Pain palliation	51	53	8			11 or 13	N.R	N.R
6]	lannessi et al.	Pain palliation	20	13	7		72	11	4.3	10
20]	Masala et al.	Pain palliation	39	17	22	1990	7 	13	3	4
21]	Basile et al.	Pain palliation	13	6	6	1	-	11 or 13	3.5 (pelvic PC)	12 (pelvic PC)
22]	Anselmetti et al.	Pain palliation	50	26	26	6	RFA - 7 lesions	10	5.9	15
231	Hierholzer et al.	Pain palliation	5	4	1	1	_	N.R	17.8	36
10]	Kim et al.	Pain palliation	15	_	20		Insertion of flexible nails — 20 lesions	10	15.5	31
24]	Cotten et al.	Pain palliation	11	12	_	1000		10	15	23
25]	Durfee et al.	Pain palliation	11	11	_	-	Balloon kyphoplasty — 3 lesions	N.R	N.R	N.R
261	Maccauro et al.	Pain palliation	25	30	-			10	N.R	N.R
271	Cazzato et al.	Pain palliation	51		66		_	11 or 13	N.R	N.R
281	Munk et al.	Pain palliation	12	13	1	_	RFA — 14 lesions	3, 11 or 13	8	16
29]	Weill et al.	Pain palliation	18	18		1000	_	10	7.8	14
11]	Kim et al.	Pain palliation	43		43	-	Intramedullary nailing — 43 lesions	11	19.1	37
30]	Kelekis et al.	Pain palliation	12	_	12	-	Insertion of micromeshs — 12 lesions	3	N.R	N.R
31]	Deschamps et al.	Fracture prevention	12	_	13	:::	Screw fixation — 13 lesions	11	N.R	N.R
32]	Hoffmann et al.	Pain palliation	8	6	3		RFA - 9 lesions	10 or 15	8	10
8]	Moser et al.	Pain palliation	40	44	_	_	_	11 or 13	10.3	27
33]	Kelekis et al.	Pain palliation	14	23		3200	<u> </u>	11	8	15
34]	Wallace et al.	Pain palliation	12	12	_	122	Bipolar RFA — 12 lesions	N.R	12	30
14]	Kurup et al.	Fracture prevention	7	7	-		Cryoablation and balloon kyphoplasty — 7 lesions	10	14	21
35]	He et al.	Fracture prevention	6		6	1 	Insertion of broken pins — 6 lesions	11 or 13	32.2	42
361	Toyota et al.	Pain palliation	12	12	3	2	RFA — 17 lesions	3 to 13	7	15
37]	Wei et al.	Pain palliation	26	29	4		MWA - 33 lesions	13	8	14
381	Marcy et al.	Pain palliation	18	18		122		N.R	6	9
9]	Colman et al.	Pain palliation	11	11	2.4442		RFA — 3 lesions	N.R	N.R	N.R
391	Gupta et al.	Pain palliation	11	11	_	_	_	11 or 13	N.R	N.R




PELVIC BONE ABLATION

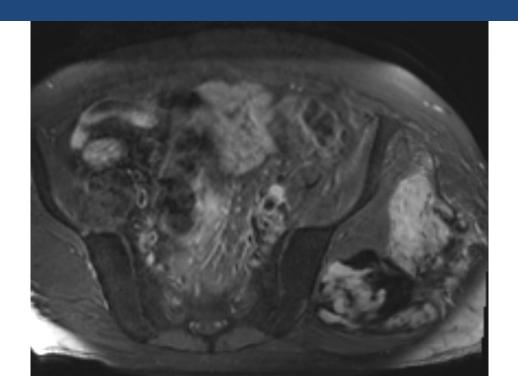
Tumoral dissemination along the screw trajectory in percutaneous osteosynthesis and cementoplasty: a non-described complication

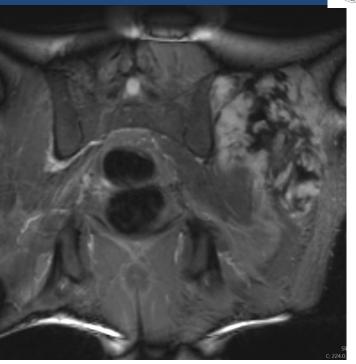
Conclusions: Although we present no direct supportive evidence, the development of a coaxial system and possibly a percutaneous ablation strategy associated with POC should be considered, especially in patients with longer life expectancy.

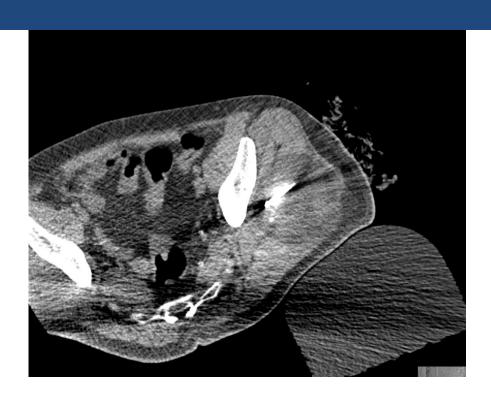
TAKE HOME.....

- BONE ABLATION CONCERNS
- Access to the lesion
- Extent of ablation zone
- Protection of surrounding sensitive structures (nerves, joints, skin etc)
- Large sized tumors (technically challenging myoglobinuria)
- Combo treatments (osseous augmentation, TAE)

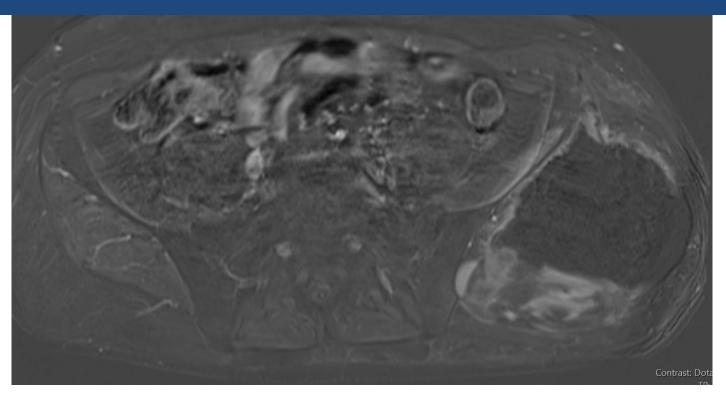
TAKE HOME.....


