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6.1 Elements of music theory and notation

Music as well as language was long cultivated by aural transmission before any kind of systematic
method of writing it down was invented. But the desire to record laws, poetry and other permanent
statements gave rise the problem of how to write down music. In western tradition the focus is on
a symbolic system which can represent both the pitch and the rhythm of a melody. In the following
section the general principles of western notation will be presented.

In music the word note can mean three things: (1) a single sound of fixed pitch; (2) the written
symbol of a musical sound; (3) a key on the piano or other instrument. A note is often considered as
the atomic element in the analysis and perception of the musical structure. The two main attributes
of a note are pitch and duration. These are the two most important parameters in music notation and,
probably not coincidentally, the first ones to evolve. A functional piece of music can be notated using
just these two parameters. Most of the other ones, such as loudness, instrumentation, or tempo, are
usually written in English or Italian somewhere outside of the main musical framework.

6.1.1 Pitch

Figure 6.1: One octave in a piano keyboard.



6.2 Algorithms for Sound and Music Computing

In music, a scale is a set of musical notes that provides material for part or all of a musical work.
Scales are typically ordered in pitch, with their ordering providing a measure of musical distance.
Human pitch-perception is periodic: a note with a doubled frequency as another sounds very similar
and is commonly given the same name, called pitch class. The interval (i.e. the span of notes) between
these two notes is called octave. Thus the complete definition of a note consists of its pitch class and
the octave it lies in. Scales in traditional Western music generally consist of seven notes (pitch classes)
and repeat at the octave. The name of the notes of a scale is indicated by the first seven letters of the
alphabet. For historical reasons the musical alphabet starts from C and not from A, and it is arranged
thus: C D E F G A B, closing again with C, so producing an interval from C to C of eight notes.
These eight notes are represented by white keys on the piano keyboard (Figure 6.1). In Italian the
pitch classes are called, respectively, do, re, mi, fa, sol, la, si. The octaves are indicated by numbers.
In general the reference is the fourth octave containing the C4 (the middle C) and A4 (the diapason
reference) with frequency f = 440 Hz. The lowest note on most pianos is A0, the highest C8.

6.1.1.1 Pitch classes, octaves and frequency

In most western music the frequencies of the notes are tuned according the twelve-tone equal tem-
perament. In this system the octave is divided into a series of 12 equal steps (equal frequency ratio).
On a piano keyboard the steps are represented by the 12 white and black keys forming an octave.
The interval between two adjacent keys (white or black) is called semitone or half tone. The ratio s
corresponding to a semitone can be determined considering that the octave ratio is composed by 12
semitones, i.e. s12 = 2, and thus the semitone frequency ratio is given by

s = 12
√

2 ≈ 1.05946309 (6.1)

i.e. about a six percent increase in frequency. The semitone is further divided in 100 (equal ratio)
steps, called cents. I.e.

1cent = 100
√

s ≈ 1.000577

The distance between two notes whose frequency are f1 and f2 is 12 log2(f1/f2) semitones =
1200 log2(f1/f2) cents. The just noticeable difference in pitch is about five cents.

In the equal temperament system a note which is n steps or semitones apart the central A (A4) has
frequency

f = 440× 2n/12 Hz = 440× sn Hz (6.2)

For example middle C (C4) is n = −9 semitones apart from A4 and has frequency f = 440 ×
2−9/12 = 261.63 Hz. A convenient logarithmic scale for pitch is simply to count the number of
semitones from a reference pitch, allowing fractions to permit us to specify pitches which don’t fall
on a note of the Western scale. This creates a linear pitch space in which octaves have size 12 and
semitones have size 1. Distance in this space corresponds to physical distance on keyboard instru-
ments, orthographical distance in Western musical notation, and psychological distance as measured
in psychological experiments and conceived by musicians. The most commonly used logarithmic
pitch scale is MIDI pitch, in which the pitch 69 is assigned to a frequency of 440 Hz, i.e. the A above
middle C. A note with MIDI pitch p has frequency

f = 440× 2(p−69)/12 Hz = 440× sp−69 Hz (6.3)

and a note with frequency f Hz has MIDI pitch

p = 69 + 12 log2(f/440) (6.4)
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Chapter 6. Music information processing 6.3

(a) (b) (c)

Figure 6.2: Example of a sharp (a) and a flat (b) note. Example of a key signature (c): D major.

Because there are actually 12 notes on the keyboard, the 7 note names can also be given a modifier,
called accidental. The two main modifiers are sharps (Fig. 6.2(a)) and flats 6.2(b)) which respectively
raise or lower the pitch of a note by a semitone, where a semitone is the interval between two adjacent
keys (white or black).

If we ignore the difference between octave-related pitches, we obtain the pitch class space, which
is a circular representation. Since pitch class space is a circle, we return to our starting point by taking
a series of steps in the same direction: beginning with C, we can move ”upward” in pitch class space,
through the pitch classes C], D, D], E, F, F], G, G], A, A], and B, returning finally to C. We can
assign numbers to pitch classes. These numbers provide numerical alternatives to the letter names of
elementary music theory: 0 = C, 1 = C]=D[, 2 = D, and so on. Thus given a Midi pitch p, its pitch
class pc and octave number oct are given by

pc = p mod 12 (6.5)

oct = bp/12c − 1 (6.6)

and viceversa
p = pc + 12(oct + 1)

For example middle C (C4) has p = 60, and pc = 0, oct = 4. Notice that some pitch classes,
corresponding to black keys in the piano, can be spelled differently: e.g. pc = 1 can be spelled as C]
or as D[.

6.1.1.2 Musical scale.

All humans perceive a large continuum of pitch. However, the pitch systems of all cultures consist of
a limited set of pitch categories that are collected into ordered subsets called scales. In music, a scale
is a set of musical notes that provides material for part or all of a musical work. Scales in traditional
Western music generally consist of seven notes (diatonic scale) derived from an alphabet of the 12
chromatic notes within an octave, and repeat at the octave. Notes are separated by whole and half
step intervals of tones and semitones. In many musical circumstances, a specific note is chosen as the
”tonic”–the central and most stable note of the scale. Relative to a choice of tonic, the notes of a scale
are often labeled with roman numbers recording how many scale steps above the tonic they are. For
example, the notes of the C diatonic scale (C, D, E, F, G, A, B) can be labeled I, II, III, IV, V, VI,
VII, reflecting the choice of C as tonic. The term ”scale degree” refers to these numerical labels: in
the previous case, C is called the first degree of the scale, D is the second degree of the scale, and so
on. In the C diatonic scale, with C chosen as tonic, C is the first scale degree, D is the second scale
degree, and so on. In the major scale the pattern of intervals in semitones between subsequent notes
is 2-2-1-2-2-2-1; these numbers stand for whole tones (2 semitones) and half tones (1 semitone). The
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6.4 Algorithms for Sound and Music Computing

interval pattern of minor scale is 2-1-2-2-1-2-2. The scale defines interval relations relative to the
pitch of the first note, which can be any one of the keyboard.

In the western music, the scale define also a relative importance of the different degree. The first (I)
degree (called tonic or keynote) is the most important. The degree next in importance is the fifth (V),
called dominant because of its central position and dominating role in both melody and harmony. The
fourth (IV) degree (subdominant) has a slightly dominating role that the dominant. The other degree
are supertonic (II), mediant (III), submediant (VI), leading note (VII). The numerical classification
depends also on the scale: for example in the major scale the (major) third has 2 + 2 = 4 semitones
interval, while in the minor scale the (minor) third has 2 + 1 = 3 semitones interval. There are five
adjectives to qualify the intervals: perfect intervals are the I, IV, V, and VIII. The remaining intervals
(e.g. II, III, VI, VII) in the major scale are called major intervals. If a major interval is reduced by
a semitone, we get a minor interval. If a major or perfect interval is increased by a semitone, we get
a corresponding augmented interval. Any minor or perfect interval reduced by a semitone is called
diminished interval.

The scale made by 12 tones per octave is called chromatic scale.

6.1.1.3 Musical staff

Notation of pitch is done by using a framework (or grid) of five lines called a staff. Both the lines and
spaces are used for note placement. How high or low a pitch is played is determined by how high or
low the note head is placed on the staff.

Notes outside the range covered by the lines and spaces of the staff are placed on, above or below
shorter lines, called leger (or ledger ) lines, which can be placed above or below the staff. Music is
read from ’left’ to ’right’, thus it is a sort of two dimensional representation in a time-frequency plane.

A piano uses two staves, each one covering a different range of notes (commonly known as reg-
ister). They are read simultaneously–two notes that are in vertical alignment are played together. An
orchestral score will often have more than ten staves. To establish the pitch of any note on the staff
we place a graphical symbol called a clef at the far left-hand side of the staff. The clef establishes the
pitch of the note on one particular line of the staff and thereby fixes the pitch of all the other notes
lying on, or related to, the same staff (see Fig. 6.3 and 6.4).

Sometimes (but not always) accidentals are placed to the immediate right of the clef sign and
before the Time Signature. This indicates the tonality (or key) the song should be played in. The Key
Signature consists of a small group of sharps or flats and tells you if any note (more precisely, pitch
class) should be consistently sharped or flatted (Fig. 6.2(c)). For example, if there is a sharp on the
F and on the C in a key signature (as in Fig. 6.2(c)), it tells a musician to play all notes ”F” as ”F]”
instead and all C notes as as ”C]”, regardless of whether or not they fall on that line. A flat on the B
line tells a musician to play all notes ”B” as Bb, and so on. The natural sign ( \ ) in front of a note will
signal that the musician should play the white key version of the note. The absence of any sharp or
flats at the beginning tells you the song is played in the key of C, i.e. without any pitch modification
(as Fig. 6.3).

6.1.2 Note duration

Music takes place in time, and so musiccians have to organize it in terms not only of pitch but also
of duration. They must chose whether the sounds they use shall be shorter or longer, according to the
artistic purpose they whish to serve.
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Chapter 6. Music information processing 6.5

Figure 6.3: Staff and note names.

Figure 6.4: Correspondence of keys and notes on the staff.

When we deal with symbolic representation, the symbolic duration (or note length) refers to the
perceptual and cognitive organization of sounds, which prefer simple relations. Thus the symbolic
duration is the time interval between the beginning of the event and the beginning of the next event,
which can also be a rest. Notice that the actual sound duration (physical duration) can be quite
different and normally is longer, due to the decay time of the instrument. In this chapter when not
explicitely stated, we will deal with symbolic duartion.

6.1.2.1 Duration symbols

In order to represent a sound, apart for naming it alphabetically, a symbol is used. Where the vertical
position of a note on a staff or stave determines its pitch, its relative time value or length is denoted
by the particular sign chosen to represent it. The symbols for note lengths are indicated in Table 6.1
and how sound lengths are divided is shown in Fig. 6.5. This is the essence of proportional time
notation. The signs indicate only the proportions of time-lengths and do not give duration in units of
time, minutes or seconds.

At present the longest note in general use is the whole note or semibreve, which serves as the basic
unit of length: i.e. the whole note has conventional length equal 1. This is divided (Fig. 6.5) into two
half notes or minims (minime), 4 quarters or crotchets (semiminime), 8 eighths or quarvers(crome),
16 sixteenths or semiquarvers (semicrome), 32 thirty-seconds or demisemiquarvers (biscrome) . The
corresponding symbols for rests (period of silence) are shown in Figure 6.6.

Notice that when we refer to symbolic music representation, as in scores, the note length is also
called duration. However symbolic duration does not represent the actual duration of a sound; instead
it refers to the difference from beginning of the next event to the beginning of the actual event. The real
sound duration depends on the instrument type, how it is played, etc., and normally is not equivalent.

A dot, placed to the immediate right of the note-head, increases its time-value by half. A second
dot, placed to the immediate right of the first dot, increases the original undotted time-value by a
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6.6 Algorithms for Sound and Music Computing

Note name:
American whole half quarter heigth sixteen thirty-second
Italian semibreve minima semiminima croma semicroma biscroma
English semibreve minim crotchet quaver semiquarver demisemiquarver
Length 1 1/2 1/4 1/6 1/16 1/32

Note symbol

Rest symbol

Table 6.1: Duration symbols for notes and rests.

Figure 6.5: Symbols for note length.

Figure 6.6: Symbols used to indicate rests of different length.

Figure 6.7: Tie example: crotchet (quarter note) tied to a quaver (eighth note) is equivalent to the
dotted crotchet (dotted quarter note).

further quarter. Dots after rests increase their time-value in the same way as dots after notes. A tie (a
curved line connecting the heads of two notes) serves to attach two notes of the same pitch. Thus the
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(a) (b)

Figure 6.8: (a) Example of a time signature: 3/4 indicates three quarter note beats per measure.
(b) Example of a metronome marking: 120 quarters to the minute.

sound of the first note will be elongated according the value of the attached note. This is illustrated
in the example given in Fig. 6.7 where a crotchet (quarter note) tied to a quaver (eighth note) is
equivalent to the dotted crotchet (dotted quarter note) that follows. To divide a note value into three
equal parts, or some other value than two, tuplets may be used. The most common tuplet is the triplet:
in this case the note length is reduced to 2/3 the original duration.

6.1.3 Tempo

The signs of Table 6.1 do not give duration in units of time, minutes or seconds. The relationship
between notes and rests is formalized but the duration or time value in seconds of any particular note
is unquantified. It depends on the speed the musical piece is played. Tempo is the word used to cover
all the variation of speed, from very slow to very fast.

Until the invention of a mechanical device called the metronome, the performance speed of a piece
of music was indicated in three possible ways: through the use of tempo marks, most commonly in
Italian; by reference to particular dance forms whose general tempi would have been part of the
common experience of musicians of the time; by the way the music was written down, in particular,
the choice of note for the beat and/or the time signature employed. Many composers give metronome
marks to indicate exact tempo. The metronome measures the number of beats per minute (BPM) at
any given speed. The allegro tempo may correspond to 120 BPM, i.e. beats per minute. This value
corresponds to a frequency of 120/60 = 2 beats per second. The beat duration is the inverse of the
frequency, i.e. d = 1/2 = 0.5 sec. However most musicians would agree that it is not possible to
give beats per minute (BPM) equivalents for these terms; the actual number of beats per minute in
a piece marked allegro, for example, will depend on the music itself. A piece consisting mainly of
minims (half notes) can be played very much quicker in terms of BPM than a piece consisting mainly
of semi-quavers (sixteenth notes) but still be described with the same word.

6.1.4 Rhythm

Rhythm is the arrangement of events in time. In music, where rhythm has probably reached its highest
conscious systematization, a regular pulse or beat, appears in groups of two, three and their compound
combinations. The first beat of each group is accented. The metrical unit from one accent to the next is
called a bar or measure. This unit is marked out in written scores by vertical lines (bar lines) through
the staff in front of each accented beat.

Notice that tempo is often defined referring to rhythm and metre. The time signature (also known
as ”meter signature”) is used to specify how many beats are in each bar and what note value constitutes
one beat. Most time signatures comprise two numbers, one above the other. In text (as in this chapter),
time signatures may be written in the manner of a fraction, e.g. 3/4. The first number indicates how
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6.8 Algorithms for Sound and Music Computing

many beats there are in a bar or measure; the second number indicates the note value which represents
one beat (the ”beat unit”). For example 3/4 indicates three quarter note beats per measure (Fig.
6.8(a)). In this case a metronome indication of 120 BPM (Fig. 6.8(b)) corresponds to 120/60 beats
per second: each quarter lasts 60/120 = 0.5 sec and the measure lasts 3×0.5 = 1.5 sec. The duration
of a musical unit, i.e. a semibreve, is 4 × 0.5 = 2 sec. In general given a time signature n1/n2 and
a metronome marking m BPM, we have that the beat duration is dbeat = 60/m sec, the bar duration
dbar = n1 × 60/m sec, and the musical unit duration dbar = n2 × 60/m sec.

6.1.5 Dynamics

In music, dynamics refers to the volume or loudness of the sound or note. The full terms for dynamics
are sometimes written out, but mostly are expressed in symbols and abbreviations (see Table 6.2).
There are also traditionally in Italian and will be found between the staves in piano music. In an
orchestral score, they will usually be found next to the part to which they apply.

