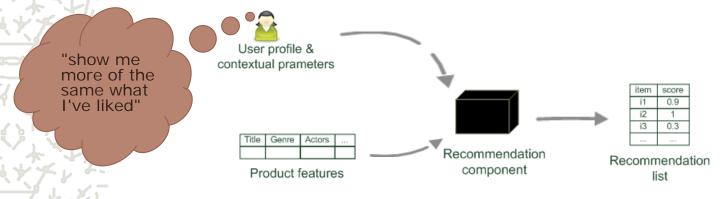
### Implementing a Content-based Recommendation Engine



Costas Mourlas Associate Professor Univ. of Athens

### Content-based recommendation

#### While CF – methods do not require any information about the items,


- it might be reasonable to exploit such information; and
- recommend fantasy novels to people who liked fantasy novels in the past

#### What do we need:

- some information about the available items such as the genre ("content")
- some sort of *user profile* describing what the user likes (the preferences)

#### The task:

- Fearn user preferences
- locate/recommend items that are "similar" to the user preferences



# How to Create a Content Based Recommender?

- Similarity-Based Retrieval
- 1. Decide for an Item and a User Representation
- 2. Select a suitable Similarity / Distance Function
- 3. Compute the Distances between all the Items
- 4. Find the neighborhood of every Item
  - k-nearest-neighbor method (kNN)
- 5. Compute the Recommendations
  - make the neighbors "vote" for the unseen Items select Items with the higher values

### What is the "content"?

Content of items can also be represented as text documents.

With textual descriptions of their basic characteristics.

Structured: Each item is described by the same set of attributes

|       | Title                | Genre                | Author               | Туре      | Price | Keywords                                                               |
|-------|----------------------|----------------------|----------------------|-----------|-------|------------------------------------------------------------------------|
|       | The Night of the Gun | Memoir               | David Carr           | Paperback | 29.90 | Press and journalism, drug<br>addiction, personal memoirs, New<br>York |
| N N N | The Lace Reader      | Fiction, Mystery     | Brunonia Barry       | Hardcover | 49.90 | American contemporary fiction, detective, historical                   |
|       | Into the Fire        | Romance,<br>Suspense | Suzanne<br>Brockmann | Hardcover | 45.90 | American fiction, murder, neo-<br>Nazism                               |

Unstructured: free-text description.

### Representing multi-valued attributes as set of

### Keywords

#### **Item representation**

|                      |                      |                                 |           | $\geq$     |                                                                  |  |  |  |  |
|----------------------|----------------------|---------------------------------|-----------|------------|------------------------------------------------------------------|--|--|--|--|
| Title                | Genre                | Author                          | Туре      | Price      | Keywords                                                         |  |  |  |  |
| The Night of the Gun | Memoir               | David Carr                      | Paperback | 29.90      | Press and journalism, drug addiction, personal memoirs, New York |  |  |  |  |
| The Lace<br>Reader   | Fiction,<br>Mystery  | Brunonia Barry                  | Hardcover | 49.90      | American contemporary fiction, detective, historical             |  |  |  |  |
| Into the Fire        | Romance,<br>Suspense | Suzanne<br>Brockmann            | Hardcover | 45.90      | American fiction, murder, neo-<br>Nazism                         |  |  |  |  |
| User profile         | User profile         |                                 |           |            |                                                                  |  |  |  |  |
| Title                | Genre                | Author                          | Туре      | Price      | Keywords                                                         |  |  |  |  |
| J                    | Fiction              | Brunonia, Barry,<br>Ken Follett | Paperback | 25.65      | Detective, murder,<br>New York                                   |  |  |  |  |
|                      |                      |                                 |           | $\nearrow$ |                                                                  |  |  |  |  |

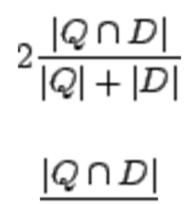
### Representing Users / Users Profile

### Simple Approach

| Title | Genre                | Author                          | Туре      | Price | Keywords                       |
|-------|----------------------|---------------------------------|-----------|-------|--------------------------------|
|       | Fiction,<br>Suspense | Brunonia, Barry,<br>Ken Follett | Paperback | 25.65 | Detective, murder,<br>New York |

- Explicitly ask users for a desired price range or a set of preferred genres.
- 2. Asking Users to rate a set of items and then construct a preference profile for the user.

