Male infertility

Dimitrios G. Goulis

Professor of Reproductive Endocrinology Aristotle University of Thessaloniki

Unit of Reproductive Endocrinology First Department of Obstetrics and Gynecology Aristotle University of Thessaloniki

Conflict of interests

- During the last three years, I have received research, educational and travel grants from scientific societies and pharmaceutical companies.
- I am currently or have been:
 - President, Hellenic Society of Andrology (2013 2017)
 - President-Elect, European Menopause and Andropause Society (2019 2021)
 - Secretary General, European Academy of Andrology (2014 2018)
 - Director, Training Centre European Academy of Andrology (2013 2019)
 - Member of the Executive Board, Hellenic Society of Endocrinology (2011 2013)
 - Member of the Executive Board, Hellenic Society of Climacteric and Menopause (2013 2019)
 - Associate Editor, Human Reproduction (2009 2013)
 - Associate Editor, Hormones (2012 2019)
 - Member of the Editorial Board, Andrology (2012 2019)
 - Member of the Editorial Board, Maturitas (2015 2019)
 - Member of the Editorial Board, Metabolism (2015 2019)
 - Member of the Editorial Board, Journal of Endocrinological Investigation (2014 2019)
 - Associate Editor, Human Reproduction Open (2017 2019)
 - Associate Editor, Human Andrology (2017 2019)
- None of the above can be considered as a conflict of interest for today's lecture.

Aims

- Evaluation and etiologic approach of male infertility
- Selection of the optimal management method

Diagnostic approach

Diagnostic approach

Causes of male infertility

Cause	Prevalence (%)
 Idiopathic infertility 	32
Varicocele	17
 Endocrine causes 	9
 Infections 	9
 Cryptorchidism 	8
 Sexual dysfunction 	6
 Systematic diseases 	5
 Anti-sperm antibodies 	4
 Testicular tumors 	2
 Obstruction 	1
 Other causes 	7

Diagnostic evaluation

- Clinical
- Hormonal
- Seminal
- Imaging
- Histologic
- Genetic

Diagnostic evaluation

Clinical

- Hormonal
- Seminal
- Imaging
- Histologic
- Genetic

• History

 Primary or secondary infertility, duration of infertility, mumps, cryptorchidism, trauma, surgical procedures, infections, recent febrile episodes, chemotherapy or radiotherapy, medications, family history of infertility, cystic fibrosis, mental retardation, female factor

Clinical evaluation

• Testicular size, secondary sexual characteristics, presence and consistence of epididymides and vas deferens, varicocele, digital examination

• History

 Primary or secondary infertility, duration of infertility, mumps, cryptorchidism, trauma, surgical procedures, infections, recent febrile episodes, chemotherapy or radiotherapy, medications, family history of infertility, cystic fibrosis, mental retardation, female factor

Clinical evaluation

• Testicular size, secondary sexual characteristics, presence and consistence of epididymides and vas deferens, varicocele, digital examination

Diagnostic evaluation

Clinical

- Hormonal
- Seminal
- Imaging
- Histologic
- Genetic

Hormonal evaluation

- FSH
- LH
- Testosterone, total
- Prolactin
- Thyroid evaluation
- Inhibin B (Inh B)
- Anti-Müllerian hormone (AMH)

- Differential diagnosis between central (hypothalamus, pituitary) and peripheral (testicular) failure
- Variation <10%
- Strong correlation with:
 - Testicular histology
 - Sperm count
 - GnRH stimulation

Inh B

- TGF-β family glycoprotein
- Exclusive Sertoli cell product
- Endocrine action:
 - FSH inhibition
- Paracrine effects
- Positive correlation with sperm count and testicular size
- Prognostic factor for TESE

AMH

- TGF-β family glycoprotein
- Sertoli cell product
- Endocrine action:
 - Müllerian duct reversal
- Paracrine and autocrine actions
- Prognostic factor for TESE

