2 Basic Modal Logic

2.1 Introduction

2.1.1 In this chapter, we look at the basic technique - possible-world
semantics - variations on which will occupy us for most of the following
chapters. (We will return to the subject of the conditional in chapter 4.)

2.1.2 This will take us into an area called modal logic. This chapter concerns
the most basic modal logic, K (after Kripke).

2.2 Necessity and Possibility

2.2.1 Modal logic concerns itself with the modes in which things may be
true/false, particularly their possibility, necessity and impossibility. These
notions are highly ambiguous, a subject to which we will return in the next
chapter.

2.2.2 The modal semantics that we will examine employ the notion of a
possible world. Exactly what possible worlds are, we will return to later in
this chapter. For the present, the following will suffice. We can all imagine
that things might have been different. For example, you can imagine that
things are exactly the same, except that you are a centimetre taller. What
you are imagining here is a different situation, or possible world. Of course,
the actual world is a possible world too, and there are indefinitely many oth-
ers as well, where you are two centimetres taller, three centimetres taller,
where you have a different colour hair, where you were born in another
country, and so on.

2.2.3 The other intuitive notion that the semantics employs is that of relative
possibility. Given how things are now, it is possible for me to be in New York




{
[
i
|
|
|
{
£
i

Basic Modal Logic

in aweek’s time, 26 January. Given how things will be in six days and twenty-
three hours, it will no longer be possible. (Iam writing in Brisbane.) Or, even
if one countenances the possibility of some futuristic and exceptionally fast
form of travel, assuming that I do not leave Brisbane in the next eight days,
it will then be impossible for me to be in New York on 26 January. Hence,
certain states of affairs are possible relative to some situations (worlds), but

not others.

2.3 Modal Semantics

2.3.1 A propositional modal language augments the language of the propo-
sitional calculus with two monadic operators, [J and ©.1 Intuitively, JA is
read as ‘It is necessarily the case that A’; GA as ‘It is possibly the case that A",

2.3.2 Thus, the grammar of 1.2.2 is augmented with the rule:
If A is a formula, so are JA and OA.

2.3.3 Aninterpretation for this languageisa triple (W,R, v). W is a non-empty
set. Formally, W is an arbitrary set of objects. Intuitively, its members are
possible worlds. R is a binary relation on W (so that, technically,R € WxW).
Thus, if u and v are in W, R may or may not relate them to each other. If it
does, we will write uRv, and say that v is accessible from u. Intuitively, R is a
relation of relative possibility, so that uRv means that, relative to u, situation
v is possible. v is a function that assigns a truth value (1 or 0) to each pair
comprising a world, w, and a propositional parameter, p. We write this as
vw(p) = 1 (or vw(p) = 0). Intuitively, this is read as ‘at world w, p is true (or
false)'.

2.3.4 Given an interpretation, v, this is extended to assign a truth value to
every formula at every world by a recursive set of conditions. The conditions
for the truth functions (—, A, Vv, etc.) are the same as those for propositional
logic (1.3.2), except that things are relativised to worlds. Thus, for —, Aand v,
the conditions go as follows. For any world w € W:

vw(—A) = 1if vw(A) =0,and 0 otherwise.
vw(AAB) = 1if vy (@A) =vwB) =1, and 0 otherwise.
AV B) =1if vy =1orv®B =1, and 0 otherwise.

1 Some logicians use L and M, respectively.
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In other words, worlds play no essential role in the truth conditions for the

non-modal operators.

2.3.5 They play an essential role in the truth conditions for the modal

operators. For any world w € W:

v (OA) = 1 if, for some w’ € W such that wRw’, vy (A) = 1; and 0 otherwise.
vw(OA) =1 if, for all w' € W such that wRw’, v/ (A) = 1; and 0 otherwise.

In other words, ‘It is possibly the case that A’ is true at a world, w, if A
is true at some world, possible relative to w. And ‘It is necessarily the case
that A’ is true at a world, w, if A is true at every world, possible relative
tow.

2.3.6 Note that if w accesses no worlds, everything of the form ©A is false
at w - if w accesses no worlds, it accesses no worlds at which A is true.
And if w accesses no worlds, everything of the form CJA is true at w -
if w accesses no worlds, then (vacuously) at all worlds that w accesses A

is true.?

