Cutaneous Soft Tissue Tumors

By Konstantinos Linos MD, FASDP Associate Member Memorial Sloan Kettering Cancer Center, NY

I have no financial disclosures

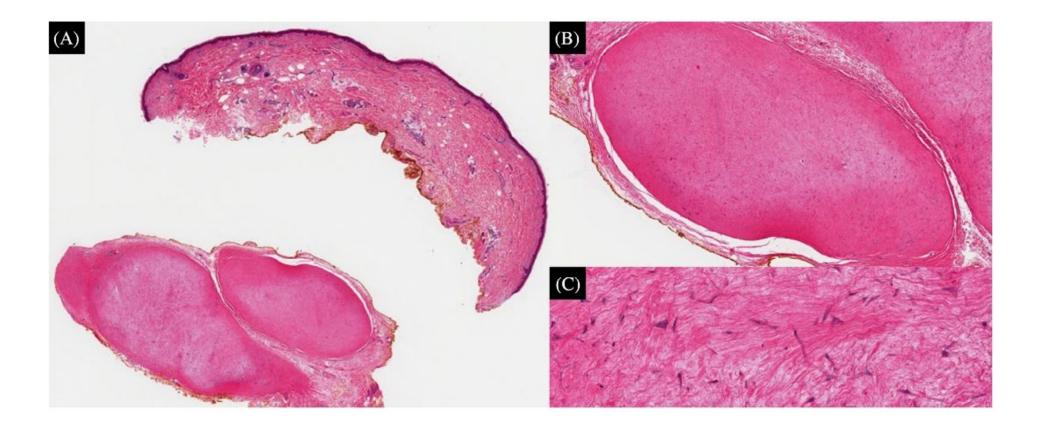
Fibroblastic/myofibroblastic tumors

Superficial desmoplastic fibroma

Acceptable: collagenous fibroma

Desmoplastic Fibroblastoma

A Report of Seven Cases


Harry L. Evans, M.D.

Collagenous Fibroma (Desmoplastic Fibroblastoma): A Clinicopathologic Analysis of 63 Cases of a Distinctive Soft Tissue Lesion With Stellate-Shaped Fibroblasts

MARKKU MIETTINEN, MD AND JOHN F. FETSCH, MD

Superficial desmoplastic fibroblastoma (collagenous fibroma): Clinicopathologic study of 11 cases

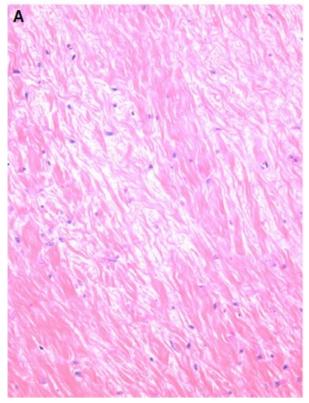
Ahmed Bakhshwin MD^{1,2} | Gabriel Oaxaca MD² | Susan Armstrong MD, PhD² | Jennifer Ko MD, PhD² | Steven Billings MD² J Cutan Pathol. 2024;51:70–75.

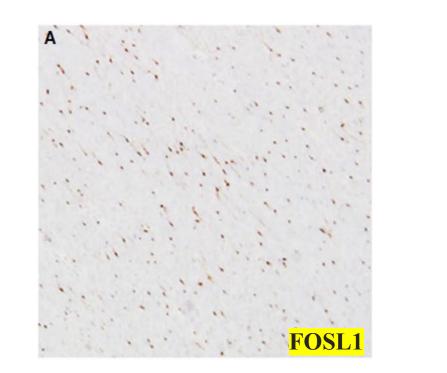
J Cutan Pathol. 2024;51:70-75.

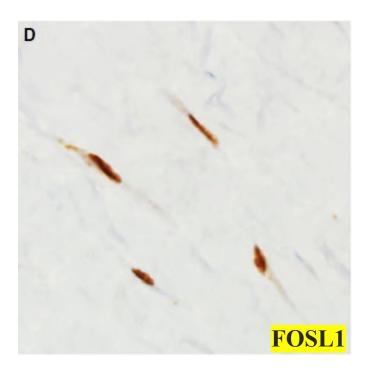
Collagenous fibroma (desmoplastic fibroblastoma) with a new translocation involving 11q12: a case report

Amin Maghari^{a,*}, Naili Ma^a, Seena Aisner^a, Joseph Benevenia^b, Meera Hameed^a

Cancer Genetics and Cytogenetics 192 (2009) 73-75


Translocation (2;11)(q31;q12) is recurrent in collagenous fibroma (desmoplastic fibroblastoma)


Kerry Bernal^a, Marilu Nelson^b, James R. Neff^{a,c}, Stephen M. Nielsen^{a,d}, Julia A. Bridge^{a,b,c,*}


Cancer Genetics and Cytogenetics 149 (2004) 161-163

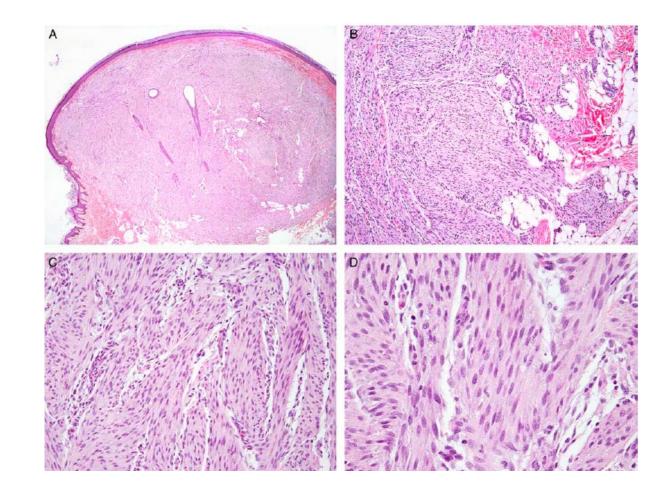
FOSL1 immunohistochemistry clarifies the distinction between desmoplastic fibroblastoma and fibroma of tendon sheath

Ikuma Kato,^{1,2} Akihiko Yoshida,^{3,4} Masachika Ikegami,⁵ Tomotake Okuma,⁵ Akiko Tonooka,¹ Shinichiro Horiguchi,¹ Nobuaki Funata,¹ Akira Kawai,^{4,6} Takahiro Goto,⁵ Tsunekazu Hishima,¹ Ichiro Aoki² & Toru Motoi¹ Histopathology 2016, 69, 1012–1020. DOI: 10.1111/his.13042

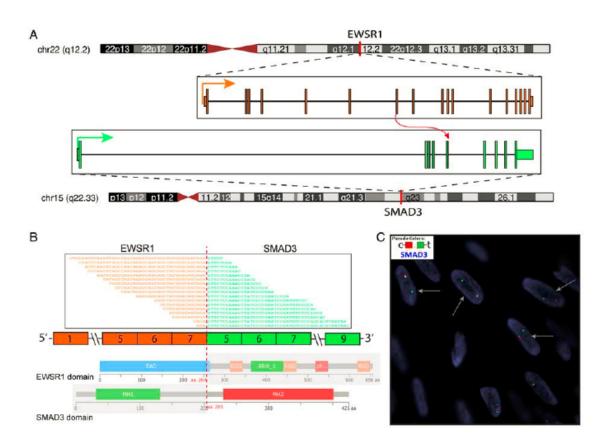
EWSR1::SMAD3-rearranged fibroblastic tumor

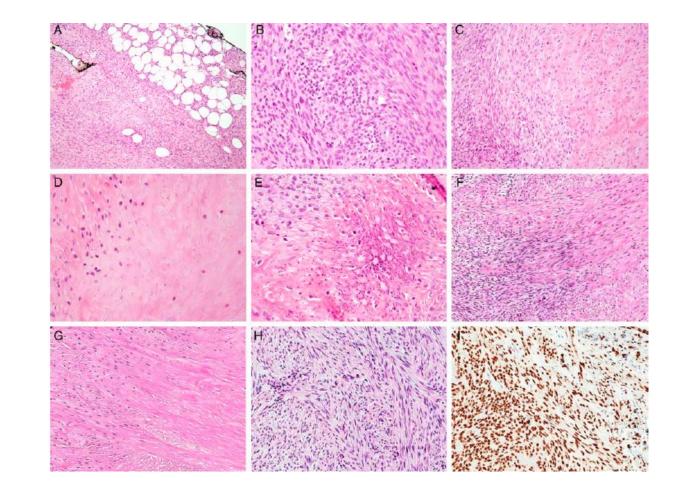
Novel *EWSR1-SMAD3* Gene Fusions in a Group of Acral Fibroblastic Spindle Cell Neoplasms

Yu-Chien Kao, MD,* Uta Flucke, MD, PhD,† Astrid Eijkelenboom, PhD,† Lei Zhang, MD,‡ Yun-Shao Sung, MSc,‡ Albert J.H. Suurmeijer, MD, PhD,§ and Cristina R. Antonescu, MD‡

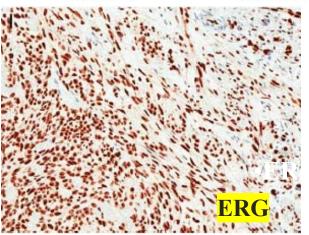

(Am J Surg Pathol 2018;00:000-000)

						Immunohis	tochemistry		
Case #	Age (y)/Sex	Location	Depth	Size (cm)	ERG	CD34	SMA	S100	Follow-up
1	1/M	Heel	Dermis and subcutis	1.0	+	-	_	-	LR (14 mo)
2	61/F	Foot	Subcutis	2.0	+	-	-	-	NA
3	58/F	Toe	Dermis and subcutis	1.1	+	-	-	-	LR (5 mo)


Memorial Sloan Kettering Cancer Center



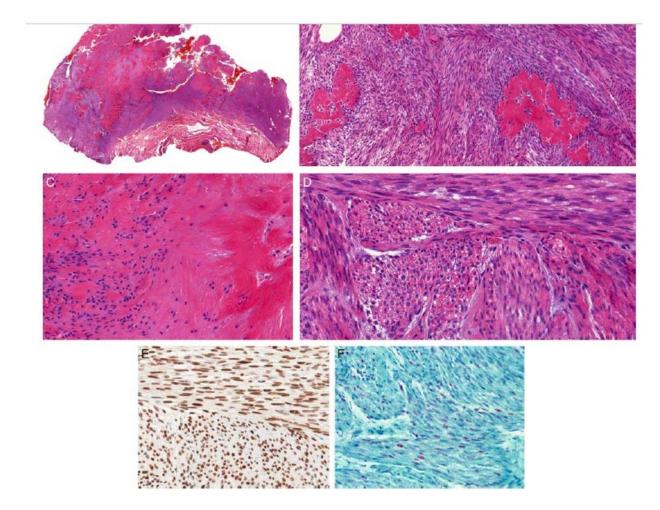
(Am J Surg Pathol 2018;00:000-000)



(Am J Surg Pathol 2018;00:000-000)

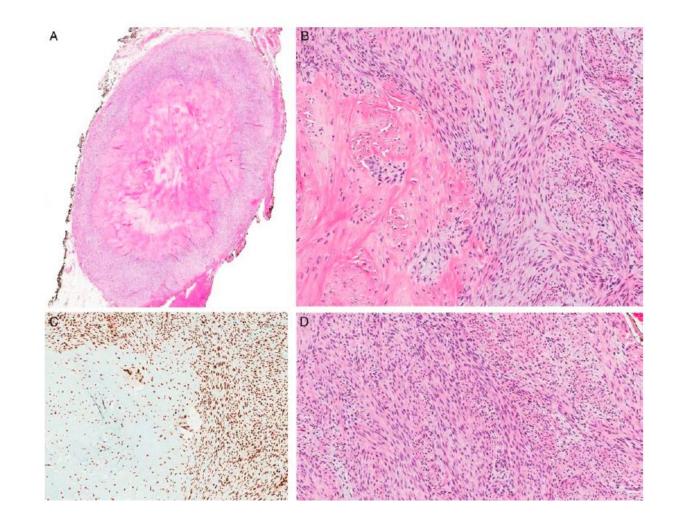
(Am J Surg Pathol 2018;00:000-000)

EWSR1-SMAD3-rearranged Fibroblastic Tumor An Emerging Entity in an Increasingly More Complex Group of Fibroblastic/Myofibroblastic Neoplasms


Michael Michal, MD,*†‡ Ryan S. Berry, MD,§ Brian P. Rubin, MD,§ Scott E. Kilpatrick, MD,§ Abbas Agaimy, MD,|| Dmitry V. Kazakov, MD,*‡ Petr Steiner, MD,*‡ Nikola Ptakova, MSc,*‡ Petr Martinek, PhD,*‡ Ladislav Hadravsky, PhD,¶ Kvetoslava Michalova, PhD,*‡ Zoltan Szep, PhD,# and Michal Michal, MD*‡

Case	Sex/ Age (y)	Location	Duration	Size (cm)	FISH	NGS	IHC +	IHC -	Recurrence	Length of FU (y)	Original Diagnosis	Comment
I	F/5 and 15	Hand—palm	3 у	1.2 and 0.3	NA	EWSRI- SMAD3	ERG in both; focal SAT-B2 staining in the 2nd tumor, negative in the first tumor	SOX-10; S100; EMA; CD34; SMA; Actin E; Desmin; SAT- B2; OSCAR; Pan-TRK; SAT- B2	Yes in 10 y	18	Unusual lipofibroma- tosis	Incomplete excision in both the original tumor and the reexcision
2	F/68	Interphalangeal joint of the thumb	10 months	1.5×0.7×0.5	NA	EWSRI- SMAD3	ERG, focal SAT-B2 staining	SOX-10; S100; CD34; EMA; Desmin; OSCAR; HMB45	No	10	Unusual fibromatosis	Incomplete excision but no recurrence
3	F/39	Calf	NA	1×0.5×0,5	NA	NA	ERG	S100; EMA; CD34; SMA; Desmin; OSCAR; AE1/3 Synaptophysin; Chromogranin; CD117; DOG-1	No	7	Benign plexiform spindle cell tumor	Early reexcision —no additional tumor tissue
4	F/34	Left foot— dorsal metatarsal aspect	NA	1.1×0.8×0.5	Positive	EWSRI- SMAD3	ERG	SOX-10; S100; EMA; CD34; SMA; Desmin; Caldesmon; AE1/3; Beta	Recent case	Recent	Unusual myofibroma	Slowly enlarging, painful, no history of trauma

Memorial Sloan Kettering Cancer Center



(Am J Surg Pathol 2018;42:1325–1333)

(Am J Surg Pathol 2018;42:1325–1333)

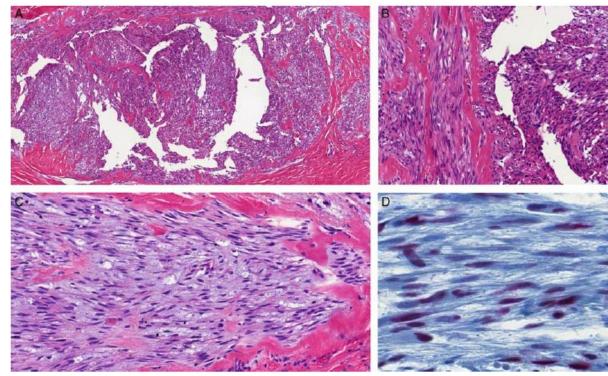
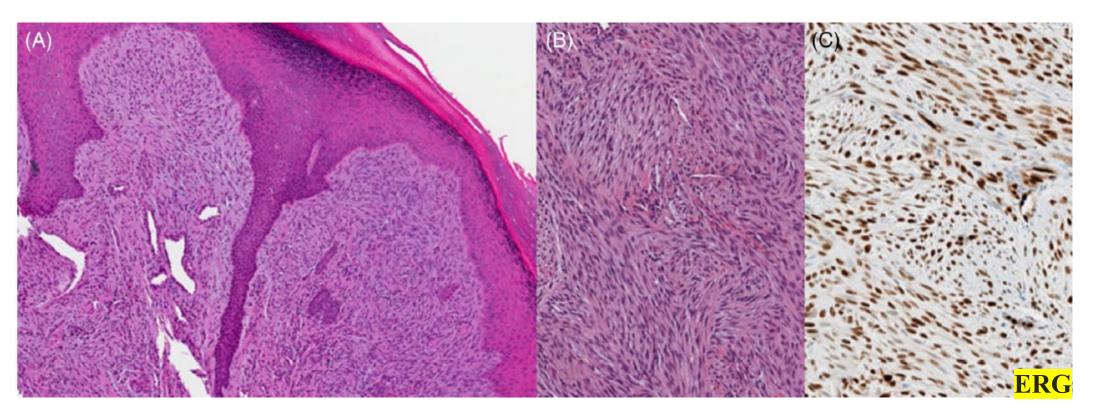
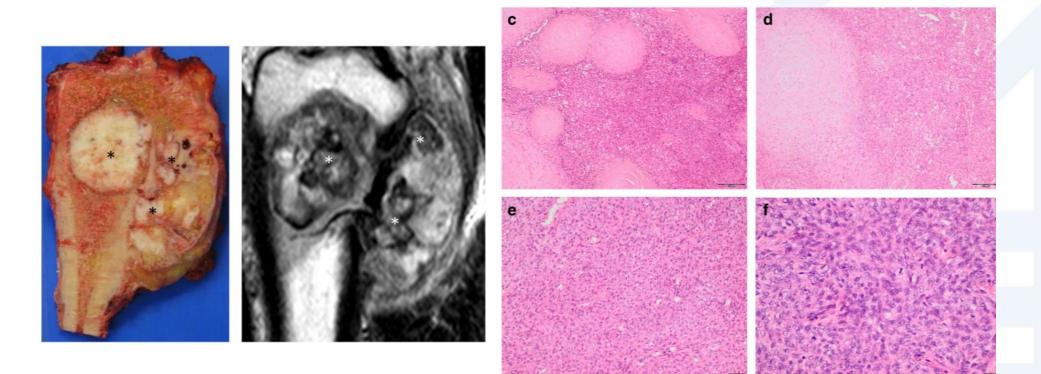


TABLE 2. ERG Immunohistochemical Staining Characteristics of ESFT Mimics


Tumor (Acronym Used in the Text)	ERG Staining: Positive/ Tested Cases (Literature Data)				
Lipofibromatosis (LPF)	0/3				
Calcifying aponeurotic fibroma (CAF)	9/10 weak to moderate expression*				
Lipofibromatosis-like neural tumor (LFLNT)	NA				
Myofibroma/myofibromatosis (MF)	0/8 (ref. 3-0/9)				
Infantile digital fibroma/ fibromatosis	0/1				
Palmar/plantar fibromatosis	0/6 (ref. 3—data for desmoid-type fibromatosis—0/19)				
Monophasic synovial sarcoma (MSS)	0/5 (ref. 3—0/36)				

EWSR1-SMAD3 rearranged fibroblastic tumor: Case series and review

Steven D. Billings MD²


Omar Habeeb MD^{1} | Katelen E. Korty DO^{2} | Elizabeth M. Azzato MD, PhD^{2} | Caroline Astbury PhD² | Daniel H. Farkas PhD, HCLD² | Jennifer S. Ko MD, PhD² J Cutan Pathol. 2021;48:255-262.

CASE REPORT

EWSR1-SMAD3 fibroblastic tumour of bone: expanding the clinical spectrum

Solange De Noon¹ · Adrienne M Flanagan^{1,2} · Roberto Tirabosco¹ · Paul O'Donnell^{3,4} · Fernanda Amary^{1,2}

Skeletal Radiology (2021) 50:445–450

International Agency for Research on Cancer World Health Organization

A A A

Definition

ICD-O coding ICD-11 coding Related terminology Subtype(s) Localization Clinical features Epidemiology Etiology Pathogenesis Macroscopic appearance Histopathology Cytology

Diagnostic molecular pathology

Prognosis and prediction

Add Personal Note

Send us Feedback

Authors Resp Editor Jaime E. Calonje

Co-editor(s) Alexander J. Lazar

Resp author Albert J.H. Suurmeijer

Co-author(s) Khin Thway Michael Michal

Omar Habeeb

Staging

Essential and desirable diagnostic criteria

WHO Classification of Tumours <u>online</u>

Skin Tumours (5th ed.) // Soft tissue tumours // Fibroblastic, myofibroblastic, and fibrohistiocytic tumours // Benign fibroblastic, myofibroblastic, and fibrohistiocytic neoplasms // E

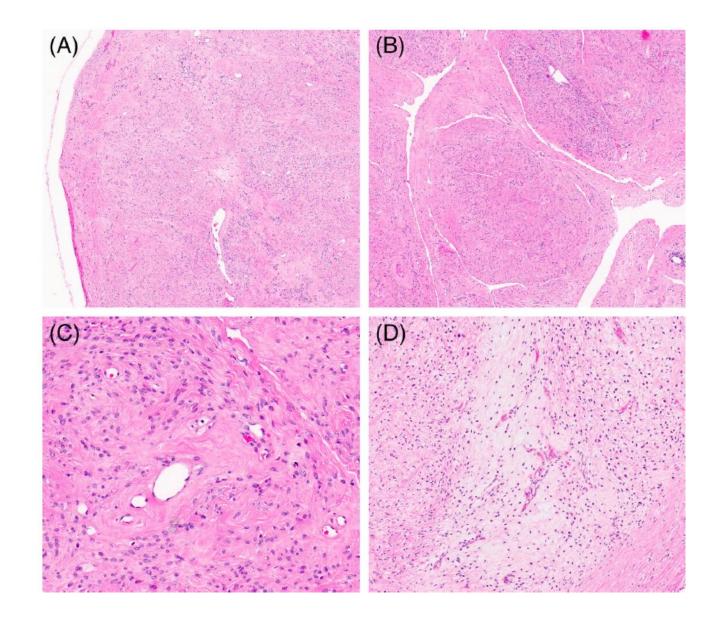
EWSR1:	SMAD3 rearranged fibroblastic tumour ≫	
1	EWSR1::SMAD3 rearranged fibroblastic tumour of Participation for the strong predilection for hands and feet.	^
	ICD-O coding None	
	ICD-11 coding 2B53.Y Other specified fibroblastic or myofibroblastic tumour, primary site	
	Related terminology Acceptable: EWSR1::SMAD3 positive fibroblastic tumour Subtype(s)	#32453 EWSR1::SMAD3 fusion positive fibroblastic
	None. Localization Tumours are superficially located within the dermis and/or subcutaneous fat. Dermal involvement may abut the epidermis. The large majority occur in hands and feet { 29957732 ; 29309308 }, while lower	tumour
	extremity represents the most common nonacral site { 32901982 }. Clinical features Patients usually present with a small painless superficial tumour in acral sites.	
	Epidemiology <i>EWSR1::SMAD3</i> rearranged fibroblastic tumours are rare, with <20 reported to date. Patients have a wide age range (1-68 years, median 39 years) and most are female (4:1) { 32901982 }.	
	Etiology Unknown.	#32454 EWSR1::SMAD3 fusion positive fibroblastic tumour
	Pathogenesis SMAD3 is an important signal transducer in the TGF-β/Smad signaling pathway, which is involved in extracellular matrix synthesis by fibroblasts.	\checkmark
	Macroscopic appearance Tumours are relatively small, measuring 10 - 20 mm in largest dimension, with a nodular appearance.	
	Histopathology These tumours are typically well demarcated, but can infiltrate subcutaneous fat. In particular, in adults, the acellular centre of the tumour appears hyalinized, which can resemble collagen rosettes. The	

=

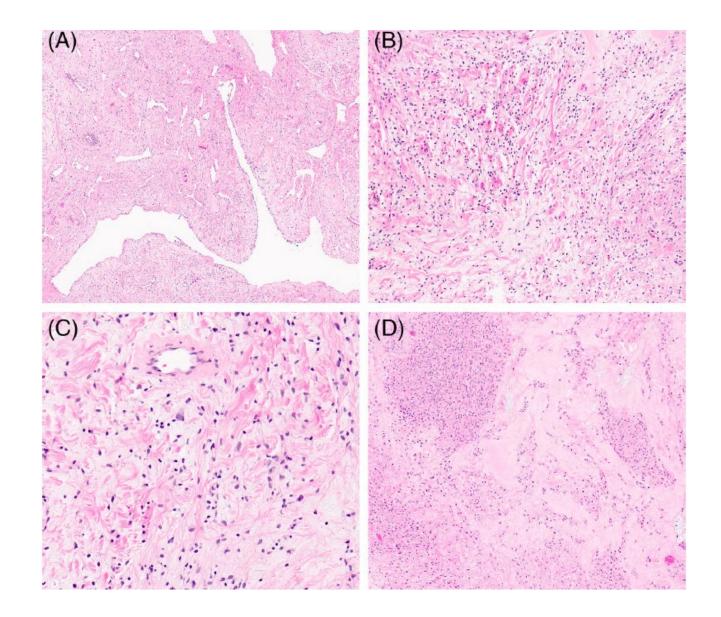
ular centre of the tumour appears hyalinized, wr iii pait peripheral zones consist of intersecting cellular fascicles of fibroblastic spindle cells within collagenous to more myxoid stroma. However, about half lack this zonation pattern. Lesional cells lack nuclear pleomorphism, hyperchromasia, prominent nucleoli and mitotic activity. Myoperictomatous growth is rare. There may be focal stippled dystrophic calcification { 29309308 ; 29957732 ; 32901982 }. By immunohistochemistry, the fibroblastic tumour cells consistently show strong diffuse nuclear ERG expression, whereas SMA and CD34 are negative. When EWSR1 rearangement is detected by FISH, a myconithalial tumour may be considered in the differential diagnosis. However, IHC for sytekerating, EMA, \$100 and \$20210 is negative

PRRX::NCOA1/2 rearranged-fibroblastic tumor

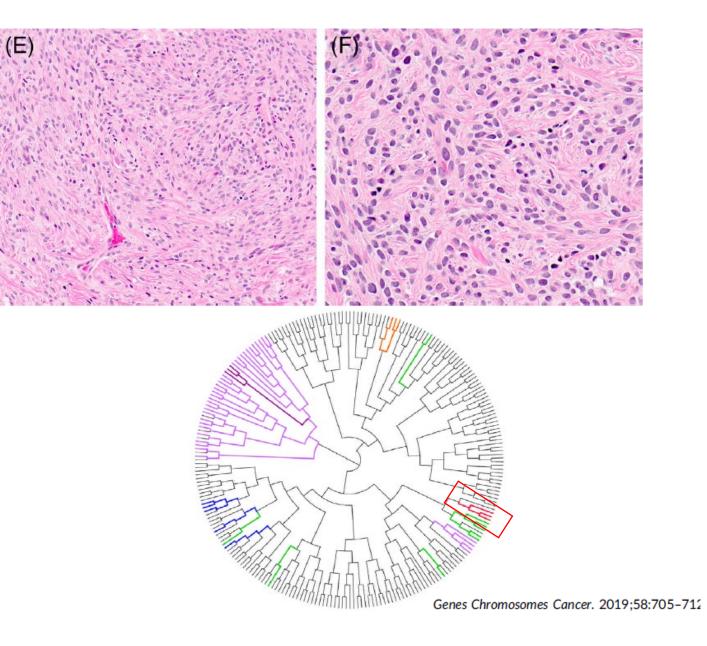
PRRX-NCOA1/2 rearrangement characterizes a distinctive fibroblastic neoplasm

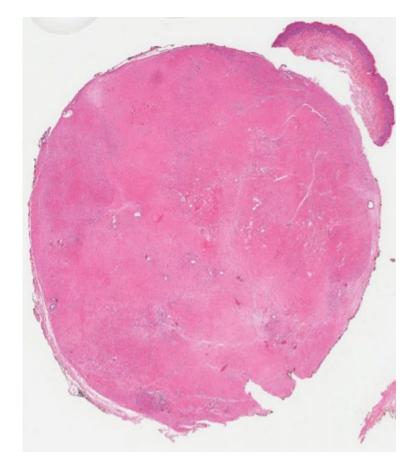

Maribel D. Lacambra¹ | Ilan Weinreb^{2,3} | Elizabeth G. Demicco^{3,4} | Chit Chow¹ | Yun-Shao Sung⁵ | David Swanson^{2,3} | Ka-Fai To¹ | Kwok-Chuen Wong⁶ | Cristina R. Antonescu⁵ | Brendan C. Dickson^{3,4}

Patient	Age (y)	Sex	Location	Size (cm)	Depth	Fusion gene	Fusion gene		
1	55	F	Thigh	4	Subcutis	PRRX1 exon 1	NCOA1 exon 13		
2	33	М	Neck	14	Subcutis	PRRX1 exon 1	NCOA1 exon 13		
3	43	F	Neck	3	Subcutis	PRRX1 exon 1	NCOA1 exon 13		
4	21	F	Groin	2	Subcutis	PRRX1 exon 1	NCOA2 exon 15		



