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In the traditional arrangement of knowledge
and teaching in universities, music was one of
the seven liberal arts, along with the other
quadrivium subjects of arithmetic, geometry

and astronomy. This woodcut dates from 1504.

Music and mathematics: an
overview

Susan Wollenberg

Mathematics and music have traditionally been closely connected. The
seventeenth century has been seen by historians as a crucial turning-point,
when music was changing from science to art, and science was moving
from theoretical to practical. Many connections between science and music
can be traced for this period. In the nineteenth and twentieth centuries, the
development of the science of music and of mathematical approaches to
composition further extended the connections between the two fields.
Essentially, the essays in this book share the concern of commentators
throughout the ages with the investigation of the power of music.

Musicke 1 here call that Science, which of the Greeks is called Harmonie . ..
Musicke is a Mathematical Science, which teacheth, by sense and reason,
perfectly to judge, and order the diversities of soundes hye and low.

JOHN DEE (1570)

The invitation to write an introduction to this collection offered a welcome
opportunity to reflect on some of the historical, scientific, and artistic
approaches that have been developed in the linking of mathematics and
music. The two have traditionally been so closely connected that it is
their separation that elicits surprise. During the late sixteenth and early
seventeenth centuries when music began to be recognized more as an
art and to be treated pedagogically as language and analysed in expres-
sive terms, it might have been expected to lose thereby some of its sci-
entific connotations; yet in fact the science of music went on to develop
with renewed impetus.

This introduction sets out to explore, via a variety of texts, some of
the many historical and compositional manifestations of the links
between mathematics and music. (This endeavour cannot be other than
selective: the field is vast, ranging from ancient theory and early devel-
opments in structure such as those of the medieval motet, to the new
ideas of post-tonal music and experimental musical techniques
explored over the past century) In what follows, the field is viewed
particularly from the perspective of a music historian with a special
interest in the history of music in its educational dimension.
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Music and mathematics

Aspects of notation and content

In contemplating the two disciplines, mathematics and music (and tak-
ing music here essentially to mean the Western ‘Classical” tradition), it
is clear to the observer from the outset that they share some of their
most basic properties. Both are primarily (although not exclusively)
dependent on a specialized system of notation within which they are
first encoded by those who write them, and then decoded by those who
read (and, in the case of music, perform) them. Their notations are
both ancient and modern, rooted in many centuries of usage while at
the same time incorporating fresh developments and newly-contrived
systems to accommodate the changing patterns of mathematical and
musical thought.

Musical notation can be traced back to the ancient Greek alphabet
system. A series of significant stages came in the development of notations
within both the Western and Eastern churches during the medieval
period. In the eleventh to thirteenth centuries more precise schemes
were codified, including Guido d’Arezzo’s new method of staff
notation and the incorporation of rhythmic indications. By the time of
the late sixteenth and the seventeenth centuries, most of the essential
features of musical notation as it is commonly understood today were
in place within a centrally established tradition. Subsequent additions
were mainly in the nature of surface detail, although of considerable
importance, as with the expanded range of performance instructions in
the nineteenth century. The twentieth century, with its emphasis on
experimental music, saw a precipitate rise in new forms of notation. In
a comparable way, mathematical notation has developed over a period
of at least 2500 years and, in doing so, has inevitably drawn from various
traditions and sources. )

In music, the relationship between notation and the content it conveys
is sometimes more complex than might at first appear. Notation has not
invariably fulfilled the role merely of servant to content. While it is
generally true that notational schemes evolved in response to the
demands posed by new ideas and new ways of thinking, it is also possible
that experiments in notation may have been closely fused with the
development of such ideas, or may even have preceded—and inspired—
their creation. In mathematics, too, the relationship has subtle nuances.
Notation developed in one context could prove extremely useful in
another (seemingly quite different) context. (A well-known example of
this is the use of tensor notation in general relativity.) In one notable
case, notation formed part of the focus of a professional dispute, when
a prolonged feud developed between Newton and Leibniz as to which
of them invented the differential calculus, together with the different
notation used by each.
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In the course of their history, mathematics and music have been
brought together in some curious ways. The Fantasy Machine demon-
strated in 1753 by the German mathematician Johann Friedrich Unger

- to the Berlin Academy of Sciences, under Leonhard Euler’s presidency,
was designed to preserve musical improvisations; in the words of an
English inventor, the Revd John Creed, on whose behalf a similar idea
was presented to the Royal Society in London in 1747, with this device
the ‘most transient Graces’ could be ‘mathematically delineated’. Unger
claimed to have had the idea as early as 1745, although Charles Burney
(in his essay ‘A machine for recording music’) attributed priority of ~-
invention to Creed. Although it aroused considerable interest and
support among the intelligentsia, and “was tried out by several well-
known musicians’ in the mid-eighteenth century, the machine was
ultimately not a success.