Testicular histology

Nieschlag E, Behre HM. Andorlogy, 1997

Diagnostic evaluation

- Clinical
- Hormonal
- Seminal
- Imaging
- Histologic
- Genetic

Semen reference ranges

- Liquefaction
 - < 60 min
- Appearance
 - Non-translucent
- Viscosity
 - Filaments < 2 cm
- pH
 - > 7.2

- Volume
 - > 1.5 ml
- Concentration
 - > 15 millions/ ml
- Motility
 - > 40 (a + b + c)
 - > 32 (a + b)
- Normal morphology
 - >4%

Semen reference ranges

Table II Distribution of values, lower reference limits and their 95% CI for semen parameters from fertile men whose partners had a time-to-pregnancy of 12 months or less

	N	Centi	es									
		2.5	(95% CI)	5	(95% CI)	10	25	50	75	90	95	97.5
Semen volume (ml)	1941	1.2	(1.0–1.3)	1.5	(1.4–1.7)	2	2.7	3.7	4.8	6	6.8	7.6
Sperm concentration (10 ⁶ /ml)	1859	9	(8-11)	15	(12-16)	22	41	73	116	169	213	259
Total number (10 ⁶ /Ejaculate)	1859	23	(18–29)	39	(33–46)	69	142	255	422	647	802	928
Total motility (PR + NP, %)*	1781	34	(33–37)	40	(38–42)	45	53	61	69	75	78	81
Progressive motility (PR, %)*	1780	28	(25–29)	32	(31–34)	39	47	55	62	69	72	75
Normal forms (%)	1851	3	(2.0-3.0)	4	(3.0–4.0)	5.5	9	15	24.5	36	44	48
Vitality (%)	428	53	(48–56)	58	(55–63)	64	72	79	84	88	91	92

*PR, progressive motility (WHO, 1999 grades a + b); NP, non-progressive motility (WHO, 1999 grade c).

The values are from unweighted raw data. For a two-sided distribution the 2.5th and 97.5th centiles provide the reference limits; for a one-sided distribution the fifth centile provides the lower reference limit.

Cooper TG, et al. Hum Reprod Update 2010, 16:231

Definitions

- Oligo-astheno-teratozoospermia
 - Low sperm number motility morphology
- Azoospermia
 - No presence of sperm, even after centrifugation of semen
 - Transient permanent
- Cryptozoospermia
 - No presence of sperm, after the initial inspection
 - Presence of sperm, after centrifugation of semen
- Aspermia
 - No presence of semen

Sperm concentrations

Concentration

Concentration

Concentration

Motility

Specimen 524

Motility

Aggregations

Agglutinations

Normal sperm

Head defect

Neck defect

Tail defect

Tail defect

Cytoplasmic residual

Semen reference ranges

- Liquefaction
 - < 60 min
- Appearance
 - Non-translucent
- Viscosity
 - Filaments < 2 cm

• pH

• > 7.2

- Volume
 - > 1.5 ml
- Concentration
 > 15 Gillions/ ml
- Motility
 - > 40 (a + b + c)
 > 32 (a + b)
- Normal morphology
 > 4%

Anatomy of male reproductive system

Diagnostic algorithm

Oates R. Asian J Androl 2012, 14:82

Anatomy of male reproductive system

Diagnostic algorithm

Anatomy of male reproductive system

Diagnostic algorithm

Oates R. Asian J Androl 2012, 14:82

Anatomy of male reproductive system

Diagnostic algorithm

Oates R. Asian J Androl 2012, 14:82

Anatomy of male reproductive system

Semen evaluation

- Spermiogram
- Biochemical evaluation of seminal plasma
- Semen culture
- Immunological evaluation
- Acrosome rection
- Sperm DNA fragmentation
- Functional tests

Semen evaluation

- Spermiogram
- Biochemical evaluation of seminal plasma
- Semen culture
- Immunological evaluation
- Acrosome rection
- Sperm DNA fragmentation
- Functional tests