Ę

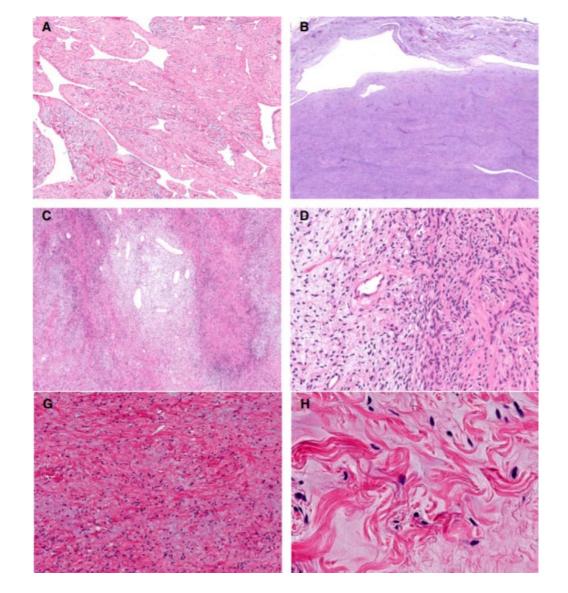



Histopathology 2021 DOI: 10.1111/his.14454

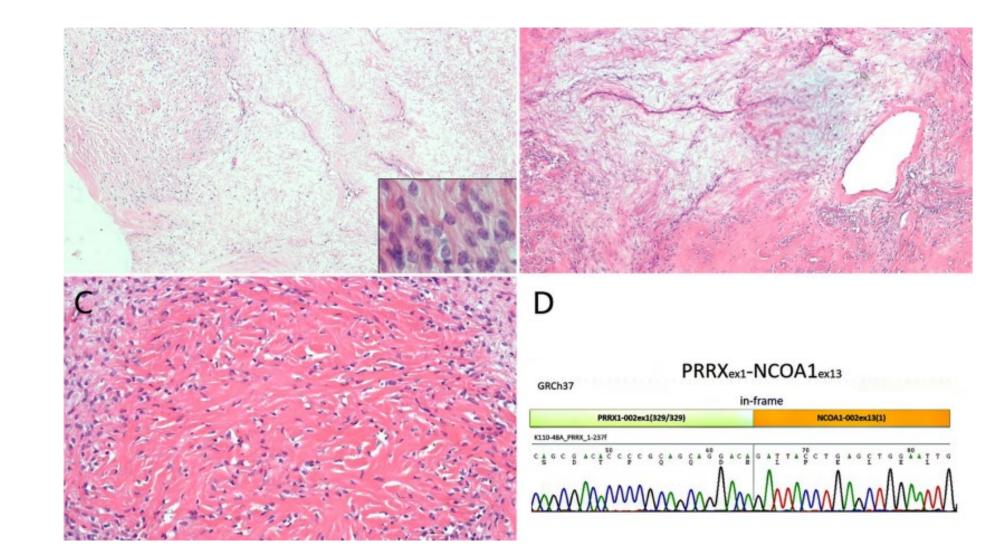
PRRX1–NCOA1-rearranged fibroblastic tumour: a clinicopathological, immunohistochemical and molecular genetic study of six cases of a potentially under-recognised, distinctive mesenchymal tumour

Josephine K Dermawan,¹ Elizabeth M Azzato,¹ Judith Jebastin Thangaiah,² Sandra Gjorgova-Gjeorgievski,¹ Brian P Rubin,¹ Andrew L Folpe,² Abbas Agaimy³ Karen J Fritchie¹

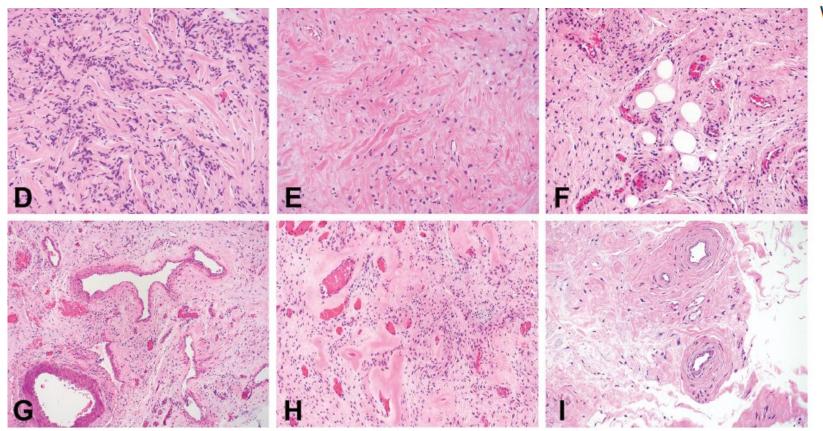
Case	Age (years)	Sex	Location	Depth	Size (mm)	Outcome	Follow-up period (months)	Negative immunohistochemical markers
1	49	м	Abdominal wall	Subcutaneous	40	ANED	2	CD34, SMA, desmin, S100, AE1/AE3, MUC4, STAT6
2	43	м	Right axilla*	Subcutaneous	55	ANED	3	CD34, SMA, desmin, S100, AE1/AE3, MUC4, STAT6, ER
3	34	F	Right shoulder	Subcutaneous	NA	NA	NA	Desmin, S100, MUC4, ALK D5F3, β-catenin; Rb1 retained
4	41	F	Abdominal wall	Subcutaneous	40	NA	NA	CD34, SMA, desmin, H-caldesmon, S100, SOX10, EMA, MUC4, STAT6, ALK1, ER, PR, CD31, MDM2; Rb1 retained
5	76	F	Abdominal wall [†]	Subcutaneous	26	ANED	1	CD34, muscle cocktail, desmin, S100, SOX10, MUC4, STAT6, ER, PAX8
6	20	м	Right lateral hip	Subcutaneous	50	ANED	1.5	CD34, SMA, myogenin, MyoD1, S100, HMB45, MUC4, STAT6, ALK1



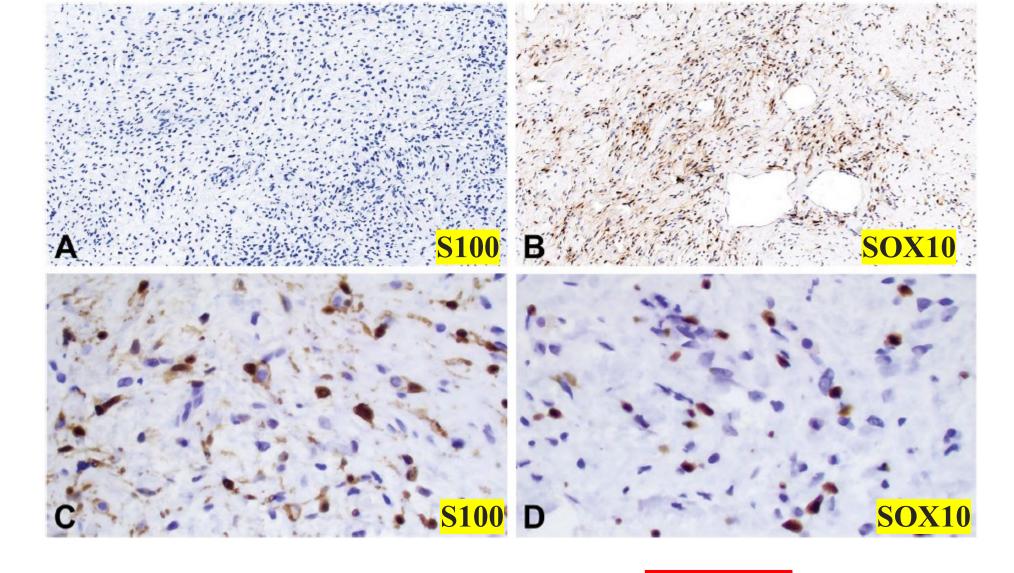
Histopathology 2021 DOI: 10.1111/his.14454



Histopathology 2021 DOI: 10.1111/his.14454


Virchows Archiv (2022) 481:111-116

Patient	Age (y)	Sex	Location	Size (cm)	Depth	Fusion gene	Outcome	Follow- up period (months)	Ref
1	55	F	Thigh	4.0	Subcutis	PRRX1 exon 1-NCOA1 exon 13	ANED	24	Lacambra et al. [1]
2	33	Μ	Neck	14.0	Subcutis	PRRX1 exon 1-NCOA1 exon 13	ANED	6-18	
3	43	F	Neck	3.0	Subcutis	PRRX1 exon 1-NCOA1 exon 13	ANED	6-18	
4	21	F	Groin	2.0	Subcutis	PRRX1 exon 1-NCOA2 exon 15	ANED	6-18	
5	49	Μ	Abdominal wall	4.0	Subcutis	PRRX1 exon 1-NCOA1 exon 13	ANED	2	Dermawan et al. [2]
6	43	Μ	Axilla	5.5	Subcutis	PRRX1 exon 1-NCOA1 exon 13	ANED	3	
7	34	F	Shoulder	N/A	Subcutis	PRRX1 exon 1-NCOA1 exon 13	N/A	N/A	
8	41	F	Abdominal wall	4.0	Subcutis	PRRX1 exon 1-NCOA1 exon 13	N/A	N/A	
9	76	F	Abdominal wall	2.6	Subcutis	PRRX1 exon 1-NCOA1 exon 13	ANED	1	
10	20	Μ	Hip	5.0	Subcutis	PRRX1 exon 1-NCOA1 exon 13	ANED	1.5	
11	23	Μ	Scalp	2.9	Subcutis	PRRX1 exon 1-NCOA1 exon 13	ANED	26	Our cases
12	46	М	Groin	5.0	Subcutis	PRRX1 exon 1-NCOA1 exon 13	ANED	7	



"PRRX1-rearranged mesenchymal tumors": expanding the immunohistochemical profile and molecular spectrum of a recently described entity with the proposed revision of nomenclature

Laura M. Warmke¹ · Michael Michal^{2,3} · Petr Martínek³ · Abbas Agaimy⁴ · Nasir Ud Din⁵ · Raul Perret⁶ · Isabelle Hostein⁶ · François Le Loarer^{6,7} · Lysandra Voltaggio⁸ · John M. Gross⁸

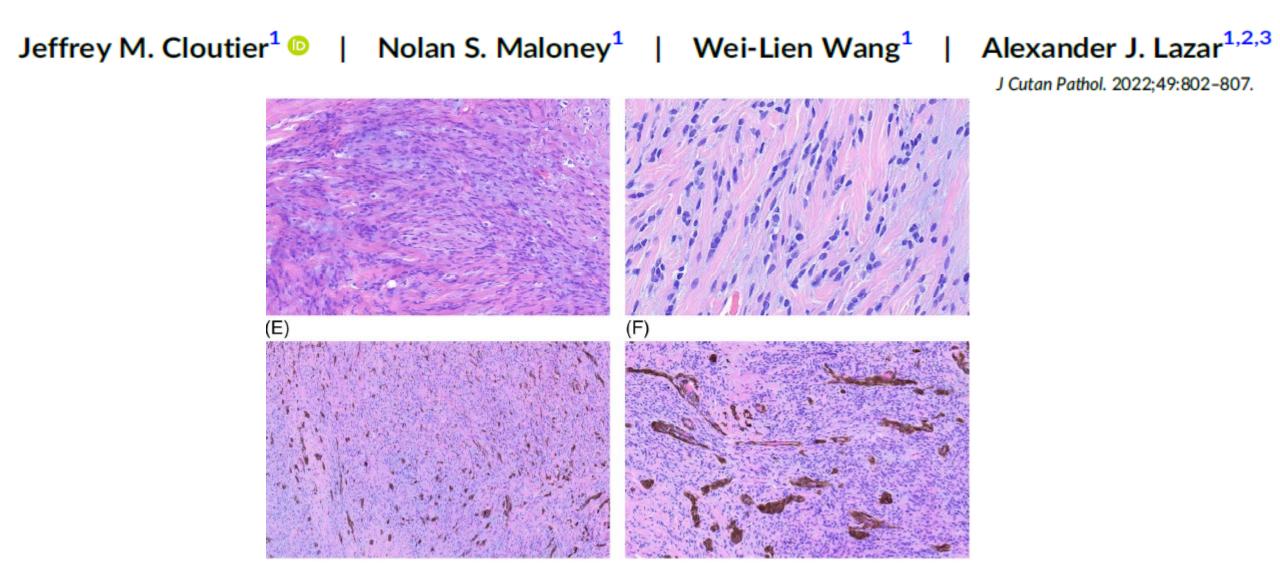
Virchows Archiv (2023) 483:207–214

Ę

Chest wall (intramuscular)

4.0 (lar)

Positive (focal)


Positive (focal)

PRRX1 (exon 1)::KMT2D (exons 25–27)

ANED (12) Current series (Case 3)

Pigmented PRRX1::NCOA1-rearranged fibroblastic tumor: A rare morphologic variant of an emerging mesenchymal tumor

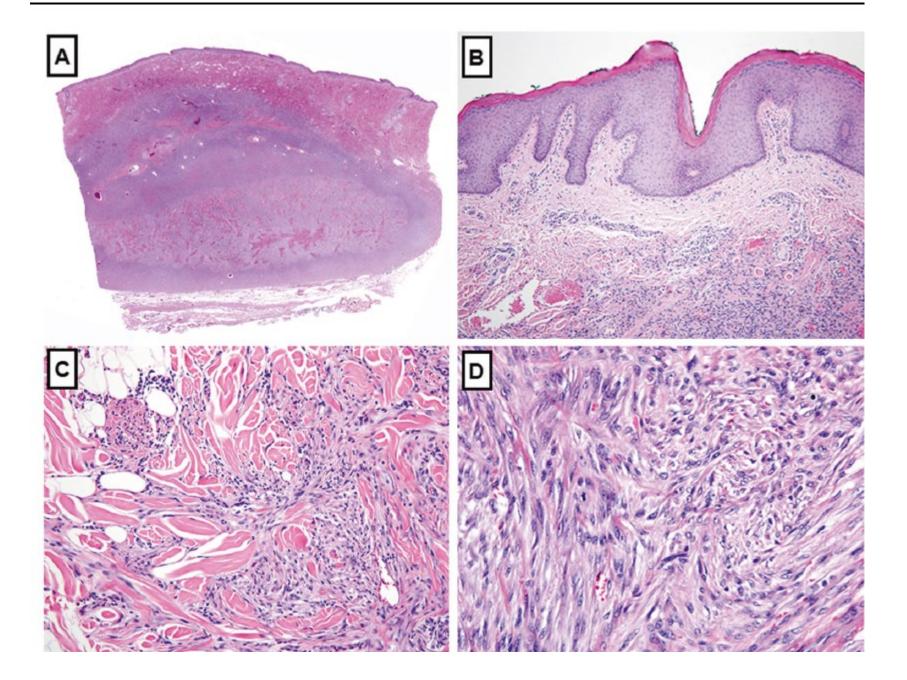
ARTICLE

https://doi.org/10.1038/s41467-022-30484-4 OPEN

PRRX1 is a master transcription factor of stromal fibroblasts for myofibroblastic lineage progression

Keun-Woo Lee ^[0,9], So-Young Yeo ^[0,9], Jeong-Ryeol Gong^{2,9}, Ok-Jae Koo³, Insuk Sohn⁴, Woo Yong Lee⁵, Hee Cheol Kim⁵, Seong Hyeon Yun⁵, Yong Beom Cho⁵, Mi-Ae Choi¹, Sugyun An^[0,2], Juhee Kim^[0,2], Chang Ohk Sung^[0,6], Kwang-Hyun Cho^[0,2] & Seok-Hyung Kim^{1,7,8]}

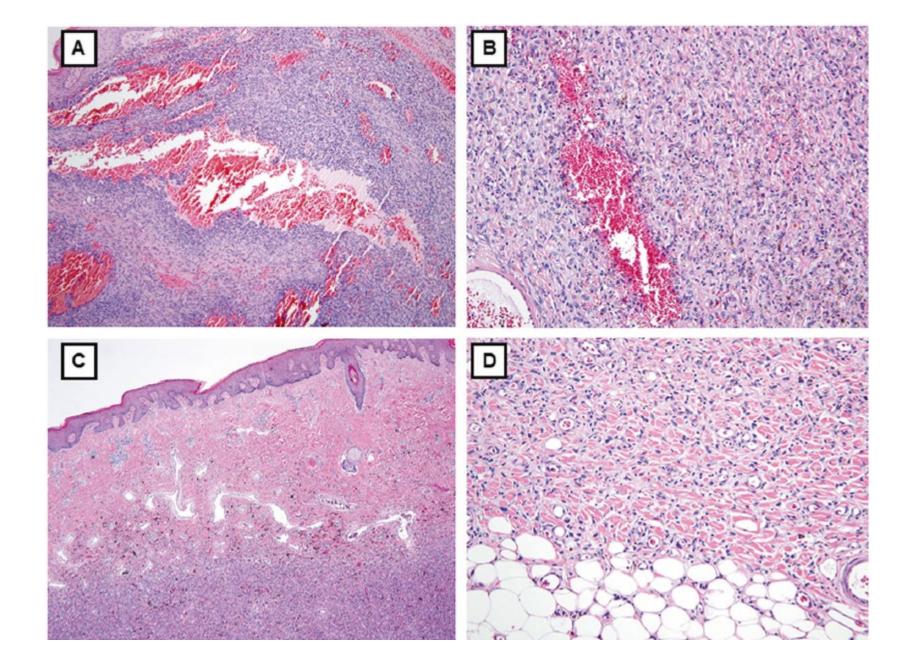
Although stromal fibroblasts play a critical role in cancer progression, their identities remain unclear as they exhibit high heterogeneity and plasticity. Here, a master transcription factor (mTF) constructing core-regulatory circuitry, *PRRX1*, which determines the fibroblast lineage with a myofibroblastic phenotype, is identified for the fibroblast subgroup. *PRRX1* orchestrates the functional drift of fibroblasts into myofibroblastic phenotype via TGF-β signaling by remodeling a super-enhancer landscape. Such reprogrammed fibroblasts have myofibroblastic functions resulting in markedly enhanced tumorigenicity and aggressiveness of cancer. PRRX1 expression in cancer-associated fibroblast (CAF) has an unfavorable prognosis in multiple cancer types. Fibroblast-specific *PRRX1* depletion induces long-term and sustained complete remission of chemotherapy-resistant cancer in genetically engineered mice models. This study reveals CAF subpopulations based on super-enhancer profiles including *PRRX1*. Therefore, mTFs, including *PRRX1*, provide another opportunity for establishing a hierarchical classification system of fibroblasts and cancer treatment by targeting fibroblasts. Dermatofibroma (benign fibrous histiocytoma)


Variant	Recurrence
Common dermatofibroma	<5%
Cellular dermatofibroma	20%
Aneurysmal dermatofibroma	20%
Atypical dermatofibroma	20%

Recurrence rates for dermatofibroma (fibrous histiocytoma) and variants

Memorial Sloan Kettering Cancer Center

Modern Pathology (2020) 33:56-65

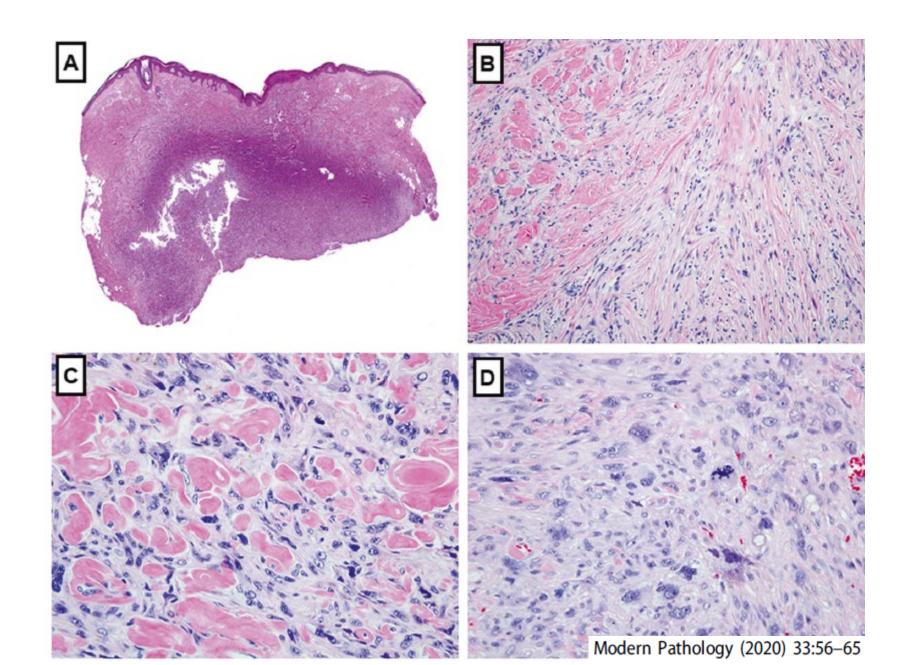


Cellular Dermatofibroma

- Often superficial entrapment of adipose tissue
- Around 10% central necrosis
- Focal CD34 + in ~5% of cases
- IHC limited role
 - Factor XIIIa NOT useful
 - Stains dermal fibroblasts ("dendrocytes")

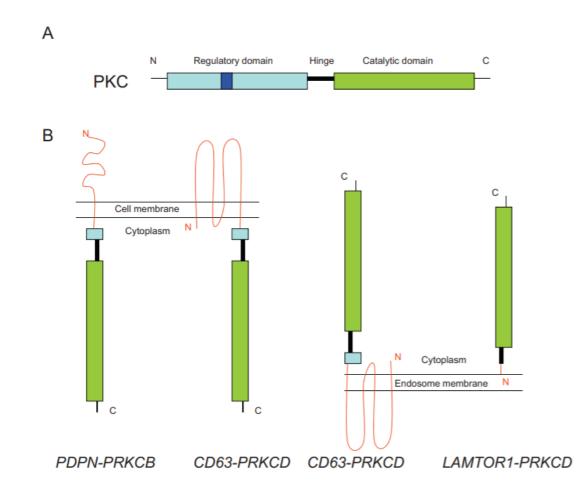


Modern Pathology (2020) 33:56-65



Memorial Sloan Kettering Cancer Center

Modern Pathology (2020) 33:56-65



Fusions involving protein kinase C and membrane-associated proteins in benign fibrous histiocytoma^{*}

Ļ

Anna Płaszczyca^a, Jenny Nilsson^a, Linda Magnusson^a, Otte Brosjö^b, Olle Larsson^c, Fredrik Vult von Steyern^d, Henryk A. Domanski^e, Henrik Lilljebjörn^a, Thoas Fioretos^a, Johnbosco Tayebwa^a, Nils Mandahl^a, Karolin H. Nord^a, Fredrik Mertens^{a,*}

NOT to be confused with Angiomatoid Fibrous Histiocytoma!!!

Memorial Sloan Kettering Cancer Center

Angiomatoid Malignant Fibrous Histiocytoma

A Follow-up Study of 108 Cases with Evaluation of Possible Histologic Predictors of Outcome

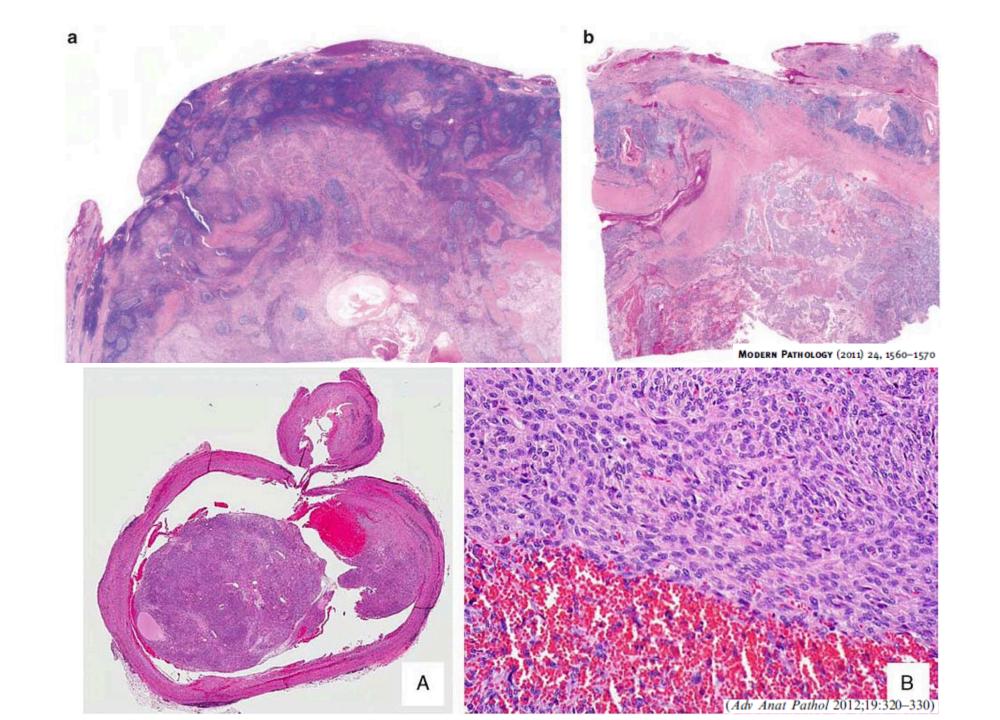
Michael J. Costa, M.D., and Sharon W. Weiss, M.D.

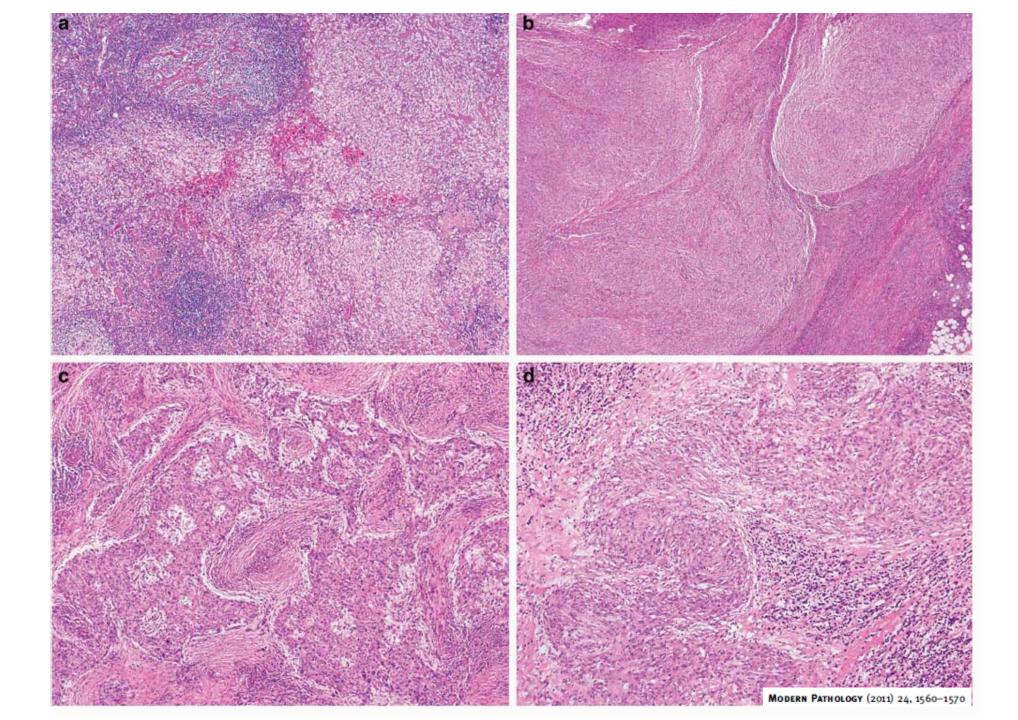
Angiomatoid "Malignant" Fibrous Histiocytoma: A Clinicopathologic Study of 158 Cases and Further Exploration of the Myoid Phenotype

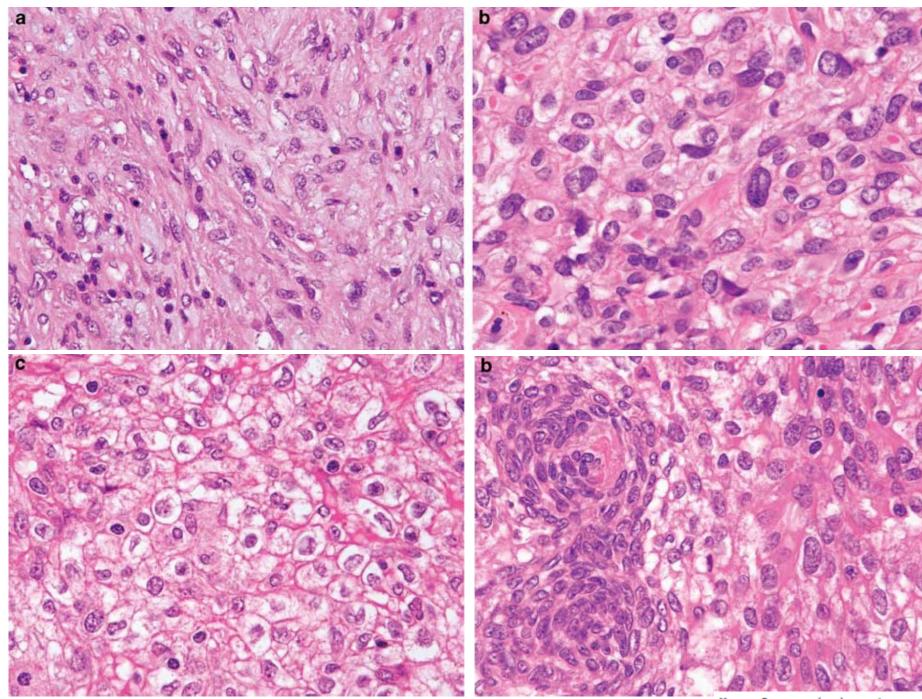
J.C. FANBURG-SMITH, MD, AND M. MIETTINEN, MD

Angiomatoid fibrous histiocytoma: unusual sites and unusual morphology

Gang Chen¹, Andrew L Folpe², Thomas V Colby³, Kesavan Sittampalam⁴, Martine Patey⁵, Ming-Guang Chen⁶ and John KC Chan⁷