Music as science: the historical dimension

Throughout the history of mathematical science, mathematicians have
felt the lure of music as a subject of scientific investigation; an intricate
network of speculative and experimental ideas has resulted. Taking a
historical view, Penelope Gouk has voiced her concern that such terms
as ‘mathematical sciences” are ‘routinely used as essentially unproblem-
atical categories which are self-evidently distinct from the arts and
humanities . . . Since music is today regarded as an art rather than a
science, it is hardly surprising that the topic should be disregarded by
historians of science’. Her book remedies this situation with resounding
success, inviting a reconsideration of the way joint histories are told.

Within the scope of a work based primarily on seventeenth-century
England, Gouk’s references range from Pythagoras (in particular,
Pythagorean tuning and the doctrine of universal harmony that
‘formed the basis of the mathematical sciences’) to René Descartes (‘the
arithmetical foundation of consonance’) and beyond. Descartes’
Compendium (1618) was translated as Renatus Des-Cartes excellent
compendium of musick and animadversions of the author (1653) by the
English mathematician William Brouncker. Brouncker himself was ‘the
first English mathematician to apply logarithms (invented c.1614) to
the musical division’. Thus he entered into a scientific dialogue with the
work of Descartes, contesting the latter’s findings.

At the period when music was changing from science to art (retain-  —
ing a foot in both camps), science itself was moving from theoretical ~
to practical. The seventeenth century has been seen by historians as /6
a crucial turning-point, with the emergence of a ‘recognizable scientific
community” and the institutionalization of science. The founding of the

< Royal Society of London in 1660 formed a key point in the development
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Four pages from Lord Brouncker’s
translation, Renatus Des-Cartes excellent
compendium of musick.

The legend of Pythagoras’s discovery of a
relation between musical notes and hammer
weights, as portrayed in a twelfth-century
manuscript.

Music and mathematics: an overview

of modern scientific enquiry. The leading scientific thinkers who gath-
ered under its auspices focused some of their attention on music. Gouk
notes that ‘the [Royal] Society’s most overt interest in musical subjects
occurred within the presidencies of Brouncker and Moray, both of
whom ... were competent musicians and keen patrons of music’.
Practitioners of both mathematics and music could learn much from
each other’s work.

Ideas such as those of musical tunings were constantly subject to
review in the light of new theories. Musical issues occupied a central,
not peripheral, position in science: ‘the conceptual problems involved in
the division of musical space were among the most important chal-
lenges faced by seventeenth-century mathematicians and natural
philosophers’. As Gouk observes, Newton in the mid-1660s ‘learned all
that had been developed by modern mathematicians such as Descartes,
Oughtred and Wallis’ regarding the musical scale, and especially the
division of the scale, and ‘rapidly went beyond them in his own studies’.
Important discoveries of this period generally included the observation
that “pitch can be identified with frequency’. The seventeenth century saw
the beginnings of modern acoustical science: the new science of sound.

The work of Mersenne has also been seen as representing ‘a signifi-
cant milestone in the emergence of modern science, just like the mus-
ical laws that he established’. Mersenne’s writings—notably, his
Harmonie universelle (1636) and Harmonicorum libri (see Chapter 2)—
became available in England. (Gouk notes ‘how rapidly Mersenne’s
work on musical acoustics was assimilated in England’.) Mersenne’s
belief that ‘the universe was constructed according to harmonic
principles expressible through mathematical laws’ provided an impetus
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Music and mathematics

William Heather, founder of the Heather
Chair in Music at Oxford University, and
William Crotch, a later holder of that Chair.

for mathematicians such as Newton. Personal contacts and correspon
ence among scientists further created and consolidated intellectu
connections at this period.

Educationally, the influential tradition of Boethius (c.480-524), casi
ing a long shadow over the following centuries, and based in its turn o
Pythagoras and Plato, aligned music with arithmetic, astronomy an
geometry in the quadrivium, while grammar, rhetoric and logic forme
the language-based trivium. When the seven Gresham Professorship
were founded in the City of London in 1596 to provide free adult edu
cation, their subjects included music, ‘physic’, geometry and astron
omy. At the opposite end of the educational spectrum, Henry Savile’
1619 foundation of the University Chair in mathematics at Oxforc
University included, in its stipulations of the new professor’s duties,
that he was to expound on ‘canonics, or music’ as one of the quadrivial
disciplines. Music was taught at the universities as a science, while it
was examined (in the form of the B.Mus. and D.Mus. degrees) as an art,
by means of the submission of a composition.

Among the spate of Professorships endowed during the early
decades of the seventeenth century, William Heather’s founding of the
Chair in Music at Oxford (1627) recognized this duality with its provi-
sion for the regular practice of music as well as lectures on the science
of music. In doing so, Heather reflected Thomas Motley’s two-fold divi-
sion in his Plaine and easie introduction to music (1597):

Speculative is that kinde of musicke which by Mathematical helpes, seeketh
out the causes, properties, and natures of soundes. .. content with the
onlie contemplation of the Art, Practical is that which teacheth al that

may be known in songs, eyther for the understanding of other mens, or
making of one’s owne. ..

