1  Classical Logic and the Material
Conditional

1.1 Introduction

1.1.1 The first purpose of this chapter is to review classical propo-
sitional logic, including semantic tableaux. The chapter also sets out

some basic terminology and notational conventions for the rest of the
book.

1.1.2 In the second half of the chapter we also look at the notion of the
conditional that classical propositional logic gives, and, specifically, at some
of its shortcomings.

1.1.3 The point of logic is to give an account of the notion of validity: what
follows from what. Standardly, validity is defined for inferences couched in
a formal language, a language with a well-defined vocabulary and grammar,
the object language. The relationship of the symbols of the formal language
to the words of the vernacular, English in this case, is always an important
issue.

1.1.4 Accounts of validity themselves are in a language that is normally
distinct from the object language. This is called the metalanguage. In our

case, this is simply mathematical English. Note that “iff’ means “f and
only if’.

1.1.5 It is also standard to define two notions of validity. The first
is semantic. A valid inference is one that preserves truth, in a certain
sense. Specifically, every interpretation (that is, crudely, a way of assign-
ing truth values) that makes all the premises true makes the conclu-
sion true. We use the metalinguistic symbol ‘=" for this. What distin-

guishes different logics is the different notions of interpretation they
employ.
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1.1.6 The second notion of validity is proof-theoretic. Validity is defined in
terms of some purely formal procedure (that is, one that makes reference
only to the symbols of the inference). We use the metalinguistic symbol ‘+’
for this notion of validity. In our case, this procedure will (mainly) be one
employing tableaux. What distinguish different logics here are the different
tableau procedures employed.

1.1.7 Most contemporary logicians would take the semantic notion of valid-
ity to be more fundamental than the proof-theoretic one, though the matter
is certainly debatable. However, given a semantic notion of validity, it is
always useful to have a proof-theoretic notion that corresponds to it, in
the sense that the two definitions always give the same answers. If every
proof-theoretically valid inference is semantically valid (so that I entails |=)
the proof-theory is said to be sound. If every semantically valid inference is
proof-theoretically valid (so that = entails ) the proof-theory is said to be
complete.

1.2 The Syntax of the Object Language

1.2.1 The symbols of the object language of the propositional calcu-
lus are an infinite number of propositional parameters:' pg,p1,p2,...;
the connectives: — (negation), A (conjunction), v (disjunction), >
(material conditional), = (material equivalence); and the punctuation

marks: (, ).

1.2.2 The (well-formed) formulas of the language comprise all, and only, the
strings of symbols that can be generated recursively from the propositional
parameters by the following rule:

If A and B are formulas, so are —A, (A Vv B), (A A B), (A D B), (A=B).

1.2.3 I will explain a number of important notational conventions here. I
use capital Roman letters, A, B, C, . . ., to represent arbitrary formulas of the
object language. Lower-case Roman letters, p, g, 7, . .., represent arbitrary,

1 These are often called ‘propositional variables’.
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but distinct, propositional parameters. I will always omit outermost paren-
theses of formulas if there are any. So, for example, [ write (A > (B v —())
simply as A > (B v —=C). Upper-case Greek letters, ¥, 11, . . ., represent arbi-
trary sets of formulas; the empty set, however, is denoted by the (lower case)

¢, in the standard way. I often write a finite set, {A1, Az, ..., Ap), simply as
ALAZ, s ’An-

1.3 Semantic Validity

1.3.1 Aninterpretation of the language is a function, v, which assigns to each

propositional parameter either 1 (true), or 0 (false). Thus, we write things
such as v(p) =1 and v(g) = 0.

1.3.2 Given an interpretation of the language, v, this is extended to a func-
tion that assigns every formula a truth value, by the following recursive
clauses, which mirror the syntactic recursive clauses:2

v(—A) = 1if v(A) = 0, and 0 otherwise.

V(AAB) =1if v(A) = v(B) = 1, and 0 otherwise.
v(AVvB) =1if v(A) =1 or v(B) = 1, and 0 otherwise.
V(ADB) =1ifv(A) =0 or v(B) =1, and 0 otherwise.
V(A =B) =1if v(A) = v(B), and 0 otherwise.

1.3.3 Let X be any set of formulas (the premises); then A (the conclusion) is
a semantic consequence of & (¥ |= A) iff there is no interpretation that makes
all the members of ¥ true and A false, that is, every interpretation that

makes all the members of ¥ true makes A true. ‘% f= A’ means that it is not
the case that ¥ = A.