¹Department of Pathology, Fujian Provincial Tumor Hospital, Fuzhou, Fujian, China; ²Department of Pathology, Mayo Clinic, Rochester, MN, USA; ³Department of Pathology, Mayo Clinic, Scottsdale, AZ, USA; ⁴Department of Pathology, Singapore General Hospital, Singapore; ⁵Department of Pathology, Hopital Robert Debre—CHU, Cedex, France; ⁶Department of Pathology, The First Affiliated Hospital in Nanping of Fujian Medical University, Nanping, Fujian, China and ⁷Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong

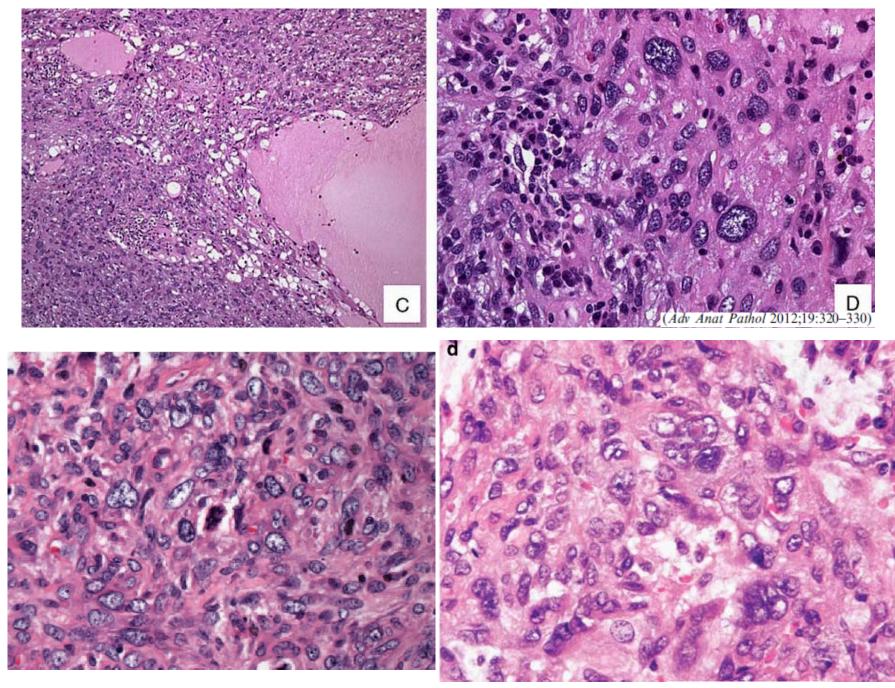

Memorial Sloan Kettering Cancer Center


npg

1560

MODERN PATHOLOGY (2011) 24, 1560-1570

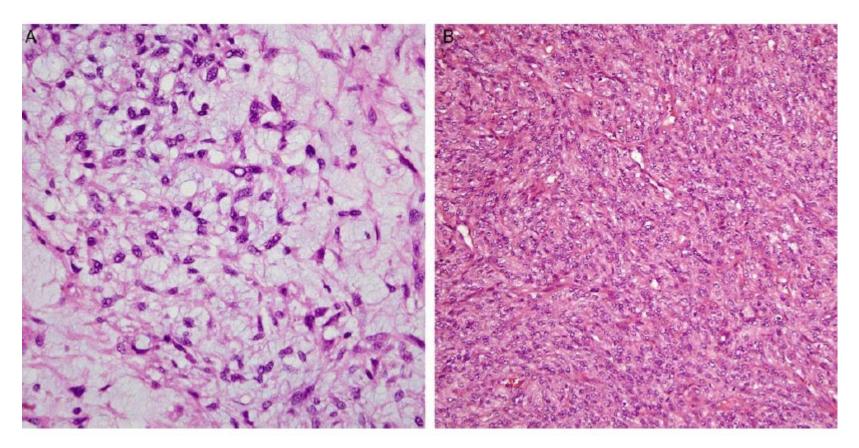
J Cutan Pathol 2008: 35: 855–860 doi: 10.1111/j.1600-0560.2007.00908.x Blackwell Munksgaard. Printed in Singapore Copyright © Blackwell Munksgaard 2007

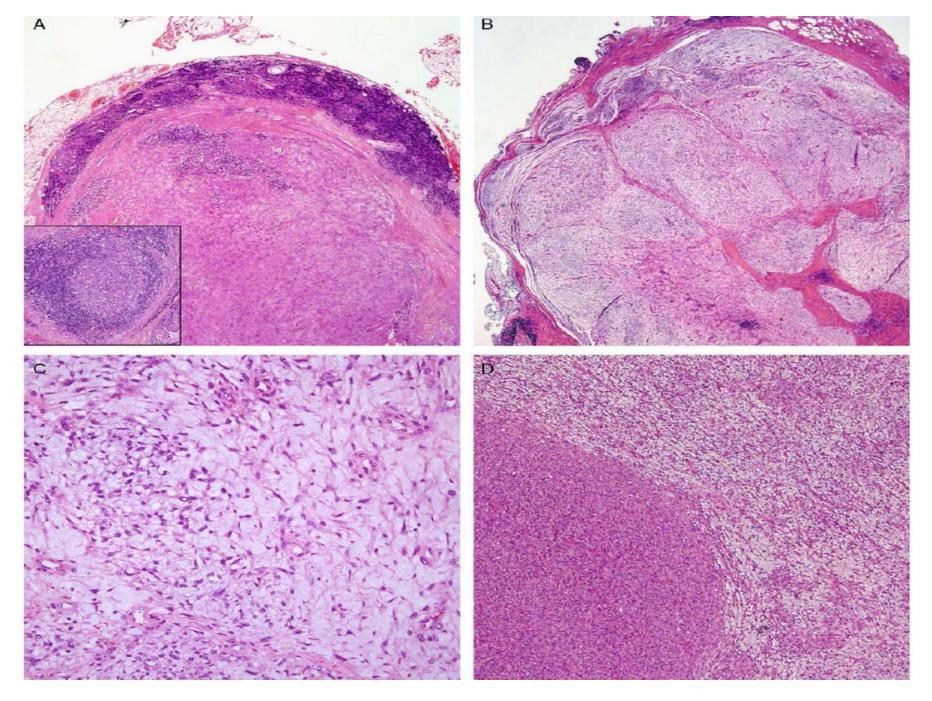

Journal of Cutaneous Pathology

Pleomorphic angiomatoid fibrous histiocytoma: a case confirmed by fluorescence *in situ* hybridization analysis for EWSR1 rearrangement

Ilan Weinreb^{1,2}, Brian P. Rubin³ and John R. Goldblum³

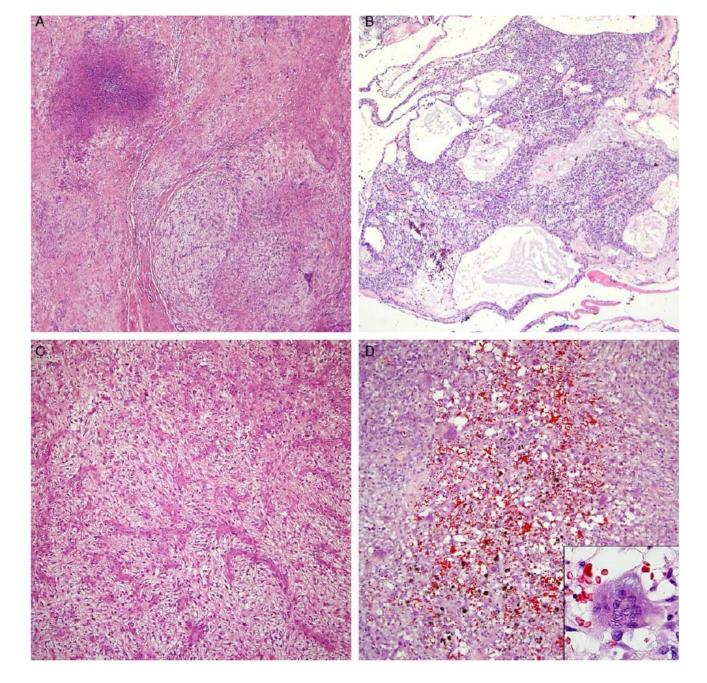
¹Department of Pathology, University Health Network, Toronto, Ontario, Canada, ²Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada and ³Department of Pathology, Cleveland Clinic Foundation, Cleveland, OH, USA

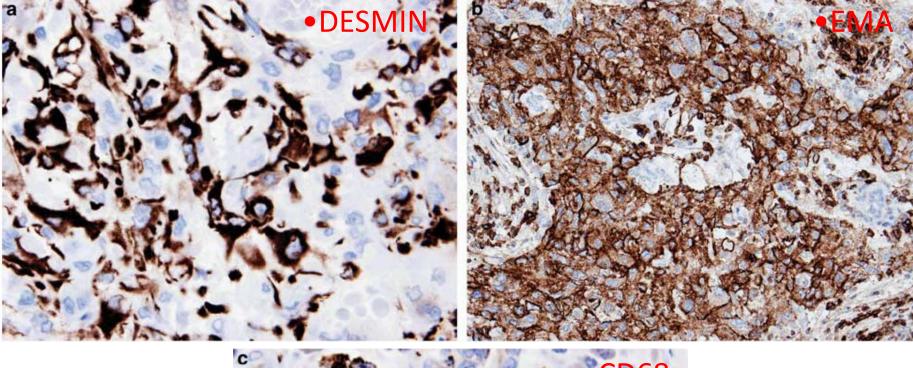


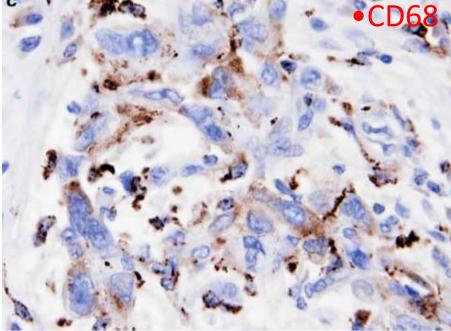

J Cutan Pathol 2008: 35: 855–860

Myxoid Variant of So-called Angiomatoid "Malignant Fibrous Histiocytoma" Clinicopathologic Characterization in a Series of 21 Cases

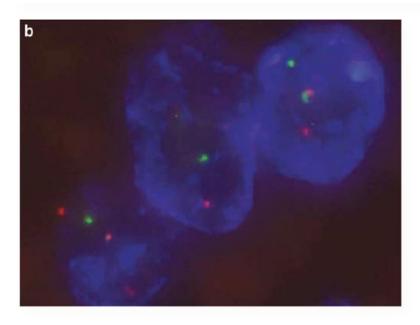
Inga-Marie Schaefer, MD and Christopher D.M. Fletcher, MD, FRCPath


(Am J Surg Pathol 2014;38:816-823)


(Am J Surg Pathol 2014;38:816-823)



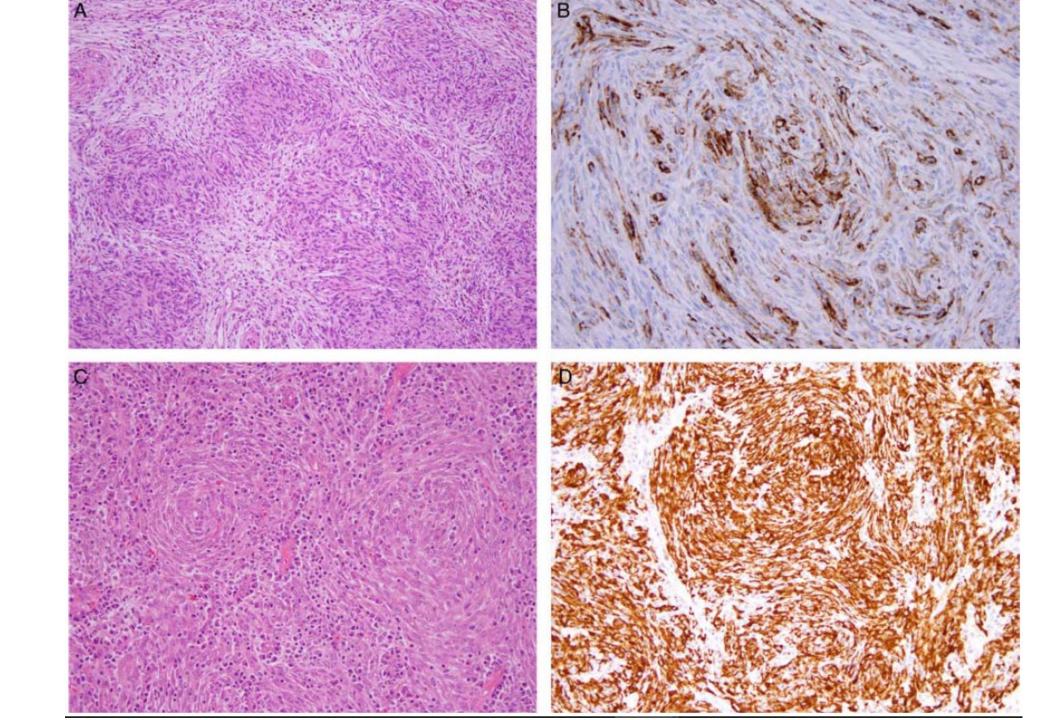
(Am J Surg Pathol 2014;38:816-823)


MODERN PATHOLOGY (2010) 23, 93-97 © 2010 USCAP, Inc. All rights reserved 0893-3952/10 \$32.00

Utility of FISH in the diagnosis of angiomatoid fibrous histiocytoma: a series of 18 cases

Munir R Tanas¹, Brian P Rubin¹, Elizabeth A Montgomery³, Sondra L Turner², James R Cook², Raymond R Tubbs², Steven D Billings¹ and John R Goldblum^{*,1}

¹Department of Anatomic Pathology, Pathology and Laboratory Medicine Institute, The Cleveland Clinic and The Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA; ²Department of Molecular Pathology, Pathology and Laboratory Medicine Institute, The Cleveland Clinic and The Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA and ³Department of Pathology, Johns Hopkins Hospital, Johns Hopkins University, Baltimore, MD, USA


•t(2;22)(q33;q12) EWSR1/CREB1
•t(12;22)(q13;q12)=EWSR1/ATF1
•t(12;16)(q13;p11)= FUS/ATF1

ALK Expression in Angiomatoid Fibrous Histiocytoma *A Potential Diagnostic Pitfall*

Alison L. Cheah, MBBS,* Youran Zou, MD,† Christopher Lanigan, MS,‡ Steven D. Billings, MD,† Brian P. Rubin, MD, PhD,† Jason L. Hornick, MD, PhD,§ and John R. Goldblum, MD†

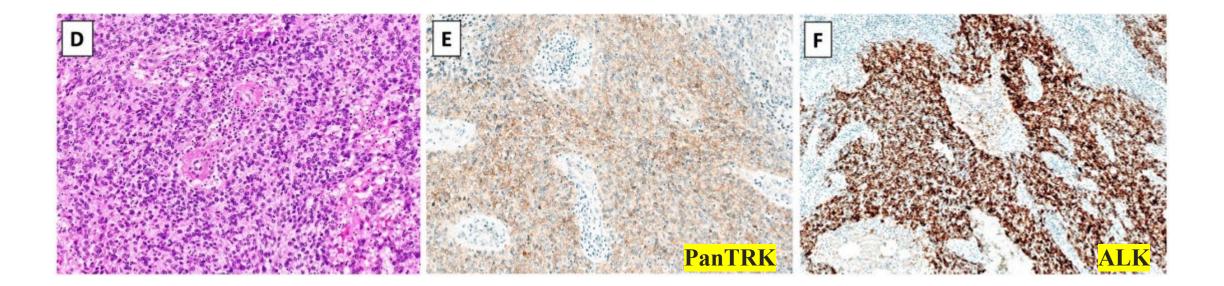
Am J Surg Pathol 2018

Case	D5F3	5A4	ALK1	EWSR1	ALK	<i>ALK</i> Copy No.
AFH1	3+ strong	NA	NA	POS	NEG	NA
AFH2	3+ strong	2+ mod	0	POS	NEG	1.6
AFH3	3+ strong	2+ mod	0	POS	NEG	1.8
AFH4	1+ strong	$1 + \mod$	0	POS	UNS	UNS
AFH5	3+ strong	2+ weak	0	UNS	UNS	UNS
AFH6	1+ mod	0	0	POS	NEG	1.8
AFH7	3+ strong	3+ mod	0	POS	NEG	NA
AFH8	3+ strong	2+ mod	1+ weak	POS	NEG	2.1
AFH9	0	0	0	POS	NA	NA
AFH10	0	0	0	POS	NA	NA
AFH11	3+ strong	NA	NA	POS	NA	NA

Letters to the Editor

ALK Expression in Angiomatoid Fibrous Histiocytoma

Confirmation of the Findings of Cheah et al


Am J Surg Pathol • Volume 43, Number 8, August 2019

Peter Van Zwam, MD* Thomas Mentzel, MD, PhD† Uta Flucke, MD, PhD‡ *Department of Pathology PAMM Institute, Eindhoven ‡Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands †Dermatopathology Bodensee Friedrichshafen, Germany

Kinase expression in angiomatoid fibrous histiocytoma: panTRK is commonly expressed in the absence of *NTRK* rearrangement

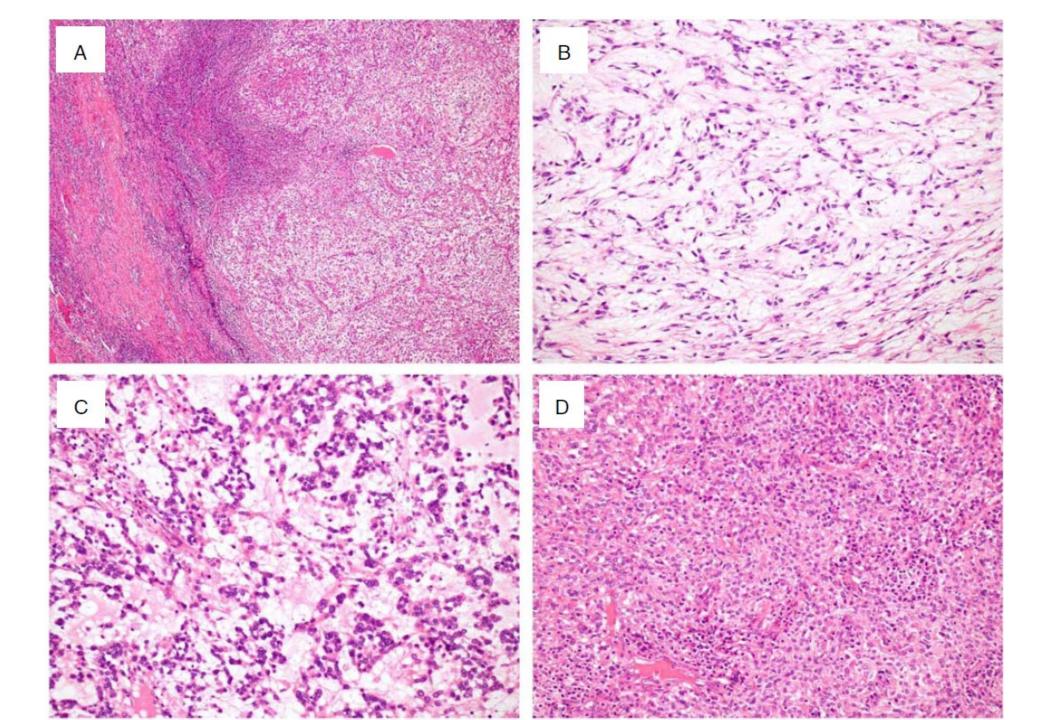
Ana Cristina Vargas (D), ^{1,2} Christopher Joy, ³ Fiona M Maclean, ² Fiona Bonar, ² Daniel D Wong, ⁴ Anthony J Gill, ^{1,5} Alison L Cheah²

11.1.1.1.0

C N 4

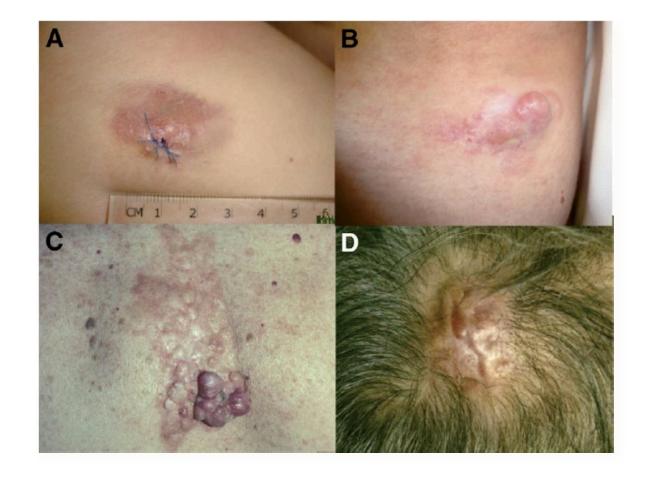
Expanding the Phenotypic Spectrum of Mesenchymal Tumors Harboring the EWSR1-CREM Fusion

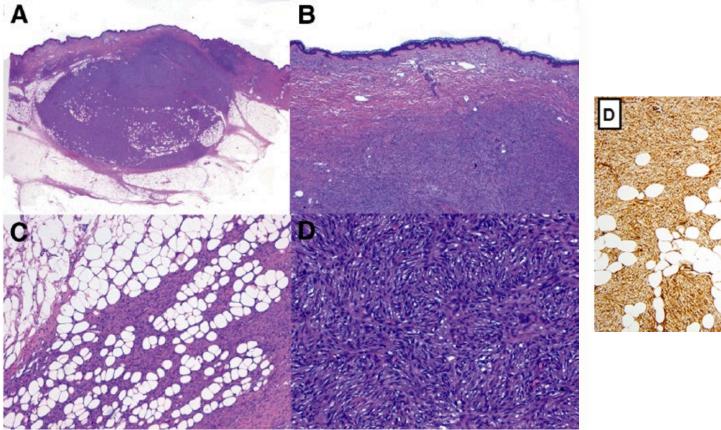
Akihiko Yoshida, MD, PhD,*† Susumu Wakai, CT,* Eijitsu Ryo, PhD,‡ Kazuyuki Miyata, MD, PhD,§ Masahisa Miyazawa, MD, PhD,|| Ken-ichi Yoshida, MD,* Toru Motoi, MD, PhD,¶ Chitose Ogawa, MD,# Shintaro Iwata, MD, PhD,†** Eisuke Kobayashi, MD, PhD,†** Shun-ichi Watanabe, MD,†† Akira Kawai, MD, PhD,†** and Taisuke Mori, DMD, PhD*‡

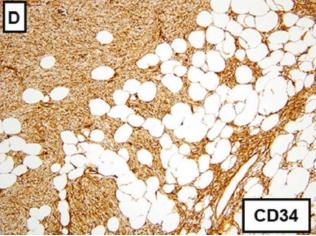

(Am J Surg Pathol 2019;00:000–000)

IL L. C. CL. FUICD1 CDELLE .!

Case	Age (y)/Sex	Primary Site	Histology	Treatment	Outcome (mo)
1	49/F	Hand	Clear cell sarcoma	Resection	AWD (39)
2	47/M	Lung	Myxoid AFH	Lobectomy	NED (58)
3	50/M	Finger	Myxoid AFH	Ray amputation	NED (45)
4	54/M	Hand	Myxoid AFH	Ray amputation	NED (51)
5	1 5/ IVI	Abdominal cavity	Unclassifiable spindle cell tumor (CK ⁺ , CD34 ⁺ , ALK ⁺)	Chemotherapy	DOD (18)
6	63/F	Chest wall	Unclassifiable round cell tumor (MUC4 ⁺ , synapto ⁺)	Wide resection	NED (17)

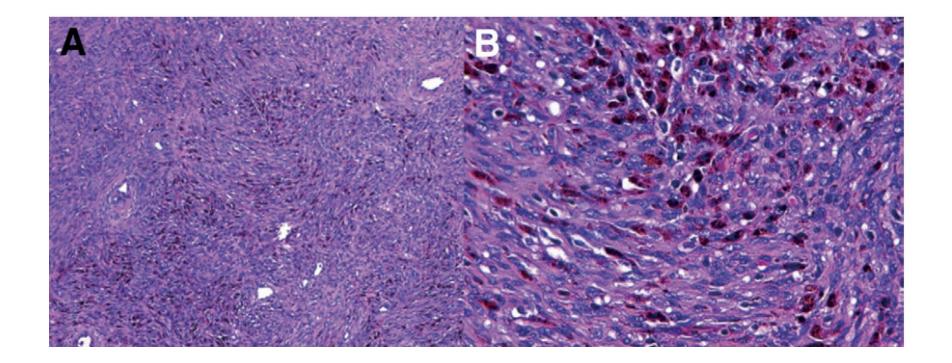

1 -



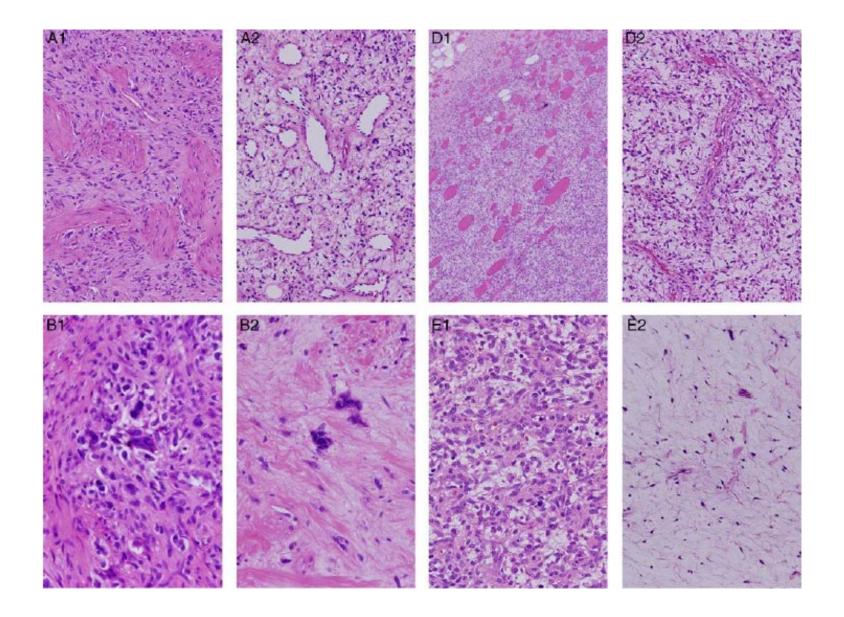

Dermatofibrosarcoma Protuberans (DFSP)

5	
v	

Cellular dermatofibroma	Dermatofibrosarcoma protuberans
Epidermal hyperplasia	No epidermal hyperplasia
Lateral hyaline collagen entrapment	Diffuse infiltration of dermis
Mixed fascicular and storiform pattern	Tight storiform pattern
Pale eosinophilic cytoplasm	Minimal cytoplasm
Superficial fat entrapment	Diffuse infiltration of fat
CD34 usually negative	CD34 positive
SMA multifocally positive	SMA negative

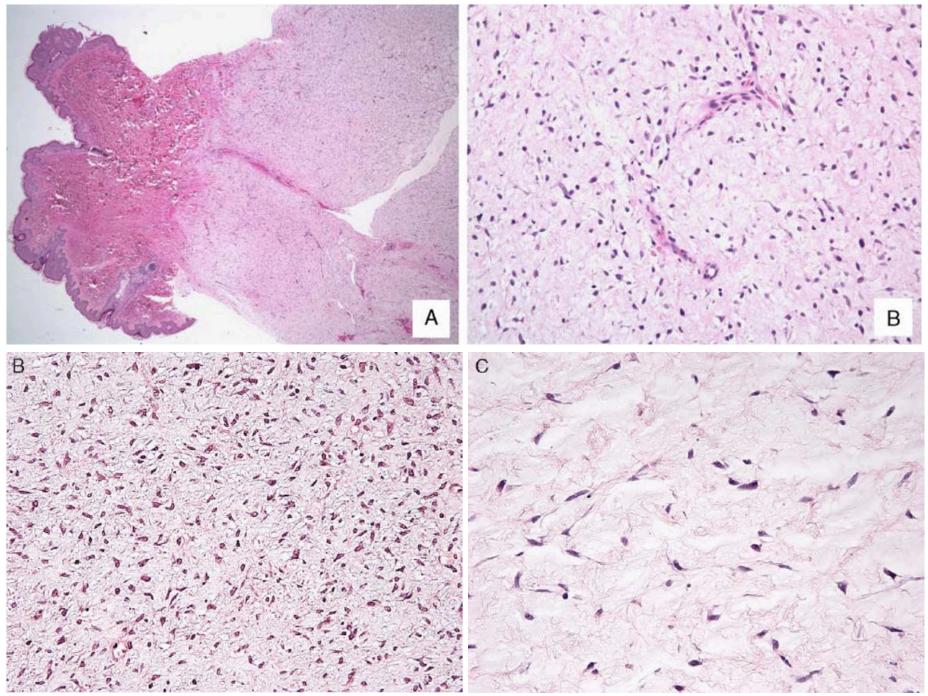

Memorial Sloan Kettering Cancer Center

Modern Pathology (2020) 33:56-65


Variants of DFSP

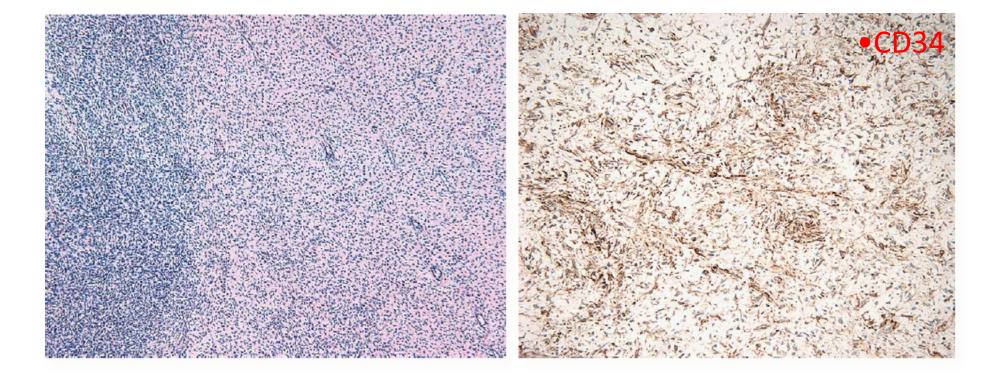
- Giant cell fibroblastoma
- Pigmented DFSP (Bednar's tumor)
- DFSP with myoid nodules
- Myxoid DFSP
- Fibrosarcomatous DFSP
- Plaque-like DFSP (atrophic DFSP)
- Sclerosing DFSP (sclerotic DFSP)
- Granular cell DFSP

