
Chronic Kidney Disease

Χ. Ν. Σκαλιώτη Επίκουρη Καθηγήτρια Νεφρολογίας - Μεταμόσχευσης Νεφρού Κλινική Νεφρολογίας και Μεταμόσχευσης Νεφρού, Ιατρική Σχολή ΕΚΠΑ, ΓΝΑ «Λαϊκό»

> Κατ' επιλογή μάθημα «Νεφρολογία» 13/5/2025

Chronic Kidney Disease

Definition of Chronic Kidney Disease

Abnormalities of kidney structure or function, present for a minimum of 3 months, with implications for health

Markers of kidney	Albuminuria (ACR ≥30 mg/g [≥3 mg/mmol])
damage (1 or more)	Urine sediment abnormalities
	Persistent hematuria
	Electrolyte and other abnormalities due to
	tubular disorders
	Abnormalities detected by histology
	Structural abnormalities detected by imaging
	History of kidney transplantation
Decreased GFR	GFR <60 ml/min per 1.73 m ²
	(GFR categories G3a–G5)

CKD Staging

CKD is staged based on the Cause (systemic disease or isolated kidney disease), **G**FR levels, and **A**lbuminuria.

GFR categories in CKD

GFR category	GFR (ml/min/1.73 m ²)	Terms
G1 G2 G3a G3b G4 G5	≥90	Normal or high
G2	60–89	Mildly decreased*
G3a	45–59	Mildly to moderately decreased
G3b	30-44	Moderately to severely decreased
G4	15–29	Severely decreased
G5	<15	Kidney failure

Abbreviations: CKD, chronic kidney disease; GFR, glomerular filtration rate.

*Relative to young adult level

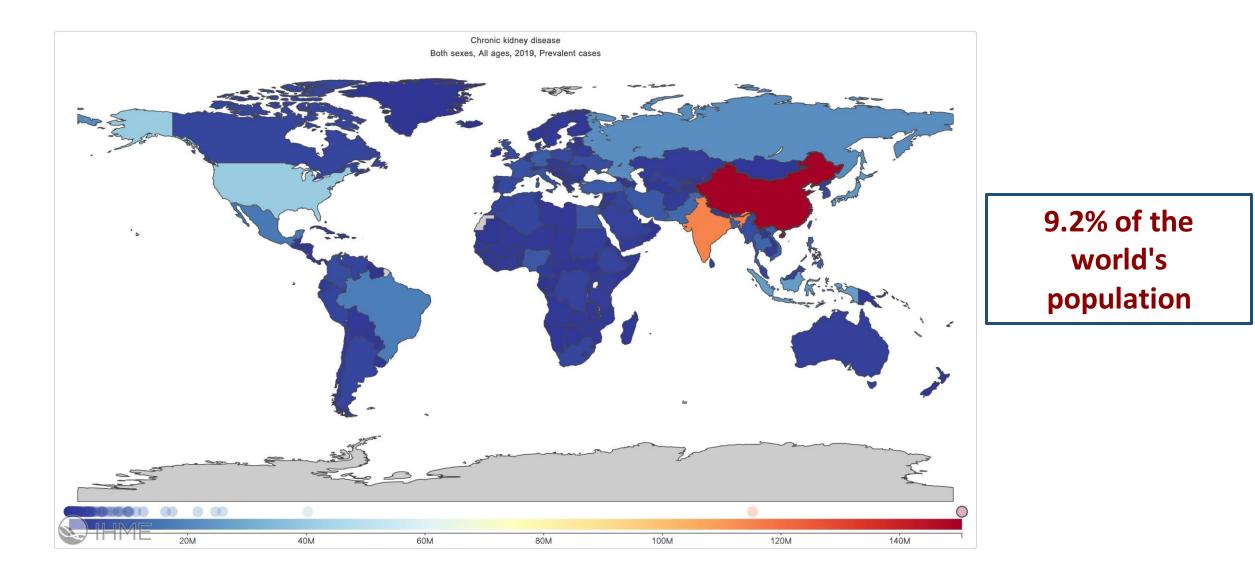
In the absence of evidence of kidney damage, neither GFR category G1 nor G2 fulfill the criteria for CKD.

Albuminuria categories in CKD

	AER	ACR (approximate equivalent)			
Category	(mg/24 hours)	(mg/mmol)	(mg/g)	Terms	
A1	< 30	<3	<30	Normal to mildly increased	
A2	30-300	3-30	30-300	Moderately increased*	
A3	>300	>30	>300	Severely increased**	

Abbreviations: AER, albumin excretion rate; ACR, albumin-to-creatinine ratio; CKD, chronic kidney disease. *Relative to young adult level.

**Including nephrotic syndrome (albumin excretion usually >2200 mg/24 hours [ACR >2220 mg/g; >220 mg/mmol]).

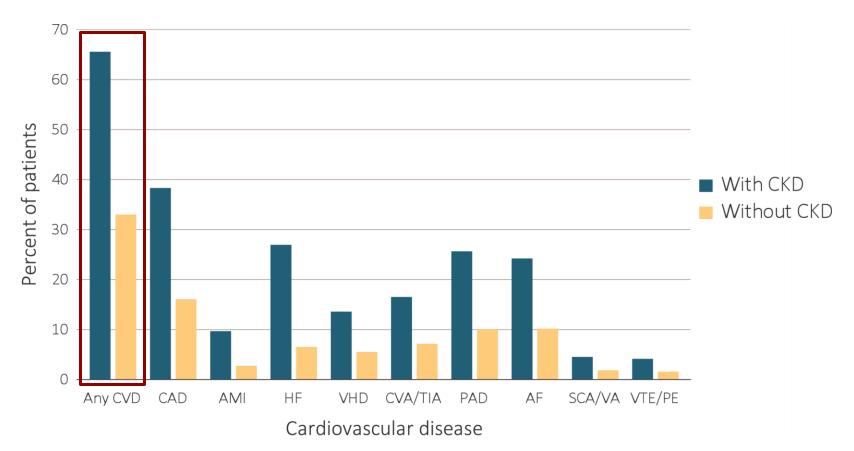


KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease

Why is CKD important?

