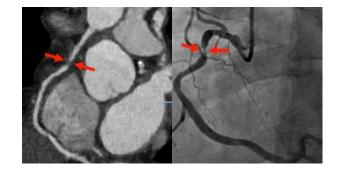
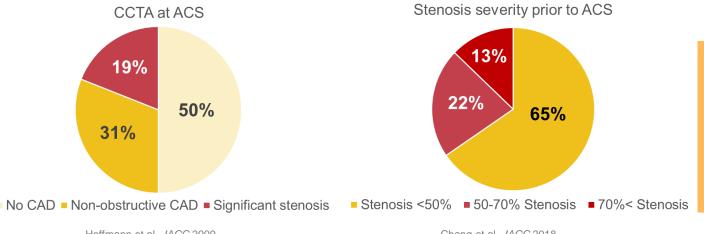
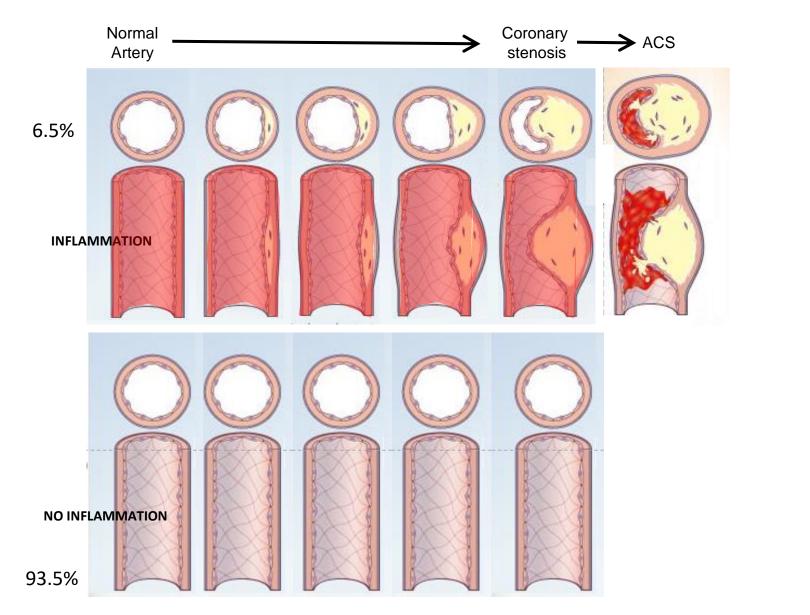

Cardiovascular risk stratification by CCTA imaging


Dr. Alexios Antonopoulos MD PhD


Imaging Specialist CCT/CMR, EACVI Ambassador in CT/CMR Hon. Postdoc Scientist, Oxford Academic CT programme, RDM Cardiovascular Medicine, Oxford, UK **Current concepts in the prevention of CHD**

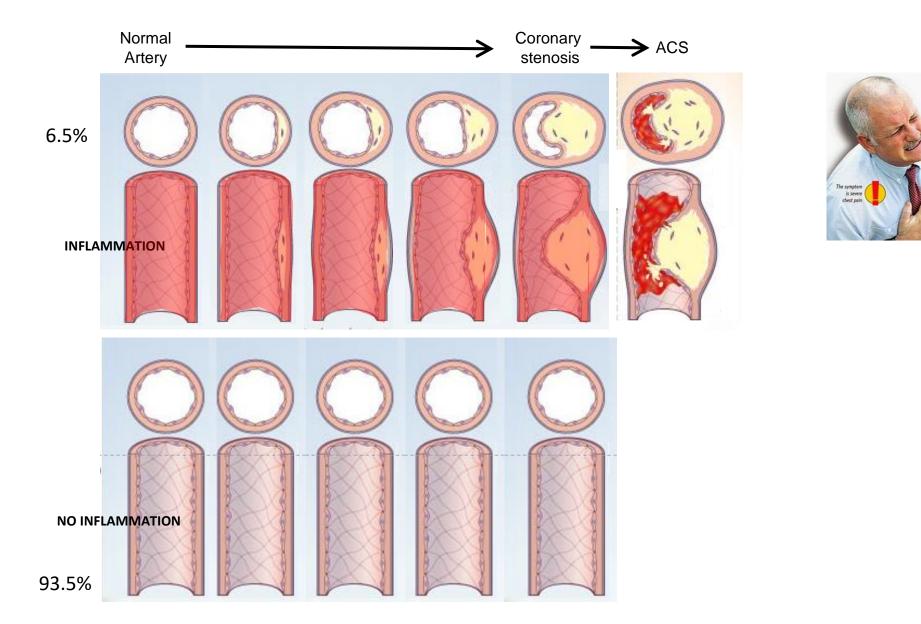
Coronary Artery Disease (CAD) Testing

• Cardiovascular disease is the world's biggest killer

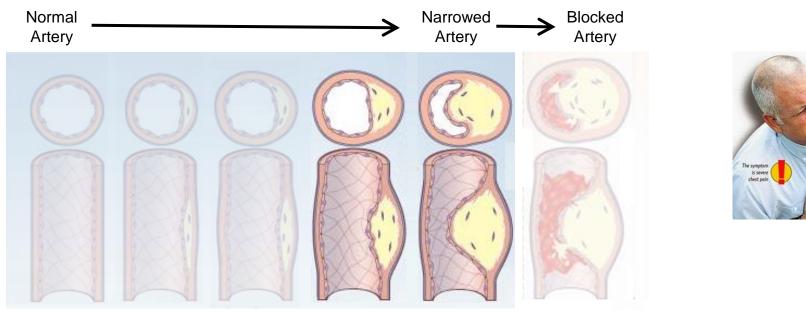

THE REALITY

- >50% of heart attacks occur in people with minor coronary artery stenoses
- Many patients at risk missed by current tests that rely on detecting luminal stenosis
- First presentation is often MI or death

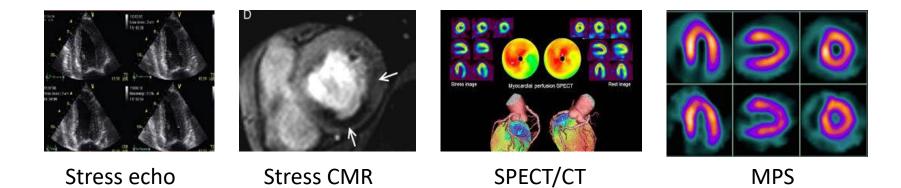
Hoffmann et al. JACC 2009

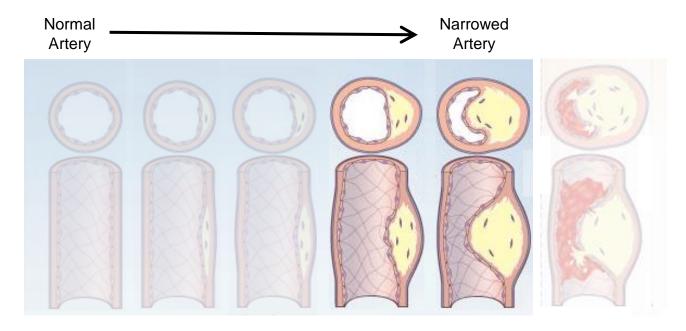

Chang et al, JACC 2018

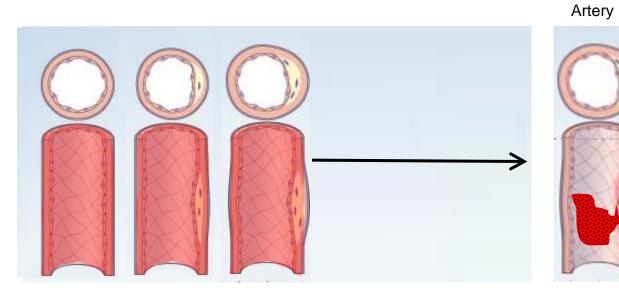
Inflammation in atherogenesis and plaque rupture

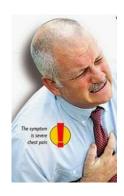


The symptom their point


Inflammation in atherogenesis and plaque rupture


Discrepancies in cardiovascular diagnostics: The elephant in the room


All current imaging tests



Most Coronary plaques don't cause heart attacks

"Minor" plaques cause many heart attacks

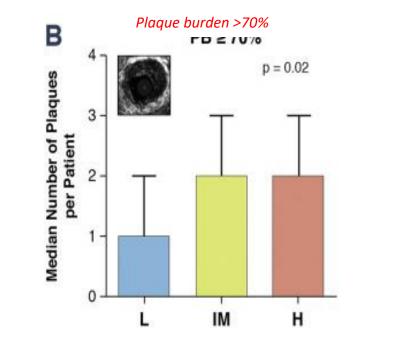
Severity of	Coronary Ang	giographic Lesions Before Myocar	dial Infarctio	n		
				ter Stenosis o II, No. of Patie		
Study	No. of Patients	Interval Between First and Second Angiograms, mo	<50%	50%-75%	>75%	
Ambrose et al ⁸	23	18	12	6	5	alled vascu
Giroud et al ¹²	92	24	72	8	12	i <u>on</u> in the c
Hackett et al ⁹	10	21	9	1	0	rmation
Little et al ¹¹	58	24	36	15	7	cks
Moise et al ¹⁴ *	116	39	17	66	33	
Webster et al ¹³	30	55	16	10	4	al therapy!
Total	329	30.2	162 (49%)	106 (32%)	61 (19%)	
*Refer	s to progressi	on to total occlusion with or witho	ut myocardia	Infarction (MI)).	Fisl

alled vascular inflammation!