1.3.4 A is a logical truth (tautology) (= A) iff it is a semantic consequence of

the empty set of premises (¢ = A), that is, every interpretation makes A
true.

2 The reader might be more familiar with the information

Al O
contained in these clauses when it is depicted in the form ST T
of a table, usually called a truth table, such as the one for -
conjunction displayed:
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1.4 Tableaux

1.4.1 A tree is a structure that looks, generally, like this:®

The dots are called nodes. The node at the top is called the root. The nodes at
the bottom are called tips. Any path from the root down a series of arrows as
far as you can go is called a branch. (Later on we will have trees with infinite
branches, but not yet.)

1.4.2 To test an inference for validity, we construct a tableau which begins
with a single branch at whose nodes occur the premises (if there are any) and
the negation of the conclusion. We will call this the initial list. We then apply
rules which allow us to extend this branch. The rules for the conditional
are as follows:

ADB —~(ADB)
v N J
—A B A
i)
—-B

The rule on the right is to be interpreted as follows. If we have a formula
—(A D B) at a node, then every branch that goes through that node is
extended with two further nodes, one for A and one for —B. The rule on
the left is interpreted similarly: if we have a formula A > B at a node, then
every branch that goes through that node is split at its tip into two branches:
one contains a node for —A; the other contains a node for B.

3 Strictly speaking, for those who want the precise mathematical definition, it is a partial
order with a unique maximum element, xg, such that for any element, x,, there is a
unique finite chain of elements xy <x,_1 <--- <% < .
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1.4.3 For example, to test the inference whose premises are A > B, B > C,
and whose conclusion is A D C, we construct the following tree:

ADB
B>C

—-(ADC)

—B C —B

The first three formulas are the premises and negated conclusion. The next
two formulas are produced by the rule for the negated conditional applied to
the negated conclusion; the first split on the branch is produced by applying
the rule for the conditional to the first premise; the next splits are produced
by applying the same rule to the second premise. (Ignore the ‘x’s: we will
come back to those in a moment.)

1.4.4 The other connectives also have rules, which are as follows.
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—(A A B) ANB
o N iy
—=A -B A
!
B
A=B —(A = B)
v N e N
A —-A A —-A
! 1 i 1
B —B —B B

Intuitively, what a tableau means is the following. If we apply a rule to a
formula, then if that formula is true in an interpretation, so are the for-
mulas below on at least one of the branches that the rule generates. (Of
course, there may be only one such branch.) This is a useful mnemonic for
remembering the rules. It must be stressed, though, that officially the rules
are purely formal.

1.4.5 Atableau is complete iff every rule that can be applied has been applied.
By applying the rules over and over, we may always construct a complete
tableau. In the present case, the branches of a completed tableau are always
finite,* but in the tableaux of some subsequent chapters they may be
infinite,

1.4.6 Abranch s closed iff there are formulas of the form A and —A on two of
its nodes; otherwise it is open. A closed branch is indicated by writing an x
at the bottom. A tableau itself is closed iff every branch is closed; otherwise
it is open. Thus the tableau of 1.4.3 is closed: the leftmost branch contains
A and —A; the next contains A and —A (and C and —C); the next contains B
and —B; the rightmost contains C and —C.

1.4.7 Ais a proof-theoretic consequence of the set of formulas (T FA)iff
there is a complete tree whose initial list comprises the members of ¥ and
the negation of A, and which is closed. We write - A to mean that o F A,

4 This is not entirely obvious, though it is not difficult to prove.




Classical Logic and the Material Conditional

that is, where the initial list of the tableau comprises just —A. ‘Y I# A’ means
that it is not the case that £ - A.>

1.4.8 Thus, the tree of 1.4.3 shows that A D B,B D C + A D C. Here is
another, to show that - (A D B) A(AD C)) D (A D B A()). To save space,
we omit arrows where a branch does not divide.

“((ADBAADC)DMADBAQ)Y)
ADB)AADO)
-(AD BAQ)

(ADB)
ADC)
A
—(BAC)
v N\
—-B -C
oo LN
—A B —A B
X X X ¥ N
—-A C
X X

Note that when we find a contradiction on a branch, there is no point in
continuing it further. We know that the branch is going to close, what-
ever else is added to it. Hence, we need not bother to extend a branch as
soon as it is found to close. Notice also that, wherever possible, we apply
rules that do not split branches before rules that split branches. Though
this is not essential, it keeps the tableau simpler, and is therefore useful
practically.