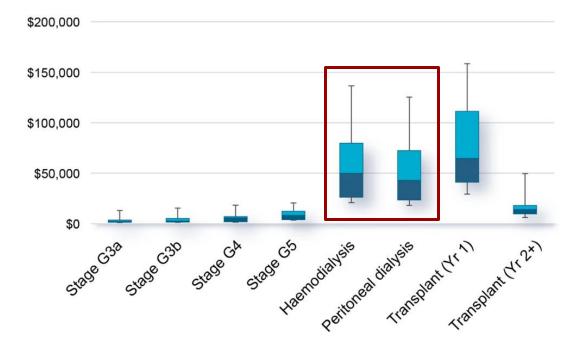
697.3 million people globally were affected by CKD in 2019

CKD Prevalence


Prevalence (thousands) 2017 counts

Chronic kidney disease	697 509·5 (649 209·4 to 752 050·7)
Diabetes mellitus	475 995∙8 (436 590∙5 to 522 782∙8)
Chronic obstructive pulmonary disease	299 398·2 (269 025·2 to 330 073·8)
Depressive disorders	264 455.6 (246 380.1 to 286 312.0)

CKD prevalence is higher than the preavalence of common noncommunicable diseases


GBD 2017 Disease and Injury Incidence and Prevalence Collaborators, Lancet 2018

CKD and Cardiovascular Disease USA, 2016

Data Source: Special analyses, Medicare 5% sample. Abbreviations: AF, atrial fibrillation; AMI, acute myocardial infarction; CAD, coronary artery disease; CKD, chronic kidney disease; CVA/TIA, cerebrovascular accident/transient ischemic attack; CVD, cardiovascular disease; HF, heart failure; PAD, peripheral arterial disease; SCA/VA, sudden cardiac arrest and ventricular arrhythmias; VHD, valvular heart disease; VTE/PE, venous thromboembolism and pulmonary embolism

Globally, CKD carries a **significant economic burden**, which increases substantially with increasing disease severity.

Jha V et al, Adv Ther 2023

AIM

- 1. Identify high-risk patients
- 2. Assess the degree and cause of kidney damage
- 3. **Prevent** progression of potentially reversible kidney damage
- 4. **Properly manage** the symptoms of progressive kidney function loss

Training of all healthcare

professionals

Risk Stratification

Prognosis of CKD by GFR and albuminuria category

			Persistent albuminuria categories Description and range			
	Prognosis of CKD by GFR and Albuminuria Categories: KDIGO 2012			A1 Normal to mildly increased	A2 Moderately increased	A3 Severely increased
				<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol
3 m²)	G1	Normal or high	≥90			
v 1.73 ange	G2	Mildly decreased	60-89			
categories (ml/min/ 1.73 m^2) Description and range	G3a	Mildly to moderately decreased	45-59			
ories	G3b	Moderately to severely decreased	30-44			
categ	G4	Severely decreased	15-29			
GFR	G5	Kidney failure	<15			

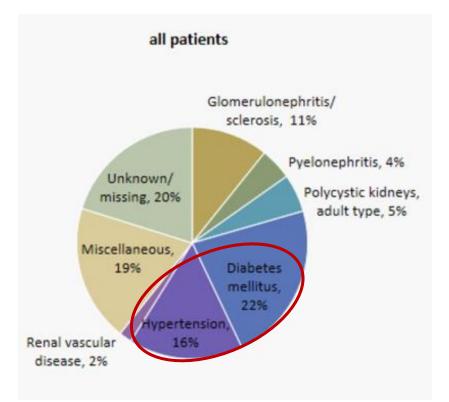
Green: low risk (if no other markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red, very high risk.

Green: Low risk Yellow: Moderately increased risk Orange: High risk Red: Very high risk

Case Example

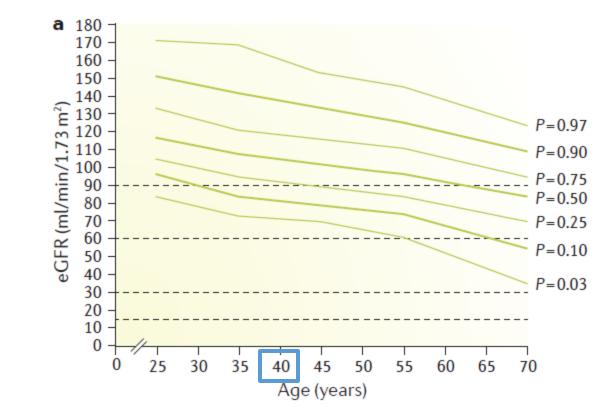
- 27-year-old patient, BMI: 34
- Feb 2016: Nephrotic syndrome
- Idiopathic Membranous Glomerulopathy confirmed histologically
- Cr: 0.6 mg/dl, eGFR: 126 ml/min/m²

CKD Stage G1, A3 High risk for progression to ESKD

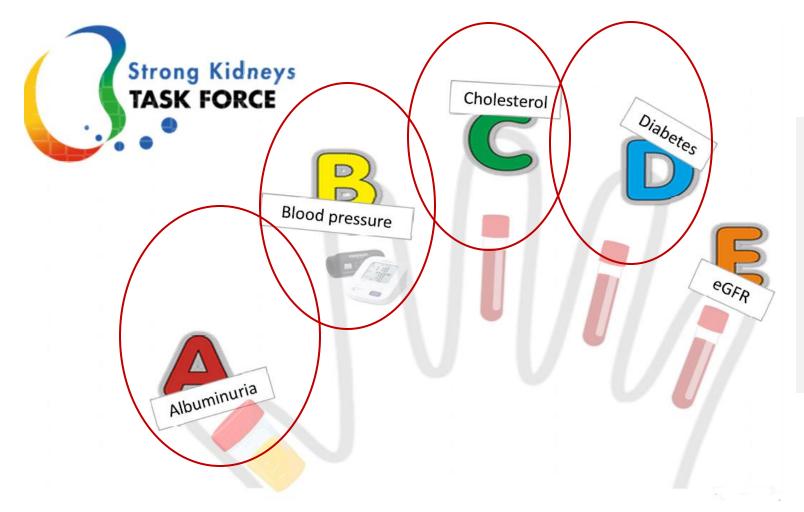

estimated GFR (eGFR)