Anatomy of male reproductive system

Semen evaluation

- Spermiogram
- Biochemical evaluation of seminal plasma
- Semen culture
- Immunological evaluation
- Acrosome rection
- Sperm DNA fragmentation
- Functional tests

Pathophysiology

- Mechanisms
 - Oxidative: Reactive Oxygen Species (ROS)
 - Anti-oxidative: Antioxidant Scavenging Systems (ASS)
- Oxidative stress in male reproductive system results in sperm membrane damage and sperm DNA fragmentation

Oxidative stress

FIGURE 1

Major mechanisms of inducing DNA damage in spermatozoa during either the production or the transport of sperm cells: (i) apoptosis during the process of spermatogenesis; (ii) DNA strand breaks produced during the remodelling of sperm chromatin during the process of spermiogenesis; (iii) post-testicular DNA fragmentation induced, mainly by oxygen radicals, during sperm transport through the seminiferous tubules and the epididymis (increasing DNA damage is indicated by size of red flashes and gradient darkening in tract); (iv) DNA fragmentation induced by endogenous caspases and endonucleases; (v) DNA damage induced by radiotherapy and chemotherapy; and (vi) DNA damage induced by environmental toxicants.

Sakkas D, et al. Fertil Steril 2010, 93:1027

Sperm DNA fragmentation

Kantartzi P-D. PhD thesis, AUTh, 2012

Evaluation methods

- Direct
 - COMET
 - TUNEL
 - NT
 - DBD-FISH

- Indirect
 - SCSA
 - AOT
 - Halosperm

Anti-oxidative substances

- Glutathione and vitamin E
- Free or total carnitine, α -glycosidase
- Carnitine and acetyl-carnitine
- Selenium and vitamin E
- Zinc and folid acid

Bhardwaj A, et al. Asian J Androl 2000, 2:225

Zopfgen A, et al. Hum Reprod 2000, 15:840

Vicari E, et al. Hum Reprod 2001, 16:2338

Keskes-Ammar L, et al. Arch Androl 2003, 49:83

Wong WY, et al. Fertil Steril 2002, 77:491

Diagnostic evaluation

- Clinical
- Hormonal
- Seminal
- Imaging
- Histologic
- Genetic

Testicular ultrasound

Testicular Triplex

Transrectal ultrasound

Diagnostic evaluation

- Clinical
- Hormonal
- Seminal
- Imaging
- Histologic
- Genetic

Testicular FNA and TESE

Normal spermatogenesis

Hypospermatogenesis

Spermatogenesis arrest

TESE

Sertoli cell-only syndrome

Prognosis of testicular extraction

Tuettelmann F, et al. Int J Androl 2010, 34:291

microTESE

Sperm cryopreservation

Diagnostic evaluation

- Clinical
- Hormonal
- Seminal
- Imaging
- Histologic
- Genetic

Yq microdeletions

• Three main areas Yq

Vogt PH, et al. Hum Mol Genet 1996, 7:933

• Azoospermia / severe OAT: 3%

Osterlund C, et al. Int J Andr 2000, 23:225
Cystic fibrosis

- Congenital bilateral agenesis of vas deferens (CBAVD)
- Obstructive azoospermia
- Congenital bronchiectasis
- Chronic pancreatitis

Claustres M, et al. Hum Mutat 2000, 16:143

Jarvi K, et al. Lancet 1995, 345:1578

Girodon E, et al. Eur J Hum Genet 1997, 5:149

Sharer N, et al. N Eng J Med 1998, 339:645

Genetics of male infertility

Human Reproduction, Vol.25, No.6 pp. 1383-1397, 2010

Advanced Access publication on April 8, 2010 doi:10.1093/humrep/deq081

human reproduction **ORIGINAL ARTICLE Andrology**

Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent

Kenneth I. Aston¹, Csilla Krausz^{2,3}, Ilaria Laface², E. Ruiz-Castané³, and Douglas T. Carrell^{1,4,5,*}