SYMBOL TERM MEANING
pp pianissimo very soft
p piano soft

mp mezzopiano medium soft
mf mezzoforte medium loud
f forte loud
ff fortissimo very loud

Table 6.2: Symbols for dymanics notation.

In addition, there are words used to indicate gradual changes in volume. The two most common
are crescendo, sometimes abbreviated to cresc, meaning ”get gradually louder”; and decrescendo or
diminuendo, sometimes abbreviated to decresc and dim respectively, meaning ”get gradually softer”.
These transitions are also indicated by wedge-shaped marks. For example, the notation in Fig. 6.9
indicates music starting moderately loud, then becoming gradually louder and then gradually quieter:

Figure 6.9: Dynamics notation indicating music starting moderately loud (mezzo forte), then becom-
ing gradually louder (crescendo) and then gradually quieter (diminuendo).

6.1.6 Harmony

In music theory, harmony is the use and study of the relationship of tones as they sound simultane-
ously and the way such relationships are organized in time. It is sometimes referred to as the ”vertical”
aspect of music, with melody being the ”horizontal” aspect. Very often, harmony is a result of coun-
terpoint or polyphony, several melodic lines or motifs being played at once, though harmony may
control the counterpoint. The term ”chord” refers to three or more different notes or pitches sounding
simultaneously, or nearly simultaneously, over a period of time.
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Within a given key, chords can be constructed on each note of the scale by superimposing intervals
of a major or minor third (four and three semitones, respectively), such as C-E-G giving the C major
triad, or A-C-E giving the A minor triad. A harmonic hierarchy similar to the tonal hierarchy has been
demonstrated for chords and cadences. The harmonic hierarchy orders the function of chords within a
given key according to a hierarchy of structural importance. This gives rise to one of the particularly
rich aspects of Western tonal music: harmonic progression. In the harmonic hierarchy, the tonic chord
(built on the first degree of the scale) is the most important, followed by the dominant (built on the
fifth degree) and the sub-dominant (built on the fourth degree). These are followed by the chords built
on the other scale degrees. Less stable chords, that is those that have a lesser structural importance,
have a tendency in music to resolve to chords that are more stable. These movements are the basis
of harmonic progression in tonal music and also create patterns of musical tension and relaxation.
Moving to a less stable chord creates tension, while resolving toward a more stable chord relaxes that
tension. Krumhansl has shown that the harmonic hierarchy can be predicted by the position in the
tonal hierarchies of the notes that compose the chords.

6.2 Organization of musical events

6.2.1 Musical form

We can compare a single sound, chord, cadence to a letter, a word, or a punctiation mark in language.
In this section we will see how all these materials take formal shape and are used within the framework
of a musical structure.

6.2.1.1 Low level musical structure

The bricks of music are its motives, the smallest unit of a musical composition. To be intelligible, a
motive has to consists of at least two notes, and have a clearly recognizable rhythmic pattern, which
gives it live. Usually a motive consists of few notes as for example the four notes at the beginning of
Beethovens Fifth Symphony. If you recall the continuation of the symphony, you realize that this mo-
tive is the foundation of the whole musical building. It is by mean of motive and its development (e.g.
repetition, transposition, modification, contrapuntal use, et.) that a composer state, and subsequently
explain his idea.

A figure figure is a recurring fragment or succession of notes that may be used to construct the
accompaniment. A figure is distinguished from a motif in that a figure is background while a motif is
foreground

6.2.1.2 Mid and high level musical structure

A musical phrase can consist of one or more motives. The end is marked by a punctuation, e.g.
a cadence. Phrases can be combined to form a period or sentence: i.e. a section of music that is
relatively self contained and coherent over a medium time scale. In common practice phrases are
often four and most often eight bars, or measures, long.

The mid-level of musical structure is made up of sections of music. Periods combine to form larger
sections of musical structure. The length of a section may vary from sixteen to thirty-two measures in
length - often, sections are much longer. At the macro-level of musical structure exists the complete
work formed of motives, phrases and sections.
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6.10 Algorithms for Sound and Music Computing

6.2.1.3 Basic patterns

Repetition, variation and contrast may be seen as basic patterns. These patterns have been found to
be effective at all levels of music structure, whether it be shorter melodic motives or extended musical
compositions. These basic patterns may be found not only in all world musics, but also in the other
arts and in the basic patterns of nature.

Repetition of the material of music plays a very important role in the composing of music and some-
what more than in other artistic media. If one looks at the component motives of any melody,
the successive repetition of the motives becomes apparent. A melody tends to ”wander” with-
out repetition of its rhythmic and pitch components and repetition gives ”identity” to musical
materials and ideas. Whole phrases and sections of music often repeat. Musical repetition has
the form A A A A A A A A A etc..

Variation means change of material and may be slight or extensive. Variation is used to extend
melodic, harmonic, dynamic and timbral material. Complete musical phrases are often varied.
Musical variation has the form A A1 A2 A3 A4 A5 A6 etc..

Contrast is the introduction of new material in the structure or pattern of a composition of music
that contrasts with the original material. Contrast extends the listeners interest in the musical
”ideas” in a phrase or section of music. It is most often used in the latter areas of phrases or
sections and becomes ineffective if introduced earlier. Musical contrast has the form A B C D
E F G etc..

The patterns of repetition, variation, and contrast form the basis for the structural design of
melodic material, the accompaniment to melodic material, and the structural relationships of phrases
and sections of music. When these basic patterns are reflected in the larger sectional structure of
complete works of music, this level of musical structure defines the larger sectional patterns of music.

6.2.1.4 Basic musical forms

Form in music refers to large and small sectional patterns resulting from a basic model. There are
basic approaches to form in music found in cultures around the world. In most cases, the form of a
piece should produce a balance between statement and restatement, unity and variety, contrast and
connection. Throughout a given composition a composer may:

1. Present a melody and continually repeat it (A-A-A-A-A-A etc.),
2. Present a melody and continually vary it (A A1 A2 A3 A4 A5 etc.),
3. Present a series of different melodies (A-B-C-D-E-F-G etc.),
4. Alternate a repeating melody with other melodies (A-B-A-C-A-D-A-E-A etc.),
5. Present a melody and expand and/or modify it.
Binary form is a way of structuring a piece of music into two related sections, both of which are

usually repeated. Binary form is usually characterized as having the form AB. When both sections
repeat, a more accurate description would be AABB. Ternary form is a three part structure. The
first and third parts are identical, or very nearly so, while the second part is sharply contrasting. For
this reason, ternary form is often represented as ABA. Arch form is a sectional way of structuring
a piece of music based on the repetition, in reverse order, of all or most musical sections such that
the overall form is symmetrical, most often around a central movement. The sections need not be
repeated verbatim but at least must share thematic material. It creates interest through an interplay
among memory, variation, and progression. An example is A-B-C-D-C-B-A.
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6.2.2 Cognitive processing of music information

Adapted from: Mc Adams, Audition: Cognitive Psychology of Music 1996
When we consider the perception of large scale structures like music, we need to call into play

all kinds of relationships over very large time scales on the order of tens of minutes or even hours.
It is thus of great interest to try to understand how larger scale temporal structures, such as music,
are represented and processed by human listeners. These psychological mechanisms are necessary
for the sense of global form that gives rise to expectancies that in turn may be the basis for affective
and emotional responses to musical works. One of the main goals of auditory cognitive psychology
is to understand how humans can ”think in sound” outside the verbal domain. The cognitive point of
view postulates internal (or mental) representations of abstract and specific properties of the musical
sound environment, as well as processes that operate on these representations. For example, sensory
information related to frequency is transformed into pitch, is then categorized into a note value in a
musical scale and then ultimately is transformed into a musical function within a given context.

Figure 6.10: Schema illustrating the various aspects of musical information processing [from
McAdams 1996].

The processing of musical information may be conceived globally as involving a number of differ-
ent ”stages” (Fig. 6.10). Following the spectral analysis and transduction of acoustic vibrations in the
auditory nerve, the auditory system appears to employ a number of mechanisms (primitive auditory
grouping processes) that organize the acoustic mixture arriving at the ears into mental ”descriptions”.
These descriptions represent events produced by sound sources and their behaviour through time.
Research has shown that the building of these descriptions is based on a limited number of acoustic
cues that may reinforce one another or give conflicting evidence. This state of affairs suggests the
existence of some kind of process (grouping decisions) that sorts out all of the available information
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6.12 Algorithms for Sound and Music Computing

and arrives at a representation of the events and sound sources that are present in the environment
that is as unambiguous as possible. According to theory of auditory scene analysis, the computation
of perceptual attributes of events and event sequences depends on how the acoustic information has
been organized at an earlier stage. Attributes of individual musical events include pitch, loudness, and
timbre, while those of musical event sequences include melodic contour, pitch intervals, and rhythmic
pattern. Thus a composer’s control of auditory organization by a judicious arrangement of notes can
affect the perceptual result.

Once the information is organized into events and event streams, complete with their derived
perceptual attributes, what is conventionally considered to be music perception begins.

• The auditory attributes activate abstract knowledge structures that represent in long-term mem-
ory the relations between events that have been encountered repeatedly through experience in
a given cultural environment. That is, they encode various kinds of regularities experienced in
the world. Bregman (1993) has described regularities in the physical world and believes that
their processing at the level of primitive auditory organization is probably to a large extent in-
nate. There are, however, different kinds of relations that can be perceived among events: at the
level of pitches, durations, timbres, and so on. These structures would therefore include knowl-
edge of systems of pitch relations (such as scales and harmonies), temporal relations (such as
rhythm and meter), and perhaps even timbre relations (derived from the kinds of instruments
usually encountered, as well as their combinations). The sound structures to be found in various
occidental cultures are not the same as those found in Korea, Central Africa or Indonesia, for
example. Many of the relational systems have been shown to be hierarchical in nature.

• A further stage of processing (event structure processing) assembles the events into a struc-
tured mental representation of the musical form as understood up to that point by the listener.
Particularly in Western tonal/metric music, hierarchical organization plays a strong role in the
accumulation of a mental representation of musical form. At this point there is a strong conver-
gence of rhythmic-metric and pitch structures in the elaboration of an event hierarchy in which
certain events are perceived to be stronger, more important structurally, and more stable. The
functional values that events and groups of events acquire within an event hierarchy generate
perceptions of musical tension and relaxation or, in other words, musical movement. They also
generate expectancies about where the music should be going in the near future based both on
what has already happened and on abstract knowledge of habitual musical forms of the culture–
even for pieces that one has never heard before. In a sense, we are oriented–by what has been
heard and by what we ”know” about the musical style–to expect a certain type of event to follow
at certain pitches and at certain points in time.

• The expectancies drive and influence the activation of knowledge structures that affect the way
we interpret subsequent sensory information. For example, we start to hear a certain number of
pitches, a system of relations is evoked and we infer a certain key; we then expect that future
information that comes in is going to conform to that key. A kind of loop of activity is set up,
slowly building a mental representation that is limited in its detail by how much knowledge one
actually has of the music being heard. It is also limited by one’s ability to represent things over
the long term, which itself depends on the kind of acculturation and training one has had. It
does not seem too extreme to imagine that a Western musician could build up a mental structure
of much larger scale and greater detail when listening to a Mahler symphony that lasts one
and half hours, than could a person who just walked out of the bush in Central Africa. The
reverse would be true for the perception of complex Pygmy polyphonic forms. However, on
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Chapter 6. Music information processing 6.13

the one hand we are capable of hearing and enjoying something new, suggesting that there may
be inborn precursors to musical comprehension in all human beings that makes this possible.
On the other hand, what we do hear and understand the first time we encounter a new musical
culture is most likely not what a native of that culture experiences.

The expectancies generated by this accumulating representation can also affect the grouping
decisions at the basic level of auditory information processing. This is very important because
in music composition, by playing around with some of these processes, one can set up per-
ceptual contexts that affect the way the listener will tend to organize new sensory information.
This process involves what Bregman (1990) has called schema-driven processes of auditory
organization.

While the nature and organization of these stages are probably similar across cultures in terms of
the underlying perceptual and cognitive processing mechanisms involved, the ”higher level” processes
beyond computation of perceptual attributes depend quite strongly on experience and accumulated
knowledge that is necessarily culture-specific.

6.2.3 Auditory grouping

Sounds and sound changes representing information must be capable of being detected by the listener.
A particular configuration of sound parameters should convey consistent percept to the user. Auditory
grouping studies the perceptual process by which the listener separates out the information from an
acoustic signal into individual meaningful sounds (fig. 6.11).

Figure 6.11: Auditory organization

The sounds entering our ears may come from a variety of sources. The auditory system is faced
with the complex tasks of:

• Segregating those components of the combined sound that come from different sources.

• Grouping those components of the combined sound that come from the same source.

In hearing, we tend to organise sounds into auditory objects or streams. Bregman (1990) has termed
this process Auditory Scene Analysis (fig. 6.12). It includes all the sequential and cross-spectral pro-
cess which operate to assign relevant components of the signal to perceptual objects denoted auditory
streams.

The brain needs to group simultaneously (separating out which frequency components that are
present at a particular time have come from the same sound source) and also successively(deciding
which group of components at one time is a continuation of a previous group). Some processes
exclude part of the signal from a particular stream. Others help to bind each stream together.

A stream is
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6.14 Algorithms for Sound and Music Computing

Figure 6.12: Auditory scene analysis

• a psychological organization with perceptual attributes that are not just the sum of the percept
of its component but are dependent upon the configuration of the stream.

• a sequence of auditory events whose elements are related perceptually to one another, the stream
being segregated from other co-occurring auditory events.

• A psychological organization whose function is to mentally represent the acoustic activity of a
single source.

Auditory streaming is the formation of perceptually distinct apparent sound sources. Temporal order
judgment is good within a stream but bad between steams. Examples include:

• implied polyphony,

• noise burst replacing a consonant in a sentence,

• click superimposed on a sentence or melody.

An auditory scene is the acoustic pressure wave carrying the combined evidence from all the sound
sources present. Auditory scene analysis is the process of decoding the auditory scene, which occurs
in auditory perception. Auditory Scene Analysis is a non-conscious process of guessing about ”what’s
making the noise out there”, but guessing in a way that fits consistently with the facts of the world. For
example if a sound has a particular pitch, a listener will probably infer that any other sounds made by
that sound source will be similar in pitch to the first sound, as well as similar in intensity, waveform,
etc., and further infer that any sounds similar to the first are likely to come from the same location as
the first sound. This fact can explain why we experience the sequence of pitches of a tune (Fig. 6.13)
as a melody, pitch moving in time. Consecutive pitches in this melody are very close to each other
in pitch-space, so on hearing the second pitch a listener will activate our Auditory Scene Analysis
inference mechanisms, and assign it to the same source as the first pitch.

If the distance in pitch space had been large, they might have inferred that a second sound source
existed, even although they knew that it’s the same instrument that’s making the sound - this inferred
sound source would be a virtual rather than a real source. Hence a pattern such as shown in Figure
6.14(a), where successive notes are separated by large pitch jumps but alternate notes are close to-
gether in pitch, is probably heard as two separate and simultaneous melodies rather than one melody
leaping around. This tendency to group together, to linearise, pitches that are close together in pitch-
space and in time provides us with the basis for hearing a melody as a shape, as pitch moving in time,
emanating from a single - real or virtual - source.
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Figure 6.13: Score of Frere Jacques.

J. S. Bach used them frequently to conjure up the impression of compound, seemingly simulta-
neous, melodies even though only one single stream of notes is presented. For example, the pattern
given in Figure 6.14(b) (from the Courante of Bach’s First ’Cello Suite) can be performed on gui-
tar on one string, yet at least two concurrent pitch patterns or streams will be heard - two auditory
streams will be segregated (to use Bregman’s terminology). We may distinguish analytic vs. synthetic

(a) (b)

Figure 6.14: (a) Pattern where successive notes are separated by large pitch jumps but alternate notes
are close together in pitch, is probably heard as two separate and simultaneous melodies. (b) Excerpt
from the Courante of Bach’s First ’Cello Suite: two concurrent pitch patterns are heard.

listening. In synthetic perception the information is interpreted as generally as possible, e.g. hearing
a room full of voices. In analytic perception, the information is used to to identify the components of
the scene to finer levels, e.g. listening to a particular utterance in the crowded room. Interpretation of
environmental sounds involves combining analytic and synthetic listening, e.g. hearing the message
of a particular speaker.

