
ΓΕ 77
COMPUTATIONAL LINGUISTICS

Athanasios N. Karasimos

akarasimos@gmail.com

BA in Linguistics | School of English Language and Literature

National and Kapodistrian University of Athens

Lecture 5 | Wed 28 Mar 2018

MORPHOLOGY:
FINITE-STATE

AUTOMATA

2

LECTURE 4 RECAP

Language Modeling with N-Grams

3

LANGUAGE MODELING WITH N-GRAMS

• Language models offer a way to assign a probability to a sentence or other
sequence of words, and to predict a word from preceding words.

• N-grams are Markov models that estimate words from a fixed window of previous
words. N-gram probabilities can be estimated by counting in a corpus and
normalizing (the maximum likelihood estimate).

• N-gram language models are evaluated extrinsically in some task, or intrinsically
using perplexity. The perplexity of a test set according to a language model is the
geometric mean of the inverse test set probability computed by the model.

• Smoothing algorithms provide a more sophisticated way to estimate the probability
of N-grams. Commonly used smoothing algorithms for N-grams rely on lower-
order N-gram counts through backoff or interpolation.

4

FINITE-STATE AUTOMATA

5

FINITE-STATE AUTOMATA: DEFINITION

• Finite-state automata (FSA) are the theoretical foundation of a good deal
of the computational work.

• Any regular expression can be implemented as a FSA.

• Symmetrically, any FSA can be described with a regular expression.

• A regular expression is one way of characterizing a particular kind of formal
language called a regular language.

• Both regular expressions and FSA can be used to describe regular languages.

• A third equivalent method of characterizing the regular languages, the regular
grammar.

6

REGULAR LANGUAGES

7

Regular
Languages

Finite
automata

Regular
Grammars

Regular
Expressions

REGULAR LANGUAGE: DEFINITION

• Regular language is a formal language that can be expressed using a regular

expression, in the strict sense of the latter notion used in theoretical

computer science.

• Alternatively, a regular language can be defined as a language recognized by a

finite automaton. The equivalence of regular expressions and finite automata is

known as Kleene's theorem. In the Chomsky hierarchy, regular languages are

defined to be the languages that are generated by regular grammars.

8

FSA: DEFINITION

• Devices for recognizing finite state grammars (including regular expressions)

• Two types

• Deterministic Finite State Automata (DFSA)

Rules are unambiguous

• NonDeterministic Finite State Automata (NDFSA)

Rules are ambiguous

Sometimes more than one sequence of rules must be attempted to determine if a

string matches the grammar

• ≫ Backtracking

• ≫ Parallel Processing

• ≫ Look Ahead

• Any NDFSA can be mapped into an equivalent (but larger) DFSA

9

USING AN FSA TO RECOGNIZE COWTALK

• Let’s begin with the “cow language” we discussed previously. Recall that we

defined the cow language as any string from the following (infinite) set:

• muu!

• muuu!

• muuuu!

• muuuuu!

• muuuuuu!

10

USING AN FSA TO RECOGNIZE COWTALK

11

q0 q1 q2 q3 q4m u u

u

!

q4

USING AN FSA TO RECOGNIZE COWTALK

• The regular expression for this kind of “cowtalk” is /muu+!/.

• The FSA from the previous slide recognizes a set of strings, in this case the

strings characterizing cow talk, in the same way that a regular expression does.

• We represent the automaton as a directed graph: a finite set of vertices (also

called nodes), together with a set of directed links between pairs of vertices

called arcs.

• We’ll represent vertices with circles and arcs with arrows.

12

USING AN FSA TO RECOGNIZE COWTALK

• State 0 is the start state.

• To mark another state as the start state, we can add an incoming arrow to the

start state.

• State 4 is the final state or accepting state, which we represent by the

double circle. It also has four transitions, which we

• represent by arcs in the graph.

• The FSA can be used for recognizing (we also say accepting) strings in the

following way.

13

FSA REJECTION

• If the machine never gets to the final state, either because it runs out of input,

or it gets some input that doesn’t match an arc, or if it just happens to get

stuck in some non-final state, we say the machine rejects or fails to accept an

input.

14

FSA m u !

0 1 0 0

1 0 2 0

2 0 3 0

3 0 3 4

4 0 0 0

PARAMETERS OF FSA

• Σ is the input alphabet (a finite, non-empty set of symbols).

