Acoustics, sighals &
systems for audiology

Week 6

Basic Psychoacoustic
Phenomena



Basic Psychoacoustic Phenomena

e Absolute threshold
e | oudness

e Frequency selectivity
— Auditory filters
— Representation of spectral shape (timbre)

e Pitch

e Binaural hearing

— Localisation of sound
— Masking release



What is psychoacoustics?

Psychophysics
— Mapping the relationship between the physical/objective
and perceptual/subjective world.

Psychoacoustics — psychophysics of sounds.

How does the loudness of a sound relates to its
intensity?

- loudness depends not only on intensity but also on
frequency content

Changing the fundamental frequency of a periodic
sound from 100 to 200 Hz will not lead to the same
perceived musical interval as a change from 800 Hz
to 900 Hz.

N N N

100-200 Hz 800-900 Hz 800-1600Hz



What is psychoacoustics?

e Terminology: Objective vs. subjective
- intensity (W/m?2, Pa, dB SPL) vs. loudness
— periodic/aperiodic vs. buzziness/noisiness
— fundamental frequency (Hz) vs. pitch
— spectral envelope/shape vs. timbre/quality/colour

e Much of psychoacoustics concerns abilities to ...

— detect

e many HI people and CI users need higher levels to detect
sounds
— discriminate
e many HI people and CI users need greater differences
between stimuli to hear a difference between them
— but limits on detectability and discriminability can also
provide crucial data for developing models of auditory
perception even in normal listeners



Sivian & White (1933) JASA
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Two ways to define a threshold
once determined

e minimum audible field (MAF)

—in terms of the intensity of the sound
field in which the observer's head is
placed

e minimum audible pressure (MAP)

—in terms of the pressure amplitude at
the observer's ear drum

- often used with reference to |
headphones, and even more so, insert
earphones

e MAF includes effect of head, pinna &
ear canal
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Determine a threshold for a 2-kHz
sinusoid using a loudspeaker




Now measure the sound level
at ear canal (MAP):
15 dB SPL
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N
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at head position (MAF):
0 dB SPL
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Detection of sinusoids in

F

X

R

cochlea

Threshold

e How big a sinusoid do we have to put into our
system for it to be detectable above some

threshold?

e Main assumption: once cochlear pressure reaches
a particular value, the basilar membrane moves

sufficiently to make the nerves fire.



Detection of sinusoids in

F
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cochlea

Threshold

e A mid frequency sinusoid can be
quite small because the outer and
middle ears amplify the sound



Detection of sinusoids in

R

X

F

cochlea

Threshold

—

e A low frequency (or high
frequency) sinusoid needs to be
larger because the outer and

middle ears do not amplify those
frequencies so much



Detection of sinusoids in
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e So, if the shape of the threshold curve
is strongly affected by the efficiency of
energy transfer into the cochlea ...

e The threshold curve should look like this
response turned upside-down: like a
bowl.




Use MAP, and ignore contribution of head and
ear canal

A L] ' Much of the
threshold curve
= can be
accounted for
o by the
efficiency of
energy transfer
into the
cochlea
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Loudness
What determines how loud a sound is?

— Not just intensity
Loudness can also depend upon -

e Duration
— Temporal integration (up to ~ 250 ms)
e Context

— Loudness adaptation (over seconds or
mins)

e Frequency



Loudness of supra-threshold sinusoids
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The Phon scale of loudness

e ‘A sound has a loudness of X phons if

it is equally as loud as a sinewave of
X dB SPL at 1kHZ’

e.g. A 62.5Hz sinusoid
at 60dB SPL has a
loudness of 40 phons,
because it is equally as
loud as a 40dB SPL
sinusoid at 1kHz