Gestalt psychology theory offers an useful perspective for interpreting the auditory scene analysis
beaviour.

6.2.4 Gestalt perception

Gestalt (pronounced G - e - sh - talt) psychology is a movement in experimental psychology that
began just prior to World War I. It made important contributions to the study of visual perception and
problem solving. The approach of Gestalt psychology has been extended to research in areas such as
thinking, memory, and the nature of aesthetics. The word ’Gestalt’ means ’form’ or ’shape’.

The Gestalt approach emphasizes that we perceive objects as well-organized patterns rather than
separate component parts. According to this approach, when we open our eyes we do not see fractional
particles in disorder. Instead, we notice larger areas with defined shapes and patterns. The ”whole”
that we see is something that is more structured and cohesive than a group of separate particles. Gestalt
theory states that perceptual elements are (in the process of perception) grouped together to form a
single perceived whole (a gestalt).
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6.16 Algorithms for Sound and Music Computing

The focal point of Gestalt theory is the idea of grouping, or how we tend to interpret a visual field
or problem in a certain way. According to the Gestalt psychologists, the way that we perceive objects,
both visual and auditory, is determined by certain principles (gestalt principles). These principles
function so that our perceptual world is organised into the simplest pattern consistent with the sensory
information and with our experience. The things that we see are organised into patterns or figures. In
hearing, we tend to organise sounds into auditory objects or streams. Bregman (1990) has termed this
process Auditory Scene Analysis.

Figure 6.15: Experiments of Proximity and Good Continuation

Figure 6.16: Experiments of Closure and Common Fate
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The most important principles are

Proximity: components that are perceptually close to each other are more likely to be grouped to-
gether. For example temporal proximity or frequency proximity. The principle of proximity
refers to distances between auditory features with respect to their onsets, pitch, and loudness.
Features that are grouped together have a small distance between each other, and a long distance
to elements of another group. Tones close in frequency will group together, so as to minimize
the extent of frequency jumps and the number of streams. Tones with similar timbre will tend
to group together. Speech sounds of similar pitch will tend to be heard from the same speaker.
Sounds from different locations are harder to group together across time than those from the
same location.

The importance of pitch proximity in audition is reflected in the fact that melodies all over the
world use small pitch intervals from note to note. Violations of proximity have been used in
various periods and genres of both Western and non-Western music for a variety of effects.
For example, fission based on pitch proximity was used to enrich the texture so that out of a
single succession of notes, two melodic lines could be heard. Temporal and pitch proximity are
competitive criteria, e.g. the slow sequence of notes A B A B . . . (figure 6.15, A1), which
contains large pitch jumps, is perceived as one stream. The same sequence of notes played
very fast (figure 6.15, A2) produces one perceptual stream consisting of As and another one
consisting of Bs. A visual example is given in figure 6.17: the arrangement of points is not seen
as a set of rows but rather a set of columns. We tend to perceive items that are near each other
as groups.

Figure 6.17: Example of proximity gestalt rule

Similarity: components which share the same attributes are perceived as related or as a whole. E.g.
colour or form, in visual perception or common onset, common offset, common frequency,
common frequency modulation, common amplitude modulation in auditory perception. For
example one can follow the piano part in a group of instruments by following the sounds that
have the timbre consistent with that of a piano. One can perceptually segregate one speaker’s
voice from those of others by following the pitch of the voice. Similarity is very similar to
proximity, but refers to properties of a sound, which cannot be easily identified with a single
physical dimension, like timbre.

A visual example is given in figure 6.18: things which share visual characteristics such as shape,
size, color, texture, value or orientation will be seen as belonging together. In the example of
6.18(a), the two filled lines gives our eyes the impression of two horizontal lines, even though
all the circles are equidistant from each other. In the example of 6.18(b), the larger circles
appear to belong together because of the similiarity in size.
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(a) (b)

Figure 6.18: Example of similarity gestalt grouping principle.

Figure 6.19: Example of similarity gestalt grouping principle.

Another visual example is given in figure 6.19: So in the graphic on the left you probably see
an X of fir trees against a background of the others; in the graphic on the right you may see a
square of the other trees, partly surrounded by fir trees. The fact that in one we see an X and in
the other a square is, incidentally, an example of good form or pragnanz principle, stating that
psychological organization will always be as ’good’ as prevailing conditions allow. For Gestalt
psychologists form is the primitive unit of perception. When we perceive, we will always pick
out form.

Good continuation: Components that display smooth transitions from one state to another are per-
ceived as related. Examples of smooth transitions are: proximity in time of offset of one com-
ponent with onset of another; frequency proximity of consecutive components; constant glide
trajectory of consecutive components; smooth transition from one state to another state for the
same parameter. For example an abrupt change in the pitch of a voice produces the illusion that
a different speaker has interrupted the original. The perception appears to depend on whether
or not the intonation contour changes in a natural way. Sound that is interrupted by a noise that
masks it, can appear to be continuous. Alternations of sound and mask can give the illusion of
continuity with the auditory system interpolating across the mask.

In figure 6.15, B), high (H) and low (L) tones alternate. If the notes are connected by glissandi
(figure 6.15, B1), both tones are grouped to a single stream. If high and low notes remain
unconnected (figure 1, B2), Hs and Ls each group to a separate stream.

A visual example is given in figure 6.20. The law of good continuation states that objects
arranged in either a straight line or a smooth curve tend to be seen as a unit. In figure 6.20(a)
we distinguish two lines, one from a to b and another from c to d, even though this graphic
could represent another set of lines, one from a to d and the other from c to b. Nevertheless, we
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(a) (b)

Figure 6.20: Examples of good continuation gestalt grouping principle.

are more likely to identify line a to b, which has better continuation than the line from a to d,
which has an obvious turn. In figure 6.20(b) we perceive the figure as two crossed lines instead
of 4 lines meeting at the centre.

Common Fate Sounds will tend to be grouped together if they vary together over time. Differences
in onset and offset in particular are very strong grouping cues. Also, sounds that are modulated
together (amplitude or frequency modulation) tend to be grouped together. The principle ’com-
mon fate’ groups frequency components together, when similar changes occur synchronously,
e.g. synchronous onsets, glides, or vibrato.

Chowning (Fig. 6.16, D) made the following experiment: First three pure tones are played. A
chord is heard, containing the three pitches. Then the full set of harmonics for three vowels
(/oh/, /ah/, and /eh/) is added, with the given frequencies as fundamental frequencies, but with-
out frequency fluctuations. This is not heard as a mixture of voices but as a complex sound in
which the three pitches are not clear. Finally, the three sets of harmonics are differentiated from
one another by their patterns of fluctuation. We then hear three vocal sounds being sung at three
different pitches.

Closure This principle is the tendency to perceive things as continuous even though they may be
discontinuous. If the gaps in a sound are filled in with another more intense sound, the original
sound may be perceived as being continuous. For example, if part of a sentence is replaced by
the sound of a door slam, the speaker’s voice may be perceived as being continuous (continuing
through the door slam). The principle of closure completes fragmentary features, which already
have a ’good Gestalt’. E.g. ascending and descending glissandi are interrupted by rests (Fig.
6.16, C2). Three temporally separated lines are heard one after the other. Then noise is added
during the rests (Fig. 6.16 C1). This noise is so loud, that it would mask the glissando, unless
it would be interrupted by rests. Amazingly the interrupted glissandi are perceived as being
continuous. They have ’good Gestalt’: They are proximate in frequency before and after the
rests. So they can easily be completed by a perceived good continuation. This completion can
be understood as an auditory compensation for masking.

Figure / Ground It is usual to perceive one sound source as the principal sound source to which one
is attending, and relegate all other sounds to be background. We may switch our attention from
one sound source to another quite easily. What was once figure (the sound to which we were
attending) may now become ground (the background sound). An important topics in auditory
perception are attention and learning. In a cocktail party environment, we can focus on one
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(a) (b)

Figure 6.21: Example of closure.

speaker. Our attention selects this stream. Also, whenever some aspect of a sound changes,
while the rest remains relatively unchanging, then that aspect is drawn to the listener’s attention
(’figure ground phenomenon’). Let us give an example for learning: The perceived illusory
continuity (see Fig. 6.16, C) of a tune through an interrupting noise is even stronger, when the
tune is more familiar.

Figure 6.22: Rubin vase: example of figure/ground principle.

The Rubin vase shown in Fig. 6.22 is an example of this tendency to pick out form. We don’t
simply see black and white shapes - we see two faces and a vase. The problem here is that we
see the two forms of equal importance. If the source of this message wants us to perceive a
vase, then the vase is the intended figure and the black background is the ground. The problem
here is a confusion of figure and ground. A similar everyday example is:

• an attractive presenter appears with a product; she is wearing a ’conservative’ dress; eye-
tracking studies show substantial attention to the product; three days later, brand-name
recall is high;

• an attractive presenter appears with a product; she is wearing a ’revealing’ dress; eye-
tracking shows most attention on the presenter; brand-name recall is low.

Escher often designed art which played around with figure and ground in interesting ways. Look
at how figure and ground interchange in fig. 6.23. Do you see the white horses and riders? Now
look for the black horses and riders.

Gestalt grouping laws do not seem to act independently. Instead, they appear to influence each
other, so that the final perception is a combination of all of the Gestalt grouping laws acting together.
Gestalt theory applies to all aspects of human learning, although it applies most directly to perception
and problem-solving.
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Figure 6.23: Horses by M. Escher. An artistic example of figure and ground interchange.

6.3 Basic algorithms for melody processing

6.3.1 Melody

Melody may be defined as a series of individual musical events one occurring after another in order
so that the composite order constitute a recognizable entity. The essential elements of any melody
are duration, pitch, and sound quality (e.g. timbre, texture, and loudness). It represents the linear or
horizontal aspect of music and should not be confused with harmony, which is the vertical aspect of
music.

6.3.1.1 Melody representations

6.3.1.2 Melodic contour

Contour may be defined as the general shape of an object, often, but not exclusively, associated with
elevation or height, as a function of distance, length, or time. In music, contour can be a useful tool for
the study of the general shape of a musical passage. A number of theories have been developed that
use the rise and fall of pitch level, changes in rhythmic patterns or changes in dynamics as a function
of time (or temporal order) to compare or contrast musical passages within a single composition or
between compositions of a single composer. One application of the melodic contour is finding out
whether the sequence contains repeated melodic phrases. This can be done using computing the
autocorrelation.

Parsons showed that encoding a melody by using only the direction of pitch intervals can still
provide enough information for distinguishing between a large number of tunes. In Parsons code for
melodic contours, each pair of consecutive notes is coded as ”U” (”up”) if the second note is higher
than the first note, ”R” (”repeat”) if the pitches are equal, and ”D” (”down”) otherwise. Rhythm is
completely ignored. Thus, the first theme from Beethoven’s 8th symphony (Fig. 6.24) would be coded
D U U D D D U R D R U U U U. Note that the first note of any tune is used only as a reference point
and does not show up explicitly in the Parsons code. Often an asterisk (*) is used in the Parsons code
field for the first note. A more precise and effective way of representing contours employs 5-level
quantization (++,+,0,-,–) distinguishing between small intervals (steps), which are 1 or 2 semitones
wide, from larger intervals (leaps), which are at least 3 semitones wide. The symbols (++,+,0,-,–) are
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used to code this representation. For example the Beethoven’s theme of Fig. 6.24 will be coded as –
+ + – – – ++ 0 - 0 + + + +.

Figure 6.24: Melodic contour and Parson code.

In MPEG-7 the Melody Contour DS uses a 5-step contour (representing the interval difference
between adjacent notes), in which intervals are quantized. The Melody Contour DS also represents
basic rhythmic information by storing the number of the nearest whole beat of each note, which can
dramatically increase the accuracy of matches to a query.

For applications requiring greater descriptive precision or reconstruction of a given melody, the
Melody DS supports an expanded descriptor set and high precision of interval encoding. Rather than
quantizing to one of five levels, the precise pitch interval (to cent or greater precision) between notes
is kept. Precise rhythmic information is kept by encoding the logarithmic ratio of differences between
the onsets of notes in a manner similar to the pitch interval.

6.3.1.3 Similarity measures

When we want to compare melodies, a computable similarity meassure is need. The measures can
roughly be classified in three categories: Vector measures, symbolic measures and musical (mixed)
measures, according to the computational algorithm used.

• The vector measure treat the transformed melodies as vectors in a suitable real vector space,
where methods like scalar products and other means of correlation can be applied to.

• On the contrary the symbolic measures treat the melodies as strings, i.e., sequences of symbols,
where well-known measures like Edit Distance or n-gram-related measures can be used.

• The musical or mixed measures typically involve more or less specific musical knowledge and
the computation can be from either the vector or the symbolical or even completely different
ways like scoring models.

The distance can be computed on different representations of the melodies (e.g. the melody itself, its
contour), or some statistic distributions (e.g. pitch classes, pitch class transitions, intervals, interval
transitions, note durations, note duration transitions)

6.3.1.4 Edit distance

Approximate string pattern matching is based on the concept of edit distance. The edit dsistance
D(A,B) between string A = a1, . . . , am and B = b1, . . . , bn is the minimum number of editing
operations required to transform string A into string B, where an operation is an insertion, deletion,
or substitution of a single character. The special case in which deletions and insertions are not allowed
is called the Hamming distance.
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We can define recursively the (edit) distance d[i, j] for going from string A[1..i] to string B[1..j]
as

d[i, j] = min





d[i− 1, j] + w(ai, 0), //deletion of ai

d[i, j − 1] + w(0, bj), //insertion of bj

d[i− 1, j − 1] + w(ai, bj) //match or change
(6.7)

where w(ai, 0) is the weight associated with the deletion of ai, w(0, bj) is the weight for insertion of
ai, and w(ai, bj) is the weight for replacement of element i of sequence A by element j of sequence
B. The operation titled ”match/change” sets w(ai, bj) = 0 if ai = bj and a value greater than 0
if ai 6= bj . Often the weights used are 1 for insertion, deletion and substitution(change) and 0 for
match. The initial conditions are given by d[0, 0] = 0, d[i, 0] = d[i − 1, j] + w(ai, 0) for i ≥ 1 and
d[0, j] = d[0, j − 1] + w(0, bj) for j ≥ 1.

The edit distance D(A,B) = d[n,m] can be computed by dynamic programming with running
time O(n ·m) with the algorithm given in Fig. 6.25.

Algorithm EditDistance (A[1..m], B[1..n, ], wdel, wins, wsub)

for i from 0 to m
d[i, 0] := i · wdel

for j from 0 to n
d[0, j] := j · wins

for i from 1 to m
for j from 1 to n

if A[i] = B[j]
then cost := 0
else cost := wsub

d[i,j] := min( d[i-1,j]+wdel, d[i,j-1]+wins, d[i-1, j-1]+cost )
return d[m,n]

Figure 6.25: Dynamic programming algorithm for computing EditDistance.

6.3.2 Melody segmentation

Generally a piece of music can be divided into section and segments at different level. The term
grouping describe the general process of segmentation at all levels. Grouping in music is a complex
matter. Most computational approaches focused on low-level grouping structure. Grouping events
together involves storing them in memory as a larger unit, which is encoded to aid further cognitive
processing. Indeed grouping structure plays an important role in recognition of repeated patterns in
music. Notice that also the metric structure organize the events on time. However meter involves a
framework of level of beats and in itself implies no segmentation; grouping is merely a segmentation
without accentural implications.
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6.3.2.1 Gestalt based segmentation

Tenny and Polansky proposed a model for small-level grouping in monophonic melodies based on
Gestalt rules of proximity (i.e. the preference for grouping boundaries at long intervals between
onsets) and similarity (i.e. the preference for grouping boundaries at changes in pitch and dynamics).
Moreover the boundary value depends on the context. Thus an interval value in some parameter tends
to be a grouping boundary if it is a local maximum, i.e. if it is larger the values immediately preceding
and following it. In order to combine the differences of all parameters in a single measure the L1

norm is proposed, i.e. the absolute values are summed.
The algorithm proceeds in this way:

Algorithm TenneyLLgrouping

1. Given a sequence of n tones with pitch p[i] and IOI ioi[i], for i = 1, . . . , n

2. for i = 1 to n-1
Compute the distance d[i] between event i and i + 1 as

d[i] = ioi[i] + |p[i + 1]− p[i]|

3. for i = 2 to n-2
if d[i− 1] < d[i] > d[i + 1] then i is a low-level boundary point, and i + 1 is the starting point
of a new group.