- BONE ABLATION
- Feasible, safe and efficacious technique aiming for pain palliation ± functional restoration
- Included in the NCCN Guidelines for Adult Cancer Pain


- Multiple ablation techniques available
- Optimize selection: patient (lesion) tailored approach to maximize efficacy

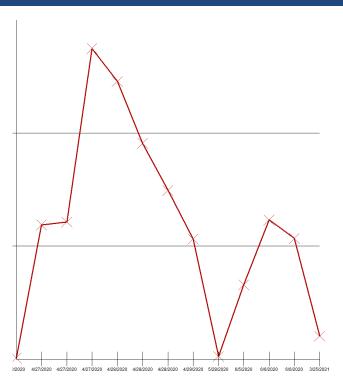


48 yom with painful left gluteal desmoid tumor

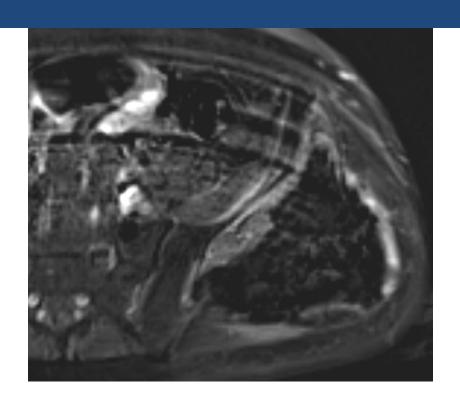


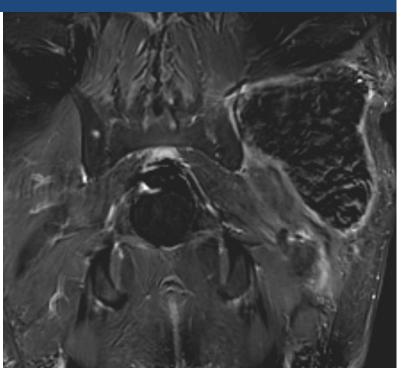
First ablation (12 probes)

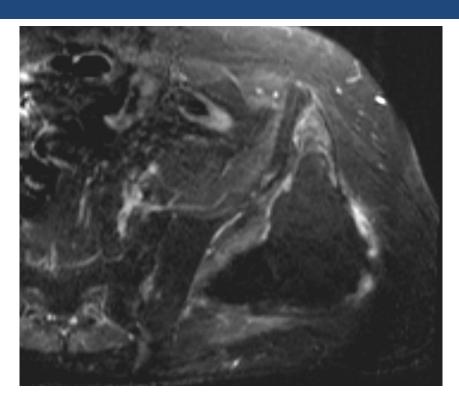
First ablation Post MRI (T1FS subtraction images)



Second ablation (10 probes)




CK elevation with rhabdomyolysis (planned admission for IV fluids and Cr and CK monitoring)



Post Second ablation 4 mos

Post Second ablation 10 mos

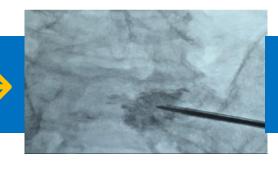
MUSCULOSKELETAL AND SPINE (MSK) MASTERCLASS Cementoplasty with or without ablation

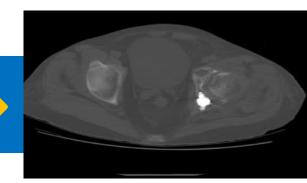
Dimitrios K Filippiadis MD, PhD, MSc, EBIR
Assistant Professor of Diagnostic and Interventional Radiology
2nd Radiology Dpt, University General Hospital "ATTIKON"
Medical School, National and Kapodistrian University of Athens

CANCER PAIN

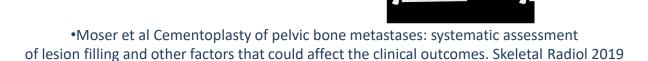
Lytic metastases cause MSK pain by:

- undermining osseous stability and the integrity of muscle and tendon insertions
- causing increased intraosseous pressure and exerting periosteal stretching
- compressing adjacent nerves and muscles
- inciting cytokine mediated inflammation




A WALK TO THE PAST

$VP \rightarrow SP \rightarrow CP$



Injecting cement through a trocar, into a weakened bone, to achieve consolidation and pain management

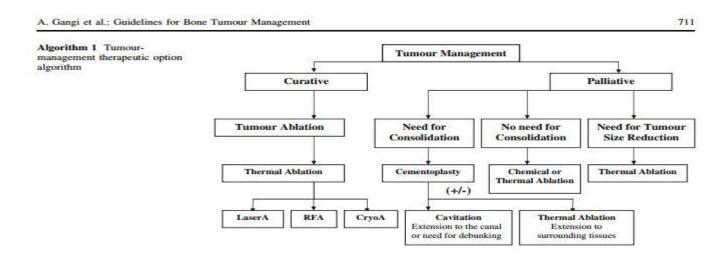
Cementoplasty is performed to treat pain by reducing the activity of

pain-sensitive periosteal nerves by means of internal trabecular

stabilization

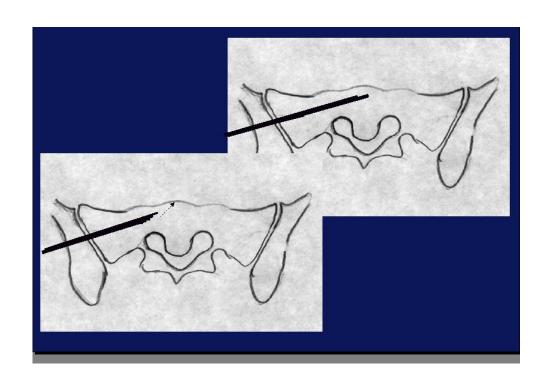
• Deib et al Percutaneous Microwave Ablation and Cementoplasty: Clinical Utility in the Treatment of Painful Extraspinal Osseous Metastatic Disease and Myeloma AJR 2019