2.3.7 A finite interpretation (that is, where W is a finite set) can
be perspicuously represented diagrammatically. For example, let W =
{w1, Wz, ws}; wiRwa, wiRws, waRwz (and no other worlds are related by R);
vw, (0) = 0, vw (@ = 05 vw, (0) = 1, vw, () = 1; vy, () = 1, vw, (@) = 0. This
interpretation can be represented as follows:

w2 poq
/

-p —q w1
N
w3 p —q

The arrows represent accessibility. In particular,

w3
means that ws accesses itself.

2 Recall that ‘all Xs are Y is logically equivalent to ‘there are no Xs that are nnot Ys".
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2.3.8 The truth conditions of 2.3.4 and 2.3.5 can be used to work out the
truth values of compound sentences, and these can be marked on the dia-
gram in the same way. For example, since p and ¢ are true at wp, so is
p Ag. But wyRwy; hence, O(p A q) is true at wi. At the only world that w3
accesses (namely itself), p is true. Hence, Op is true at ws. But wy accesses
ws, hence, ©Op is true at wi. wp accesses no world; hence, ¢q is false at
wy, SO —Oq is true there. We can add these facts to the diagram in the

obvious way:

Wy p q
pAqg —Oq
4
-p -q Wi
O(pAg  ©Op
N
.W3 p —q
Up

2.3.9 Observe that the truth value of —OA at any world, w, is the same as
that of O —A. For:

v (—CA) =1 iff v (CA) =0
iff for all w' such that wRW', vy (A) =0
iff for all W' such that wRW', vy (—A) =1
iff w(@d-4)=1

2.3.10 Similarly, the truth value of A at a world is the same as that of

©—A. The proof is left as an exercise.

2.3.11 An inference is valid if it is truth-preserving at all worlds of all inter-
pretations. Thus, if ¥ is a set of formulas and A is a formula, then semantic

consequence and logical truth are defined as follows:

¥ = A iff for all interpretations (W, R, v) and allw € W: if wy(B) = 1 for all

B e T, then vy(A) = 1.
= Aiff ¢ = A, ie, forall interpretations (W,R, v) and allw e W, vyw(A) = 1.
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2.4 Modal Tableaux

2.4.1 Tableaux for modal logic are similar to those for propositional logic
(1.4), except for the following modifications. At every node of the tree there
is either a formula and a natural number (0, 1, 2,. . .), thus: A, i; or something
of the form irj, where i and j are natural numbers. Intuitively, different
numbers indicate different possible worlds; A,i means that A is true at
world i; and irj means that world i accesses world j.2

2.4.2 Second, the initial list for the tableau comprises A,0, for every
premise, A (if there are any), and —B, 0, where B is the conclusion.

2.4.3 Third, the rules for the truth-functional connectives are the same as in
non-modal logic, except that the number associated with any formula is also
associated with its immediate descendant(s). Thus, the rule for disjunction,

for example, is:

2.4.4 There are four new rules for the modal operators:

—-0A,i —OA,i
2 }
O—A,i O-Ai
0A,i  OA
i 3
+ it]
Aj Aj

In the rule for O (bottom left), both of the lines above the arrow must be
present for the rule to be triggered (the lines do not have to occur in the
order shown, and they do not have to be consecutive), and it is applied to
every such j. In the rule for ¢ (bottom right), the number j must be new. That

is, it must not occur on the branch anywhere above.

3 Iwill avoid using r as a propositional parameter where this might lead to confusion.
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2.4.5 Finally, a branch is closed iff for some formula, A, and number, 1, A,i

and —A,i both occur on the branch. (It must be the same i in both cases.)4

2.4.6 Here are some examples of tableaux:

(i) DADB) A OB > C) + DA D C).

OA DB AOBDO),0
-0A 2 0),0
O D B),0
OB > 0),0
o—=(ADC(),0
orl (1)
-(AD0),1 (1)
Al
-C,1
ADB,1 (2)
Bo(C1 (2)
e N\
—-A,1 B,1
X y \u
—-B,1 C,1

X

The lines marked (1) are obtained by applying the rule for ¢ to the line
immediately above them. Note that in applying the rule for ¢, a number
new to the branch must be chosen. The lines marked (2) are the results of
two applications of the rule for O to the conjuncts of the premise. Note that
the rule for O is applied to numbers already on the branch.