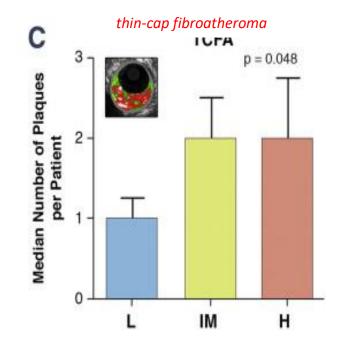
ion in the coronaries, we would:

Fishbein et al. Circulation. 1996;94:2662-2666

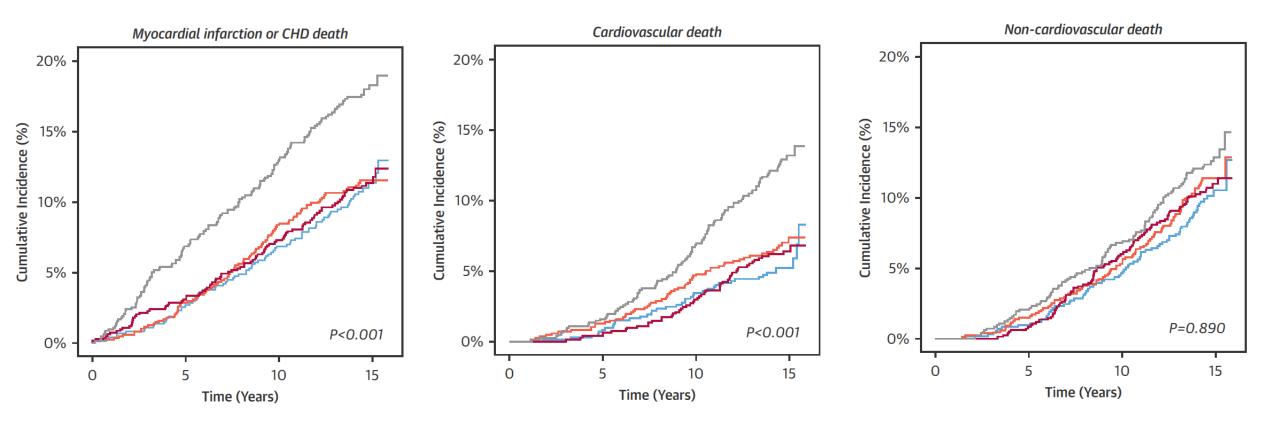
Blocked


Detecting the vulnerable plaques could help prevent heart attacks

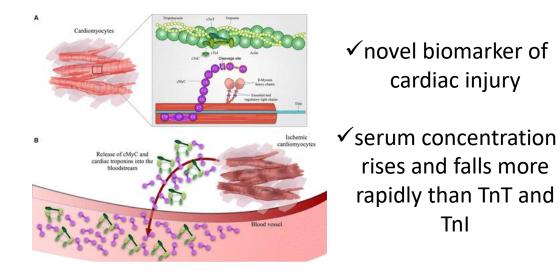
The challenge: to detect the unstable plaques \rightarrow unstable patient

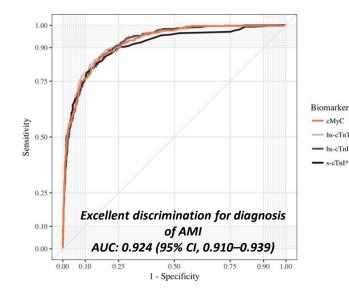

Strategy #1 Detecting downstream myocardial damage

Unstable plaques cause minor downstream myocardial damage, even at rest!


(High-sensitivity troponin I)

Patients (n = 99) with stable CAD undergoing PCI + IVUS-VH

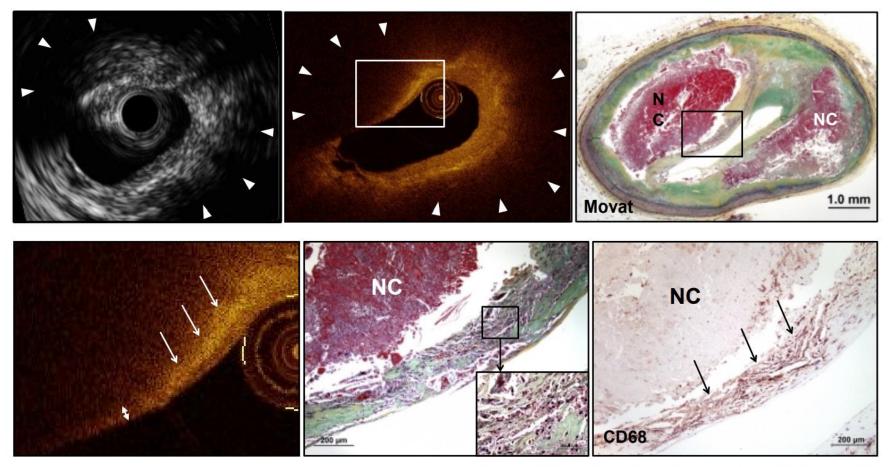

Predictive value of baseline hs-cTnl for future events



Baseline troponin by quarters

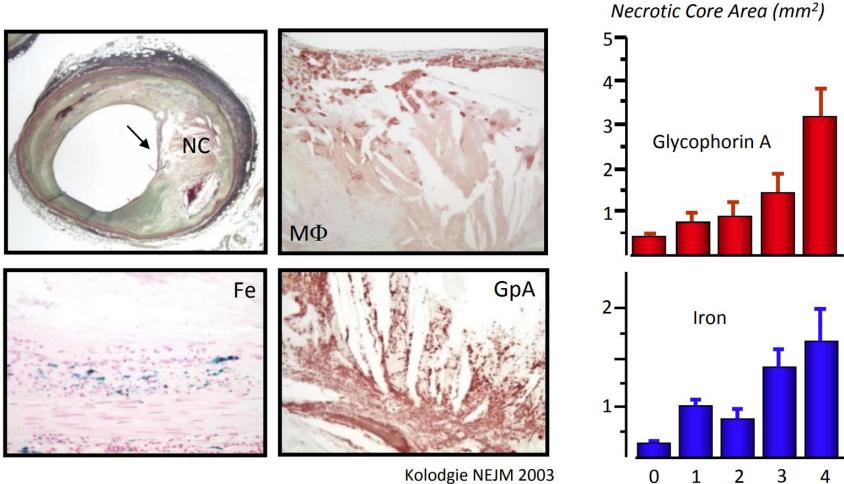
— Quarter 1 ≤ 3.1 ng/L
 — Quarter 2 3.1-3.9 ng/L
 — Quarter 3 4.0-5.1 ng/L
 — Quarter 4 ≥ 5.2 ng/L

Beyond troponin: Cardiac myosin-binding protein C (cMyC)



- cMyC at presentation provides discriminatory power comparable to hs-cTnT and hs-cTnI in the diagnosis of AMI
- may perform favourably in patients presenting early after symptom onset

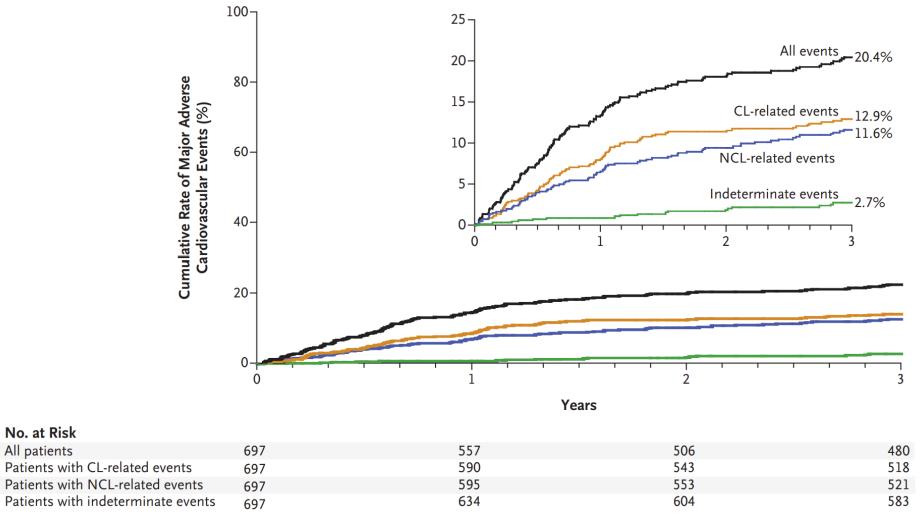
Strategy #2


Detecting the vulnerable patient by studying coronary plaque characteristics

Vulnerable plaques have distinct histopathological characteristics

Narula, Virmani et al. Nature Rev. Cardiology 2013

Intra-plaque hemorrhage and plaque vulnerability



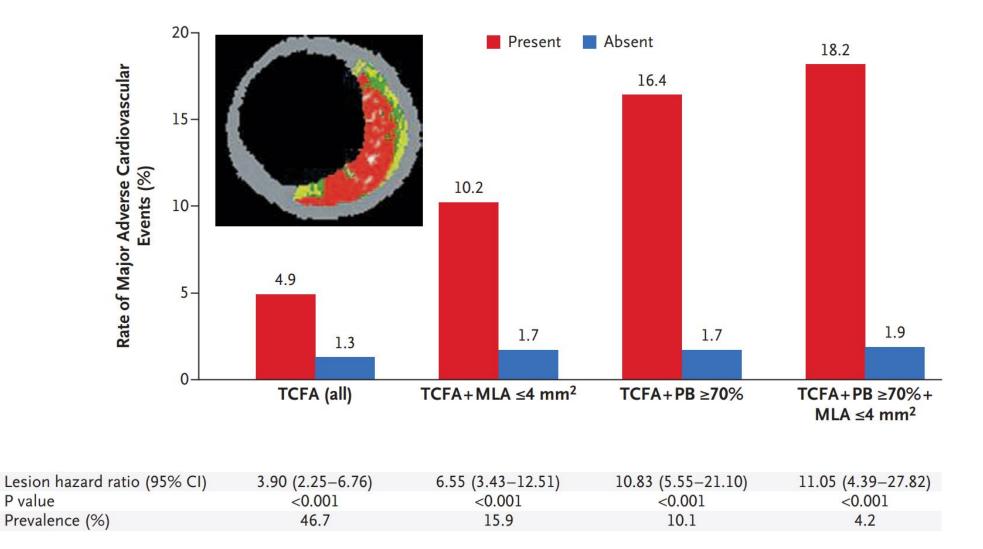
Kolodgie NEJM 2003

Natural-History Study of Coronary Atherosclerosis

After ACS and stenting (PCI) major adverse cardiovascular events are equally attributable to recurrence at the site of culprit lesions (CL) and to nonculprit lesions (NCL).

