Chapter 7
Natural deduction

Before turning to Predicate Logic in the second part of the book, we will look at one
more way to present the logic of propositions. A system of natural deduction gives you a
way to develop proofs of formulas, from basic proofs that are known to be valid.

Conjunction, disjunction and negation

The rules tell us how to build up complex arguments from basic arguments. The basic
arguments are simple. They are of the form
XA

whenever A is a member of the set X. We write sets of formulas by listing their members.
So AfAand A, B, C}Bare two examples.

To build up complex arguments from simpler arguments, you use rules telling you
how each connective works. We have one kind of rule to show you how to introduce a
connective, and another kind of rule to show you how to eliminate a connective once you
have it. Here are the rules for conjunction:

XA YFB
X, YHA&B

(&I)

XFA&B XHFA&B
XFA (&E,) XFB

(&E,)

The rules follow directly from the way we use conjunction. The introduction rule (&I)
says that if A follows from X and if B follows from Y too, then the conjunction A&B
follows from X and Ytogether. The elimination rules (&E; ;) say that if something entails
a conjunction, then it also entails each conjunct.
For implication, we have two rules:
X,AFHB XFA>B YHA

XFasBY xYrs P

These rules are of fundamental importance for natural deduction systems, as they connect

the entailment relation (P to implication. The implication introduction rule =D states
that if X'together with A entails B, then X entails the conditional A>B.
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So, one way to prove a conditional is to assume the antecedent, in order to prove the
consequent. This is enough to prove the conditional. Conversely, the implication

elimination rule (:’E) states that if some set X entails Ao B, and another set Y entails

A, then applying the information in X (which gives A D B) (0 that in Y (which gives
A) gives us the consequent B. So, taking Xand Y'together gives us all we need for B.
Before going on to see how these rules are used in proofs, we will see the rules for

disjunction:
XFHA 1) XFB
W
XFAvB'" XFAvB

(VL)

XAFC YBFC YFAvEB
b 4 ot

(VE)

The introduction rules are straightforward enough. If A is entailed by X then so is
A v B.Similarly, if Bis entailed by X then so is A v B.The elimination rule is more
interesting. If A v Bfollows from Y, if A (with X) gives C, and if B (with X) also gives

C, then Y—which gives A v B =350 gives C (provided you've got both X'too). This is

a form of argument by cases. If you know that AvB

you C'too, then you have C, either way.

Given the rules, we can construct proofs. A proof of X}A is a tree (this time in the
usual orientation, with the root at the bottom) with X }-A as the root, in which the leaves
are axioms, and in which each step is an instance of a rule. Here is an example:

A&CFA&C
A&CFHA &R A>BFRA>B
A>B A&CFB
ASBA&CFBvD W
A>BF(A&C)>(BvD)

and if A gives you C and B gives

(oE)

(=)

In this proof, each step is indicated with a horizontal line, labelled with the name of the
rule used. The leaves are all axioms, as you can see. The proof demonstrates that

A>BF(A&C) o(BvD).

Each step of the proof follows from the previous steps by way of the rules. However, I
constructed the proof in reverse. I know that I wanted to prove that

A 2B {A & C) = {B v D}'To do this, I knew that I had just to prove
ADB A&CFBvD. (To prove XFA> B assume A with X, and prove

B.) Then it is clear that we can prove AD B, Az IB, since A&C |4, and we are
done.
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We can also present proofs in /ist form, in which each line is either an axiom or
follows from earlier elements in the list by way of the rules:

! A>BFHADB Ax.

2 A2(BoOFA>(B>(O) AX.

3 Afa Ax.

4 A>(BoO),AFB>C 2,3(oE)
5 Ao>B AFB 1,3(cE)
6 AS(BoO),A>B ALC 4,.5(oF)
7 AS5(BoOy, A>BFASC 6(=])

8§ AoBF(AD(Bo(C)2(A>(O) 7(=1)

In this proof, we have annotated each line with an indication of the lines to which it
appeals and the rules used in the derivation. This presentation encodes exactly the same
information as the tree. It is offen easier to produce a proof in list form at first, as you can
go ‘down the page’ as opposed to horizontally across it as the proof gets more complex.
Also, in a list proof, you can make assumptions that are not used further in the proof,
which can be helpful in producing the proof. However, once the proof is produced,
representing it as a tree provides a more direct representation of the dependencies
between the steps.