• Q is a finite, non-empty set of states.

• q0 is an initial state, an element of Q.

• δ (q, i) is the state-transition function or transition matrix between states.
Given a state q ∈ Q and an input symbol i ∈ Σ , δ (q, i) returns a new state q΄ ∈
Q. δ : Q x Σ -> Q (is the relation from Q x Σ to Q).

• F is the set of final states, a (possibly empty) subset of Q (F ≤Q).

• For the cowtalk FSA Q = {q0,q1,q2,q3,q4}, Σ = {m,u, !}, F = {q4}, and d(q, i) is
defined by the transition arrows (or transition table).

15

DETERMINISTIC FSA

• A deterministic algorithm is one that has no choice points; the algorithm
always knows what to do for any input.

• Τhe next section will introduce non-deterministic automata that must make
decisions about which states to move to.

• D-RECOGNIZE takes as input a tape and an automaton.

• It returns accept if the string is pointing to on the tape is accepted by the
automaton, and reject otherwise. Note that since D-RECOGNIZE assumes it is
already pointing at the string to be checked, its task is only a subpart of the
general problem that we often use regular expressions for finding a string in a
corpus.

16

DETERMINISTIC FSA

• The algorithm will fail whenever there is no legal transition for a given
combination of state and input.

• The input ume will fail to be recognized since there is no legal transition out of state
q0 on the input u.

• Even if the automaton had allowed an initial a it would have certainly failed on e since
e isn’t even in the cowtalk alphabet!

• We can think of these “empty” elements in the table as if they all pointed at
one “empty” state, which we might call the fail state or sink state. In a sense
then, we could view any machine with empty transitions as if we had
augmented it with a fail state, and drawn in all the extra arcs, so we always had
somewhere to go from any state on any possible input.

17

FORMAL LANGUAGES

18

FORMAL LANGUAGE

• The FSA starts at state q0, and crosses arcs to new states, printing out the

symbols that label each arc it follows.

• When the automaton gets to the final state it stops.

• Notice that at state 3, the automaton has to chose between printing out a !

and going to state 4, or printing out an u and returning to state 3. Let’s say for

now that we don’t care how the machine makes this decision; maybe it flips a

coin.

• For now, we don’t care which exact string of cowtalk we generate, as long as

it’s a string captured by the regular expression for cowtalk above.

19

FORMAL LANGUAGE

• Formal Language: A model which can both generate and recognize all and

only the strings of a formal language acts as a definition of the formal language.

• A formal language is a set of strings, each string composed of symbols from

a finite symbol-set called an alphabet (the same alphabet used above for

defining an automaton!). The alphabet for the cow language is the set S = {m, u,

!}. Given a model m (such as a particular FSA), we can use L(m) to mean “the

formal language characterized by m”.

• L(m) = {muu!, muuu!, muuuu!, muuuuu!, muuuuu!, muuuuuu!....}

20

FORMAL LANGUAGE

• The usefulness of an automaton for defining a language is that it can express an
infinite set (such as this one above) in a closed form. Formal languages are not the
same as natural languages, which are the kind of languages that real people
speak.

• In fact, a formal language may bear no resemblance at all to a real language (e.g., a
formal language can be used to model the different states of a soda machine).

• But we often use a formal language to model part of a natural language, such as
parts of the phonology, morphology, or syntax.

• The term generative grammar is sometimes used in linguistics to mean a
grammar of a formal language; the origin of the term is this use of an automaton to
define a language by generating all possible strings.

21

FORMAL LANGUAGE

22

NON-DETERMINISTIC FSA

23

NON-DETERMINISTIC FSA

• Let’s extend our discussion now to another class of FSAs: non-deterministic

FSAs (or NFSAs).

24

q0 q1 q2 q3 q4m u u

u

!

q4

FSA m u !

0 1 0 0

1 0 2 0

2 0 2,3 0

3 0 0 4

4 0 0 0

NON-DETERMINISTIC FSA

• The only difference between the NFSA and the FSA is the first has the self-

loop is on state 2 instead of state 3. Consider using this network as an

automaton for recognizing cowtalk. When we get to state 2, if we see an a we

don’t know whether to remain in state 2 or go on to state 3.

• Automata with decision points like this are called non-deterministic FSAs

(or NFSAs). Recall by contrast NFSA that the regular FSA specified a

deterministic automaton, i.e., one whose behavior during recognition is fully

determined by the state it is in and the symbol it is looking at.