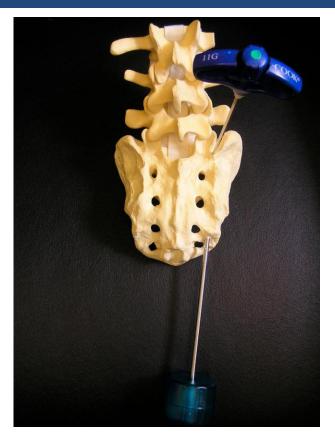
INDICATIONS:


- Painful osteolytic metastasis
- Myeloma lesions
- Symptomatic
 osteoblastic metastases
 (if bone is not too dense
 or if fissures are present)

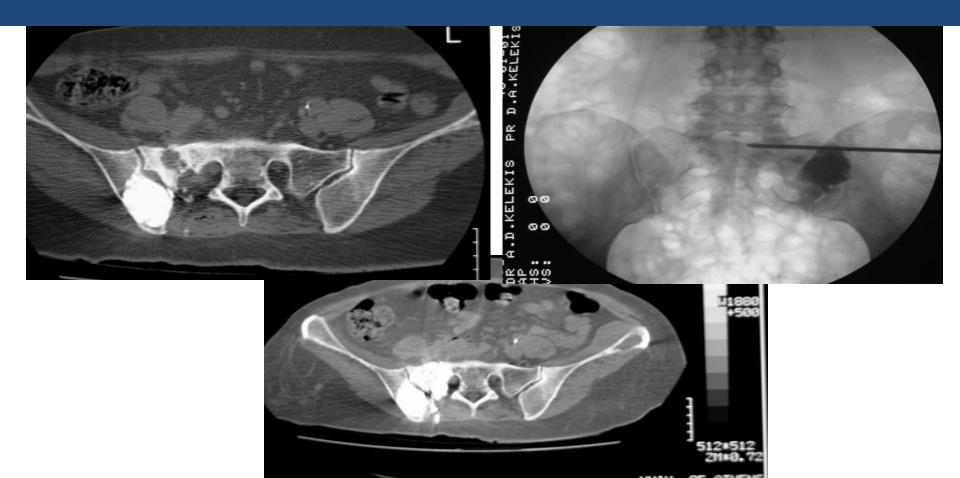
• PRINCIPLES:

- Structural support
- PMMA polymerization produces an exothermic reaction with transient peak of temperature reaching 80°C

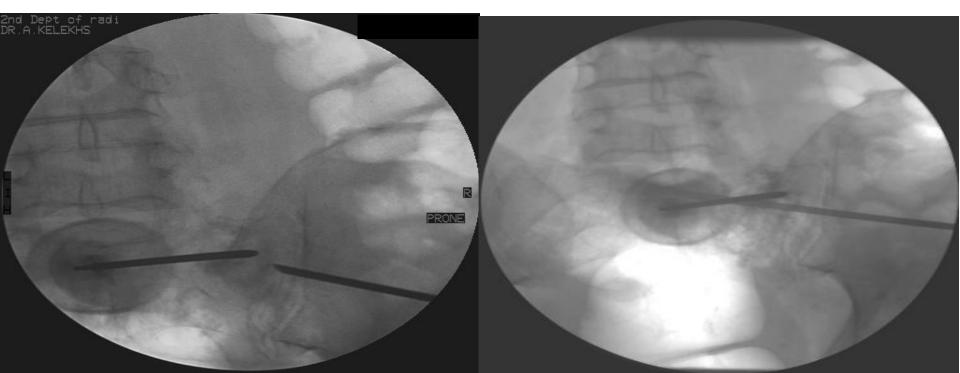


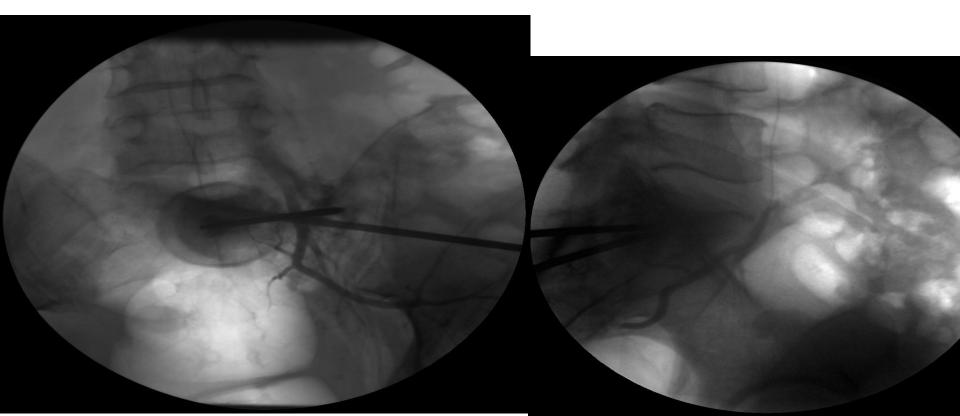


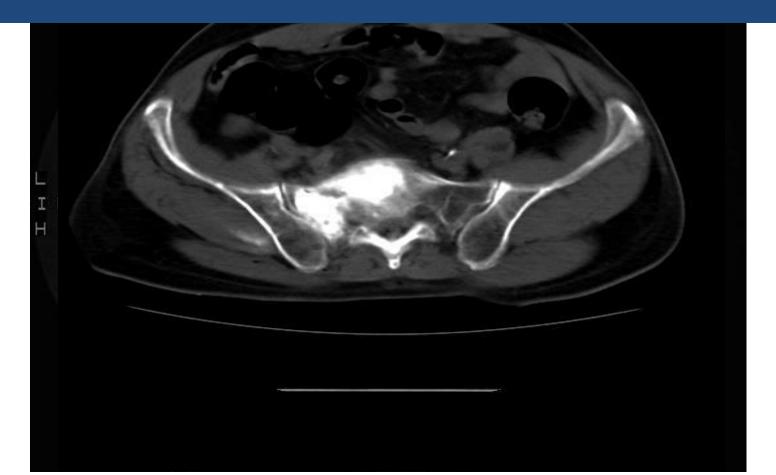
Precision of the treatment goal: curative or palliative Fracture risk
Neurological compression