CKD-EPI Equation 2021 (Age, Sex, Creatinine)

eGFR = GFR = 142 x min(SCr / κ , 1)^{α} x max(SCr / κ , 1)^{-1.200} x 0.9938^{Age} x 1.012 [if female] where, SCr = mg/dL, K = 0.7 (females) or 0.9 (males), α = -0.241 (females) or -0.302 (males), min = indicates the minimum of SCr /K or 1 and max = indicates the maximum of SCr /K or 1


Reliable for patients with GFR >60 ml/min

Primary Causes of ESKD in Europe


European Renal Association- European Dialysis and Transplantation Association, ERA-EDTA Registry 2019

GFR decreases by 0.8-1 ml/min/year after the age of 40

Benghanem G et al, Kidn Int 2016

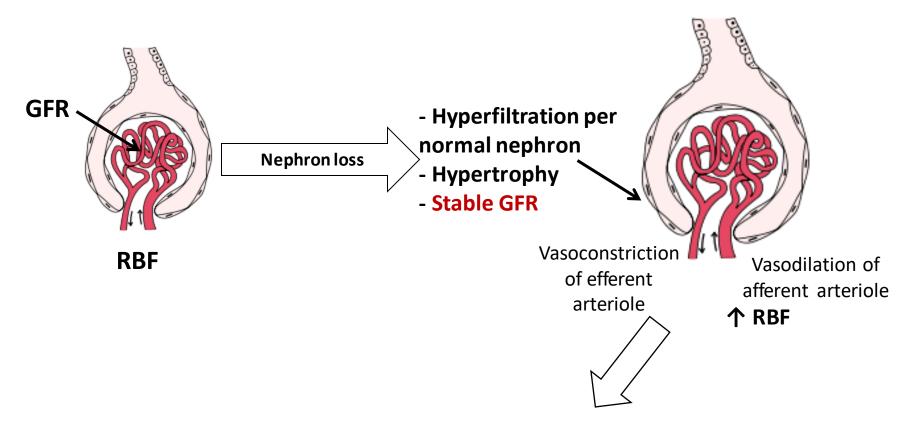
Risk Factors for CKD



- Albuminouria
- Blood pressure
- Cholesterol
- Diabetes Mellitus
- Medications, Episodes of AKI
- Socioeconimic parameters

Chronic Kidney Disease Pathophysiological mechanism

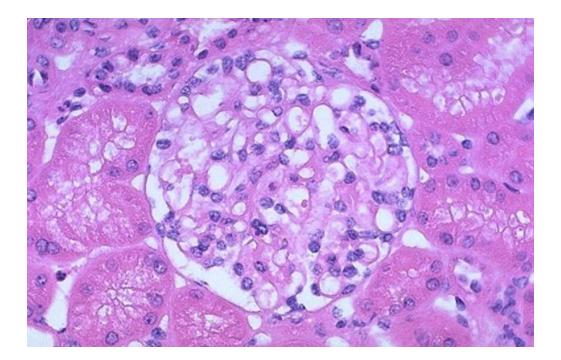
Bricker NS, 1960 -1970 "The intact nephron hypothesis"

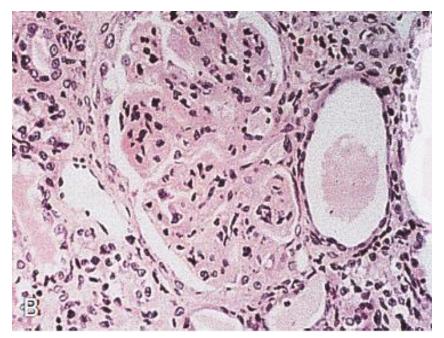


...<u>As the number of functioning nephrons decrea</u>ses each remaining nephron must perform a greater fraction of total renal excretion. The functional capacity of the nephron in the affected kidney is largely independent of the specific form of kidney disease.

The reduction in the number of nephrons is clearly responsible for many of the abnormalities that develop in the patient.

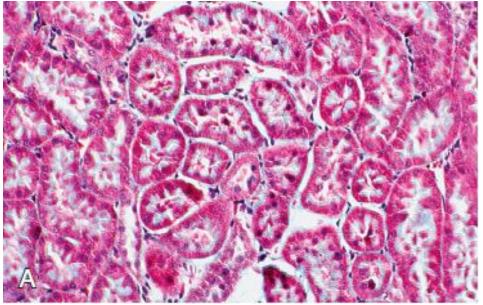
The remaining nephrons allow the patient to survive...

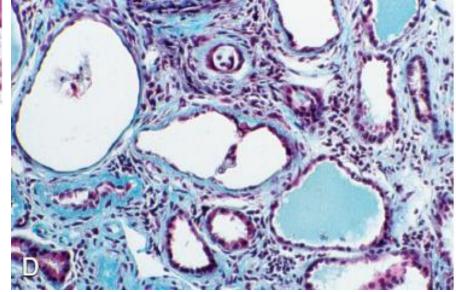

Pathophysiology of CKD


Intraglomerular hypertension

Initially, it is useful, but in the long term, it causes damage to all glomeruli.

RBF: Renal Blood Flow


Normal glomerulus


Glomerular hypertrophy Mesangial proliferation

Glomerulosclerosis

Normal glomeruli - Interstitial space

Diffuse tubular atrophy, Interstitial fibrosis

Clinical Manifestations per CKD Stage

Stage	Description	GFR (ml/min/1.73m ²)	Clinical Features
1	Normal/high GFR	≥90	Albuminuria,
-			proteinuria, hematuria,
2	Mild GFR reduction	60-89	imaging or histological
			lesions
3 a	Mild to moderate	45-59	Hypertension, edema,
3b	Moderate to severe	30-44	anemia
4	Severe GFR	15-29	Electrolyte disturbances,
	reduction		metabolic acidosis
5	Kidney failure	<15	Uremic syndrome

Clinical manifestations - Complications of CKD

Disorders of water/electrolytes (sodium-potassium)

Edema, hypertension, hyperkalemia

Disorders of acid-base balance

Metabolicacidosis

Disorders of erythropoiesis

Anemia of CKD

Disorders of bone and mineral metabolism

Hyperphosphatemia Secondary hyperparathyroidism

Arterial hypertension - Cardiovascular disease

Sodium balance in CKD

- Increased filtered sodium amount (hyperfiltration) and fractional excretion per healthy nephron
- Reduction in sodium reabsorption

