
COMPUTATIONAL LINGUISTICS

Athanasios N. Karasimos

akarasimos@gmail.com

BA in Linguistics | School of English Language and Literature

National and Kapodistrian University of Athens

Lecture 2 | Wed 7 Mar 2018

BASIC TEXT
PROCESSING:

REGULAR EXPRESSIONS,
TEXT NORMALIZATION

& EDIT DISTANCE

2

LECTURE I RECAP

3

SUMMARY

• Space Odyssey 2001: A good way to understand the concerns of speech and
language processing.

• Speech and Language technology relies on formal models, or representations, of
knowledge of language at the levels of phonology and phonetics, morphology,
syntax, semantics, pragmatics and discourse.

• The foundations of speech and language technology lie in computer science,
linguistics, mathematics, cognitive science and psychology.

• The critical connection between language and thought has placed speech and
language processing technology at the center of debate over intelligent machines.

• Revolutionary applications of speech and language processing are currently in use
around the world.

4

TASK: AMBIGUITY

• A perhaps surprising fact about these categories of linguistic knowledge is that
most tasks in speech and language processing can be viewed as resolving
ambiguity at one of these levels.

• TASK IV:

• Find an ambiguous example for each linguistic level.

1. Phonetics & Phonology

2. Morphology

3. Syntax

4. Semantics

5. Pragmatics

6. Discourse

5

TEXT NORMALIZATION I

((Token|Lemmat)ization|Stemming))

6

TEXT NORMALIZATION

• Text normalization is the process of transforming text into a single

canonical form that it might not have had before.

• Normalizing text before storing or processing it allows for separation of

concerns, since input is guaranteed to be consistent before operations are

performed on it.

• Text normalization requires being aware of what type of text is to be

normalized and how it is to be processed afterwards; there is no all-purpose

normalization procedure.

7

TOKENIZATION

• Most of what we are going to do with language relies on first separating out or

tokenizing words from running tokenization text, the task of tokenization.

• English words are often separated from each other by whitespace, but

whitespace is not always sufficient.

• New York and rock ’n’ roll are sometimes treated as large words despite the

fact that they contain spaces, while sometimes we’ll need to separate I’m into

the two words I and am

8

LEMMATIZATION

• Another part of text normalization is lemmatization, the task of determining

that two words have the same root, despite their surface differences.

• For example, the words sang, sung, and sings are forms of the verb sing. The

word sing is the common lemma of these words, and a lemmatizer maps from

all of these to sing.

• Lemmatization is essential for processing morphologically complex languages

like Russian, Turkish, Greek, Finnish, Hungarian, etc.

9

STEMMING
& SENTENCE SEGMENTATION

• Stemming refers to a simpler version of lemmatization in which we mainly

just strip suffixes from the end of the word.

• walking, walks, walked

• Text normalization also includes sentence segmentation: breaking up a text

into individual sentences, using cues like sentence segmentation periods or

exclamation points.

10

REGULAR EXPRESSIONS

11

WHAT IS A REGULAR EXPRESSION?

• A regular expression (RE, regex or regexp) is, in theoretical computer

science and computational linguistics, a sequence of characters that define a

search pattern. Usually this pattern is then used by string searching algorithms

for "find" or "find and replace" operations on strings.

• The concept arose in the 1950s when the American mathematician Stephen

Cole Kleene formalized the description of a regular language.

• Regular expressions are used in search engines, search and replace dialogs of

word processors and text editors, in text processing utilities and in lexical

analysis. Many programming languages provide regex capabilities, built-in, or via

libraries.

12

REGULAR EXPRESSION I

• A formal language for specifying text strings

• How can we search for any of these?

• python

• pythons

• Python

• Pythons

13

Pattern Matches

/python/ “interesting links to pythons and snakes”

/a/ “Mary Ann stopped by Mona’s”

/!/ “You’ve left the burglar behind again!” said Nori

REGULAR EXPRESSIONS: DISJUNCTIONS

• Letters inside square brackets []

• Ranges [A-Z]: the brackets can be used with the dash (-) to specify range

any one character in a range

14

Pattern Matches

[pP]ython python, Python

[1234567890] Any digit

Pattern Explanation Matches

[A-Z] An upper case letter Athanasios Karasimos

[a-z] A lower case letter Regular expression

[0-9] A single digit Chapter 1: Introduction

REGULAR EXPRESSIONS:
NEGATION IN DISJUNCTION

• Negations – The caret symbol [^]

• Carat means negation only when it appears in [].