Scientific musical enquiry, analytical listening (or listening with under-
standing), and the art of composition, are all equally acknowledged as
valid activities here.

In his pioneering lectures published in 1831, the Heather Professor of
Music, William Crotch was in no doubt as to music’s position in the
scheme of things: from the outset of his ‘Chap. 1: Introductory’, he
asserted that "Music is both an art and a science’. Crotch followed this
opening gambit with a long and particularly apposite quotation from
the work of Sir William Jones:

Music. .. belongs, as a science, to an interesting part of natural philosophy,
which, by mathematical deductions.. . . explains the causes and properties
of sound...but, considered as an art, it combines the sounds which
philosophy distinguishes, in such a manner as to gratify our ears, or
affect our imaginations; or, by uniting both objects, to captivate the
fancy, while it pleases the sense; and speaking, as it were, the language of
nature, to raise corresponding ideas and connections in the mind of the
hearer. It then, and then only, becomes fine art, allied very nearly to
poetry, painting, and rhetoric. ..



Hubert Parry, as an Oxford undergraduate,
and William Donkin, Savilian Professor of
Astronomy.

Music and mathematics: an overview

While Crotch went on to state that “The science of music will not
constitute the subject of the present work’, he nevertheless used this as
a device to launch into a discussion of the merits of such an enquiry,
strongly recommending ‘the study...of the science of music...to
every lover of the art’, and pursuing some of its ramifications at con-
siderable length before concluding that ‘enough. .. has now been said,
to induce the lover of music to study the science, which, it will be
remembered, is not the proper subject of this work’. After some ten
pages of discussion the reader might well have forgotten this assertion,
or be inclined to question it; and it is clear that Crotch felt it inappro-
priate to offer to the public a didactic treatise on music without paying
any consideration to its scientific dimension, even though his primary
purpose in presenting these lectures was an aesthetic one (‘being the
improvement of taste’).

Some social and educational connections

In the more informal sphere, the history of cultural life is liberally scat-
tered with examples of musical mathematicians and scientists. The
group of intellectuals and artists to which C. P. E. Bach belonged in
eighteenth-century Hamburg, and which included J. J. C. Bode (transla-
tor of, among other works, Sterne’s A sentimental journey), met regularly
at the house of the mathematician J. G. Biisch; ‘many were keen ama-
teur musicians, including Bode who played the cello in the regular
music-making at Biisch’s house’. C. P. E. Bach’s biographer, Hans-
Giinter Ottenberg, has written of ‘the friendly atmosphere and liberal
exchange of ideas which took place at the home of the mathematician
Johann Georg Biisch. . .’, quoting Reichardt’s description of these gath-
erings, which evidently possessed a certain cachet: ‘not everyone was
admitted to the inner circle which would not infrequently assemble for
a pleasant evening’s entertainment apart from the wider academic com-
munity’. Ottenberg stresses that C. P. E. Bach was ‘one of Biisch’s closer
acquaintances’.

In nineteenth-century Oxford, Hubert Parry, as an undergraduate,
frequented the home of Professor Donkin (Savilian Professor of
Astronomy) where the Donkins—a highly musical family altogether—
held chamber-music gatherings. For Parry these occasions and the
opportunities they provided, both for getting to know the chamber
music repertoire and for composing his own efforts in the genre, were
enormously stimulating. The Donkins were influential figures in
Ozxford’s musical life during the second half of the nineteenth century.

It was in this period, too, that the academic status of music, in the
shape of the Oxford musical degrees, acquired greater weight. The suc-
cession of Heather Professors of Music at Oxford and their assistants
voiced their hopes for the development of the subject within the
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University, including serious consideration given to the science of
music; for example, the set texts for the D.Mus. at Oxford included
Helmbholtz (see Chapter 5), and others, on acoustics. The evidence
presented by Sir Frederick Ouseley (then Heather Professor) to the
University of Oxford Commission in 1877 included a “Proposal for
establishing a Laboratory of Acoustics’ (apparently this plan was never
realised); Ouseley envisaged that such a laboratory ‘might work in with
the scientific side of a school of technical music’ and would have ‘more
direct relations with the school of physics in the University’.

Holders of music degrees from Oxford during this period (qualifica-
tions that were considerably coveted in the musical profession) did not
all follow primarily musical careers; William Pole FRS (b.1814, B.Mus.
1860, D.Mus. 1867) was Professor of Civil Engineering at University
College, London, as well as organist of St Mark’s, North Audley Street.
Among those who took the B.Mus. at Oxford, in addition to the ordi-
nary BA, was J. Barclay Thompson of Christ Church (B.Mus. 1868),
who became University Reader in Anatomy. More recent scientist-
musicians have included the mathematically trained musicologist Roy
Howat, whose work on the golden section in Ravel’s music, among
other topics, has attracted wide interest.

