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I N T R O D U C T I O N

Iri the previous chapter we gradually learned what may be described 

as a formal language,, a language designed for the study of certain 

patterns of argument in something of the way in which the language 

of elementary mathematics is designed for the study of certain 

numerical operations (addition, subtraction, etc.). This language is 

often called, for reasons which should be obvious, the propositional 

calculus (also sometimes the sentential calculus). In the present 

chapter, we study it at a more theoretical level, in order to gam a 

clearer insight into its properties and its power. Among the 

questions we shall raise are the following three, (i) It commonly 

happens in mathematics that, a result, once proved, can be utilized 

without re-proof m obtaining new results—mathematics is pro-

gressive in just this sense, as any student of Euclidean geometry 

knows. Are there any analogous devices whereby we can use a 

sequent already proved to facilitate the discovery of proofs for other 

sequents? An affirmative answer is given in Section 2. (ii) However 

confident on intuitive grounds we may be that our rules of derivation 

are safe, is there nevertheless any way of showing that they are 

safe, showing that they will not yield sequents which are in fact 

invalid ? A way is found in Sections 3 and 4. (iii) We have so far 

introduced ten rules of derivation for operating the symbols of the 

language: are these enough, or do we require more? Section 5 

shows that our rules form in a certain sense a complete set, and that 

no more are needed. The answers to these and related questions 

afford a deepened understanding of the nature of the propositional 

calculus.

1 F O R M A T IO N  R UL E S

The propositional calculus is, I have said, a kind of language, and 

as such it has a grammar or, more particularly, a syntax. We have 

taken this syntax for granted in our fairly easy-going approach so far;
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Formation Rules

but we cannot go much further without a more scrupulous account of 

the structure of the language itself. In particular, we have taken for 

granted what was understood by a sentence in the symbolism: it is 

part of our task as logicians to make this notion, precise, and we 

devote this section to the job by introducing a rather long series of 

definitions.

First, I define a bracket. A bracket is one of the marks;

• e , * ) \

and I call the first kind of mark a left-hand bracket and the second a 

right-hand bracket. This definition, which should be readily under-

stood, is an os tensive definition, so-called because 1 show or exhibit 

what a bracket is rather than use other words to define one. (We 

could avoid ostensive definition; I might say that a bracket is an 

arc of a circle, with one end point placed vertically above the other 

end point.)

Second, 1 define a logical connective, often just called a connective. 

A logical connective is one of the marks;

‘ w- ‘ \  ‘ ‘ v ‘

This is also an ostensive definition, which formally introduces the 

symbols employed in the last chapter for sentence-forming operators 

on sentences.

Third, I define a (propositional) variable. A propositional variable 

is one of the marks:

' P 'f t  Q 'ft R', . . . .

This is again an ostensive definition, but importantly different from 

the earlier two. There are just two kinds of mark which are called 

brackets, and just five which are called connectives; but the *... 

in the definition of a variable is intended to indicate that there is an 

indefinitely large number of distinct such. Human limitations being 

what they are, we have room and time to list only a finite number; 

so we add Since in practice we rarely need more than four

distinct variables, there is no need to specify how the list would 

continue. But it is well to remember that the number of variables 

has no theoretical upper limit, that if we ever need a new one we 

are entitled to construct it (say by adding dashes and introducing 

1P' "ft R"' etc., into our list).

Fourth, I define a symbol (of the propositional calculus) as either a
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bracket or a logical connective or a propositional variable. Hence any 

of the above marks is a symbol.

Fifth, I define a formula {of the propositional calculus) as any 

sequence of symbols. This definition needs a little explanation; in 

virtue of it,

(1)

(2) £ (P V —P ) '

axe both formulae, since both are sequences of symbols: (2) for 

example is the sequence consisting of a left-hand bracket, followed 

by an occurrence of the variable ‘ P \  followed by the connective 

‘ v followed by the connective ‘—’, followed by a second occurrence 

of the variable ‘ P '. followed by a right-hand bracket. But

(3) ‘ v P '

The Propositional Calculus 2
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is not a formula, since it is not a sequence of symbols, but rather a 

jumble of them. A sequence requires order, which (!) and (2) 

possess but (3) lacks. Our normal convention for writing sequences 

of symbols is that they shall appear, not spaced too far apart, in 

the order from left to right. This is a contemporary European 

convention, which the reader will be relieved to see I am following 

in this book.

Of the whole class of formulae, some, like (1) above, might be 

loosely called meaningless or gibberish, while others, like (2), make 

sense and can be understood. It is only, of course, the second group 

that we want to use in our formal work, so that we must single them 

out, if we can, by a precise definition. Out of the totality of formulae, 

therefore, we define the sub-class of well-formedformulae, by a some-

what complex definition, which has seven clauses. To save space, we 

abbreviate ‘ well-formed formula ’ to ‘ wff ’ (plural ‘ wffs ’), both 

here and hereafter.

(a) any propositional variable is a wff;

(b) any wff preceded by ‘ — ’ is a wff;

(c) any wff followed by ‘ ’ followed by any wff, the whole

enclosed in brackets, is a wff;
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(d) like (c), with ‘ & ’ replacing

(e) like (c), with ‘ v ’ replacing ‘ ’ ;

(/) like (c), with ‘ ’ replacing ‘ !;

(g) if a formula is not a wff in virtue of clauses (a)-(f),. then

it is not a wff.