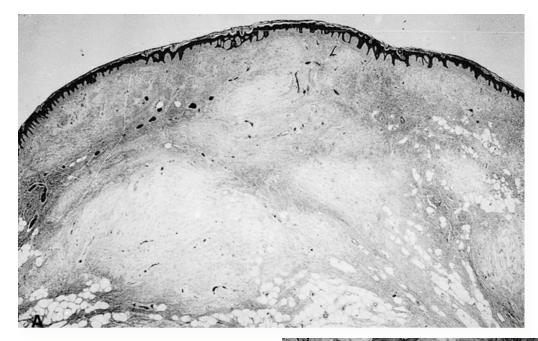
Pigmented DFSP (Bednar Tumor)


ORIGINAL ARTICLE

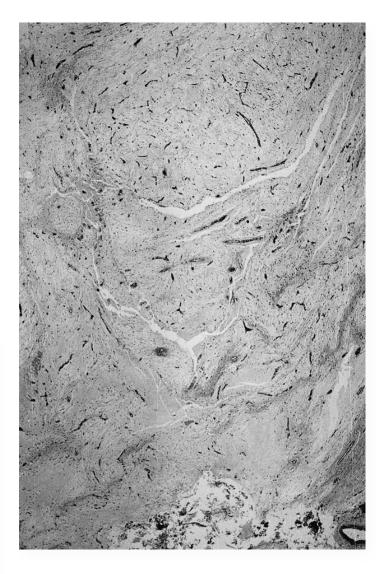
Myxoid Dermatofibrosarcoma Protuberans: A Rare Variant Analyzed in a Series of 23 Cases

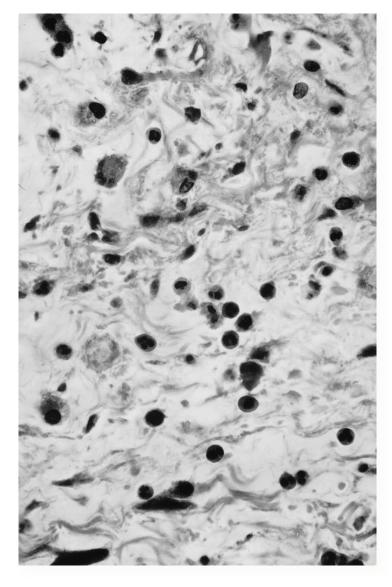
Julie D.R. Reimann, MD, PhD and Christopher D.M. Fletcher, MD, FRCPath

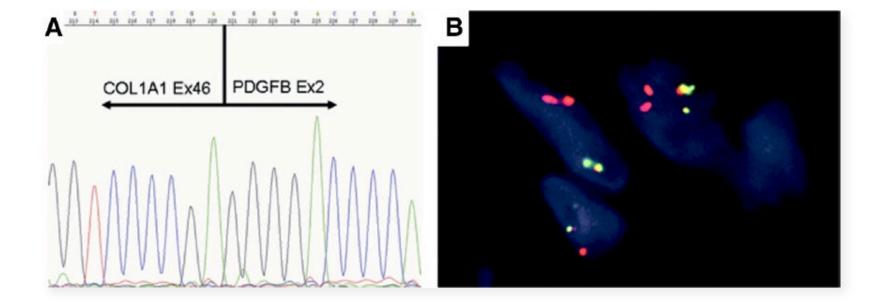

Am J Surg Pathol • Volume 31, Number 9, September 2007



(Am J Surg Pathol 2007;31:1371-1377)







•Superficial Angiomyxoma

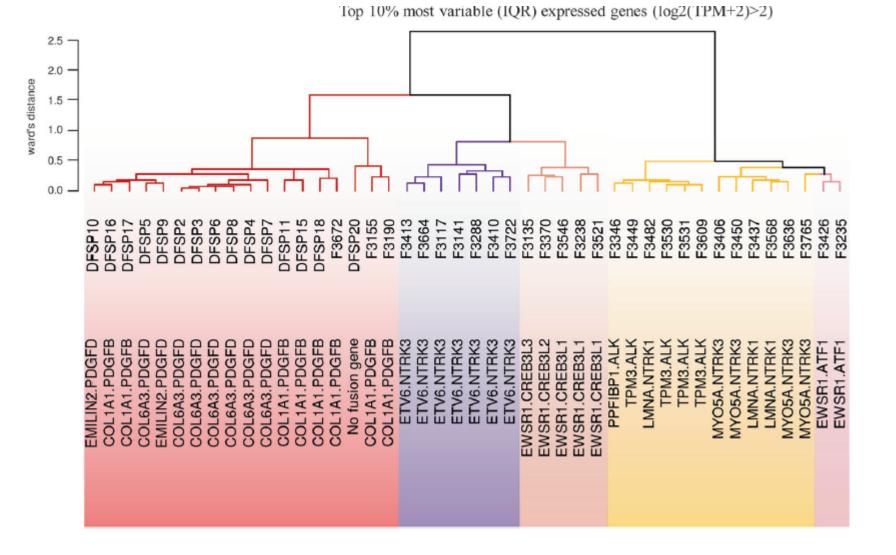
• Myxoid DFSP

•t(17;22)(q22;q13)=*COL1A1-PDGFB*

Memorial Sloan Kettering Cancer Center

Seminars in Diagnostic Pathology (2013) 30, 13-28

Modern Pathology https://doi.org/10.1038/s41379-018-0089-4



Alternative PDGFD rearrangements in dermatofibrosarcomas protuberans without PDGFB fusions

Bérengère Dadone-Montaudié¹ · Laurent Alberti^{2,3} · Adeline Duc³ · Lucile Delespaul^{4,5,11} · Tom Lesluyes^{4,5,11} · Gaëlle Pérot⁶ · Agnès Lançon³ · Sandrine Paindavoine³ · Ilaria Di Mauro¹ · Jean-Yves Blay^{2,7} · Arnaud de la Fouchardière³ · Frédéric Chibon ^{4,6,11} · Marie Karanian³ · Gaëtan MacGrogan⁶ · Valérie Kubiniek¹ · Frédérique Keslair¹ · Nathalie Cardot-Leccia⁸ · Audrey Michot⁹ · Virginie Perrin¹⁰ · Yanis Zekri¹⁰ · Jean-Michel Coindre^{5,6} · Franck Tirode ^{2,10} · Florence Pedeutour¹ · Dominique Ranchère-Vince³ · François Le Loarer^{5,6} · Daniel Pissaloux^{2,3}

Ę

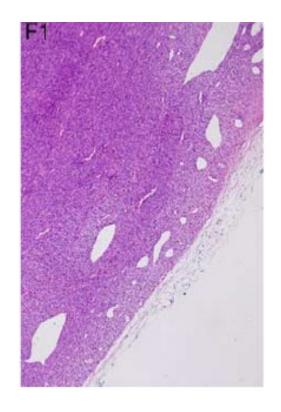
Memorial Sloan Kettering Cancer Center

RESEARCH ARTICLE

Dermatofibrosarcoma protuberans with a novel COL6A3-PDGFD fusion gene and apparent predilection for breast

Brendan C. Dickson¹ | Jason L. Hornick² | Christopher D. M. Fletcher² | Elizabeth G. Demicco¹ | David J. Howarth¹ | David Swanson¹ | Lei Zhang³ | Yun-Shao Sung³ | Cristina R. Antonescu³

Received: 16 May 2018 Revised: 14 June 2018 Accepted: 15 June 2018

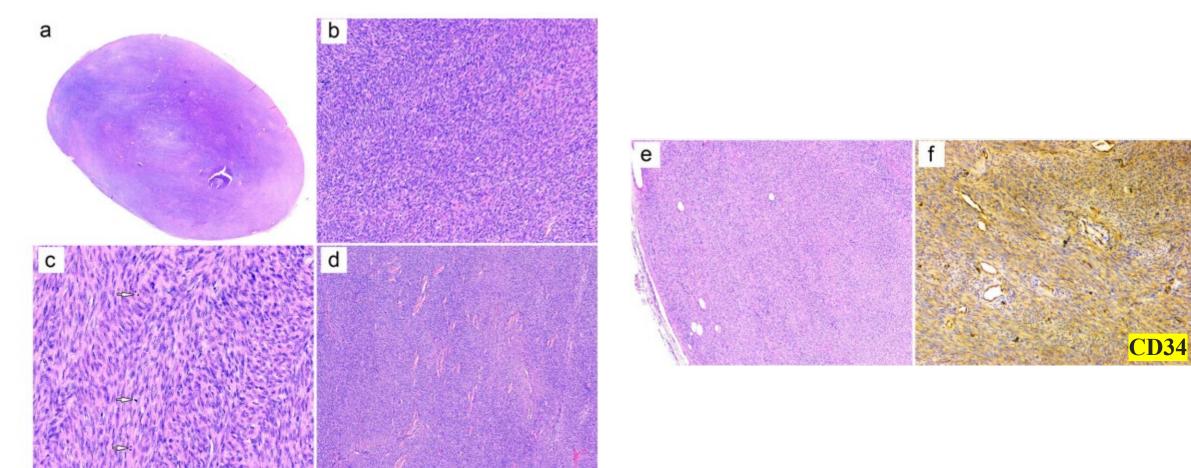

Molecular Characterization of Dermatofibrosarcoma Protuberans

The Clinicopathologic Significance of Uncommon Fusion Gene Rearrangements and Their Diagnostic Importance in the Exclusively Subcutaneous and Circumscribed Lesions

Pei-Hang Lee, MD,* Shih-Chiang Huang, MD,†‡ Pao-Shu Wu, MD, PhD,§|| Hui-Chun Tai, MD,¶ Chih-Hung Lee, MD, PhD,# Jen-Chieh Lee, MD, PhD,** Yu-Chien Kao, MD,††‡‡ Jen-Wei Tsai, MD,§§ Tsung-Han Hsieh, PhD,|||| Chien-Feng Li, MD, PhD,¶¶ Wan-Shan Li, MD,## Ting-Ting Liu, MD,**** Yu-Li Su, MD,††† Shih-Chen Yu, MS,* and Hsuan-Ying Huang, MD*

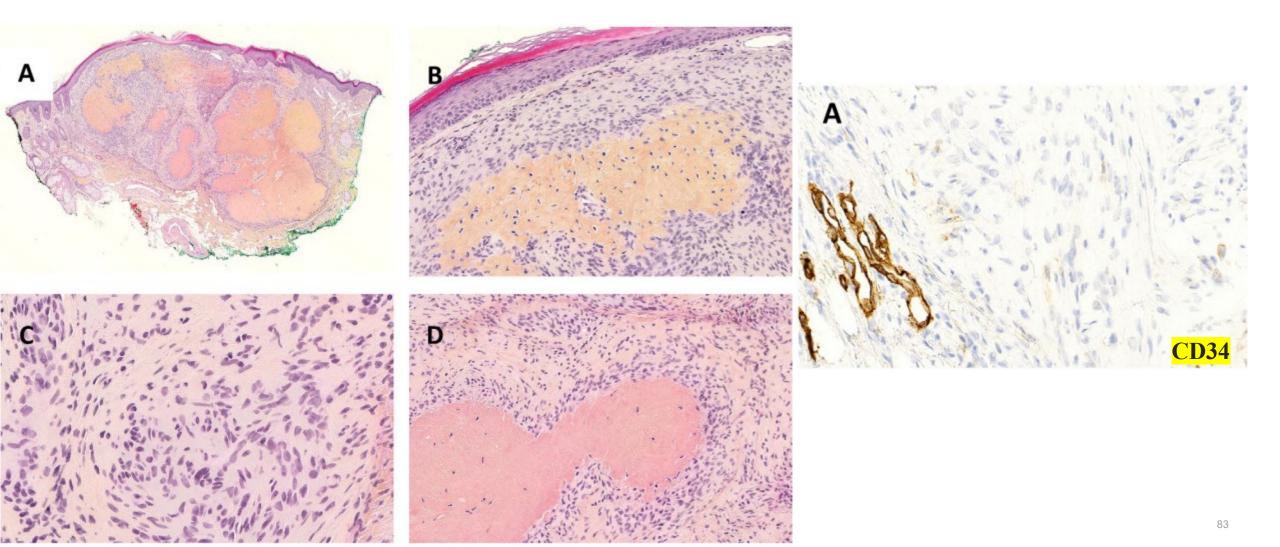
TABLE 2.	Clinicopathologic and	Molecular Findings of	Cryptic PDG	FB-rearranged and P	DGFD-rearranged DFSPs
				<u> </u>	<u> </u>

Case No.	Age (y)	Sex	Size (cm)	Location	Subtype	Tumor Contour	Depth	l
1	31	F	3.5	Groin	FS	Circumscribed	Subcutis	
2	64	F	6.5	Abdominal wall	Typical	Circumscribed	Dermis	
3	24	F	2.2	Back	Typical	Circumscribed	Dermis	
4	30	Μ	NA	Back	Typical	Infiltrative	Dermis	
5	18	F	2	Eyebrow	Typical	Infiltrative	Dermis	
6	60	F	3	Sacral area	Typical	Infiltrative	Dermis	
7	43	Μ	NA	Inguinal	Typical	Infiltrative	Dermis	
8	34	Μ	3.5	Eyebrow	FS	Infiltrative	Dermis	
9	24	Μ	3.8	Thigh	FS	Circumscribed	Subcutis	
10	31	F	0.6	Flank	FS	Infiltrative	Dermis	
11	14	F	3	Neck	Typical	Infiltrative	Dermis	
12	20	F	2	Back	Typical	Infiltrative	Subcutis	
13	32	Μ	3.7	Back	Typical	Circumscribed	Subcutis	
14	43	Μ	4.5	Shoulder	FS	Circumscribed	Subcutis	
15	15	F	5.0	Thigh	FS	Circumscribed	Subcutis	
16	45	Μ	2	Leg	FS	Infiltrative	Dermis	



Am J Surg Pathol • Volume 46, Number 7, July 2022

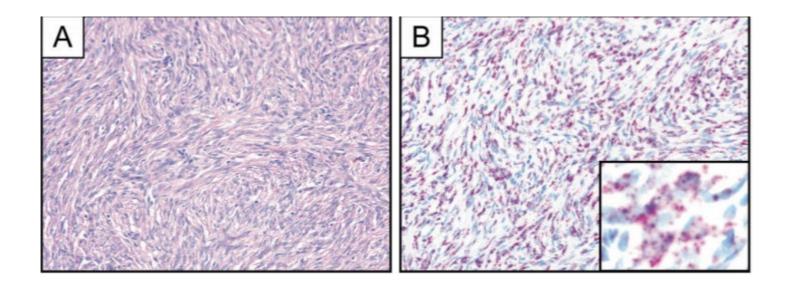
Novel *TNC-PDGFD* fusion in fibrosarcomatous dermatofibrosarcoma protuberans: a case report


Yuan Chen^{1†}, Ying-zhou Shi^{1†}, Xiao-he Feng², Xiao-tong Wang³, Xiang-lei He¹ and Ming Zhao^{1*}

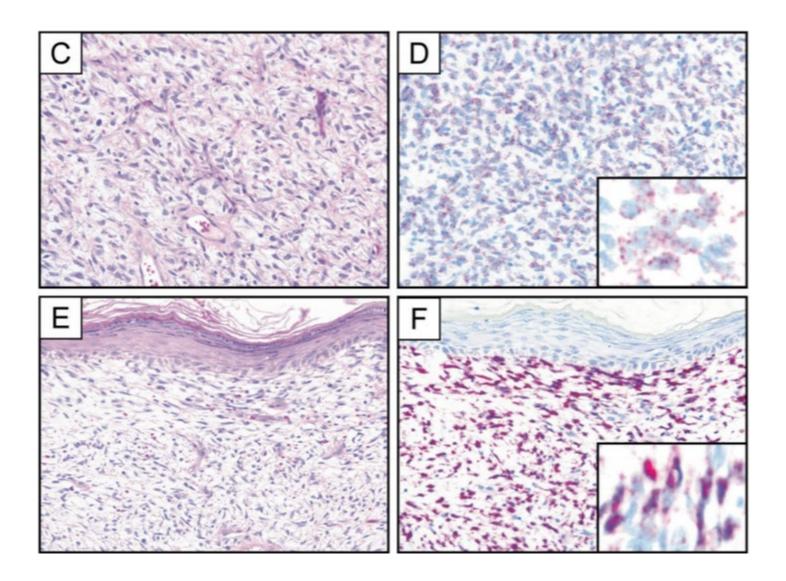
Superficial spindle cell tumour with *TNC::PDGFD* fusion is a distinct entity from dermatofibrosarcoma protuberans

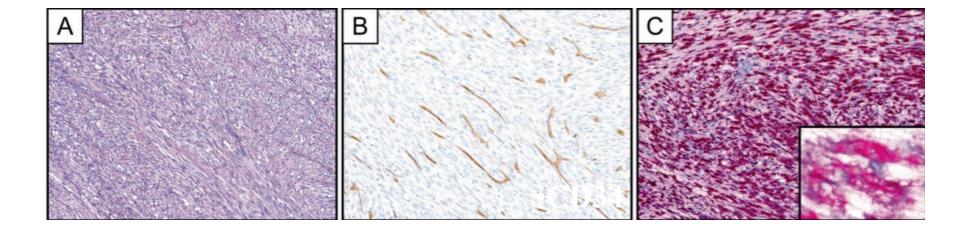
Pathology (2023), 55(4), June

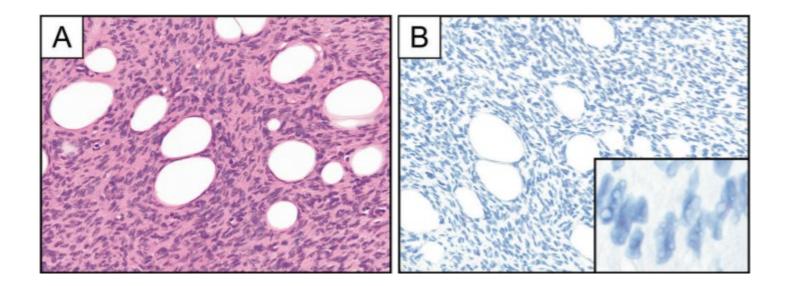
Modern Pathology https://doi.org/10.1038/s41379-021-00800-2

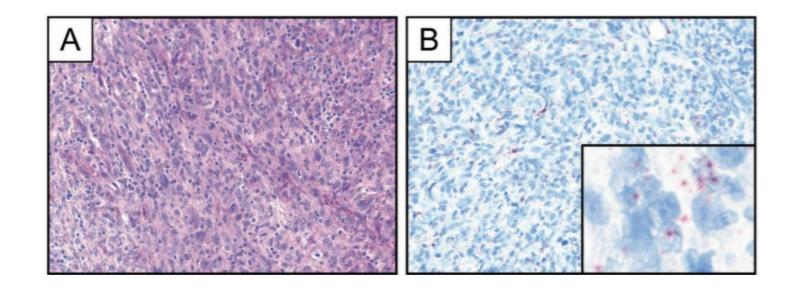

ARTICLE

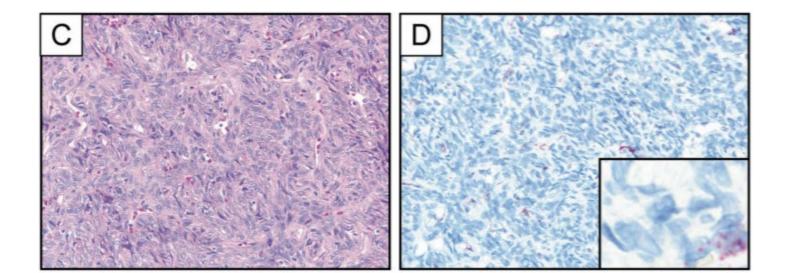
PDGFB RNA in situ hybridization for the diagnosis of dermatofibrosarcoma protuberans


Jeffrey M. Cloutier ¹ · Grace Allard¹ · Gregory R. Bean ¹ · Jason L. Hornick ² · Gregory W. Charville ¹

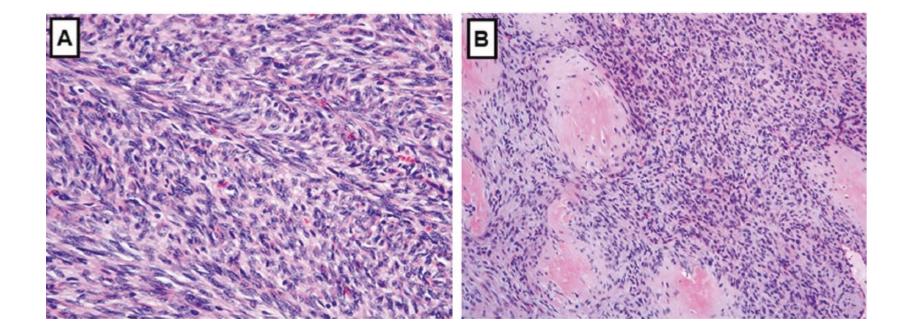



Memorial Sloan Kettering Cancer Center




Tumor type	Total cases	PDGFB overexpression (%)	PDGFB limited (%)
Conventional DFSP	26	24 (92)	0 (0)
PDGFD-rearranged DFSP	1	0	0 (0)
Fibrosarcomatous DFSP	11	11 (100)	0 (0)
Dermatofibroma	14	0 (0)	0 (0)
Cellular dermatofibroma	11	0 (0)	0 (0)
Atypical fibrous histiocytoma	4	0 (0)	0 (0)
Angiomatoid fibrous histiocytoma	2	0 (0)	0 (0)
Superficial acral fibromyxoma	3	0 (0)	0 (0)
Atypical fibroxanthoma	8	0 (0)	0 (0)
Pleomorphic dermal sarcoma	8	0 (0)	2 (25)
Solitary fibrous tumor	15	0 (0)	0 (0)
Synovial sarcoma (monophasic)	13	0 (0)	0 (0)
Angiosarcoma	12	0 (0)	1 (8)
Kaposi sarcoma	3	0 (0)	0 (0)
Melanoma (desmoplastic)	9	0 (0)	2 (22)
Nodular fasciitis	8	0 (0)	0 (0)
Desmoid fibromatosis	28	0 (0)	0 (0)

Conventional DFSP	26	24 (92)	0 (0)	2 (8)
PDGFD-rearranged DFSP	1	0	0 (0)	1 (100%)
Fibrosarcomatous DFSP	11	11 (100)	0 (0)	0 (0)
Dermatofibroma	14	0 (0)	0 (0)	14 (100)
Cellular dermatofibroma	11	0 (0)	0 (0)	11 (100)
Atypical fibrous histiocytoma	4	0 (0)	0 (0)	4 (100)
Angiomatoid fibrous histiocytoma	2	0 (0)	0 (0)	2 (100)
Superficial acral fibromyxoma	3	0 (0)	0 (0)	3 (100)
Atypical fibroxanthoma	8	0 (0)	0 (0)	8 (100)
Pleomorphic dermal sarcoma	8	0 (0)	2 (25)	6 (75)
Solitary fibrous tumor	15	0 (0)	0 (0)	15 (100)
Synovial sarcoma (monophasic)	13	0 (0)	0 (0)	13 (100)
Angiosarcoma	12	0 (0)	1 (8)	11 (92)
Kaposi sarcoma	3	0 (0)	0 (0)	3 (100)
Melanoma (desmoplastic)	9	0 (0)	2 (22)	7 (78)
Nodular fasciitis	8	0 (0)	0 (0)	8 (100)
Desmoid fibromatosis	28	0 (0)	0 (0)	28 (100)
Leiomyosarcoma (extrauterine)	57	0 (0)	0 (0)	57 (100)
Neurofibroma	41	0 (0)	0 (0)	41 (100)
MPNST	65	0 (0)	2 (3)	63 (97)

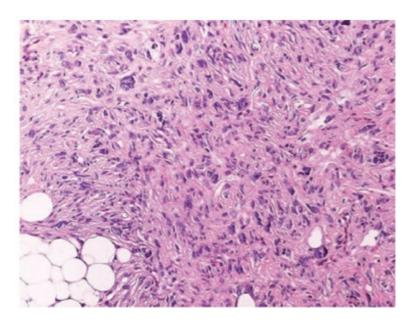

PDGFB

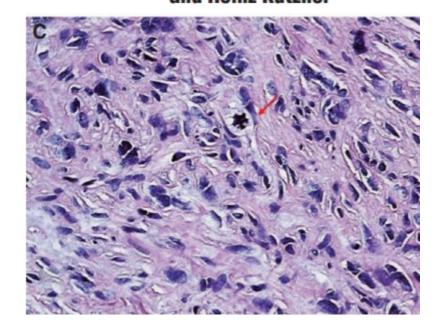
negative (%)

Fibrosarcomatous DFSP

Modern Pathology (2020) 33:56–65

Fibrosarcomatous DFSP


Often loss (or decreased) of CD34


Acquisition of metastatic potential (10-15%)Most often lungs

External-beam radiation therapy can be considered

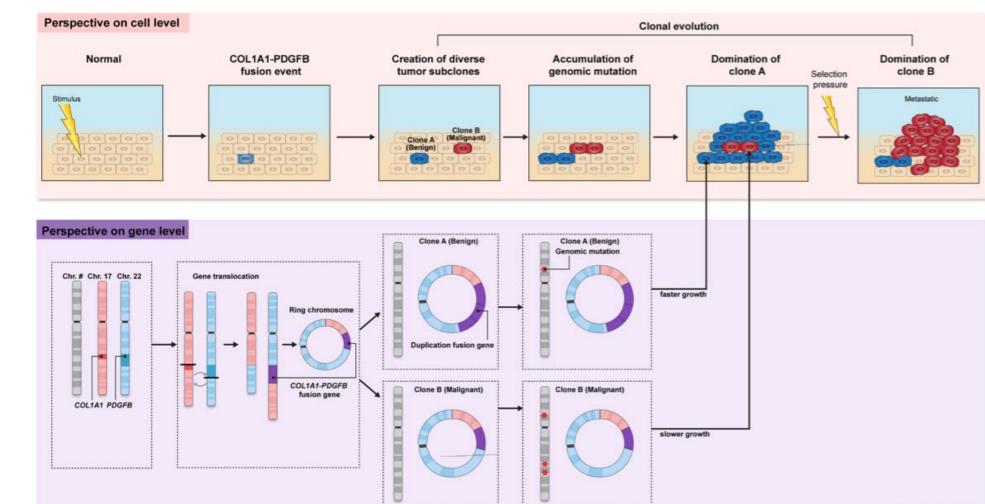
Giant cell fibroblastoma does not transform

An unusual presentation *Cutan Pathol 2016: 43: 589–593* of dermatofibrosarcoma protuberans with pleomorphic sarcomatous transformation: potential pitfall and diagnostic strategy Anna Maria Cesinaro¹, Ema Mataca¹, Claudio Gambini² and Heinz Kutzner³

Cancer Therapy: Clinical

Clinical Cancer Research

Neoadjuvant Imatinib in Advanced Primary or Locally Recurrent Dermatofibrosarcoma Protuberans: A Multicenter Phase II DeCOG Trial with Long-term Follow-up


Selma Ugurel¹, Thomas Mentzel², Jochen Utikal^{3,5}, Peter Helmbold^{4,6}, Peter Mohr⁷, Claudia Pföhler⁸, Meinhard Schiller⁹, Axel Hauschild¹⁰, Rüdiger Hein¹¹, Eckhardt Kämpgen¹², Ivonne Kellner¹³, Martin Leverkus⁵, Jürgen C. Becker¹⁶, Philip Ströbel¹⁴, and Dirk Schadendorf¹⁵

RESEARCH ARTICLE

Unforeseen clonal evolution of tumor cell population in recurrent and metastatic dermatofibrosarcoma protuberans

Ensel Oh^{1,2®}, Hae Min Jeong^{3®}, Mi Jeong Kwon^{4,5}, Sang Yun Ha⁶, Hyung Kyu Park⁶, Ji-Young Song¹, Yu Jin Kim¹, Jong-Sun Choi⁷, Eun Hee Lee⁸, Jeeyun Lee⁹, Yoon-La Choi^{1,2,6‡}*, Young Kee Shin^{3,7‡}*

October 4, 2017

Illustrated by Tax Won Yun

COL1A1-PDGFB Fusion Associated Fibrosarcoma of the Uterine Corpus: A Case Report and Literature Review

Vandana Panwar, M.D., Yu Liu, M.D., Ph.D., Katja Gwin, M.D., and Hao Chen, M.D., Ph.D.