Mathematics and music: the compositional dimension

While music has fascinated mathematical scientists as a subject of
enquiry, musicians have been attracted by the possibilities of incorpor-
ating mathematical science into their efforts, most notably in the fields
of composition and analysis. The fundamental parameters of music—
pitch, rhythm, part-writing, and so on—and the external ordering of
musical units into a set, have lent themselves to systematic arrangement
reflecting mathematical planning. Much has been written about the
mathematical aspects of particular compositional techniques—
for example Schoenberg’s method of serialism (see Chapter 8)—
and individual works have frequently been analysed in terms of their
mathematical properties, among other aspects.

The possibilities of mathematical relationships not only within a
single piece, but also between a number of pieces put together to form
a set, are well documented. These sorts of schemes may be expressed in
the findings of musical analysts, possibly by reconstructing notional
systems of composition, and, further, by examining both the known and
the speculative symbolic associations, as well as the mathematical rami-
fications, of such structural procedures. This is found most obviously in
the case of number symbolism, which may be perceived as governing
the musical relationships of an individual piece or a whole set of pieces.

Contrapuntal techniques in music have traditionally been treated
mathematically and identified with qualities of rigour. Among the
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prime examples in these latter two categories—the compositional set,
and rigorous counterpoint—must be counted the works of J. S. Bach,
with their mirror canons and fugues, their ordering by number (as with
the Goldberg variations), and their emphasis on combinatorial structures.
At a distance of over 200 years, Paul Hindemith’s cycle of fugues and
interludes for piano, the Ludus tonalis, with its ‘almost geometric
design’, its pairs of pieces mirroring each other (see Chapter 6),
provides a modern echo of these contrapuntal ideas very much in the
Bach tradition, as well as building on techniques developed in
Hindemith’s theoretical writings. It has been suggested, moreover, that
Hindemith ‘identified...closely with Kepler’, whose life and work
formed the subject of Hindemith’s last full-length opera, The harmony
of the world (1956~7).

“Scientific’ music has not, however, always been appreciated by musical
scientists. Christiaan Huygens, for instance, expressed a wish that
composers ‘would not seek what is the most artificial or the most diffi-
cult to invent, but what affects the ear most’, professing not to care for
‘accurately observed imitations called “fugues”’, or for canons, and
claiming that the artists who ‘delight in them’ misjudge the aim of
music, ‘which is to delight with sound that we perceive through the
ears, not with the contemplation of art’. Huygens here articulated the
tension between ‘scientific’ construction in musical composition, on
the one hand, and music’s expressive effect, on the other. The balance
between these two aspects, and more widely between the scientific
basis of the art of music and its aesthetic applications, has been a source
of fascination for scholars, and indeed continues to be so, as the essays in
this book serve collectively to demonstrate. Their shared concern is
essentially the investigation of the power of music, which has preoccupied
commentators throughout the ages, from antiquity to our own time.




PART II

The mathematics of
musical sound




Charles Taylor demonstrating an oboe to
some children.

CHAPTER 3

The science of musical sound

Charles Taylor

This chapter complements the others by describing practical demonstrations
and experiments. In recent years a good deal has been said about the
differences in experiments in an elementary physics laboratory, mathematical
theory, and real musical instruments. In fact there are no real differences
except those arising from too simplistic an approach.

Sound of any kind involves changes of pressure in the air around us;
for example, in ordinary speech the pressure just outside the mouth
increases and decreases by not more than a few parts in a million. But
to be detected by our ears and brains as sound, these changes have to
be made fairly rapidly. This can be demonstrated easily by inflating a
balloon and then gently squeezing it between thumb and finger. This
creates quite large pressure changes without any attendant sound; but
inserting a pin creates a change that can very readily be heard.

Scientists study the nature of the pressure changes using a cathode-ray
oscillograph that draws a graph of the pressure as a function of time. It
is interesting to look at the traces corresponding to a wide variety of
sounds and try to relate what is perceived by the ear—brain system with
what is simultaneously perceived by the eye-brain system. It proves to
be impossible to make any but the broadest generalizations about a
sound by observing only its oscillograph trace. As an example, it is not
easy to differentiate between the oscillograph traces of the end of the
first movement of Mendelssohn’s Violin concerto, a symphony orchestra
‘tuning up’, and the chatter of an audience waiting for a lecture to begin
(see overleaf), although aurally they are completely different.

One of the most astonishing properties of the human brain is that of
recognizing sounds in a split second. For example, if a dozen subjects
are all asked to repeat the same word, an audience has no difficulty in
understanding what is being said. But for each one of the twelve, the
corresponding oscillograph traces is completely different and it is virtu-
ally impossible to find common features.

So here we have two different ways of presenting the same informa-
tion: the brain has little problem in interpreting the aural form, but the
visual form presents far greater difficulties.
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(a)

Oscillograph traces of three different sounds:
(a) the end of the first movement of the
Mendelssohn violin concerto;

(b) a symphony orchestra tuning up;

(¢) an audience waiting for a lecture to begin.