• A DFSA deterministic automaton can be referred to as a DFSA.

25

NON-DETERMINISTIC FSA

• There is another common type of non-determinism, caused by arcs that have

no symbols on them (called ε-transitions).

• The following NFSA defines the exact same language as the last one, or our

first one, but it does it with an ε-transition.

• We interpret this new arc as follows: If we are in state 3, we are allowed to

move to state 2 without looking at the input, or advancing our input pointer. So

this introduces another kind of non-determinism — we might not know

whether to follow the ε-transition or the ! arc.

26

q0 q1 q2 q3 q4m u u

!

q4

ε-transition

NON-DETERMINISTIC FSA

• TASK I:

• Give a simple regular expression (no more than 4 symbols).

• TASK II:

• Give the five parameters of your NFSA.

• TASK III:

• Create a NFSA for your expression. It can contain loops and ε-transition.

27

NON-DETERMINISTIC FSA

• Using an NFSA to Accept Strings

• if we use a non-deterministic machine to recognize it, we might follow the wrong arc

and reject it when we should have accepted it.

• This problem of choice in non-deterministic models will come up again and

again as we build computational models, particularly for parsing.

• There are three standard solutions to the problem of non-determinism:

28

SOLUTIONS FOR NFSA

• Backup: Whenever we come to a choice point, we could BACKUP put a

marker to mark where we were in the input, and what state the automaton

was in. Then if it turns out that we took the wrong choice, we could back up

and try another path.

• Look-ahead: We could look ahead in the input to help us decide which path

to take.

• Parallelism: Whenever we come to a choice point, we could look at every

alternative path in parallel.

29

A PARALLEL FSA

• /mu(u|h)*!/

30

q0 q1 q2 q3 q4m u u

!

q4

q3

h !

h

!

u

THE BACK-UP APPROACH

• The backup approach suggests that we should blithely make choices that might

lead to dead-ends, knowing that we can always return to unexplored alternative

choices.

• There are two keys to this approach: we need to remember all the alternatives for

each choice point, and we need to store sufficient information about each

alternative so that we can return to it when necessary.

• When a backup algorithm reaches a point in its processing where no progress can

be made (because it runs out of input, or has no legal transitions), it returns to a

previous choice point, selects one of the unexplored alternatives, and continues

from there. Applying this notion to our non-deterministic recognizer, we need only

remember two things for each choice point: the state, or node, of the machine that

we can go to and the corresponding position on the string.

31

THE BACK-UP APPROACH

• We will call the combination of the node and position the search-state of the

recognition algorithm. To avoid confusion, we will refer to the state of the

automaton (as opposed to the state of the search) as a node or a machine-

state.

• If a node has an e-transition, we list the destination node in the e-column for

that node’s row.

• TASK IV: Create a table for your NFSA.

32

FROM NFSA TO DFSA

• It may seem that allowing NFSAs to have non-deterministic features like e-transitions
would make them more powerful than DFSAs.

• There is a simple algorithm for converting an NFSA to an equivalent DFSA, although
the number of states in this equivalent deterministic automaton may be much larger.

• Recall that the difference between NFSAs and DFSAs is that in an NFSA a state qi
may have more than one possible next state given an input i (for example qa and qb).

• The algorithm for converting a NFSA to a DFSA is like this parallel algorithm; we
build an automaton that has a deterministic path for every path our parallel
recognizer might have followed in the search space.

• We imagine following both paths simultaneously, and group together into an
equivalence class all the states we reach on the same input symbol (i.e., qa and qb).

33

SUMMARY

34

SUMMARY

• Any regular expression can be realized as a finite state automaton (FSA).

• An automaton implicitly defines a formal language as the set of strings the

automaton accepts.

• An automaton can use any set of symbols for its vocabulary, including letters,

words, or even graphic images.

• The behavior of a deterministic automaton (DFSA) is fully determined by

the state it is in.

• A non-deterministic automaton (NFSA) sometimes has to make a choice

between multiple paths to take given the same current state and next input.

• Any NFSA can be converted to a DFSA.

35

READING

• Jurafsky D. & J. Martin (2008). SPEECH and LANGUAGE PROCESSING

An introduction to Natural Language Processing, Computational Linguistics and

Speech Recognition (2nd Edition). CHAPTER 2.

36