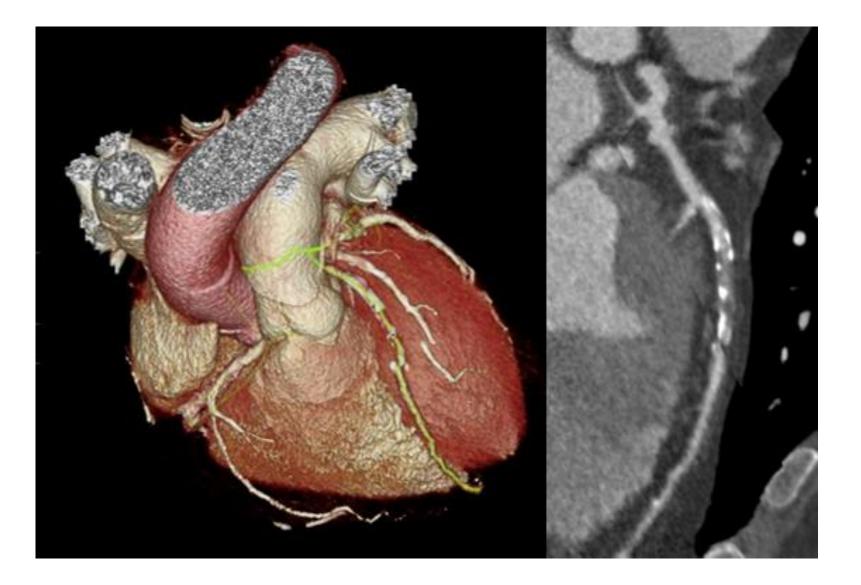
All patients

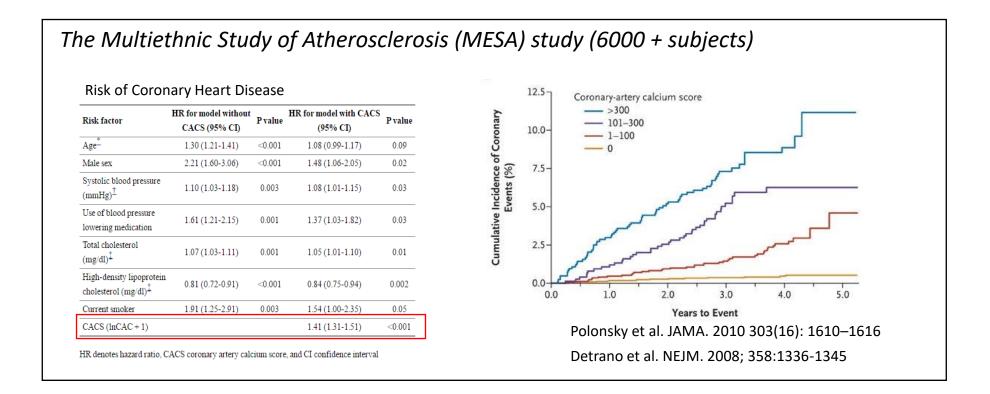
Studying plaque characteristics by invasive intracoronary imaging


Intravascular ultrasound (IVUS)

Optical coherence tomography (OCT)

Stone P et al NEJM 2011


Studying plaque characteristics by invasive intracoronary imaging


But invasive imaging in not suitable as a screening strategy to detect patients at risk

Stone G et al NEJM 2011

Studying plaque characteristics by computed tomography

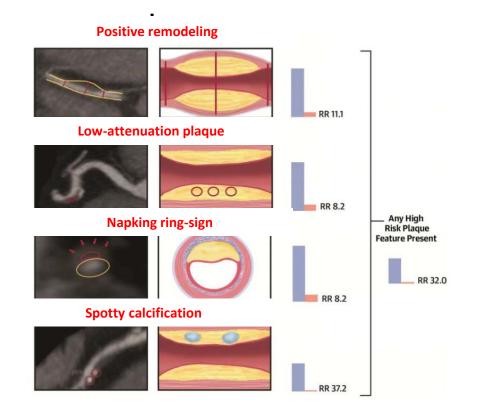
The prognostic value of coronary calcium on cardiovascular CT

But...... calcium is a sign of stable plaques! Reflects irreversible changes in the anatomy of vascular wall Cannot regress with treatment that lowers inflammation

Structural characteristics of the vulnerable plaque in CTA

The vulnerable plaque

 TABLE 3
 Multivariable Logistic Regression Analysis for the Prediction of ACS


 Using Clinical Predictors and Coronary CTA Assessment

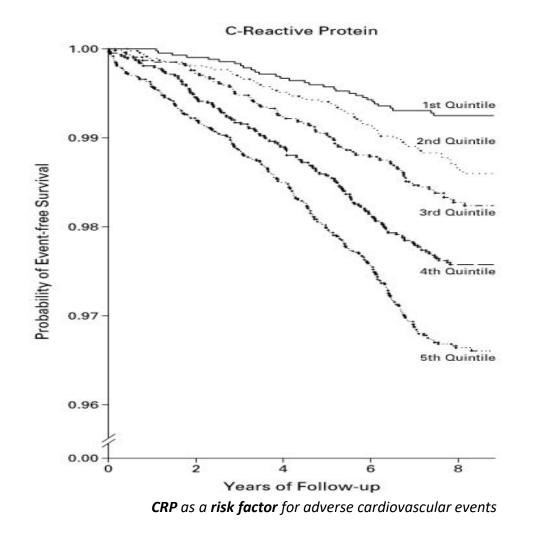
	Model 1*		Model	2†	Model 3‡		
	OR (95% CI)	p Value	OR (95% CI)	p Value	OR (95% CI)	p Value	
Age	1.1 (1.0-1.1)	0.003	1.0 (1.0-1.1)	0.539	1.0 (0.9-1.1)	0.870	
Female	0.2 (0.1-0.4)	<0.001	0.3 (0.1-0.8)	0.020	0.4 (0.1-1.2)	0.104	
Number of risk factors§	1.4 (1.0-1.8)	0.056	1.4 (0.9-2.2)	0.124	1.3 (0.8-2.0)	0.278	
Stenosis ≥50%			71.7 (27.1-189.9)	<0.001	38.6 (14.2-104.7)	<0.001	
High-risk plaque					8.9 (1.8-43.3)	0.006	

*Clinical predictors were age, sex, and number of cardiovascular risk factors (diabetes mellitus, hypertension, dyslipidemia, smoking status, and family history of premature CAD). †Clinical predictors were those in model 1 plus stenosis ≥50%. ‡Clinical predictors were those in model 2 plus high-risk plaque. §Number of risk factors = number of cardiovascular risk factors (diabetes mellitus, hypertension, dyslipidemia, smoking status, and family history of premature CAD).

OR = odds ratio; other abbreviations as in Table 1.

Van Velzen et al. J Nucl Cardiol. 2011;18(5): 893–903 Hecht et al. JACC Cardiovasc Imaging. 2015;8(11) Puchner et al. JACC. 2014;64(7):684–692.

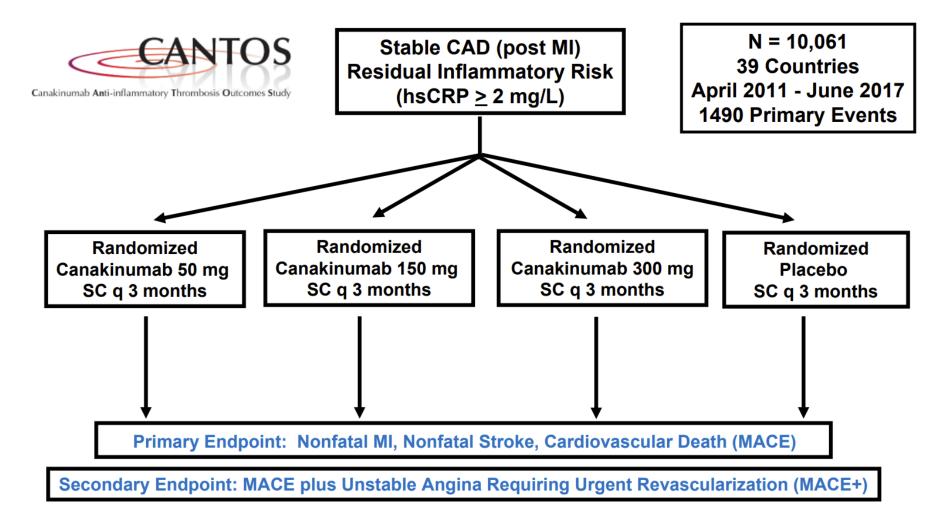
CTA plaque characteristics and risk of subsequent ACS events


	ACS 0-12 mo	ACS 13-24 mo	No ACS in 24mo	p
Remodeling Index	131.2±5.1	120.8±5.9	113.4±1.6	.005
(percent)	(120.9–141.4)	(109.1–132.6)	(110.3–116.6)	
Total plaque volume	166.5±17.8	92.8±20.4	58.1±5.5	<.001
(mm ³)	(131.1–201.9)	(52.1–133.6)	(47.1–69.1)	
LAP volume	30.5±4.1	6.9±4.8	1.2±1.3	<.001
(mm ³)	(22.3–38.8)	(-2.6–16.4)	(-1.3–3.8)	
LAP area	4.7±0.5	1.2±0.6	0.5±0.2	<.001
(mm²)	(3.6–5.7)	(-6.6–2.4)	(0.2–0.9)	
LAP/plaque area	31.5±4.5	8.1±5.2	7.8±1.4	<.001
(percent)	(22.5–40.4)	(-2.2–18.4)	(5.0–10.5)	