¹Andrology and IVF Laboratories, University of Utah School of Medicine, Salt Lake City, UT, USA ²Andrology Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy ³Andrology Service, Fundació Puigvert, Barcelona, Spain ⁴Department of Surgery, Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT, USA ⁵Department of Physiology, University of Utah School of Medicine, Salt Lake City, UT, USA ⁵Department of Physiology, University of Utah School of Medicine, Salt Lake City, UT, USA ⁵Department of Physiology, University of Utah School of Medicine, Salt Lake City, UT, USA ⁵Department of Physiology, University of Utah School of Medicine, Salt Lake City, UT, USA ⁵Department of Physiology, University of Utah School of Medicine, Salt Lake City, UT, USA ⁵Department of Physiology, University of Utah School of Medicine, Salt Lake City, UT, USA ⁵Department of Physiology, University of Utah School of Medicine, Salt Lake City, UT, USA ⁵Department of Physiology, University of Utah School of Medicine, Salt Lake City, UT, USA ⁵Department OF Physiology, University of Utah School of Medicine, Salt Lake City, UT, USA

*Correspondence address. E-mail: douglas.carrell@hsc.utah.edu

Submitted on January 26, 2010; resubmitted on March 2, 2010; accepted on March 9, 2010

Sperm FISH

Sperm disomy: 24,XY

Aims

- Evaluation and etiologic approach of male infertility
- Selection of the optimal management method

Male infertility - 1

Etiology

- Kallmann syndrome
- Prolactinoma
- Hyperthyroidism
- Hypothyroidism

Etiologic approach

- Gonadotropins
- Dopamine agonists
- Anti-thyroid drugs
- L-thyroxine

Male infertility - 2

Etiology

- Infections
- Varicocele
- Obstruction

Oriented approach

- Antibiotics
- Surgery
- Microsurgical approach

Male infertility - 3

Etiology

Idiopathic infertility

Empirical approach

- Citric clomiphene / tamoxifen
- Gonadotropins
- Testosterone
- Anti-oxidants / Vitamins
- Insemination (IUI)
- |CS|

Citric clomiphene

Testicular dysgenesis

Human Reproduction Vol.16, No.5 pp. 972–978, 2001 OPINION

Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects

N.E.Skakkebæk¹, E.Rajpert-De Meyts and K.M.Main

Department of Growth and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark

Testicular dysgenesis

Skakkebaek NE et al. Hum Reprod (2001) 16:972

Testicular dysgenesis

Skakkebaek NE et al. Hum Reprod (2001) 16:972

Male infertility

- Application of modern diagnostic methods for the etiologic diagnosis of the cases
- Appropriate evaluation of the patients and their classification into subgroups to select the cases for the application of the optimal therapeutical approaches

Unit of Reproductive Endocrinology

Professor D.G. Goulis Professor emeritus J. Papadimas

PhD candidates and Post-doc researchers

- C. Tsametis (endocrinologist)
- P. Poulakos (endocrinologist)
- P. Iliadou (endocrinologist)
- C. Dimopoulou (endocrinologist)
- E. Kintiraki (endocrinologist)
- S. Paschou (endocrinologist)
- P. Anagnostis (endocrinologist)
- I. Litsas (endocrinologist)
- G. Kanakis (endocrinologist)
- G. Mintziori (endocrinologist)
- A. Mousiolis (endocrinologist)
- E. Billa (endocrinologist)
- K. Papadimitriou (endocrinologist)
- V. Harizopoulou (midwife)
- E. Tsirou (dietician)
- E. Taousani (midwife)
- D. Savvaki (physical education)
- N. Athanasiadi (dietician)
- I. Koptsi (psychologist)

Departments of Physical Education Professor emeritus S. Tokmakidis Associate professor K. Dipla Professor A. Zafiridis

First Department of Obstetrics and Gynecology Aristotle University of Thessaloniki Professor G.F. Grimbizis

