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– Discussion and summary 
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Collaborative Filtering (CF) 
The most prominent approach to generate recommendations 
– used by large, commercial e-commerce sites 
– well-understood, various algorithms and variations exist 
– applicable in many domains (book, movies, DVDs, ..) 

Approach 
– use the "wisdom of the crowd" to recommend items 

Basic assumption and idea 
– Users give ratings to catalog items (implicitly or explicitly) 
– Customers who had similar tastes in the past, will have similar tastes 

in the future 
 
 



Pure CF Approaches 

Input 
– Only a matrix of given user–item ratings 

Output types 
– A (numerical) prediction indicating to what degree 

the current user will like or dislike a certain item 
– A top-N list of recommended items 



User-based nearest-neighbor 
collaborative filtering (1) 



User-based nearest-neighbor 
collaborative filtering (2) 

Example 
– A database of ratings of the current user, Alice, and 

some other users is given: 
 
 
 

 
 

– Determine whether Alice will like or dislike Item5, 
which Alice has not yet rated or seen 
 

Item1 Item2 Item3 Item4 Item5 

Alice 5 3 4 4 ? 
User1 3 1 2 3 3 

User2 4 3 4 3 5 

User3 3 3 1 5 4 

User4 1 5 5 2 1 



User-based nearest-neighbor 
collaborative filtering (3) 

Some first questions 
– How do we measure similarity? 
– How many neighbors should we consider? 
– How do we generate a prediction from the neighbors' 

ratings? 
 

Item1 Item2 Item3 Item4 Item5 

Alice 5 3 4 4 ? 
User1 3 1 2 3 3 

User2 4 3 4 3 5 

User3 3 3 1 5 4 

User4 1 5 5 2 1 



Measuring user similarity (1) 



Measuring user similarity (2) 

Item1 Item2 Item3 Item4 Item5 

Alice 5 3 4 4 ? 
User1 3 1 2 3 3 

User2 4 3 4 3 5 

User3 3 3 1 5 4 

User4 1 5 5 2 1 

sim = 0,85 

sim = 0,00 
sim = 0,70 
sim = -0,79 



Pearson correlation 
Takes differences in rating behavior into 
account 
 
 
 

 
Works well in usual domains, compared 
with alternative measures 
– such as cosine similarity 
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Making predictions 



Improving the metrics  / prediction function 
Not all neighbor ratings might be equally "valuable" 
– Agreement on commonly liked items is not so informative as agreement on 

controversial items 
– Possible solution:  Give more weight to items that have a higher variance 

Value of number of co-rated items 
– Use "significance weighting", by e.g., linearly reducing the weight when the 

number of co-rated items is low  
Case amplification 
– Intuition: Give more weight to "very similar" neighbors, i.e., where the similarity 

value is close to 1. 
Neighborhood selection 
– Use similarity threshold or fixed number of neighbors 



Memory-based and model-based 
approaches 

User-based CF is said to be "memory-based" 
– the rating matrix is directly used to find neighbors / make predictions 
– does not scale for most real-world scenarios 
– large e-commerce sites have tens of millions of customers and millions 

of items 
Model-based approaches 
– based on an offline pre-processing or "model-learning" phase 
– at run-time, only the learned model is used to make predictions 
– models are updated / re-trained periodically 
– large variety of techniques used  
– model-building and updating can be computationally expensive 
– item-based CF is an example for model-based approaches 



Item-based collaborative filtering 
Basic idea:  
– Use the similarity between items (and not users) to make 

predictions 
Example:  
– Look for items that are similar to Item5 
– Take Alice's ratings for these items to predict the rating for 

Item5 
 

Item1 Item2 Item3 Item4 Item5 

Alice 5 3 4 4 ? 
User1 3 1 2 3 3 

User2 4 3 4 3 5 

User3 3 3 1 5 4 

User4 1 5 5 2 1 



The cosine similarity measure 



Making predictions 
A common prediction function: 

 
Neighborhood size is typically also limited to a 
specific size 
Not all neighbors are taken into account for the 
prediction 
An analysis of the MovieLens dataset indicates that 
"in most real-world situations, a neighborhood of 20 
to 50 neighbors seems reasonable" (Herlocker et al. 
2002) 



Pre-processing for item-based filtering 
Item-based filtering does not solve the scalability problem itself 
Pre-processing approach by Amazon.com (in 2003) 
– Calculate all pair-wise item similarities in advance 
– The neighborhood to be used at run-time is typically rather small, because only items are 

taken into account which the user has rated 
– Item similarities are supposed to be more stable than user similarities 