The best way to see that these clauses do successfully define a wff 

is to consider examples. We show that

(4) ‘ (((P+. Q) v -  Q) ^  ( -  - P  & 0 )  '

is a wff, as we wish it to be, in view of the definition. First, in virtue 

of clause (a),

1 P \ ‘ Q'

are wffs, since by (a) all variables are wffs. By (b); the result of 

prefixing ‘ ■— ’ to a wff gives a wff: hence

are wffs. But if ‘ —P  ’ is a wff, as we have shown it to be, then by 

clause (b) again

‘ -----P'

is a wff. (We could go on applying (b) to show that ‘ -------- P \

‘ --------—P \  etc., were all wffs.) Now since ‘ ------P ’ and ‘ Q '

have been shown to be wffs, by clause (d) the result of placing ‘ & ’ 

between them and enclosing the whole in brackets yields a further 

wff: hence

(5) ‘ (----- P & 0  ’

is a wff. Again, by (c), since ‘ P ’ and ‘ Q ’ are wffs, so is

‘ (P+-Q)  ’•

Using (e), given that ‘ (P 0  ’ and ‘ — Q ’ are wffs, we have that

(6) ‘ ( ( P - > - 0 v - 0 ’

is a wff. Finally, using (/) , given that (6) and (5) are wffs, we see 

that (4) itself is a wff: for (4) results from writing (6), followed by 

‘ -•<■->  followed by (5), the whole enclosed in brackets. Our 

definition has enabled us to show, step by step beginning from the
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smallest parts (the variables), that a complex formula such as (6) is 

well-formed. A careful, study of the example should make clear how 

the technique can be generally applied.

On the other hand, it is obvious (though, not too easy to prove) 

that no such applications of clauses (a) to (f) could ever show that 

(1) above—the example of ‘ gibberish ’— is a wff. Hence, by 

clause (g), the ruling-out or extremal clause of the definition, (1) is 

not a wff. The force of clauses (a)~(g), taken together, is to divide 

the totality of formulae into two camps: those that can. be obtained 

by applications of clauses (u)~(f), which are wffs by the definition, 

and those that cannot be so obtained, which, by (g) of the definition 

are not wffs.

An important aspect of this definition, is the insistence, in clauses 

(cH /X  on introducing surrounding brackets. This is necessary 

because of ambiguities that would result from their omission. For 

example, we do not wish to admit as well-formed the formula 

‘ P & Q R \  because as it stands this might mean either ‘ (P & 

(Q Rj) ' (expressing a conjunction with a conditional second 

conjunct) or ‘ ((P & Q) R) ’ (expressing a conditional with a 

conjunction for antecedent). Our emphasis on bracket-insertion 

removes risks of this kind. (On the other hand, we need no such 

insertion of brackets in clause (b), and the student may profitably 

speculate as to why not.)

In some ways, however, the bracketing conventions imposed by 

the definition of a wff, though theoretically correct, are in practice 

a nuisance. In fact, as a result of them the vast majority of formulae 

exhibited in Chapter 1 are unfortunately not well-formed. They 

lacked the requisite outer pair of brackets. We accepted there, for 

example, ‘ -/*-> - Q \  whilst by clause (c) we require ‘ (—P-*- Q) 

But our instinct was sound, if our precision was faulty: human 

beings cannot stand very much proliferation of brackets. A natural 

practical convention to adopt is to permit the dropping of outermost 

brackets, since evidently no ambiguity can result. And there is 

another useful practical way in which we can cut down brackets 

safely, as follows.

Let us rank the connectives in a certain order: let us agree that 

‘ — ’ ‘ ties more closely ’ than ‘ ’ or ‘ v that ‘ & ’ and ‘ v ’ ‘ tie

more closely ’ than ‘ and that ‘ ’ ‘ ties more closely ’ than

‘ ■< > Thus we can safely write in practice ‘ P & Q R ’ for

The Propositional Calculus 2
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‘ ((P & 0  R )', dropping the outer brackets by our previous 

convention, and dropping the inner ones by our present one: ‘ & ", 

tying more closely than ‘ ", steals the ‘ Q ’ in ‘ P & Q-r- R 3 for a

second conjunct, rather than leaving it as the antecedent of 

‘ Q R If we require the latter interpretation, we need to write 

‘ P & R ) \  Using these conventions, we can write (4) un-

ambiguously in the less bracket-infested form.

(?) • (/>-»_ 0  V -------P & Q \

where only one pair of brackets is required. (In this connection,

the student should notice the difference between -----(P & Q). the

double negation of the conjunction, of P and Q, a n d -----P  & Q, the

conjunction of the double negation of P and Q.)

These conventions will be adopted from, now on. But it must be 

stressed that they are practical guides to the eye, not. theoretical 

devices. In theory, a wff remains as defined above, complete with 

its outer brackets and inner pairs of the same.

So far, we have described the basic syntax of the propositional 

calculus: the definition given of a wff can be read as an exact account 

of what is to be understood by the hitherto vague notion of a 

sentence in the symbolism; and clauses (a)-(f) of that, definition can 

be read as giving what are often described as the formation rules of 

the propositional, calculus—the rules, that is, determining what is a 

properly formed expression of the language.