The part played by the brain

Having introduced the topic of aural perception, we next elaborate on
its remarkable features, since it affects practically every experiment
done in the field of musical acoustics.

We first notice that the pressure of the air can only have a single value
at a particular point at a particular time. So, if you listen to a large orches-
tra of seventy players, each instrument creates its own characteristic
changes in pressure, but they all add together to produce a single
sequence of changes at the ear and there is only one graph of pressure
against time that represents the sum of the changes produced by all
the instruments. Yet, with surprisingly little effort, a member of the
audience can listen at will to the different instruments, The problem of
disentangling these instrumental components from the single graph
would be extraordinarily difficult for a computer, unless it were given
all kinds of clues about the nature of each different instrument, but the
human ear-brain system performs the miracle in a fraction of a second.

One of the factors that makes this possible is the learning ability of
the brain. Stored in our brains we all have the characteristic features of
all the various instruments that we have heard before and these can be
drawn on subconsciously to aid the disentangling process.




cHAPTER 3 | The science of musical sound

An interesting example of this learning process is as follows. A
recording of synthetic speech can be created by first imitating the raw
sound of the vocal chords by means of an interrupted buzz on one
note, adding chopped white noise to represent ss, sh and ch sounds, and
then introducing just one formant for each vowel. An audience is
unable to recognize the sentence that has been synthesized. However,
having been told what the sentence was, they have no difficulty in
recognizing it on a second hearing.

This ability of the brain, both to memorize sounds, and to identify
similar sounds in the memory banks at great speed, is vital to our
existence, but is also a great nuisance in psycho-acoustic research. Its
importance lies in the way that we can rapidly identify sounds that
indicate danger, in the way that we learn to speak as babies, and in the
way that we can adapt to very distorted sounds and in many other activ-
ities. Adaptation to distorted sounds is illustrated if one listens to mes-
sages being relayed over ‘walkie-talkie’ systems to the police, to pilots
in flying displays, and in other circumstances where those used to the
system have no difficulty in understanding the messages, but outsiders
find the speech hard to follow.

The problem in psycho-acoustic research arises because the very act
of performing the first experiment produces changes in the memory
banks of the subject. For example, consider an experiment on pitch
perception where a participant is asked to compare groups of sounds
and to say which is the highest in pitch. Once the first group of sounds
has been heard it is impossible for the subject to ignore those
sounds, and the response, at a latter stage, even to the same group of
sounds, is very rarely the same.

Another of the many remarkable properties of the brain that plays a
part in our aural perception is that of ignoring sounds which are of no
importance to us. If a series of sounds—such as a baby crying, a dog
barking or a fire engine’s siren—were played while someone continued
to speak, then the listeners will continue to hear what is being said,
because they rapidly identify the extra sounds as of no personal relevance.

Differences between music and noise

The above examples are of relatively complex sounds and it is difficult
to draw clear scientific distinctions between music and noise with
sounds of this complexity. The two simplest kinds of sounds that occur
in studies of sound are white noise and a pure tone. Musically useful
sounds consist of mixtures and modifications of these two basic kinds
of sound—pure tones and noise.

The oscillograph trace of white noise shows no element of regularity
at all. The only variable parameter is that of the amplitude, which
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(a) oscillograph trace for white noise
(b) oscillograph trace for a pure tone
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corresponds to the loudness of the sound. (It is possible, of course, to
‘colour’ noise by filtering out various frequency components, but then
it can no longer be described as ‘white’.)

The oscillograph trace for a pure tone is that of a sine wave and is
completely regular. There are now two parameters that matter: the
amplitude which, as before, relates to the loudness, and the frequency
which relates to the pitch of the note. Many textbooks tend to keep
these two parameters separate, but in fact they are linked, again
because of the mechanism of perception. For example, listen to a pure
tone of frequency 440 Hz (the note with which the tuning of orchestral
instruments is checked) at a relatively low amplitude. Then, without
changing the frequency, increase the amplitude very suddenly. The
loudness will increase, and many people will also detect a change in
pitch. With a fairly large audience one usually finds that about a half
hear the pitch go down, rather fewer hear it go up, and a few hear no
change. This is a dynamic effect that only occurs with sudden changes
and only with fairly pure tones.

Sources of musical sounds

Many common objects have a natural frequency of vibration that can
be excited by striking or blowing. All kinds of tubes, or vessels with a
narrow opening, for example, will emit a sound if the opening is struck
with the flat of the hand. In this case it is the air that is vibrating and, if




Oscillograph trace from a tube when a cork
in one end is suddenly withdrawn; the
vertical lines correspond to the natural
resonant frequency of the tube.
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the natural frequency lies within the sensitivity range of the human ear
(about 30-18000 Hz in young people, although the upper sensitivity
declines rapidly with age), a musical sound is heard. When a cork is sud-
denly withdrawn from the end of a tube a compression wave travels
back and forth in the air in the tube. Although its amplitude rapidly
decays, as shown above, the time taken for each transit determines a
discernible musical pitch in the short-lived sound.