For higher level grouping the changes perceived at the boundary are taken into account. In order
to deal with this, a distinction is made between mean-intervals and boundary-intervals as follows:

• A mean-interval between two groups is the difference between their mean values in that param-
eter. For the time parameter, the difference of their starting time is considered.

• A boundary-interval is the difference the values of the final component of the first group and
the initial component of the second group

The mean-distance between two groups is a weighted sum of the mean-intervals between them,
and the boundary-distance is given by a weighted sum of the boundary-intervals between them. Fi-
nally the disjunction between two groups is a weighted sum of mean-distance and boundary-distance
between them. As a conclusion a group at a higher level will be initiated whenever a group occurs
whose disjunction is greater than those immediately preceding and following it.

The algorithm proceeds in the following way:

Algorithm TenneyHLgrouping

1. for every group k, the mean pitch is computed by weighting the pitches with the durations

meanp[k] =

∑
j p[j] · dur[j]∑

j dur[j]

where in the summations, j spans all the events in group k.

2. compute the mean-distance

mean dist[k] = |meanp[k + 1]−meanp[k]|+ (onset[k + 1]− onset[k])
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3. compute the boundary-distance

boundary dist[k] = |p[first[k + 1]]− p[last[k]]|+ (onset[k + 1]− on[last[k])

where first[k] and last[k] are the indexes of the first and last note of group k and onset[k] =
on[first[k]].

4. compute the disjunction by

disj[k] = wmd ·mean dist[k] + wbd · boundary dist[k]

5. if disj[k − 1] < disj[k] > disj[k + 1] then the k-th group is the starting point of a new
higher-level segment.

6.3.2.2 Local Boundary Detection Model (LBDM)

In this section, a computational model (developed by Emilios Cambouropoulos 2001), that enables
the detection of local melodic boundaries will be described. This model is simpler and more general
than other models based on a limited set of rules (e.g. implication realization model seen in sect. 6.6.2
) and can be applied both to quantised score and non-quantised performance data.

The Local Boundary Detection Model (LBDM) calculates boundary strength values for each in-
terval of a melodic surface according to the strength of local discontinuities; peaks in the resulting
sequence of boundary strengths are taken to be potential local boundaries.

The model is based on two rules: the Change rule and the Proximity rule. The Change rule is
more elementary than any of the Gestalt principles as it can be applied to a minimum of two entities
(i.e. two entities can be judged to be different by a certain degree) whereas the Proximity rule requires
at least three entities (i.e. two entities are closer or more similar than two other entities).

• Change Rule (CR): Boundary strengths proportional to the degree of change between two con-
secutive intervals are introduced on either of the two intervals (if both intervals are identical no
boundary is suggested).

• Proximity Rule (PR): If two consecutive intervals are different, the boundary introduced on the
larger interval is proportionally stronger.

The Change Rule assigns boundaries to intervals with strength proportional to a degree of change
function Si (described below) between neighbouring consecutive interval pairs. Then a Proximity
Rule scales the previous boundaries proportionally to the size of the interval and can be implemented
simply by multiplying the degree-of-change value with the absolute value of each pitch/time/dynamic
interval. This way, not only relatively greater neighbouring intervals get proportionally higher values
but also greater intervals get higher values in absolute terms - i.e. if in two cases the degree of change
is equal, such as sixteenth/eighth and quarter/half note durations, the boundary value on the (longer)
half note will be overall greater than the corresponding eighth note.

The aim is to develop a formal theory that may suggest all the possible points for local grouping
boundaries on a musical surface with various degrees of prominence attached to them rather than
a theory that suggests some prominent boundaries based on a restricted set of heuristic rules. The
discovered boundaries are only seen as potential boundaries as one has to bear in mind that musically
interesting groups can be defined only in conjunction with higher-level grouping analysis (parallelism,
symmetry, etc.). Low-level grouping boundaries may be coupled with higher-level theories so as to
produce optimal segmentations (see fig. 6.26).
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Figure 6.26: Beginning of Frère Jacques. Higher-level grouping principles override some of the
local detail grouping boundaries (note that LBDM gives local values at the boundaries suggested by
parallelism - without taking in account articulation.

In the description of the algorithm only the pitch, IOI and rest parametric profiles of a melody
are mentioned. It is possible, however, to construct profiles for dynamic intervals (e.g. velocity
differences) or for harmonic intervals (distances between successive chords) and any other parameter
relevant for the description of melodies. Such distances can also be asymmetric; for instance the
dynamic interval between p and f should be greater that between f and p.

Local Boundary Detection algorithm description Given a melodic sequence of n tones, where
the i-th tone is represented by pitch p[i], onset on[i], offset off [i].

A melodic sequence is converted into a number of independent parametric interval profiles Pk

for the parameters: pitch (pitch intervals), ioi (interonset intervals) and rest (rests - calculated as the
interval between current onset with previous offset). Pitch intervals can be measured in semitones,
and time intervals (for IOIs and rests) in milliseconds or quantised numerical duration values. Upper
thresholds for the maximum allowed intervals should be set, such as the whole note duration for IOIs
and rests and the octave for pitch intervals; intervals that exceed the threshold are truncated to the
maximum value. Thus we have

Algorithm LBDM

1. Given: pitch p[i], onset on[i], offset off [i] for i = 1, . . . , n.

2. Compute the pitch profile Pp as Pp[i] = |p[i + 1]− p[i]| with i = 1, . . . , n− 1.

3. Compute the IOI profile PIOI as PIOI [i] = |on[i + 1]− on[i]| with i = 1, . . . , n− 1.

4. Compute the rest profile Pr as Pr[i] = max(0; on[i + 1]− off [i]) with i = 1, . . . , n− 1.

5. for each profile Pk,
compute the strength sequence Sk with algorithm ProfileStrength

6. Compute the boundary strength sequence LB as a weighted average of the individual strength
sequences Sk. I.e.

LB[i] = wpitchSp[i] + wioiSIOI [i] + wrestSr[i].

7. Local peaks in this overall strength sequence LB indicate local boundaries.

The suggested weights for the three different parameters are wpitch = wrest = 0.25 and wioi = 0.50.
In order to compute the profile strength the following algorithm is used.

Algorithm ProfileStrength

1. Given the parametric profile Pk = [x[1], . . . x[n− 1]]
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2. Compute the degree of change r[i] between two successive interval values xi and x[i + 1] by:

r[i] =
|x[i]− x[i + 1]|
x[i] + x[i + 1]

if x[i] + x[i + 1] 6= 0 and x[i], x[i + 1] ≥ 0; otherwise r[i] = 0.

3. Compute the strength of the boundary s[i] for interval x[i] which is affected by both the degree
of change to the preceding and following intervals, and is given by the function:

s[i] = x[i] · (r[i− 1] + r[i])

4. Normalise the strength sequence in the range [0, 1], by computing s[i] = s[i]/maxj(s[j])

5. Return the sequence S = { s[2], . . . , s[n− 1] }

6.3.3 Tonality: Key finding

Figure 6.27: Piano keyboard representation of the scales of C major and C minor. Notes in each scale
are shaded. The relative importance of the first (tonic - C), fifth (dominant - G) and third (mediant -
E) degrees of the scale is illustrated by the length of the vertical bars. The other notes of the scale are
more or less equally important followed by the chromatic notes that are not in the scale (unshaded)
[from McAdams 1996].

In the Western tonal pitch system, some pitches and chords, such as those related to the first and
fifth degrees of the scale (C and G are the tonic and dominant notes of the key of C major, for example)
are structurally more important than others (Fig. 6.27). This hierarchization gives rise to a sense of
key. In fact when chords are generated by playing several pitches at once, the chord that is considered
to be most stable within a key, and in a certain sense to ”represent” the key, comprises the first, third
and fifth degrees of the scale. In tonal music, one can establish a sense of key within a given major or
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minor scale and then move progressively to a new key (a process called modulation) by introducing
notes from the new key and no longer playing those from the original key that are not present in the
new key.

Factors other than the simple logarithmic distance between pitches affect the degree to which
they are perceived as being related within a musical system. The probe tone technique developed by
Krumhansl has been quite useful in establishing the psychological reality of the hierarchy of relations
among pitches at the level of notes, chords, and keys. In this paradigm, some kind of musical context
is established by a scale, chord, melody or chord progression, and then a probe stimulus is presented.
Listeners are asked to rate numerically either the degree to which a single probe tone or chord fits with
the preceding context or the degree to which two notes or chords seem related within the preceding
context. This technique explores the listener’s implicit comprehension of the function of the notes,
chords, and keys in the context of Western tonal music without requiring them to explicate the nature
of the relations.

Figure 6.28: C Major and C minor profiles derived with the probe-tone technique from fittingness
ratings by musician listeners.

If we present a context, such as a C major or C minor scale, followed by a single probe tone that is
varied across the range of chromatic scale notes on a trial-to-trial basis, a rating profile of the degree
to which each pitch fits within the context is obtained. This quantitative profile, when derived from
ratings by musician listeners, fits very closely to what has been described intuitively and qualitatively
by music theorists (Fig. 6.28). Note the importance of the tonic note that gives its name to the scale,
followed by the dominant or fifth degree and then the mediant or third degree. These three notes form
the principal triad or chord of the diatonic scale. The other notes of the scale are of lesser importance
followed by the remaining chromatic notes that are not within the scale. These profiles differ for
musicians and non-musicians. In the latter case the hierarchical structure is less rich and can even be
reduced to a simple proximity relation between the probe tone and the last note of the context.

Krumhansl has shown (fig. 6.29) that the hierarchy of tonal importance revealed by these profiles
is strongly correlated with the frequency of occurrence of notes within a given tonality (the tonic
appears more often than the fifth than the third, and so on). It also correlates with various measures
of tonal consonance of notes with the tonic, as well as with statistical measures such as the mean
duration given these notes in a piece of music (the tonic often having the longest duration).
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Figure 6.29: Comparison between tonal hierarchies and statistical distribution of tones in tonal works.
It is shown the frequency of occurrence of each of the 12 chromatic scale tones in various songs and
other vocal works by Schubert, Mendelssohn, Schumann, Mozart, Richard Strauss and J. A. Hasse.
and the key profile (scaled).

6.3.3.1 Key finding algorithm

These correlations are the base of the classic key finding algorithm of Krumhansl-Schmuckler (as
explained in Krumhansl’s book Cognitive Foundations of Musical Pitch [Oxford University Press,
1990]). Each key has a key-profile: a vector representing the optimal distribution of pitch-classes for
that key. The KSkeyFinding algorithm works as follows.

Algorithm KSkeyFinding

1. Given a music segment of n tones, with pitch p[i], duration dur[i], for i = 1, . . . , n.

2. Given the key profiles, 12 for major key and 12 for minor key

3. Compute the pitch class distribution vector pcd[0..11], taking into account the tone duration
with:

for i from 1 to n
pcd[i] = 0

for i from 1 to n
pc = p[i] mod 12
pcd[pc] = pcd[pc] +dur[i]

4. Compute correlations of for all 24 major and minor pitch-class keys

5. Assume that the estimated key for the passage is given by the largest positive correlation.

In this method, the input vector for a segment represents the total duration of each pitch-class in
the segment. The match between the input vector and each key-profile is calculated using the standard
correlation formula.

For example, if we take opening bar of Yankee Doodle, as shown in fig. 6.30, we find that: the
sum of the durations of the G naturals gives .75 of a minim, the durations of the B naturals add up to
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Figure 6.30: Example of Krumhansl-Schmuckler key finding algorithm: opening bar of Yankee Doo-
dle.

Figure 6.31: Example of Krumhansl-Schmuckler key finding algorithm: duration distribution of Yan-
kee Doodle.

Key Score Key Score
C major 0.274 C minor -0.013
C sharp major -0.559 C sharp minor -0.332
D major 0.543 D minor 0.149
E flat major -0.130 E flat minor -0.398
E major -0.001 E minor 0.447
F major 0.003 F minor -0.431
F sharp major -0.381 F sharp minor 0.012
G major 0.777 G minor 0.443
A flat major -0.487 A flat minor -0.106
A major 0.177 A minor 0.251
B flat major -0.146 B flat minor -0.513
B major -0.069 B minor 0.491

Table 6.3: Correlation between the graph showing the durations of the various pitches in the Yankee
Doodle excerpt and each of the major and minor key profiles.

half a minim, the durations of the A naturals add up to half a minim and there is one quaver D natural.
We can then draw a graph showing the durations of the various pitch classes within the passage being
analysed, as shown in fig 6.31. The next step in the algorithm is to calculate the correlation between
this graph and each of the 24 major and minor key profiles. This table (tab. 6.3) shows the correlation
between this graph showing the durations of the various pitches in the Yankee Doodle excerpt and
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C key note names C C# D D# E F F# G G# A A# B
major key 5 2 3.5 2 4.5 4 2 4.5 2 3.5 1.5 4
minor key 5 2 3.5 4.5 2 4 2 4.5 3.5 2 1.5 4

Table 6.4: Temperley key profiles. The note names refer to C major and C minor key.

each of the major and minor key profiles. The algorithm then predicts that the perceived key will be
the one whose profile best correlates with the graph showing the distribution of tone durations for the
passage. So in this case, the algorithm correctly predicts that the key of Yankee Doodle is G major.

A variation of the key finding algorithm is proposed in Temperley 2001 (KSTkeyFinding al-
gorithm). In this method, the input vector for a segment simply has 1 for a pitch-class if it is present
at all in the segment (the duration and number of occurrences of the pitch-class are ignored) and 0 if it
is not; the score for a key is given by the sum of the products of key-profile values and corresponding
input vector values (which amounts to summing the key-profile values for all pitch class present in the
segment). Moreover the key profiles were heuristically adjusted and are given in Table 6.4. Notice
that given a C major key profile, the other major key profiles can be simply obtained by acyclical shift,
and in a similar way all the minor key profiles can be obtained from the Cminor key profile.

The KSTkeyFinding algorithm works as follows.

Algorithm KSTkeyFinding

1. Given a music segment of n tones, with pitch p[i], for i = 1, . . . , n.

2. Given the (modified) key profiles, 12 for major key and 12 for minor key

3. Compute the pitch class vector pv, where pv[k] = 1 if pitch class k is present in the music
segment, else pv[k] = 0. I.e.

for k from 0 to 11
pv[k] = 0

for i from 1 to n
pv[ p[i] ] = 1

4. for all 24 major and minor key profiles,
Compute the scalar product of pv with the key profile vector kp as

∑

j

pv[j] · kp[j]

5. Assume that the estimated key for the passage is given by the largest positive scalar product.

6.3.3.2 Modulation

The key finding algorithms produce a single key judgement for a passage of music. However, a vital
part of tonal music is the shift of keys from one section to another. In music, modulation is most
commonly the act or process of changing from one key (tonic, or tonal center) to another.

The key finding algorithm could easily be run on individual sections of a piece, once these sections
were determined. It is possible to handle modulation: in considering a key for a segment, a penalty is
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assigned if the key differs from the key of the previous segment. In this way, it will prefer to remain
in the same key, other things being equal, but will change keys if there is sufficient reason to do so.
This task can be dealt with an algorithm similar to Viterbi algorithm, which can be implemented by
dynamic programming as the following KeyModulation algorithm.

Algorithm KeyModulation

Given m music segments
for every segment i = 1, . . . , m

compute q[i, ·] vector of key weights by a key finding algorithm
Let d[1, ·] = q[1, ·]
for i = 2 to m

for j = 0 to 23
d[i, j] = q[i, j] + maxk (d[i− i, k]− w(k, j))
pr[i, j] = arg maxk(d[i− i, k]− w(k, j))

key[m] = arg maxj d[m, j]

for i = m-1 downto 1
key[i] = pr[key[i + 1]]

In this algorithm, the vector position pr[i, j] contains the best previous key which conducted to the
j-th key estimation of the segment i. The function w(k, j) gives the penalty for passing from k to j
key. The penalty value is zero if there is no key chance: i.e. w(j, j) = 0.