But there are other syntactical notions which will be important 

later and which it is useful to define now. The first, of these is that 

of the scope of a connective. Roughly speaking, the scope of a 

connective in a certain formula is the formulae linked by the 

connective, together with the connective itself and the (theoretically) 

encircling brackets. For example, the scope of ‘ ’ in (4) is the wff

‘ (-----P & 0  ’ and the scope of ‘ ’ in (4) is the wff (4) itself:

in general, the scope of any connective is a wff. More strictly, we 

need to define the scope of an occurrence of a connective in a certain 

wff: in (4) there are three occurrences of ‘ — ’; the scope of the first, 

occurrence (reading from left to right) is ‘ — Q the scope of the

second is ‘ -----P and the scope of the third is ‘ —P ’. The scope

is what a particular occurrence of a connective controls. A precise 

definition of scope is as follows: the scope of an occurrence of a 

connective in a wff is the shortest wff in which that occurrence appears.
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Consider, for example, the (sole occurrence of) ‘ v * in (4): this 

appears, within (4), in such formulae as:

(i) ‘ ) v -  ’

(ii) ‘ 0  v — 0  ’

(iii) * ((P Q) v — Q ) '
(Iv)‘ ( ( ( ? -» -0 V -0 -H .( - -  '■

The shortest formula in which it appears which is also a well-formed 

formula by clauses (a)-(f) above is (iii), and this is in fact, the scope of 

that, occurrence of ‘ v Even if the definition, of scope, seems a bit 

queer, the intuitive content, of the notion should be obvious.

In terms of scope, we may define a second important syntactical 

notion, that of one (occurrence of a) connective being subordinate., 

in a certain wff, to another. One (occurrence of a) connective is 

subordinate to another if the scope of the first is contained in the scope 

of the second. For example, in (4) the ‘ ’ is subordinate to the

‘ v and the ‘ v ’ and the ‘ & ’ are both subordinate to the ‘ >-

The first ‘ — ’ is subordinate to ‘ v \  but not to ‘ the second. 

‘—' is subordinate to ‘ & ’ but not to ‘ v ’; the third ‘—' is subordinate 

to the second ‘ — and so to ‘ ’ and ‘ < -»-■ but not to ‘ ’ or

‘ v In any wff, there is exactly one connective to which all other 

connective-occurrences are subordinate, which is in. fact the con-

nective of widest scope. This is called the main connective, and its 

.scope is the whole wff. For example, in (4) the main connective is 

‘ ■<■■■>■ and in (2) and (6) it is ‘ v '.

When we prove, by application of clauses (b)-ff), that a certain 

formula is well-formed, we need to proceed from subordinate to 

subordinating connectives. Thus, in proving (4) to be well-formed,

we establish that ‘ —P ’ is well-formed before we prove that ‘ -----P  ’

is; and that ‘ -----P ’ is before we prove that ‘ (-----P  & Q) ' is;

and so on—at each step introducing a connective which subordinates 

or has in its scope the previously introduced connectives. From this 

point of view, the notions of scope and subordination as well as 

clauses (a)-(f) are ways of indicating the natural structure of a wff.

With the notion of a wff clear in our minds, we can readily define 

a sequent-expression (an expression which expresses a sequent, in 

the sense of the last chapter). As before, let us call ‘ I- ’ the assertion- 

sign, and let A1; A2, . . A„, B be any set of wffs. Then

A„ f B

The Propositional Calculus 2
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is a sequent-expression, in other words, write down any (finite) 

number of wffs, with commas between them; add to the right, the 

assertion-sign, and follow this by any wff; the result is a sequent- 

expression, In the last chapter, at least 36 sequent-expressions are 

proved to express valid sequents, corresponding to the proofs - 

numbered 1-36,

This last definition introduces a device which is extremely helpful 

in logic; the device of meialogical variables, such as ‘ A 1 ‘ A„

‘ B (They appeared earlier, in Chapter 1, Section 4, in the state-

ment of D f  ■< Propositional variables, such as ‘ P ‘ Q ", have 

as instances propositions; numerical variables in algebra, such as 

‘ x V  y \  have as instances numbers. But meialogical variables are 

of service when we wish, as we do at present, to talk about symbols 

themselves, for they have as instances symbols or sequences of them. 

When I say that A1? A2, . . A„ are to be a set of wffs, this is entirely 

analogous to saying, in algebra, that xu x 2, . . x„ are to be a set 

of numbers. We may illustrate further the usefulness of metalogical 

variables by restating clauses (a'p(f) in. a new form, (these versions 

have exactly the sense of the earlier ones).

(a ) any propositional variable is a wff;

(br) if A is a wff, then —A is a wff;

(A) if A and B are wffs. then (A B) is a wff;

(iff) if A and B are wffs, then (A & B) is a wff;

(A) if A and B are wffs, then (A v B) is a wff;

(/') if A and B are wffs, then (A ■>  B) is a wff.

EXERCISE

Select formulae (say from Chapter 1), and write them out as wffs. In 

each case, prove them to be wffs, using the definition of a wff; state the 

scope of each (occurrence of a) connective; state which is the main 

connective, and the relations of subordination which are present between 

the connecti ve-occurrences.

2 T HE ORE MS AN D DER IVE D RULES

With the syntax of the propositional calculus now described, we 

may turn to the first question raised in the introduction to this 

chapter: what devices can we develop for utilizing already proved 

sequents to shorten the proofs for other sequents? One of the main
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devices will be the introduction of theorems into proofs, so that we 

begin by explaining what these are.

As was pointed out in Chapter i, two out of the ten rules of 

derivation so far introduced—CP and RAA—have the property 

that as a result of their application in. a proof the number of 

assumptions marked on the left falls by one. Suppose, now, that 

before the application of one of these rules there is only one 

assumption on. the left: then, as a result of this application there 

will be no assumption on the left. This possibility was countenanced, 

in the statement of the rules; for example, in Section 5 of the last 

chapter, RAA was said to permit us, given a. proof of B & — B 

from. A, to derive — A on the remaining assumptions (if any). Here 

is a simple example of a proof having this feature.