1.4.9 In practice, it is also a useful idea to put a tick at the side of a for-
mula once one has applied a rule to it. Then one knows that one can forget
about it.

5 There may, in fact, be several completed trees for an inference, depending upon the
order of the premises in the initial list and the order in which rules are applied. For-
tunately, they all give the same result, though this is not entirely obvious. See 1.14,
problem 5.
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1.5 Counter-models
1.5.1 Here is another example, to show that (p > DVIErOPFPvr) Dg.

P>qQvEoq)
~(pvr)>q)

(pvr)
—q
v N
Po>qQ r>q
e + + N
P q -r q
v X \ N X
p r p T

The tableau has two open branches. The leftmost one is emphasised in bold
for future reference.

1.5.2 The tableau procedure is, in effect, a systematic search for an inter-
pretation that makes all the formulas on the initial list true. Given an open

branch of a tableau, such an interpretation can, in fact, be read off from the
branch.6

1.5.3 The recipe is simple. If the propositional parameter, p, occurs at a
node on the branch, assign it 1; if —p occurs at a node on the branch, assign

it 0. (If neither p nor —p occurs in this way, it may be assigned anything one
likes.)

1.5.4 For example, consider the tableau of 1.5.1 and its (bolded) leftmost
open branch. Applying the recipe gives the interpretation, v, such that
v(r) =1,and v(p) = v(g) = 0. It is simple to check directly that v(ipDg Vv
(r>¢q) =1and v((pVvr) Dgq) = 0. Since p is false, p > q is true, as is

®>q) Vv (r>q).Sincer is true, p v r is true; but q is false; hence, (pvr) Dgq
is false.

6 If one thinks of constructing a tableau as a search procedure for a counter-model,
then the soundness and completeness theorems constitute, in effect, a proof that the
procedure always gives the right result, that is, which verifies the algorithm in question.
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1.5.4a Note that the tableau of 1.4.8 shows that any inference of the form
in question is valid. That is, A, B and C can be any formulas. To show that an
inference is invalid, we have to construct a counter-model, and this means
assigning truth values to particular formulas. This is why the example just
given uses ‘p’, ‘¢’ and ‘r’, not ‘A’, °B’ and ‘C’. One may say that an inference
expressed using schematic letters (‘A’s and ‘B’s) is invalid, but this must
mean that there are some formulas that can be substituted for these letters
to make it so. Thus, we may write A ¥ B, since p ¥ q. But note that this does
not rule out the possibility that some inferences of that form are valid, e.g.,

pEQV .

1.5.5 As one would hope, the tableau procedure we have been looking at is
sound and complete with respect to the semantic notion of consequence,
ie, if © is a finite set of sentences, ¥ + A iff © |= A. That is, the search
procedure really works. If there is an interpretation that makes all the for-
mulas on the initial list true, the tableau will have an open branch which,
in effect, specifies one. And if there is no such interpretation, every branch
will close. These facts are not obvious. The proofis in 1.11.7

1.6 Conditionals

1.6.1 In the remainder of this chapter, we look at the notion of condition-
ality that the above, classical, semantics give us, and at its inadequacy. But
first, what is a conditional?

1.6.2 Conditionals relate some proposition (the consequent) to some other
proposition (the antecedent) on which, in some sense, it depends. They are
expressed in English by ‘if’ or cognate constructions:

If the bough breaks (then) the cradle will fall.
The cradle will fall if the bough breaks.
The bough breaks only if the cradle falls.

7 The restriction to finite T is due to the fact that tableaux have been defined only for
finite sets of premises. It is possible to define tableaux for infinite sets of premises as
well (not putting all the premises at the start, but introducing them, one by one, at
regular intervals down the branches). If one does this, the soundness and completeness
results generalise to arbitrary sets of premises. We will take up this matter again in

Chapter 12 (Part II), where the matter assumes more significance.
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If the bough were to break the cradle would fall.
Were the bough to break the cradle would fall.

1.6.3 Note that the grammar of conditionals imposes certain requirements
on the tense (past, present, future) and mood (indicative, subjunctive) of
the sentences expressing the antecedent and consequent within it. These
may be different when the antecedent and consequent stand alone. To see
this, just consider the following applications of modus ponens (if A then B; A;
hence B):

If he takes a plane he will get there quicker.
He will take a plane.
Hence, he will get there quicker.