### Compute Similarity between Items and Users


#### **Item representation**

| Title                | Genre                | Author                                    | Туре                     | Price              | Keywords                                                        |                                                                            |
|----------------------|----------------------|-------------------------------------------|--------------------------|--------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|
| The Night of the Gun | Memoir               | David Carr                                | Paperback                | 29.90              | Press and journalism, drug addiction personal memoirs, New York | on,                                                                        |
| The Lace<br>Reader   | Fiction,<br>Mystery  | Brunonia Barry                            | Hardcover                | 49.90              | American contemporary fiction, detective, historical            |                                                                            |
| Into the Fire        | Romance,<br>Suspense | Suzanne<br>Brockmann                      | Hardcover                | 45.90              | American fiction, murder, neo-<br>Nazism                        |                                                                            |
|                      | -                    |                                           |                          |                    |                                                                 |                                                                            |
|                      | •                    |                                           |                          |                    |                                                                 |                                                                            |
| ser profil<br>Title  | e<br>Genre           | Author                                    | Туре                     | Price              | Keywords                                                        | <i>keywords</i> ( <i>b<sub>j</sub></i> )<br>describes Book <i>b</i>        |
|                      | 1                    | Author<br>Brunonia, Barry,<br>Ken Follett | <b>Type</b><br>Paperback | <b>Price</b> 25.65 | Keywords<br>Detective, murder,<br>New York                      | keywords(b <sub>j</sub> )<br>describes Book b<br>with a set of<br>keywords |
|                      | Genre<br>Fiction     | Brunonia, Barry,                          |                          |                    | Detective, murder,                                              | describes Book <i>l</i><br>with a set of                                   |

### Computing Similarity of Multi-valued Attributes of Items

• Dice's coefficient

Jaccard's coefficient



 $Q \cup D$ 

Moving from the Set Space (where a set of Keywords can be the value of Item's Multi-Valued Attributes) to the Vector Space

From similarity of sets to the similarity of vectors

# Representing Items with Keywords as Attributes – Binary Values

| Doc-ID | recommender | intelligent | learning | school |
|--------|-------------|-------------|----------|--------|
| 1      | 1           | 1           | 1        | 0      |
| 2      | 0           | 0           | 1        | 1      |
| 3      | 1           | 1           | 0        | 0      |
| 4      | 1           | 0           | 1        | 1      |
| 5      | 0           | 0           | 0        | 1      |
| 6      | 1           | 1           | 0        | 0      |

Items as vectors Doc-ID1<1,1,1,0> , Doc-ID2<0,0,1,1>, ....

# Representing Items with Keywords as Attributes – Real Values

TF.IDF Representation of Documents -> From Unstructured Representation of Documents (Text) to Structural Representation

|           | Antony and<br>Cleopatra | Julius<br>Caesar | The<br>Tempest | Hamlet | Othello | Macbeth |
|-----------|-------------------------|------------------|----------------|--------|---------|---------|
| Antony    | 5.25                    | 3.18             | 0              | 0      | 0       | 0.35    |
| Brutus    | 1.21                    | 6.1              | 0              | 1      | 0       | 0       |
| Caesar    | 8.59                    | 2.54             | 0              | 1.51   | 0.25    | 0       |
| Calpurnia | 0                       | 1.54             | 0              | 0      | 0       | 0       |
| Cleopatra | 2.85                    | 0                | 0              | 0      | 0       | 0       |
| mercy     | 1.51                    | 0                | 1.9            | 0.12   | 5.25    | 0.88    |
| worser    | 1.37                    | 0                | 0.11           | 4.15   | 0.25    | 1.95    |

Items as vectors:

Antony\_and\_Cleopatra<5.25,1.21,8.59,0,2.85,1.51,1.37>

## Representing Items with Attributes/ Characteristics – Single valued Attributes

| Ŋ        | Structural Representation of Items |        |       |       |          |          |          |         |  |  |
|----------|------------------------------------|--------|-------|-------|----------|----------|----------|---------|--|--|
|          | Video /<br>Attribute               | Action | Drama | Humor | Romantic | Violence | Suspense | Musical |  |  |
| ہا<br>بر | (A) Silence of                     |        |       |       |          |          |          |         |  |  |
| ſ        | the Lambs                          | 0      | 7     | 3     | 1        | 9        | 10       | 0       |  |  |
| a. 1     | (B) Seven                          | 5      | 5     | 1     | 2        | 10       | 9        | 5       |  |  |
| 1        | (C) Cape Fear                      | 5      | 7     | 4     | 5        | 9        | 9        | 3       |  |  |
|          | (D) Casablanca                     | 2      | 10    | 5     | 0        | 1        | 8        | 0       |  |  |
|          | (E) Waterboy                       | 4      | 2     | 6     | 3        | 4        | 3        | 1       |  |  |
|          | (F) L.A.<br>Confidential           | 8      | 9     | 6     | 6        | 9        | 9        | 6       |  |  |
|          | (G) West Side<br>Story             | 3      | 5     | 4     | 0        | 1        | 3        | 1       |  |  |

Items as vectors: A<0,7,3,1,9,10,0> B<5,5,1,2,10,9,5>

C<5,7 ,4,5,9,9,3> D<2,10,5,0,1,8,0>, ....

### low to represent the User Profile

In the vector space approach, Users are asked to rate a set of items. The history of this rating represents the profile of the User.



Decide for an Item and a User Representation 2. Select a suitable Similarity / Distance Function (suitable for the vector space approach) 3. Compute the Distances between all the Items 4. Find the neighborhood of every Item k-nearest-neighbor method (kNN) Compute the Recommendations make the neighbors "vote" for the unseen Items select Items with the higher values

# How to Compute Similarity of Items in this case?

#### Euclidean distances:

• Calculates the shortest path between two points.

$$d = |x - y| = \sqrt{\sum_{i=1}^{n} |x_i - y_i|^2} \qquad \text{or} \qquad d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_1)^2}$$

• Sum of distances along each dimension (Manhattan Distance)

$$d = \sum_{i=1}^{n} |x_i - y_i|$$

Usual similarity metric to compare vectors: Cosine similarity (angle) – Cosine similarity is calculated based on the angle between the vectors  $\vec{a} \cdot \vec{b}$ 

• 
$$sim(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

### Compute the distances between Items

| An example of content-based filtering |        |       |       |          |          |          |         |  |
|---------------------------------------|--------|-------|-------|----------|----------|----------|---------|--|
| Video / Attribute                     | Action | Drama | Humor | Romantic | Violence | Suspense | Musical |  |
| (A) Silence of the<br>Lambs           | 0      | 7     | 3     | 1        | 9        | 10       | 0       |  |
| (B) Seven                             | 5      | 5     | 1     | 2        | 10       | 9        | 5       |  |
| (C) Cape Fear                         | 5      | 7     | 4     | 5        | 9        | 9        | 3       |  |
| (D) Casablanca                        | 2      | 10    | 5     | 0        | 1        | 8        | 0       |  |
| (E) Waterboy                          | 4      | 2     | 6     | 3        | 4        | 3        | 1       |  |
| (F) L.A.<br>Confidential              | 8      | 9     | 6     | 6        | 9        | 9        | 6       |  |
| (G) West Side Story                   | 3      | 5     | 4     | 0        | 1        | 3        | 1       |  |

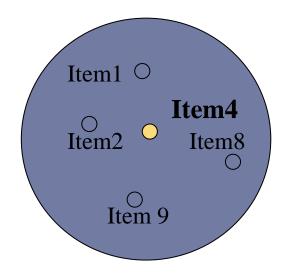
#### **Euclidean Distance:**

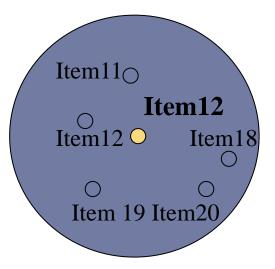
| ۲                     |             | A      | В           | С           | D        | Е        | F        | G        |
|-----------------------|-------------|--------|-------------|-------------|----------|----------|----------|----------|
| <b>۴<sub>36</sub></b> |             |        | 7,810249676 | 7,211102551 | 9,273618 | 11,35782 | 11,78983 | 11,35782 |
| ' <del>አ</del>        | BAXN.       |        |             | 5,196152423 | 12,68858 | 11,13553 | 8,246211 | 12,24745 |
| . ' ¥<br>⁄~           | c t         | $\sim$ |             |             | 10,86278 | 9,949874 | 5,196152 | 11,7047  |
| y`,                   | D/1 X       | 37     |             |             |          | 10,63015 | 13,22876 | 7,28011  |
| ¥,                    | ₹<br>₹<br>₹ | 4      |             |             |          |          | 12,64911 | 5,656854 |
|                       | E S         |        |             |             |          |          |          | 14,3527  |
| ľ                     | G           |        |             |             |          |          |          |          |