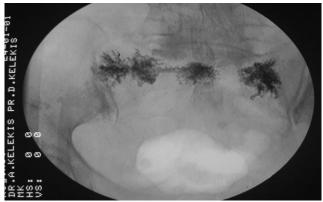


Kortman et al Journal of NeuroInterventional Surgery 2013

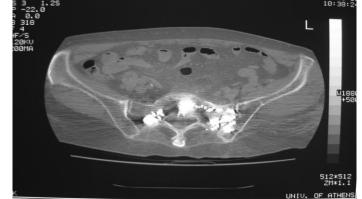


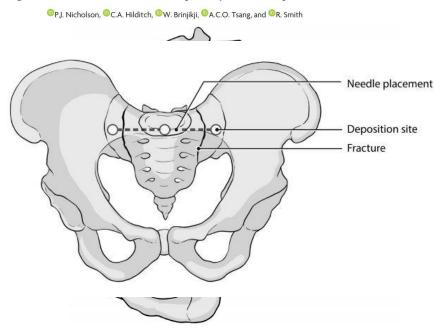








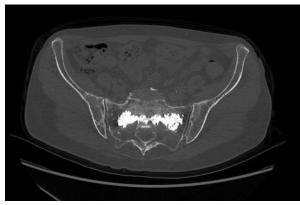




Published November 15, 2018 as 10.3174/ajnr.A5884

Single-Needle Lateral Sacroplasty Technique

Published November 15, 2018 as 10.3174/ajnr.A5884



Single-Needle Lateral Sacroplasty Technique

Cazzato et al Interventional Radiologist's perspective on the management of bone metastatic disease. EJSO 41 (2015) 967e974

Table 1

Mirels' score. Adapted from Mirels' et al.14

	Score 1	Score 2	Score 3	
Site	Upper limb	Lower limb	Peritrochanteric	
Pain	Mild (<4 on a 0-10 PS)	Moderate (≥4 on a 0-10 PS)	Functionalimpairment	
Lesion radiological aspect	Blastic	Mixed	Lytic	
Cortical bone involvement ^a	<1/3	1/3-2/3	>2/3	

Score ≤ 7 : <5% risk of fracture.

Ocore o. 15 % How Hactare.

Score ≥9: High risk of fracture; stabilization should be considered.

" Cortical involvement could be evaluated on axial cross-sectional imaging by assessing the progressive cortical bone erosion from the medullary space to the external cortical border.

1312 ■ Cementoplasty of Metastases of the Proximal Femur

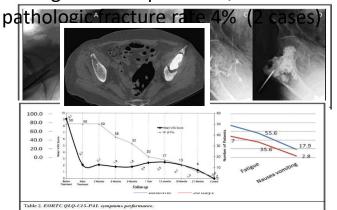
Deschamps et al ■ JVIR

Table 1. Mirels Scoring System (13)					
Mirels Score	1	2	3		
Pain (visual analog scale)	≤ 4	5–7	≥ 8		
Type of lesion	Blastic	Mixed	Lytic		
Lesion size	< one third of cortex	One third to two thirds of cortex	> two thirds of cortex		
Lesion site	Upper limb	Lower limb	Trochanteric region		

Standard cementoplasty: Injection of PMMA in peripheral bones

Pain Physician 2014; 17:227-234 • ISSN 1533-3159

Cardiovasc Intervent Radiol (2008) 31:1165–1173


CLINICAL INVESTIGATION

DOI 10.1007/s00270-008-9396-3

Treatment of Extraspinal Painful Bone Metastases with Percutaneous Cementoplasty: A Prospective Study of 50 Patients

Giovanni Carlo Anselmetti · Antonio Manca · Cinzia Ortega · Giovanni Grignani · Felicino DeBernardi · Daniele Regge

50 VAS, - Warelofskyrecalle improved Average Gollow C165 89. Altien proved

21 Pts, Misel Psconditels score >9 median followed powel pd3 (980–1.826 d)

1-vear nathologic fracture as 40 6%

Parameters	Preoperative	Postoperative			
		3 days	1 month	3 months	
Mean ± SD	8.19±1.1	4.94±1.6	3.41±2.1	3.02±1.9	
P value (versus preoperative)		< 0.001	< 0.001	< 0.001	

[18] Deschamps
[17] Deschamps

[11] Cazzato

[20] Kim

[25] Sun

Sanchez

Diagn Interv

CEMENTOPLASTY

Standard cementoplasty: Injection of PMMA in peripheral bones

Deschamps [17]

21/21 (100 %)

WOMMUO 12

4-Point

Scale

4-point Scale

20 VAS

	Pain		Function				
	27%			22%	□ No improvement ■ Mild / any improvement		
6	8%		72%		■ High imp	rovement	
Author	Patients	SF	Bone	Lesion location	Mirels' score	Delay	Surgery
Anselmetti [14]	21/50 (42.0 %)	2	Femur (2)	D (2)	N/A	30	2/2
Toyota [26]	3/17 (17.6 %)	1	Femur (1)	D (1)	N/A	2	1/1
Cazzato [11]	51/51 (100 %)	6	Femur (3)	E	9	97.5	4/6
				E-M-D			
				M			

E-M

E-M

M-D

E (7)

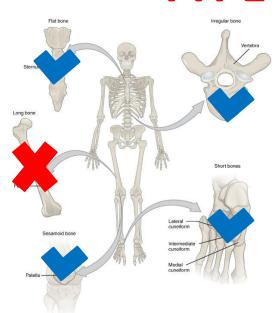
11.4

49

7/7

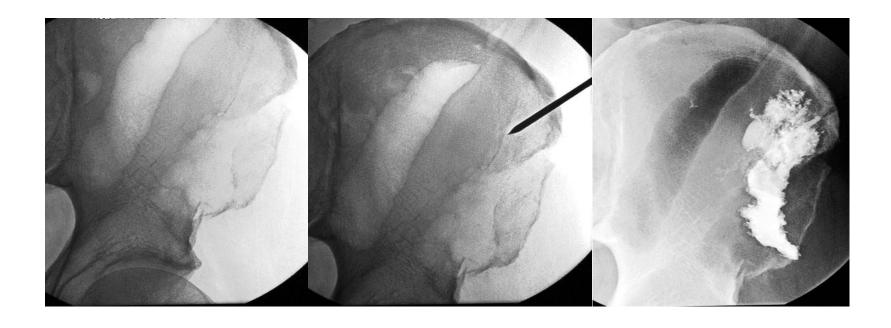
Humerus (3)