Let’s see another example to give you some more ideas of how proofs are produced.

Let’s prove
AD(B&C)oD)FA&C) (B2 D)

To do this, we know that we will have to assume A>((B&C)> D), and also A&C
and B to deduce D. But these together will give us D rather simply. By A& C, we get A,

and this gives us (B&(C)> D*A&C also gives us C and B, which then give B&C,
which then gives D. So, let’s wrap this reasoning up in a proof:

I A(B&C)oD)FA(B& O 2 D) AX.

2 A&CEA&C Ax.

3 B}B Ax.

4 A&CA 2(&E)

S A ((B&COoD),A&CH(B&C)oD 1,4(oE)
6 A&CIC 2(&E)

7 A&C, B}B&C 3, 6(&I)

§ Ao(B&C) oDV, A&C,BFD 5,1(oE)
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9 AS((B&C) oD, A&CFBoD 8(2I)
10 Ao(B&CO oD FA&C) (B D) 9(=I)

This proof explicitly represents the informal reasoning in the paragraph above.

Negation

The rules so far only give us a fragment of our language. We have conjunction,
implication and disjunction. To add the negation rules, it is helpful to first add a
proposition L (called the falsum), which is always evaluated as false. This is governed by
the simple elimination rule

X L

X FA CLE)

Since L is always false, it does not have an introduction rule. Given 1, we can define
negation rules simply:

X, AL XF~A YFA
XA ETEL

If X together with A entails L then we know that X and A can’t be true together, so if Xis
true, A is false: that is, ~A is true. That is the introduction rule for negation. To exploit a
negation, if X entails ~A, and if Y entails A, then it follows that X and Y cannot be true
together. That is, they jointly entail L. These rules govern the behaviour of negation.

(You might have noticed that these rules just define ~A as equivalent to Ao Litis

instructive to check using truth tables that ~A and A D lare equivalent.) These rules
allow us to prove a great many of the usual properties of negation. For examﬁle, it is

simple to prove that a double negation of a formula follows from that formula, A F~~A:
1 AlA Ax.

2 ~A|-A Ax.

3 A ~AH 1, 2(~E)

4 Al~~A 3(~D)

Similarly, the rule of contraposition, ADBF-B> ~A\has a direct proof:

1 A>DBFA>B Ax.
2 AlA Ax.
3 A-oBAFB 1,2(oE)

4 ~B}-B AX.
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5 AoB A -BFL 3, 4(~E)
6 A-SB,~BF-A 5(-1)
7 ADBF~Bo-~A 6(=1)

However, the rules for negation cannot prove everything valid in truth tables. For
example, there is no way to prove a formula from its double negation. (It is instructive to
try to prove ~~A FA. Why is it impossible with these rules? Similarly, the converse of

contraposition, ~B>~A F A 2 Bis valid in truth tables, but cannot be proved
using the natural deduction rules we have so far.) To give us the full power of truth
tables, we have an extra rule

This is called the double negation elimination rule (DNE). With the rule, we get ~~A |-4
(apply the rule to the axiom ~~A }~~A and you have your result) and much more. The
full power of truth tables is modelled by these rules. As another example, here is a

tautology, the law of the excluded middle. 1t is straightforward to show that A v ~Ajg
a tautology in truth tables. It is a great deal more difficult to prove it using our natural
deduction system.

1 AEA Ax.

2 AFAv-~A 2(vT)
3 ~(Av~A)F~(Av-~A) Ax.

4 A, ~(Av-~A) L 2,3(-E)
5 ~(Av-~A) A 4D

6 ~(Av-A)FAv-~4 s(vI)
7 ~Av~A)FL 3,6(-E)
8 F—-{Awv-A4) 7(-1)

9 F-~Av-~A 8(DNE)

Typically, proofs that require (DNE) are more complex than proofs that do not require it.
In general, if you are attempting to prove something that requires the use of (DNE), you
should try to prove its double negation first, and then use (DNE) to get the formula
desired.