15

Pattern Matches Example

[^A-Z] NOT an upper case letter Only I can write it.

[^Ss] Neither ‘s’ NOR ‘S’ Space, the final frontier.

[e^] Either ‘e’ or ‘^’ Look up here.

a^b The pattern ‘a^b’ Check the text to find the hidden a^b.

[^\.] NOT a period What is the meaning of backslash (\)?

REGULAR EXPRESSIONS: MORE DISJUNCTION

• We need a new operator, the disjunction operator, also called the pipe symbol |.

• The pattern /cat|dog/ matches either the string cat or the string dog.

16

Pattern Matches

/dog|cat|pet/ dog or cat or pet

/yours|mine/ yours or mine

/a|b|c/ a, b or c (=[abc])

/[dD]og|[cC]at|[pP]et/ Dog, dog, Cat, cat, Pet or pet

/ferry|ies/ ?

REGULAR EXPRESSIONS: KLEENE
SYMBOLS

• The Kleene star (*)means “zero or more occurrences of the immediately

previous character or regular expression”.

• the /a*/ means “any string of zero or more as”.

• The Kleene plus (+) means “one or more of the previous character”.

• the expression /[0-9]+/ is the normal way to specify “a sequence of digits”.

• The question mark (?) means “the preceding character or nothing”.

• The example /behaviou?r/ covers both behavior and behaviour.

• One very important special character is the period (.), a wildcard expression that

matches any single character.

• The expression /beg.n/ >> any character between beg and n, such as begin, beg’n, begun.

17

REGULAR EXPRESSIONS: KLEENE
SYMBOLS

Pattern Matches Example

/colou?r/ Optional previous char color or colour

/oo*h!/ 0 or more of previous char oh! ooh! oooh! ooooh! oooooh!

/oo+h!/ 1 or more of previous char ooh! oooh! ooooh! oooooh!

/beg.n/ any char begin, began, begon, begun, beg3n, beg>n

18

REGULAR EXPRESSIONS: ANCHORS

• Anchors are special characters that anchor regular expressions to particular
places in a string. The most common anchors are the caret ˆ and the dollar sign
$.

• The caret ˆ matches the start of a line. The pattern /ˆThe/ matches the word
The only at the start of a line. Thus, the caret ˆ has three uses: to match the
start of a line, to indicate a negation inside of square brackets, and just to mean
a caret.

• The dollar sign $ matches the end of a line. So the pattern $ is a useful
pattern for matching a space at the end of a line, and /ˆThe dog\.$/ matches a
line that contains only the phrase The dog.

• There are also two other anchors: \b matches a word boundary, and \B
matches a non-boundary.

19

REGULAR EXPRESSIONS: ANCHORS

Pattern Matches Example

^[A-Z] Any upper case letter at the

beginning of a new line

Please, close the door.

^[^a-zA-Z] Any non-alphabetical symbol at

the beginning of a new line

“Hello”, he said.

\.$ A period at the end of a line. The end.

.$ Any symbol at the end of a line. The end! The end?

20

REGULAR EXPRESSION:
OPERATOR PRECEDENCE

• This idea that one operator may take precedence over another, requiring us to

sometimes use parentheses to specify what we mean, is formalized by the

operator precedence hierarchy for regular expressions. The following

table gives the order operator precedence of RE operator precedence, from

highest precedence to lowest precedence.