(ii) F OAAB) D (CAA ©B). The arrow at the bottom of a branch indicates
that it continues on the next page.

—~(O(AAB) D (CAACB)),0
O(AAB),0
—(CA A ©B),0
v N\
—0A, 0 —-$B, 0
0-A,0 0O-B,0

! !

4 1t is not obvious, but, as in the propositional case, every tableau of the kind we are
dealing with here is finite.
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The lines marked (1) result from an application of the rule for ¢ to the

formula at the second node of the tableau. The line marked (2) results
from applications of the rule for O to (J—A, 0 (left branch) and O-B, 0 (right
branch).

(ifi) b (Op A O=g) D oO0p

=((Op A O—=q) D ©0OCp), 0
Cp A O—q, 0
—O00p, 0
<p, 0
&g, 0
0-00p, 0
orl

p.1
—-O¢p, 1

O=Op, 1
1r2
—Op, 2
O-p, 2

0r3
'—Iq’ 3
—-00p, 3

O=0p, 3
3r4
=Op, 4
O-p,4

The lines marked (2) result from an application of the rule for ¢ to the
fourth line of the tableau. The lines marked (4) result from an application
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of the same rule to the fifth line of the tableau. Note that, as the example
shows, when we apply the rule for ¢, we may have to go back and apply the
rule for O again, to the new world (number) that has been introduced. Thus,
the line marked (3) results from a first application of the rule to line (1). Line
(5) results from a second application. For this reason, if one is ticking nodes
to show that one has finished with them, one should never tick a node of
the form [JA, since one may have to come back and use it again.

2.4.7 Counter-models can be read off from an open branch of a tableauin a
natural way. For each number, i, that occurs on the branch, there is a world,
wi; wiRwj iff irj occurs on the branch; for every propositional parameter, p, if
p,ioccurs on the branch, vy, (p) = 1, if =p, i occurs on the branch, vy, (p) = 0
(and if neither, vy, (p) can be anything one wishes).

2.4.8 Thus, the counter-model given by the open (and only) branch of the
third example of 2.4.6 is as follows: W = {wg, W1, Wp, W3, W4}. WoRW1, W1Rwp,
woRws, wsRwy. There are no other worlds related by R. vy, (p) = 1, v, (q) = 0;
otherwise, v is arbitrary. The interpretation can be depicted thus:

w2
S
w1 p
/!
wo
AN
w3 —q
N\
W4

Using the truth conditions, one can check directly that the interpretation
works. Since p is true at wy, Op is true at wo. Similarly, ¢—q is true at wp.
Hence, the antecedent is true at wg. wy accesses no worlds; so Op is false at
wy, and O¢p is false at wy. Similarly, OCp is false at wz. Hence, there is no
world which wg can access at which O¢p is true. Thus, ¢OOp is false at wg.
It follows, then, that (Op A ©O—q) D ©OOp is false at wp.

2.4.9 The tableaux just described are sound and complete with respect to
the semantics. The proof is given in 2.9.
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2.5 Possible Worlds: Representation

2.5.1 In the rest of this chapter we look at the major philosophical question
that modal semantics generate: what do they mean?

2.5.2 One might suggest that they do not mean anything. They are simply a
mathematical apparatus - interpretations comprise just bunches of objects
(W) furnished with some properties and relations - to be thought of purely

instrumentally as delivering an appropriate notion of validity.

2.5.3 Butthere is something very unsatisfactory about this, as there is about
all instrumentalisms. If a mathematical ‘black box’ gives what seem to be
the right answers, one wants to know why. There must be some relationship
between how it works and reality, which explains why it gets things right.

2.5.4 The most obvious explanation in this context is that the mathematical
structures that are employed in interpretations represent something or other
which underlies the correctness of the notion of validity.

2.5.5 In the same way, no one supposes that truth is simply the number 1.
But that number, and the way that it behaves in truth-functional semantics,
are able to represent truth, because the structure of their machinations
corresponds to the structure of truth’s own machinations. This explains
why truth-functional validity works (when it does).