Femur (7)


Eupation

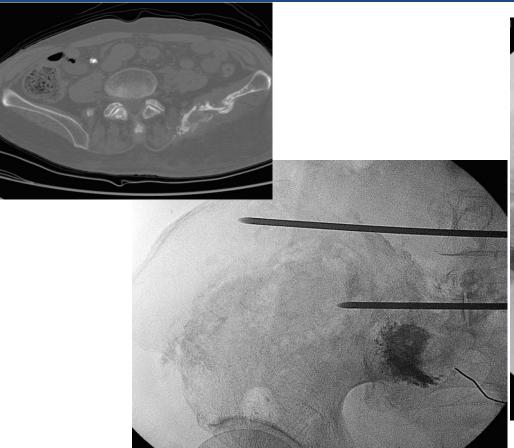
Standard cementoplasty: Injection of PMMA in peripheral bones

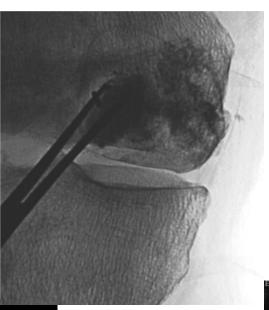
TYPE OF BONE MATTERS

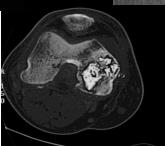


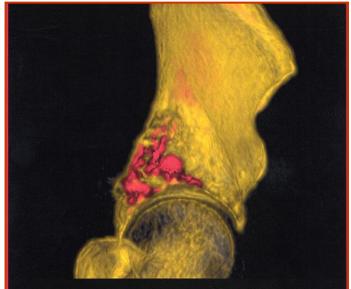
Flat bones such as acetabular roof, femoral condyles, tibial endplates, or talus can be treated effectively with percutaneous cementoplasty

Cementoplasty of **long bone diaphysis** should be considered only in selected nonsurgical patients

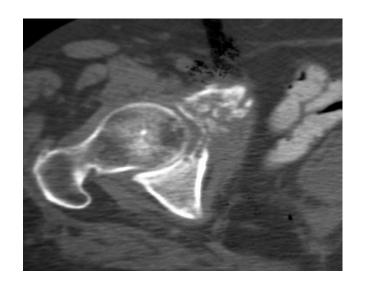


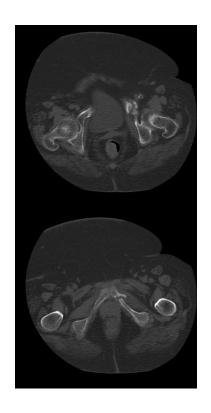


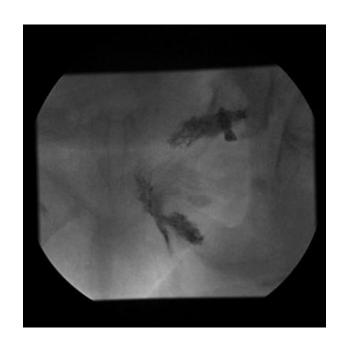


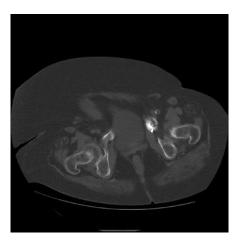


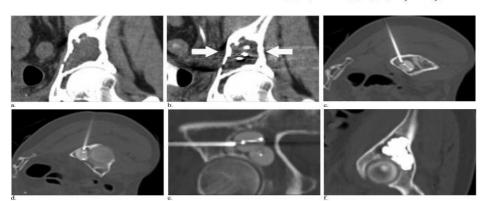
Standard cementoplasty: Injection of PMMA in peripheral bones


LOCATION MATTERS



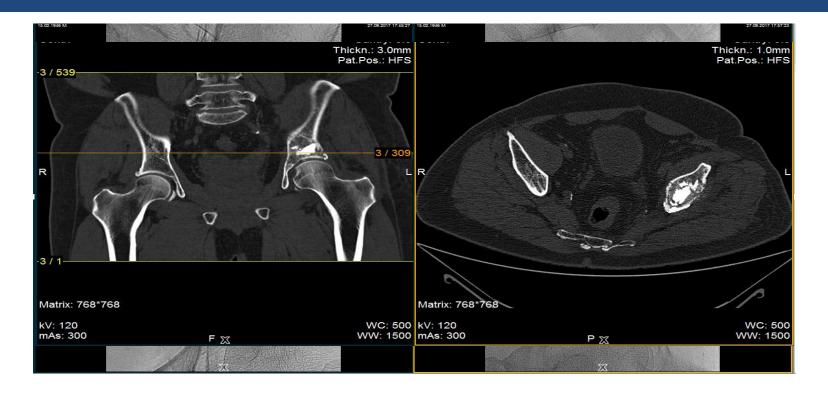




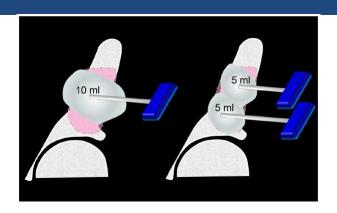


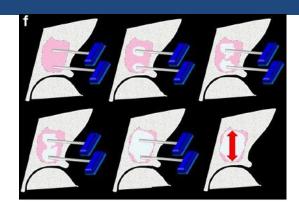
Standard cementoplasty: Injection of PMMA in peripheral bones

TECHNIQUE MATTERS


Balloon-Assisted Osteoplasty of Periacetabular Tumors following Percutaneous Cryoablation