Int J Gynecol Pathol Vol. 42, No. 2, March 2023

COL1A1::PDGFB fusion uterine sarcoma with a TERT promoter mutation

Yang Lu¹ | Xinyi Chen² | Wenjing Zeng³ | Ping Hua⁴ | Yangmei Shen⁵ | Yan Qiu¹ | Xin He¹ | Hongying Zhang¹^o

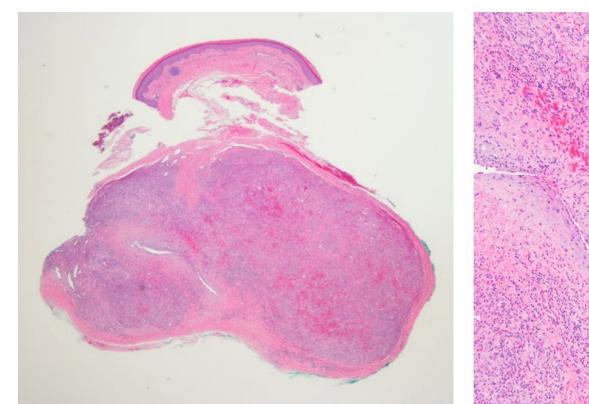
Genes Chromosomes Cancer. 2024;63:e23210.

Vascular tumors

Epithelioid hemangioma

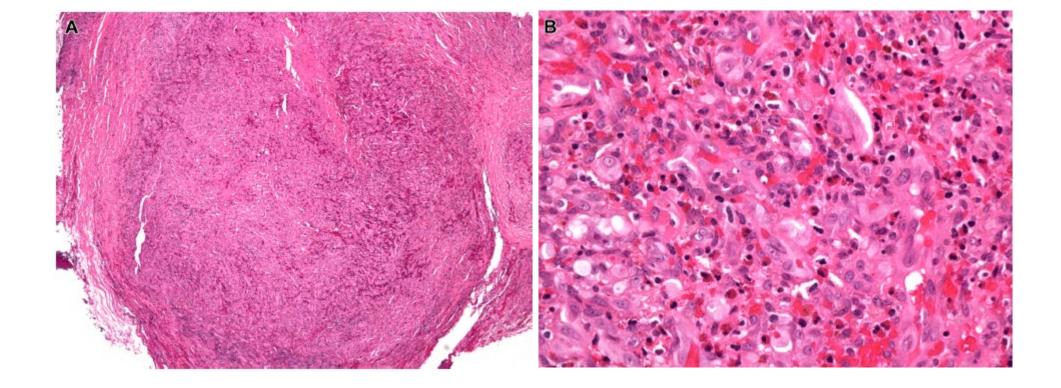
"Conventional" subtype

"Angiolymphoid hyperplasia with eosinophilia subtype"


"Cellular subtype"


Memorial Sloan Kettering Cancer Center

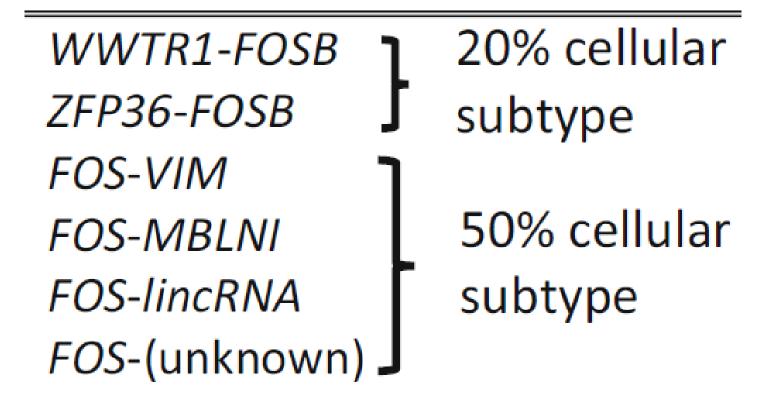
Seminars in Diagnostic Pathology 33 (2016) 284-293



Memorial Sloan Kettering Cancer Center

Surgical Pathology 8 (2015) 331-351

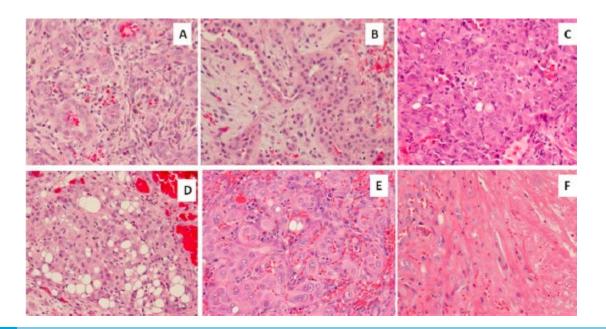
Memorial Sloan Kettering Cancer Center


Surgical Pathology 8 (2015) 331-351

Positive for vascular markers
•CD31, CD34, ERG
•Also positive for D2-40
Pitfall!!

Immunoreactivity for EMA and keratins may be seen

Genetic alteration (prevalence)



Virchows Archiv https://doi.org/10.1007/s00428-019-02651-4

ZFP36-FOSB Fusion Defines a Subset of Epithelioid Hemangioma with Atypical Features

Cristina R Antonescu,^{1*} Hsiao-Wei Chen,¹ Lei Zhang,¹ Yun-Shao Sung,¹ David Panicek,² Narasimhan P Agaram,¹ Brendan C Dickson,³ Thomas Krausz,⁴ and Christopher D Fletcher^{5*}

¹Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY ²Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY ³Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada ⁴Department of Pathology, University of Chicago, Chicago, IL ⁵Department of Pathology, Brigham and Women's Hospital, Boston, MA

Memorial Sloan Kettering Cancer Center

GENES, CHROMOSOMES & CANCER 53:951-959 (2014)

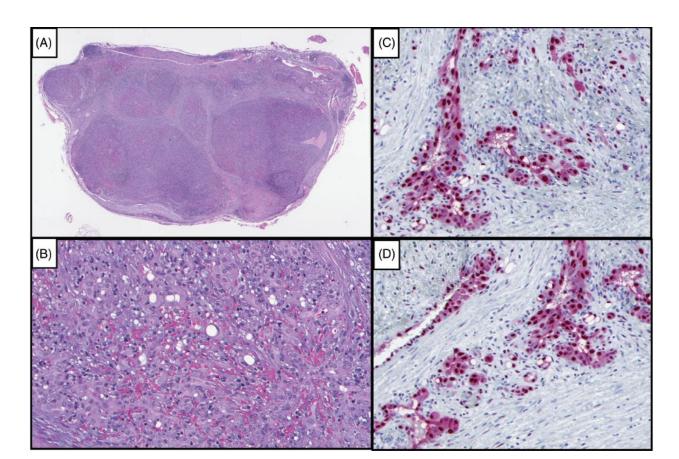
Frequent FOS Gene Rearrangements in Epithelioid Hemangioma

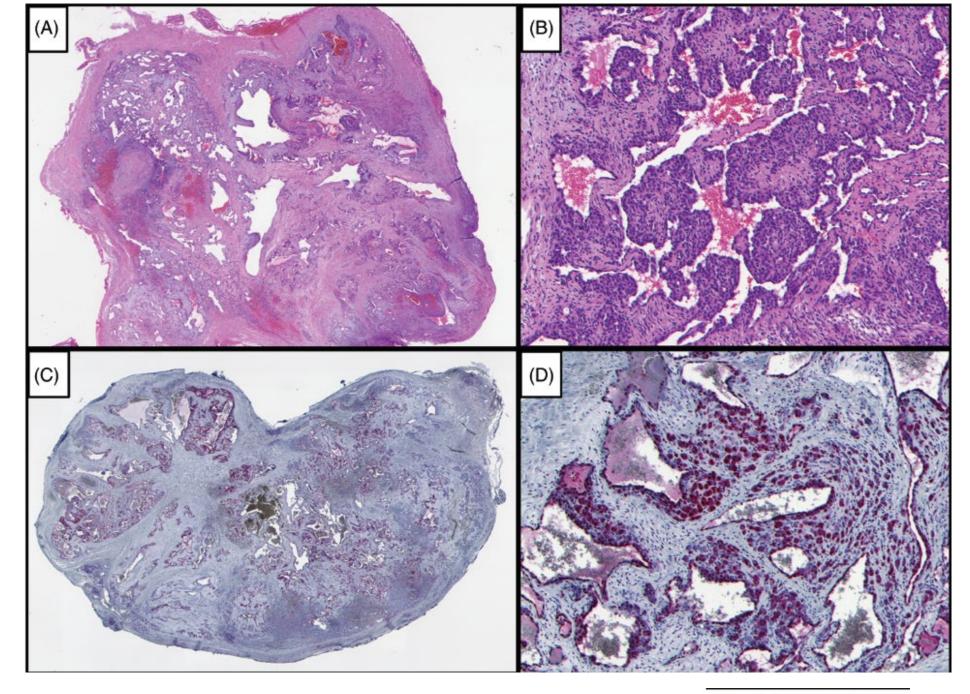
A Molecular Study of 58 Cases With Morphologic Reappraisal

Shih-Chiang Huang, MD,*† Lei Zhang, MD,† Yun-Shao Sung, MSc,† Chun-Liang Chen, MSc,† Thomas Krausz, MD,‡ Brendan C. Dickson, MD,§ Yu-Chien Kao, MD, Narasimhan P. Agaram, MBBS,† Christopher D.M. Fletcher, MD, FRCPath,¶ and Cristina R. Antonescu, MD†

Case Age/Sex		Depth	Location	Multifocal	Histologic Variant	Genetic Alterations	
1	45/M	Bone	Rib	No	Typical	FOS-LMNA	
2	56/F	Bone	Foot	Yes	Cellular	FOS-VIM	
3	38/F	Bone	Foot (cuboid)	NA	Cellular	FOS-VIM	
4	48/M	Cutaneous	Penis	Yes	Typical	FOS rearrangement	
5	63/M	Soft tissue	Am	No	Cellular	FOS rearrangement	
6	31/M	Bone	Foot	No	Cellular	FOS rearrangement	
7	38/M	Soft tissue	Arm	No	Typical	FOS rearrangement	
8	23/M	Bone	Chest wall	No	Typical	FOS rearrangement	
9	41/M	Bone	L5 vertebra	No	Cellular	FOS rearrangement	
10	67/M	Soft tissue	Scalp	NA	Cellular	FOS rearrangement	
11	46/F	Bone	Metatarsal	NA	Cellular	FOS rearrangement	
12	45/F	Soft tissue	Foot	NA	Cellular	FOS rearrangement	
13	54/M	Soft tissue	Arm	NA	Cellular	FOS rearrangement	
14	67/F	Soft tissue	Hand	NA	Cellular	FOS rearrangement	
15	15/M	Bone	Toe	No	Typical	FOS rearrangement	
16	15/M	Bone	Femur	No	Cellular	FOS rearrangement	
17	18/M	Bone	Radius	No	Cellular	FOS rearrangement	

(Am J Surg Pathol 2015;39:1313-1321)

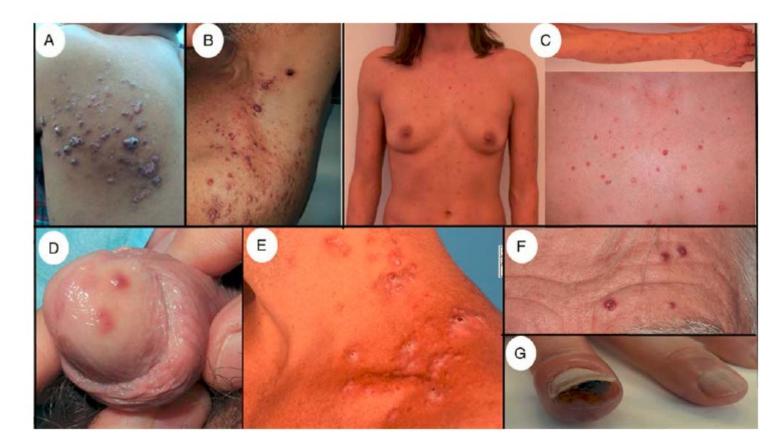




ORIGINAL ARTICLE

FOSB immunoreactivity in endothelia of epithelioid hemangioma (angiolymphoid hyperplasia with eosinophilia)

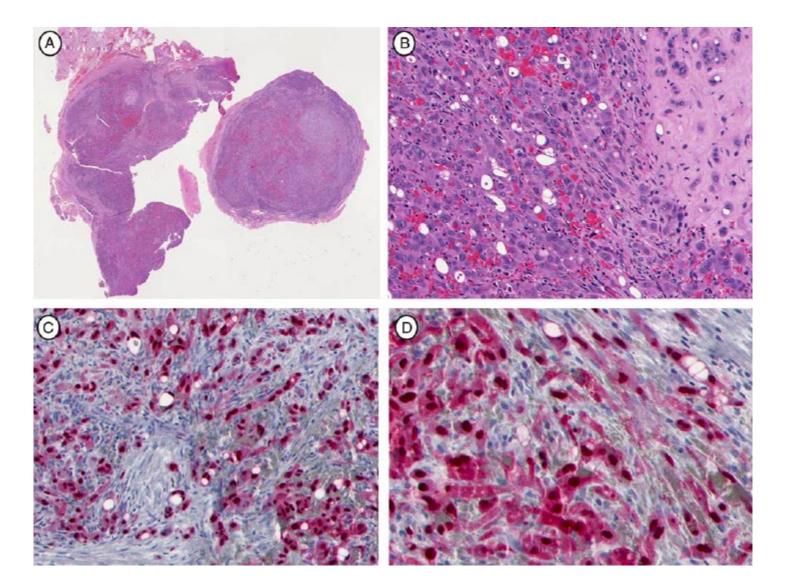
Ana Ortins-Pina¹ | Mar Llamas-Velasco² | Sara Turpin³ | Luís Soares-de-Almeida^{1,4,5} | Paulo Filipe^{1,4,5} | Heinz Kutzner⁶



J Cutan Pathol. 2018;45:395-402.

Multiple Eruptive Epithelioid Hemangiomas A Subset of Cutaneous Cellular Epithelioid Hemangioma With Expression of FOS-B

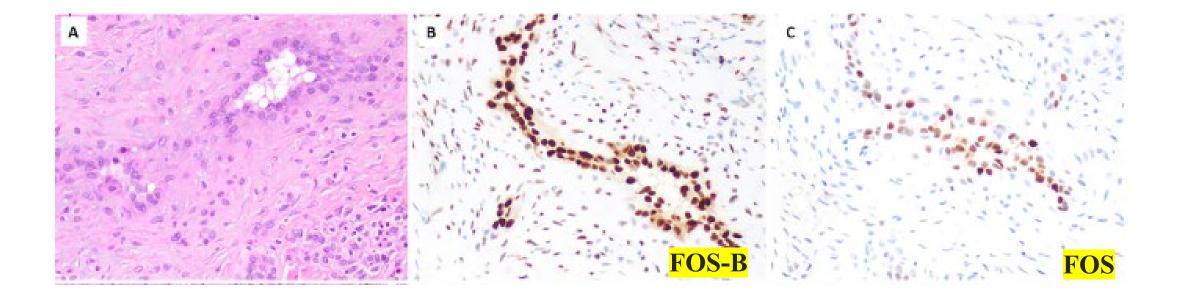
Mar Llamas-Velasco, MD,* Werner Kempf, MD,† Carlo Cota, MD,‡ Maria Teresa Fernández-Figueras, MD,§ Joyce Lee, MD,|| Gerardo Ferrara, MD,¶ Christian Sander, MD,# Philip E. Shapiro, MD,** Luis Requena, MD,†† and Heinz Kutzner, MD,‡‡



No.	Age (y)/ Sex	Location	Clinical	Patt	Coll	NP	Ki67 (%)	IHQ/FISH Myc	IHQ/FISH CAMTA-1	IHQ FOS-B	Freatment
1	85/M	Left-side forehead	Erythematous-violaceous papules. Asymptomatic	U	Y	Р	<5	Neg	Neg	Pos	EC, Qx
2	50/M	Left scapular area	Painless nodules scattered with profuse bleeding upon trauma	М	Y	Р	<5	Neg	Neg	Pos	EC, Qx, ryotherapy
3	UK/M	Left hand and forearm	Purplish nodules. Le lesion on the fourth digit of the left hand progressively became enlarged and ulcerated	М	Ν	Р	5	Neg	Neg	Pos	EC, miquimod once a day for 3 wk
4	38/F	Arms, legs, and trunk	Slightly erythematous and skin- colored dome-shaped papules and plaques ranging from 0.4 to 1.2 cm, with symmetrical distribution	М	N	Α	<5	Neg	Neg	Pos	Acitretin 0.6 mg/kg for 2 mo
5	73/M	Face	Angiomatous papules in an agminated fashion on the centrofacial region	М	Y	Р	5	Neg	Neg	Pos	Qx
5	73/M	Idem	Idem	U	N	Р	>15	Neg	Neg	Pos	Qx
6	49/M	Neck	Purple papule slightly pruritic	M	Y	Р	20	Neg	Neg	Pos	Qx
6	49/M	Left lateral forehead	Purple papule asymptomatic	U	Y	Р		Neg	Neg	Pos	Qx
7	45/M	Penis	Slightly painful purplish papules. No erectile dysfunction	U	N	Р	<5	Neg	Neg	Pos	Qx
7	45/M	Idem	Idem	M	N	Р	<5	Neg	Neg	Pos	Qx
8	34/M	Left shoulder	Persistent erythematous papules	Μ	N	Р	5-10	Neg	Neg	Pos	Laser, EC
9	38/M	Left Shoulder, neck, and arm	Persistent. The patient developed anemia recently	М	N	Α	5	Neg	Neg	Pos	Qx
10	45/F	Face, both shoulders, axilla, and genital area	Persistent	U	Y	Р	5	Neg	Neg	Pos	Qx
11	27/M	Penis	Persistent lesions	U	N	Р	<5	Neg	Neg	Pos	Qx
12	54/M	Right arm	Asymptomatic nodules	U	N	Р	<1	Neg	Neg	Pos	Qx
13	67/M	Trunk and extremities	Asymptomatic nodules	U	N	Р	<5	Neg	Neg	Pos	Qx

Memorial Sloan Kettering Cancer Center

Memorial Sloan Kettering Cancer Center

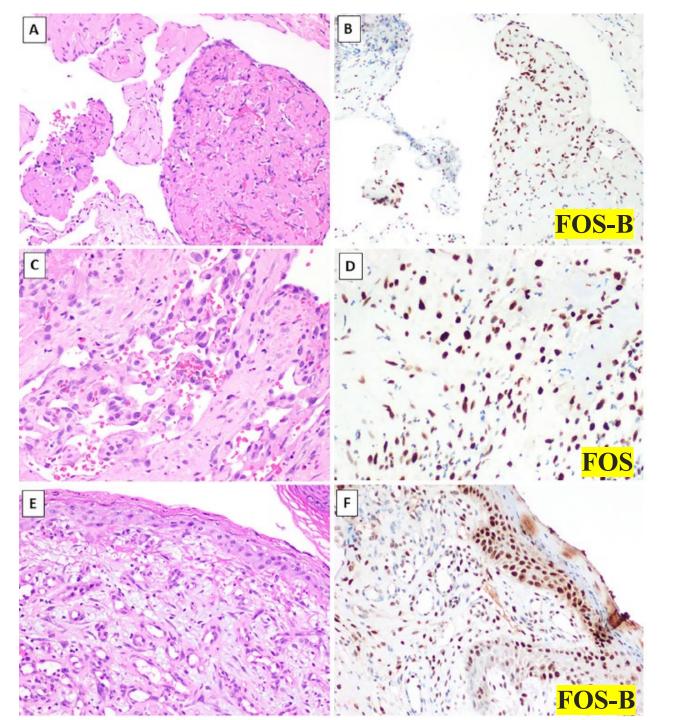


Original Article

Immunohistochemistry for FOSB and FOS is a Useful Ancillary Tool in the Diagnosis of Epithelioid Hemangioma but There are Pitfalls in Interpretation Including Expression in Other Vascular Lesions

Kwan Yee Tsui, BMedSci¹, Fiona Maclean, MBBS, FRCPA^{1,2,3}, Denis Moir, MBBS, FRCPA¹, Alison Cheah, MBBS, FRCPA¹, Fiona Bonar, MBBS, FRCPA¹, Joel Tabot, BSc¹, Anthony J. Gill, MD, FRCPA, AM^{2,4,5}, and A. Cristina Vargas, MBBS, PhD, FRCPA (D)^{1,2,4}

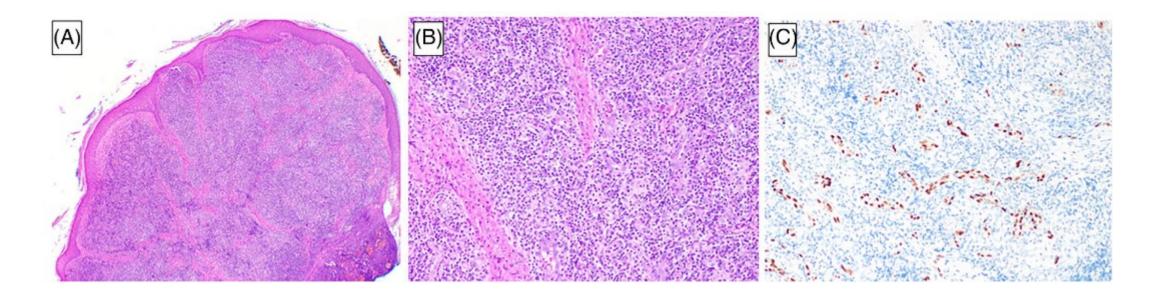
International Journal of Surgical Pathology 2023, Vol. 31(3) 280–288



Papillary endothelial hyperplasia

Papillary endothelial hyperplasia

Lobular capillary hemangioma



International Journal of Surgical Pathology 2023, Vol. 31(3) 280–288

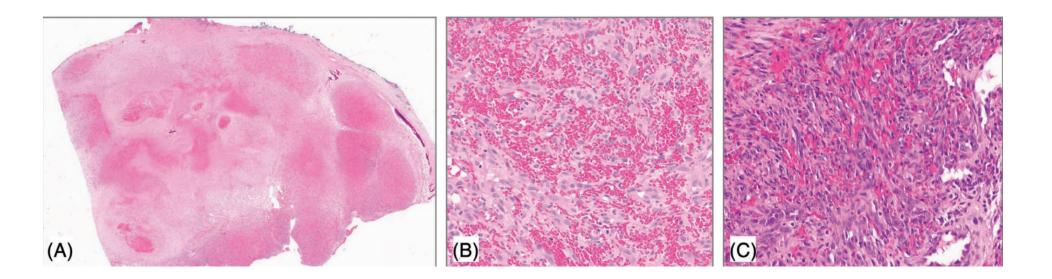
Inflammatory lobular hemangioma (T-cell-rich angiomatoid polypoid pseudolymphoma)—Assessment of FOS/FOSB and lymphoid markers and comparison with epithelioid hemangioma

Ana Cristina Vargas^{1,2,3} | Fiona M. Maclean^{1,2,4} | Kwan Yee Tsu¹ | Leanne Ma¹ | Denis Moir¹ J Cutan Pathol. 2022;49:1067–1073.

Immunohistochemical markers (sensitivity)

FOSB 75% conventional subtype 100% ALHE subtype 10% cellular subtype

Virchows Archiv https://doi.org/10.1007/s00428-019-02651-4

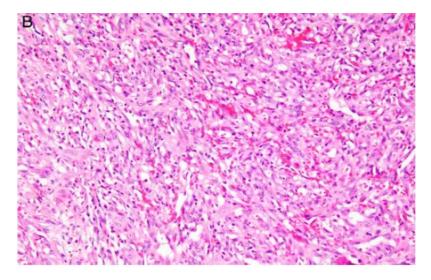

Memorial Sloan Kettering **Cancer** Center

WILEY

Epithelioid hemangioma of bone harboring FOS and FOSB gene rearrangements: A clinicopathologic and molecular study

Yusuke Tsuda¹ | Albert J. H. Suurmeijer² | Yun-Shao Sung¹ | Lei Zhang¹ | John H. Healey³ | Cristina R. Antonescu¹



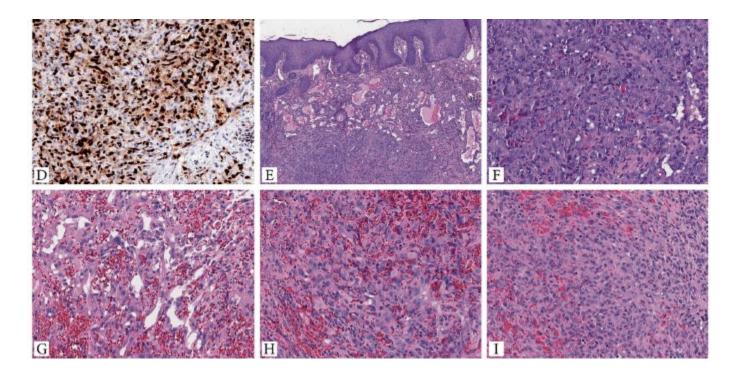

Epithelioid and Spindle Cell Hemangioma

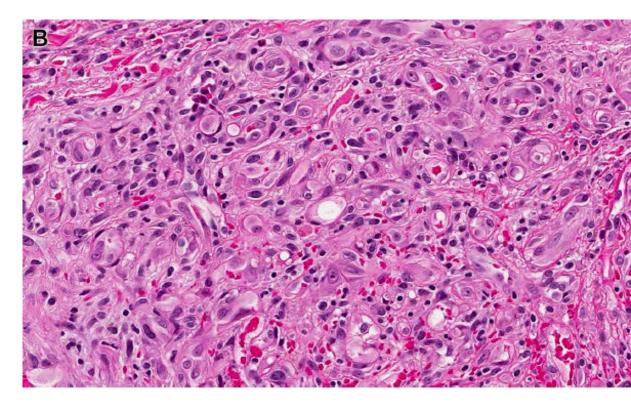
Clinicopathologic Analysis of 18 Primary Bone and Soft Tissue Tumors Highlighting a Predilection for the Hands and Feet, Frequent Multicentricity, and Benign Behavior

David J. Papke Jr, MD, PhD,* Jyothi Jagannathan, MD,† Fei Dong, MD,* Brendan C. Dickson, MD, MSc,‡§ Fredrik Mertens, MD, PhD,|| Jason L. Hornick, MD, PhD,* and Christopher D.M. Fletcher, MD, FRCPath*

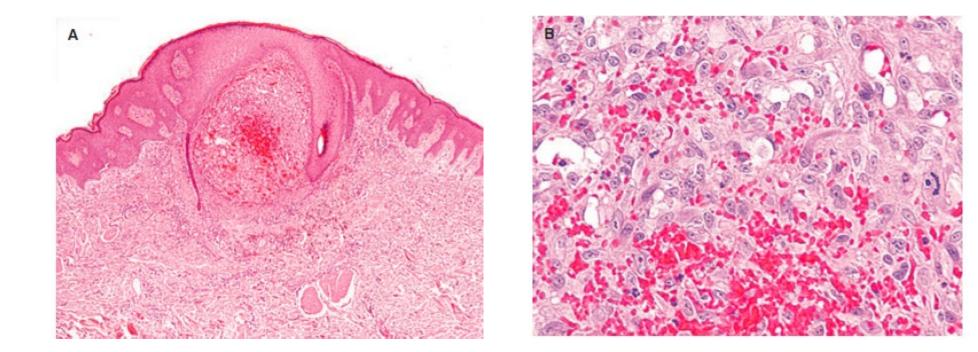
Am J Surg Pathol 2022

Memorial Sloan Kettering Cancer Center


ARTICLE

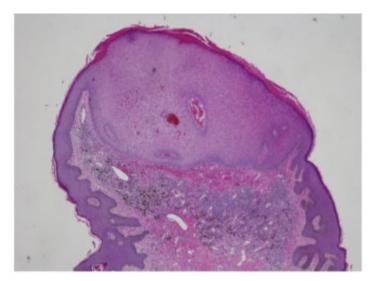

Novel GATA6-FOXO1 fusions in a subset of epithelioid hemangioma

Cristina R. Antonescu ^[b] · Shih-Chiang Huang ^[b] · Yun-Shao Sung¹ · Lei Zhang¹ · Burkhard M. Helmke³ · Martina Kirchner⁴ · Albrecht Stenzinger⁴ · Gunhild Mechtersheimer⁴



Cutaneous Epithelioid Angiomatous Nodule

Memorial Sloan Kettering Cancer Center


Histopathology 2008, 52, 661–673.

