
[1]

Computational Linguistics
Lecture 2: Regular Expressions, Text Normalization and Edit Distance

Athanasios Karasimos

Task 1: Find the correct RegEx. Sometimes there are more than

one possible solutions.
1.1 Go ahead and try writing a pattern that matches all three rows, it may be as simple

as the common letters on each line.
Match abcdefg
Match abcde
Match abc

Solution:

1.2. Try writing a pattern that matches all the digits in the strings below, and notice

how your pattern matches anywhere within the string, not just starting at the first

character.
Match abc123xyz
Match define "123”
Match var g = 123;

Solution:

1.3 Below are a couple strings with varying characters but the same length. Try to write

a single pattern that can match the first three strings, but not the last (to be skipped).

You may find that you will have to escape the dot metacharacter to match the period

in some of the lines.
Match cat.
Match 896.
Match ?=+.
Skip abc1

Solution:

1.4 Below are a couple lines, where we only want to match the first three strings, but

not the last three strings. Notice how we can't avoid matching the last three strings if

we use the dot, but have to specifically define what letters to match using the notation

above.
Match can
Match man
Match fan
Skip dan
Skip ran
Skip pan

[2]

Solution:

1.5 With the strings below, try writing a pattern that matches only the live animals (hog,

dog, but not bog). Notice how most patterns of this type can also be written using the

technique from the last lesson as they are really two sides of the same coin. By having

both choices, you can decide which one is easier to write and understand when

composing your own patterns.
Match hog
Match dog
Skip bog

Solution:

1.6 In the exercise below, notice how all the match and skip lines have a pattern, and

use the bracket notation to match or skip each character from each line. Be aware that

patterns are case sensitive and a-z differs from A-Z in terms of the characters it matches

(lower vs upper case).
Match Ana
Match Bob
Match Cpc
Skip aax
Skip bby
Skip ccz

Solution:

1.7 In the lines below, the last string with only one z isn't what we would consider a

proper spelling of the slang "wazzup?". Try writing a pattern that matches only the first

two spellings by using the curly brace notation above.
Match wazzzzzup
Match wazzzup
Skip wazup

Solution:

1.8 Below are a few simple strings that you can match using both the star and plus

metacharacters.
Match aaaabcc
Match aabbbbc
Match aacc
Skip a

Solution:

[3]

1.9 In the strings below, notice how the plurality of the word "file" depends on the

number of files found. Try writing a pattern that uses the optionality metacharacter to

match only the lines where one or more files were found.
Match 1 file found?
Match 2 files found?
Match 24 files found?
Skip No files found.

1.10 In the strings below, you'll find that the content of each line is indented by some

whitespace from the index of the line (the number is a part of the text to match). Try

writing a pattern that can match each line regardless of how much whitespace is

between the number and the content. Notice that the whitespace characters are just

like any other character and the special metacharacters like the star and the plus can

be used as well.
Match 1. abc
Match 2. abc
Match 3. abc
Skip 4.abc

Solution:

1.11 Note that this is different than the hat used inside a set of bracket [^...] for

excluding characters, which can be confusing when reading regular expressions. Try to

match each of the strings below using the special characters.
Match Mission: successful
Skip Last Mission: unsuccessful
Skip Next Mission: successful upon capture of target

Solution:

1.12 Go ahead and try to use this to write a regular expression that matches only the

filenames (not including extension) of the PDF files below.
Capture file_record_transcript.pdf
Capture file_07241999.pdf
Skip testfile_fake.pdf.tmp

Solution:

1.13 For the following strings, write an expression that matches and captures both the

full date, as well as the year of the date.
Capture Jan 1987
Capture May 1969
Capture Aug 2011

Solution:

[4]

1.14 Go ahead and try writing a conditional pattern that matches only the lines with

small fuzzy creatures below.
Match I love cats
Match I love dogs
Skip I love logs
Skip I love cogs

Lesson Notes
abc… Letters
123… Digits
\d Any Digit
\D Any Non-digit character
. Any Character
\. Period
[abc] Only a, b, or c
[^abc] Not a, b, nor c
[a-z] Characters a to z
[0-9] Numbers 0 to 9
\w Any Alphanumeric character
\W Any Non-alphanumeric character
{m} m Repetitions
{m,n} m to n Repetitions
* Zero or more repetitions
+ One or more repetitions
? Optional character
\s Any Whitespace
\S Any Non-whitespace character
^…$ Starts and ends
(…) Capture Group
(a(bc)) Capture Sub-group
(.*) Capture all
(abc|def) Matches abc or def