In order to convert this into a usable musical instrument, we must
feed in energy to keep the wave travelling up and down for as long as
the note is required. This can be done by blowing across the end with
such a speed that the edge tone generated as the air jet strikes the edge
has an oscillatory frequency that matches the natural frequency of the
tube. Alternatively a reed can be used. All reeds are, in effect, taps that
allow pulses of air to pass through at a well-defined frequency, which
again can be made to match that of the pipe. The lips form the reeds in
the brass family of instruments, single or double strips of cane form the
reeds of the woodwinds.

Similar arguments can be applied to the vibration of strings.
Transverse vibration of strings can be excited by striking (as in the
piano or clavichord), or by plucking (as in the harp, guitar or harpsi-
chord). But to convert such short-lived notes into those of much longer
duration, energy must be fed in to maintain the vibration. In modern
electric guitars various forms of electronic feedback can be used, but
the traditional method, used in the orchestral string family, is by
bowing. This depends on the difference between the static and dynamic
frictional properties of resin. Powdered resin adheres to the
microscopic scales of the horse-hair used in bows: when the bow is
placed on the string the static friction is high but when moved to one
side the string sticks to it and is also moved to the side. Eventually the
restoring forces created in the string overcome the static friction, and
the string starts to slip back to its neutral position. Dynamic friction,
which is very much lower than the static friction, allows the string to
move easily under the bow, overshoot the neutral position, come to
rest, and then be picked up once more by the static frictional force
to repeat the cycle.
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Harmonics, overtones, and privileged frequencies

Although most objects have a natural vibration frequency, the real situ
ation is much more complicated. An easy way to approach these com:
plications is to think of a child’s swing. The oscillation can be kept going
by giving a slight push once in every cycle of the swing—but the timing
is all important and it is just as easy to bring the swing to a standstill if
the push is applied at the wrong moment. The right moment is just
after the swing has started to accelerate from one of the extreme posi-
tions and the push must obviously be in the same direction as the move-
ment of the swing. But the swing can also be kept going if a push is
given every second time the swing reaches the optimum position, or
every third time, and so on. Equally, if the person pushing gives a push
(some of which, of course, will not connect with the swing) at twice
the natural frequency of the swing, or at three times the natural fre-
quency, the pushes that connect with the swing will still be at the right
frequency to maintain the oscillation.

Consider the tube discussed earlier. The oscillation can be main-
tained if the hand is repeatedly slapped on the end of the tube at its
natural frequency f. But, as with the swing, it could equally well be
excited at frequencies 2f; 3f, 4f, 5f, etc. and also at frequencies 5 f,5 f, 3 f;
etc. Indeed, it can also be excited at £ 2 £ 2 f, and at many other pos-
sible frequencies.

The frequencies commonly discussed in connection with musical
instruments are f, 2f, 3f, 4f, etc., which are usually termed harmonics (see
Chapter 1). In practice, because of end effects, the effect of the diameter
of a pipe, and many other complications, a simple tube will not resonate
precisely at the harmonic frequencies—but in spite of this musicians still
tend to call them harmonics. Scientists know them as overtones.

The remaining frequencies of the type s f, 5 f, or3f, 3£, etc., are known
as privileged frequencies (and strictly speaking, the harmonics are privi-
leged frequencies as well). The following table shows a list of the har-
monics and privileged frequencies for a tube open at both ends with a
basic natural frequency of 240 Hz: the numbers in bold type are the
true harmonics.

120 240 360 480 600 720 840 960 1080 1200
60 120 180 240 300 360 420 480 540 600
40 80 120 160 200 240 280 320 360 400
30 60 90 120 150 180 210 240 270 300
24 48 72 96 120 144 168 192 216 240

Notice that some of the privileged frequencies (such as 120 and 60)
occur more than once, and if the table were still further extended
others would occur. These frequencies are easier to excite than the ones
that occur only once.




Traditional diagrams showing the graphs of
the displacements in open and closed pipes:
(@) open, frequency f

(b) open, frequency 2f

(c) open, frequency 3f

(@) closed, frequency f

(¢) closed, frequency 3f

() closed, frequency 5f.