If he had come in the window there would have been foot-marks.
He did come in the window.
So, there are foot-marks.

1.6.4 Note, also, that not all sentences using ‘if” are conditionals; consider,
for example, ‘If [ may say so, you have a nice ear-ring’, {(Even) if he was
plump, he could still run fast’, or ‘If you want a banana, there is one in the
kitchen.” A rough and ready test for ‘if A, B’ to be a conditional is that it can
be rewritten equivalently as ‘that A implies that B’.

1.7 The Material Conditional

1.7.1 The connective D is usually called the material conditional (or material
implication). As its truth conditions show, A D B is logically equivalent to
—A v B. It is true iff A is false or B is true. Thus, we have:

BE=ADB
-AEADB

These are sometimes called the ‘paradoxes of material implication’.

1.7.2 People taking a first course in logic are often told that English condi-
tionals may be represented as . There is an obvious objection to this claim,
though. If it were correct, then the truth conditions of > would ensure the
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truth of the following, which appear to be false:

If New York is in New Zealand then 2 + 2 = 4.
If New York is in the United States then World War II ended in 1945.
If World War II ended in 1941 then gold is an acid.

1.7.3 Itis possible to reply to this objection as follows. These examples are,
indeed, true. They strike us as counterintuitive, though, for the following
reason. Communication between people is governed by many pragmatic
rules of conversation, for example ‘be relevant’, ‘assert the strongest claim
you areina position to make’. We often use the fact that these rules are in
place to draw conclusions. Consider, for example, what you would infer
from the following questions and replies: ‘How do you use this drill?’,
“There’s a book over there.” (It is a drill manual. Relevance.) ‘Who won the
3.30 at Ascot?’, ‘It was a horse named either Blue Grass or Red Grass.” (The
speaker does not know which. Assert the strongest information.) These infer-
ences are inferences, not from the content of what has been said, but from the
fact that it has been said. The process is often dubbed ‘conversational impli-
cature’. Now, the claim goes, the examples of 1.7.2 strike us as odd since
anyone who asserted them would be violating the rule assert the strongest,
since, in each case, we are in a position to assert either the consequent or

the negation of the antecedent (or both).

1.8 Subjunctive and Counterfactual Conditionals

1.8.1 A harder objection to the correctness of the material conditional is
to the effect that there are pairs of conditionals which appear to have the
same antecedent and consequent, but which clearly have different truth
values. They cannot both, therefore, be material conditionals. Consider the

examples:

(1) If Oswald didn’t shoot Kennedy someone else did. (True)
(2) If Oswald hadn’t shot Kennedy someone else would have. (False)

1.8.2 In response to this kind of example, it is not uncommon for philoso-
phers to distinguish between two sorts of conditionals: conditionals in
which the consequent is expressed using the word ‘would’ (called ‘sub-
junctive’ or ‘counterfactual’), and others (called ‘indicative’). Subjunctive
conditionals, like (2), cannot be material: after all, (2) is false, though its
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antecedent is false (assuming the results of the Warren Commission!). But

indicative conditionals may still be material.

1.8.3 The claim that the English conditional is ambiguous between sub-
junctive and indicative is somewhat dubious, though. There appears to be
no grammatical justification for it, for a start. In (1) and (2) the ‘if’s are
grammatically identical; it is the tenses and/or moods of the verbs involved

which make the difference.

1.8.4 What these differences seem to do is to get us to evaluate the truth

values of conditionals from different points in time. Thus, we evaluate (1) '

as true from the present, where Kennedy has, in fact, been shot. The differ-
ence of tense and mood of (2) asks us to evaluate the conditional ‘If Oswald
doesn’t shoot Kennedy, someone else will’ from the perspective of a time
just before Kennedy was shot. It is, in a certain sense, the past tense of
that conditional. Notice that no difference of the kind between (1) and (2)
arises in the case of present-tense conditionals. There is no major differ-
ence between ‘If I shoot you, you will die’ and ‘If T were to shoot you, you

would die.

1.9 More Counter-examples

1.9.1 There are more fundamental objections against the claim that the
indicative English conditional (even if it is distinct from the subjunctive) is
material. It is easy to check that the following inferences are valid.

(AAB)DCHADCOV@BDOO
ADBACDODFADD)VCDB
-(ADBFA

If the English indicative conditional were material, the following inferences
would, respectively, be instances of the above, and therefore valid, which

they are clearly not.