2.5.6 So, the question arises: what exactly, in reality, does the mathematical
machinery of possible worlds represent? Possible worlds, of course (what
else?). But what are they?

2.6 Modal Realism

2.6.1 The simplest suggestion (usually termed ‘modal realism’) is that pos-
sible worlds are things exactly like the actual world. They are composed of
physical objects like people, chairs and stars (if any exist in those worlds),
in their own space and time (if there are such things in those worlds). These
objects exist just as much as you and I do, just in a different place/time -
though not ones in this world.

2.6.2 The thought is, no doubt, a little mind-boggling. But so are many of
the developments in modern physics. And why should metaphysics not have
the right to boggle the mind just as much as physics?

o v
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2.6.3 Many arguments may be put both for and against this proposal - as
they may be for all the views that I will mention. Here is one argument
against. What makes such a world a different possible world, and not simply
part of this one? The natural answer is that the space, time and causation
of that world are unconnected with the space, time and causation of this
world. One cannot travel from here to there in space or time; nor can causal

processes from here reach there, or vice versa.

2.6.4 But why should that make it a different world? Suppose that because
. of the spatial geometry of the inside of a black hole, one could travel thence
down a worm hole into a part of the cosmos with its own space and time;
and suppose, then, that the worm hole closed up. We would not think of that
region, now causally isolated from the rest, as a different possible world:

merely an inaccessible part of this one.

2.6.5 The point may be put in a different way. Why should we think that
something is possible in this world merely because it is actually happening
at another placeftime? I do not, after all, think that it is possible to see
kangaroos in Antarctica merely because they are seen in Australia.

2.7 Modal Actualism

2.7.1 Another possibility (frequently termed ‘modal actualism’) is that,
though possible worlds exist, they are not the physical entities that the
modal realist takes them to be. They are entities of a different kind:
specifically, abstract entities (like numbers, assuming there to be such

things).

2.7.2 What kind of abstract entities? There are several possible candidates
here. A natural one is to take them to be sets of propositions, or other
language-like entities. Crudely, a possible world is individuated by the set
of things true at it, which is just the set of propositions it contains.

2.7.3 But a problem arises with this suggestion when one asks which sets
are worlds? Clearly not all sets are possible worlds. For example, a set that
contains two propositions but not their conjunction could not be a possible
world.

2.7.4 For a set of propositions to form a world, it must at least be closed
under valid inference. (If a proposition is true at a world, and it entails
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another, then so is that.) But there’s the rub. The machinery of worlds was
meant to explain why certain inferences, and not others, are valid. But it
now seems that the notion of validity is required to explain the notion of
world - not the other way around.

2.7.5 A variation of actualism which avoids this problem is known as ‘com-
binatorialism’. A possible world is merely the set of things in this world,
rearranged in a different way. So in this world, my house is in Australia,
and not China; but rearrange things, and it could be in China, and not
Australia.

2.7.6 Combinatorialism is still a version of actualism, because an arrange-
ment is, in fact, an abstract object. It is a set of objects with a certain
structure. But it avoids the previous objection, since one may explain what
combinations there are without invoking the notion of validity.

2.7.7 But combinatorialism has its own problems. For example, it would
seem to be entirely possible that there is an object such that neither it nor
any of its parts exist in this world. It is clear, though, that such an object
could not exist in any world obtained simply by rearranging the objects in
this world. Hence, there are possible worlds which cannot be delivered by
combinatorialism.

2.8 Meinongianism

2.8.1 Both realism and actualism take possible worlds and their denizens,
whatever they are, to exist, either as concrete objects or as abstract objects.
Another possibility is to take them to be non-existent objects. (We know,
after all, that such things do not really exist!)

2.8.2 We are all, after all, familiar with the thought that there are
non-existent things, like fairies, Father Christmas (sorry) and phlogiston.
Possible worlds are things of this kind.

2.8.3 The view that there are non-existent objects was espoused, famously,
by Meinong. It had a very bad press for a long time in English-speaking
philosophy, but it is fair to say that many of the old arguments against the
possibility of there being non-existent objects are not especially cogent.