• Parenthesis ()

• Counters * + ? {}

• Sequences and anchors the ˆ $

• Disjunction |

21

REGULAR EXPRESSIONS: OPERATORS

22

REGULAR EXPRESSIONS: OPERATORS

23

REGULAR EXPRESSIONS: AN EXAMPLE

• /the/

• /[tT]he/

• /\b[tT]he\b/

• /[ˆa-zA-Z][tT]he[ˆa-zA-Z]/

• /(ˆ|[ˆa-zA-Z])[tT]he([ˆa-zA-Z]|$)/

24

REGULAR EXPRESSIONS: ERRORS

• The process we just went through was based on fixing two

kinds of errors

• Matching strings that we should not have matched (there, then,

other)

• False positives (Type I)

• Not matching things that we should have matched (The)

• False negatives (Type II)

25

REGULAR EXPRESSIONS: ERRORS

• In NLP we are always dealing with these kinds of errors.

• Reducing the error rate for an application often involves

two antagonistic efforts:

• Increasing accuracy or precision (minimizing false positives)

• Increasing coverage or recall (minimizing false negatives).

26

REGULAR EXPRESSIONS: EXERCISES

• Regular expressions play a surprisingly large role

• Sophisticated sequences of regular expressions are often the first model for

any text processing text

• For many hard tasks, we use machine learning classifiers

• But regular expressions are used as features in the classifiers

• Can be very useful in capturing generalizations

• Lets have a hands-on session!

27

ASSIGNMENT 1

Write regular expressions for the following examples:

• (a.) the set of all alphabetic strings.

• (b.) the set of all lower case alphabetic strings ending in a b.

• (c.) the set of all strings from the alphabet a, b such that each a is immediately

preceded by and immediately followed by a b;

• (d.) all strings that have both the word hobbit and the word orc in them (but not,

e.g., words like hobbits that merely contain the word hobbit – in any order!);

• (e.) the set of all the names and surnames of your classmates (do not forget the

whitespace).

28

ASSIGNMENT 1

• Your goal is to use any regular expression techniques that we've learned
so far to extract the filename, method name and line number of line of
the stack trace (the underline bold part – parentheses included; do not
forget that the rest of the text is just for distraction).

• Skip dalvikvm(1553): threadid=1: uncaught exception

• Skip (1553): FATAL EXCEPTION: main

• Skip (1553): java.lang.StringIndexOutOfBoundsException

• Capture widge7.List.makeView(ListView.java:1727)

• Capture widg3t.List.fillDown(ListView.java:652)

• Capture w1dget.List.fillFrom(ListView.java:709)

29

ASSIGNMENT 1

• Write two regexp that matches all the items in the first column

(positive examples), but none of those in the second (negative

examples). You can choose which set of columns you will exclude (2

out of 3).

30

Positive Negative Positive Negative Positive Negative

pit

spot

spate

slap two

respite

pt

Pot

peat

part

rap them

tapeth

apth

wrap/try

sap tray

87ap9th

apothecary

aleht

happy them

tarpth

Apt

peth

tarreth

daffgfking

rafgkahe

bafghk

baffgkit

daffgfking

rafgkahe

bafghk

fgok

a fgk

affgm

dafffhk

fgok

afg.K

aff gm

ASSIGNMENT 1

Give two or three examples from the given regexp OR describe what
kind of matches you will get (i.e. the regexp /d[a-k]{2,4}/ will give daa,
dbak, dfelk etc. OR ‘words’ that start with d followed by two, three or
four characters ranged from a to k)

• (a.)/[Tt]han(ks|x)/

• (b.)/\d\s\w\d\s\w\sAlphanumeric\sSequenses?/

• (c.) /(b+eah)*/

• (d.) /(Jan|Feb|Mar|Apr|Mai|Jun|Jul|Aug|Sep|Oct|Noe|Dec)\s\d{4}/

• (e.) /^[Tt]he\s[a-z]+\./

31

TEXT
NORMALIZATION II

Introduction and

Examples

32

TEXT NORMALIZATION

• Every NLP task needs to do text normalization:

1. Segmenting/tokenizing words in running text

2. Normalizing word formats

3. Segmenting sentences in running text

33

HOW MANY WORDS?

• I do uh main- mainly business data processing

• Fragments, filled pauses

• Seuss’s cat in the hat is different from other cats!

• Lemma: same stem, part of speech, rough word sense

• cat and cats = same lemma

• Wordform: the full inflected surface form

• cat and cats = different wordforms

34

HOW MANY WORDS?