37 I ( i ) P &  - A  A

(2) — (P & —P) 1,1 RAA

At line (1), we assume the contradiction P & —P (nothing in the 

rule of assumptions prevents us from assuming what we will). 

Hence line (1) affirms that, given this contradiction, we have a. 

contradiction. We can thus apply RAA to derive the negation of 

(1) on no assumptions at all. Consequently, at line (2) there are no 

citations on the left-hand side.

We may state the sequent proved at line (2) of 37 very simply.

37 b -  (P & - P )

Here the assertion-sign appears with no wffs written to the left of it, 

corresponding to the absence of citation on the left at line (2). The 

conclusions of sequents which we can prove in this form we call 

theorems; thus a theorem is the conclusion of a provable sequent in 

which the number of assumptions is zero. Instead of reading the 

assertion-sign as ‘ therefore which is the most natural reading in 

the case of sequents which have assumptions, in the case of sequents 

provable with no assumptions we may naturally read it as ‘ it is a 

theorem th a t . . Thus 37 states that it is a theorem that it is not 

the case that P and not — P : for example, it is a theorem that it is 

not the case that it is raining and it is not raining.

Most theorems of interest are obtained in fact by application of 

CP. For example:

The Propositional Calculus 2

50



Theorems and Derived Mules

38 h p  p  (compare sequent 29)

1 (1) P A

(2 ) P  +  P  1,1 CP

39 h P -.- -  P

1 ( 1  ) P  A

I (2) - —P 1 DN

(3) p  ~ —p  1,2 CP

40 t - -----A->- A

1 (!) ----A A

1 (2) P i DN

(3 )---- P  •»- P 1,2 CP

41 P & 0  P (compare sequent 14)

1 ( l ) P & Q  A

I (2) P  1 &E

0 ) P & Q - ^ P  1,2 CP

38 and 41. when compared with 29 and 14, suggest that a theorem 

can be obtained from any sequent proved in the last chapter 

simply by appending to its proof one or more steps of CP. For 

example:

42

1 (l ) P + Q A

2 (2) - Q A

1,2 (3) —A 1,2 MTT

1 (4) - Q + - P 2,3 CP

(5) 1,4 CP

Here, lines (l)-(4) are identical with the proof of sequent 9,

P-*- Q Y — Q s---- P, and the step of CP at line (5) completes the

proof of 42. Similarly, three steps of CP added to the proof of 

sequent 4 yields:
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43 HP +  iQ -*- m  <Cp • + •  Q) (p R))

The importance of theorems resides in the fact that, since they are 

provable as conclusions from no assumptions, they are propositions 

which are true simply on logical grounds. Such truths, often called 

logical truths or logical laws, occupy an. important place not only in 

logic but in philosophy also. Many of them have received special 

names. For example, 37 is called the law o f  non-contradiction; 38 is 

called the law of identity: 39 and 40 are sometimes called the laws of 

double negation. As an example of 38, we may consider the propo-

sition that if it is raining then it is raining; this is true on purely 

logical grounds, quite independently of the actual state of the 

weather.

Theorems, such as P~¥~ P, should be contrasted with the corres-

ponding valid sequents with assumptions, such as P  f P. Whilst 

the latter are argument-frames, patterns of valid argument, the 

former are (logically) true propositions. ‘ It is raining; therefore it is 

raining ’ expresses an argument, of which we can ask: is it valid or 

not? ‘ If it is raining, then it is raining ’ expresses a proposition, 

of which we can ask: is it true or not? To confuse arguments with 

propositions is analogous to confusing validity with truth'—a 

confusion I tried to eliminate in the first section of this book.

There is one further theorem of importance, which cannot be 

proved by a final step of CP since it is not conditional in form, 

called the law o f excluded middle:

44  1- P v - P

The Propositional Calculus 2
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< 1 (5 A

2 (2 )P A

2 (3) P v - P 2 vl

1,2 (4) (P v —P)  &—(P v —P) 3,1 &I

1 (5) - P 2,4 RAA

1 (6) P v - P 5 vl

1 (7) ( P v  - P )  & - ( P v - P ) 6,1 &I

00 1 1 < I 1,7 RAA

(9) P v - P 8 DN

We assume at line (1) the negation of the desired theorem, and aim 

for a contradiction. By assuming P (line (2)), we obtain a contra-
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diction (line (4)) resting on both (1 j and (2), so that (1) leads (line 

(5)) to —P. This leads to the same contradiction (line (?)), which 

now, however, rests solely on (1). Hence, using DN, we obtain the 
desired result. It is worth noting that at line (6) we find P v —P 

resting on its own negation as assumption—given that it is not the 

case, it is the case; this should throw some light on the ‘ sur-

prising ’ result 23 of the last chapter.

The law of excluded middle effectively affirms that, for any 

proposition, either it or us negation is the case, which is fairly 

evidently a logical truth. It is closely related to the law that every 

proposition is either true or false, and from this law it receives its 

name—a third or middle value between truth and falsity is excluded 

for all propositions. As a matter of logic, either it is raining or it 

is not raining: there is no third possibility. To be quite fair, it 

should be said that it can be and has been doubted whether this law 

has universal application: for example, is it true that either you have 

stopped beating your wife or you have not?