With this strategy, the choice does not depends only on the segment in isolation, but it takes into
account also previous evaluations. At each segment each key receives a local score indicating how
compatible that key is with the pitches of the segment. Then we compute the best so far analysis
ending at that key. The best scoring analysis of the last segment can be traced back to yield the
preferred analysis of the entire piece. Notice that some choices can be changes as we proceed in the
analysis of the segments. In this way the dynamic programming model gives a nice account of an
important phenomenon in music perception: the fact that we sometimes revise our initial analysis of
a segment based on what happens later.

6.4 Music Information Retrieval: Issues, Problems, and Methodologies

by Nicola Orio

6.4.1 Introduction

The core problem of Information Retrieval (IR) is to effectively retrieve documents which convey
content being relevant to the user’s information needs. Effective and efficient techniques have been
developed to index, search, and retrieve documents from collections of hundreds of thousands, or
millions of textual items.

The most consolidated results have been obtained for collection of documents and user’s queries
written in textual form and in English language. Statistical and probabilistic techniques have lead to
the most effective results for basic system functions and are currently employed to provide advanced
information access functions as well. The content description of media being different from text, and
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the development of different search functions are necessary steps for content-based access to Digital
Libraries (DL). This statement mainly applies to cultural heritage domain, where different media and
search functions live together.

In order to provide a content-based multimedia access, the development of new techniques for
indexing, searching, and retrieving multimedia documents have recently been the focus of many re-
searchers in IR. The research projects in DLs, and specifically those carried out in cultural heritage
domain, have shown that the integrated management of diverse media - text, audio, image, video - is
necessary.

The problem with content-based access to multimedia data is twofold.

• On the one hand, each media requires specific techniques that cannot be directly employed for
other media.

• On the other hand, these specific techniques should be integrated whenever different media are
present in a individual item.

The core IR techniques based on statistics and probability theory may be more generally employed
outside the textual case and within specific non-textual application domains. This is because the under-
lying models, such as the vector-space and the probabilistic models, are likely to describe fundamental
characteristics being shared by different media, languages, and application domains.

6.4.1.1 Digital Music and Digital Libraries

There is an increasing interest towards music stored in digital format, which is witnessed by the
widespread diffusion on the Web of standards for audio like MP3. There are a number of reasons to
explain such a diffusion of digital music.

• First of all, music is an art form that can be shared by people with different culture because it
crosses the barriers of national languages and cultural backgrounds. For example, tonal Western
music has passionate followers also in Japan and many persons in Europe are keen on classical
Indian music: all of them can enjoy music without the need of a translation, which is normally
required for accessing foreign textual works.

• Another reason is that technology for music recording, digitalization, and playback, allows for
an access that is almost comparable to the listening of a live performance, at least at the level
of audio quality, and the signal to noise ratio is better for digital formats than for many analog
formats. This is not the case of other art forms, like painting, sculpture or even photography,
for which the digital format is only an approximate representation of the artwork. The access to
digitized paintings can be useful for studying the works of a given artist, but cannot substitute
the direct interaction with the real world works.

• Moreover, music is an art form that can be both cultivated and popular, and sometimes it is
impossible to draw a line between the two, as for jazz or for most of ethnic music.

These reasons, among others, may explain the increasing number of projects involving the creation
of music DLs. A music DL allows for, and benefits from, the access by users from all over the world,
it helps the preservation of cultural heritage, and it is not tailored only to scholars’ or researchers’
needs. More in general, as music is one of the most important means of expression, the organization,
the integration with other media, and the access to the digitized version of music documents becomes
an important multimedia DL component. Yet, music has some peculiarities that have to be taken into
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account when developing a music DL. In figure 6.32 the architecture of a music information retrieval
system is shown.

Figure 6.32: Architecture of a music information retrieval system

6.4.1.2 Music Information Retrieval

Specific and effective techniques being capable of indexing and retrieving such multimedia documents
as the music ones need to be designed and implemented.

Current approaches to Music Information Retrieval (MIR) are based either on string matching
algorithms or textual bibliographic catalogue.

• Sting matching approach makes content-based retrieval very difficult - indeed, retrieving textual
files using Unix grep-like commands gives poor results.

• Textual bibliographic catalogue approach makes content-based retrieval impossible since the
music content cannot be described by bibliographic catalogue.

The requirement for a content-based MIR has been stressed within the research area of music in-
formation systems as well. The developments in the representation of music suggest a need for an
information retrieval philosophy directed toward non-text searching and eventual expansion to a sys-
tem that encompasses the full range of information found in multimedia documents. As IR has dealt
with the representation and the disclosure of content from its early days, it is natural to think that
IR techniques should be investigated to evaluate their application to music retrieval. According to
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McLane “what has been left out of this discussion, and will no doubt be a topic for future study,
is the potential for applying some of the standard principles of text information retrieval to music
representations”.

• If we follow the hypothesis that the use of standard principles of text information retrieval
to index and retrieve music documents is possible, then the design of ad-hoc segmentation
algorithms to produce musical ‘lexical units’ like words in textual documents is required.

The concept of lexical unit may vary depending on the approach. A lexical unit can be: a fixed-
length string, the incipit, a complete theme, a melodic phrase, and so on. Music is a continuous
flow of events (e.g., notes, chords, and unpitched percussive sounds) without explicit separators,
if not those perceived by listeners. Also music representation lacks of separators of lexical units,
because it conveys information only about macro-events, like changes in tonality or the presence
of repetitions. It is therefore necessary to automatically detect the perceived lexical units of a
music document to be used like words in textual documents.

• Moreover, content-based MIR requires the design of normalization algorithms. Once detected,
musical lexical units occur in documents with many variants like textual words do within textual
documents. For example, a melodic pattern may occur in many music works, perhaps composed
by different authors, with small deviations of note intervals or timing. Despite these deviations,
different patterns may be perceptually similar, hence conveying the same music perception. It is
therefore necessary to detect these variants and conflate all the similar musical lexical units into
a common stem expressing the same music perception. This conflation process is analogous
to the one performed in the textual case for detecting word stems through, for example, the
Porter’s stemming algorithm.

To allow the integration of automatic music processing techniques with automatic IR techniques,
segmentation and normalization algorithms are applied also on music queries.

In a content-based music IR system, users may be able to interact with the system by using the
same language, that is the music language. This because content-based MIR requires users to be able
of expressing the music document content. The most natural way of express music content is singing
and playing music. This approach is often referred to as the query by example paradigm. Therefore,
users should be provided with interfaces and search functions so that they can play music and send a
music query to the system.

To make content-based music retrieval possible, query content and document content have to be
matched: Describing query content is then necessary. If we regard music queries as music documents,
segmentation and normalization can be performed also on music queries using the same algorithms
used for disclosing document content.

6.4.2 Issues of Content-based Music Information Retrieval

Music, in its different representations, can be considered as another medium together with text, image,
video, and speech. Nevertheless, there are some issues that make music different from other multi-
media IR application domains. The issues we address are form, instantiation, dimension, content,
perception, user profile, and formats. The most relevant issues are describes in the following Sections.

6.4.2.1 Peculiarities of the Music Language

The same entity, i.e. a music work, can be represented in two different main forms: the notated and
the acoustic form, respectively corresponding to score and performance. Hence the communication in
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music is performed at two levels:

• the composer translates his intentions in a music structure (music as a composing art),

• the musician translates the written score into sounds (music as a performing art).

Also users may have different needs, in particular the music scholar may look for a given composition,
while the melomane may look for a particular performance.

Each music work may have different instantiations. As musicians can interpret scores, the re-
sulting performances may differ and therefore more performances correspond to an individual score.
Furthermore, the same music work may be transcribed into different scores, depending on the revisers’
choices. As a consequence, different performances and scores may rely to the same music work.

Different dimensions characterize the information conveyed by music. Melody, harmony, rhythm,
and structure are dimensions, carried by the written score, that may be all or in part of interest for the
final user. In the case of a performance other dimensions should be added, for instance timbre, articu-
lation, and timing. It is likely that the dimensions of interest vary with the level of user’s expertise and
the specific user’s search task. As described in Section 6.4.2.3, different formats are able to capture
only a reduced number of dimensions. Therefore, the choice of a representation format has a direct
impact on the degree to which a music retrieval system can describe each dimension.

While text, image, video, or speech-based documents in general convey some information that
form their content, it is still unclear what type of content, if any, music works do convey. Let us
consider an example: the concept of tempest can be described with a textual document, such as the
first chapter of Shakespeare’s ‘The Tempest’, a painting, such as the landscape of Giorgione’s ‘The
Tempest’, a video or speech, such as broadcasting news about, for instance, a tornado. All these
media are able to convey, among all the other information, the concept of tempest. There are up to
forty music works of tonal Western music whose title is related to tempests, among those the most
famous probably are Beethoven’s Sixth Symphony IV Movement, Rossini’s Overture of ‘William
Tell’, and Vivaldi’s Concerto ‘La Tempesta di Mare’. These works differ in music style, form, key
and time signature, and above all the user may be not able to recognize that the work is about a tempest
and not just pure music.

In principle, music language does not convey information as, for instance, text or video do. Many
composers wrote music to stir up emotions, and in general they aimed to communicate no specific
information to the listener. The final user feels emotions on listening to the music, and he interprets
some information independently from the composer’s and performer’s thought and differently from
the other users. There is a particular kind of music works, called musica a programma, in which the
title (like Vivaldi’s ‘The Spring’) or a lyric (like Debussy’s ‘Prlude l’aprs-midi d’un faune’) suggests
a meaning to the listener; this sort of textual data would be better managed using a database system
rather than a IR system. Moreover in sung music, such as Cantatas, the accompanied text gives
the work some meaning, yet that sort of text would require ad-hoc IR techniques to be effectively
managed. In general the availability of textual material together with music documents is insufficient.

It is then important to consider how music is perceived and processed by listeners, to highlight
which kind of content is carried by this medium. A number of different theories was proposed by
musicologists, among which the most popular ones are the Generative Theory of Tonal Music (see
Sect. 6.6.1) and the Implication-Realization Model (see Sect. 6.6.2). In both cases it is stated that
listeners perceive music as structured and consisting of different basic elements. Therefore, even if
music notation and performance lack of explicit separators (like blanks or commas in text) musicians
and listeners perceive the presence of small elements which constitute the music work: we can con-
sider these elements as the lexical units for a content-based approach to MIR. It is likely that all the
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dimensions of music language can be segmented in their lexical units and be used to extract a content
from a music document.

6.4.2.2 The Role of the User

As always happens in IR, the effectiveness of techniques does strongly depend on the final user.
DL systems does indeed interact with final users of very diverse types and with different levels of
expertise in the use of the system itself. This is particularly true for music DLs, because there is a
great difference in users’ expertise depending on the practice of a musical instrument, the ability of
reading a score, the knowledge of harmony rules, the familiarity with composition styles, and so on.
Users may have different needs, for instance a music scholar may look on how a given cadenza is
used by different authors, while a melomane may look for a particular performance of a well-known
musician. This is a key aspect in the design of a methodology for content-based MIR, because it
affects the choice of the dimension to be used for describing a music work, that is which kind of
content has to be extracted from it.

Considering that access to DL is widely spread to users of any type, final users of a music DL
may not have a deep knowledge of music language. Therefore, melody seems to be the most suitable
dimension. In fact, almost everybody can recognize simple melodies and perform them at least by
singing or humming. In this case, lexical units can be considered the musical phrases, which may be
defined as short excerpts of the melody which constitute a single musical gesture. Moreover, melody
carries also explicit information about rhythm and implicit information about harmony.

Melody can be the most suitable evidence for content-based music retrieval, it may however be the
case that only a part of the melody can effectively be exploited as useful evidence for music document
and query description. This implies that, if phrases can be detected by means of some segmentation
algorithms, then it is likely that some of these phrases are ‘good’ descriptors of the music content from
users’ point of view, while others can be dropped since they give little contribution to the music content
description and may negatively affect efficiency. This latter consideration leads us to contemplating
the possibility of building lists of stop phrases, that may be dropped from the index of phrases similarly
to the textual case. However, it is still unclear if stop phrases exist how users perceive them. While
one can identify a word as stop word because it has no, little, or less meaning than keywords, one
cannot identify a phrase as stop phrase because it is very difficult to say what ‘phrase meaning’ does
mean, and frequency-based stop phrase list construction may be a difficult task because, for instance,
users may recall melody excerpts just because they are very frequent in a musical genre.

6.4.2.3 Formats of Music Documents

As previously mentioned, the communication in music is achieved at two levels, corresponding to two
forms: the composer translates his intentions into a musical structure, that is represented by a music
score, and the musician translates the written score into a performance, that is represented by a flow
of acoustic events. A number of different digital formats correspond to each form. It can be noted
that, as musicians can interpret scores, the resulting performances differ and therefore more than one
performance correspond to a single score. Even if the two forms can be considered as instantiations
of the same object, they substantially differ in the information that can be manually or automatically
extracted from their respective formats.

The first problem which arises in the automatic processing of music is then that a music work may
be digitally stored in different formats. The same music piece can be represented, for example,

• by a reproduction of the manuscript,
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• by a symbolic notation of the score,

• by a sequence of time-stamped events corresponding to pitched and unpitched sounds,

• or by a digital recording of an acoustic performance.

Each format carries different information on the content of the document. For instance, at the state-of-
the-art it is impossible to recover informations about the written score from the digital sampling, e.g.
stored in a compact disk, of a polyphonic audio signal, and the score carries no information about the
timbre, expressive timing and other performing parameters. Hence, the documents format has to be
chosen depending on the aims of the DL, which may encompass preservation, displaying, listening,
indexing, and retrieval, and so on. As an example, preservation requires high quality audio coding
and dissemination over the Internet requires lossy compression.

Formats for digital music documents can be divided in two classes.

• The score is a structured organization of symbols, which correspond to acoustic events; the
score is a direct representation of all the dimensions of music (i.e., melody, harmony, and
rhythm) and it usually contains all the information that is relevant for classifying and catalogu-
ing: type of movement, time and key signatures, composer’s notes, and so on. The symbolic
nature of the score allows for an easy representation of its content, and many proposed formats
represents score in the form of a textual markup language, for instance ABC and GUIDO.

• The performance is made of a sequence of gestures performed by musicians on their musical
instruments; the result is a continuous flow of acoustic waves, which correspond to the vibration
induced on musical instruments. Even if all the dimensions of music are embedded in a per-
formance, it requires high-level information processing to recognize them. In particular, only
experienced musicians can recognize all the dimensions of music from listening to a perfor-
mance and, at the state of the art, there is no automatic system that can recognize them from
an acoustic recording, apart from trivial cases. The nature of a performance does not allow
for an easy representation of its content. The formats adopted to digitally represent perfor-
mances, such as AIFF (Audio Interchange File Format, proposed by Apple Computers) or MP3
(MPEG1, Layer3), are a plain digital coding of the acoustic sound waves, with a possible data
compression.

(a) (b)

Figure 6.33: Example of a melody

We present now an example of different representations of a melody with reference to fig. 6.33(a).
we can represent as absolute or relative values.

• Absolute measure:

– Absolute pitch: C5 C5 D5 A5 G5 G5 G5 F5 G5

– Absolute duration: 1 1 1 1 1 0.5 0.5 1 1
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– Absolute pitch and duration:
(C5,1)(C5,1)(D5,1)(A5,1)(G5,1)(G5,0.5)(G5,0.5)(F5,1)(G5,1)

• Relative measure:

– Contour (in semitones): 0 +2 +7 -2 0 0 -2 +2

– IOI (Inter onset interval) ratio: 1 1 1 1 0.5 1 2 1

– Contour and IOI ratio:
(0,1)(+2,1)(+7,1)(-2,1)(0,0.5)(0,1)(-2,2)(+2,1)

In a polyphonic case (see fig. 6.33(b)) we can represent in different ways.

• Keep all information of absolute pitch and duration (start time, pitch, duration)
(1,C5,1)(2,C5,1)(3,D5,1)(3,A5,1)(4,F5,4)(5,C6,1)(6,G5,0.5)(6.5,G5,0.5)...

• Relative note representation: Record difference of start times and contour (ignore duration)
(1,0)(1,+2)(0,+7)(1,-4) ...