Maintenance of satisfactory sodium balance up to stage 5

In end-stage CKD, retention of sodium and water, edema, and hypertension

Potassium balance in CKD

- Increased filtered amount of potassium (hyperfiltration) and fractional excretion per healthy nephron
- Satisfactory function of the distal tubule
- Normal secretion of aldosterone & response to its action
- Increased excretion from the intestine

Maintenance of satisfactory potassium balance in advanced stages

In the end stage, hyperkalemia

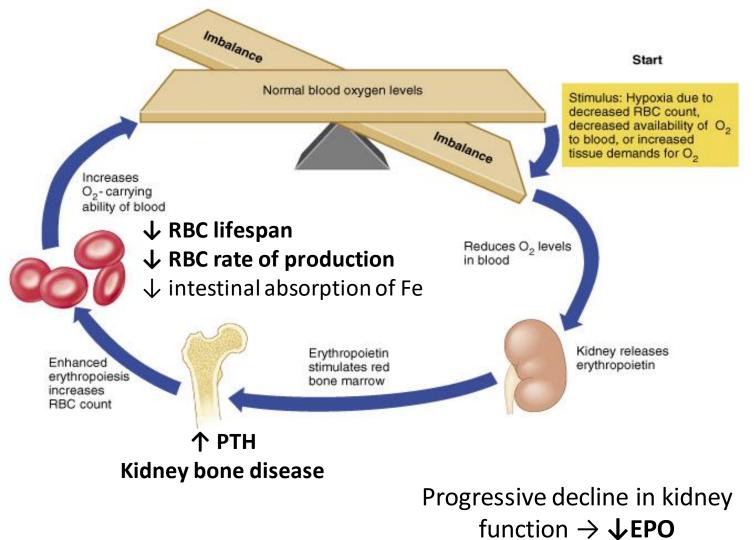
Acid-base balance in CKD

- Excretion of H+ with NH3 and PO4
- Neutralization of H+ by calcium carbonate of bones
- Increased reabsorption of bicarbonates

Maintenance of satisfactory blood pH until CKD stage 4

Anemia in CKD

Insufficient production of erythropoietin (EPO)


In kidney

• Normally: EPO synthesis in kidney (only 10% in liver) from a population of fibroblasts in the interstitial tissue

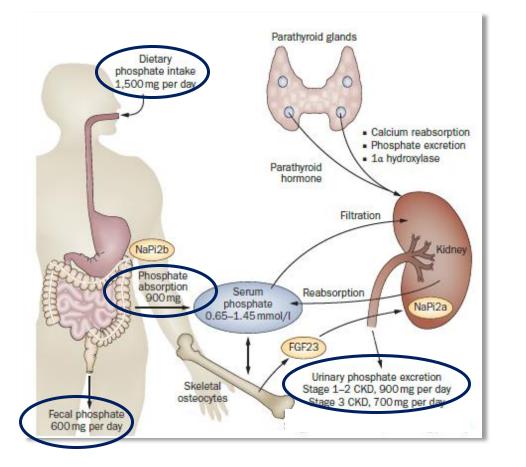
•Anemia: normochromic, normocytic

• It develops at GFR < 50 ml/min

Anemia in CKD Pathogenesis

Benjamin Cummings 2001

Anemia in CKD


Management

- Erythropoietin peros (sbc, IV)
 - Epoetin alpha, 3/week
 - Epoetin beta, 3 /week
 - Darbopoietin /1-4 weeks
 - Methoxy polyethylene glycol-epoetin beta /4 weeks
- Iron supplementation, transfusions when necessary

Targets: Hemoglobin 10-11.5 g/dl, Ferritin 100-500 μg/l, TSAT 20-30%

Disturbed phosphate balance in CKD

Progressive decline in GFR \rightarrow Reduced phoshpate excretion

- 个 FGF-23

- ↓ tubular phosphate reabsorption , Phosphaturia
- \downarrow Calcitriol, Hypocalcemia
- **↑** PTH
- ↓ tubular phosphate reabsorption , Phosphaturia

GFR > 30 ml/min/1,73 m² (XNN I-III) Plasma phosphate does not increase significantly

Disturbed phosphate balance in CKD

$GFR \leq 30 \text{ ml/min/1,73 m}^2 (XNN \text{ IV-V})$

- Φορτίο προσλαμβανόμενου φωσφόρου > Απεκκρινόμενου φωσφόρου
- Phosporus excretion in CKD IV: 600mg/24h

XNN V: 0 - 500mg/24h

• Anuric patient under dialysis – Phosphorus balance

Dialysis session: removal of 800-1000 mg P

Hyperphosphatemia

What are the implications of hyperphosphatemia in patients with CKD?

• Chronic Kidney Disease Mineral and Bone Disorder (CKD-BMD),

Vascular Calcifications – Cardiovasular Disease

• Deterioration of kidney function ?

Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD)

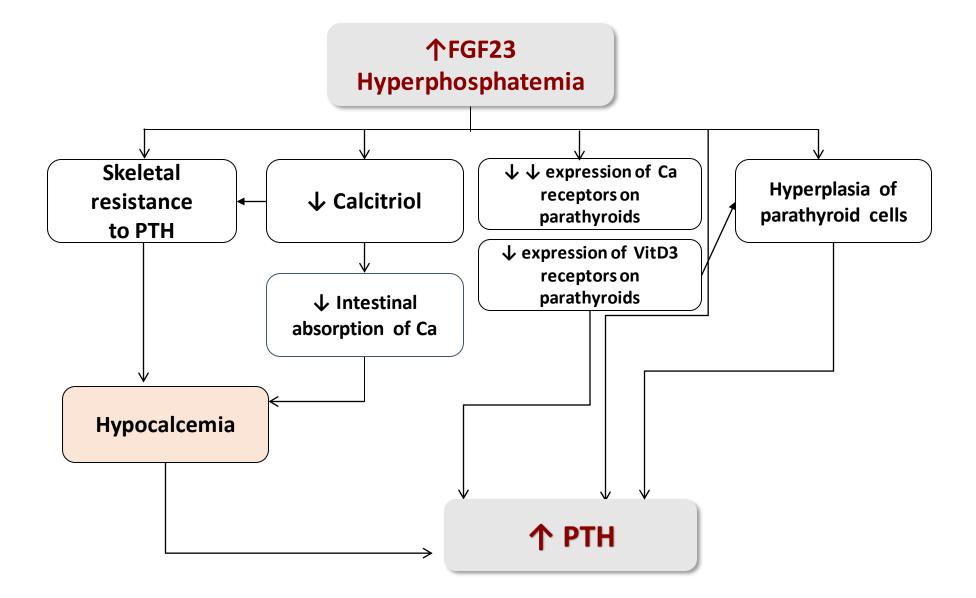
Systemic disorder of bone, calcium, and phosphorus metabolism