The proof just given is a proof of the theorem P  v — P.  Suppose, 

however, that we wished to prove Q v — Q;  a moment’s thought 

should convince us that, if we systematically changed each occurrence 

of ‘ P  ' in the given proof to ‘ Q \  the result would be an equally 

sound proof of this further theorem. Suppose, again, that we 

wished to prove (Q~>~ K )v  if); slightly more thought should

convince us that a similar change of ‘ P  ’ to ‘ ( Q  JR.) ’ throughout 

the proof will do the job. Consideration of such cases suggests 

that, in proving a theorem, we are implicitly proving a wide variety 

of other theorems closely related to the proved theorem by sub-

stitutions of the kind just instanced: so that it would be wasteful to 

prove these other theorems separately—it would involve virtual 

reduplication of the discovered proof. This in turn suggests a short 

cut to new results.

The matter can be made more precise by defining a substitution- 

instance of a given wff, as follows. A substitution-instance of a 

given wff is a wff which results from the given wff by replacing one or 

more of the variables occurring in the wff throughout by some other 

wffs, it being understood that each variable so replaced is replaced 

by the same wff. For example, ‘ ( Q  P) v is, by this

definition, a substitution-instance of ‘ P  v — P  because it results 

from the latter wff by replacing the variable ‘ P ’ occurring in
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‘ P v —P ’ throughout by the same wff ' {Q-+- R) Similarly,

‘ Q v — 0  ’ is a substitution-instance of ‘ P v —P and, in this case, 

conversely too.

Here is a more complex case. Consider the wffs:

(1) P - * - Q v  -  ( - / »  & Q);

(2) A  v 5  +  P v  — (— (/? v S) &  Pj,

Then (2) is a substitution-instance of (1), because (2) results from 

(1) by replacing the variable * P ’ at its two occurrences in (!) by 

‘ (R v S ) ' and the variable ‘ Q ’ at. its two occurrences in (I) by ‘ P

It is worth stressing two features of substitution which are easily 

and often forgotten. First, the substitution must be made uniformly 

—i.e. throughout—for each substituted variable: the same wff must 

be substituted for every occurrence of a given, variable for a 

substitution-instance to result. Second, it is only on propositional 

variables that this substitution can be performed, and not, for 

example, on negated variables. Thus

(3) -S -+ - Q v - { S  & Q)

is not a substitution-instance of (1), by our definition, though

(4) - S + O v - ( -----S & Q )

is a substitution-instance of (I): if we replace ‘ P ’ in (1) by ‘ — S ’ 

throughout, we obtain (4) but not (3). Hence a substitution- 

instance of a wff will always be at least as long as the given wff, 

and none of the connectives in the given wff disappear in the 

substitution-instance. In an obvious though vague sense, a 

substitution-instance has the same broad structure as the original.

Now we can say that a proof of a theorem constitutes implicit 

proof of all the (indefinitely many) possible substitution-instances 

of that theorem. The proof of P P (38 above) is implicitly a proof 

of any theorem of the form A A, for any wff A, and so implicitly 

a proof of (—P->- Q) (—P->- Q), R v S-*- R v S, and so on. More 

precisely, suppose that the wff A expresses a theorem for which 

we have a proof, and suppose that B is some variable occurring in 

A. Then, if we systematically replace B throughout the proof of A 

by some other wff C, we obtain a new proof of that substitution- 

instance of A which results from replacing B throughout A by C. 

And this can be extended readily to substitution for more than one

The Propositional Calculus 2
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variable in A. That the new proof really is a proof—that all the

applications of the rules of derivation remain correct applications 

after the substitution has been performed—can be seen by inspecting 

the rules themselves; for the rules concern only the broad structure 

of the wffs involved, and this structure is unaffected by substitution. 

We may summarize our result m the following form:

(51) A proof can be found for any substitution-instance of 

a proved theorem.

This result for theorems can be extended to sequents in general. 

We may define a substitution-instance o f a sequent-expression as any 

sequent-expression which results from  the given sequent-expression by 

replacing one or more o f  the variables occurring in some wff in the 

sequent-expression throughout the sequent-expression by some other 

wffs, it being understood that each variable so replaced is replaced 

by the same wff. (This definition virtually becomes the earlier 

definition m the limiting case that the sequent-expression contains 

just one wff.) For example, sequent 2 is a substitution-instance of 

sequent 1, and

(5) P +  (Q & R + .  _ 5 ) ,  P , ----ST - ( Q & K)

is a substitution-instance of

(6) P ^ ( Q ^ R I P Z i? f  Q,

obtained by substituting throughout ‘ (Q & R )' for ‘ Q ' and ‘ —S ' 

for ‘ R We proved that (6) expresses a valid, sequent as proof 6. 

We can now see that the proof of 6 constitutes implicit proof of the 

sequent-expression (5) also. By entirely similar reasoning, we obtain 

a generalization of the principle (SI):

(52) A proof can be found for any substitution-instance of a 

proved sequent.

The proof is indeed obtained by performing the relevant substitu-

tions systematically throughout the given proof, whereupon all 

applications of rules of derivation remain correct applications in 

the new proof.

The principles (SI) and (S2) reveal an important property of our 

proved results, that of generality. We introduced symbols ‘ P 

‘ Q ‘ R etc., at the outset as stand-ins for particular sentences 

of ordinary speech, which had the merit that they helped to reveal
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the logical form of complex sentences—a form that, was shared by 

other sentences. We can now see that they in fact deserve the label 

‘ variable since a theorem or sequent proved for P is implicitly 

proved for any proposition of the propositional calculus, just as a 

result m algebra containing ‘ x ' is implicitly a result about any 

number. In this way, our results, though stated for particular 

propositions, implicitly concern any proposition, expressible in our 

notation, and are quite general in content.

We may take advantage of theorems and their substitution- 

instances to shorten proofs by the rule of theorem introduction (TI). 