Multifocal eruptive cutaneous epithelioid angiomatous nodules

Lisa Blackwood, MD,^a Iona Chapman, MD,^a Milena Lyon, MD,^a and Claudia Hernandez, MD^b *Chicago, Illinois*

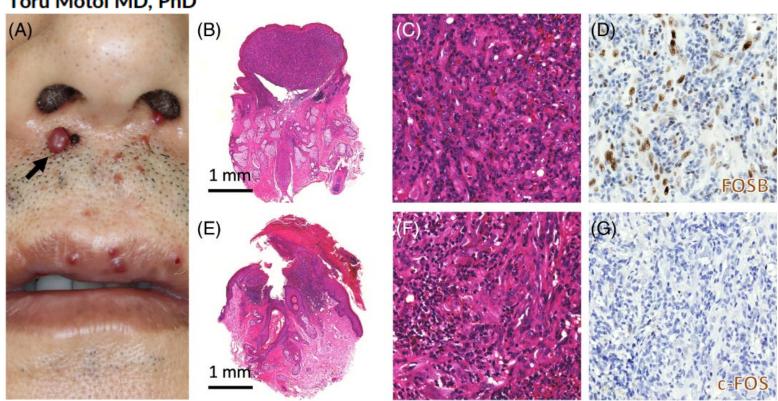
Memorial Sloan Kettering Cancer Center

Cutaneous Epithelioid Angiomatous Nodule: A Case Series and Proposed Classification

Omar P. Sangüeza, MD,* Sarah N. Walsh, MD,* Daniel J. Sheehan, MD,* Almudena Fernández Orland, MD,* Beatriz Llombart, MD,† and Luis Requena, MD,‡

(Am J Dermatopathol 2008;30:16-20)

In conclusion, we have reported 10 additional cases of CEAN, a newly described vascular proliferation with prominent epithelioid features. Recognition of this lesion is important, given its uniformly benign behavior and potential for confusion with other malignant vascular neoplasms. Given that the histology is not entirely distinctive and has overlapping features with EH, we feel CEAN is best classified as a variant of EH or at least one manifestation within the same spectrum of benign vascular proliferations.

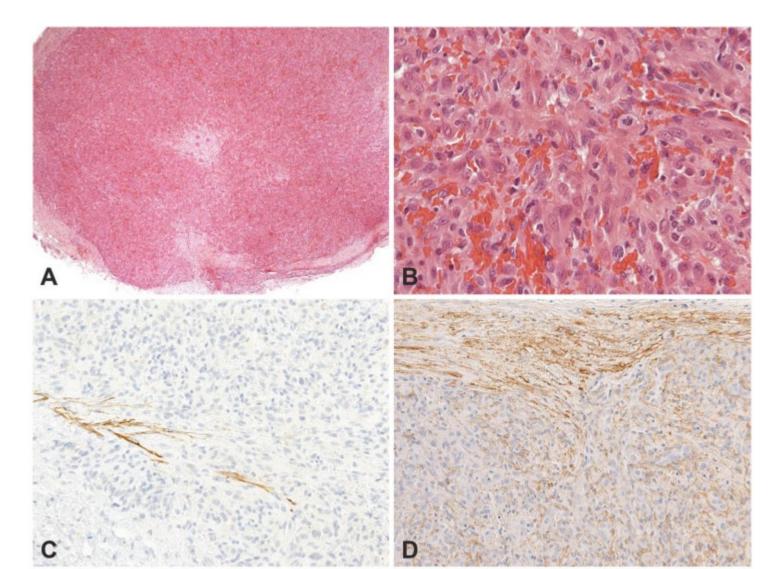

Memorial Sloan Kettering Cancer Center

Categorization of cutaneous epithelioid angiomatous nodule as epithelioid hemangioma or angiolymphoid hyperplasia with eosinophilia: Clinicopathologic, immunohistochemical, and molecular analyses of seven lesions

Keisuke Goto MD^{1,2,3,4,5,6,7,8} | Kohei Ogawa MD, PhD⁹ | Tatsuo Fukai MD, PhD¹⁰ | Keiko Miura MD¹¹ | Shigeto Yanagihara MD, PhD¹² | Keiichiro Honma MD, PhD¹ | Toru Motoi MD, PhD²

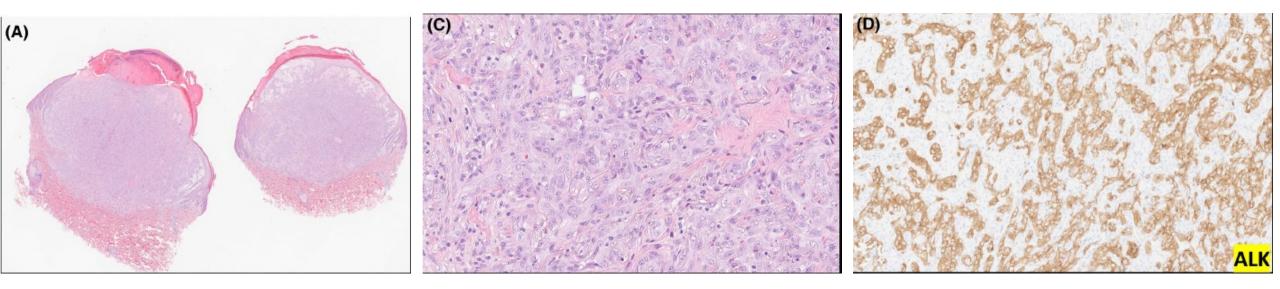
J Cutan Pathol. 2022;49:765-771.

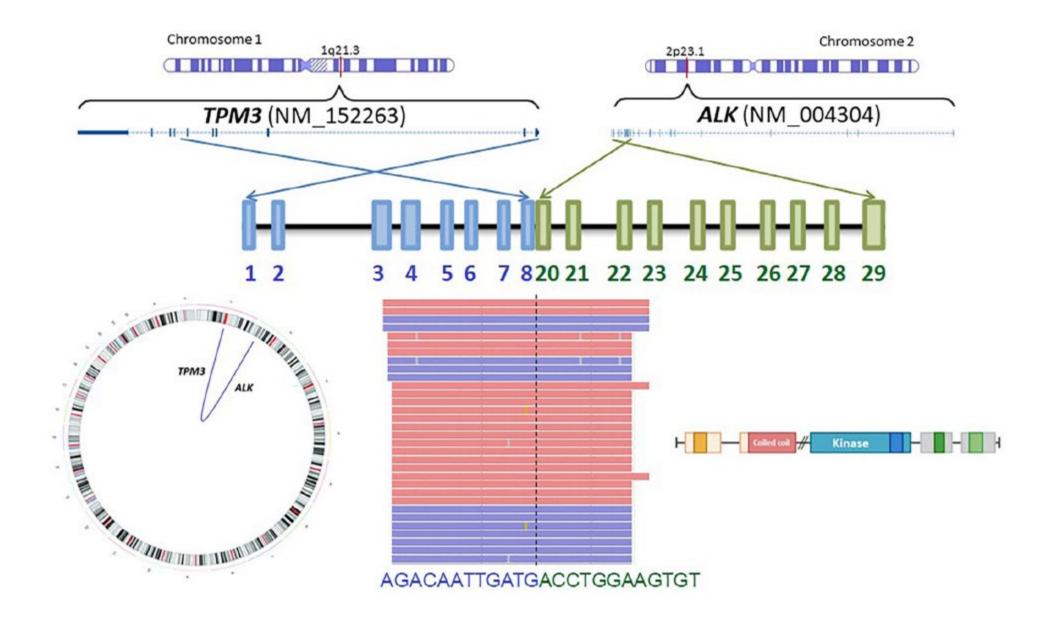
Tumor Type	Total Cases	FOSB Positive (%)*	0	1+	2+	3+	4+
Pseudomyogenic hemangioendothelioma	50	48 (96)	2	0	0	1	47
Epithelioid hemangioma	24	13 (54)	6	4	1	6	7
Conventional	8	6 (75)	0	1	1	4	2
Cellular	10	1 (10)	6	3	0	0	1
Angiolymphoid hyperplasia with eosinophilia	6	6 (100)	0	0	0	2	4
Other endothelial neoplasms and histologic mimics	200	7 (4)	142	42	9	4	3
Epithelioid angiosarcoma	20	1 (5)	11	7	1	0	1
Spindle-cell angiosarcoma	10	1 (10)	9	0	0	1	0
Epithelioid hemangioendothelioma	20	1 (5)	15	4	0	1	0
Epithelioid angiomatous nodule	10	0	9	1	0	0	0
Epithelioid sarcoma	20	0	10	10	0	0	0
Spindle-cell squamous cell carcinoma	20	0	16	4	0	0	0
Spindle-cell rhabdomyosarcoma	20	0	19	1	0	0	0
Leiomyosarcoma	20	0	18	2	0	0	0
Cellular benign fibrous histiocytoma	20	0	12	4	4	0	0
Nodular fasciitis	20	2 (10)	7	7	4	2	0
Proliferative fasciitis	20	2 (10)	16	2	0	0	2


(Am J Surg Pathol 2016;00:000-000)

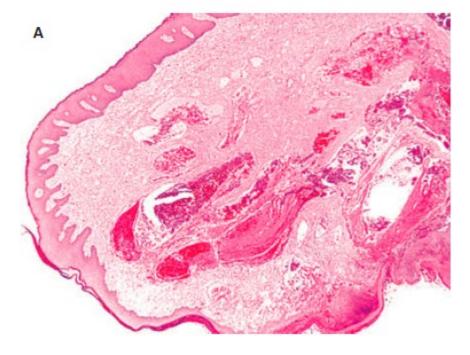
Cutaneous intravascular epithelioid hemangioma. A clinicopathological and molecular study of 21 cases

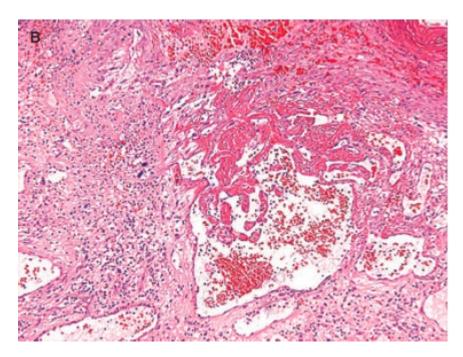
Boštjan Luzar¹ · Eleni leremia² · Cristina R. Antonescu³ · Lei Zhang³ · Eduardo Calonje⁴

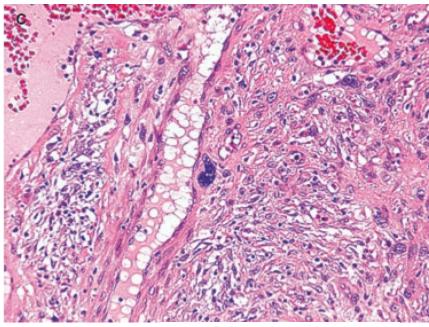



Modern Pathology (2020) 33:1527-1536

A cutaneous epithelioid vascular tumor harboring a TPM3::ALK fusion

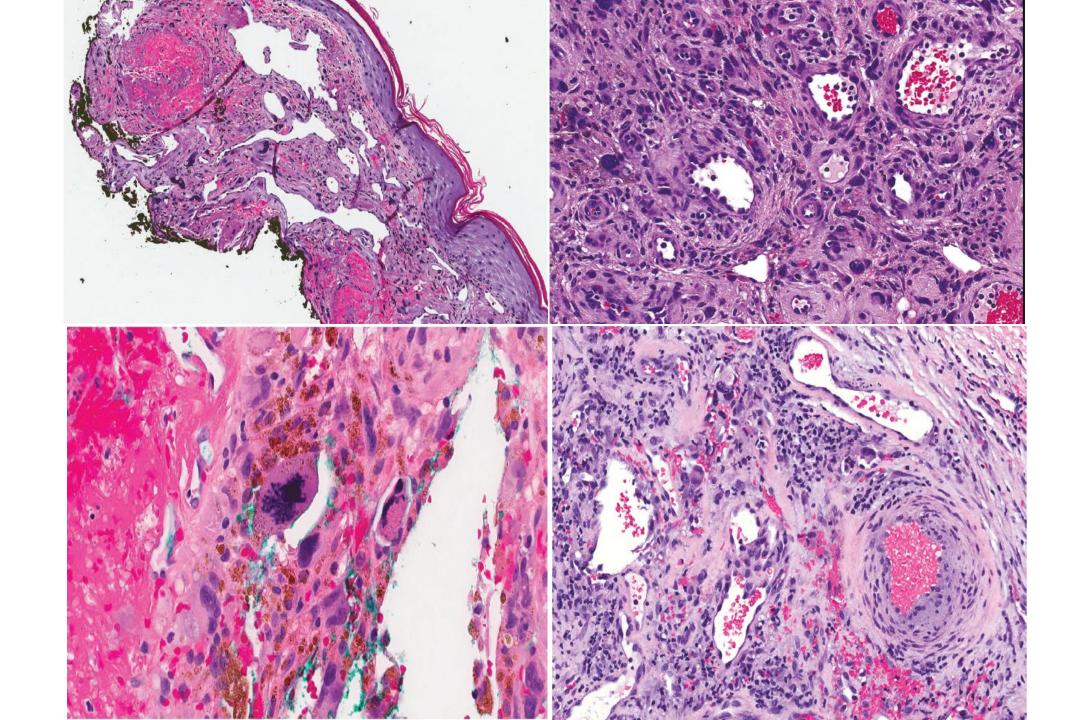

Konstantinos Linos 💿 | Jason C. Chang 💿 | Klaus J. Busam


Genes Chromosomes Cancer. 2023;1-5.



Symplastic hemangioma

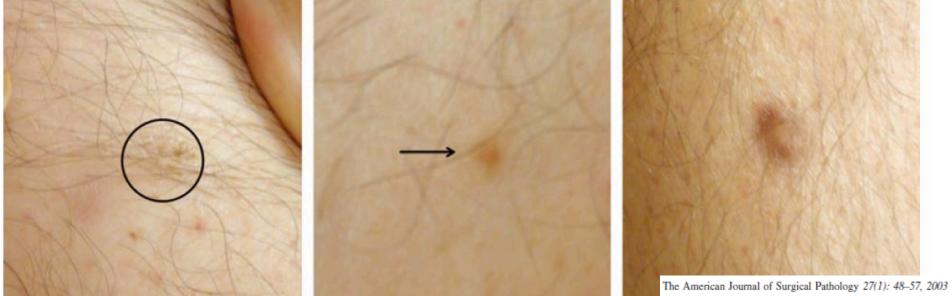
Histopathology 2008, 52, 661-673.


Cutaneous symplastic hemangioma: A series of four cases

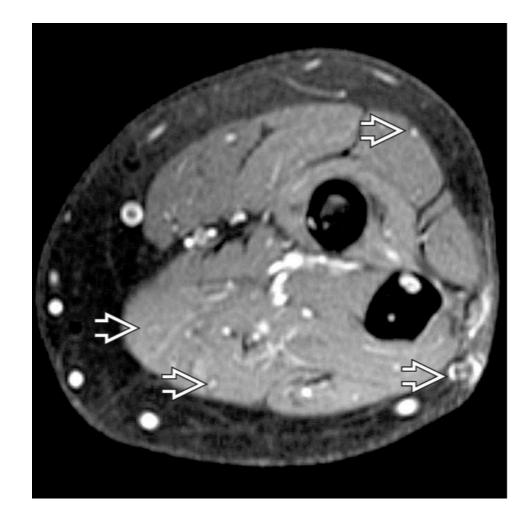
Derek Frew DO ^(D) | Richard Scarborough DO | Jennifer S. Ko MD, PhD ^(D) | Steven D. Billings MD ^(D)

J Cutan Pathol. 2021;1–6.

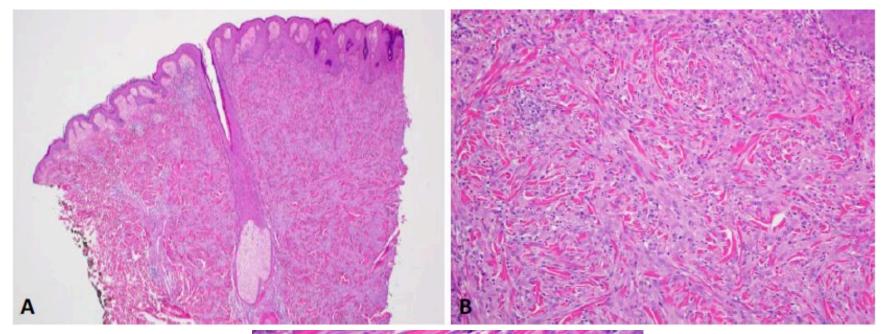
Pseudomyogenic Hemangioendothelioma

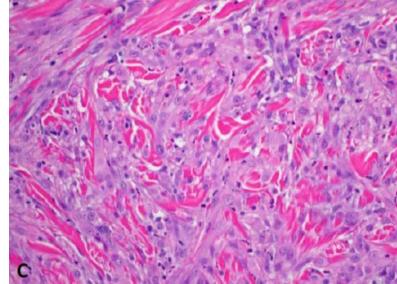

- Typically young adults with marked male (4:1) predilection
- Rare soft tissue of intermediate biological potential
 - Propensity for local recurrence or frequent (and characteristic) development of additional nodules in the same region
 - Metastasis is rare

• Conservative management is the mainstay of therapy



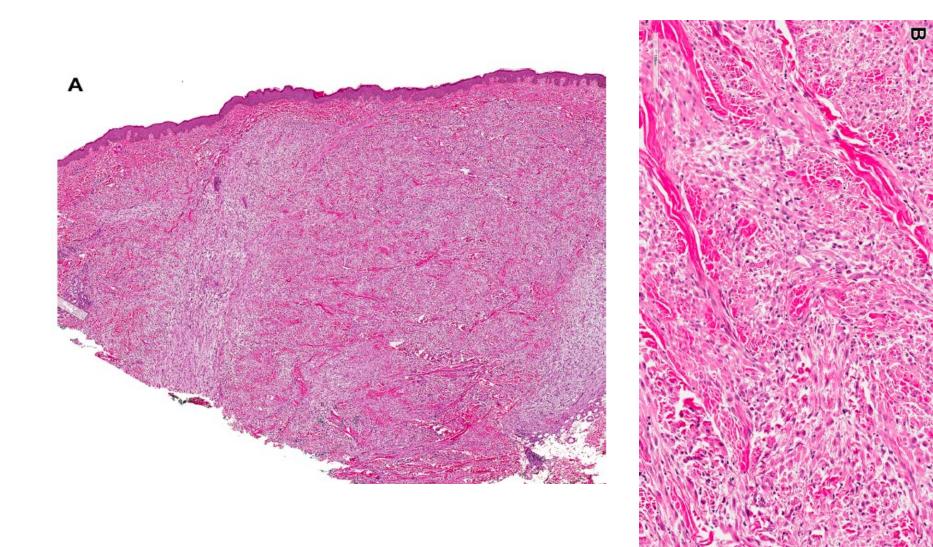
Radiologic findings





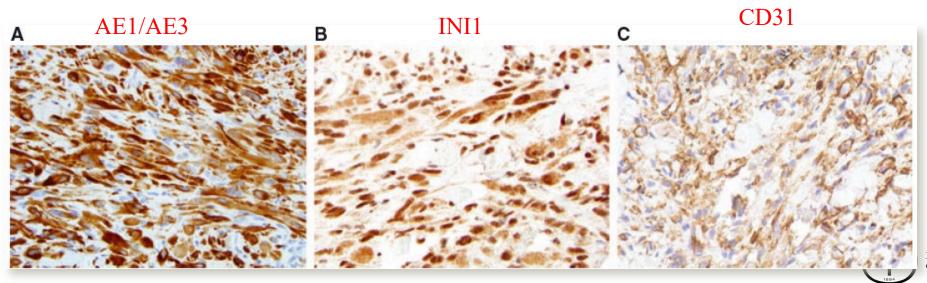
Memorial Sloan Kettering Cancer Center

•Diagnostic Pathology: Soft Tissue Tumors 2nd Ed 2015, Else


Microscopic findings

POSITIVE

CKAE1/3


ERG

CD31 (variable)

NEGATIVE

CD34

INI-1 (SMRCB1) is retained

Memorial Sloan Kettering Cancer Center

Other Differential Diagnosis

- Spindle cell squamous cell carcinoma
- Cellular benign fibrous histiocytoma
- Smooth muscle neoplasms
- Epithelioid Hemangioendothelioma

Journal of Pathology J Pathol 2014; 232: 534–540 Published online 29 January 2014 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/path.4322

A novel SERPINE1 – FOSB fusion gene results in transcriptional up-regulation of FOSB in pseudomyogenic haemangioendothelioma

Charles Walther,^{1,2*} Johnbosco Tayebwa,¹ Henrik Lilljebjörn,¹ Linda Magnusson,¹ Jenny Nilsson,¹ Fredrik Vult von Steyern,³ Ingrid Øra,⁴ Henryk A Domanski,² Thoas Fioretos,¹ Karolin H Nord,¹ Christopher DM Fletcher⁵ and Fredrik Mertens¹

Expanding the Spectrum of Genetic Alterations in Pseudomyogenic Hemangioendothelioma With Recurrent Novel ACTB-FOSB Gene Fusions

Narasimhan P. Agaram, MBBS, Lei Zhang, MD, Paolo Cotzia, MD, and Cristina R. Antonescu, MD

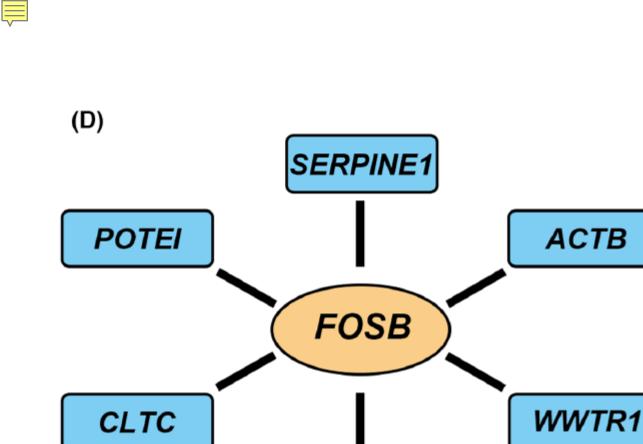
(Am J Surg Pathol 2018;42:1653-1661)

Fusion of the Genes *WWTR1* and *FOSB* in Pseudomyogenic Hemangioendothelioma

IOANNIS PANAGOPOULOS¹, INGVILD LOBMAIER², LUDMILA GORUNOVA¹ and SVERRE HEIM^{1,3}

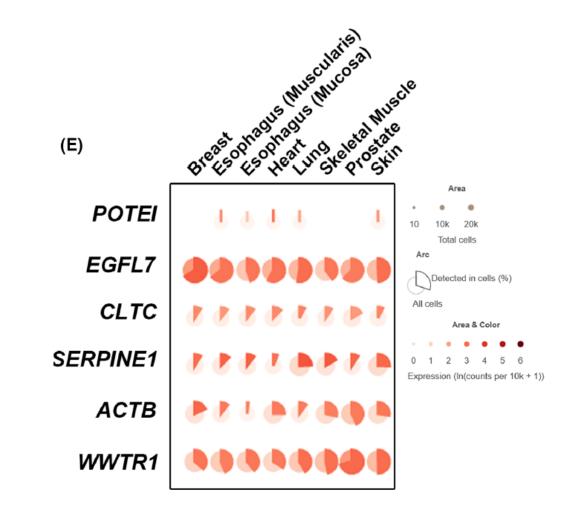
CANCER GENOMICS & PROTEOMICS 16: 293-298 (2019)

A novel *CLTC-FOSB* gene fusion in pseudomyogenic hemangioendothelioma of bone


Julia A. Bridge^{1,2} | Janos Sumegi¹ | Thomas Royce¹ | Michael Baker³ | Konstantinos Linos³ Genes Chromosomes Cancer. 2021;60:38–42

Novel EGFL7–FOSB fusion in pseudomyogenic haemangioendothelioma with widely metastatic disease

Histopathology 2021


Primary pseudomyogenic haemangioendothelioma of the testis with a nove POTEI::FOSB gene fusion

EGFL7

ACTB

Memorial Sloan Kettering Cancer Center

Histopathology, 84, 707–718. 2023

Diagnostic Pathology

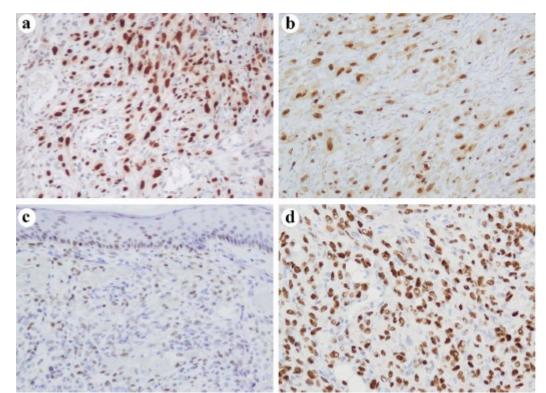
RESEARCH

CrossMark

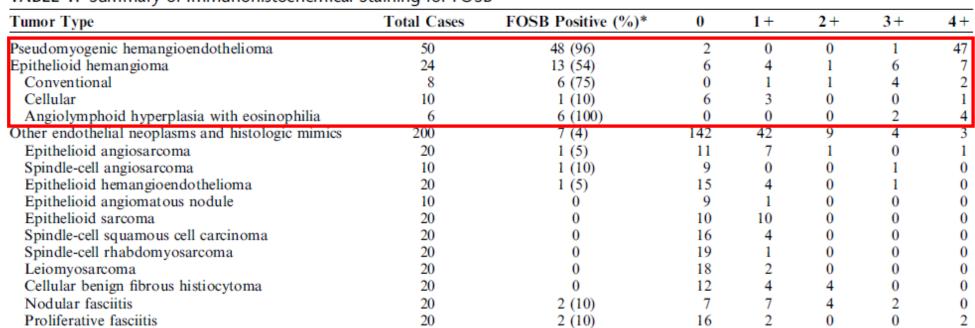
Diagnostic utility of FOSB immunohistochemistry in pseudomyogenic hemangioendothelioma and its histological mimics Shintaro Sugita¹, Hiroshi Hirano¹, Noriaki Kikuchi¹, Terufumi Kubo¹, Hiroko Asa

Shintaro Sugita¹, Hiroshi Hirano¹, Noriaki Kikuchi¹, Terufumi Kubo¹, Hiroko Asanuma¹, Tomoyuki Aoyama¹, Makoto Emori² and Tadashi Hasegawa^{1*}

FOSB is a Useful Diagnostic Marker for Pseudomyogenic Hemangioendothelioma


Yin P. Hung, MD, PhD, Christopher D.M. Fletcher, MD, FRCPath, and Jason L. Hornick, MD, PhD

(Am J Surg Pathol 2016;00:000-000)



Memorial Sloan Kettering Cancer Center

Case		Histology	Location	FOSB		CAN	CAMTA1	
(y)/sex				96	Intensity	96	Intensi	
1	20/F	PHE	Bone (mul) ^a	100	Strong	-	-	
2	36/M	PHE	Bone (mul) ^a	100	Strong	NA	NA	
3	15/F	PHE	Thigh	100	Strong	-	-	
4	54/M	PHE	Calcaneus	100	Strong	-	-	
5	62/F	EHE	Forehead	-	-	100	Moder	
6	71/F	EHE	Femur	10	Weak	100	Moder	
7	73/F	EHE	Liver (mul)	-	-	100	Strong	
8	86/F	EHE	Upper arm	10	Weak	100	Strong	
9	68/F	EHE	Forearm	10	Weak	100	Strong	
10	32/M	EHE	Liver (mul)	-	-	100	Strong	
11	72/M	AS	Vertebra	10	Weak	-	-	
12	48/M	AS	Humerus	10	Weak	10	Weak	
13	89/M	AS	Head	-	-	10	Weak	
14	62/F	AS	Head	10	Weak	-	-	
15	70/M	AS	Head	10	Weak	10	Weak	
16	82/F	AS	Head	-	-	-	-	
17	74/F	AS	Upper arm	10	Weak	10	Weak	
18	77/M	AS	Head	10	Weak	10	Weak	
19	89/F	KS	Trunk, limbs (mul)	10	Weak	-	-	
20	68/M	KS	Trunk, limbs (mul)	10	Weak	10	Weak	
21	76/M	KS	Larynx, limbs (mul)	10	Weak	-	-	
22	82/M	KS	Limbs (mul)	10	Weak	-	-	
23	75/F	ES	Thigh	10	Weak	-	-	
24	73/F	ES	Thigh	10	Weak	-	-	
25	55/M	ES	Forearm	-	-	-	-	
26	30/M	ES	Thigh	10	Weak	-	-	
27	80/F	ES	Genital region	-	-	-	-	

Sugita et al. Diagnostic Pathology (2016) 11:75 DOI 10.1186/s13000-016-0530-2

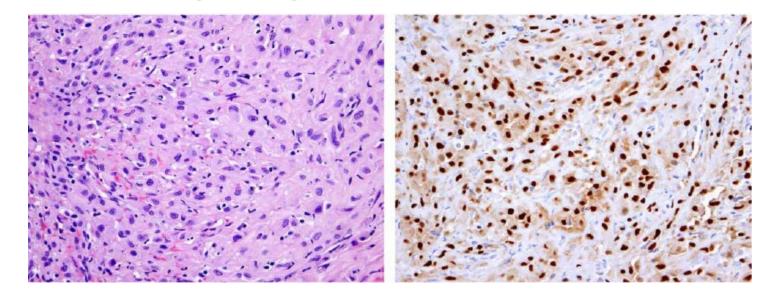


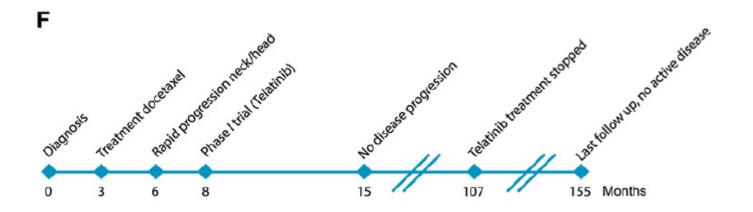
TABLE 1. Summary of Immunohistochemical Staining for FOSB

Ē

0, <5%; 1+, 5% to 25%; 2+, 25% to 50%; 3+, 50% to 75%; 4+, 75% to 100%.