Motoyama, Narula et al. JACC 2009

Strategy #3

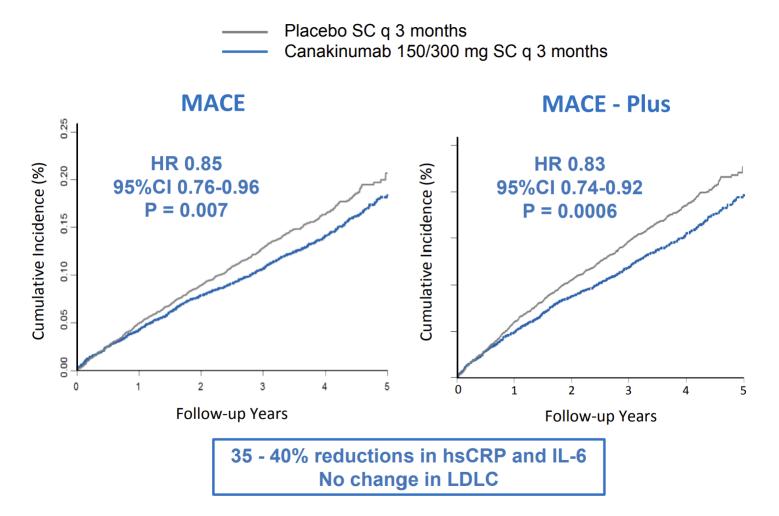
Detecting the vulnerable patient by quantifying systemic inflammation: how specific can we be?


Detecting systemic inflammation to identify the high-risk patient

IL-6 as a predictor of CV events

Outcome IL6 (ng/L)	Number of patients	Events (%/3 yr)							R (95%CI) Q1 as eference	P-value effect of biomarker level
MACE = CV death, MI or stroke	3048	175 (4.85)								
MACE = CV death, MI or stroke <1.4 1.4-2.1 2.1-3.2 ≥3.2 MCE	3048 3824 3619 3600	175 (4.85) 323 (7.29) 363 (8.77) 544 (14.00)						1.32 1.42 1.95	2 (1.10-1.59) 2 (1.18-1.71) 5 (1.62-2.34)	<0.0001
MCE <1.4 1.4-2.1 2.1-3.2 ≥3.2 CV death	3048 3824 3619 3600	180 (5.00) 323 (7.30) 350 (8.47) 510 (13.14)		-	-			1.27 1.33 1.78	(1.06-1.53) (1.11-1.60) (1.48-2.15)	<0.0001
<1.4 1.4-2.1 2.1-3.2 ≥3.2 MI	3048 3824 3619 3600	54 (1.46) 117 (2.56) 166 (3.90) 298 (7.35)			-	-	_	1.48 1.96 2.93	8 (1.07-2.05) 6 (1.43-2.69) 8 (2.15-3.99)	<0.0001
<pre><1.4 1.4-2.1 2.1-3.2 ≥3.2 Stroke</pre>		96 (2.64) 172 (3.85) 176 (4.22) 242 (6.17)		-				1.28 1.26 1.63	8 (0.99-1.65) 6 (0.97-1.63) 8 (1.26-2.11)	0.0013
<1.4 1.4-2.1 2.1-3.2 ≥3.2 Heart failure		39 (1.06) 66 (1.46) 80 (1.90) 89 (2.22)	_		_			1.27 1.56 1.70	7 (0.85-1.89) 6 (1.05-2.33) 9 (1.13-2.56)	0.0527
<1.4 1.4-2.1 2.1-3.2 ≥3.2 Non-CV death		20 (0.54) 53 (1.17) 69 (1.64) 171 (4.31)			•		-	1.65 1.96 - 4.08	5 (0.98-2.77) 5 (1.18-3.25) 5 (2.50-6.64)	<0.0001
<1.4 1.4-2.1 2.1-3.2 ≥3.2 Cancer death		25 (0.68) 48 (1.05) 88 (2.07) 147 (3.62)	_		_ _	-		1.32 2.18 3.19	2 (0.81-2.15) 3 (1.38-3.45) 9 (2.04-5.01)	<0.0001
<1.4 1.4-2.1 2.1-3.2 ≥3.2	3048 3824 3619 3600	14 (0.38) 25 (0.55) 47 (1.11) 75 (1.85)		-	-			1.23 2.14 3.14	8 (0.63-2.37) 4 (1.16-3.95) 4 (1.71-5.75)	<0.0001
				1	2	3	4 5 6	7		
			Lower	risk		Н	igher risk			

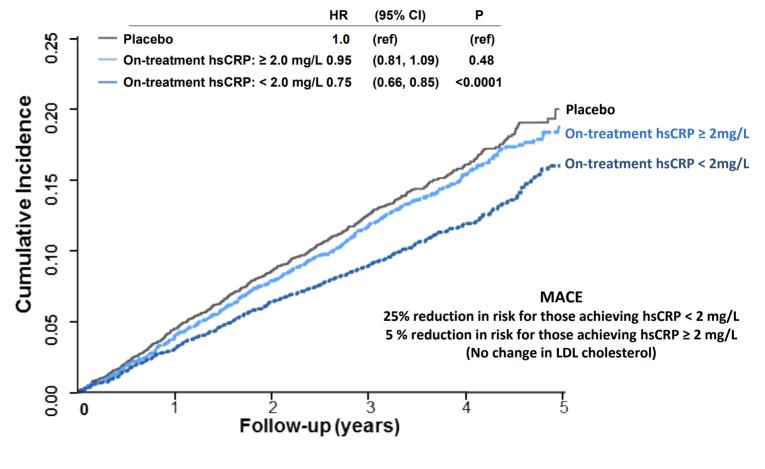
Inhibition of IL-1b to prevent CV events



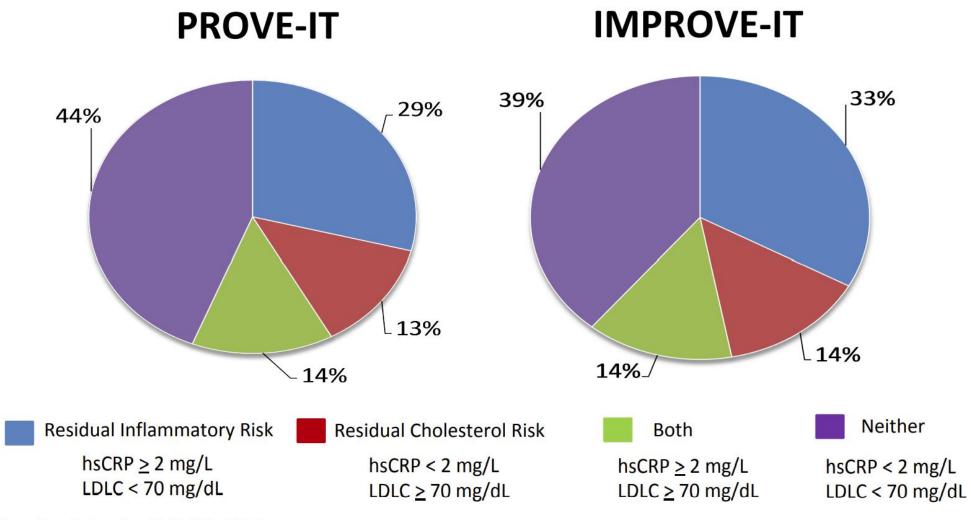
"Residual Inflammatory Risk" Baseline LDLC 82mg/dL (2.1mmol/L) but hsCRP 4.1 mg/L

Ridker PM et al. N Engl J Med. 2017;377:1119-31

Inhibition of IL-1b to prevent CV events


CANTOS: Primary Cardiovascular Endpoints

Ridker PM et al. N Engl J Med. 2017;377:1119-31


Inhibition of IL-1b to prevent CV events

CANTOS: Greater Risk Reduction Among Those With Greater hsCRP Reduction (MACE)

Ridker et al Lancet 2018;391:319-328

The problem with plasma biomarkers of inflammation

Ridker. Circulation Res 2017;120:617-9

Strategy #4

Detecting the vulnerable patient by quantifying coronary inflammation

Using novel PET-CT radiotracers to detect unstable plaques

TABLE 1 A Summary of Agents and Their Potential Mechanisms of Uptake Applicable to Vascular Inflammation Imaging

Agent (Ref. #)	Potential Mechanism of Uptake						
¹⁸ F-FLT (62)	Structural analogue of thymidine, images DNA synthesis within atheroma						
¹¹ C-PK11195 (63)	Affinity for translocator protein, upregulated on inflammatory cells						
¹⁸ F-A85380 (64)	Binds arterial nicotinic acetylcholine receptors, possibly related to vascular damage						
18F-choline (65)	Images increased cell wall synthesis within atheroma						
⁶⁸ Ga-DOTA-octreotate (60)	Affinity for somatostatin receptors, which are highly expressed on macrophages						
⁶⁴ Cu-ATSM (66)	Trapped within cells in hypoxic state						
¹⁸ F-MISO (67)	Trapped within cells in hypoxic state						
⁶⁸ Ga-NOTA-RGD (68)	Images neoangiogenesis as a result of hypoxia or chronic inflammation						
⁶⁴ Cu-DOTA-CANF (69)	Images neoangiogenesis via natriuretic peptide receptor affinity						
¹⁸ F-FDG	A glucose analogue imaging increased metabolic rate in the presence of inflammation and hypoxia						
¹⁸ F-sodium fluoride (59)	Images active calcification as a result of necrosis or inflammation						
68Ga-CXCR4 (70)	Images CXCR4 receptor expressed by inflammatory cells						
¹⁸ F-florbetapen (61)	Imaging $\beta\text{-amyloid plaque as a component of inflammation}$						