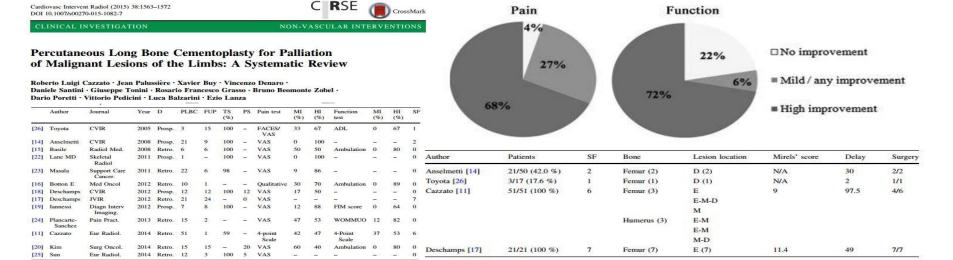
A. Nicholas Kurup, MD, Jonathan M. Morris, MD, Grant D. Schmit, MD, Thomas D. Atwell, MD, John J. Schmitz, MD, Peter S. Rose, MD, and Matthew R. Callstrom, MD, PhD





Sequential injection through several needles does not always allow the coalescence of cement streams

Avoiding leakage from the track of the first needle Simultaneous injection produces a more compact and solid block of


cement and reduces radiation exposure

Moser et al Cementoplasty of pelvic bone metastases: systematic assessment of lesion filling and other factors that could affect the clinical outcomes. Skeletal Radiol 2019

- Standard cementoplasty: Injection of PMMA in peripheral bones
- Augmented Cementoplasty: PMMA + instrumentation for bone support/augmentation (closed fixation)

Cardiovasc Intervent Radiol (2012) 35:1428-1432 DOI 10.1007/s00270-011-0330-8

CLINICAL INVESTIGATION

NON-VASCULAR INTERVENTIONS

Percutaneous Stabilization of Impending Pathological Fracture of the Proximal Femur

Frederic Deschamps · Geoffrov Farouil · Antoine Hakime · Christophe Teriitehau · Ali Barah · Thierry de Baere

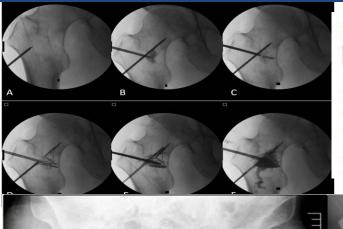
Anselmetti GC, Manca A, Chiara G et al. Painful pathologic fracture of the humerus: percutaneous osteoplasty with bone marrow nails under hybrid computed tomography and fluoroscopic guidance. J Vasc Interv Radiol. 2011 Jul;22(7):1031-1034.

Cardiovasc Intervent Radiol DOI 10.1007/s00270-016-1333-2 TECHNICAL NOTE

C RSE

Percutaneous CT and Fluoroscopy-Guided Screw Fixation of Pathological Fractures in the Shoulder Girdle: Technical Report of 3 Cases

Julien Garnon¹ · Guillaume Koch¹ · Nitin Ramamurthy² · Jean Caudrelier¹ · Pramod Rao³ · Georgia Tsoumakidou¹ · Roberto Luigi Cazzato¹ · Afshin Gangi¹


Anselmetti GC Semin Intervent Radiol 2010 Chang et al J Vasc Interv Radiol 2005 Deschamps et al I J Vasc Interv Radiol 2012 Tsoumakidou et al CVIR 2014

Garnon et al CVIR 2015 Anselmetti et al JVIR 2011 Deschamps et al CVIR 2012 Abdel-Aal et al CVIR 2012

2011

Cardiovasc Intervent Radiol DOI 10.1007/s00270-015-1138-8 C RSE

CLINICAL INVESTIGATION

Percutaneous Augmented Peripheral Osteoplasty in Long Bones of Oncologic Patients for Pain Reduction and Prevention of Impeding Pathologic Fracture: The Rebar Concept

A. Kelekis¹ · D. Filippiadis¹ · G. Anselmetti² · E. Brountzos¹ · A. Mavrogenis³ ·

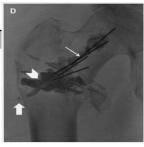
P. Papagelopoulos3 · N. Kelekis1 · J.-B. Martin4

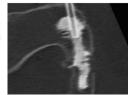
Kelekis et al Percutaneous Augmented Peripheral Osteoplasty in Long Bones of Oncologic Patients for Pain Reduction and Prevention of Impeding Pathologic Fracture: The Rebar Concept. Cardiovasc Intervent Radiol. 2016 Jan;39(1):90-6

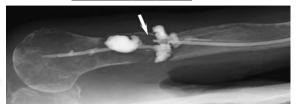
Cardiovasc Intervent Radiol (2012) 35:1211-1215 DOI 10.1007/s00270-012-0401-5

TECHNICAL NOTE

Use of Cryoablation and Osteoplasty Reinforced with Kirschner Wires in the Treatment of Femoral Metastasis

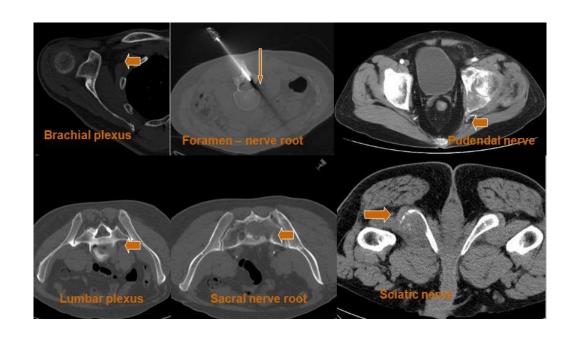

Ahmed Kamel Abdel-Aal · Edgar S. Underwood · Souheil Saddekni

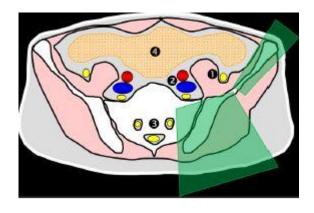

Percutaneous Repair of a Nonunion Pubic Ramus Fracture Using a Metallic Stent Scaffold and Cement Osteoplasty


John W. Kamysz, MD

Percutaneous Osteoplasty with Use of a Cement-filled Catheter for a Pathologic Fracture of the Humerus