(1) If you close switch x and switch y the light will go on. Hence, it is the
case either that if you close switch x the light will go on, or that if you
close switch y the light will go on. (Imagine an electrical circuit where
switches x and y are in series, so that both are required for the light to

go on, and both switches are open.)

e I L SR B ST
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(2) If John is in Paris he is in France, and if John is in London he is in
England. Hence, it is the case either that if John is in Paris he is in
England, or that if he is in London he is in France.

(3) It is not the case that if there is a good god the prayers of evil people
will be answered. Hence, there is a god.

1.9.2 Notice that all these conditionals are indicative. Note, also, that
appealing to conversational rules cannot explain why the conclusions
appear odd, as in 1.7.3. For example, in the first, it is not the case that
we already know which disjunct of the conclusion is true: both appear to be

false. -

1.9.3 It might be pointed out that the above arguments are valid if ‘if” is
understood as O. However, this just concedes the point: ‘if’ in English is not

understood as D.

1.10 Arguments for >

1.10.1 The claim that the English conditional (or even the indicative condi-
tional) is material is therefore hard to sustain. In the light of this it is worth
asking why anyone ever thought this. At least in the modern period, a large
part of the answer is that, until the 1960s, standard truth-table semantics
were the only ones that there were, and D is the only truth function that

looks an even remotely plausible candidate for ‘if’.

1.10.2 Some arguments have been offered, however. Here is one, to the
effect that ‘If A then B’ is true iff ‘A D B’ is true.

1.10.3 First, suppose that ‘If A then B’ is true. Either —A is true or A is. In
this first case, —=A Vv B is true. In the second case, B is true by modus ponens.
Hence, again, —A v B is true. Thus, in either case, =A Vv B is true.

1.10.4 The converse argument appeals to the following plausible claim:

() ‘If A then B’ is true if there is some true statement, C, such that from C
and A together we can deduce B.

Thus, we agree that the conditional ‘If Oswald didn’t kill Kennedy, someone
else did’ is true because we can deduce that someone other than Oswald
killed Kennedy from the fact that Kennedy was murdered and Oswald did

not do it.
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1.10.5 Now, suppose that —A v B is true. Then from this and A we can
deduce B, by the disjunctive syllogism: A, —A v B - B. Hence, by (*), ‘If A then B’
is true.

1.10.6 We will come back to this argument in a later chapter. For now, just

note the fact that it uses the disjunctive syllogism.

1.11 *Proofs of Theorems

1.11.1 DErINITION: Let v be any propositional interpretation. Let b be ariy
branch of a tableau. Say that v is faithful to b iff for every formula, A, on the
branch, v(A) = 1.

1.11.2 SounDNESs LEMMA: If v is faithful to a branch of a tableau, b, and a
tableau rule is applied to b, then v is faithful to at least one of the branches
generated.

Proof:

The proof is by a case-by-case examination of the tableau rules. Here are
the cases for the rules for . The other cases are left as exercises. Suppose
that v is faithful to b, that —(A D B) occurs on b, and that we apply a rule
to it. Then only one branch eventuates, that obtained by adding A and —B
to b. Since v is faithful to b, it makes every formula on b true. In particular,
v(=(A D B)) = 1. Hence, v(A D B) = 0, v(A) = 1, v(B) = 0, and so v(—B) = 1.
Hence, v makes every formula on b true. Next, suppose that v is faithful to "
b, that A D B occurs on b, and that we apply a rule to it. Then two branches
eventuate, one extending b with —A (the left branch); the other extending
b with B (the right branch). Since v is faithful to b, it makes every formula
on b true. In particular, v(A D B) = 1. Hence, v(A) = 0, and so v(—A) = 1, or :
v(B) = 1. In the first case, v is faithful to the left branch; in the second, it is
faithful to the right. |

1.11.3 SOUNDNESS THEOREM: For finite ¥, if © - A then © £ A.

Proof:
We prove the contrapositive. Suppose that % [ A. Then there is an inter-
pretation, v, which makes every member of ¥ true, and A false - and hence
makes —A true. Now consider a completed tableau for the inference. v is
faithful to the initial list. When we apply a rule to the list, we can, by the
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Soundness Lemma, find at least one of its extensions to which v is faith-
ful. Similarly, when we apply a rule to this, we can find at least one of its
extensions to which v is faithful; and so on. By repeatedly applying the
Soundness Lemma in this way, we can find a whole branch, b, such that v
is faithful to every initial section of it. (An initial section is a path from the
root down the branch, but not necessarily all the way to the tip.) It follows
that v is faithful to b itself, but we do not need this fact to make the proof
work. Now, if b were closed, it would have to contain some formulas of the
form B and —B, and these must occur in some initial section of b. But this
is impossible since v is faithful to this section, and so it would follow that
v(B) = v(—B) = 1, which cannot be the case. Hence, the tableau is open, i.e.,
T A |