This rule permits us to introduce, at any stage of a proof, a theorem 

already proved or a substitution-instance of such a theorem. At 

the right, we cite TI (or TI(S). if a substitution-instance is involved) 

together with the number of the theorem proved. On the left, of 

course, no numbers appear, since theorems depend on no assump-

tions. For example:

45 Ph (P8 l Q) v ( P & - Q )

The Propositional Calculus 2

] (D P A

(2) O v - e TI(S) 44

3 (3) Q A

1,3 (4) P & Q 1,3 & I

1.3 (5 ) ( P & Q ) \ ( P & - Q ) 4 vl

6 (6) - Q A

1,6 (7 ) P 8 l - Q 1,6 &I

1,6 ( 8 ) ( P & 0 v ( P & - < 2 ) 7 vl

1 (9) (P& Q) \ ( P 8 l - Q ) 2,3,5,6,8 vE

After assuming P, we introduce (line (2)) the law of excluded middle, 

44, under a substitution-instance, and then proceed by vE, assuming 

each disjunct of the law in turn (lines (3) and (6)), and obtaining 

the desired conclusion from each (lines (5) and (8)). When we 

apply vE at line (9), the conclusion rests only on P, since the dis-

junction at (2), being a theorem, rests on no assumptions.

46 P-*- Q bP  & ()■<-*-P 

1 (1 ) P + Q

(2) P & Q P
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3 (3) P A

1,3 (4) q 1,3 MPP

1,3 (5) P & Q 3,4 &I

1 (6) P P & Q 3,5 CP

1 (7) (P & Q-+-P) &(P +  P & Q) 2.6 &I

(8) P & Q  P y D f - + +

To obtain the biconditional P & Q -*—*-P, we ■aim separately at the

two conditionalsP & g-v-Z’and P s-P  & O; but the first is a proved 

theorem, 41, which we therefore introduce directly by TI. Con-

joining 27 and 46. we have the interderivability result

47 P & Q.

The rule TI is not a new fundamental rule of derivation: it does 

not enable us to prove sequents which we cannot otherwise prove 

by applications of our baste ten rules; it merely enables us to prove 

more briefly further results by using results already proved. In the 

case of 45, for example, we could prefix the proof given by 8 lines, 

corresponding to the first 8 lines of the proof of 44 but with ‘ Q ’ 

in place of ‘ P \  and then continue as before, renumbering (1) to 

(9) as (9) to (17). In place of T1(S) 44, we would read on the 

right 8 DN (compare line (9) of 44), and thus obtain a complete, 

if lengthy, proof of 45 from our basic rules. Whenever a theorem 

is introduced by TI, we can prefix the proof given by a proof of the 

theorem from basic rules, and thus transform the proof into a 

lengthier proof from first principles: only a certain renumbering of 

lines is involved. Rules of this character, which expedite our proof- 

techniques but can be shown not to increase our derivational 

power, are called derived rules, in contrast to our basic ten rules, 

which may be called primitive rules.

Having seen this use of theorems to shorten proofs, we naturally 

ask whether an analogous rule will enable us to use sequents already 

proved. For example, suppose that we have proved, on certain 

assumptions, P-z>~ Q. Then, by sequent 9 (P-*~ Q t- — Q — P), we 

should be able to conclude, without special proof, — Q-*— P 

on the same assumptions. Or suppose that we have proved, 

on various assumptions, P-*- Q, Q-^-R, and P. Then, by sequent 

3 (P-¥- <2> Q R, P f R), we should be able to conclude, without
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special proof, M on the pool of these assumptions. And this 

should apply not only to the sequents actually proved but to any 

substitution-instances of them too, in virtue of (82),

The rule of sequent introduction (SI), again a derived not a 

primitive rule, enables us to do just this. It is a little complex both 

to state and to justify in full generality, but its main, function should 

be clear from examples. Suppose that we have as conclusions in a 

proof Al5 A2, . , A„, on various assumptions, and suppose that

A], A2, . . A„ b B is a (substitution-instance of a) sequent for 

which we already have a proof; then SI permits us to draw B as a 

conclusion, on the pool of the assumptions on which A~t, Ag, . . A„ 

rest. SI may be justified as follows. By hypothesis (and (S2) if 

necessary), we have a proof using only primitive rules of

Hence, by n successive steps of CP added to the proof, we can 

prove as a theorem

(the conditional theorem corresponding to the sequent in the way 

in which the conclusion of 43 above corresponds to 4). Hence by 

TI we can introduce (ii) into the proof given with conclusions Aj, 

A£, . . ., A„, as a new line resting on no assumptions. Now', by n 

successive steps of MPP, using in turn Ax, A2, . . ., A„ as antecedents 

of given conditionals, we can draw as conclusion B. Evidently B 

will depend, as assumptions, on any propositions on which any of 

A1; A2, . . . .  A n depends. This justifies SI, in the sense that it shows 

how any proof using SI can be systematically transformed into a 

proof of the same sequent using only primitive rules—the step of 

TI involved can, as we already know, be eliminated in favour of 

these rules.

(i) Aj, A2,

(ii) .))