• Monophonic reduction, e.g. select one note at every time step (main melody selection)
(C5,1)(C5,1)(A5,1)(F5,1)(C6,1)...

• Homophonic reduction (chord reduction), e.g. select every note at every time step
(C5)(C5)(D5,A5)(F5)(C6)(G5)(G5) ...

With the aim of taking into account all the variety in which music information can be represented,
it has been proposed the Standard Music Description Language (SMDL), as an application of the
Standard ISO/IEC Hyper-media/Time-based Structuring Language. In SMDL, a music work is di-
vided into different domains, each one dealing with different aspects, from visual to gestural, and
analytical. SMDL provides a linking mechanism to external, pre-existing formats for visual repre-
sentation or storage of performances. Hence SMDL may be a useful way for music representation
standardization, but the solution is just to collect different formats rather that proposing a new one
able to deal with all the aspects of the communication in music.

A Note on MIDI A format that can be considered as a compromise between the score and the
performance forms is MIDI (Musical Instrument Digital Interface), which was proposed in 1982 for
data exchange among digital instruments. MIDI carries both information about musical events, from
which it is possible to reconstruct an approximate representation of the score, and information for
driving a synthesizer, from which it is possible to listen to a simplified automatic performance. It
seems then that MIDI draws a link between the two different forms for music representation. This
characteristics, together with the fortune of MIDI as an exchange format in the early times of the
Internet, can explain why many music DLs and most projects regarding music indexing and retrieval
refer to it. Some of the research work on music information retrieval take advantage of the availability
of MIDI files of about all the different music genres and styles. MIDI files are parsed in order to
extract a representation of the music score, and then indexed after different preprocessing.

Nevertheless, MIDI is becoming obsolete and users on the Internet increasingly prefer to exchange
digital music stored in other formats such as MP3 or RealAudio, because they allow for a good
audio-quality with a considerably small dimension of the documents size. Moreover, if the goal
of a music DL is to preserve the cultural heritage, more complete formats for storing both scores
and performances are required. Being a compromise between two different needs – i.e., to represent
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symbols and to be playable – MIDI turns out to fit neither the needs of users who want to access to
a complete digital representation of the score, nor to users who want to listen to high-quality audio
performances.

6.4.2.4 Dissemination of Music Documents

The effectiveness of a retrieval session depends also on the ability of users to judge whether retrieved
documents are relevant to their information needs. The evaluation step, in a classical presentation-
evaluation cycle, for an information retrieval session of textual documents usually benefits from tools
for browsing the document (e.g., the ‘find’ function), in particular when the size of documents is large.
Moreover, a general overview of the textual content may help users to judge the relevance of most of
the retrieved documents.

Users of a music DL cannot take advantage of these shortcuts for the evaluation of documents
relevance, when they are retrieving music performances. This is due to the central role played by time
in the listening to music. A music performance is characterized by the organization of music events
along the time axis, which concatenates the single sounds that form the whole performance. Changing
playback speed of more than a small amount may result in a unrecognizable performance. In other
words, it requires about 20 minutes to listen to a performance that lasts 20 minutes. It may be argued
that many music works are characterized by their incipit, that is by their first notes, and hence a user
could be required to listen only to the first seconds of a performance before judging its relevance to
his information needs. Anyway, the relevant passage of a music document – e.g., a theme, the refrain
– may be at any position in the time axis of the performance.

A tool that is often offered by playback devices is the ‘skip’ function, that allows for a fast access
to a sequence of random excerpts of the audio files, to help listeners looking for given passages.
Everyone who tried to find a particular passage in a long music performance, knows that the aid that
the skip function gives when accessing to music documents is not even comparable with the find
function for textual documents. This is partially due to the fact that auditory information does not
allow a snapshot view of the documents as visual information does. The evaluation of relevance
of retrieved music documents may then be highly time-consuming, if tools for a faster access to
document content are not provided.

6.4.3 Approaches to Music Information Retrieval

There is a variety of approaches to MIR and there are many related disciplines involved. Because of
such wide varieties, it is difficult to cite all the relevant work. Current approaches to MIR can broadly
be classified into data-based and content-based approaches. For the aims of scientific research on
multimedia IR, content-based approaches are more interesting, nevertheless the use of auxiliary tex-
tual data structures, or metadata, can frequently be observed in approaches to non-textual, e.g. image
or video document indexing. Indeed, textual index terms are often manually assigned to multimedia
documents to allow users retrieving documents through textual descriptions.

6.4.3.1 Data-based Music Information Retrieval

Data-based MIR systems allow users for searching databases by specifying exact values for prede-
fined fields, such as composer name, title, date of publication, type of work, etc., in which cases we
actually speak about exact match retrieval. Data-based approaches to MIR makes content-based re-
trieval almost impossible since the music content cannot easily be conveyed simply by bibliographic
catalogue only.
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Indeed, music works are usually described with generic terms like ‘Sonata’ or ‘Concerto’ which
are related only to the music form and not the actual content. From an IR point of view, data-based
approaches are quite effective if the user can exhaustively and precisely use the available search fields.
However, bibliographic values are not always able to describe exhaustively and precisely the content
of music works. For example, the term ‘Sonata’ as value of the type of work cannot sufficiently
discriminate all the existing sonatas.

Moreover, many known work titles, such as the Tchaikovskij’s ‘Pathetic’, are insufficient to ex-
press a final user’s query whenever he would find the title not being a good description of the music
work. The use of cataloging number, like K525 for Mozart’s ‘Eine Kleine Nachtmusic’, will be effec-
tive only if the user has a complete information on the music work, and in this case a database system
will suffice.

Searching by composer name can be very effective. However, some less known composers and
their works may not be retrieved if only because the authors are little known. Content-based MIR
may allow for the retrieval of these pieces since querying by a known melodic pattern, such as a
Mozart’s one, may retrieve previously not considered or unknown composers. On the other hand, for
a prolific composer, just like Mozart, a simple query by composer’s name will retrieve an extremely
high number of documents, unbearable for the final user.

6.4.3.2 Content-based Music Information Retrieval

Content-based approaches take into account the music document content, such as notation or perfor-
mance, and automatically extract some features, such as incipites or other melody fragments, timing
or rhythm, instrumentation, to be used as content descriptors. Typical content-based approaches are
based on the extraction of note strings from the full-score music document. If arbitrarily extracted,
note strings may be meaningless from a musical point of view because no music information is ex-
ploited to detect those strings, yet allows for a good coverage of all the possible features to be ex-
tracted.

Content-based approaches to MIR can sometimes be oriented to disclosing music document se-
mantic content using some music information, under the hypothesis that music documents can convey
some meaning and then some fragments can effectively convey such meaning. In the latter case, some
music information is exploited to detect those strings so that the detected strings can musically make
sense if, for instance, they were played.

The research work on this area of MIR can be roughly divided in two categories:

• on-line searching techniques, which compute a match between a representation of the query
and a representation of the documents each time a new query is submitted to the system;

• indexing techniques, which extract off-line from music documents all the relevant information
that is needed at retrieval time and perform the match between query and documents indexes.

Both approaches have positive and negative aspects.

• From the one hand, on-line search allows for a direct modelling of query errors by using, for
instance, approximate pattern matching techniques that deal with possible sources of mismatch,
e.g. insertion and/or deletion of notes. This high flexibility is balanced by high computational
costs, because the complexity is at least proportional to the size of the document collection (and,
depending on the technique, to the documents length).
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• From the other hand, indexing techniques are more scalable to the document collection, because
the index file can be efficiently accessed through hashing and the computational complexity
depends only on query length. The high scalability is balanced by a more difficult extraction
of document content, with non trivial problems arising in case of query errors that may cause a
complete mismatch between query and document indexes.

Both approaches had given interesting and promising results. Yet, indexing approaches need to be
investigated in more detail because of the intrinsic higher computational efficiency.

Previous work on on-line search has been carried out following different strategies. A first ap-
proach is based on the use of pattern discovery techniques, taken from computational biology, to
compute occurrences of a simplified description of the pitch contour of the query inside the collection
of documents. Another approach applies pattern matching techniques to documents and queries in
GUIDO format, exploiting the advantages of this notation in structuring information. Approximate
string matching has been used. Markov chains have been proposed to model a set of themes that
has been extracted from music documents, while an extension to hidden Markov models has been
presented as a tool to model possible errors in sung queries.

An example of research work on off-line document indexing has been presented in[8]. In that work
melodies were indexed through the use of N-grams, each N-gram being a sequence of N pitch inter-
vals. Experimental results on a collection of folk songs were presented, testing the effects of system
parameters such as N-gram length, showing good results in terms of retrieval effectiveness, though the
approach seemed not be robust to decreases in query length. Another approach to document indexing
has been presented in[24], where indexing has been carried out by automatically highlighting music
lexical units, or musical phrases. Differently than the previous approach, the length of indexes was not
fixed but depended on the musical context. That is musical phrases were computed exploiting knowl-
edge on music perception, in order to highlight only phrases that had a musical meaning. Phrases
could undergo a number of different normalization, from the complete information of pitch intervals
and duration to the simple melodic profile.

Most of the approaches are based on melody, while other music dimensions, such as harmony,
timbre, or structure, are not taken into account. This choice may become a limitation depending on the
way the user is allowed to interact with the system and on his personal knowledge on music language.
For instance, if the query-by-example paradigm is used, the effectiveness of a system depends on
the way a query is matched with documents: If the user may express his information need through a
query-by-humming interface, the melody is the most likely dimension that he will use. Moreover, for
non expert users, melody and rhythm (and lyrics) are the more simple dimensions for describing their
information needs.

Query processing can significantly differ within content-based approaches. After a query has
been played, the system can represent it either as a single note string, or as a sequence of smaller
note fragments. The latter can be either arbitrary note strings, such as n-grams, or fragments extracted
using melody information. Regarding the query as a single note string makes content-based retrieval
very difficult since it would be similar to retrieving textual files using Unix grep-like commands which
provides very poor results. On the contrary, extracting fragments using melody information can result
in a more effective query description. We then speak about partial match retrieval.

6.4.3.3 Music Digital Libraries

Digital library projects have been carried out for designing, implementing, and testing real MIR sys-
tems. Some of them implement data-based, content-based, or both approaches to MIR. We cite some
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of the projects being most relevant to our research aims. The reader can access to the cited papers
to have a complete description of methods and systems. The VARIATIONS digital library has been
reported in [9], while the MELDEX project is reported in [4]. A project involved the University of
Milan and the Teatro alla Scala, Milan [10] to implement a multimedia object-relational database
storing the music contents of the archive, as well as catalogue data about the nights at the Teatro alla
Scala. The access to the archive is basically based on fragment extraction and approximate string
matching. A feasibility study was conducted for the ADMV (Digital Archive for the Venetian Music
of the Eighteenth century) digital library project [3]. The feasibility study allowed for defining archi-
tecture, technology, and search functions for a data and content-based MIR and database management
system. The system complexity is due to the number of inter-relationships of all the aspects being
typical of a real effective DL: distributed databases, preservation, wide area networking, protection,
data management, content-based access.

6.4.4 Techniques for Music Information Retrieval

Content-based MIR is a quite new research area, at least compared to classical textual IR. For this
reason, most of the techniques applied to retrieve music documents derive from IR techniques. In this
section, after introducing some terminology typical of content-based description of music documents,
techniques for MIR and their relationship with IR techniques are described. A final example is given
on how evaluation can be carried out.

6.4.4.1 Terminology

There is a number of terms that have a special meaning for the research community on MIR.
A feature is one of the characteristics that describe subsequent notes in a score. A note feature

can be: the pitch, the pitch interval with the previous note (PIT), a quantized PIT, the duration, the
interonset interval with the subsequent note (IOI), the ratio of IOI with the previous note, and so
on. All the features can be normalized or quantized. In the example of sect. 6.4.5.4, features are
related to pitch and rhythm that, though usually correlated, can be treated independently. For example,
many songs can be guessed only by tapping the rhythm of the melody while other ones can be easily
recognized even if played with no tempo or rubato.

A string is a sequence of features. Any sequence of notes in a melody can be considered a string.
It can be noted that strings can be used as representative of a melody, which is the idea underlying
many approaches to MIR, but the effectiveness by which each string represents a document may
differ. For instance, it is normally accepted that the first notes of a melody play an important role
in recognition, or that strings that are part of the main theme or motif are good descriptors as well.
String length is an important issue: Long strings are likely to be effective descriptors, yet they may
lead to problems when the user is request to remember long parts of a melody for querying a MIR
system. Often, strings shorter than three notes can be discarded, because they can be considered not
significant descriptors.

A pattern is a string that is repeated at least twice in the score. The repetition can be due to the
presence of different choruses in the score or by the use of the same music material (e.g., motifs,
rhythmical cells) along the composition. Each pattern is defined by the string of features, by its length
n and by the number of times r it is repeated inside the score. All patterns that appear only inside
longer patterns have been discarded in the example of sect. 6.4.5.4. The computation of patterns can
be done automatically using well known algorithms for pattern discovery. Given a particular feature,
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patterns can be considered as effective content descriptors of a music document. Depending on the
selected feature, patterns carry different information about document content.

It can be noted that a music documents may be directly indexed by its strings. In particular, it can
be chosen to describe a document with all its strings of a given length, usually from 3 to 5 notes, that
are called n-grams. The n-gram approach is a simple, but often effective, alternative to more complex
approaches that are based on melodic information. In the following sections, patterns are considered
as possible content descriptors, yet the discussion may be generalized to n-grams, musical phrases,
and so on. Moreover, in the following discussion, three kinds of features are considered for the pattern
selection step – the interonset interval (IOI) normalized to the quarter note, the pitch interval (PIT) in
semitones, and both (BTH).

6.4.5 Document Indexing

Document indexing is a mandatory step for textual information retrieval. Through indexing, the rele-
vant information about a collection of documents is computed and stored in a format that allows easy
and fast access at retrieval time. Document indexing is carried out only when the collection is created
or updated, when users are not yet accessing the documents, and then the problems of computational
time and efficiency are usually less restrictive. Indexing speeds up retrieval time because it is faster to
search for a match inside the indexes than inside the complete documents.

Following the terminology introduced in the previous section, each document may be indexed by
a number of patterns of different length and with different multiplicity. If it is assumed that patterns
are effective descriptors for document indexing, the first step of document indexing consists in the
automatic computation of the patterns of each document. As previously mentioned, relevant features
which are usually taken into account are IOI, PIT, and BTH. Pattern computation can be carried out
with a ad-hoc algorithms that compute exhaustively all the possible patterns, and store them in a hash
table.

An exhaustive pattern discovery approach highlights a high number of patterns that have little or
no musical meaning; for instance, a pattern that is repeated only two or three times in a document is
likely to be computed by chance just because the combination of features is repeated in some notes
combinations. Moreover, some patterns related to scales, repeated notes, or similar musical gestures,
are likely to appear in almost all documents and hence to be poor discriminants among documents.
In general, the degree by which a pattern is a good index may vary depending on the pattern and on
the document. This is a typical situation of textual information retrieval, where words may describe a
document to a different extent. For this reason it is proposed to apply the classical tf · idf weighting
scheme.

The extent by which a pattern describes a document is the result of the multiplication of two terms.
The term frequency is the number of occurrences of a given pattern inside a document. Hence, the
term frequency of pattern p for document d can be computed as

tfd
p = # occurrences of p ∈ d

The inverse document frequency takes into account the number of different documents in which a
patters appears. The inverse document frequency of pattern p can be computed as

idfp = −log
# documents containing p

# documents

Relevant patterns of a document may have a high tf – they are frequent inside the document – and/or
a high idf – they are infrequent across the collection.
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For the aims of indexing, a document is described by a sparse array, where each element is asso-
ciated to a different pattern in the collection. The value of each element is given by the tf · idf value.
The index is built as an inverted file, where each term of the vocabulary is a different pattern in a given
notation (i.e., a text string). Each entry in the inverted file corresponds to a different pattern, and can
efficiently be computed in an expected time O(1) with an hashing function. Given the different sets
of features, three inverted files are built, respectively for features IOI, PIT, and BTH. Inverted files
can be efficiently stored in memory, eventually using compression, and fast accessed at retrieval time.
The size of the inverted file and the implementation of the hashing function depend on the number of
different patterns of the complete collection.

