
Recommender Systems and Adaptive
Hypermedia

Costas Mourlas
Associate Professor

Univ. of Athens

Agenda
Collaborative Filtering (CF)
– Pure CF approaches
– User-based nearest-neighbor
– The Pearson Correlation similarity measure
– Memory-based and model-based approaches
– Item-based nearest-neighbor
– The cosine similarity measure
– Data sparsity problems
– Recent methods (SVD, AssociationRuleMining,SlopeOne,RF-Rec, …)
– The Google News personalization engine
– Discussion and summary
– Literature

Collaborative Filtering (CF)
The most prominent approach to generate recommendations
– used by large, commercial e-commerce sites
– well-understood, various algorithms and variations exist
– applicable in many domains (book, movies, DVDs, ..)

Approach
– use the "wisdom of the crowd" to recommend items

Basic assumption and idea
– Users give ratings to catalog items (implicitly or explicitly)
– Customers who had similar tastes in the past, will have similar tastes

in the future

Pure CF Approaches

Input
– Only a matrix of given user–item ratings

Output types
– A (numerical) prediction indicating to what degree

the current user will like or dislike a certain item
– A top-N list of recommended items

User-based nearest-neighbor
collaborative filtering (1)

User-based nearest-neighbor
collaborative filtering (2)

Example
– A database of ratings of the current user, Alice, and

some other users is given:

– Determine whether Alice will like or dislike Item5,
which Alice has not yet rated or seen

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?
User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

User-based nearest-neighbor
collaborative filtering (3)

Some first questions
– How do we measure similarity?
– How many neighbors should we consider?
– How do we generate a prediction from the neighbors'

ratings?

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?
User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

Measuring user similarity (1)

Measuring user similarity (2)

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?
User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

sim = 0,85

sim = 0,00
sim = 0,70
sim = -0,79

Pearson correlation
Takes differences in rating behavior into
account

Works well in usual domains, compared
with alternative measures
– such as cosine similarity

0

1

2

3

4

5

6

Item1 Item2 Item3 Item4

Ratings

Alice

User1

User4

Making predictions

Improving the metrics / prediction function
Not all neighbor ratings might be equally "valuable"
– Agreement on commonly liked items is not so informative as agreement on

controversial items
– Possible solution: Give more weight to items that have a higher variance

Value of number of co-rated items
– Use "significance weighting", by e.g., linearly reducing the weight when the

number of co-rated items is low
Case amplification
– Intuition: Give more weight to "very similar" neighbors, i.e., where the similarity

value is close to 1.
Neighborhood selection
– Use similarity threshold or fixed number of neighbors

Memory-based and model-based
approaches

User-based CF is said to be "memory-based"
– the rating matrix is directly used to find neighbors / make predictions
– does not scale for most real-world scenarios
– large e-commerce sites have tens of millions of customers and millions

of items
Model-based approaches
– based on an offline pre-processing or "model-learning" phase
– at run-time, only the learned model is used to make predictions
– models are updated / re-trained periodically
– large variety of techniques used
– model-building and updating can be computationally expensive
– item-based CF is an example for model-based approaches

Item-based collaborative filtering
Basic idea:
– Use the similarity between items (and not users) to make

predictions
Example:
– Look for items that are similar to Item5
– Take Alice's ratings for these items to predict the rating for

Item5

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?
User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

The cosine similarity measure

Making predictions
A common prediction function:

Neighborhood size is typically also limited to a
specific size
Not all neighbors are taken into account for the
prediction
An analysis of the MovieLens dataset indicates that
"in most real-world situations, a neighborhood of 20
to 50 neighbors seems reasonable" (Herlocker et al.
2002)

Pre-processing for item-based filtering
Item-based filtering does not solve the scalability problem itself
Pre-processing approach by Amazon.com (in 2003)
– Calculate all pair-wise item similarities in advance
– The neighborhood to be used at run-time is typically rather small, because only items are

taken into account which the user has rated
– Item similarities are supposed to be more stable than user similarities