1.11.4 DErFINITION: Let b be an open branch of a tableau. The interpretation
induced by b is any interpretation, v, such that for every propositional param-
eter, p, if pisatanode on b, v(p) = 1, and if —p is at a node on b, v(p) = 0.
(And if neither, v(p) can be anything one likes.) This is well defined, since b
is open, and so we cannot have both p and —p on b.

1.11.5 CoMPLETENESS LEMMA: Letb be an open complete branch of a tableau.
Let v be the interpretation induced by b. Then:

ifAisonb,v(A) =1
if -Aisonb, v(A) =0

Proof:

The proof is by induction on the complexity of A. If A is a propositional
parameter, the result is true by definition. If A is complex, it is of the form
BAC,BVvC,B>C,B=C, or —B. Consider the first case, and suppose that
BACisonb.Since b is complete, the rule for conjunction has been applied
toit. Hence, both B and C are on the branch. By induction hypothesis, v(B) =
v(C) = 1.Hence, v(BAC) = 1, asrequired. Next, suppose that ~(BAC) is on b.
Since the rule for negated conjunction has been applied to it, either —B or
=C is on the branch. By induction hypothesis, either v(B) = 0 or v(C) = 0.
In either case, v(B A C) = 0, as required. The cases for the other binary
connectives are similar. For —: suppose that —B is on b. Then, since the
result holds for B, by the induction hypothesis, v(B) = 0. Hence, v(-B) = 1.
If =—B is on b, then so is B, by the rule for double negation. By induction
hypothesis, v(B) = 1, so v(—B) = 0. [ |
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1.11.6 COMPLETENESS THEOREM: For finite %, if £ = A then T - A.

Proof:

We prove the contrapositive. Suppose that X 7 A. Consider a completed
open tableau for the inference, and choose an open branch. The interpreta-
tion that the branch induces makes all the members of £ true, and A false,

by the Completeness Lemma. Hence, T & A. |

1.12 History

The propositional logic described in this chapter was first formulated by
Frege in his Begriffsschrift (translated in Bynum, 1972) and Russell (1903).
Semantic tableaux in the form described here were first given in Smullyan
(1968). The issue of how to understand the conditional is an old one. Dis-
putes about it can be found in the Stoics and in the Middle Ages. Some
logicians at each of these times endorsed the material conditional. For an
account of the history, see Sanford (1989). The defence of the material con-
ditional in terms of conversational rules first seems to have been suggested
by Ajdukiewicz (1956). The idea was brought to prominence by Grice (1989,
chs. 1-4). The argument for distinguishing between the indicative and sub-
junctive conditionals was first given by Adams (1970). The examples of 1.9
are taken from a much longer list given by Cooper (1968). The argument of

1.10 was given by Faris (1968).

1.13 Further Reading

For an introduction to classical logic based on tableaux, see Jeffrey (1991),
Howson (1997) or Restall (2006). For a number of good papers discussing the
connection between material, indicative and subjunctive conditionals, see
Jackson (1991). For further discussion of the examples of 1.9, see Routley,
Plumwood, Meyer and Brady (1982, ch. 1).

1.14 Problems

1. Check the truth of each of the following, using tableaux. If the inference
is invalid, read off a counter-model from the tree, and check directly that
it makes the premises true and the conclusion false, as in 1.5.4.
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2. Give an argument to show that A = B iff = A D B. (Hint: split the argu-
ment into two parts: left to right, and right to left. Then just apply the

sz AT

definition of =. You may find it easier to prove the contrapositives. That
is, assume that = A D B, and deduce that A |~ B; then vice versa.)

3. How, if at all, could one defend or attack the arguments of 1.7, 1.8 and
1.9?

4. *Check the details omitted in 1.11.2 and 1.11.5.

5. *Use the Soundness and Completeness Lemmas to show that if one com-
pleted tableau for an inference is open, they all are. Infer that the result

of a tableau test is indifferent to the order in which one lists the premises

of the argument and applies the tableau rules.