Manifested by one or more of the following:

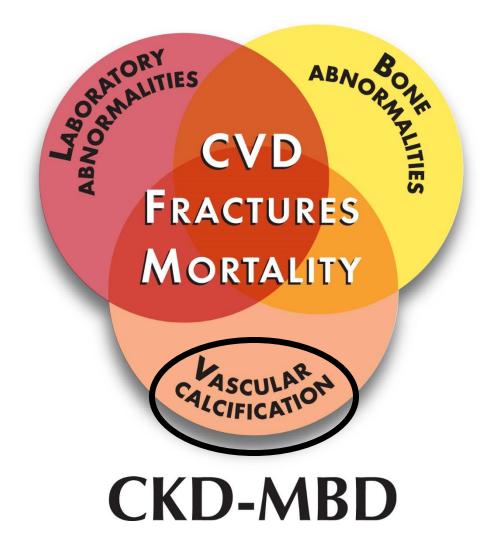
- Abnormalities of calcium, phosphorus, parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and vitamin D metabolism
- Abnormalities in bone turnover, mineralization, volume linear growth, or strength
- Extraskeletal calcification

Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD)

High bone turnover


Secondary hyperparathyroidism

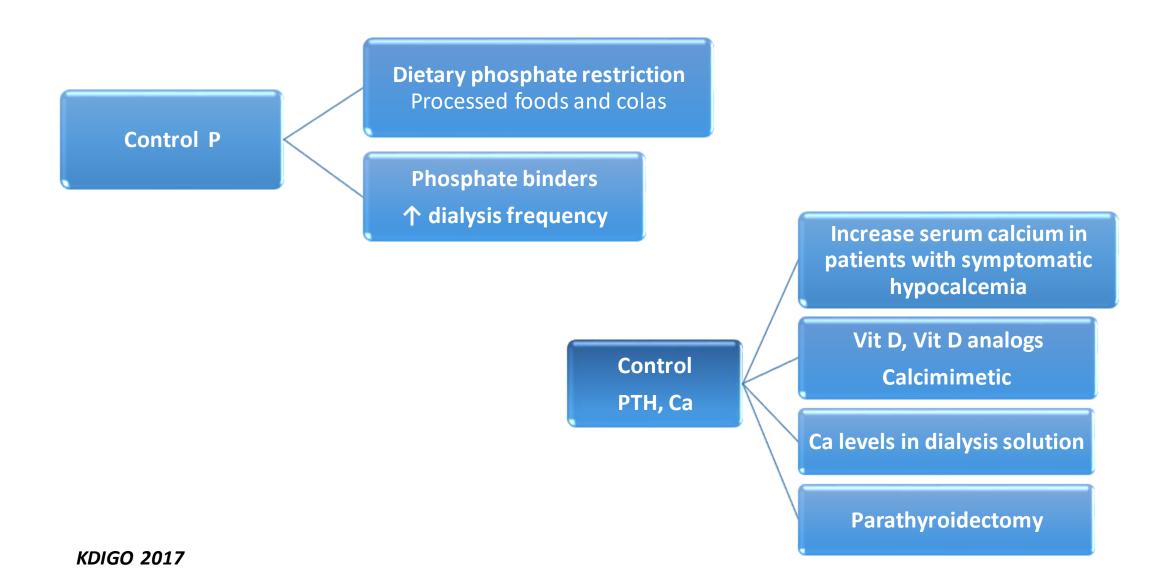
Low bone turnover

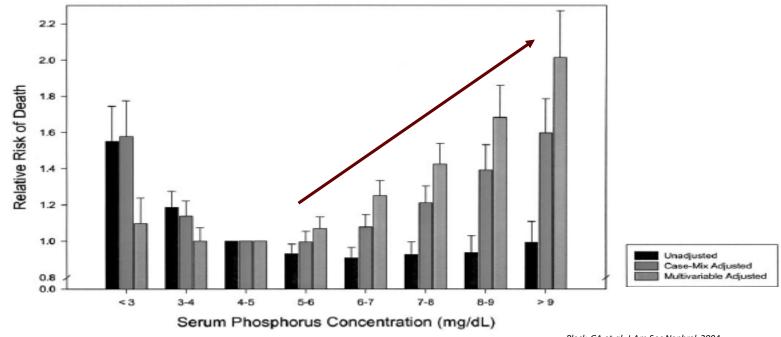

- Adynamic bone disease
- Osteomalacia

Mixed uremic osteodystrophy

Secondary Hyperparathyroidism

CHRONIC KIDNEY DISEASE-MINERAL AND BONE DISORDER


Risk of potentially fatal complications ↓ Vascular calcifications Soft tissue calcifications


Hyperphosphatemia management

Vascular Calcifications – Cardiovascular Disease

Hemodialysis patients (n: 40.000)