¹⁸F-NaF ¹⁸FDG

 $\label{eq:solution} {}^{11}C-PK11195 = {}^{11}C-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide; A85380 = 3-([2S]-azetidinylmethoxy)pyridine dihydrochloride; ATSM = diacetyl-bis(N-methylthiosemicarbazone; CXCR4 = C-X-C chemokine receptor type 4; DOTA-CANF = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid atrial natriuretic factor; FDG = fluorodeoxyglucose; FLT = fluorothymidine; MISO = fluoromisonidazole; NOTA-RGD = 1,4,7-triazacyclononane-N,N',N'-triacetic acid arginine-glycine-aspartate.$

Joshi et al. Lancet 2014; 383: 705-13

Using novel PET-CT radiotracers to detect unstable plaques

68Ga-DOTATATE: somatostatin receptor subtype-2 (SST2)-binding PET tracer

culprit lesion / bystand lesion ⁶⁸Ga-DOTATATE ⁶⁸Ga-DOTATATE J ROC 150 \$ 100 AUC 0.86, 50 P=0.0006 50 100 o Culprit o Culprit Culprit stented 100% - Specificity% Non-culprit A Stable stented Non-culprit

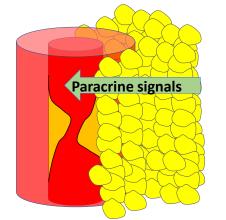
68Ga-DOTATATE detects culprit coronary lesions

But PET-CT \rightarrow high costs, limited availability, high radiation

Tarkin JM et al. *JACC 2017;69(14)*.

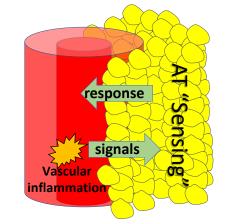
The challenge remains

How to identify:


a) The **vulnerable "healthy"** individual who will develop atheroma

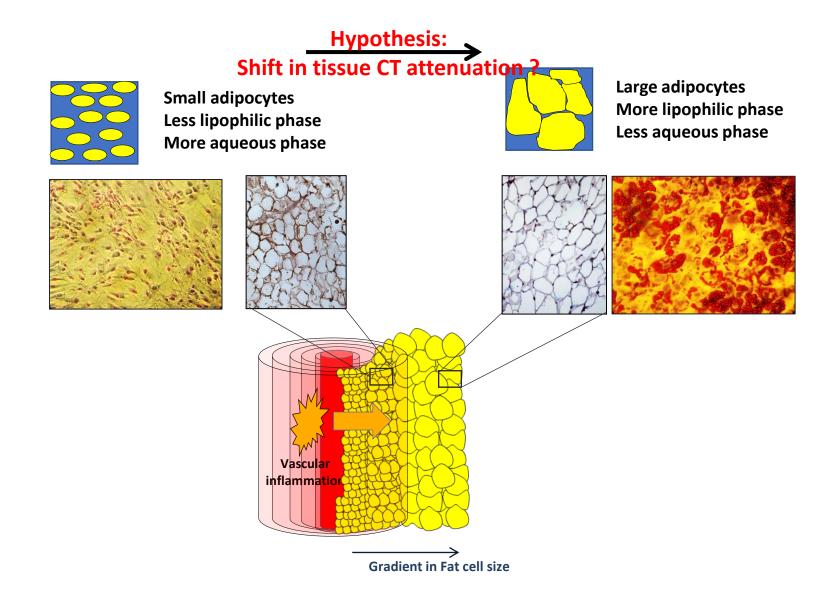
b) The **vulnerable "healthy"** individual who has minor atheroma **at risk for ACS**

c) The **vulnerable patient** with advanced disease, who despite optimum treatment remains **at risk for ACS** (due to rupture of either <u>significant</u> or "<u>minor</u>" plaques)

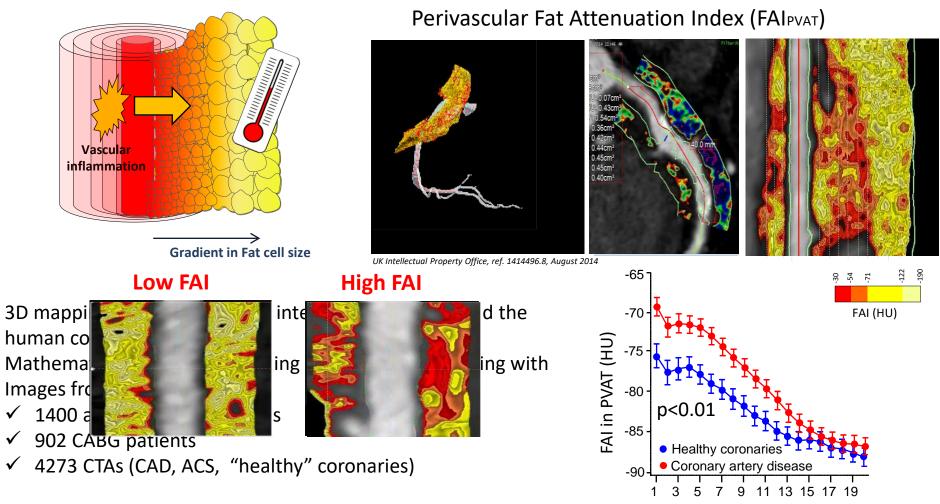

Perivascular fat and the vascular wall: The concept of "inside to outside" signalling

Classic approach (outside to inside signals)

Antonopoulos A et al; Obes Rev. 2009;10:269-79


New approach (inside to outside signals)

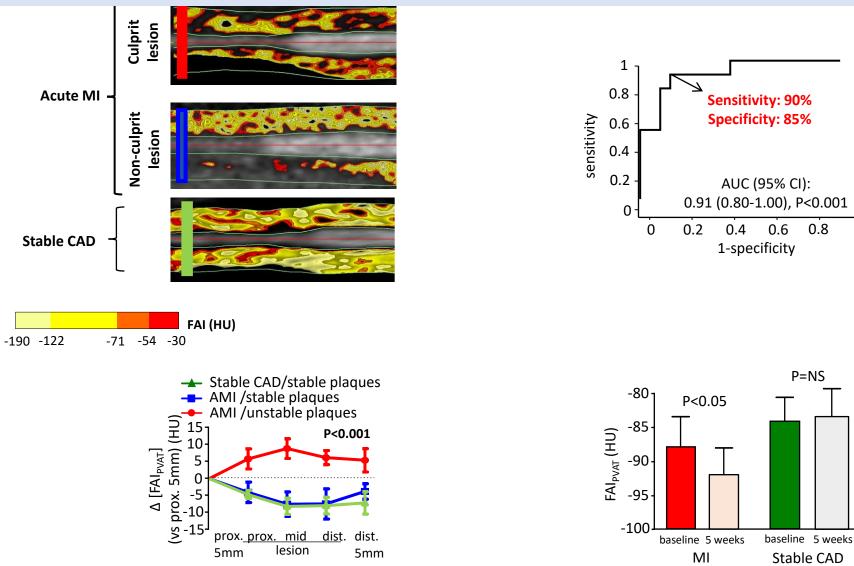
Margaritis et al; Circulation 2013;127:2209-21


<u>AT sensing</u>: includes processes that could affect adipogenesis! Antonopoulos A et al Diabetes 2015 64:2207-19

How can vascular inflammation affect PVAT adipogenesis?

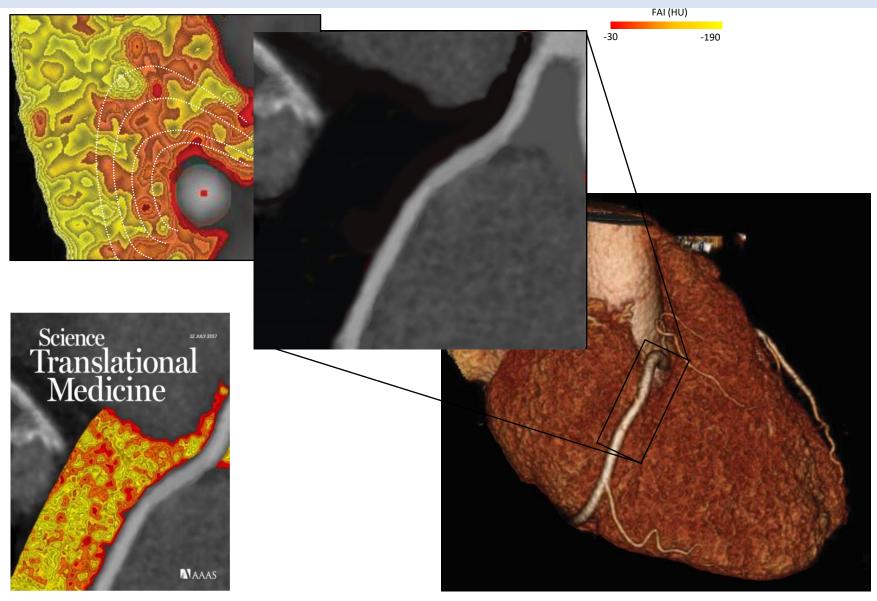
Antonopoulos A et al. Science Translational Medicine 2017

Perivascular fat: sensor of coronary inflammation A new CT imaging analysis technology