It may be useful to fix the maximum allowable pattern length to improve indexing. In fact, it
is likely that very long patterns are due to repetitions of complete themes in the score and taking
into account also them will give a quite sparse inverted file. Moreover, it is unlikely that a user will
query the system singing a complete theme. These considerations suggest that long patterns could be
truncated when they are over a given threshold.

6.4.5.1 Query Processing

For the query processing step, it can be assumed that users interact with the system according to a
query-by-example paradigm. In particular, users should be able to describe their information needs
by singing (humming or whistling), playing, or editing with a simple interface a short excerpt of the
melody that they have in mind. Pitch tracking can be applied to the user’s query in order to obtain
a transcription in a notation format, such as a string of notes. The string representing the translated
query needs to undergo further processing, in order to extract a number of descriptors that can be used
to match the query with potentially relevant documents. It is normally assumed that a query is likely to
contain strings that characterize the searched document, either because they appear very often inside
its theme or because they are peculiar of that particular melody. In other words, a query is likely to
contain relevant patterns of the searched document, which may have a high tf and/or idf .

The automatic detection of relevant strings cannot be carried out through pattern analysis, because
normally queries are too short to have repetitions and hence to contain patterns. A simple approach
to extract relevant strings, or potential patterns, from a query consists in computing all its possible
substrings. That is, from a query of length q notes are automatically extracted q − 2 strings of three
notes, plus q − 3 strings of four notes, and so on until the maximum allowable length for a pattern is
reached. This approach can be considered similar to query expansion in textual information retrieval,
which is known to increase recall at the risk of lowering precision. On the other hand, it is expected
that most of the arbitrary strings of a query will never form a relevant pattern inside the collection,
and then the negative effects on precision could be bounded.

6.4.5.2 Ranking Relevant Documents

At retrieval time, the strings are automatically extracted from the query and matched with the patterns
of each document. The computation of potentially relevant documents can be carried out computing
the distance between the vector of strings representing the query and the vector of patterns representing
each document. Hence, for each document a Retrieval Status Value (RSV) is calculated, the higher
the RSV, the closer the document with the query. A rank list of potentially relevant documents is
computed from RSVs, obtaining a different rank lists for each of features used.

In general the orderings of documents in the rank lists differ. Differences may be due to many
factors, as the diverse importance of rhythm and melodic profile for a the document collection, the
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Figure 6.34: The phases of a methodology for MIR: Indexing, retrieval, and data fusion

effect of errors in the query, the kind of melodic excerpt chosen by the user as a representative of his
information needs. It is expected that BTH ranking will give high scoring to the relevant documents
when the query is sufficiently long and correctly played, because BTH patterns are a closer represen-
tation of the original melody. On the other hand, IOI and PIT are robust to query errors in melodic
profile and rhythm, respectively. Moreover, simple representations as IOI and PIT are expected to be
less sensitive to query length because of the possible presence of subpatterns of relevant motifs.

It is possible to take advantage from the existence of different rank lists by fusing together the
results, in order to give the user a single rank list which takes into account the results of the three
parallel approaches. This is a typical problem of data fusion, an approach that is usually carried
out in the research area of Meta Search Engines, where the results obtained by different indexing
and retrieval methodologies are combined – or fused – together according to a predefined weighting
scheme. Since the RSVs of individual search engines are not known, or not comparable with others,
the classical approach to data fusion is based on the information of rank only. In the case of MIR
based on parallel features, the fusion can be carried out directly using the RSVs, because they are all
based on the same tf · idf scheme. A new RSV can be computed as a weighted sum of RSVs of single
features obtaining a new rank list.

A complete methodology for MIR shown in Figure 6.34, where steps undertaken at indexing time
are shown on the left, while the operations that are performed at retrieval time are shown on the right.
From Figure 6.34 and the above discussion, it is clear that the computational complexity depends on
the query length – i.e., the number of strings that are computed from the query – while it is scalable on
the number of documents. This is an important characteristic given by indexing techniques, because
the time needed to reply to a query can be reasonably low also for large collections of documents.
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6.4.5.3 Measures for Performances of MIR Systems

The output of almost any information retrieval system, and this applies also to MIR, is a ranked list of
potentially relevant documents. It is clear that only the final user can judge if the retrieved documents
are really relevant to his information needs. That is, the user should evaluate system performances in
terms of retrieval effectiveness. There are two main reasons why the user may not be satisfied by the
result of an information retrieval system.

• the system does not retrieve documents that are relevant for the user information needs – which
is usually called silence effect;

• the system retrieves documents that are not relevant for the user information needs – which is
usually called noise effect

All real systems for MIR try to balance these two negative effects. From the one hand, a high silence
effect may result in not retrieving all the music documents that are similar to a given query sung by
the user. From the other hand, a high noise effect may cause the user to spend great part of a retrieval
session in listening to irrelevant documents.

Even if user satisfaction plays a central role in the evaluation of performances of a MIR system,
and in general of any IR system, user studies are very expensive and time consuming. For this reason,
the IR research community usually carries out automatic evaluation of the proposed systems using
commonly accepted measures. In particular, there are two measures that are connected to the concepts
of silence and noise effects. The first measure is recall, which is related to the ability of a system to
retrieve the highest percentage of relevant documents (thus minimizing the silence effect). Recall is
defined as

recall =
# relevant retrieved

# total relevant
that is the number of relevant documents retrieved by the system divided by the total number of
relevant documents in the complete database of documents. The second measure is precision, which
is related to the ability of the system of retrieving the lowest percentage of irrelevant documents (thus
minimizing the noise effect). Precision is defined as

precision =
# relevant retrieved

# total retrieved

that is the number of relevant documents retrieved by the system divided by the total number of
retrieved documents. An ideal system retrieved only relevant documents, and hence has 100% recall
and precision. For real systems, high precision is usually achieved at the cost of low recall and
viceversa.

Both precision and recall do not take into account that a MIR system may output a rank list of
documents. For this reason it is a common practice to compute these measures also for the first N
documents (for N ∈ {5, 10, 20, . . . }) and, in particular, to compute the precision at given levels
of recall. Another approach is to summarize these measures, and the effect of the documents rank,
in a single measure. For instance, the average precision is computed as the mean of the different
precisions computed each time a new relevant document is observed in the rank list.

The evaluation of MIR systems is usually carried out on a test collection according to the Cran-
field model for information retrieval, which is used at the Text REtrieval Conference (TREC). A test
collection consists in a set of documents, a set of queries, and a set of relevance judgments that match
documents to queries. The creation of a common background for evaluation is still an open issue in
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the MIR community, hence each research group created its own test collection from scratch. A “good”
test collection should be representative of real documents and, in particular, of real user’s queries. The
size of the document set, as well as the way queries are collected, may deeply influence the evaluation
results. Relevance judgments should be normally given by a pool of experts in the music domain,
which is an expensive task, but they can also be automatically constructed when queries are in the
form of excerpts of a known tune. In this latter case, only the document from which the query derives
is considered as relevant.

6.4.5.4 An Example of Experimental Evaluation

In the following paragraphs, the result of an experimental evaluation of a running MIR system are
reported. The system is based on pattern analysis, based on three alternative features (IOI, PIT, and
BTH) and data fusion techniques applied to the combination of IOI and PIT, called Fuse2, and the
combination of all the three features, called Fuse3.

The Test Collection A small test collection of popular music has been created using 107 Beatles’
song in MIDI format downloaded from the Web. As for any test collection, documents may contain
errors. In a preprocessing step, the channels containing the melody have been extracted automatically
and the note durations have been normalized; in case of polyphonic scores, the highest pitch has been
chosen as part of the melody. After preprocessing, the collection contained 107 complete melodies
with an average length of 244 notes, ranging from 89 of the shortest melody to 564 of the longest. Even
if a number of approaches for performing automatic theme extraction has been already proposed in the
literature, the methodology relies on indexing of complete melodies, because repetitions of choruses
and verses can be taken into account by the tf · idf measure.

A set of 40 queries has been created by randomly selecting 20 themes in the dataset and using
the first notes of the chorus and of the refrain. The initial note and the length of each query were
chosen to have recognizable motifs that could be considered representative of real users’ queries. The
queries had an average length of 9.75 notes, ranging from 4 to 21 notes. Only the theme from which
the query was taken was considered as relevant. Using this initial set of correct queries, an alternative
set has been created by adding errors on pitch, duration, and both, obtaining a new set of 120 queries.
A simple error model has been applied, because errors were uniformly distributed along the notes
in the queries, with a probability of about 13.3%. As for many approaches to approximate string
matching, an error can be considered the result of a deletion and an insertion, thus these alternative
sources of errors have not been explicitly modelled. Tests on robustness to query length were carried
out by automatically shortening the initial queries by an increasing percentage, disregarding the fact
that query would not sound musical. In this way, 160 more queries with decreasing length have been
automatically generated. For all the modified queries, only the theme of initial query was considered
as relevant. In the following, we will refer to the only relevant document with the term r-doc for all
the experiments.

Truncation of Patterns All the experimental analyses, whose results are shown in the following
sections, have been carried out after truncating patterns longer than a given threshold t. When a pattern
[f1 . . . fn] had a length of n > t, it has been replaced (in the indexing step) by all its subpatterns of
exact length t, that is the n − t + 1 subpatterns [f1 . . . ft], [f2 . . . ft+1], and so on until [fn−t . . . fn],
where some of the subpatterns may be already extracted, because they were part of other motifs.

With the aim of computing the optimal threshold for the test collection, five different thresholds
have been tested, respectively 5, 7, 10, 15, and 20 notes. The retrieval effectiveness decreased with
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high values of the threshold, meaning that a compact representation of patterns can be more effective
than longer ones. The average precision was approximately constant when thresholds higher than
15− 20 notes were applied, probably because the number of different patterns longer than 20 notes is
less than 8% and with a low value of r. The use of short patterns can be a useful way to control the
increase of the index when new documents are added to the collection. Due to simple combinatorial
reasons, the number of different patterns is bounded by the pattern length; on the other hand, the use of
short patterns has the drawback of a higher number of patterns that are in common among documents,
which may lower precision. It is interesting to note that data fusion approaches gave consistently
better results than single approaches. This behaviour has been found in all our experiments, which are
presented in the following sections, where results are shown only for t = 5.

Retrieval Effectiveness The first detailed analysis regarded the retrieval effectiveness with the set
of 40 correct queries. Results are shown in Table 6.5, where the average precision (Av.Prec.), the
percentage queries that gave the r-doc within the first k positions (with k ∈ {1, 3, 5, 10}), and the
ones that did not give the r-doc at all (“not found”), are reported as representative measures. As it can
be seen, IOI gave the poorest results, even if for 90% of the queries the r-doc were among the first
three retrieved. The highest average precision using a single feature was obtained by BTH, with the
drawback of an on-off behaviour: either the r-doc is the first retrieved or it is not retrieved at all (2.5%
of the queries). PIT gave good results, with all the queries that found the r-doc among the first three
documents.

IOI PIT BTH Fuse2 Fuse3
Av.Prec. 0.74 0.93 0.98 0.96 0.98
= 1 57.5 87.5 97.5 92.5 95.0
≤ 3 90.0 100 97.5 100 100
≤ 5 95.0 100 97.5 100 100
≤ 10 97.5 100 97.5 100 100
not found 0 0 2.5 0 0

Table 6.5: Retrieval effectiveness for correct queries

The best results for Fuse2 and Fuse3 have been obtained assigning equal weights to the single
ranks. When the tf · idf scores had different weights an improvement was still observed in respect to
single rankings, though to a minor extent. For this reason, results for Fuse2 and Fuse3 are presented
only when equal weights are assigned.

Robustness to Errors in the Queries Users are likely to express their information needs in an
imprecise manner. The query-by-example paradigm is error prone because the example provided
by the user is normally an approximation of the real information need. In particular, when the user is
asked to sing an excerpt of the searched document, errors can be due to imprecise recall of the melody,
problems in tuning, tempo fluctuations, and in general all the problems that untrained singers have.
Moreover, transcription algorithms may introduce additional errors in pitch detection and in melody
segmentation. The robustness to errors has been tested on an experimental setup. Since indexing
is carried out on melodic contour and on rhythm patterns, the errors that may affect the retrieval
effectiveness regard the presence of notes with a wrong pitch and a wrong duration. As previously
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mentioned, a set of queries with automatically added errors has been generated in order to test the
robustness of the approach in a controlled environment.

As expected, the performances of IOI dropped for queries with errors in rhythm and the same
applied to PIT for queries with errors in pitch. The same considerations apply to BTH in both cases,
with an even bigger drop in the performances. It is interesting to note that data fusion allowed for
compensating the decreases in performances of single ranks, giving for both Fuse2 and Fuse3 an
average precision equal to the one obtained without errors. In the case of errors in both pitch and
rhythm, also Fuse2 and Fuse3 had a decrease in performances, even if their average precision was
consistently higher than the one of single features.

The experimental results showed that Fuse3 gave a considerable improvement in respect to the
single rankings contribution. A query-by-query analysis showed that this behaviour is due to the fact
that the sum of tf · idf scores of the single features gave always a new ranking where the r-doc was
at the same level of the best of the three separate ranks; that is, if one of the three gave the r-doc as
the most relevant document, also Fuse3 had the r-doc in first position. Moreover, for some queries,
the fused rank gave the r-doc at first position even if none of the three single ranks had the r-doc as
the most relevant document. These improvements can be explained by two factors: First, when the
r-doc was retrieved at top position by one of the features, it had a very high tf · idf score that gave an
important contribution to the final rank; Second, the r-doc was often retrieved with a high rank by two
or three of the features, while in general other documents were not considered as relevant by more
than one feature. Similar considerations apply, though at a minor extent, also to Fuse2.

Dependency to Query Length A final analysis has been carried out on the effects of query length
to the retrieval effectiveness. It is known that users of search engines do not express their information
needs using much information. The community of information retrieval had to face the problems
of finding relevant information also with vague or short queries. To some extent, a similar problem
applies to MIR because users may not remember long excerpts of the music documents they are
looking for. Moreover, untrained singers may not like to sing for a long time a song that they probably
do not know very well. The effects of query length on a MIR system should then be investigated.

Tests on the dependency to query length have been carried out on a set of queries that were
obtained from the original set of queries by shortening the number of notes from 90% to 60% of their
original lengths. With this approach, queries may become very short, for instance a query of two notes
cannot retrieve any document because patterns shorter than three notes are not taken into account.

Consistently with previous results, Fuse3 gave the best performances and showed a higher ro-
bustness to decrease in query length. Also in this case results showed that the data fusion approach
was enough robust to changes in the initial queries. As previously mentioned, each initial query has
been created selecting a number of notes that allowed to recognize the theme by a human listener.
Moreover, each query was made by one or more musical phrases – or musical gestures or motifs –
considering that a user would not stop singing his query at any note, but would end the query in a
position that have a “musical sense”. For this reason, tests on query length can give only a general
indication on possible changes in retrieval effectiveness.

6.4.6 Conclusions

This section present a short overview on some aspects of music IR. In particular, the issues typical of
the music language have been discussed, taking into account the problems of formats and the role of
the user. A number of approaches that have been proposed in the literature are presented, in particular
the ones related to music Digital Libraries.
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There are a number of aspects that are beyond the scope of this overview. In particular, all the
research work related to audio processing that, even if not central to music IR, plays an important role
in creating tools for classification of audio files and automatic extraction of low level features, that
may be useful for expert users.

6.5 Commented bibliography

The reference book for Auditory scene analysis is Bregman [1990]. The Implication realization model
is described in Narmour [1990]. The Local Boundary Detection algorithm is presented in Cam-
bouropoulos [2001]. The Generative Theory of Tonal Music is described in Lerdahl and Jackendoff
[1983].

Research on automatic metadata extraction for MIR can be classified in two main fields, depending
on the two different classes of formats in which a music document can be represented: the automatic
extraction of relevant information from a music score, which is typically achieved through melody
segmentation and indexing; the automatic categorization of a music recording, which is typically
achieved through audio classification. In this chapter we deal with the first field.