• Three Rings for the Elven-kings under the sky,

Seven for the Dwarf-lords in halls of stone,

Nine for Mortal Men, doomed to die,

One for the Dark Lord on his dark throne

In the Land of Mordor where the Shadows lie.

• One Ring to rule them all,

One Ring to find them,

One Ring to bring them

all and in the darkness bind them.

• Type: an element of the vocabulary.

• Token: an instance of that type in running

text.

• How many?

• Tokens:

• Types:

35

HOW MANY WORDS?

N = number of tokens

V = vocabulary = set of types

|V| is the size of the vocabulary

36

ISSUES IN TOKENIZATION

• Finland’s capital > Finland Finlands Finland’s ?

• what’re, I’m, isn’t > What are, I am, is not

• Hewlett-Packard > Hewlett Packard ?

• state-of-the-art > state of the art ?

• Lowercase > lower-case lowercase lower case ?

• San Francisco > one token or two?

• m.p.h., PhD. > ??

37

TOKENIZATION: LANGUAGE ISSUES

• French

• L'ensemble  one token or two?

• L ? L’ ? Le ?

• Want l’ensemble to match with un ensemble

• German noun compounds are not segmented

• Lebensversicherungsgesellschaftsangestellter

• ‘life insurance company employee’

• German information retrieval needs compound splitter

• Greek

• T’ ανήλιαγα μέρη (τ’?)

• Στου Μανώλη την ταβέρνα (στου?)
38

TOKENIZATION: LANGUAGE ISSUES

• Chinese and Japanese no spaces between words:

• 莎拉波娃现在居住在美国东南部的佛罗里达。

• 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达

• Sharapova now lives in US southeastern Florida

• Further complicated in Japanese, with multiple alphabets intermingled

• Dates/amounts in multiple formats

39

WORD TOKENIZATION

• Also called Word Segmentation

• Chinese words are composed of characters

• Characters are generally 1 syllable and 1 morpheme.

• Average word is 2.4 characters long.

• Standard baseline segmentation algorithm:

• Maximum Matching (MaxMatch or Greedy) - The algorithm requires a dictionary

(wordlist) of the maximum matching language.

40

WORD TOKENIZATION: MAXMATCH

• Given a wordlist of Chinese, and a string.

1. Start a pointer at the beginning of the string

2. Find the longest word in dictionary that matches the string starting at pointer

3. Move the pointer over the word in string

4. Go to 2 (looping)

41

WORD TOKENIZATION: MAXMATCH

• Input: wecanonlyseeashortdistanceahead

• Output: we canon l y see ash ort distance ahead

Doesn’t generally work in English!

The algorithm works better in Chinese than English, because Chinese has much
shorter words than English. We can quantify how well a segmenter works using a
metric called word error rate.

We compare our output segmentation with a perfect hand-segmented (‘gold’)
sentence, seeing how many words differ. The word error rate is then the normalized
minimum edit distance in words between our output and the gold: the number of
word insertions, deletions, and substitutions divided by the length of the gold sentence
in words.

Modern probabilistic segmentation algorithms are even better.

42

WORD
NORMALIZATION

and Stemming

43

NORMALIZATION

• Need to “normalize” terms

• Information Retrieval: indexed text & query terms must have same form.

• We want to match U.S.A. and USA

• We implicitly define equivalence classes of terms

• e.g., deleting periods in a term

• Alternative: asymmetric expansion:

• Enter: window Search: window, windows

• Enter: windows Search: Windows, windows, window

• Enter: Windows Search: Windows

• Potentially more powerful, but less efficient

44

CASE FOLDING

• Applications like IR: reduce all letters to lower case

• Since users tend to use lower case

• Possible exception: upper case in mid-sentence?

• e.g., General Motors

• Fed vs. fed

• SAIL vs. sail

• For sentiment analysis, MT, Information extraction

• Case is helpful (US versus us is important)

45

LEMMATIZATION

• Lemmatization is the task of determining that two words have the same

root, despite their surface differences.

• Reduce inflections or variant forms to base form

• am, are, is  be

• car, cars, car's, cars'  car

• the boy's cars are different colors  the boy car be different color

• Lemmatization: have to find correct dictionary headword form

• TASK II: Present some problematic cases of lemmatization.