Nobuyuki Kawai, MD, Morio Sato, MD, Takuya Iwamoto, MD, Hirohiko Tanihata, MD, Hiroki Minamiguti, MD, and Kouhei Nakata, MD





COMPLICATIONS

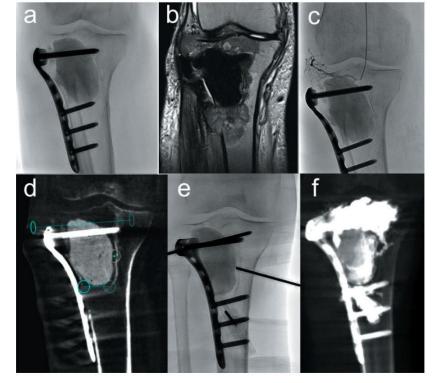
COMPLICATIONS

 Needle access complications (direct traumatic injury to artery, nerve, or muscular tendon)

 Periosteal cement extrusion – cement leakage (Symptoms tend to result from direct compression on adjacent nerves or muscle)

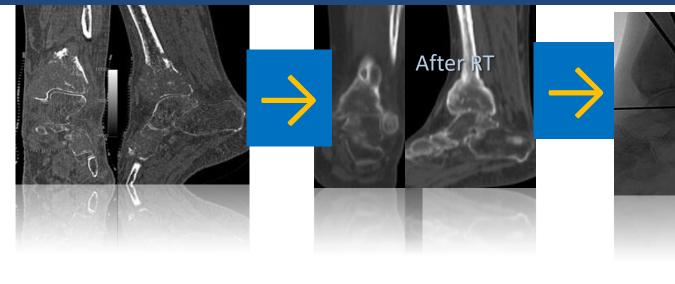
• Cardiopulmonary complications (cement emboli, fat embolism, transient hypotension or bradycardia)

CEMENTO- COMBO


Cementoplasty + surgery
Cementoplasty + RTH
Cementoplasty + ablation
Cementoplasty + embolization
Cementoplasty + embolization + ablation

CEMENTOPLASTY+ SURGERY

- Cementoplasty can be performed after prior fixation, if surgical material becomes loose
- The aim is to preserve the osteosynthesis and thus to avoid major salvage surgery associated with high morbidity



Buy et al Semin Intervent Radiol 2018

CEMENTOPLASTY +RTH

Breast metastases and high grade pain undermanaged by opiate analgesic therapy.

c/o G. Anselmetti Turin/IT

Electromagnetic - Thermal

- Radiofrequencies (RFA)
- Microwaves (MWA)
- Laser (LITT)

Thermal

• Cryoablation (CWA)

Pain relief

Electromagnetic - Biological

• Irreversible Electroporation (IRE)

Mechanical - Thermal

 High Intensity Focused Ultrasound (HIFU) Cavity creation within the tumor which promotes cement distribution

Local tumor control

Combination radiofrequency ablation and percutaneous osteoplasty for palliative treatment of painful extraspinal bone metastasis: a single-center experience.

Tian QH, Wu CG, Gu YF, He CJ, Li MH, Cheng YD.

J Vasc Interv Radiol. 2014 Jul;25(7):1094-100. doi: 10.1016/j.jvir.2014.03.018. Epub 2014 May 5.

PMID: 24801500 Similar articles

Retrograde Transpubic Approach for Percutaneous Radiofrequency Ablation and Cementoplasty

of Acetabular Metastasis

Bauones S, Freire V, Moser TP.

Case Rep Radiol. 2015;2015;146963. doi: 10.1155/2015/146963. Epub 2015 Sep 29.

PMID: 26491595 Free PMC Article

Similar articles

Combination acetabular radiofrequency ablation and cementoplasty using a navigational

radiofrequency ablation device and ultrahigh viscosity cement; technical note.

Wallace AN, Huang AJ, Vaswani D, Chang RO, Jennings JW.

Skeletal Radiol. 2016 Mar;45(3):401-5. doi: 10.1007/s00256-015-2263-9. Epub 2015 Sep 26.

PMID: 26408315 Similar articles

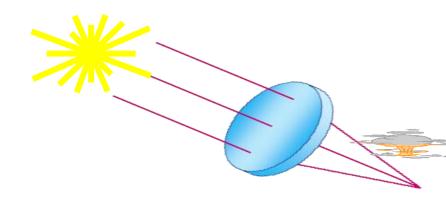
Combined Microwave Ablation and Cementoplasty in Patients with Painful Bone Metastases at

High Risk of Fracture. Pusceddu C. Sotgia B. Fele RM. Ballicu N. Melis L.

Cardiovasc Intervent Radiol. 2016 Jan;39(1):74-80. doi: 10.1007/s00270-015-1151-y. Epub 2015 Jun 13.

PMID: 26071108

Similar articles


Balloon-assisted osteoplasty of periacetabular tumors following percutaneous cryoablation.

Kurup AN, Morris JM, Schmit GD, Atwell TD, Schmitz JJ, Rose PS, Callstrom MR.

J Vasc Interv Radiol. 2015 Apr;26(4):588-94. doi: 10.1016/j.jvir.2014.11.023.

PMID: 25805541

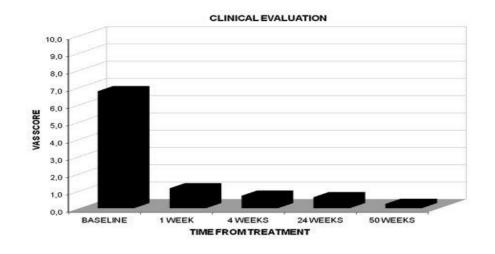
Similar articles

CT fluoroscopy-guided percutaneous osteoplasty with or without radiofrequency ablation in the treatment of painful extraspinal and spinal bone metastases: technical outcome and complications in 29