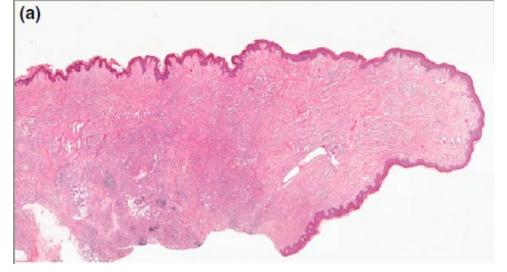
*FOSB positivity was defined as moderate-to-strong nuclear staining in at least 50% of cells.

Biology of Human Tumors

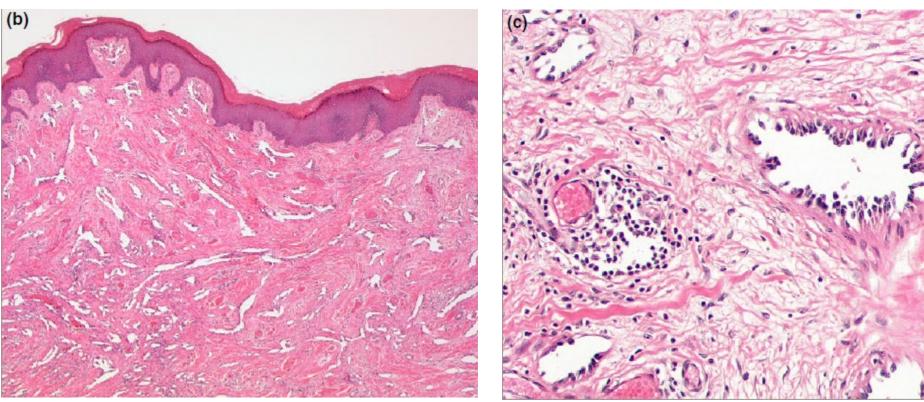

Ę

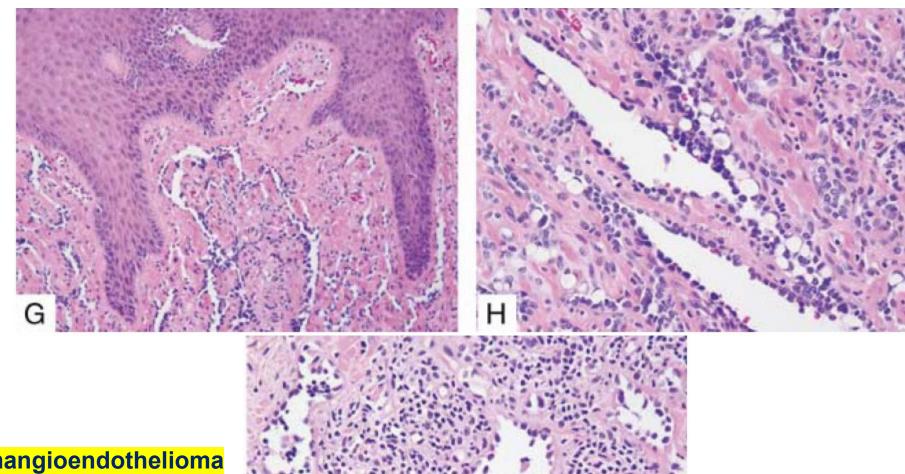
Telatinib Is an Effective Targeted Therapy for Pseudomyogenic Hemangioendothelioma

David G.P. van IJzendoorn¹, Stefan Sleijfer², Hans Gelderblom³, Ferry A.L.M. Eskens², Geert J.L.H. van Leenders⁴, Karoly Szuhai⁵, and Judith V.M.G. Bovée¹ Clinical Cancer Research

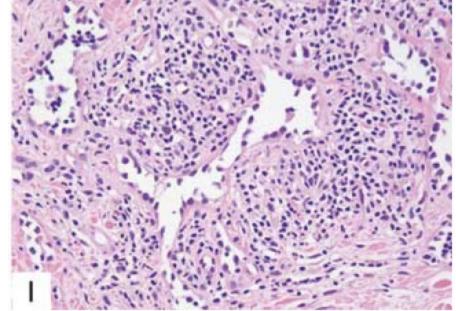

Clin Cancer Res; 24(11) June 1, 2018

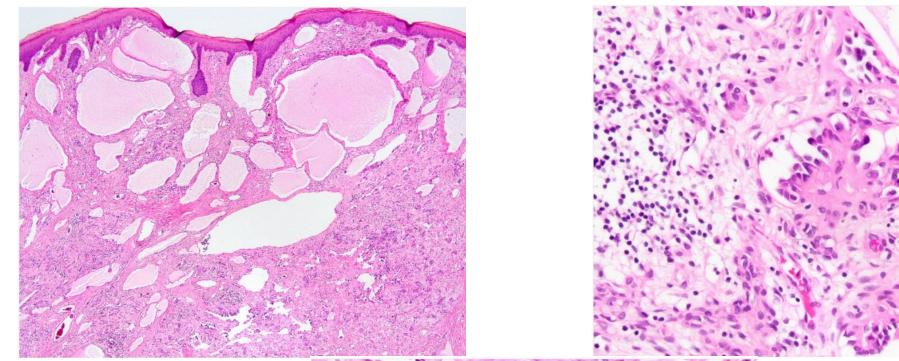
Hobnail Hemangioendotheliomas


- Locally aggressive; rarely metastasizing
- Composed at least in part of hobnail endothelial proliferations with a lymphatic endothelial phenotype
- Superficially located, mainly occurs in adults
- Preferentially in the dermis and subcutaneous tissue of distal extremities



Retiform Hemangioendothelioma


Ę





Retiform Hemangioendothelioma

Papillary intralymphatic angioendothelioma

Recurrent YAP1 and MAML2 Gene Rearrangements in Retiform and Composite Hemangioendothelioma

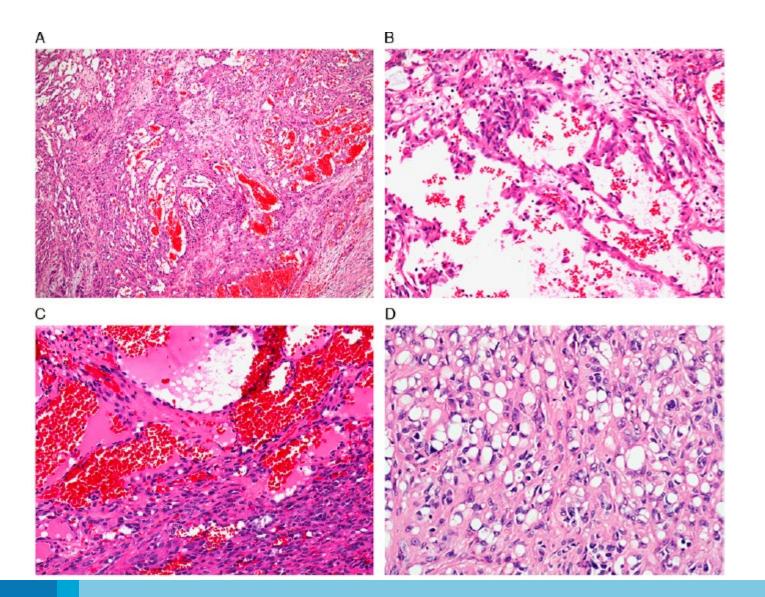
Cristina R. Antonescu, MD,* Brendan C. Dickson, MD,† Yun-Shao Sung, MSc,* Lei Zhang, MD,* Albert J.H. Suurmeijer, MD,‡ Albrecht Stenzinger, MD,§ Gunhild Mechtersheimer, MD,§ and Christopher D.M. Fletcher, MD||

HE #	НЕ Туре	Age/Sex	Site	Genetic Abnormality
1	RHE	10/male	Knee	YAP1-MAML2*†
2	RHE	31/male	Shoulder	YAP1†
3	RHE	23/male	Fourth toe	YAP1-MAML2†
4	RHE	10/male	Buttock	YAP1†
5	RHE	50/female	Knee	YAP1†
6	CHE	9/female	Foot	YAPI-MAML2†
7	CHE	9/female	Heel	YAP1-MAML2†
8	CHE	7/female	Middle finger	YAP1-MAML2 [†]
9	NE- CHE	37/male	Pancreas, liver, and lung lesions	PTBP1-MAML2*

Am J Surg Pathol 2020;44:1677-1684

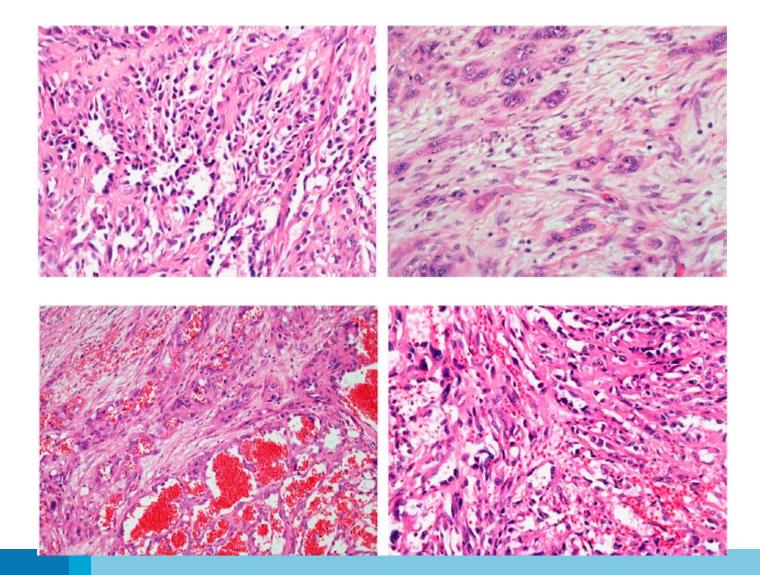
Composite Hemangioendothelioma (CHE)

- Locally aggressive, rarely metastasizing endothelial neoplasm with an admixture of vascular components
- Neuroendocrine expression may be present
- Chiefly in young adults
- Very rare pediatric or congenital cases
- Predominantly skin and superficial soft tissues
- High rate of local recurrence (50%)
- Low risk of lymph node (6%) or distant metastases(1%)
- Neuroendocrine CHE appears to be considerably more aggressive


Morphological patterns

- Retiform Hemangioendothelioma-like
- Epithelioid Hemangioendothelioma-like
- Spindle cell Hemangioma-like
- Low-Grade Angiosarcoma-like

Ę



Memorial Sloan Kettering Cancer Center

(Adv Anat Pathol 2015;22:254-259)

Memorial Sloan Kettering Cancer Center

(Adv Anat Pathol 2015;22:254-259)

Recurrent YAP1 and MAML2 Gene Rearrangements in Retiform and Composite Hemangioendothelioma

Cristina R. Antonescu, MD,* Brendan C. Dickson, MD,† Yun-Shao Sung, MSc,* Lei Zhang, MD,* Albert J.H. Suurmeijer, MD,‡ Albrecht Stenzinger, MD,§ Gunhild Mechtersheimer, MD,§ and Christopher D.M. Fletcher, MD||

Am J Surg Pathol 2020;44:1677-1684

HE #	НЕ Туре	Age/Sex	Site	Genetic Abnormality
1	RHE	10/male	Knee	YAP1-MAML2*†
2	RHE	31/male	Shoulder	YAP1†
3	RHE	23/male	Fourth toe	YAP1-MAML2†
4	RHE	10/male	Buttock	YAP1†
5	RHE	50/female	Knee	YAP1†
6	CHE	9/female	Foot	YAP1-MAML2†
7	CHE	9/female	Heel	YAP1-MAML2 [†]
8	CHE	7/female	Middle finger	YAP1-MAML2 [†]
9	NE-	37/male	Pancreas, liver, and	PTBP1-MAML2*
	CHE		lung lesions	

ARTICLE

Loss of expression of YAP1 C-terminus as an ancillary marker for epithelioid hemangioendothelioma variant with *YAP1-TFE3* fusion and other YAP1-related vascular neoplasms

William J. Anderson¹, Christopher D. M. Fletcher¹ and Jason L. Hornick¹

Modern Pathology; https://doi.org/10.1038/s41379-021-00854-2

Tumor type	Total cases	YAP1-CT lost	YAP1-CT retained
Epithelioid hemangioendothelioma with YAP1-TFE3	13	10	3
Epithelioid hemangioendothelioma with WWTR1-CAMTA1	20	1	19
Retiform hemangioendothelioma	4	4	0
Composite hemangioendothelioma	2	2	0
Pseudomyogenic hemangioendothelioma	10	0	10
Epithelioid hemangioma	19	0	19
Epithelioid angiosarcoma	10	0	10

Untying the Gordian knot of composite hemangioendothelioma: Discovery of novel fusions

Konstantinos Linos¹ Josephine K. Dermawan^{1,2} Helissa Pulitzer¹ Meera Hameed¹ Narasimhan P. Agaram¹ Abbas Agaimy³ | Cristina R. Antonescu¹

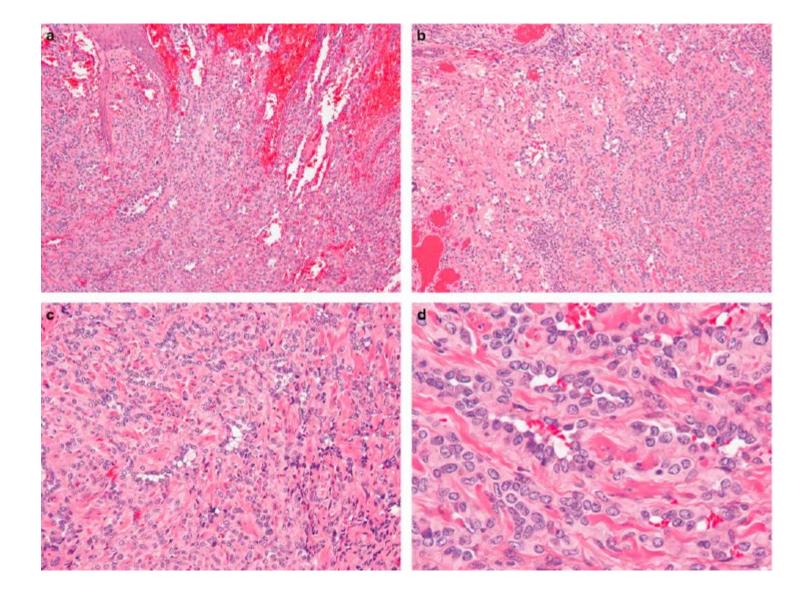
Case #	Pertinent IHC	RNA sequencing	DNA sequencing
1	Positive: CD31, CD34, ERG, SMA (pericytes). Negative: Synaptophysin, D2-40, Ki-67 < 5%	HSPG2::FGFR1 (exon 74-exon 9)	N/A
2	Positive: CD31, ERG, synaptophysin (patchy), D2-40. Negative: HHV8	YAP1::FOXR1 (exon4-exon 2)	N/A
3	Positive: FVIII, ERG, SMA (pericytes), Ki-67 < 5%. Negative: CAMTA1, TFE3	ACTB::MAML2 (exon2-exon 2)	N/A
4	Positive: CD31, ERG, CKAE1/AE3 (patchy), synaptophysin (patchy), Ki-67 40%. Negative: D2-40, CD34	ARID1B::MAML2 (exon6-exon 2)	TP53 mutation: p.Pro151Ser

MODERN PATHOLOGY (2017) 30, 1589-1602

© 2017 USCAP, Inc All rights reserved 0893-3952/17 \$32.00

1589

Composite hemangioendothelioma with neuroendocrine marker expression: an aggressive variant


Kyle D Perry¹, Alyaa Al-Ibraheemi², Brian P Rubin³, Jin Jen^{1,4}, Hongzheng Ren¹, Jin Sung Jang⁴, Asha Nair¹, Jaime Davila⁴, Stefan Pambuccian⁵, Andrew Horvai⁶, William Sukov¹, Henry D Tazelaar⁷ and Andrew L Folpe¹

¹Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; ²Department of Pathology, Boston Children's Hospital, Boston, MA, USA; ³Robert J Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA; ⁴Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA; ⁵Department of Pathology, Loyola University Medical Center, Maywood, IL, USA; ⁶Department of Pathology, University of California San Francisco, San Francisco, CA, USA and ⁷Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA

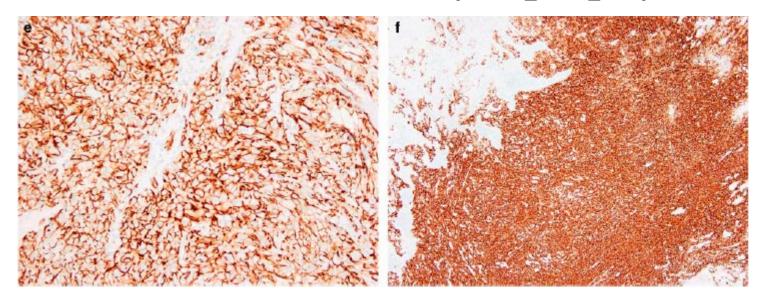

Case	Sex	Age (years)	Site	Size (cm)	LR	Met	Status	CD31	ERG	FLI-1	CD34	D2-40	SYN	CGA	CD56	СК	CAMTA1	Genetics
1	М	47	Wrist	7.7	Yes	Liver/lung/humerus	DOD	+	+	+	_	_	+	-	+	-	_	ND
2	F	48	Right ankle	N/A	Yes	_	AWOD	+	+	+	+	-	+	-	-	-	ND	ND
3	F	36	Periaortic	2.1	_	Sacrum	AWD	+	+	+	-	+	+	-	+	-	-	PTBP1-MAML2
4	F	48	Vertebral	N/A	_	Lung	AWD	+	+	+	-	+	+	-	-	-	-	ND
5	Μ	27	Pulmonary vein	N/A	_	Brain	AWD	+	+	+	-	-	+	+	+	-	-	EPC1-PHC2
6	F	14	Ear	3.0	_	_	N/A	+	+	+	+	+	+	-	+	-	-	ND
7	F	55	Superficial hip	0.4	_	_	AWOD	+	+	+	-	+	+	-	-	-	ND	ND
8	Μ	55	Liver	6.9	_	_	AWOD	ND	ND	ND	ND	ND	+	-	-	-	ND	ND
9	Μ	15	Foot	1.2	_	_	AWOD	+	ND	+	+	+	+	-	-	-	-	ND
10	F	59	Cheek	9.5	_	_	N/A	+	+	+	+	+	+	-	+	-	ND	ND
11	Μ	9	Index finger	N/A	_	—	N/A	+	+	+	+	+	+	-	-	-	ND	ND

Table 1 Clinicopathological, immunohistochemical, and genetic results

CD31 Synaptophysin

Epithelioid Hemangioendothelioma (EHE) and CAMTA1

- Rare low-grade, malignant vascular neoplasm that shows endothelial differentiation
- Less aggressive than angiosarcoma
 Risk of metastasis in ~ 20-30% of cases
 Death in approximately 15% of cases

J Cutan Pathol 2008: 35: 236–240 doi: 10.1111/j.1600-0560.2007.00790.x Blackwell Munksgaard. Printed in Singapore Copyright © Blackwell Munksgaard 2007

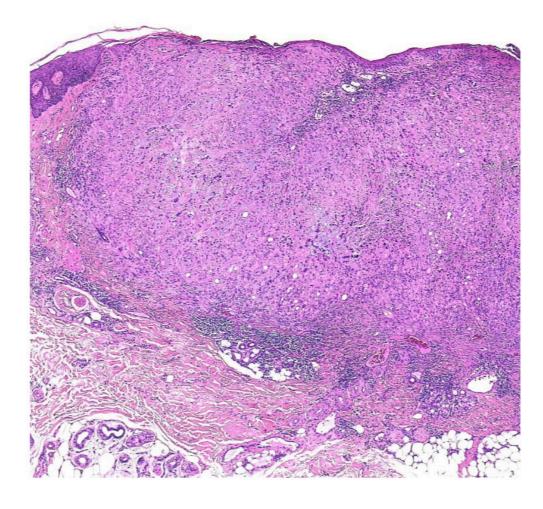
Journal of Cutaneous Pathology

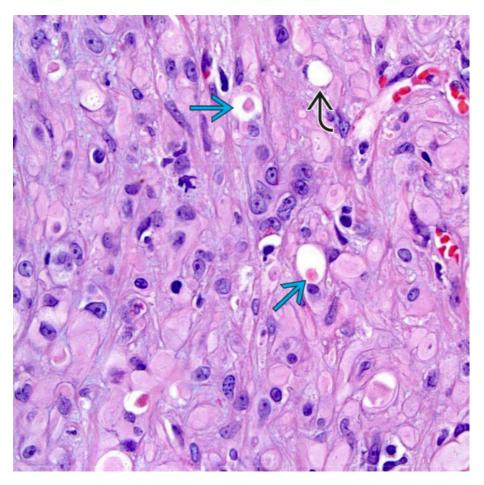
Cutaneous epithelioid hemangioendothelioma

Epithelioid hemangioendothelioma (EHE) is a rare vascular tumor of endothelial cell origin. We describe an EHE arising on the plantar surface of the foot that was treated as verruca vulgaris for several years before a biopsy showed EHE. We discuss the clinical and histopathologic differential diagnoses for these tumors and review additional cases in which EHE has been mistaken for benign entities clinically. Loren E. Clarke¹, Robert Lee², Giuseppe Militello², Rosalie Elenitsas² and Jacqueline Junkins-Hopkins²

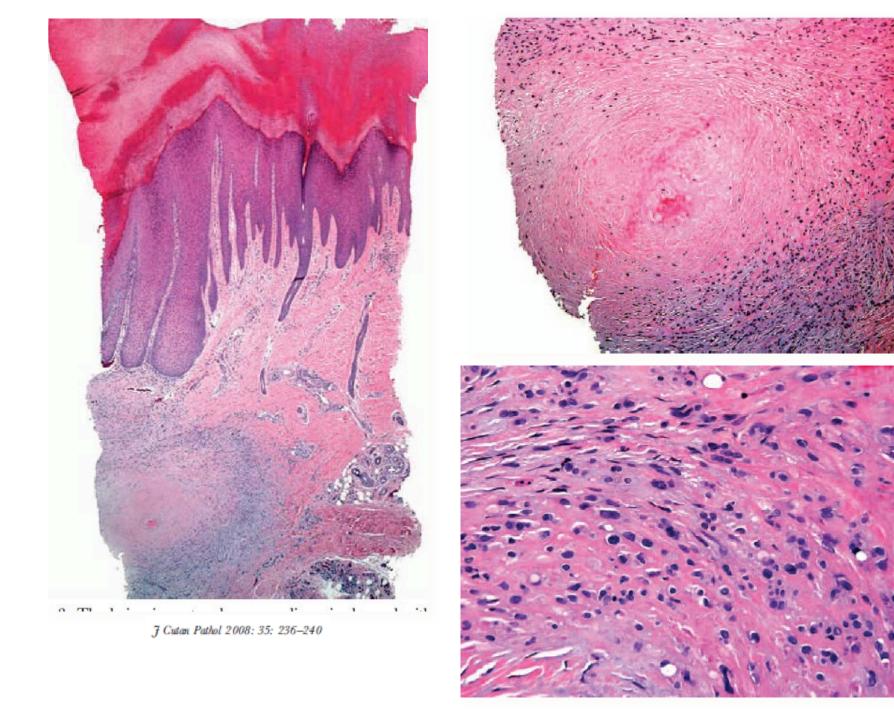
¹Department of Pathology, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA, and ²Department of Dermatology, The Hospital of the University of Pennsylvania, Philadelphia, PA, USA

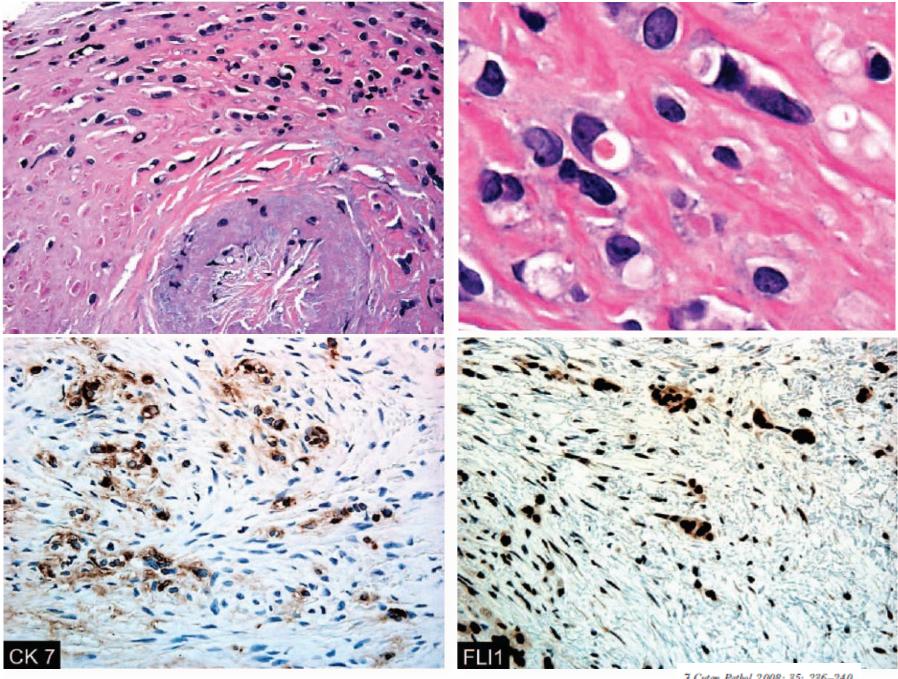
Clinical Features


- Affects patients of all ages but rare during childhood
- Typically solitary lesion on the extremities
 Can involve larger preexisting vessels


Multiple cutaneous nodules

•!!!!Metastasizing deep soft tissue or osseous EHE should be ruled out!!!!




Memorial Sloan Kettering Cancer Center

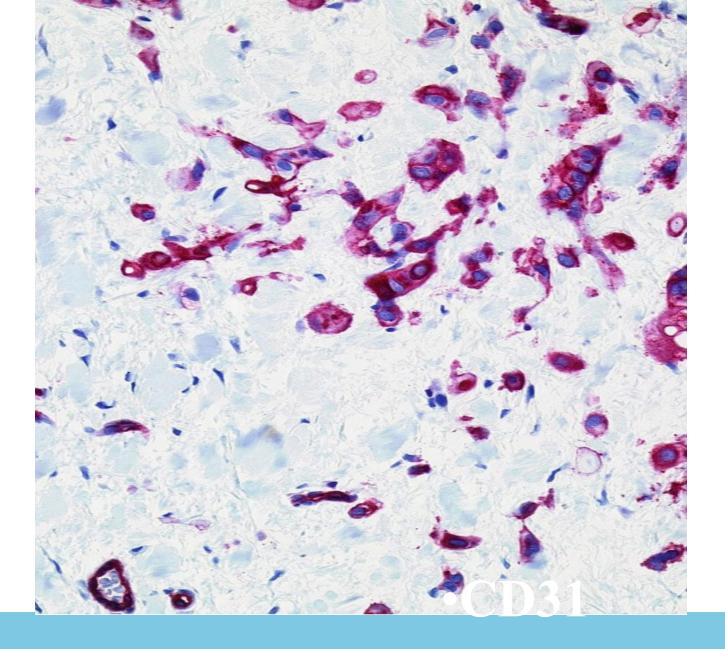
•Diagnostic Pathology: Vascular 2016 Elsevier

J Cutan Pathol 2008: 35: 236-240

Immunohistochemistry

POSITIVE

• CD31


Ē

- CD34
- ERG
- AE1/AE3 in 25% of cases

Memorial Sloan Kettering Cancer Center

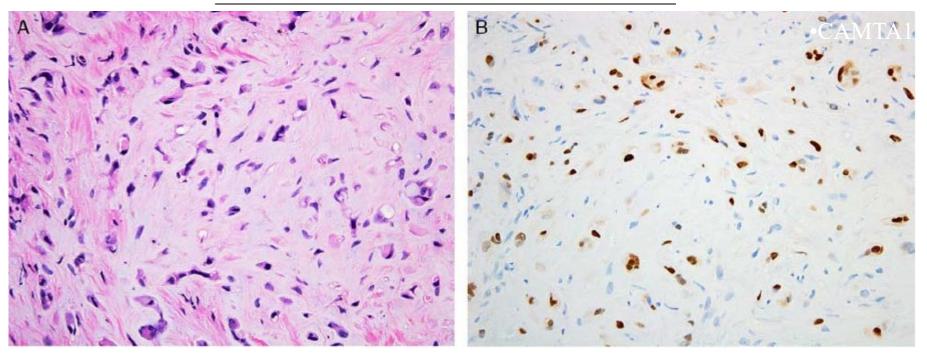
NEGATIVE

- S100 protein
- Desmin
- EMA

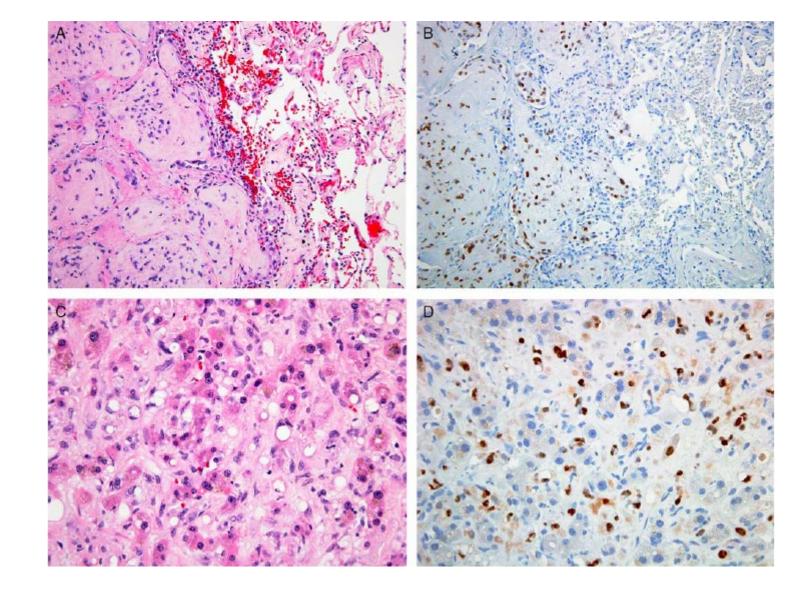
- Recurrent translocation t(1;3)(p36;q25) involving WWTR1 (3q25) and CAMTA1 (1p36)
 Approximately 90% of EHE with classic morphology and not identified in histologic mimics
- A subset shown to harbor YAP1-TFE3

CAMTA1 is a useful immunohistochemical marker for diagnosing epithelioid haemangioendothelioma

Ryo Shibuya, Atsuji Matsuyama, Eisuke Shiba, Hiroshi Harada, Kei Yabuki & Masanori Hisaoka Department of Pathology and Oncology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan Histopathology 2015, 67, 827–835.