Natural deduction systems provide a different style of proof to that constructed using
trees. In a tree for X|-A, we attempt to see how we could have X and ~A. If there is some
consistent way to do this, the argument is not valid. If there is none, the argument is
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valid. On the other hand, natural deduction systems construct a derivation of A on the
basis of X. The resulting derivation is very close to an explicit ‘proof such as you will see
in mathematical reasoning. But natural deduction systems have deficiencies. If something
is not provable, the natural deduction system does not give you any guidance as to how to
show that. Trees give you worthwhile information for both valid and invalid arguments.

We will not pursue these systems of proof theory any further. To find out more about
natural deduction, consult some of the readings mentioned below.

Further reading

Lemmon [15] is still the best basic introduction to this form of natural deduction.
Prawitz’s original account [20] is immensely readable, and goes into the formal
properties of normalisation. For a more up-to-date summary of work in natural deduction
and other forms of proof theory, consult Troelstra and Schwichtenberg’s Basic Proof
Theory [30].

The system of logic without (DNE) is called intuitionistic logic. The philosophical
underpinning of intuitionistic logic was developed by L.E.J.Brouwer in the first decades
of the twentieth century. For Brouwer, mathematical reasoning was founded in acts of
human construction (our intuition). Brouwer did not think that a formal system could
capture the notion of mathematical construction, but nevertheless a logic of intuitionism
was formalised by Heyting (see Intuitionism. An Introduction [11]). The rule (DNE) fails,
since ~A holds when you have a construction showing that A cannot be constructed or
proved. This is a refutation of A. Thus ~~A means that you have a demonstration that
there cannot be a refutation of A. This does not necessarily give you a positive
construction of A. Similarly, you may have neither a refutation of A nor a construction of

A so A Vv ~Afgails as well. Intuitionistic logic is important not only in the philosophy
of mathematics and the philosophy of language (see the work of Michael Dummett [4],
who uses the notion of verification or construction in areas other than mathematics), but
also in the study of the computable and the feasible.

These natural deduction systems are easy to modify in order to model relevant logics.
We modify the rules to reject the axiom X £4, and accept only the instances A £A (the
other elements of X might be irrelevant to the deduction of A). Then, there is no way to
deduce A£B—A, since the B was not used in the deduction of A. It is also possible to
make the number or the order of the use of assumptions important. Slaney’s article ‘A
general logic’ [28] is a short essay on this approach to logic, and it is taken up and
explored in my Introduction to Substructural Logics [22].

Exercises

Basic
{7.1} Prove these, not using (DNE):
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A>~-BFBo~-A ~—AF~A ~Av-~BlF~(A&B)
~(AvB)F-A&-B A&-BF-(A>B)
{7.2} Prove these, using (DNE):

Fi(A>B)oA)2A ~(A&B)F-Av-B FAv(ADB)
~A>~-BFBoA (A&EB)o>2CHA>XOv(BoO)

Advanced

{7.3} Show that the natural deduction rules without (DNE) (that is, the rules for intuitionistic
logic) are sound for the following three-valued truth tables:

p q p&q pvyg pog ~p
0 0 0 0 1 1
0 n 0 n 1 1
0 1 0 1 1 1
n 0 0 n 0 0
n n n n 1 0
n 1 n 1 1 0
1 0 0 1 0 0
1 n n 1 n 0
1 1 1 1 1 0

To do this, show that if X |-4 can be proved by the natural deduction system then X fA holds
in the three-valued table. (For XA to hold, we require that in any evaluation in which the
premises are assigned 1, so is the conclusion.) Show, then, that none of the argument forms
in Exercise 7.2 are provable without (DNE), by showing that they do not hold in these three-
valued tables.

{7.4} Show that these three-valued tables are not complete for intuitionistic logic. Find an
argument that cannot be proved valid in the natural deduction system, but that is valid
according to the three-valued tables.

{7.5} Show that the three-valued Lukasiewicz tables are not sound for intuitionistic logic. Find
something provable in intuitionistic logic that is not provable in the three-valued
Lukasiewicz tables.

Nothing prevents us from being natural
so much as the desire

to appear so.

—Duc de la Rochefoucauld