46

LEMMATIZATION AND MORPHOLOGY

• The most sophisticated methods for lemmatization involve complete

morphological parsing of the word.

• Morphology is the study of the way words are built up from smaller

meaning-bearing units called morphemes.

• Stems: the core meaning-bearing units

• Affixes: adding “additional” meanings of various kinds

• Often with grammatical functions

47

STEMMING

• Reduce terms to their stems in
information retrieval

• Stemming is crude chopping of affixes

• language dependent

• e.g., automate(s), automatic, automation
all reduced to automat.

• One of the most widely used stemming
Porter stemmer algorithms is the simple
and efficient Porter (1980) algorithm.

• This was not the map we found in Billy
Bones’s chest, but an accurate copy,
complete in all things-names and heights
and soundings-with the single exception
of the red crosses and the written notes.

produces the following stemmed output:

• Thi wa not the map we found in Billi
Bone s chest but an accur copi complet
in all thing name and height and sound
with the singl except of the red cross and
the written note

48

PORTER STEMMER

Step 1a

• sses > ss caresses >caress

• ies > i ponies > poni

• ss > ss caress > caress

• s > ø cats > cat

Step 1b

• (*v*)ing > ø walking > walk
sing > sing

• (*v*)ed > ø plastered > plaster

• …

Step 2 (for long stems)

• ational > ate relational > relate

• izer > ize digitizer > digitize

• ator > ate operator > operate

• …

Step 3 (for longer stems)

• al > ø revival > reviv

• able > ø adjustable > adjust

• ate > ø activate > activ

• …

49

PORTER STEMMER

• But what happens with the morphologically-rich languages?

• Turkish

• Uygarlastiramadiklarimizdanmissinizcasina

• `(behaving) as if you are among those whom we could not civilize’

• Uygar `civilized’ + las `become’

+ tir `cause’ + ama `not able’

+ dik `past’ + lar ‘plural’

+ imiz ‘p1pl’ + dan ‘abl’

+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if ’

50

STEMMING

Task III:

• Present four examples (English and/or Greek) that can be problematic for stemming.

Task IV:

• Guess three possible errors of commission or omission.

51

MINIMUM EDIT DISTANCE

52

MINIMUM EDIT DISTANCE: DEFINITION

• Edit distance gives us a way to quantify both of these intuitions (i.e. graffe –

giraffe) about string similarity.

• The minimum edit distance between two strings is defined as the minimum

number of editing operations (operations like insertion, deletion, substitution)

needed to transform one string into another.

• It’s much easier to see alignment this by looking at the most important

visualization for string distances, an alignment between the two strings.

53

MINIMUM EDIT DISTANCE: DEFINITION

• Given two sequences, an alignment is a correspondence between substrings of

the two sequences. Thus, we say I aligns with the empty string, N with E, and so

on. Beneath the aligned strings is another representation; a series of symbols

expressing an operation list for converting the top string into the bottom

string: d for deletion, s for substitution, i for insertion.

54

MINIMUM EDIT DISTANCE

• If each operation has cost of 1

• Distance between these is 5

• If substitutions cost 2 (Levenshtein)

• Distance between them is 8

55

USES OF EDIT DISTANCE IN NLP

• Evaluating Machine Translation and speech recognition

R Spokesman confirms senior government adviser was shot

H Spokesman said the senior adviser was shot dead

S I D I

• Named Entity Extraction and Entity Coreference

• IBM Inc. announced today

• IBM profits

• Stanford President John Hennessy announced yesterday

• for Stanford University President John Hennessy

56

MINIMUM EDIT DISTANCE: HOW?

• Searching for a path (sequence of edits) from the start string to the final string:

• Initial state: the word we’re transforming

• Operators: insert, delete, substitute

• Goal state: the word we’re trying to get to

• Path cost: what we want to minimize: the number of edits

57

MINIMUM EDIT DISTANCE

• Task IV:

• Present the path from decalcify to respecify.

• Present the path from antennal to antihill.

• Task V:

• Give the minimum edit distance cost (both versions)of both paths.