48 - P v Q  hP-*- Q

1 (1) - P v  Q

1 (2) - ( ----- P &

1 ( 3 ) ------P + Q

4 (4) P

4  ( 5 ) ------P

A

Q) 1 SI(S) 36(a)

2 SI(S) 35(b) 

A

4 DN
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1,4 (6) £

1 (7)P+Q

Theorems and Derived Rules

3.5 MPP

4.6 CP

A substitution-instance of 36(a) is —P v Q f — (-----P & —- 0 ,  and a

substitution-instance of 35(b) is —(-----P 8 c —Q ')r-----P - > - 0

these two sequents are used to obtain (2) from (1) and (3) from (2) 

by SI. The rest of the proof is then immediate. Together with 

Exercise 1.5.1(/), 48 yields

49 P->- Q -fh - T v  Q.

50 P VQ - ^P

1 (1) P A

1 (2) - 0 v P 1 vl

1 (3 )Q  +  P 2 SI(S) 48

-P fP +  Q

i (!) —P A

i (2) —P v Q 1 vl

i (3 )P ^ Q j 2 SI 48

-P, p  is Qi - Q

l (1) - P A

2 ( 2 ) P v Q A

3 (3) P A

I (4) P <2 1 SI 51

1,3 (5) 2 3,4 MPP

6 (6) <2 A

1,2 (7) 0 2,3,5,6,6 vE

- Q, P V 0 b P

(Proof similar to 52.)

0 ^
Q ) v ( Q ^ P )

( l ) P v - P TI44

2 (2)P A

2 (3) 0 ^ P 2 SI 50
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2 (4) ( P - * - Q) v ( Q- * - P)

5 (5) -A

3 vi 

A

5 ( 7 ) ( P ^ Q ) v ( Q ^ - P )

5 (6 ) P ^ Q

(8) ( ^ 0 v ( e - > f )

SSI SI

6 vi

1.2,4,5.7 vE

An interesting feature of this last series of results is its progressive 

nature: once 48 was proved, it was used to obtain 50 and. 51, which 

in turn were employed in the proofs of 52 and 54. It should be clear 

by now that TI and SI are powerful devices for generating new 

theorems and sequents out of old. Our work now has the pro-

gressive character of a mathematical theory such as Euclidean 

geometry.

Of the latest results, 50 and 51 are sometimes called the paradoxes 

of material implication. To see their paradoxical flavour, bear m 

mind that Q in 50 and 51 may be any proposition, even one quite 

unrelated in content to P. Thus 50 enables us to conclude from the 

fact that Napoleon was French that if the moon is blue then 

Napoleon was French; and 51 enables us to conclude from the 

fact that Napoleon was not Chinese that if Napoleon was Chinese 

then the moon is blue. The name ‘ material implication ’ was given 

by Bertrand Russell to the relation between P and Q expressed in our 

symbolism by ‘P-*- Q ’; we have been reading this ‘ if P then Q ’, 

but it is clear from 50 and 51 that ‘ ’ has logical properties which

we should not ordinarily associate with ‘ i f . . . then . . This 

discrepancy is chiefly brought about by the fact that, before we 

would ordinarily accept ‘ if P  then Q ’ as true, we should require 

that P and Q be connected in thought or content, whilst, as 50 and 

51 show, no such requirement is imposed on the acceptance of 

' P-*~ Q \  However, whilst admitting that this discrepancy exists, 

we may continue safely to adopt ‘P-*- Q ’ as a rendering of ‘if P 

then Q ’ serviceable for reasoning purposes, since, as will emerge in 

Section 4, our rules at least have the property that they will never 

lead us from true assumptions to a false conclusion. And any 

reader who is inclined not to accept the validity of 50 and 51 is 

asked either to suspend judgement until this fact has been established 

or to indicate exactly which step in their proof he regards as faulty 

and which rule of derivation he thinks is unsafe and why. (A
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natural reply is that the step of vl at line (2) of each proof is unsound; 

but compare the justification of vl in Chapter 1, Section 3. Anyway, 

50 and 51 can be proved using only the rules A, &I, &E, RAA, DN. 

and CP, in each case in nine lines; it is an instructive exercise to 

discover these ‘ independent ’ proofs, since they reveal how difficult 

it is to ‘ escape ’ the paradoxes.) Along with 23, therefore, we may 

classify 50 and 51 as some of the more surprising consequences of 

our primitive rules. 54 is a less well-known paradox: it claims as a 

logical truth that, for any propositions P  and Q, it is either the 

case that if P  then Q or the case that if Q then P. Either if it is 

raining it is snowing or if it is snowing it is raining.

The principle of reasoning associated with 52 and 53 has the 

medieval name modus tollendo ponens. This is the fourth medieval 

modus I have mentioned, and the last there is, so this is a good place 

to bring them together.

(i) Modus ponendo ponens is the principle that, if a conditional holds 

and also its antecedent, then its consequent holds;

(ii) Modus tollendo tollens is the principle that, if a conditional holds 

and also the negation of its consequent, then the negation of its 

antecedent holds;

(iii) Modus ponendo tollens is the principle that, if the negation of a 

conjunction holds and also one of its conjuncts, then the negation 

of its other conjunct holds;

(iv) Modus tollendo ponens is the principle that, if a disjunction holds 

and also the negation of one of its disjuncts, then the other 

disjunct holds.

(i) and (ii) have been embodied in our primitive rules MPP and 

MTT. Clearly, in virtue of SI and 52 and 53, a rule analogous to 

modus tollendo ponens, which we may call MTP, can be framed; 

this, as a derived rule, will merely be a special case of SI. It runs: 

given a disjunction and the negation of one disjunct, then we are 

permitted to derive the other disjunct as conclusion. When required, 

this rule will in fact be cited as MTP. Similarly, in virtue of SI and 

34 and the readily proved Q, —(P & 0 1  —P, we may formulate, 

as a special derived rule, MPT: given the negation of a conjunction 

and one of its conjuncts, then we are permitted to derive the negation 

of the other conjunct as conclusion.
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In connection with the modi, it is finally worth noting that MTT 

need not have been, taken as a primitive rule, but can be obtained 

as a derived rule from the others. Thus:

The Propositional Calculus 2

* q , - Q Y - P

i (1 ) P*~  Q A

2 (2) - Q A

3 (3) P A

1,3 (4) q 1,3 MPP

1,2,3 ( 5 ) Q & - Q 2,4 &I

1,2 (6) - P 3,5 RAA

We prove 55 without using MTT. In view of SI, 55 can be used to 

give exactly the effect of MTT as a derived rule. This would be of 

interest if we were trying to reduce our primitive rules to as small a 

number as possible—an important consideration in certain areas of 

logic.