Memory requirements 
– Up to N2 pair-wise similarities to be memorized (N = number of items) in theory 
– In practice, this is significantly lower (items with no co-ratings) 
– Further reductions possible 

• Minimum threshold for co-ratings 
• Limit the neighborhood size (might affect recommendation accuracy) 

 



More on ratings – Explicit ratings 
Probably the most precise ratings 
Most commonly used (1 to 5, 1 to 7 Likert response scales) 
Research topics 

– Optimal granularity of scale; indication that 10-point scale is better accepted in movie dom. 
– An even more fine-grained scale was chosen in the joke recommender discussed by 

Goldberg et al. (2001), where a continuous scale (from −10 to +10) and a graphical input 
bar were used 

• No precision loss from the discretization 
• User preferences can be captured at a finer granularity 
• Users actually "like" the graphical interaction method 

– Multidimensional ratings (multiple ratings per movie such as ratings for actors and sound) 
Main problems 

– Users not always willing to rate many items 
• number of available ratings could be too small → sparse rating matrices → poor recommendation 

quality 
– How to stimulate users to rate more items? 



More on ratings – Implicit ratings 
Typically collected by the web shop or application in which the 
recommender system is embedded 
When a customer buys an item, for instance, many recommender 
systems interpret this behavior as a positive rating 
Clicks, page views, time spent on some page, demo downloads … 
Implicit ratings can be collected constantly and do not require additional 
efforts from the side of the user 
Main problem 
– One cannot be sure whether the user behavior is correctly interpreted 
– For example, a user might not like all the books he or she has bought; the user 

also might have bought a book for someone else 
Implicit ratings can be used in addition to explicit ones; question of 
correctness of interpretation 



Data sparsity problems 
Cold start problem 
– How to recommend new items? What to recommend to new users? 

Straightforward approaches 
– Ask/force users to rate a set of items 
– Use another method (e.g., content-based, demographic or simply non-personalized) in 

the initial phase 
– Default voting: assign default values to items that only one of the two users to be 

compared has rated (Breese et al. 1998) 
Alternatives 
– Use better algorithms (beyond nearest-neighbor approaches) 
– Example:  

• In nearest-neighbor approaches, the set of sufficiently similar neighbors might be too small 
to make good predictions 

• Assume "transitivity" of neighborhoods 
 



Example algorithms for sparse 
datasets 

Item1 Item2 Item3 Item4 Item5 

Alice 5 3 4 4 ? 
User1 3 1 2 3 ? 

User2 4 3 4 3 5 

User3 3 3 1 5 4 

User4 1 5 5 2 1 

sim = 0.85 

Predict 
rating for 
User1 



More model-based approaches 
Plethora of different techniques proposed in the last years, 
e.g., 
– Matrix factorization techniques, statistics 

• singular value decomposition, principal component analysis 
– Association rule mining 

• compare: shopping basket analysis 
– Probabilistic models 

• clustering models, Bayesian networks, probabilistic Latent Semantic Analysis 
– Various other machine learning approaches 

Costs of pre-processing  
– Usually not discussed 
– Incremental updates possible? 



Collaborative Filtering Issues 
Pros:  

– well-understood, works well in some domains, no knowledge engineering required 

Cons: 
– requires user community, sparsity problems, no integration of other knowledge sources, 

no explanation of results 

What is the best CF method? 
– In which situation and which domain? Inconsistent findings; always the same domains 

and data sets; differences between methods are often very small (1/100) 

How to evaluate the prediction quality? 
– MAE / RMSE: What does an MAE of 0.7 actually mean? 
– Serendipity (novelty and surprising effect of recommendations) 

• Not yet fully understood 

What about multi-dimensional ratings? 



The Google News personalization engine 



Google News portal (1) 
Aggregates news articles from several thousand sources 
Displays them to signed-in users in a personalized way 
Collaborative recommendation approach based on 
– the click history of the active user and 
– the history of the larger community 

Main challenges 
– Vast number of articles and users 
– Generate recommendation list in real time (at most one second) 
– Constant stream of new items 
– Immediately react to user interaction 

Significant efforts with respect to algorithms, engineering, and parallelization 
are required 



Google News portal (2) 
Pure memory-based approaches are not directly applicable and for 
model-based approaches, the problem of continuous model 
updates must be solved 
A combination of model- and memory-based techniques is used 
Model-based part: Two clustering techniques are used 
– Probabilistic Latent Semantic Indexing (PLSI) as proposed by (Hofmann 

2004) 
– MinHash as a hashing method 

Memory-based part: Analyze story co-visits for dealing with new users 
Google's MapReduce technique is used for parallelization in order 
to make computation scalable 
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