31 625 125 250 500 1k



Sound pressure level

Equal loudness contours
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Perceived loudness is (roughly)
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0.0 |D.2
Lo b

thmically related to pressure

|0_4 |D.6 |D_8 | |1_2 |1_4 |l_6 |l.8 |2_D |2_2 | |2_6 |2_8 |3_D |3_2
poc oo bedrc e o] o oo o oo eo b beeo boco o beocdero o] ic]b cn o] brn e |
=p.0L




Alin dB

Just-
. hoticeable
- differences
°=  (jnds) in
Sl Intensity
ﬁ% are

C 20 40 60 80 roughly
L | (dB SPL .
Vet o] constant in

£+ 200 Hz & 400 Hz 4 800 Hz ¥ 1,000 Hz dB
-4 000 Hz 4 8,000 Hz Noise

from Yost (2007)



BRACHIA
OF INF.
coLLIcuLl

= spiral ORGAN OF
" GANGLION CORT!

SCALA
TYMPANI




Frequency selectivity

e Auditory Filters

— The auditory periphery can be
modelled as a bank of bandpass
filters

e This splitting up of sounds into different
frequency regions is fundamental to the
auditory processing of complex real
sounds, e.g. speech.



The filter bank analogy

e Imagine each afferent auditory nerve
fibre has a bandpass filter attached to
Its input

— centre frequencies decreasing from base to

apex.
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The physiological tuning curve:
Auditory filtering reflected in the auditory nerve
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The 'best’ frequency of a particular tuning curve
depends upon the BM position of the IHC to which the
afferent neuron is synapsing
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Masking: interactions of sounds

e Much of what we know about the properties of
auditory filters has been revealed by studies of
masking.

e How does the presence of one sound affect the
detection of another?

— It depends on their frequencies

— Maskers that are close to the signal frequency (so
pass through the same auditory filter) cause much
more interference



Masking experiments

Listen for a probe or target f(typically a
sinusoid) in a background of a masker with a
variety of spectral shapes (typically a noise).

Assume: A listener has independent access to,

and can ‘listen’ selectively to the output of an

individual auditory filter — the one that will give

best performance.

— the probe frequency controls the centre frequency of
the auditory filter that is attended to

Assume: Only noise that passes through the

same filter as the sinusoid can mask it.

Assume: Only the ‘place’ principle applies — no

temporal information.

The power spectrum model of masking



Psychophysical tuning curves (PTCs)
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Psychophysical tuning curves (PTCs)

Determine the minimum level of a narrow-band masker at
a wide variety of frequencies that will just mask a fixed
low-level sinusoidal probe.
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Psychophysical tuning curves (PTCs)
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Is a psychophysical tuning curve a correlate of an excitation
pattern (something like a spectrum) or a tuning curve
(something like a frequency response)?



Figure 10.8 [n both graphs. the solid curve represents the auditory flter cen-
tered at the test tone and the square at the left portravs a lower frequency
masking noise. Off-frequency histerung occurs when the subject shifts to another
auditory filter (indicated by the dashed curve in graph b) in order to detect the
presence of a test signal. (Adapted from Patterson [33]. with permussion of |.
Acoust. Soc. Am.)




Notch (band stop) noises
limit off-place listening
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FIG. 3.6 Schematic illustration of the technique used by Patterson (1976) to
determine the shape of the auditory filter. The threshold of the sinusoidal
signal is measured as a function of the width of a spectral notch in the noise
masker. The amount of noise passing through the auditory filter centred at the
signal frequency is proportional to the shaded areas.