2.8.4 Forexample, one argument against such objects is that, since they can-
not interact with us causally, we would have no way of knowing anything
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about them. But exactly the same is true, of course, of possible worlds as
both the realist and the actualist conceive them, so this can hardly count
to their advantage against Meinongianism about worlds.

2.8.5 Moreover, it is very clear how we know facts about at least some non-
existent objects: they are simply stipulated. Holmes lived in Baker Street -
and not Oxford Street - because Conan Doyle decided it was so.

2.8.6 The preceding considerations hardly settle the matter of the nature
of possible worlds. There are many other suggested answers (most of which
are some variation on one or other of the themes that I have mentioned);
and there are many objections to the suggestions I have raised, other than
the ones that I have given, as well as possible replies to the objections I have
raised; philosophers can have hours of fun with possible worlds. This will
do for the present, though.

2.9 *Proofs of Theorems

2.9.1 The soundness and completeness proofs for K are essentially varia-
tions and extensions of the soundness and completeness proofs for propo-
sitional logic. We redefine faithfulness and the induced interpretation. The
proofs are then much as in 1.11.

2.9.2 DEFINITION: Let T = (W, R, v) be any modal interpretation, and b be
any branch of a tableau. Then Z is faithful to b iff there is a map, f, from the
natural numbers to W such that:

For every node A,ion b, A is true at f (i) in Z.
Ifirjisonb, f()Rf() in T. ;

We say that f shows Z to be faithful to b.

2.9.3 SOUNDNESS LEMMA: Let b be any branch of a tableau, and Z = (W, R, v)
be any interpretation. If 7 is faithful to b, and a tableau rule is applied to it,
then it produces at least one extension, b/, such that 7 is faithful to b'.

Proof:
Let f be a function which shows Z to be faithful to b. The proof pro-
ceeds by a case-by-case consideration of the tableau rules. The cases for the
propositional rules are essentially as in 1.11.2. Suppose, for example, that
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AAB,iisonb, and that we apply the rule for conjunction to give an extended
branch containing A,i and B,i. Since 7 is faithful to b, A A B is true at f(i).
Hence, A and B are true at f (i). Hence, 7 is faithful to the extension of b. We
will therefore consider only the modal rules in detail. Consider the rule for
negated <. Suppose that —OA, i occurs on b, and that we apply the rule to
extend the branch with 0O-A,i. Since 7 is faithful to b, —=0OA is true at f(i).
Hence, 0-A is true at f (i) (by 2.3.9). Hence, 7 is faithful to the extension of
b. The rule for negated OJ is similar (invoking 2.3.10).

This leaves the rules for O and ©. Suppose that (JA, i is on b, and that we
apply the rule for O. Since 7 is faithful to b, A is true at f(i). Moreover,
for any i and j such that irj is on b, f ()Rf (j). Hence, by the truth conditions
for O, A is true at f(j), and so 7 is faithful to the extension of the branch.
Finally, suppose that ¢A, i is on b and we apply the rule for ¢ to get nodes
of the form irj and A, j. Since 7 is faithful to b, ¢A is true at f(i). Hence, for
some w € W, f(i))Rw and A is true at w. Let f' be the same as f except that
f'(j) = w. Note that f’ also shows that 7 is faithful to b, since f and f’ differ
only at j; this does not occur on b. Moreover, by definition, f/(i))Rf’(j), and A
is true at f'(j). Hence, f’ shows Z to be faithful to the extended branch. M

2.9.4 SOUNDNESS THEOREM FOR K: For finite X, if ¥ - A then ¥ = A.

Proof:

Suppose that % [~ A. Then there is an interpretation, Z = (W,R,v), that
makes every premise true, and A false, at some world, w. Let f be any func-
tion such that f(0) = w. This shows Z to be faithful to the initial list. The
proof is now exactly the same as in the non-modal case (1.11.3). ]

2.9.5 DEeFINITION: Let b be an open branch of a tableau. The interpretation,
T = (W,R,v), induced by b, is defined as in 2.4.7. W = {w; : i occurs on b}.
wiRw; iff irj occurs on b. If p,i occurs on b, then vy, (p) = 1; if —p, i occurs on
b, then vy, (p) = 0 (and otherwise vy, (p) can be anything one likes).