In the case of melody segmentation and indexing, the main assumption is that it is not possible to
use textual descriptors for music documents, in particular for compositions and for melodies. Since it
is not clear what kind of meaning is conveyed by a music document, the common approach is to de-
scribe a document using perceptually relevant elements, that may be in the same form of the document
itself (that is the only way to describe music is through music). Clearly, the alternative description of a
music document should be more compact and summarize the most relevant information, at least from
a perceptual point of view. The music language may be characterized by different dimensions, which
may regard the score representation ? e.g., melody, harmony, rhythm ? the recording of performances
? e.g., timbre, instrumentation ? and high level information ? e.g., structure, musical form. Among
the different dimensions, melody seems to be the most suitable for describing music documents. First
of all, users are likely to remember and use, in a query-by-example paradigm, parts of the melody of
the song they are looking for. Moreover, most of the dimensions require a good knowledge of music
theory to be effectively used, reducing the number of potential users to scholars, composers, and mu-
sicians. Finally, melody can benefit from tools for string analysis and processing to extract relevant
metadata. For these reasons, most of the research work on metadata extraction focused on melody
segmentation and processing. The need for automatic melody processing for extracting relevant infor-
mation to be used as alternative descriptors, arises from the fact that the melody is a continuous flow
of events. Even though listeners perceive the presence of elements in the melodic flow, which may be
called lexical units, there is no explicit separator to highlight boundaries between them. Moreover, it
is well known that there are parts of the melody ? e.g., the incipit, the theme, the leit-motiv, and so on
? that are more relevant descriptors of a music document than others. Yet, the automatic labelling of
these relevant parts needs ad-hoc techniques.

One of the first works, probably the most cited in the early literature on MIR, is Ghias et al. [1995].
In this paper it is proposed the use of a query-by-example paradigm, with the aim of retrieving the
documents that are more similar to the melody excerpts sung by the user: both documents and queries
are transformed in a different notation that is related to the melodic profile. An alternative approach
to MIR is proposed in Blackburn and DeRoure [1998], where metadata is automatic computed and
stored in a parallel database. Metadata is in the form of hyperlinks between documents that are judged
similar by the system.

Music language is quite different from other media, because it is not clear if music conveys a
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meaning and how a music document can be effectively described; this mostly because perception
plays a crucial role in the way users can describe music. The important issue of perception is faced in
Uitdenbogerd and Zobel [1998], where a user study is presented on users? melody representation. The
knowledge of music structure is exploited in Melucci and Orio [1999] for extracting relevant informa-
tion, where music documents and queries are described by surrogates made of a textual description of
musical lexical units. Experiments on normalization are also reported, in order to cope with variants
in musical lexical units that may describe similar documents. In Bainbridge et al. [1999] is proposed a
multimodal description of music documents, which encompasses the audio, a visual representation of
the score, the eventual lyrics, and other metadata that are automatically extracted from files in MIDI
format.

An alternative approach to automatically compute melodic descriptors of music documents is
presented in Bainbridge et al. [1999], which is based on the use of N-grams as musical lexical units.
Alternatively, musically relevant phrases are proposed in Melucci and Orio [2000], where an hypertex-
tual structure is automatically created among documents and musical phrases. In this case a document
is described by a set of links to similar documents and to its most relevant phrases. Musical structure
is exploited in Hoos et al. [2001] for computing a set of relevant features from a music document in a
complex notation format.

Alternatively to previous works, in Birmingham et al. [2001] it is proposed that a good descriptor
of a music document is its set of main themes, which are units longer than N-grams or musical phrases.
Themes are modelled through the use of Markov chains. An extension to hidden Markov models is
presented in Shifrin et al. [2002], where possible mismatches between the representation of the query
and of the documents are explicitly modelled by emission probabilities of Hidden Markov Models
states. An evaluation of different approaches is presented in Hu and Dannenberg [2002], where the
problem of efficiency is raised and discussed.
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6.6 Appendix

6.6.1 Generative Theory of Tonal Music of Lerdahl and Jackendorf

Lerdahl and Jackendoff (1983) developed a model called Generative Theory of Tonal Music (GTTM).
This model offers a complementary approach to understanding melodies, based on a hierarchical
structure of musical cognition. According to this theory music is built from an inventory of notes and
a set of rules. The rules assemble notes into a sequence and organize them into hierarchical structures
of music cognition. To understand a piece of music means to assemble these mental structures as we
listen to the piece.

It seeks to elucidate a number of perceptual characteristics of tonal music - segmentation, peri-
odicity, differential degrees of importance being accorded to the components of a musical passage or
work, the flow of tension and relaxation as a work unfolds - by employing four distinct analytical lev-
els, each with its own more-or-less formal analytical principles, or production rules. These production
rules, or Well-Formedness rules, specify which analytical structures may be formed - which analyt-
ical structures are possible - in each of the four analytical domains on the basis of a given musical
score. Each domain also has a set of Preference Rules, which select between the possible analytical
structures so as to achieve a single ”preferred” analysis within each domain.

Figure 6.35: Main components of Lerdahl and Jackendoff’s generative theory of tonal music.

GTTM proposes four types of hierarchical structures associated with a piece: the grouping struc-
ture, the metrical structure, the time-span reduction structure, and the prolongational reduction struc-
ture (fig. 6.35).

The grouping structure describes the segmentation units that listeners can establish when hearing a
musical surface: motives, phrases, and sections.
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The metrical structure describes the rhythm hierarchy of the piece. It assign a weight to each note
depending on the beat in which is played . In this way notes played on strong (down) beats have
higher weight than notes played on week (up) beats.

The time-span reduction structure is a hierarchical structure describing the relative structural im-
portance of notes within the audible rhythmic units of a phrase (see Fig. 6.36). It differentiate
the essential parts of the melody from the ornaments. The essential parts are further dissected
into even more essential parts and ornament on them. The reduction continues until the melody
is reduced to a skeleton of the few most prominent notes.

The prolongational reduction structure is a hierarchical structure describing tension-relaxation re-
lationships among groups of notes. This structure captures the sense of musical flow across
phrases, i.e. the build-up and release of tension within longer and longer passages of the piece,
until a feeling of maximum repose at the end of the piece. tension builds up as the melody
departs from more stable notes to less stable ones and is discharged when the melody returns
to stable notes. tension and release are also felt as a result of moving from dissonant chords to
consonant ones, from non accented notes to accented ones and from higher to lower notes.

The four domains - Metrical, Grouping, Time-Span and Prolongational - are conceived of as partially
interdependent and at the same time as modelling different aspects of a listener’s musical intuitions.

Figure 6.36: Example of a time-span tree for the beginning of the All of me ballad [from Arcos 1997].

Each of these four components consists of three sets of rules:

Well-formedness Rules which state what sort of structural descriptions are possible. These rules
define a class of possible structural descriptions.

Preference Rules which try to select from the possible structures the ones that correspond to what an
experienced listener would hear. They are designed to work together to isolate those structural
descriptions in the set defined by the well-formedness rules that best describe how an expert
listener interprets the passage given to the theory as input.

Transformational Rules that allow certain distortions of the strict structures prescribed by the well-
formedness rules.

The application of their theory to the first four bars of the second movement of Mozart’s K.311 is
shown in fig. 6.37 and 6.38. The Metrical analysis (shown in the dots below the piece in Figure 6.37)
appears self-evident, deriving from Well-Formedness Rules such as those stating that ”Every attack
point must be associated with a beat at the smallest metrical level present at that point in the piece”
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Figure 6.37: Example of GTTM analysis of the first four bars of the second movement of Mozart’s
K.311: Metrical analysis (dots below the piece ) and Time-Span analysis (tree-structure above the
piece) [from Cross 1998].

Figure 6.38: Example of GTTM analysis of the first four bars of the second movement of Mozart’s
K.311: Prolongational analysis [from Cross 1998].

(although the lowest, semiquaver, level is not shown in the figure), ”At each metrical level, strong
beats are spaced either two or three beats apart”, etc. These Well-Formedness rules are supplemented
by Preference rules, that suggest preference should be given to e.g., ”metrical structures in which the
strongest beat in a group appears relatively early in the group”, ”metrical structures in which strong
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beats coincide with pitch events”, etc.
The Grouping structure (shown in the brackets above the piece in Figure 6.37) appears similarly

self-evident, being based on seemingly truistic Well-Formedness rules such as ”A piece constitutes a
group”, ”If a group contains a smaller group it must contain all of that smaller group” (thus ensuring a
strictly nested hierarchy), etc. Preference rules here specify such matters as the criteria for determining
group boundaries (which should occur at points of disjunction in the domains of pitch and time),
conditions for inferring repetition in the grouping structure, etc. Thus a group boundary is formed
between the end of bar two and the beginning of bar three both in order to ensure the symmetrical
subdivision of the first four bars (themselves specifiable as a group in part because of the repetition
of the opening of bar one in bar five) and because the pitch disjunction occurring between the G and
the C is the largest pitch interval that has occurred in the upper voice of the piece up to that moment.
Perhaps the only point of interest in the Grouping analysis is the boundary between the third quaver
of bar three and the last semiquaver of that bar, brought about by the temporal interval between the
two events (again, the largest that has occurred in the piece up to that moment). Here, the Grouping
structure and the Metrical structure are not congruent, pointing-up a moment of tension at the level of
the musical surface that is only resolved by the start of the next group at bar five.

The Time-Span analysis (tree-structure above the piece in Figure 6.37) is intended to depict the
relative salience or importance of events within and across groups. The Grouping structure serves
as the substrate for the Time-Span analysis, the Well-Formedness rules in this domain being largely
concerned with formalising the relations between Groups and Time-Spans. The Preference rules
suggest that metrically and harmonically stable events should be selected as the ”heads” of Time-
Spans, employment of these criteria resulting in the straightforward structure shown in the Figure.
This shows clearly the shift in metrical position of the most significant event in each Group or Time-
Span, from downbeat in bar one to upbeat crotchet in bars two and three to upbeat quaver in bar
four.

A similar structure is evident in the Prolongational analysis (Figure 6.38), which illustrates the
building-up and release of tension as a tonal piece unfolds. The Prolongational analysis derives in
part from the Time-Span analysis, but is primarily predicated on harmonic relations, which the Well-
Formedness and Preference rules specify as either prolongations (tension-producing or maintaining)
or progressions (tension-releasing).

Lerdahl and Jackendoff’s theory however lack of a detailed, formal account of tonal-harmonic
relations and tend to neglect of the temporality of musical experience. Moreover it let the analyst to
make different choices that are quite difficult to formalize and implement on a computational model.
Although the authors attempt to be thorough and formal throughout the theory, they do not resolve
much of the ambiguity that exists through the application of the preference rules. There is little or no
ranking of these rules to say which should be preferred over others and this detracts from what was
presented as a formal theory.

6.6.2 Narmour’s implication realization model
1

An intuition shared by many people is that appreciating music has to do with expectation. That
is, what we have already heard builds expectations on what is to come. These expectations can be
fulfilled or not by what is to come. If fulfilled, the listener feels satisfied. If not, the listener is
surprised or even disappointed. Based on this observation, Narmour proposed a theory of perception

1adapted from Mantaras AI Magazine 2001
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and cognition of melodies based on a set of basic grouping structures, the Implication/Realization
model, or I/R model.

Figure 6.39: Top: Eight of the basic structures of the I/R model. Bottom: First measures of All of Me,
annotated with I/R structures.

According to this theory, the perception of a melody continuously causes listeners to generate
expectations of how the melody will continue. The sources of those expectations are two-fold: both
innate and learned. The innate sources are hard-wired into our brain and peripheral nervous system,
according to Narmour, whereas learned factors are due to exposure to music as a cultural phenomenon,
and familiarity with musical styles and pieces in particular.

The innate expectation mechanism is closely related to the gestalt theory for visual perception.
Narmour claims that similar principles hold for the perception of melodic sequences. In his theory,
these principles take the form of implications: Any two consecutively perceived notes constitute a
melodic interval, and if this interval is not conceived as complete, or closed, it is an implicative
interval, an interval that implies a subsequent interval with certain characteristics. In other words,
some notes are more likely to follow the two heard notes than others. Two main principles concern
registral direction and intervallic difference.

• The principle of registral direction states that small intervals imply an interval in the same
registral direction (a small upward interval implies another upward interval, and analogous for
downward intervals), and large intervals imply a change in registral direction (a large upward
interval implies another upward interval and analogous for downward intervals).

• The principle of intervallic difference states that a small (five semitones or less) interval implies
a similarly-sized interval (plus or minus 2 semitones), and a large intervals (seven semitones or
more) implies a smaller interval.

Based on these two principles, melodic patterns can be identified that either satisfy or violate the
implication as predicted by the principles. Such patterns are called structures and labelled to denote
characteristics in terms of registral direction and intervallic difference. Eight such structures are shown
in figure 6.39(top). For example, the P structure (Process) is a small interval followed by another
small interval (of similar size), thus satisfying both the registral direction principle and the intervallic
difference principle. Similarly the IP (Intervallic Process) structure satisfies intervallic difference, but
violates registral direction.

Additional principles are assumed to hold, one of which concerns closure, which states that the
implication of an interval is inhibited when a melody changes in direction, or when a small interval
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is followed by a large interval. Other factors also determine closure, like metrical position (strong
metrical positions contribute to closure, rhythm (notes with a long duration contribute to closure), and
harmony (resolution of dissonance into consonance contributes to closure).

These structures characterize patterns of melodic implications (or expectation) that constitute the
basic units of the listener perception. Other resources such as duration and rhythmic patterns empha-
size or inhibit the perception of these melodic implications. The use of the implication-realization
model provides a musical analysis of the melodic surface of the piece.

The basic grouping structure are shown in fig. 6.39:

P (process) structure a pattern composed of a sequence of at least three notes with similar intervallic
distances and the same registral direction;

ID (intervallic duplication) structure a pattern composed of a sequence of three notes with the same
intervallic distances and different registral direction;

D (duplication) structure a repetition of at least three notes;

IP (intervallic process) structure a pattern composed of a sequence of three notes with similar in-
tervallic distances and different registral direction;

R (reversal) structure a pattern composed of a sequence of three notes with different registral direc-
tion; the first interval is a leap, and the second is a step;

IR (intervallic reversal) structure a pattern composed of a sequence of three notes with the same
registral direction; the first interval is a leap, and the second is a step;

VR (registral reversal) structure a pattern composed of a sequence of three notes with different
registral direction; both intervals are leaps.

In fig. 6.39 (bottom) the first three notes form a P structure, the next three notes an ID, and the
last three notes another P. The two P structures in the figure have a descending registral direction, and
in both cases, there is a duration cumulation (the last note is significantly longer).

Looking at melodic grouping in this way, we can see how each pith interval implies the next.
Thus, an interval can be continued with a similar one (such as P or ID or IP or VR) or reversed with a
dissimilar one. That is, a step (small interval) is followed by a leap (large interval) between notes in
the same direction would be a reversal of the implied interval (another step was expected, but instead,
a leap is heard) but not a reversal of direction. Pitch motion can also be continued by moving in the
same direction (up or down) or reversed by moving in the opposite direction. The strongest kind of
reversal involves both a reversal of intervals and of direction. When several small intervals (steps)
move consistently in the same direction, they strongly imply continuation in the same direction with
similar intervals. If a leap occurs instead of a step, it creates a continuity gap, which triggers the
expectation that the gap should be filled in. To fill it, the next step intervals should move in the
opposite direction from the leap, which also tends to limit pitch range and keeps melodies moving
back toward a centre.

Basically, continuity (satisfying the expectation) is nonclosural and progressive, whereas reversal
of implication (not satisfying the expectation) is closural and segmentative. A long note duration after
reversal of implication usually confirm phrase closure.

Any given melody can be described by a sequence of Narmour structures. Fig. 6.40 Narmour’s
analysis of the first four bars of the second movement of K.311 is shows. Letters (IP, P, etc.) within
the ”grouping” brackets identify the patterns involved, while the b’s and d’s in parentheses above
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Figure 6.40: Example of Narmour analysis of the first four bars of the second movement of Mozart’s
K.311 [from Cross 1998].

the top system indicate the influence of, respectively, metre and duration. The three systems show
the progressive ”transformation” of pitches to higher hierarchical levels, and it should be noted that
the steps involved do not produce a neatly nested hierarchy of the sort that Lerdahl and Jackendoff’s
theory provides.
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