Nuclear Expression of CAMTA1 Distinguishes Epithelioid Hemangioendothelioma From Histologic Mimics

Leona A. Doyle, MD, Christopher D.M. Fletcher, MD, FRCPath, and Jason L. Hornick, MD, PhD



Tumor Type	Total Cases	CAMTA1 Positive (%)
EHE	59	51 (86)*
Epithelioid hemangioma	20	0 (0)
Epithelioid angiomatous nodule	10	0 (0)
Epithelioid angiosarcoma	25	1 (4)
Composite hemangioendothelioma	5	0 (0)
Pseudomyogenic hemangioendothelioma	10	0 (0)
Epithelioid sarcoma	25	0 (0)
Sclerosing epithelioid fibrosarcoma	10	0 (0)
Myoepithelial neoplasms of soft tissue	10	0 (0)
PEComa	10	0 (0)
Alveolar soft part sarcoma	10	0 (0)
Ossifying fibromyxoid tumor	10	0 (0)

Memorial Sloan Kettering Cancer Center

Tumour type	CAMTA1 positivity
Carcinomas	1/169
Adenocarcinoma, bile duct	0/5
Adenocarcinoma, colon	0/24
Adenocarcinoma, ductal, breast	1/37
Adenocarcinoma, endometrium	0/5
Adenocarcinoma, lobular, breast	0/9
Adenocarcinoma, lung	0/6
Adenocarcinoma, ovary	0/6
Adenocarcinoma, prostate	0/6
Adenocarcinoma, stomach (7 signet ring cell)	0/12
Basal cell carcinoma, skin	0/7
Carcinoma of thyroid (4 papillary, 1 follicular, 1 medurally)	0/6
Hepatocellular carcinoma	0/6
Renal cell carcinoma	0/7
Squamous cell carcinoma, oesophagus	0/7
Squamous cell carcinoma, lung	0/6
Squamous cell carcinoma, skin	0/7
Squamous cell carcinoma, uterine cervix	0/6
Urothelial carcinoma	0/7

Ę

Tumour type	CAMTA1 positivity
Epithelioid haemangioendothelioma (EHE)	14/16
Non-EHE tumours	1/276
Non-epithelial tumours other than EHE	0/107
Alveolar soft part sarcoma (<i>ASPL-TFE3</i> fusion +)	0/4
Anaplastic large cell lymphoma	0/4
Angiomatoid fibrous histiocytoma	0/3
Angiosarcoma (2 epithelioid)	0/12
Clear cell sarcoma	0/5
Composite haemangioendothelioma	0/1
Desmoplastic small round cell tumour	0/2
Epithelioid angiomyolipoma	0/5
Epithelioid haemangioma	0/6
Epithelioid neurofibroma	0/2
Epithelioid sarcoma	0/8
Epithelioid schwannoma	0/1
Extraskeletal myxoid chondrosarcoma	0/6
Gastrointestinal stromal tumour (epithelioid)	0/2
Leiomyosarcoma (epithelioid)	0/2
Malignant melanoma	0/13
Malignant mesothelioma (epithelioid)	0/6
Malignant peripheral nerve sheath tumour (epithelioid)	0/3
Malignant perivascular epithelioid cell tumour (PEComa)	0/2
Myoepithelioma of soft tissue	0/4
Ossifying fibromyxoid tumour	0/2
Pseudomyogenic haemangioendothelioma	0/4
Sclerosing epithelioid fibrosarcoma	0/2
Solitary fibrous tumour (epithelioid)	0/2
Synovial sarcoma (biphasic type)	0/6

Variant WWTR1 gene fusions in epithelioid hemangioendothelioma—A genetic subset associated with cardiac involvement

Albert J. H. Suurmeijer¹ | Brendan C. Dickson² | David Swanson² | Yun S. Sung³ | Lei Zhang³ | Cristina R. Antonescu³

Genes Chromosomes Cancer. 2020;59:389-395.

Case 1 ^a	WWTR1-MAML2	EHE	76/F	Heart, left atrium	N/A
Case 2	WWTR1-MAML2	EHE	21/M	Bone, vertebra T11	NED, 70 months (s/p resection)
Case 3 ^a	WWTR1-ACTL6A	Malignant EHE	73/F	Heart, right ventricle	DOD, 9 months
Case 4 ^a	WWTR1 rearrangement	EHE	72/F	Heart, left atrium	DOD, 15 months (s/p chemo Adriamycin +DTIC), soft tissue metastases
Case 5 ^a	WWTR1 rearrangement	EHE	67/M	Heart, left atrium	Lung metastases at diagnosis
Case 6	WWTR1 rearrangement	Malignant EHE	65/M	Pelvic mass	Recent case

Novel detection of the CAMTA1-WWTR1 fusion gene in extra-adrenal myelolipoma-like lesion: a case report

Hirofumi Watanabe ¹, Kazuhiro Murakami ², Toru Motoi ³, Keigo Murakami ², Yayoi Aoyama ⁴, Hideki Mitomo ⁵, Naoya Ishibashi ⁵, Takashi Sugawara ⁵, Toshiharu Tabata ⁵, Tomonori Matsuura ⁶, Hironobu Sasano ⁴, Yasuhiro Nakamura ²

> Int J Surg Pathol. 2019 Sep;27(6):664-668. doi: 10.1177/1066896919837611. Epub 2019 Apr 3.

Epithelioid Hemangioendothelioma Arising Within Mediastinal Myelolipoma: A WWTR1-Driven Composite Neoplasm

Julio A Diaz-Perez¹, Jaylou Velez-Torres¹, Oleksii lakymenko¹, Nestor Villamizar², Andrew E Rosenberg¹

Novel YAP1-TFE3 Fusion Defines a Distinct Subset of Epithelioid Hemangioendothelioma

Cristina R. Antonescu,^{1*} Francois Le Loarer,¹ Juan-Miguel Mosquera,² Andrea Sboner,^{2,3} Lei Zhang,¹ Chun-Liang Chen,¹ Hsiao-Wei Chen,¹ Nursat Pathan,⁴ Thomas Krausz,⁵ Brendan C. Dickson,⁶ Ilan Weinreb,⁷ Mark A. Rubin,² Meera Hameed,¹ and Christopher D. M. Fletcher^{8*}

Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY

²Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY

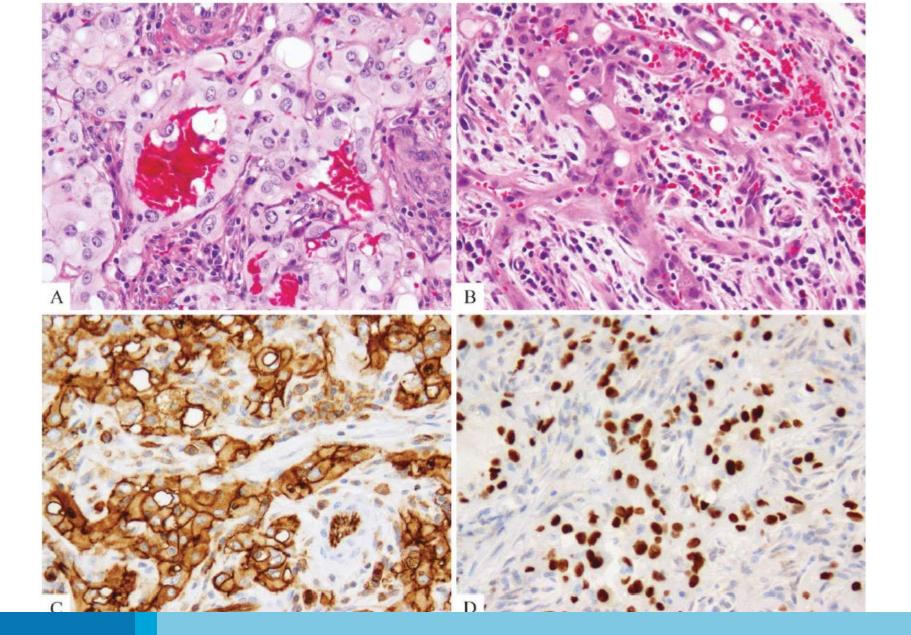
³Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, NY

⁴Department of Pathology, Raritan Bay Medical Center, Raritan Bay, NJ

⁵Department of Pathology, University of Chicago, Chicago, IL

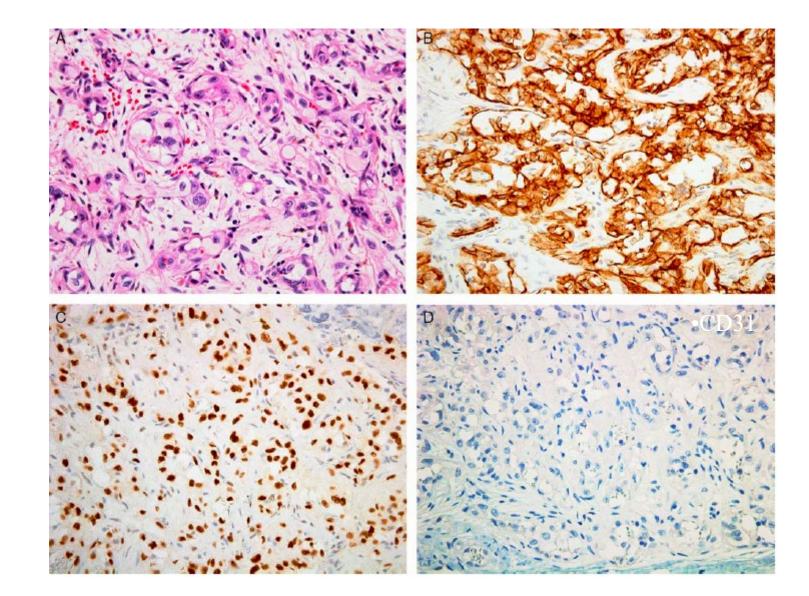
⁶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada

⁷Department of Pathology, University Health Network and Department of Laboratory Medicine and Pathobiology, University of


Toronto, Toronto, Ontario, Canada

⁸Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA

GENES, CHROMOSOMES & CANCER 52:775-784 (2013)



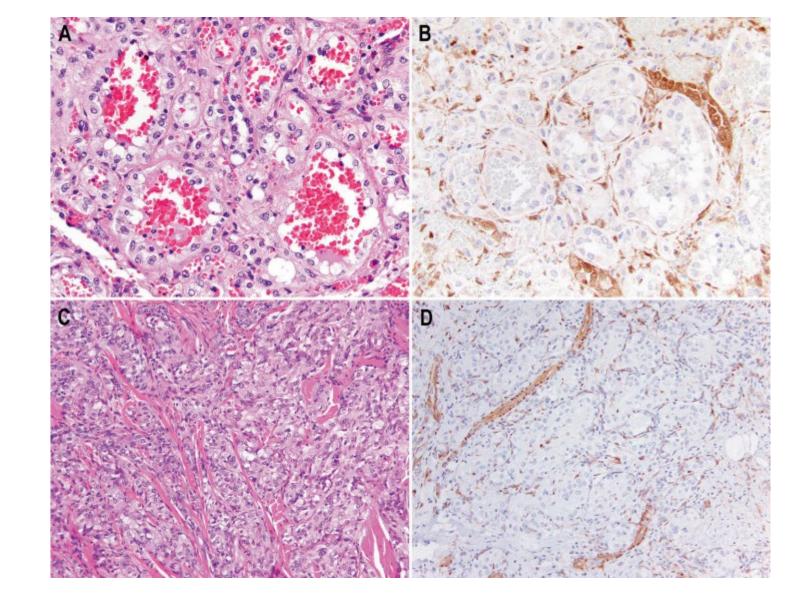
Memorial Sloan Kettering Cancer Center

Antonescu et al, Genes, Chromosomes and Cancer 52, 772-784, 2013

Memorial Sloan Kettering Cancer Center

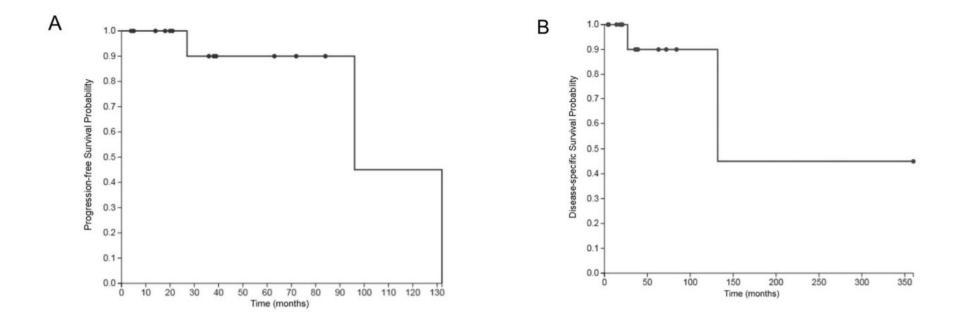
ARTICLE

Loss of expression of YAP1 C-terminus as an ancillary marker for epithelioid hemangioendothelioma variant with *YAP1-TFE3* fusion and other YAP1-related vascular neoplasms


William J. Anderson¹, Christopher D. M. Fletcher¹ and Jason L. Hornick¹

Modern Pathology; https://doi.org/10.1038/s41379-021-00854-2

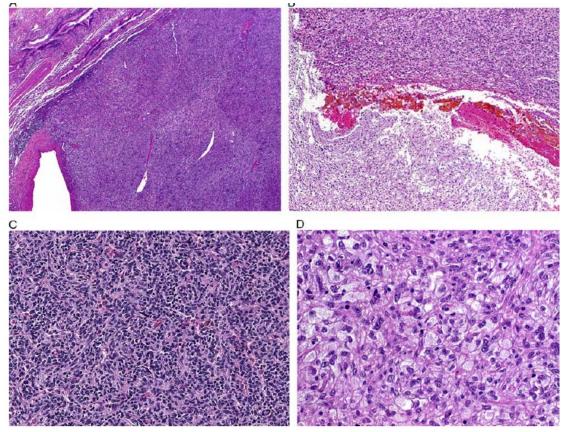
Tumor type	Total cases	YAP1-CT lost	YAP1-CT retained
Epithelioid hemangioendothelioma with YAP1-TFE3	13	10	3
Epithelioid hemangioendothelioma with WWTR1-CAMTA1	20	1	19
Retiform hemangioendothelioma	4	4	0
Composite hemangioendothelioma	2	2	0
Pseudomyogenic hemangioendothelioma	10	0	10
Epithelioid hemangioma	19	0	19
Epithelioid angiosarcoma	10	0	10



Memorial Sloan Kettering Cancer Center

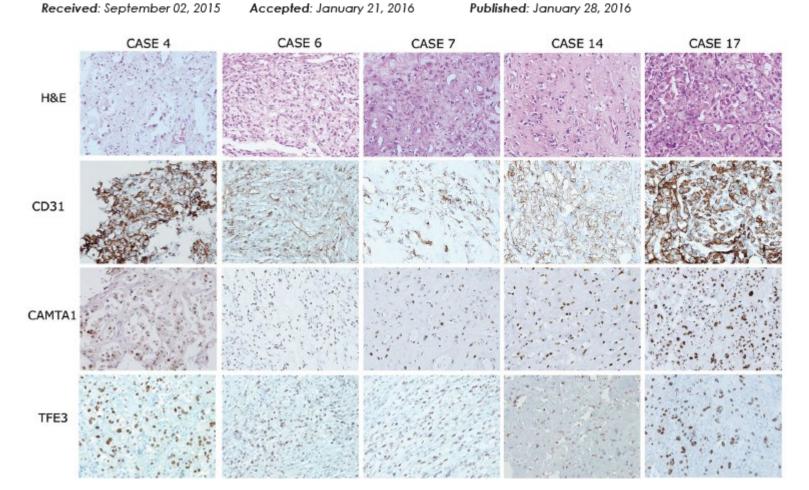
Modern Pathology; https://doi.org/10.1038/s41379-021-00854-2

YAP1-TFE3-fused hemangioendothelioma: a multi-institutional clinicopathologic study of 24 genetically-confirmed cases


Josephine K. Dermawan (b¹, Elizabeth M. Azzato¹, Steven D. Billings (b¹, Karen J. Fritchie (b¹, Sebastien Aubert², Armita Bahrami³, Marta Barisella⁴, Daniel Baumhoer (b⁵, Veronika Blum⁶, Beata Bode (b⁷, Scott W. Aesif¹, Judith V. M. G. Bovée (b⁸, Brendan C. Dickson (b⁹, Mari van den Hout¹⁰, David R. Lucas¹¹, Holger Moch (b¹², Gabriel Oaxaca¹, Alberto Righi (b¹³, Raf Sciot (b¹⁴, Vaiyapuri Sumathi¹⁵, Akihiko Yoshida (b¹⁶ and Brian P. Rubin (b¹⁸)

Recurrent YAP1-TFE3 Gene Fusions in Clear Cell Stromal Tumor of the Lung

Abbas Agaimy, MD,* Robert Stoehr, PhD,* Michael Michal, MD,† ‡ Petros Christopoulos, MD,§ Hauke Winter, MD, ||¶ Lei Zhang, MD,# Albrecht Stenzinger, MD,** Michal Michal, MD,† ‡ Gunhild Mechtersheimer, MD,** and Cristina R. Antonescu, MD#

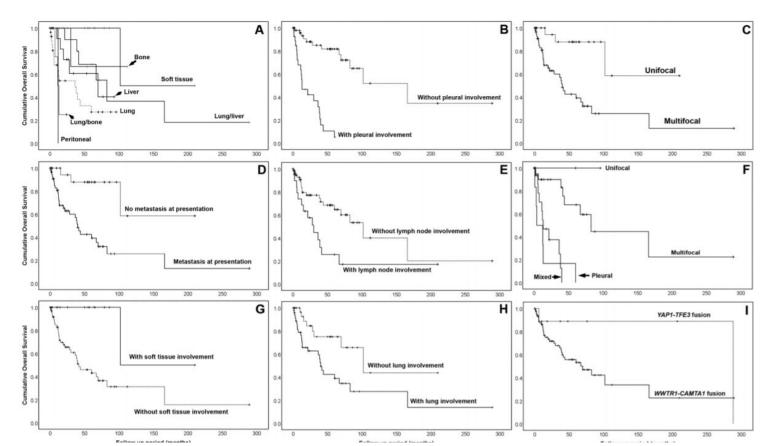


Am J Surg Pathol 2021;00:000-000]

Epithelioid hemangioendotheliomas with TFE3 gene translocations are compossible with CAMTA1 gene rearrangements

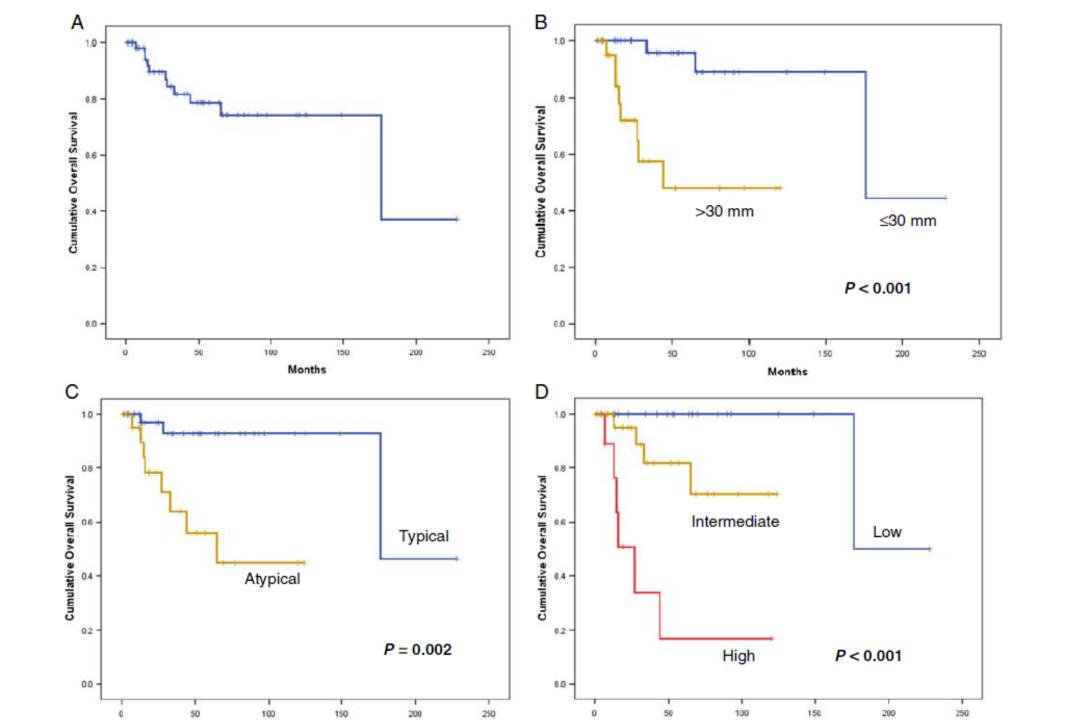
Seok Joo Lee¹, Woo Ick Yang¹, Woo-Suk Chung² and Sang Kyum Kim¹

¹ Department of Pathology, Yonsei University Medical Center, Seoul, South Korea
 ² Department of Diagnostic Radiology, Konyang University Hospital, Daejeon, South Korea
 Correspondence to: Sang Kyum Kim, email: nicekyumi@yuhs.ac
 Keywords: epithelioid hemangioendothelioma, TFE3, YAP1, CAMTA1, WWTR1, Pathology Section


ARTICLE

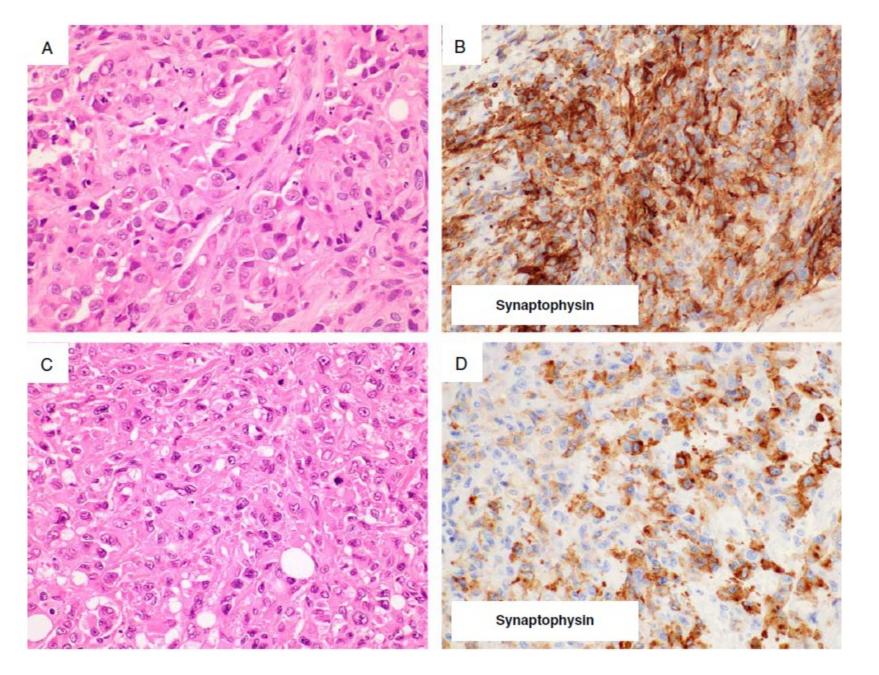
Prognostic stratification of clinical and molecular epithelioid hemangioendothelioma subsets

Evan Rosenbaum 1 · Bhumika Jadeja 2 · Bin Xu 3 · Lei Zhang³ · Narasimhan P. Agaram³ · William Travis³ · Samuel Singer² · William D. Tap^{1,4} · Cristina R. Antonescu³


Clinicopathologic Characterization of Epithelioid Hemangioendothelioma in a Series of 62 Cases

A Proposal of Risk Stratification and Identification of a Synaptophysin-positive Aggressive Subset

Takahiro Shibayama, MD,* Naohiro Makise, MD, PhD,† Toru Motoi, MD, PhD,‡ Taisuke Mori, DMD, PhD,* Nobuyoshi Hiraoka, MD, PhD,* Kan Yonemori, MD, PhD,§|| Shun-ichi Watanabe, MD, PhD,¶ Minoru Esaki, MD, PhD,# Chigusa Morizane, MD, PhD,||** Tomotake Okuma, MD, PhD,†† Akira Kawai, MD, PhD,||‡‡ Tetsuo Ushiku, MD, PhD,† Yasushi Yatabe, MD, PhD,* and Akihiko Yoshida, MD, PhD*||


	_		
		 _	
	-		
		 _	
1 7			
-	v		

Risk Factors	Score
Tumor size (mm)	
≤30	0
> 30	1
Histology	
Typical	0
Atypical*	1
Risk category	Total score
Low	0
Intermediate	1
High	2

*Atypical histology is defined as having at least 2 of the following 3 findings: mitosis > $1/2 \text{ mm}^2$, high nuclear grade, and coagulative tumor necrosis. Any tumor histology that does not meet these criteria is considered typical.

Am J Surg Pathol • Volume 45, Number 5, May 2021

REVIEW

Epithelioid hemangioendothelioma, an ultra-rare cancer: a consensus paper from the community of experts

S. Stacchiotti^{1*}, A. B. Miah², A. M. Frezza¹, C. Messiou³, C. Morosi⁴, A. Caraceni⁵, C. R. Antonescu⁶, J. Bajpai⁷, E. Baldini⁸, S. Bauer⁹, R. Biagini¹⁰, S. Bielack¹¹, J. Y. Blay¹², S. Bonvalot¹³, I. Boukovinas¹⁴, J. V. M. G. Bovee¹⁵, K. Boye¹⁶, T. Brodowicz¹⁷, D. Callegaro¹⁸, E. De Alava^{19,20}, M. Deoras-Sutliff²¹, A. Dufresne¹², M. Eriksson²², C. Errani²³, A. Fedenko²⁴, V. Ferraresi²⁵, A. Ferrari²⁶, C. D. M. Fletcher²⁷, X. Garcia del Muro²⁸, H. Gelderblom²⁹, R. A. Gladdy³⁰, F. Gouin³¹, G. Grignani³², J. Gutkovich^{21,33}, R. Haas^{34,35}, N. Hindi³⁶, P. Hohenberger³⁷, P. Huang³⁸, H. Joensuu³⁹, R. L. Jones⁴⁰, C. Jungels⁴¹, B. Kasper⁴², A. Kawai⁴³, A. Le Cesne⁴⁴, F. Le Grange⁴⁵, A. Leithner⁴⁶, H. Leonard⁴⁷, A. Lopez Pousa⁴⁸, J. Martin Broto⁴⁹, O. Merimsky⁵⁰, P. Merriam⁵¹, R. Miceli⁵², O. Mir⁵³, M. Molinari⁵⁴, M. Montemurro⁵⁵, G. Oldani⁵⁶, E. Palmerini⁵⁷, M. A. Pantaleo⁵⁸, S. Patel⁵⁹, S. Piperno-Neumann⁶⁰, C. P. Raut^{61,62,63}, V. Ravi⁵⁹, A. R. A. Razak⁶⁴, P. Reichardt⁶⁵, B. P. Rubin⁶⁶, P. Rutkowski⁶⁷, A. A. Safwat⁶⁸, C. Sangalli⁶⁹, G. Sapisochin⁷⁰, M. Sbaraglia⁷¹, S. Scheipl⁷², P. Schöffski⁷³, D. Strauss⁷⁴, S. J. Strauss⁷⁵, K. Sundby Hall¹⁶, W. D. Tap⁷⁶, A. Trama⁷⁷, A. Tweddle⁷⁸, W. T. A. van der Graaf⁷⁹, M. A. J. Van De Sande⁸⁰, W. Van Houdt⁸¹, G. van Oortmerssen⁸², A. J. Wagner⁵¹, M. Wartenberg⁸³, J. Wood⁸⁴, N. Zaffaroni⁸⁵, C. Zimmermann⁸⁶, P. G. Casali¹, A. P. Dei Tos⁷¹ & A. Gronchi¹⁸

Email: linosk@mskcc.org

https://www.youtube.com/channel/UCOgv4fITX9qVNu1Waf2ul RQ **VouTube**

Thank you