Memory requirements
– Up to N2 pair-wise similarities to be memorized (N = number of items) in theory
– In practice, this is significantly lower (items with no co-ratings)
– Further reductions possible

• Minimum threshold for co-ratings
• Limit the neighborhood size (might affect recommendation accuracy)

More on ratings – Explicit ratings
Probably the most precise ratings
Most commonly used (1 to 5, 1 to 7 Likert response scales)
Research topics

– Optimal granularity of scale; indication that 10-point scale is better accepted in movie dom.
– An even more fine-grained scale was chosen in the joke recommender discussed by

Goldberg et al. (2001), where a continuous scale (from −10 to +10) and a graphical input
bar were used

• No precision loss from the discretization
• User preferences can be captured at a finer granularity
• Users actually "like" the graphical interaction method

– Multidimensional ratings (multiple ratings per movie such as ratings for actors and sound)
Main problems

– Users not always willing to rate many items
• number of available ratings could be too small → sparse rating matrices → poor recommendation

quality
– How to stimulate users to rate more items?

More on ratings – Implicit ratings
Typically collected by the web shop or application in which the
recommender system is embedded
When a customer buys an item, for instance, many recommender
systems interpret this behavior as a positive rating
Clicks, page views, time spent on some page, demo downloads …
Implicit ratings can be collected constantly and do not require additional
efforts from the side of the user
Main problem
– One cannot be sure whether the user behavior is correctly interpreted
– For example, a user might not like all the books he or she has bought; the user

also might have bought a book for someone else
Implicit ratings can be used in addition to explicit ones; question of
correctness of interpretation

Data sparsity problems
Cold start problem
– How to recommend new items? What to recommend to new users?

Straightforward approaches
– Ask/force users to rate a set of items
– Use another method (e.g., content-based, demographic or simply non-personalized) in

the initial phase
– Default voting: assign default values to items that only one of the two users to be

compared has rated (Breese et al. 1998)
Alternatives
– Use better algorithms (beyond nearest-neighbor approaches)
– Example:

• In nearest-neighbor approaches, the set of sufficiently similar neighbors might be too small
to make good predictions

• Assume "transitivity" of neighborhoods

Example algorithms for sparse
datasets

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?
User1 3 1 2 3 ?

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

sim = 0.85

Predict
rating for
User1

More model-based approaches
Plethora of different techniques proposed in the last years,
e.g.,
– Matrix factorization techniques, statistics

• singular value decomposition, principal component analysis
– Association rule mining

• compare: shopping basket analysis
– Probabilistic models

• clustering models, Bayesian networks, probabilistic Latent Semantic Analysis
– Various other machine learning approaches

Costs of pre-processing
– Usually not discussed
– Incremental updates possible?

Collaborative Filtering Issues
Pros:

– well-understood, works well in some domains, no knowledge engineering required

Cons:
– requires user community, sparsity problems, no integration of other knowledge sources,

no explanation of results

What is the best CF method?
– In which situation and which domain? Inconsistent findings; always the same domains

and data sets; differences between methods are often very small (1/100)

How to evaluate the prediction quality?
– MAE / RMSE: What does an MAE of 0.7 actually mean?
– Serendipity (novelty and surprising effect of recommendations)

• Not yet fully understood

What about multi-dimensional ratings?