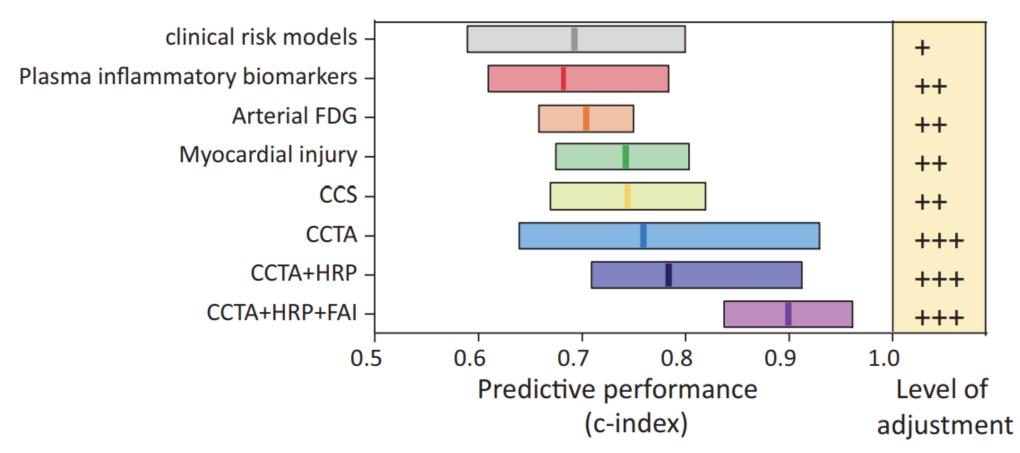
Antonopoulos A, Sanna F et al. Science Translational Medicine 2017

Distance from RCA outer wall (mm)


Can FAI_{PVAT} track coronary inflammation and its resolution post AMI

1

Antonopoulos A, Sanna F et al. Science Tansl Med 2017

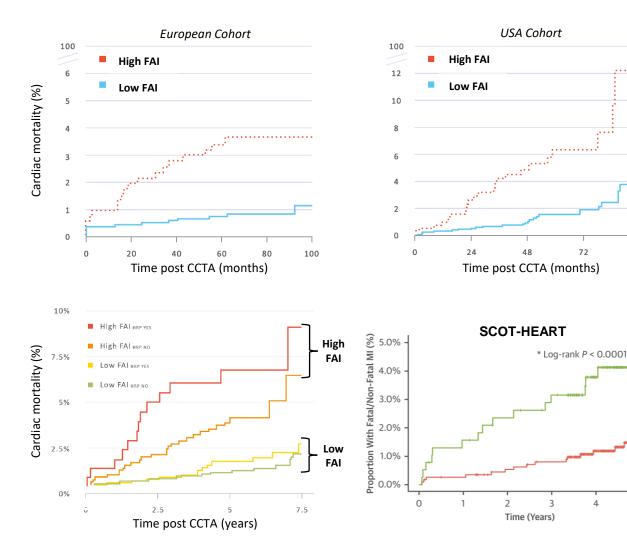

Applying FAI Analysis as a new dimension of routine CTA

Antonopoulos A, Sanna F et al. Science Translational Medicine 2017

Comparative performance of

Predictive performance of commonly used biomarkers for cardiovascular risk stratification

Antoniades C, Antonopoulos A, Deanfield J EHJ 2019


FAI Accurately Predicts Future Heart Attack Risk

72

96

5

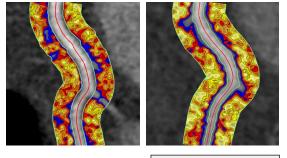
4

CRISP-CT Study Design¹

- 4000 participants from Europe and US •
- Up to 10 years follow up

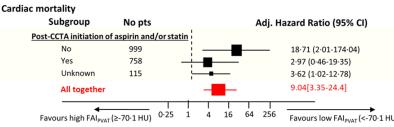
CRISP-CT Findings

- Abnormal FAI associated with a
 - 6-9x higher risk for fatal heart attacks
 - 5x higher risk for non-fatal heart attacks
- After adjusting for all conventional risk factors (e.g., smoking, age, diabetes, high cholesterol)
- ► FAI is more predictive of future heart attacks than high-risk plaque (HRP) features²
- Findings confirmed in SCOT-HEART using uncorrected perivascular attenuation (PCAT)³

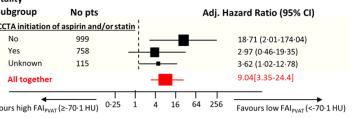

Lancet 2018; 392: 929-39 1.

J Am Coll Cardiol 2020; 76 (6) 755-757

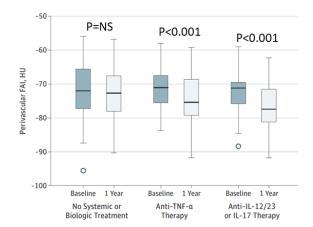
³ J Am Coll Cardiol Img. 2022, 15 (6) 1078-1088

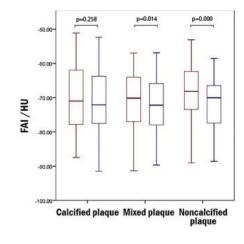

FAI tracks Dynamic Changes in Response to Treatments

Changes of FAI in psoriasis patients after treatment with biologics



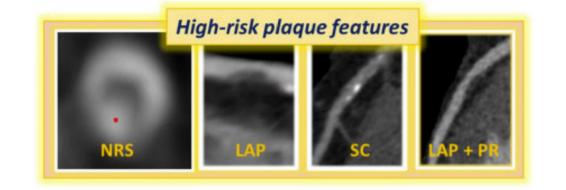
-190 HU +30 HU

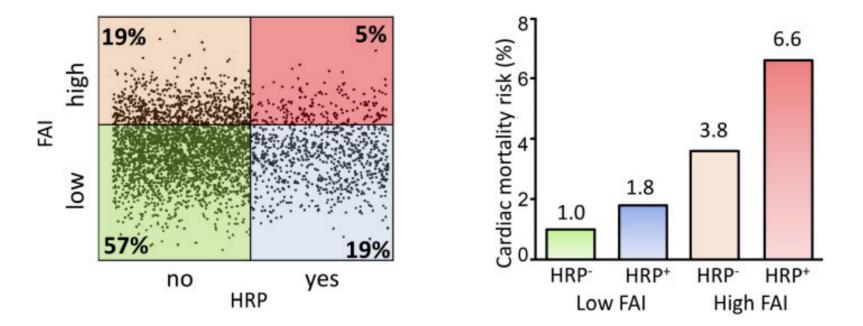

Changes of FAI with Statin Treatment



Oikonomou et al. Lancet 2018

With treatment decision based on **CCTA** alone: 18x greater risk for patients with high FAI left untreated

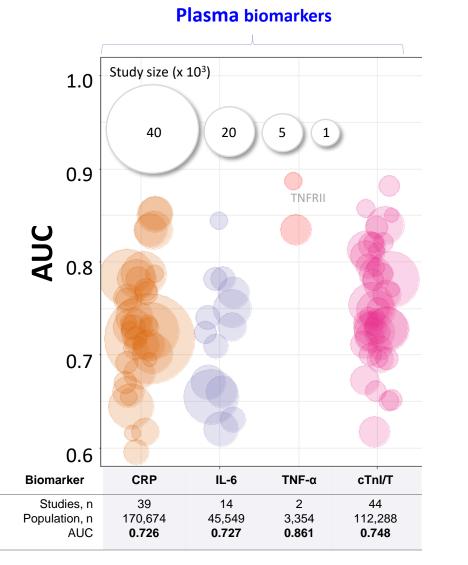




Elnabawi Y Mehta N; JAMA Cardiol 2019

Dai et al et al. Int J Cardiol 2020

Combination of HRP and PVAT imaging by CT for enhanced risk stratification



Antoniades C, Antonopoulos A, Deanfield J EHJ 2019

What does FAI add beyond the current state of the art?

- 94,821 relevant studies screened - 93 studies eligible (n=351,628 individuals)

Biomarker	Size ∆(A	AUC%)	[95%CI]	MACEs + all-cause
CRP	170,214	0.8	[0.3; 1.3]	mortality
IL6	45,549	1.7	[0.7; 2.7]	
TNF-a	3,354	2.3	[-1.3; 5.9]	<
cTnl/T	112,288	2.3	[1.3; 3.3]	
PET/CT	545	4.0	[-4.4; 12.4]	
CT-HRP	14,191	10.5	[8.0; 13.0]	
CT-HRP+PV	AT 5,487	16.5	[3.9; 29.2]	
Overall	351,628		[2.1; 3.6]	•
	Q	=67.7,	p=1.18 x 10 ⁻¹	
				0 5 10 15 20 Δ[AUC]%
Biomarker	Size ∆(/	AUC%)	[95%CI]	MACEs only
Biomarker CRP	Size Δ(/ 141,348	-		MACEs only
	141,348	0.9		MACEs only
CRP	141,348 39,322	0.9 1.7	[0.3; 1.5]	MACEs only
CRP IL6	141,348 39,322	0.9 1.7 2.3	[0.3; 1.5] [0.7; 2.7]	MACEs only
CRP IL6 TNF-a	141,348 39,322 3,035	0.9 1.7 2.3 1.4	[0.3; 1.5] [0.7; 2.7] [-1.3; 5.9]	MACEs only
CRP IL6 TNF-a cTnl/T	141,348 39,322 3,035 80,770	0.9 1.7 2.3 1.4 4.0	[0.3; 1.5] [0.7; 2.7] [-1.3; 5.9] [0.7; 2.1]	MACEs only
CRP IL6 TNF-a cTnI/T PET/CT	141,348 39,322 3,035 80,770 545 10,933	0.9 1.7 2.3 1.4 4.0	[0.3; 1.5] [0.7; 2.7] [-1.3; 5.9] [0.7; 2.1] [-4.4; 12.4]	MACEs only
CRP IL6 TNF-a cTnI/T PET/CT CT-HRP	141,348 39,322 3,035 80,770 545 10,933	0.9 1.7 2.3 1.4 4.0 10.8	[0.3; 1.5] [0.7; 2.7] [-1.3; 5.9] [0.7; 2.1] [-4.4; 12.4] [8.1; 13.5]	MACEs only
CRP IL6 TNF-a cTnI/T PET/CT CT-HRP	141,348 39,322 3,035 80,770 545 10,933 AT 5,487 281,440	0.9 1.7 2.3 1.4 4.0 10.8 16.5 2.9	[0.3; 1.5] [0.7; 2.7] [-1.3; 5.9] [0.7; 2.1] [-4.4; 12.4] [8.1; 13.5] [3.9; 29.2] [2.1; 3.8]	
CRP IL6 TNF-a cTnl/T PET/CT CT-HRP CT-HRP+PV	141,348 39,322 3,035 80,770 545 10,933 AT 5,487 281,440	0.9 1.7 2.3 1.4 4.0 10.8 16.5 2.9	[0.3; 1.5] [0.7; 2.7] [-1.3; 5.9] [0.7; 2.1] [-4.4; 12.4] [8.1; 13.5] [3.9; 29.2]	