Hyperphosphatemia and risk of death

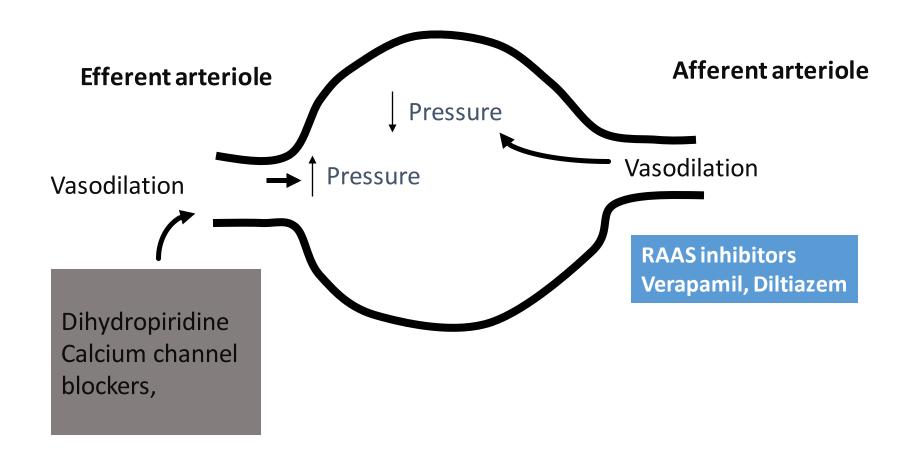
Block GA et al, J Am Soc Nephrol 2004

Arterial Hypertension Cardiovascular Disease in CKD

- High prevalence of hypertension (50-85% in CKD stages 3-5)
- Common conditions

Arrythmias

Cardiorenal syndrome


Pericarditis

Periphelar arterial disease, Coronary artery disease, Cerebrovacular disease

Heart failure

Arterial Hypertension in CKD

Antihypertensives and intraglomerular pressure

Antihypertensive Therapy Recommendations

Target BP < 120 mmHg when tolerated

Less intensive BP-lowering therapy in people with frailty, high risk of falls and fractures, very limited life expectancy, or symptomatic postural hypotension

Salt restriction (2g/24h)

- Use of agents according to age, coexistent CVD, and other comorbidities; risk of progression of CKD; and tolerance to treatments
- First-line: RAAS inhibitors (ACEi/ARB), that decrease intraglomerular pressure
- Hypervolemia

Loop diuretics, especially when eGFR< 30 ml/min

Antihypertensive Therapy Recommendations

RAAS Inhibitors (ACEi or ARB)

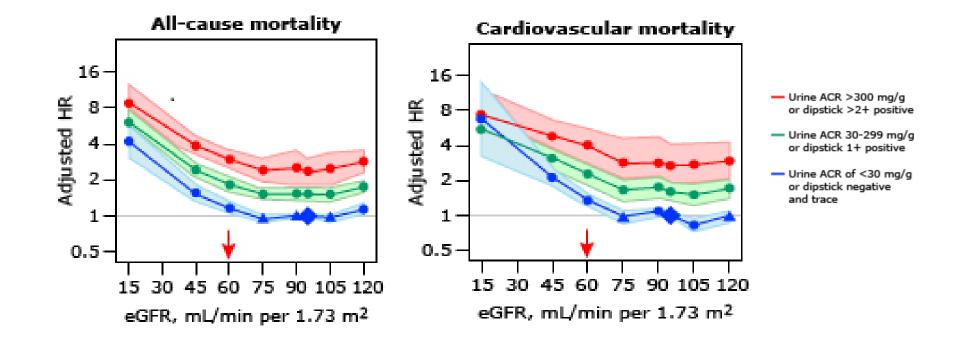
First-line medications

- Anti-proteinuric action
 - \downarrow Intraglomerular pressure
 - Effect on glomerular filtration barrier permeability
- Anti-fibrotic action
 - \downarrow Ang-II & TGF- β
- ACEi: \downarrow proteinuria by 30-35% in both diabetic & non-diabetic CKD
- Slowing CKD progression even when eGFR <30 ml/min
- Changes in BP, serum creatinine, and serum potassium should be checked within 2–4 weeks of initiation or increase in the dose of a RASi

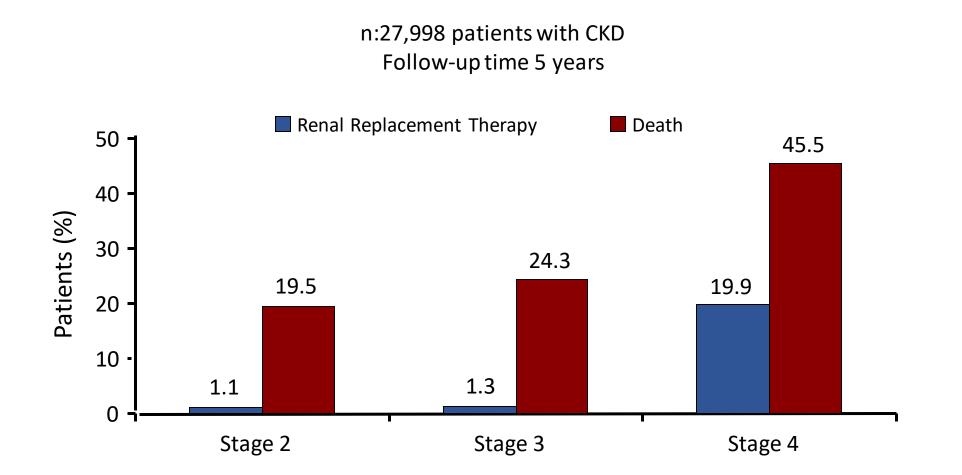
Antihypertensive Therapy Recommendations

Mineralocorticoid Receptor Antagonists (MRA)

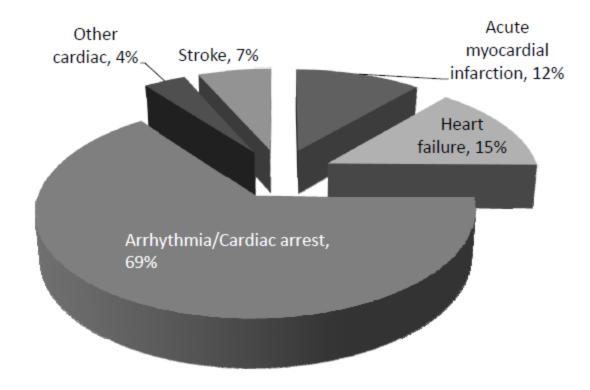
Finerenone


Patients with DM 2 under treatment with RAASi

- Dose-dependent \downarrow albuminuria
- Delay in the progression of kidney disease
- 🗸 incidence of hyperkalemia


CKD & Factors associated to Cardiovascular Disease Pathogenesis

Classic factors	Factors associated with CKD
Age	Chronic inflammation
Smoking	Albuminuria
History of cardiovascular disease	Oxidative stress - Endothelial dysfunction
Diabetes mellitus	Anemia
Arterial hypertension	Disorders of bone and mineral metabolism
Dyslipidemia	Na& H ₂ O retention
Insulin resistance	Uremic toxins - Malnutrition


CKD, Albuminuria & Mortality Risk

Individuals with CKD often die before reaching dialysis

Cardiovascular Morbidity in CKD Causes of Death

Cai Q et al, Curr Cardiol Rev 2013

Cardiovascular Mortality in ESKD

- 50% of patients with ESKD die from a **cardiovascular event**
- The overall cardiovascular mortality of patients aged 25-34 with ESRD is 500-1000 times higher compared to the general population of similar risk without CKD.
- The average survival of a 60-64-year-old patient on hemodialysis is about 4.5 years, whereas in the general population it is 17-22 years.