patients

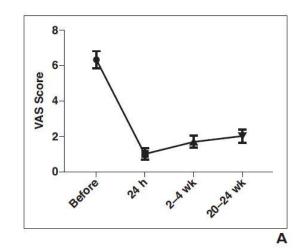
29 patients, 40 lesions

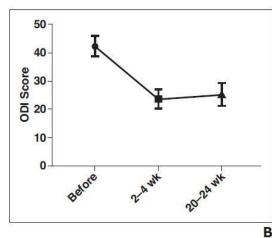
Cementoplasty ± RFA


	n (%)	n of affected patients
Localization of osteolysis		
Acetabulum	10 (25)	8
Iliac bone	4 (10)	4
Thoracic spine	6 (15)	4
Lumbar spine	5 (12.5)	5
Sacral spine	8 (20)	7
Femur	3 (7.5)	3
Tibia	1 (2.5)	1
Sternum	2 (5)	1
Glenoid	1 (2.5)	1
Total	40 (100)	
Diameter of osteolysis (cm), mean±SD (range)	4.0±1.2 (1.9-6.9)	
Osteolyses abutting risk structures		
Neuroforamen	7 (22.5)	6
Spinal canal	5 (16.1)	5
Joint	11 (35.6)	10
Other soft tissues	8 (25.8)	6
Total	31 (100)	

Combined Microwave Ablation and Cementoplasty in Patients with Painful Bone Metastases at High Risk of Fracture

- 35 patients, 37 lesions
- MWA + cementoplasty
- 90% pain relief at 6 mo





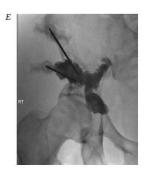
Percutaneous Microwave Ablation and Cementoplasty: Clinical Utility in the Treatment of Painful Extraspinal Osseous Metastatic Disease and Myeloma

- 65 patients, 77 lesions
- MWA + cementoplasty
- 64.6% LTC @ 24 wk

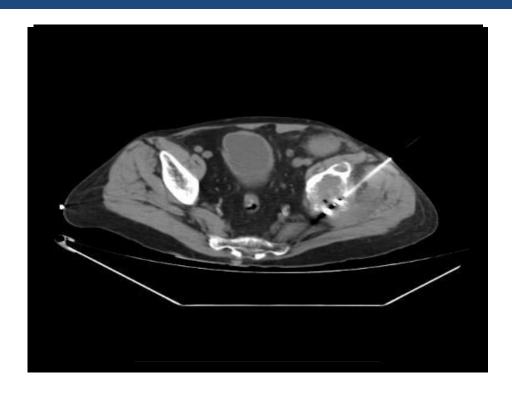
Conclusion: MWA is efficacious in alleviating pain due to osseous metastases with promise

for locoregional tumor control esp in oligometastatic disease Deib et AJR 2019




The Hopeless Case? Palliative Cryoablation and Cementoplasty Procedures for Palliation of Large Pelvic Bone Metastases

- 48 patients, >5cm diameter
- CWA + cementoplasty
- $7.9 \rightarrow 1.2$ NVS units



FUTURE DIRECTIONS

Composite cements or biocompatible calcium-phosphate cements show no benefit in oncology due to lower stability over time with less mechanical resistance

Several studies report research projects using loaded cements as therapeutic vectors (Methotrexate, cisplatin, zoledronate)

PMMA with radionuclide to reinforce focal antitumoral effect

FUTURE DIRECTIONS

Acta Biomaterialia

PMMA-based bone cements containing magnetite particles for the hyperthermia

National and Kapodistrian University of Athens

of cancer

M. Kawashita ', K. Kawamura, Z. Li solver for the state of the sta

Polymethylmethacrylate-antiblastic drug compounds: an in vitro study assessing the cytotoxic effect in cancer cell lines--a new method for local chemotherapy of bone metastasis. Greco F et al. Orthopedics. 1992 Feb; 15(2):189-94

Acrylic cement added with antiblastics in the treatment of bone metastases

ULTRASTRUCTURAL AND IN VITRO ANALYSIS

M. A. Rosa, G. Maccauro, A. Sgambato, R. Ardito, G. Falcone, V. De Santis

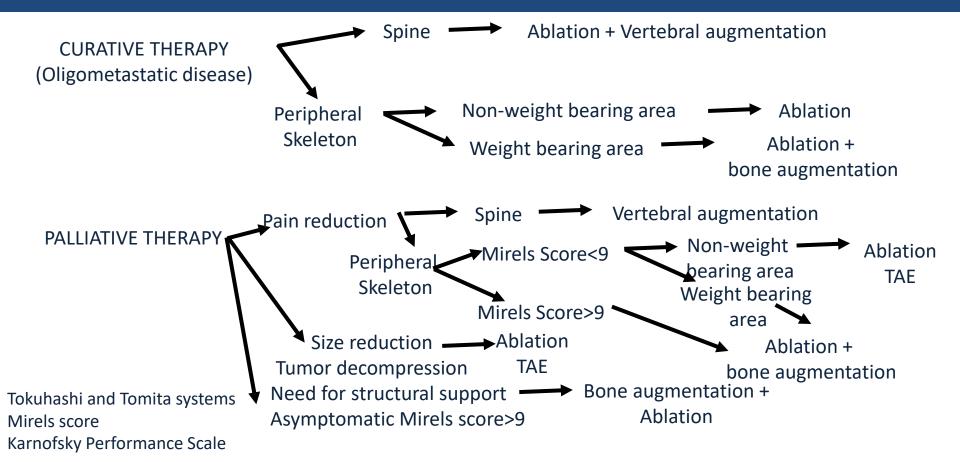
From the Cutholic University, Rome, Halv

Cytotoxic effect of drugs eluted from polymethylmethacrylate on stromal giant-cell tumour cells

AN IN VITRO STUDY

Dpto, Química Inorgânica y Bioinorgânica, Fiad. de Farmacia, UCM, Ptza. Ramôn y Cajal, s/n. 28040 Madrid, Spain

Bone Cement with radioisotopes



D. Arcos, R. P. del Real, M. Vallet-Regi

THERAPEUTIC ALGORITHM

TAKE HOME MESSAGES......

 In advanced cancer, bone is a common site of metastases characterized by substantial skeletal morbidity

Pain reduction → limits beds rest

 Cementoplasty is quickly effective for pain relief with long term efficacy on pain and improvement of functional disability and quality of life

The

THANK FOR YOUR ATTENTION