Antonopoulos AS et al. JACC Imaging 2021

Clinical approaches to the non-invasive detection of vascular inflammation

	Plasma markers of Inflammation	Myocardial Injury biomarker	miRNA rs profiling	CTA plaque phenotyping	Hybrid PET imaging	Perivascular FAI mapping
Diagnosis*	-Poorly associated with vascular inflammation	-Index of plaque Instability, measuring downstream effects of rupture	-More studies needed	-Indirect, anatomical markers of plaque Inflammation	-High sensitivity for vascular inflammation	-Fat senses vascular inflammation
Prognosis [#]	-Independently predict CV events	-Independently predict CV events	-More studies needed	-High specificity -Independently predict CV events	-Studies needed	-Predictive of cardiac mortality
Limitations	-Poor specificity for vascular inflammation	-Measuring plaque rupture events	-Poor specificity -Analytical issues -Cost-effectiveness	-Operator dependent -Anatomy assessment		-Standardization -Complex analysis -Not widely available
Strengths	-Easy to measure -Population screening -Inexpensive	-Easy to measure -Population screening -Inexpensive	-Highly sensitive -Population screening -Wide screening	-Wide availability -Prognostic value -Risk reclassification	-Disease activity -High sensitivity -Good specificity	-Specific for vascular inflammation -Hardware agnostic -Prognostic value -Risk reclassification

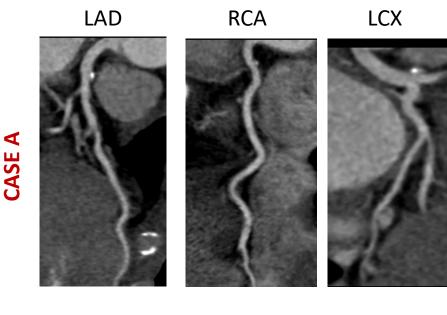
Antoniades C, Antonopoulos A, Deanfield J EHJ 2019

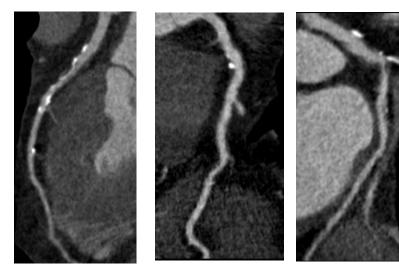
Non-invasive detection of the vulnerable patient

- Need to dissociate the degree of stenosis from the risk of future events
- The unstable plaque is the inflamed one, and it is not necessarily large!
- Search for the vulnerable patients includes:

-Plasma biomarkers of

```
myocardial injury (cTnI, cMyC)
inflammation (e.g. hsCRP, ....)
```

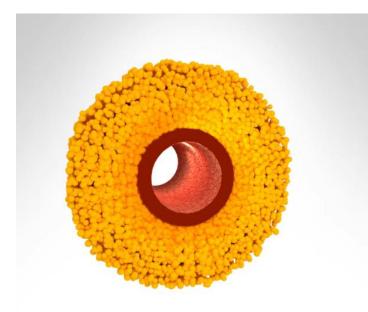

- Specificity issues

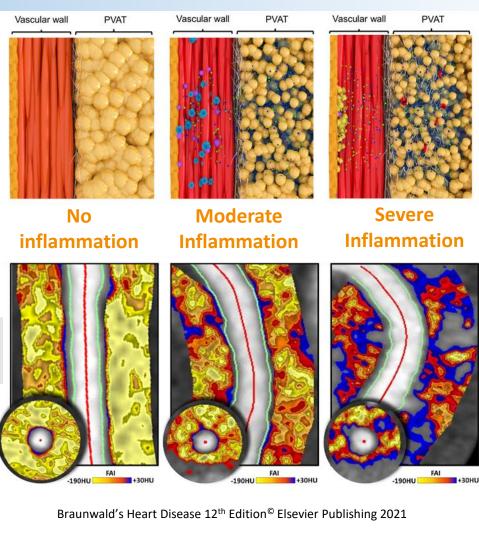

```
-Imaging biomarkers
```

```
PET-CT (NaF, ...)
CTA (Plaque morphology)
CTA-FAI (vascular inflammation, +/- plaque)
```

Quantification of <u>coronary</u> inflammation by newer imaging methods such as PET, CTA and CT imaging of PVAT may help detect the vulnerable patients at risk for plaque rupture events

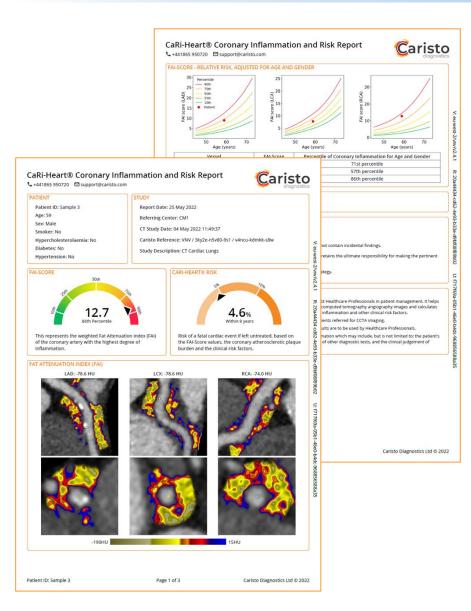
How Do We Identify High Risk Patients?




- Male (age 52y old) with typical chest pain
- LDL=1.12mmol/L (atorvastatin 10mg OD)
- Hypertensive (candesartan, amlodipine)
- Ex smoker (stopped 2 years ago)
- Overweight BMI 26.5Kg/m²
- No ischaemia, no stenosis, minor calcification
- The patient died from a fatal heart attack (proximal LAD) 35 months later....
- Male (age 63y old) with typical chest pain
- LDL=2.2mmol/L (atorvastatin 40mg OD)
- Hypertensive (amlodipine, indapamide)
- Ex smoker (stopped 9 years ago)
- Obese BMI 31.5Kg/m²
- DM on metformin HbA1c=6.7%
- No ischaemia, no stenosis, extensive plaque, incl low attenuation plaque
- Follow up 11 years, no event throughout

CASE B

Perivascular FAI: a "Sensor" of Vascular Inflammation


Margaritis & Antonopoulos et al; Circulation 2013;127:2209-21 Antonopoulos et al; Diabetes 2015; 112:213-222 Antonopoulos et al; Circ Res 2016;118(5):842-55 Antonopoulos et al., Science Translational Medicine *2017* Oikonomou & Antoniades. Nature Rev Cardiol 2018

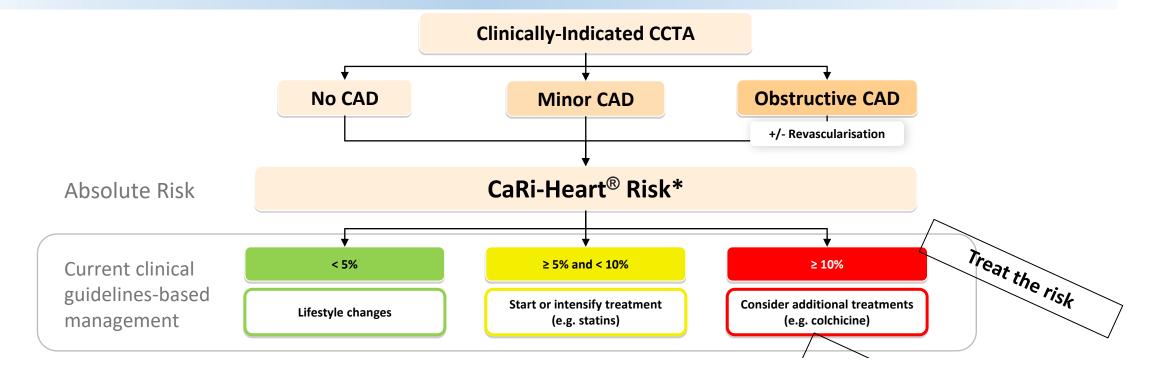
Analysis performed on routine CTCA, as part of clinical practice

CaRi-Heart®

A CE-Marked Medical Device for Evaluation of Coronary Inflammation and Prediction of Future Cardiac Events

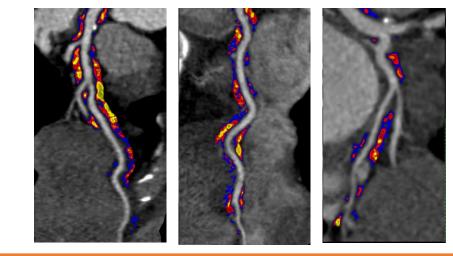
Fat Attenuation Index

Unadjusted, visual representation of the extent of coronary inflammation in the 3 main epicardial coronary arteries