The Google News personalization engine

Google News portal (1)
Aggregates news articles from several thousand sources
Displays them to signed-in users in a personalized way
Collaborative recommendation approach based on
– the click history of the active user and
– the history of the larger community

Main challenges
– Vast number of articles and users
– Generate recommendation list in real time (at most one second)
– Constant stream of new items
– Immediately react to user interaction

Significant efforts with respect to algorithms, engineering, and parallelization
are required

Google News portal (2)
Pure memory-based approaches are not directly applicable and for
model-based approaches, the problem of continuous model
updates must be solved
A combination of model- and memory-based techniques is used
Model-based part: Two clustering techniques are used
– Probabilistic Latent Semantic Indexing (PLSI) as proposed by (Hofmann

2004)
– MinHash as a hashing method

Memory-based part: Analyze story co-visits for dealing with new users
Google's MapReduce technique is used for parallelization in order
to make computation scalable

Literature (1)
[Adomavicius and Tuzhilin 2005] Toward the next generation of recommender systems: A survey of the
state-of-the-art and possible extensions, IEEE Transactions on Knowledge and Data Engineering 17
(2005), no. 6, 734–749
[Breese et al. 1998] Empirical analysis of predictive algorithms for collaborative filtering, Proceedings of
the 14th Conference on Uncertainty in Artificial Intelligence (Madison, WI) (Gregory F. Cooper and
Seraf´in Moral, eds.), Morgan Kaufmann, 1998, pp. 43–52
[Gedikli et al. 2011] RF-Rec: Fast and accurate computation of recommendations based on rating
frequencies, Proceedings of the 13th IEEE Conference on Commerce and Enterprise Computing - CEC
2011, Luxembourg, 2011, forthcoming
[Goldberg et al. 2001] Eigentaste: A constant time collaborative filtering algorithm, Information Retrieval
4 (2001), no. 2, 133–151
[Golub and Kahan 1965] Calculating the singular values and pseudo-inverse of a matrix, Journal of the
Society for Industrial and Applied Mathematics, Series B: Numerical Analysis 2 (1965), no. 2, 205–224
[Herlocker et al. 2002] An empirical analysis of design choices in neighborhood-based collaborative
filtering algorithms, Information Retrieval 5 (2002), no. 4, 287–310
[Herlocker et al. 2004] Evaluating collaborative filtering recommender systems, ACM Transactions on
Information Systems (TOIS) 22 (2004), no. 1, 5–53

Literature (2)
[Hofmann 2004] Latent semantic models for collaborative filtering, ACM Transactions on Information
Systems 22 (2004), no. 1, 89–115
[Huang et al. 2004] Applying associative retrieval techniques to alleviate the sparsity problem in
collaborative filtering, ACM Transactions on Information Systems 22 (2004), no. 1, 116–142
[Koren et al. 2009] Matrix factorization techniques for recommender systems, Computer 42 (2009), no. 8,
30–37
[Lemire and Maclachlan 2005] Slope one predictors for online rating-based collaborative filtering,
Proceedings of the 5th SIAM International Conference on Data Mining (SDM ’05) (Newport Beach, CA),
2005, pp. 471–480
[Sarwar et al. 2000a] Application of dimensionality reduction in recommender systems – a case study,
Proceedings of the ACM WebKDD Workshop (Boston), 2000
[Zhang and Pu 2007] A recursive prediction algorithm for collaborative filtering recommender systems,
Proceedings of the 2007 ACM Conference on Recommender Systems (RecSys ’07) (Minneapolis, MN),
ACM, 2007, pp. 57–64

	Slide Number 1
	Agenda
	Collaborative Filtering (CF)
	Pure CF Approaches
	User-based nearest-neighbor collaborative filtering (1)
	User-based nearest-neighbor collaborative filtering (2)
	User-based nearest-neighbor collaborative filtering (3)
	Measuring user similarity (1)
	Measuring user similarity (2)
	Pearson correlation
	Making predictions
	Improving the metrics / prediction function
	Memory-based and model-based approaches
	Item-based collaborative filtering
	The cosine similarity measure
	Making predictions
	Pre-processing for item-based filtering
	More on ratings – Explicit ratings
	More on ratings – Implicit ratings
	Data sparsity problems
	Example algorithms for sparse datasets
	More model-based approaches
	Collaborative Filtering Issues
	The Google News personalization engine
	Google News portal (1)
	Google News portal (2)
	Literature (1)
	Literature (2)

