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— Pure CF approaches
— User-based nearest-neighbor
— The Pearson Correlation similarity measure
— Memory-based and model-based approaches
— ltem-based nearest-neighbor
— The cosine similarity measure
— Data sparsity problems
— Recent methods (SVD, AssociationRuleMining,SlopeOne,RF-Rec, ...)
— The Google News personalization engine
— Discussion and summary
— Literature



N4 ~ 2
v ~/ Collaborative Filtering (CF)

< The most prominent approach to generate recommendations
— used by large, commercial e-commerce sites
— well-understood, various algorithms and variations exist
— applicable in many domains (book, movies, DVDs, ..)

& Approach
— use the "wisdom of the crowd" to recommend items

¢ Basic assumption and idea
— Users give ratings to catalog items (implicitly or explicitly)

— Customers who had similar tastes in the past, will have similar tastes
In the future
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ure CF Approaches

& |nput
— Only a matrix of given user—item ratings

& Output types

— A (numerical) prediction indicating to what degree
the current user will like or dislike a certain item

— A top-N list of recommended items



e The basic technique

— Given an "active user" (Alice) and an item i not yet seen by Alice

= find a set of users (peers/nearest neighbors) who liked the same items as Alice
in the past and who have rated item i

» use, e.g. the average of their ratings to predict, if Alice will like item {
» do this for all items Alice has not seen and recommend the best-rated

Basic assumption and idea

— If users had similar tastes in the past they will have similar tastesin the future
— User preferences remain stable and consistent over time




—
- 7/0Ser-based nearest-neighbor

collaborative filtering (2)
& Example

— A database of ratings of the current user, Alice, and
some other users is given:

Alice 5 3 4 4 ?
Userl 3 1 2 3 3
User2 4 3 4 3 5
User3 3 3 1 5 4
Userd 1 5 5 2 1

— Determine whether Alice will like or dislike Item5,
which Alice has not yet rated or seen



D
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collaborative filtering (3)

% Some first questions B
— How do we measure similarity?
— How many neighbors should we consider?

— How do we generate a prediction from the neighbors'
ratings?

Alice
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User2
User3
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Tap -rating of usera foritemp
P :setof items, rated both by a and b
— Possible similarity values between —1 and 1
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— Possible similarity values between —1 and 1
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Pearson correlation

& Takes differences in rating behavior into
account

Alice |

& Works well in usual domains, compared
with alternative measures

— such as cosine similarity




%: A common prediction function:
Ypensim(a,b) * (rp, —Tp)
XpenSim(a,b)

pred(a,p) =7, +

Calculate, whether the neighbors' ratings for the unseen item i are higher
or lower than their average

Combine the rating differences — use the similarity with a as a weight

'y Add/subtract the neighbors' bias from the active user's average and use
7. thisas a prediction
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tmproving the metrics / prediction function

& Not all neighbor ratings might be equally "valuable"

— Agreement on commonly liked items is not so informative as agreement on
controversial items

— Possible solution: Give more weight to items that have a higher variance

& Value of number of co-rated items

— Use "significance weighting", by e.qg., linearly reducing the weight when the
number of co-rated items is low

& Case amplification

— Intuition: Give more weight to "very similar" neighbors, i.e., where the similarity
value is close to 1.

# Neighborhood selection
— Use similarity threshold or fixed number of neighbors
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_—NMemory-based and model-based
approaches

& User-based CF Is said to be "memory-based"
— the rating matrix is directly used to find neighbors / make predictions
— does not scale for most real-world scenarios
— large e-commerce sites have tens of millions of customers and millions
of items
& Model-based approaches
— based on an offline pre-processing or "model-learning” phase
— at run-time, only the learned model is used to make predictions
— models are updated / re-trained periodically
— large variety of techniques used
— model-building and updating can be computationally expensive
— item-hased CF is an examble for model-based anbroaches

- -



tem-based collaborative filtering

& Basic idea:

— Use the similarity between items (and not users) to make
predictions

& Example:
— Look for items that are similar to ltem5

— Take Alice's ratings for these items to predict the rating for
ltem5
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%: Produces better results in item-to-item filtering

- 'L = Ratings are seen as vector in n-dimensional space

- = Similarity is calculated based on the angle between the vectors

AN a-b
Slm(a,b) =m

= Adjusted cosine similarity
— take average user ratings into account, transform the original ratings
- U: set of users who have rated both items a and b

Zuev(ru,a — m(ru,b — ﬁ)
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"= Making predictions

& A common prediction function:

ZiEratedItem(u) S im(i! p) *Tu,i

pred(u,p) = L %
. ZiEr ted}’tem(u) Slm("_! p) . . » B A & B
# Neighborhood size Is typically also limited to ¢

specific size
# Not all neighbors are taken into account for the
prediction

< An analysis of the MovieLens dataset indicates that
"In most real-world situations, a neighborhood of 20
to 50 neighbors seems reasonable” (Herlocker et al.
2002)
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—Pre-processing for item-based filtering

