

Assessing cardiometabolic risk by imaging human adipose tissue

Dr. Alexios Antonopoulos MD PhD

Imaging Specialist CCT/CMR, EACVI Ambassador in CT/CMR EACVI Scientific Documents Committee Academic Consultant Cardiologist, 1st Cardiology Dpt, NKUA Senior Researcher, Biomedical Research Foundation of the Academy of Athens Patent holder of GB2015/052359, GR2018/0100490 and GR2018/0100510 with royalties paid to Caristo Diagnostics

Consultancy fees and shareholder (family member) of Caristo Diagnostics, a medical imaging company.

The Obesity Pandemic

Worldwide obesity has nearly tripled since 1975.

>1.9 billion adults overweight>650 million were obese

Risk stratification for primary prevention of CVD

Men										
Non-smoker						Smoker				
14	16	19	22	26		26	30	35	41	47
9	11	13	15	16		18	21	25	29	34
6	8	9	11	13		13	15	17	20	24
4	5	6	7	9		9	10	12	14	17
			_							
9	11	13	15	18		18	21	24	28	33
6	7	9	10	12		12	14	17	20	24
4	5	6	7	9		8	10	12	14	17
3	3	4	5	6		6	7	8	10	12
	_	_								
6	7	8	10	12		12	13	16	19	22
4	5	6	7	8		8	9	11	13	16
3	3	4	5	6		5	6	8	9	11
2	2	3	3	4		4	4	5	6	8
4	4	5	6	7		7	8	10	12	14
2	3	3	4	5		5	6	7	8	10
2	2	2	3	3		3	4	5	6	7
1	1	2	2	2		2	3	3	4	5
1	1	1	2	2		2	2	3	3	4
1	1	1	1	1		1	2	2	2	3
0	1	1	1	1		1	1	1	2	2
0	0	1	1	1		1	1	1	1	1
4	5	6	7	8		4	5	6	7	8

Risk may be higher than indicated in the chart in:

- Sedentary or obese subjects, especially those with central obesity

We need better ways to identify obese individuals at high risk for CV events

How to assess cardiometabolic risk in obesity?

- Anthropometric indices of obesity
- Cardiorespiratory fitness
- Metabolic status plasma biomarkers
- Fat biopsies
- Adipose tissue imaging

Anthropometric indices of obesity and CVD risk

Antonopoulos AS et al. Cardiov Res 2017

Is obesity "protective" in chronic diseases?

Meta-analysis: Aune D et al; BMJ 2016 230 cohort studies 30.3m participants 3.74m deaths

The epidemiologist's view: -Confounders

-Chronic diseases

-Between-studies heterogeneity

-....

The endocrinologist's view: -Location, location, location...

The clinical cardiologist's view:

The "obesity paradox": A conundrum that needs solving

Is the obesity paradox simply bad statistics?

www.biasedtransmission.org

How can the notion of obesity paradox be explained?

Antonopoulos AS et al. Obes Rev 2016

Establishing a causal relationship between obesity and CVD risk

300,000 individuals genome wide screening 2.1 m SNPs assessed

Khera et al. Cell 2019; 177: 587–596

But obesity is a heterogeneous mixture of distinct metabolic phenotypes

& anthropometric indices of obesity <u>do not accurately</u> describe the obesity-related burden to cardiovascular health

Obesity, cardiorespiratory fitness and CV risk

N=2316 men with no known vascular disease Fitness by treadmill test (METS) Obesity by BMI

for adverse outcomes!

Church et al. Arch Intern Med. 2005;165:2114-2120

Metabolically healthy obesity and CVD risk

MHO: obesity individuals, BMI > 30kg/m² but without metabolic abnormalities (only 0 or 1 of MetS criteria)

Mongraw-Chaffin et al JACC 2018 N=6,809 adults

HR for all-cause mortality

How to assess cardiometabolic risk in obesity?

- Anthropometric indices
- Cardiorespiratory fitness
- Metabolic status plasma biomarkers
- Fat biopsies
- Adipose tissue imaging

How to define "benign" vs. "malignant" adiposity ?

Study of adipose tissue biology

- Fat biopsies (invasive, not suitable for screening)
- Quantify adipose tissue products (proteome/secretome)
- Adipose tissue imaging

Adipose tissue imaging

Oikonomou EK et al. Nature Reviews Cardiology 2019;16: 83–99

Adipose tissue imaging

by ultrasound

Subcutaneous and visceral abdominal fat Epicardial adipose tissue

Thickness of human fat pads as a marker of increased metabolic risk

Visceral vs. abdominal fat

CT imaging of abdominal fat Fat: -190 to -30 HU

Visceral fat subcutaneous fat

Same WC but different fat distribution

Case 2

Waist Circumference: 91 cm
Intra-abdominal Fat: 190 cm²
Subcutaneous Fat: 162 cm²

- Waist Circumference: 93 cm
- Intra-abdominal Fat: 98 cm²
- Subcutaneous Fat: 274 cm²

Visceral vs. abdominal fat and cardiovascular disease risk

📕 1st SAT Volume Tertile 🛛 📕 2nd SAT Volume Tertile 👘 📘

3rd SAT Volume Tertile

Ectopic adiposity and cardiovascular disease risk

Epicardial adiposity

Fatty liver

 $1.0 + EATv log rank p=0.003 \\ ITFv log rank p=0.004 \\ ITFv log rank p=0.004 \\ 0.9 + EATv \le 125 ml \\ EATv > 125 ml \\ --- ITFv \le 250 ml \\ 0 + 1 + 2 + 3 + 4 + 5 \\ Years$

Forouzandeh Circ Cardiovasc Imaging. 2013;6:58-66.