Apart from the special cases of MTP and MPT, the most rewarding 

sequents for use with SI are the various forms of de Morgan’s laws, 

as they are called, namely 36 and Exercise 1.5.1 (/)—(A), which enable 

us to transform negated conjunctions and disjunctions into non- 

negated disjunctions and conjunctions respectively. Also worth 

remembering are 49 (enabling us to change conditionals into dis-

junctions), 35 (enabling us to change conditionals into negated 

conjunctions), Exercise 1.5.1(e) (enabling us to change conjunctions 

into negated conditionals), and Exercise 1.5.1(c) and (d) (the so- 

called distributive laws'). Often it helps to introduce 44 and proceed 

by vE, as in the proof of 54. And the trick of using the paradoxes 

50 and 51, as in the same proof, should be borne in mind.

EXERCISES

I Using only the 10 primitive rules, prove the following sequents:

(«) Y (Q R) ■> (CP-> 0 ^ ( P - >  R))

(b) Y P + ( Q  +  P&Q)

(c) Y(P R) ((Q ->■ R) -H P  v Q R))

(d) Y ( P + Q & - Q ) + - P

(e) H- P^~P) ^- P
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2 The following are valid sequents, because they are substitution- 
instances of sequents already proved m this book. For each, cite by 
number the proved sequent of which it is a substitution-instance, and 
what substitutions have been used:

(a) {P+-Q)-*~P,P-*-QbP

(b) --------P , ----------- P h - P

(c) - P  &(Q 8l R ) - ^ Q v PY - P - ^ ( Q  &R~r~QvP)

(d)  ( - Q + Q ) + - ( - Q - * ~ Q ) \ -  - i - Q ^ Q )

(e) -  (S v P) 1 5 v F - > ( F &  Q -4~> R v -  S)

3 Prove by primitive rules alone:

( a )  Y P  v Q

Using this result, prove by primitive rules and TI:

(l,) Q ^ - P Y P v  Q - t r + P

In view of Exercise 1.4.1(e) this gives:

( c ) P v  Q-*-*~P-ib Q->~P

4 Prove, using primitive rules and SI in connection with 50:

( a ) P & Q D P S c ( P < ^ - 0

5 Using primitive or derived rules, together with any sequents or 
theorems already proved, prove:

(a) |- P v ( P - ^ Q )

- ( b ) v ( P + Q ) v ( Q + R )

(c)  \ - ( (P+Q) +  P) +  P

(d) —QV P->- (Q R)

(e) P , - P V Q

( f )  P v Q  Hh -P-*~ Q (cf. Ex. 1.5.10))

(g) - ( P + Q ) - \ Y P & - Q  

' (h)(P-*-Q)-*-Q-U-PvQ

(?) (P->- Q)  v (/>-> R )  -If P - >  Q  v it 

(/) P ->■ Q Hh (P ■<—>■ Q)v Q 

(k) Q Y P & Q  -<->  P 

(!) - Q Y P v  Q ^ - P

6 Let A and B be any propositions expressible in the propositional 

calculus notation.

(i) Show that A f- B is provable by our rules if and only if it is 

provable that (- A B;
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(if) Show that A hi- B is provable if and only if it is provable that 

h A - * r W > ~ B .

7 In effect, our rule DN is two rules combined; (i) from A to derive
---- A, and (ii) from-----A to derive A. Show that ( i )  can be obtained
as a. derived rale from the other primitive rules (compare the corres-
ponding demonstration for the rule MTT, seqtient 55),

3 TRUTH-TABLE S

The last section has answered the first question raised at the 

beginning of this chapter. To help answer the other two questions 

(Are our rules of derivation safe? Are they complete?), we 

approach in this section the propositional calculus in a quite new 

way, by the technique of truth-tables. This technique will also 

incidentally afford us a method of showing the invalidity of sequents, 

whereas the rules of derivation merely show their validity. Truth- 

tables are easy to master, so our treatment here will be brisk.

The truth-table method is a method for evaluating wffs: we assign 

values (called truth-values) to the variables of a wff, and proceed 

by means of given tables to calculate the value of the whole wff. 

We may usefully compare the corresponding mathematical procedure 

for evaluating algebraic expressions, say

(1) (x +  y)z — (y A r)(y +  x).

Let us assign the value 10 to x, 3 to y, and 5 to z. By substitution, 

we obtain

(2) (10 A 3)5 -  (3 +  5)(3 +  10).

Computation by given tables yields successively

(3) 13 x 5 -  8 x  13;

(4) 65 -  104;

(5) -  39.

The result at (5) is the value of the whole expression (1) for the 

assignment of values to the variables x =  10, y  =  3, ~ =  5.

In the case of wffs of the propositional calculus, there are only 

two possible values which variables are permitted to take, the t ru e  

and the f a l s e ,  which we mark by ‘ T ’ and ‘ F ’ respectively. Our 

assumption that there are only these two possibilities is in effect 

the assumption that every proposition is either true or false, and

The Propositional Calculus 2
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