Uremic Syndrome in ESKD

- The deterioration of multiple biochemical and physiological functions in parallel with progressive kidney dysfunction, resulting in complex but variable symptomatology
- Accumulation of solutes / uremic toxins in the blood & tissues

Small, water-soluble compounds with no or minimal protein binding, such as urea Small, lipid-soluble compounds with substantial protein binding, such as the phenols Larger, so-called middle molecules, such as beta2-microglobulin (beta2-m)

• Factors affecting uremic retention solutes

Dietary protein breakdown

Changes in the composition of the intestinal microbiome

Medications

Clinical manifestations of uremia

Early	Late
Nutritional Disorders	Metabolicacidosis
Hypervolemia	Hyperkalemia
Hypertension	Pericarditis
Anemia	Peripheral neuropathy
Secondary hyperparathyroidism	Encephalopathy
Growth retardation	Gastrointestinal bleeding
Reduced fertility	
Menstrual disorders	

Management of a patient with ESRD

Methods of renal replacement therapy

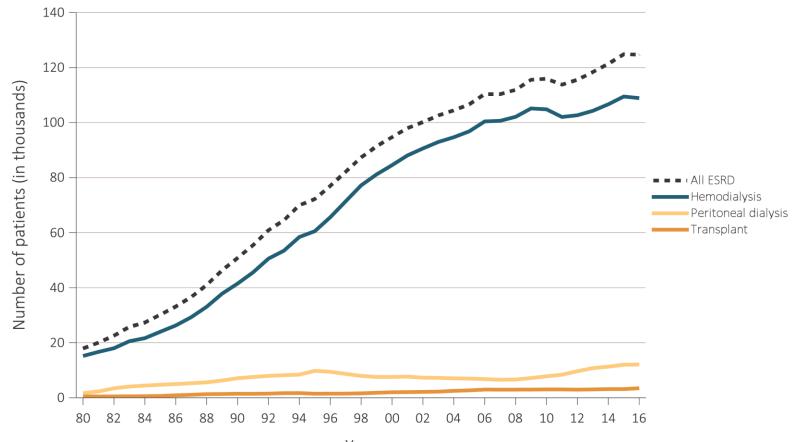
Haemodialysis

- In-center
- At home

Peritoneal dialysis

- Continuous Ambulatory Peritoneal Dialysis (CAPD)
- Continuous Cyclic Peritoneal Dialysis (CCPD)

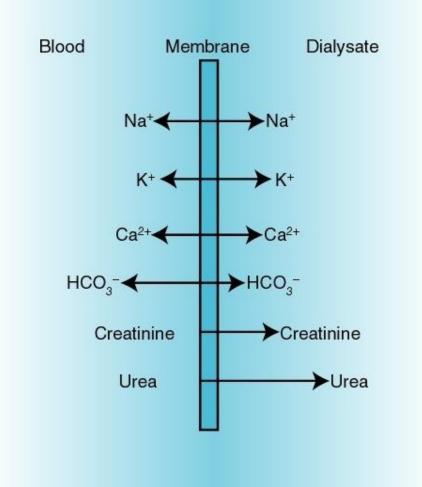
Transplantation


From a deceased donor

From a living donor

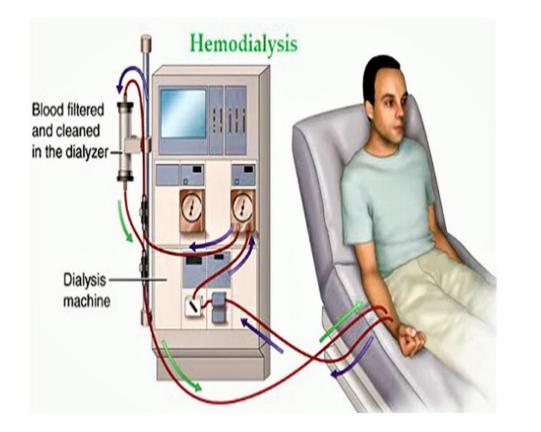
- Related
- Unrelated

ESRD Incidence in the USA (1980-2016)


By Modality

Year

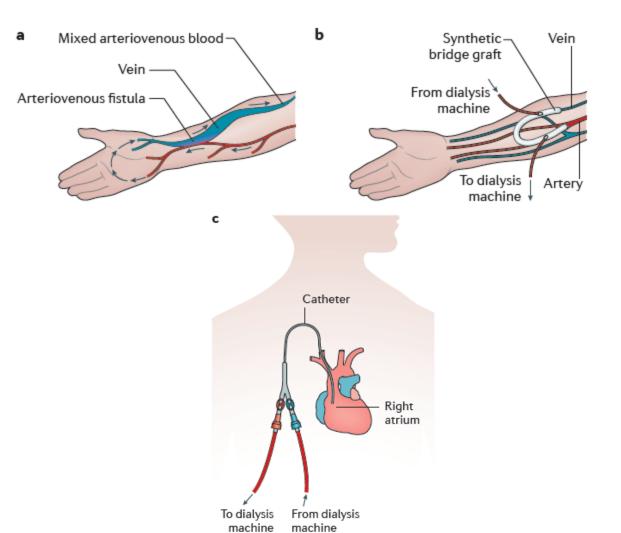
United States Renal Data System, USRDS 2018