Mean Liver Attenuation Value

 79.4 HU
 59.6 HU

 HU: Hounsfield unit
 14.8 HU

 Normal Liver
 "Fatty Liver"

CTL/CTS

("Fatty Liver" Index)

CTL/CTS = 0.24

Normal Liver CTL/CTS = 1.33

Intramuscular fat FRONT

Han et al. Cardiovasc Diabetol (2017) 16:54

Human adipose tissue depots – perivascular fat

The role of adipose tissue dysfunction in T2DM

"Adipocentricity" in T2DM

Healthy WAT expansion

Adipocyte hyperplasia
 Anti-inflammatory state
 (↑ M2 ATMs and ↑ T_{regs})
 ↑ Formation of new vasculature

Metabolically healthy obesity and CVD risk

Metabolic profiling may be a more accurate way to assess cardiovascular risk than BMI.

Abnormal metabolome linked to ~5-fold increase in CV events compared to BMI-matched people but with an opposing metabolome.

Cirulli et al. Cell Metabolism 2019; 29: 488–500

How does adipose tissue communicate with the vascular wall

Akoumianakis & Antoniades Cardiovasc Res 2017

The Oxford Cohort for Heart Vessels and Fat (oxHVF)

Differences between adipose tissue depots

Antonopoulos AS et al Science Transl Med 2017

Differences between adipose tissue depots

Antonopoulos AS et al Science Transl Med 2017

Discovering new <u>endocrine</u> signals from the AT to the vascular wall

The cross-talk between adipose tissue and cardiovascular system

A Ε LNAME-delta(O2⁻) (RLU/sec/mg) 15 P<0.01 Resting O2⁻ (RLU/sec/mg) P<0.01 10 +LNAME SV SV 0 -2 0 -4 +AdN +AdN +LNAME AdN Control AdN Control В F D LNAME-delta(O2-) (RLU/sec/mg) Resting O2⁻ (RLU/sec/mg) P<0.05 P<0.05 8 +LNAME IMA MA -2 0 -4 -+AdN +AdN +LNAME Control AdN Control AdN

Adiponectin

Antonopoulos AS & Margaritis M et al. Circulation 2013 Antonopoulos AS et al. Circ Res 2016

Wnt5a/Sfrp5

Akoumianakis et al Science Transl Med 2020

Discovering new endocrine signals from the AT to the vascular wall?

Akoumianakis & Antoniades Cardiovasc Res 2017

Akawi et al; J Am Coll Cardiol 2021;77:2494–513

Could ceramides drive vascular disease? Which ceramide species?

Discovering new <u>paracrine</u> signals from PVAT to the vascular wall?

Discovering new paracrine signals from PVAT to the vascular wall?

What is wnt5a?

Could wnt5a/sfrp5 mediate the obesity-related vascular oxidative stress?

Does wnt5a increase O2.- in human arteries?

Human arteries

Exploring new concepts: Does PVAT always affect the vascular wall, or....?

<u>New concept</u>: The Inside-to-Outside Signalling from the vascular wall to PVAT (local defence mechanism of human vessels)

> Antonopoulos A et al; Circ Res 2016;118:842-55 Margaritis et al; Circulation 2013;127:2209-21 Antonopoulos A et al Diabetes 2015 64:2207-19 Akoumianakis & Antoniades Cardiovasc Res 2017

Chasing the chicken and the egg in clinical association studies.....

Inflammation inhibits adipocyte differentiation

Antonopoulos et al., Science Translational Medicine 2017

Effects of inflammation on adipocytes

The role of PVAT in atherogenesis

Perivascular FAI: a "sensor" of vascular inflammation

Pericoronary fat imaging as a sensor of vascular inflammation

CRISP-CT

n=3,912

 FAI is an independent predictor of cardiac mortality on top of CV risk factors, calcium score, extent of coronary atherosclerosis
 & presence of high risk plaques on CCTA

> Antonopoulos AS et al. Science TM 2017 Oikonomou EK et al. Lancet 2018

What more can we do to identify dysfunctional adipose tissue?

Coupling imaging with biology

AT proteome/secretome

AT imaging and adipokine profile determine the levels of arterial inflammation

Toutouzas K, Antonopoulos AS et al. Journal of Nuclear Cardiology <u>10.1007/s12350-020-02472-y</u>

Big-data extraction from medical images and machine learning for dysfunctional adipose tissue

Imaging features & machine learning to identify dysfunctional adipose tissue

Antonopoulos AS et al. (WO2020058712A1)

The FatHealth Project - subcutaneous fat radiomics to predict DM

Antonopoulos AS et al. (WO2020058712A1)

How to assess cardiometabolic risk in obesity?

11

Antonopoulos AS & Tousoulis D. Cardiov Res 2017