CHAPTER 3 | The science of musical sound

(d) (e} (£)

(a) (b ()

Impedance view of the behaviour of tubes

In the elementary approach to the behaviour of vibrations in tubes, use
is made of the fact that a compression becomes an expansion on reflec-
tion at an open end, but stays a compression when reflected from the
end of a closed pipe (see above). This must obviously be so, as the
reflection at the end of an open tube must add to the outgoing wave to
produce no excess pressure, and must therefore be an expansion. For
the closed pipe there is obviously maximum pressure at the end.
Problems arise if the pipe is not precisely cylindrical for the whole of
its length and it is then no longer possible to draw convincing diagrams
based on the simple theory. Measurement of the input impedance of a
tube as a function of frequency leads to a more satisfactory argument.
The figure (a) overleaf shows such a diagram based on the work of
Arthur Benade. The difference in behaviour between edge-tone instru-
ments and reeds can be explained without assumptions about open or
closed ends. Edge tone excitation involves only small changes in pres-
sure, although the displacements are high. Thus it is a low impedance
device (analogous to a low-voltage high-current electrical device) and,
as can be seen from the diagram, this leads to a full series of harmon-
ics. A reed, on the other hand, involves relatively low air flow but high
pressure changes, and is thus a high impedance device, which can be
seen from the diagram to involve only the odd harmonics, but the fun-
damental is an octave lower than that for a low impedance instrument.
The input impedance curve for a pipe with a series of side holes (as in
most woodwind instruments) is shown in figure (b); the existence of a
cut-off frequency can be clearly seen. The input impedance curve for
a conical pipe is shown in figure (c). Notice that the peaks and troughs
occur together at almost exactly the same frequency; thus it no longer
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(a)

Input impedance

T T T T T T T 17 1T 1
3 5 7 9 11

Harmonic numbers T Frequency
Reed excitation 1 13
Edge-tone excitation 1 2 3 4 5 6
(b) g
3
f="
E F
E
Harmonic numbers T T T T T 7 1T 11 71 Frequency
Reed excitation 1 3 5 7 9 11 13
Edge-tone excitation 1 2 3 4 5 6
(c)
o
§
3
[=9
(@) Curve showing the relationship between g
input impedance and frequency for a plain g
cylindrical pipe. &
(b) As (a), but with a regular series of side
holes. Harmonic numbers i I | | | T I Frequen
(¢) Input impedance plotted against frequency for both reed and 1 2 3 4 5 7 quency
for a conical pipe. edge-tone excitation

matters whether the pipe is excited by edge tones or reeds, and the full
series of harmonics is always produced.

Such diagrams have also been used by Benade to explain the behav-
iour of trumpets, which seem to produce a full series of harmonics in
spite of being largely cylindrical and closed by the player’s mouth.
Changes are produced in the input impedance curve, first by the addi-
tion of the bell and then by the addition of the mouthpiece, and the
result is a full sequence of harmonics.

Clarinet and Trumpet.
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Three plastic tubes used to illustrate the
influence of the finger holes on the tone
quality of a clarinet: in (), the tube has no
side holes and the tone is muffled; in (b),
there are five large holes and the tone is
much more clarinet-like; in (c), there are
three small holes and the tube is unplayable;
however, if one or more of the holes are
covered, a note can be sounded.
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Turning a cylindrical tube into a clarinet

Just as the trumpet involves departures from a plain cylindrical tube; so
does a clarinet. The important departures are the side holes which, even
when closed, produce regular ‘bumps’ in the bore, and these have a
profound effect. There are at least three functions that have to be
performed by the side holes if a clarinet is to behave like a real musical
instrument. The first, and most obvious, is that they determine the
vibrating length, and hence the pitch of a given note. Secondly, they
radiate the sound (very little of which emerges from the bell, as can be
demonstrated easily with a microphone and oscilloscope) and, being
arranged in a regular sequence, are frequency-sensitive. Thirdly, there
must be a balance between the energy reflected back towards the reed
to keep the oscillation going, and the energy radiated away. The
position and spacing of the holes has a considerable influence on this.
A clarinet maker must be able to adjust at least these three functions
independently and, in order to do this, makes use of the positions of the
holes, their diameter, the wall thickness at the hole, and the bore
diameter throughout the length. The diameter varies along the whole
length and is adjusted either by using a reamer to enlarge it slightly at a
particular place, or by using a special brush to paint lacquer on the wall
to reduce the bore.

The quality of a musical sound

At quite an early stage in the study of musical physics, it was thought
that a vibrating body that could vibrate at a number of discrete
harmonic frequencies could probably vibrate in several at once, and
that the resulting combination of a number of harmonics could be the
source of variations in quality. The wave-forms of various instruments
were studied, and it seemed clear that their regular waveforms could be
subject to Fourier analysis; thus, if the harmonics could be generated in
the right proportions, the sound of any instrument could be imitated.
The Hammond and Compton electronic organs, both developed in
1932, used the principle of harmonic mixture to determine tone quality.
But, as is now well known, the sound of these organs was noticeably
‘electronic’, and we need to ask why.
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Oscillograph traces for notes on (4) a flute;
(b) a clarinet; (c) a guitar: in (i), the trace lasts
for one hundredth of a second; in (ii), the
trace lasts for one tenth of a second; in

(iii), the trace lasts for one second.

56

(iif)

The oscillograph traces for three instruments (flute, clarinet and
guitar) are obviously different, and over a period of 15 second all three
appear to be fairly regular. However if we look at traces lasting 75
second, or 1 second, it immediately becomes obvious that they are far
from regular. It turns out that it is these departures from regularity that
tell the brain that a ‘real’ instrument is involved, rather than an electron-
ically synthesized sound. Nowadays, of course, synthesizers have
become so sophisticated that departures from regularity can be imitated.