Haemodialysis: Convection

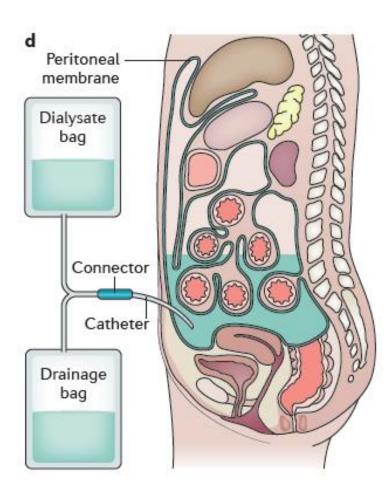
Dialysis Machine

Haemodialysis

3 sessions per week in a chronic hemodialysis unit
Session duration: 4 hours
Fluid loss: 1-3 liters per session
Fluid intake: Depends on urine output
Anuric patients: 500 ml of fluids per 24 hours


https://healthjade.com/hemodialysis/

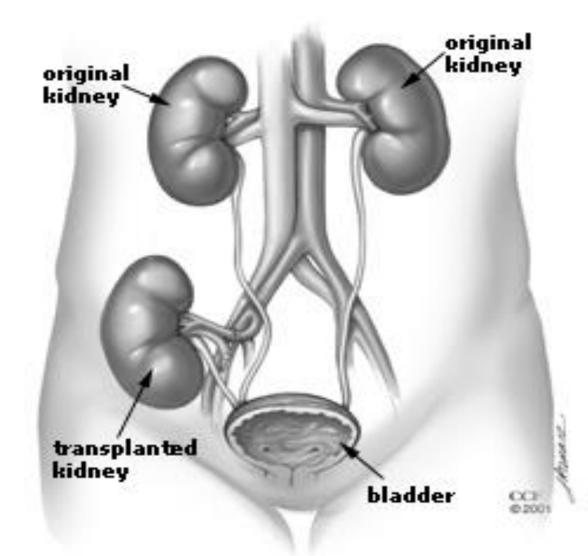
Vascular Access for Haemodialysis


- Arteriovenous fistula /graft
 - Lower rate of infections Long time of maturation

- Central Venous Catheter
 - Internal jugular vein

Peritoneal Dialysis

- Peritoneal catheter
- Continuous Ambulatory, CAPD: Exchanges during 24h
- Automated: Multiple overnight exchanges using a cycler
- Daily dialysis modality Haemodynamic stability
- Fluid intake: Depends on urine output


Anuric patients: 500 ml of fluids per 24 hours

- Medical consultation/2 months
- Increased risk of peritonitis

Peritoneal Dialysis

- Peritoneal dialysis can work well as a long-term therapy for almost any patient and should be included in most options discussions
- Absolute contraindication: lack of a functional peritoneal membrane
- Relative contraindication
 - Peritoneal scarring
 Physical, cognitive, or psychological impairment
 Lack of appropriate environment
 Active inflammatory process or cancer
 Surgical ostomies
 Large abdominal wall hernia
 Ventriculoperitoneal shunts

Kidney Transplantation

CKD Management by GFR Stage

Stage	Description	GFR (ml/min/1.73m²)	Ενέργεια
1	Normal/high GFR	≥90	Diagnose & treat primary disease, Manage comorbidities Control risk of cardiovascular
2	Mild GFR reduction	60-89	morbidity Assess progression
3a	Mild to moderate	30-59	Evaluate and treat clinical manifestations/complications
3b	Moderate to severe	15-29	Prepare for Transplantation/Kidney Replacement Therapy, KRT
4	Severe GFR reduction	<15	Renal Transplantation KRT

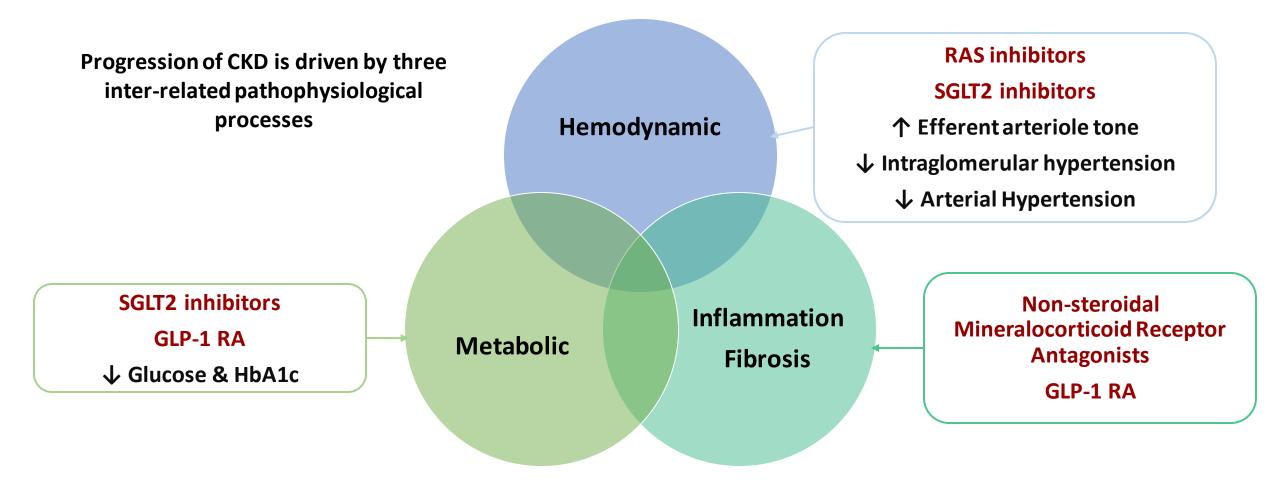
Primary CKD Prevention

Early & effective management

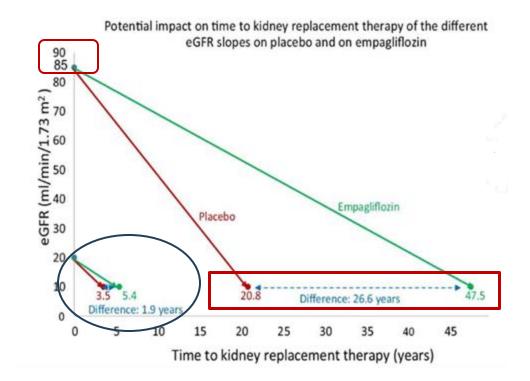
of CKD risk factors

Secondary CKD Prevention

Early CKD Diagnosis (CKD 1-2, GFR≥60 ml/min/1.73 m²)


- Proper assessment of kidney function in all patients: eGFR
 CKD-EPI formula
- Regular monitoring of high-risk patients

GFR, Albuminuria, Urinalysis, Urine sediment


Ultrasound examination (kidney size, cortical thickness)

Education & collaboration among healthcare professionals

Delaying CKD progression Targeted drug therapy

Early diagnosis & management delays progression to ESRD