& |tem-based filtering does not solve the scalability problem itself

& Pre-processing approach by Amazon.com (in 2003)

— Calculate all pair-wise item similarities in advance

— The neighborhood to be used at run-time is typically rather small, because only items are
taken into account which the user has rated

— Item similarities are supposed to be more stable than user similarities

& Memory requirements
— Up to N2 pair-wise similarities to be memorized (N = number of items) in theory
~ In practice, this is significantly lower (items with no co-ratings)
— Further reductions possible
 Minimum threshold for co-ratings
« Limit the neighborhood size (might affect recommendation accuracy)



ore on ratings — Explicit ratings

& Probably the most precise ratings
# - Most commonly used (1 to 5, 1 to 7 Likert response scales)

# ‘Research topics

— Optimal granularity of scale; indication that 10-point scale is better accepted in movie dom.

— An even more fine-grained scale was chosen in the joke recommender discussed by
Goldberg et al. (2001), where a continuous scale (from-10 to +10) and a graphical input
bar were used

* No precision loss from the discretization
 User preferences can be captured at a finer granularity
 Users actually "like" the graphical interaction method

— Multidimensional ratings (multiple ratings per movie such as ratings for actors and sound)
# -Main problems

— Users not always willing to rate many items

« number of available ratings could be too small — sparse rating matrices — poor recommendation
quality

— How to stimulate users to rate more items?



_ " More on ratings — Implicit ratings

& Typically collected by the web shop or application in which the
recommender system is embedded

& When a customer buys an item, for instance, many recommender
systems interpret this behavior as a positive rating

Clicks, page views, time spent on some page, demo downloads ...

Implicit ratings can be collected constantly and do not require additional
efforts from the side of the user

& Main problem

— One cannot be sure whether the user behavior is correctly interpreted
— For example, a user might not like all the books he or she has bought; the user
also might have bought a book for someone else
& Implicit ratings can be used in addition to explicit ones; question of
correctness of interpretation

o



D
&

ata sparsity problems

& Cold start problem

— How to recommend new items? What to recommend to new users?
& Straightforward approaches

~ Ask/force users to rate a set of items

— Use another method (e.g., content-based, demographic or simply non-personalized) in
the initial phase

— Default voting: assign default values to items that only one of the two users to be
compared has rated (Breese et al. 1998)

& Alternatives

— Use better algorithms (beyond nearest-neighbor approaches)
— Example:

* In nearest-neighbor approaches, the set of sufficiently similar neighbors might be too small
to make good predictions

o Assume "transitivity" of neighborhoods
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Recursive CF (Zhang and Pu 2007)
— Assume there is a very close neighbor n of u who however has not rated the

targetitem i yet.

— ldea:

Alice

Userl
User2
User3
User4d

= Apply CF-method recursively and predict a rating for item i for the neighbor

= Use this predicted rating instead of the rating of a more distant direct

neighbor

v w W -k W

v = B N b

N Ul W W b

sim = 0.85

Predict
rating for
Userl



ore model-based approaches

& Plethora of different techniques proposed in the last years,
e.g.,

— Matrix factorization techniques, statistics
« singular value decomposition, principal component analysis

— Association rule mining
« compare: shopping basket analysis

— Probabilistic models
* clustering models, Bayesian networks, probabilistic Latent Semantic Analysis

— Various other machine learning approaches
& Costs of pre-processing

— Usually not discussed

— Incremental updates possible?



~'Collaborative Filtering Issues
& Pros:

— well-understood, works well in some domains, no knowledge engineering required

& Cons:

—  requires user community, sparsity problems, no integration of other knowledge sources,
no explanation of results

& What Is the best CF method?

—  In which situation and which domain? Inconsistent findings; always the same domains
and data sets; differences between methods are often very small (1/100)

# How to evaluate the prediction quality?

— MAE / RMSE: What does an MAE of 0.7 actually mean?

— Serendipity (novelty and surprising effect of recommendations)
* Not yet fully understood

4 What about multi-dimensional ratings?
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— ™ Google News portal (1)

& Aggregates news articles from several thousand sources
& Displays them to signed-in users in a personalized way

& Collaborative recommendation approach based on
— the click history of the active user and
— the history of the larger community

& Main challenges
— Vast number of articles and users
— Generate recommendation list in real time (at most one second)
— Constant stream of new items
— Immediately react to user interaction

& Significant efforts with respect to algorithms, engineering, and parallelization
are required
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— =/ Google News portal (2)

& Pure memory-based approaches are not directly applicable and for
model-based approaches, the problem of continuous model
updates must be solved

& A combination of model- and memory-based technigues is used

< Model-based part: Two clustering techniques are used

— Probabilistic Latent Semantic Indexing (PLSI) as proposed by (Hofmann
2004)

— MinHash as a hashing method
& Memory-based part: Analyze story co-visits for dealing with new users

% Google's MapReduce technique is used for parallelization in order
to make computation scalable
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