There are many causes of these variations in real instruments, but
probably the most significant from the point of view of recognition by
the brain is the way in which the note is initiated. Most instruments
involve at least two coupled systems: the strings of a violin and the
body, the reed of a clarinet and the pipe, the lips of a player and the
trumpet itself, and so on. When any coupled system begins to oscillate,
one of the systems begins to drive the other in forced vibration.
Because of the inertia of the second system, there is a time delay in the
commencement of the forced vibration and it may take as much as
15 second before the whole settles down. But this first tenth of a second
is crucial: it is called the starting transient and every instrument has its
own characteristic transient. It is the transient that the brain recognizes,
and so permits a listener to identify the various instruments in a
combination. Mathematically, the solution of the differential equation
for the coupled system is the sum of two parts, the steady state part and
the transient part.

Combinations of notes

The phenomenon of beats (rises and falls in amplitude) is well known,
and can be demonstrated most easily by sounding the same note on



Trace for notes of frequencies 480 and
477 Hz, sounded simultaneously.

b Diagram representing some of the results of
i adding two pure tones. The horizontal thick
line represents a note of fixed frequency; the
 sloping thick line represents a note whose

| frequency commences from that of the fixed
E note and then glides smoothly upwards

b through one octave. The frequency ratios

¢ represented by the lower case letters are:

L @ 1:1;(b) 15:16; (c) 4:5; (d) 2:3; (€) 20:31;
E (f)30:59;(g)1:2.
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two recorders and then slightly covering the first open hole on one of
them to flatten its note slightly. If the two notes have frequencies of
480 Hz and 477 Hz, the beats occur 3 times per second.

A~~~

In fact, because of non-linearities in the ear-brain system, a note cor-
responding in frequency to the difference of the two sounding notes can
be heard; this is known as the difference tone. The result can be very com-
plicated as there are also sum tones, and there are secondary sum and..
difference tones between the primary sum and difference tones.

=
-
-
(@ (b) (© (d) (e) ) (@
1 1 1 1t [

The above diagram shows the result of performing Helmholtz’s
hypothetical experiment of sounding one note continuously and bring-
ing a second note from being in tune with the steady note to a pitch an
octave higher. The thick lines represent the frequencies of the two
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(a)
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(e)

(f)

()

Wave traces of two simultaneously sounded
pure tones; the frequency ratios correspond
to those listed in the previous caption.
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notes actually being sounded, and the thin lines represent all the
various possible sum and difference tones. It can be seen that when the
ratio of their frequencies is relatively simple, the number of tones
present becomes less. It has been suggested that these tones sound
pleasant because fewer notes are involved; also if the wave traces are
studied, the simpler ratios give less complicated wave forms. The
above diagram shows wave traces for pairs of notes with various
frequency ratios.

This looks as though it might begin to account for the phenomena of
consonance and dissonance. But there are further complications. The
ear-brain system is non-linear only for rather loud sounds, but the sum
and difference, and dissonance phenomena, occur even for very low
amplitudes.

Also, if three tones are sounded together—say, 400, 480 and 560 Hz—
a difference tone at 80 Hz can be heard quite clearly, even at low ampli-
tudes: 80 Hz is the fundamental of the series of which the sounding
notes are the 5th, 6th and 7th harmonics. Now, if the frequencies are all
raised by the same amount to 420, 500, 580 Hz, although the difference
is still 80 Hz, the perceived tone is found to go up by about 10 Hz. The
three notes are now the 21st, 25th and 29th harmonics of a fundamental
of 20 Hz, although this note cannot be heard. This odd phenomenon,




Computer simulations for two different
low-frequency modes of the front plate
of a guitar.
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sometimes called the residue effect, provides yet one more example of the
inadequacy of simple theories to explain musical phenomena. Nor is it
an inconsequential complication: the tone of the bassoon, for example,
can only be explained using these ideas. If a frequency analysis of bas-
soon tone is made, there is found to be relatively little energy at the fun-
damental of any given note. Most of the energy lies in the 5th, 6th and
7th harmonics and the ear-brain system ‘manufactures’ the fundamen-
tal using this residue phenomenon.

The bodies of stringed instruments

Earlier, we mentioned the coupled system incorporating the strings and
bodies in the string family. It turns out that the body of an instrument
like a violin or a guitar performs an extraordinarily complicated func-
tion in transforming the vibrations of the strings into radiated sound.
Stradivari, Guarneri, Amati and others obviously solved the problem of
making the right kinds of bodies in a purely empirical way and,
although physicists can lend assistance to instrument makers in arriving
more rapidly at an acceptable solution, the secret of the success of the
Cremona school and others is by no means understood. It is clear that
much work remains to be done on the science of musical sound.
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