58

DEFINING MINIMUM EDIT DISTANCE

• For two strings

• X of length n

• Y of length m

• We define D(i,j)

• the edit distance between X[1..i] and Y[1..j]

• i.e., the first i characters of X and the first j characters of Y

• The edit distance between X and Y is thus D(n,m)

59

DEFINING MINIMUM EDIT DISTANCE
(LEVENSHTEIN)

• Initialization

D(i,0) = i

D(0,j) = j

• Recurrence Relation:

For each i = 1…M

For each j = 1…N

D(i-1,j) + 1

D(i,j)= min D(i,j-1) + 1

D(i-1,j-1) + 2; if X(i) ≠ Y(j)

0; if X(i) = Y(j)

• Termination:

D(N,M) is distance

60

THE EDIT DISTANCE TABLE

61

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

THE EDIT DISTANCE TABLE

62

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

THE EDIT DISTANCE TABLE

63

N 9 8 9 10 11 12 11 10 9 8

O 8 7 8 9 10 11 10 9 8 9

I 7 6 7 8 9 10 9 8 9 10

T 6 5 6 7 8 9 8 9 10 11

N 5 4 5 6 7 8 9 10 11 10

E 4 3 4 5 6 7 8 9 10 9

T 3 4 5 6 7 8 7 8 9 8

N 2 3 4 5 6 7 8 7 8 7

I 1 2 3 4 5 6 7 6 7 8

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

COMPUTING ALIGNMENTS

• Edit distance isn’t sufficient

• We often need to align each character of the two strings to each other

• We do this by keeping a “backtrace”

• Every time we enter a cell, remember where we came from

• When we reach the end,

• Trace back the path from the upper right corner to read off the alignment

64

MINIMUM EDIT DISTANCE WITH
BACKTRACE

65

COUNTING BACKTRACE COST

66

THE DISTANCE
MATRIX

67

MINIMUM EDIT DISTANCE TABLE

i n t e r e s t

0 1 2 3 4 5 6 7 8

i 1 0 1 2 3 4 5 6 7

n 2 1 0 1 2 3 4 5 6

d 3 2 1 2 3 4 5 6 7

u 4 3 2 3 4 5 6 7 8

s 5 4 3 4 5 6 7 6 7

t 6 5 4 3 4 5 6 7 6

r 7 6 5 4 5 4 5 6 7

y 8 7 6 5 6 5 6 7 8

68

i n d u s t r y

i n t e r e s t

SUMMARY

69

SUMMARY

• This lecture introduced a fundamental tool in language processing, the regular

expression, and showed how to perform basic text normalization tasks

including word segmentation and normalization, sentence segmentation, and

stemming.

• We also introduce the important minimum edit distance algorithm for

comparing strings.

• The regular expression language is a powerful tool for pattern-matching.

• Basic operations in regular expressions include concatenation of symbols, disjunction

of symbols ([], |, and .), counters (*, +, and {n,m}), anchors (ˆ, $) and precedence

operators ((,)).

70

SUMMARY

• Word tokenization and normalization are generally done by cascades of simple

regular expressions substitutions or finite automata.

• The Porter algorithm is a simple and efficient way to do stemming, stripping off

affixes. It does not have high accuracy but may be useful for some tasks.

• The minimum edit distance between two strings is the minimum number of

operations it takes to edit one into the other. Minimum edit distance can be

computed by dynamic programming, which also results in an alignment of the

two strings.

• NEXT TIME: Language Modelling with N-Grams

71

ASSIGNMENT #1+#2

• 3-Tasks Assignments

• One with regular expressions

• One with stemming

• One with minimum edit distance

• Deadlines: Fri 20/10/2017 & Mon 30/10/2017

• Submission: via email (akarasimos@gmail.com).

72

WEEK READINGS

• Jurafsky D. & J. Martin (2008). SPEECH and LANGUAGE PROCESSING

An introduction to Natural Language Processing, Computational Linguistics and

Speech Recognition (2nd Edition + 3rd Edition). CHAPTER 2.

• Porter, M.F. (2001). Snowball: A language for stemming algorithms. (optional)

73

http://snowball.tartarus.org/texts/introduction.html