Decide for an Item and a User Representation Select a suitable Similarity / Distance Function (suitable for the vector space approach) Compute the Distances between all the Items 4. Find the neighborhood of every Item k-nearest-neighbor method (kNN) Compute the Recommendations make the neighbors "vote" for the unseen Items select Items with the higher values

### Find the neighborhood of every Item

#### K-nearest-neighbor method (kNN)

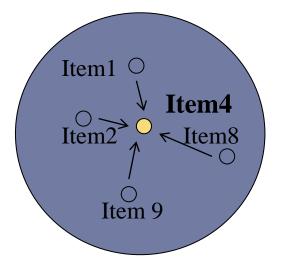

#### Simple method: nearest neighbors


- Given a set of documents D already rated by the user (like/dislike)
  - Either explicitly via user interface
  - Or implicitly by monitoring user's behavior
- Find the n nearest neighbors of an not-yet-seen item i in D
  - Use similarity measures (like cosine similarity) to capture similarity of two documents
- Take these neighbors to predict a rating for i
  - e.g. k = 5 most similar items to i.
    4 of k items were liked by current user item i will also be liked by this user

### Variations of kNN method

#### Variations:

- Varying neighborhood size k
- lower/upper similarity thresholds to prevent system from recommending items the user already has seen
- Good to model short-term interests / follow-up stories
- Used in combination with method to model long-term preferences






Decide for an Item and a User Representation Select a suitable Similarity / Distance Function (suitable for the vector space approach) Compute the Distances between all the Items 4. Find the neighborhood of every Item k-nearest-neighbor method (kNN) 5. Compute the Recommendations make the neighbors "vote" for the unseen Items select Items with the higher values

### **Compute the Recommendations**

### where the neighbors "vote" for the unseen Items



Three approaches:

- Take the average of the rated items that belong to the neighborhood
- 2. Weight the votes based on the degree of similarity
- Let the latest (more recent) ratings to vote -> user's short term interest

Other Ideas???

### On feature selection

#### process of choosing a subset of available terms

#### different strategies exist for deciding which features to use

- feature selection based on domain knowledge and lexical information from WordNet (Pazzani and Billsus 1997)
- frequency-based feature selection to remove words appearing "too rare" or "too often" (Chakrabarti 2002)

#### Not appropriate for larger text corpora

- Better to
  - evaluate value of individual features (keywords) independently and
  - construct a ranked list of "good" keywords.

Typical measure for determining utility of keywords: e.g.  $X^2$ , mutual information measure or Fisher's discrimination index

# imitations of content-based recommendation methods

- Keywords alone may not be sufficient to judge quality/relevance of a document or web page
  - up-to-date-ness, usability, aesthetics, writing style
  - content may also be limited / too short
  - content may not be automatically extractable (multimedia)
- Ramp-up phase required
  - Some training data is still required
  - Web 2.0: Use other sources to learn the user preferences
- Overspecialization
  - Algorithms tend to propose "more of the same"
  - Or: too similar news items

### **Discussion & summary**

- In contrast to collaborative approaches, content-based techniques do not require user community in order to work
- Presented approaches aim to learn a model of user's interest preferences based on explicit or implicit feedback
  - Deriving implicit feedback from user behavior can be problematic
- Evaluations show that a good recommendation accuracy can be achieved with help of machine learning techniques
  - These techniques do not require a user community
- Danger exists that recommendation lists contain too many similar items
  - All learning techniques require a certain amount of training data
  - Some learning methods tend to overfit the training data

### Pure content-based systems are rarely found in commercial environments

### Literature

[Michael Pazzani and Daniel Billsus 1997] Learning and revising user profiles: The identification of interesting web sites, Machine Learning 27 (1997), no. 3, 313-331.

[Soumen Chakrabarti 2002] Mining the web: Discovering knowledge from hyper-text data, Science & Technology Books, 2002.