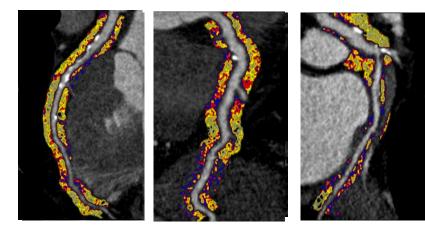

FAI-Score

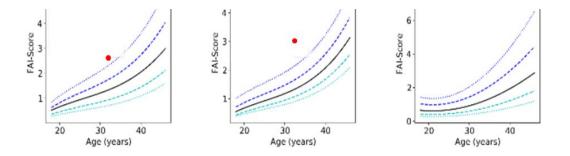
- Individualised quantification of coronary inflammation in the 3 main epicardial coronary arteries, adjusted for age and gender
 - Percentile value represents the patient's relative risk
 - Can be viewed as a measure of disease activity

CaRi-Heart[®] **Risk**

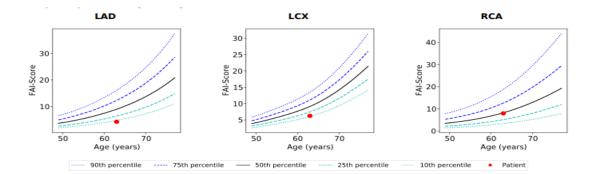

The absolute risk of a fatal cardiac event within the next 8 years, based on the personalised FAI-Score values, coronary atherosclerotic plaque burden and clinical risk factors

Use of pericoronary FAI in clinical practice



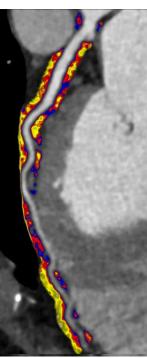


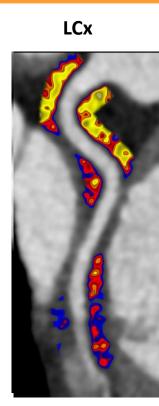
Measuring FAI-Score Identifies High Risk Patients

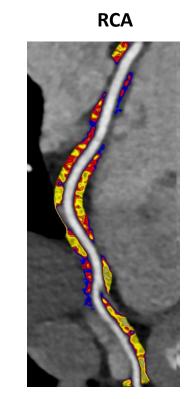


CaRi-Heart[®] Risk (8y risk for cardiac death: 31.2%

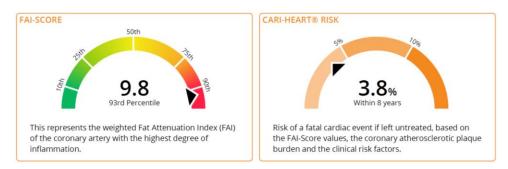
Vessel	FAI-Score	Percentile of Coronary Inflammation for Age and Gender		
Left Anterior Descending Artery	2.7	93rd percentile		
Left Circumflex Artery	3.0	99th percentile		
Right Coronary Artery	7.7	99th percentile		
Right Coronary Artery	7.7	sser percentile		


Vessel	FAI-Score	Percentile of Coronary Inflammation for Age and Gender		
Left Anterior Descending Artery	4.2		6th percentile	
Left Circumflex Artery	6.3		12th percentile	
Right Coronary Artery	7.9		48th percentile	

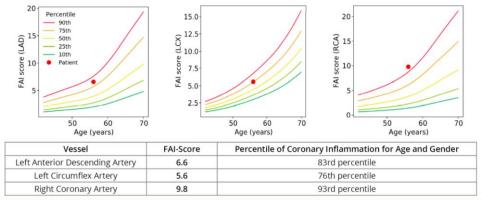

"Normal" Coronary Arteries but at high-Risk


History

- 56-year-old female
- Non-diabetic, normotensive
- LDL 66 mg/dL
- Pooled Cohort Equation: 2.3%

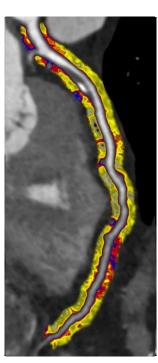


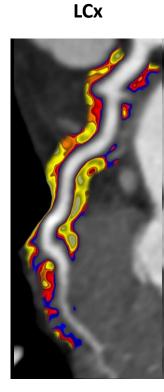
Management based on Conventional CCTA


• Lifestyle measures

Management after CaRi-Heart[®] Report

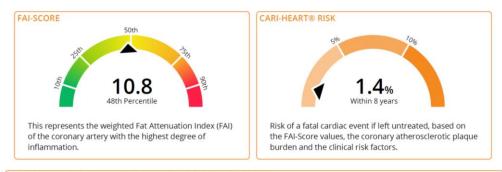
• Atorvastatin 40mg daily



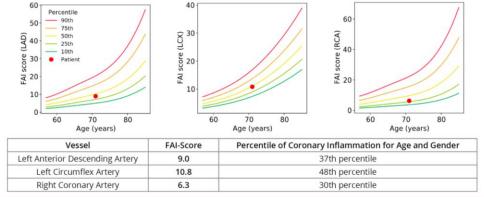

"High-Risk" Plaque But Low Risk Patient


History

- 71-year-old female
- Non-diabetic, normotensive
- LDL 64 mg/dL
- Pooled Cohort Equation: 15.9%
- Atorvastatin 20mg daily



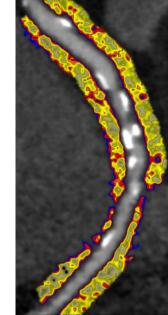
Management based on Conventional CCTA


Increase atorvastatin dose

Management after CaRi-Heart[®] Report

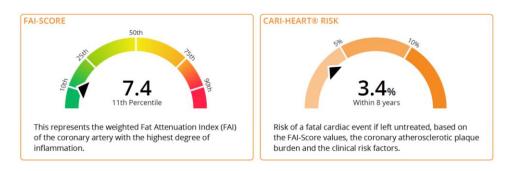
• Atorvastatin dose unchanged



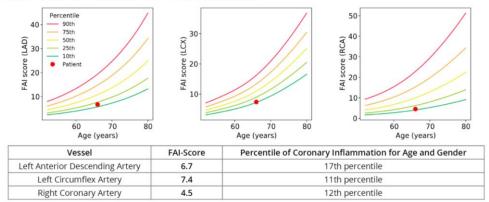


Low Risk Patients Despite Extensive Disease

- 76-year-old male •
- Hypertensive, non-diabetic ٠
- LDL 73 mg/dL •
- Pooled Cohort Equation: 14.7% ٠
- Atorvastatin 10mg daily ٠
- CCS = 768٠

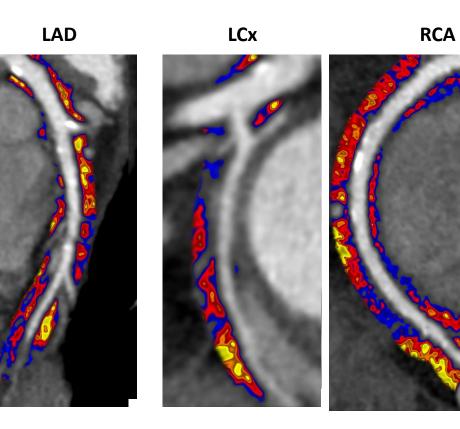


Management based on Conventional CCTA


?Increase atorvastatin dose

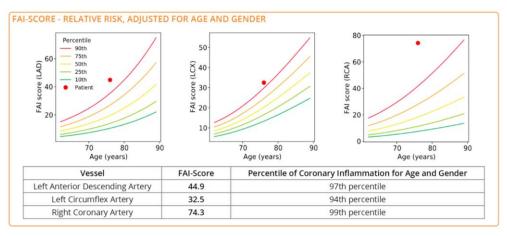
Management after CaRi-Heart[®] Report

Atorvastatin dose unchanged •



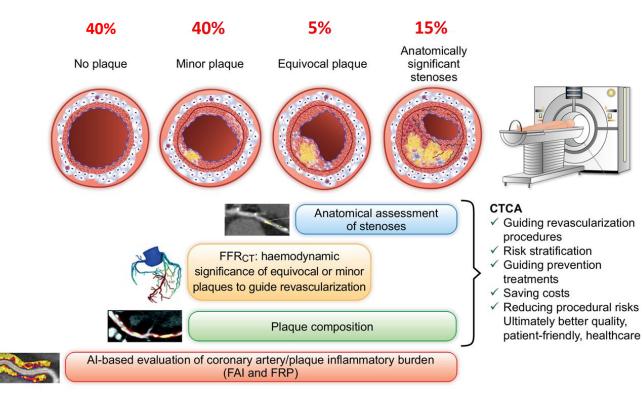
Identifying High Risk Patients Despite Minor Disease

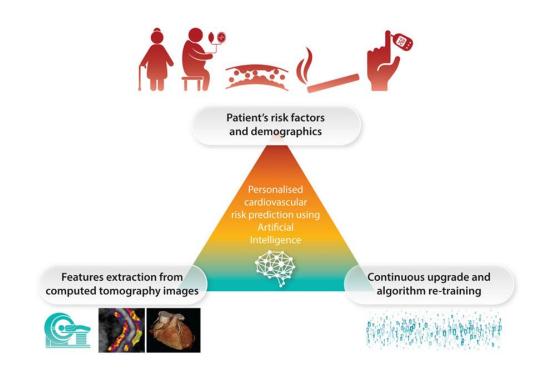
- 56-year-old female
- Non-diabetic, normotensive
- LDL 68 mg/dL
- Pooled Cohort Equation: 7.9%
- Atorvastatin 10mg daily


Management based on Conventional CCTA

• No change in current treatment

Outcome


 Patient died from anterior MI 33 months after CCTA



CTCA: an One-Stop-Shop for Coronary Diagnostics

Enhanced Diagnostics

Improved Risk Stratification

Questions ?