From Moore (1997)



Looking at spectra
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Notched noises
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Auditory filter
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Filter Weighting (dB)
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Psychoacoustic estimates of auditory filter shape at
2 kHz as a function of pure tone SPL (left)
& basilar membrane frequency response (right)
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Auditory filters

The cochlea acts like a bank of band-pass filters

— Each filter has a place (position on basilar
membrane)

— At basal places band-pass filters have Aigh
frequency passband

— At apical places band-pass filters have /fow
frequency passbands

— Filter bandwidth is larger for high
frequency filters

— Filter shape also depends on sound level:
higher levels lead to wider bandwidths



Importance of auditory filter shape

e Changes in auditory filter shape are a
major factor in hearing loss.

e Auditory filter shape determines how
spectral shape is represented in the
auditory system

— determines timbre (sound quality)
— critical for speech perception



Spectral cues to speech sounds

o Spectral shape (the distribution of
acoustic energy over frequency) is
crucial for the identification of both

— Vowels (location of formants)

and

— Consonants (place of articulation)
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Vowels are cued by spectral peaks (formants)

Configuration of the vocal tract is reflected in oral resonances
- producing peaks in the amount of energy at particular
frequency regions

F1 and F2 are main determinants of vowel identity
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Cues to consonant place

e Transitions of formants from consonant to
vowel determine changing patterns of
amplitude peaks in the spectrum

Transitions of formants = _*

F1 and F2 over time — L / i
from consonant A e -
opening into the T R |
following vowel. = N
Shown here for o — \
bilabial, alveolar, and IR | N\
velar voiced plosive N
consonants o



Source spectrum
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Vocal tract frequency response

Speech spectrum




Coding of spectral shape

Speech sounds vary in intensity over
FREQUENCY and TIME

— Dynamic changes of acoustic spectrum

Auditory system acts as filter bank

Acoustic intensity determines amount of
neural activity (number of nerves firing and
rate of nerve firing)

Amount of neural activity varies over PLACE
and TIME

— Dynamic changes of excitation pattern or
auditory spectrum



Frequency response of cochlear filters

Frequency response — the amount of vibration
shown by a particular place on the BM to sinusoids of

varying frequency.

— Input = many sine waves at different times
— Measure at a single place on the BM for each sine wave

Figure shows frequency response of 6 different BM locations

3l mm 28 mm 24 mm 20 mm |7 mm 13 mm from
stapes

0.5+

| | L | B

20 30 50 100 200 300 500 1000 2000 5000

Relative amplitude

Frequency, ¢ps



Excitation patterns

e Excitation pattern — vibration pattern across the
basilar membrane to a single sound.

— Input = 1 sound (e.g. 300, or 200 or 100 Hz)
— Measure at many places along the BM for each sound

o Related to a spectrum (amplitude by frequency).

Figure shows excitation patterns for four different tones

300 ~ 200 ~ 100 ~ 50 ~

"_--\

-

Amphitude

T |
Distance
20 25 50 from stapes 35 mm

Fig. 3.8 Displacement envelopes on the cochlear partition are shown for tones of
different frequency. From von Békésy (1960, Fig. 11.58).
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Excitation patterns: complex sounds
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Auditory filter bandwidth increases with filter centre frequency

Lower harmonics are clearly resolved — above 1.6 kHz filter
bandwidth is wider than 200 Hz spacing between harmonics
and these higher harmonics are not resolved
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Excitation level, dB

Excitation patterns — sound spectra as
activity across auditory filters
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Spectral features of voiced
speech in excitation patterns

e Low order harmonics individually resolved

— places of high excitation at harmonics near low
formants cue vowel formant frequencies

e Harmonics above about the 8t" are not
resolved

— formant frequencies above 8 x F, appear as broad
peaks in excitation pattern

e Similar principles account for coding of
spectral features of consonants but dynamics
are much more important



Summary of auditory filtering and
excitation patterns

e Masking studies reveal shape of filters

— Filter widt
— Filter widt
— Filter widt

N INCreases wit

N INCreases wit

N INcreases wit

n frequency

N sound level

N hearing loss

o Auditory filtering provides a place
coding of spectra as excitation patterns



Main points

e The *filters’ through which we listen to
sounds are the filters established in the
inner ear, in SNHL as well as normal
hearing.

— supported by the similarity between

physiological and behavioural
measurements

e The width of the auditory filter is an
important determinant in how well we
can hear sounds in quiet and in noise