2.9.6 COMPLETENESS LEMMA: Letb be any open complete branch of a tableau.
Let 7 = (W,R, v) be the interpretation induced by b. Then:

if A,iis on b then A is true at w;
if —A,iis on b then A is false at w;

B R SRS e ey ml i s a5 S
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Proof:

The proof is by recursion on the complexity of A. If A is atomic, the result
is true by definition. If A occurs on b, and is of the form BV C, then the rule
for disjunction has been applied to BV C,i. Thus, either B,iorC,iisonb.By
induction hypothesis, either B or C is true at wi. Hence, BV C is true at wj,
as required. The case for ~(B v C) is similar, as are the cases for the other
truth functions. Next, suppose that A is of the form DB.IfOB,iis onb, then
for all j such that irj is on b, B, j is on b. By construction and the induction
hypothesis, for all wj such that wiRwj, B is true at wj. Hence, OB is true at w;,
as required. If ~0A, i is on b, then ©—A,iis on b; so, for some j, irj and —A, j
are on b. By induction hypothesis, WiRw; and A is false at wj. Hence, DA is
false at w; as required. The case for < is similar. [ |

2.9.7 CoMPLETENESS THEOREM: For finite %, if & = Athen £ - A.

Proof:
Suppose that © i# A. Given an open branch of the tableau, the interpretation
that this induces makes all the premises true at wo and A false at wg by the

Completeness Lemma. Hence, % W A. |

2.10 History

Modal logic is as old as logic. Aristotle himself gave an account of which
modal syllogisms he took to be valid (see Kneale and Kneale, 1975, ch. 2,
sect. 8). Modal logic and semantics were also discussed widely in the Middle
Ages (see Knuuttila, 1982). In the modern period, the subject of modal logic
was initiated by C. L. Lewis just before the First World War (see Lewis and
Langford, 1931). Initially, it received a bad press, largely as a result of the
criticisms of Quine - whose work also produced much of the unpopularity
of Meinongianism. (On both, see the papers in Quine, 1963.) Things changed
with the invention of possible-world semantics in the early 1960s. These are
due to the work of a number of people, most notably that of Kripke (1963a).
(For a history, see Copeland, 1996, Pp. 8-15.)

The notion of a possible world is to be found in Leibniz (e.g., Monadol-
ogy, sect. 53). Modal realism has been espoused most famously by D. Lewis
(1986). Notable proponents of actualism include Plantinga and Stalnaker.
Combinatorialism is espoused by Cresswell. See the papers by all three in
Loux (1979). The idea that worlds are non-existent objects is proposed in
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Routley (1980a) and defended in Priest (2005c). Kripke’s own views on the
nature of possible worlds can be found in Kripke (1977).

2.11 Further Reading

Perhaps the best introduction to modal logic is still Hughes and Cresswell
(1996). The semantics of K are given in chapter 2. (Hughes and Cresswell use
axiom systems rather than tableaux for their proof theory.) Chellas (1980)
is also excellent, though a little more demanding mathematically. Tableaux
for modal propositional logics can be found in chapters 2 and 3 of Girle
(2000). A somewhat different form can be found in chapter 2 of Fitting and
Mendelsohn (1999). A useful collection of essays on the nature of possible
worlds is Loux (1979); chapter 15, ‘The Trouble with Possible Worlds’, by
Lycan, is a good orientational survey. Read (1994, ch. 4) is also an excellent
discussion.

2.12 Problems

1. Check the details of 2.3.10.
2. Show the following. Where the tableau does not close, use it to define a
counter-model, and draw this, as in 2.4.8.
(@) - (OAATOB) D OAAB)
(b) H @AVOB) >OAVB)
(c) FOA=—0-A
(d) - A =-0-A
(e) = OAAB) D (CAA OB)
(f) F ©(AVB) D (CAV OB)
(g) DADB - CA D OB
(h) DA, OB+ O(AAB)
() FOA=0(=ADA)
() FOAD OB DA
(k) - —=0B > OB D A)
1) #O@vg > @pvOg)
(m) Op,0~q ¥ O(p > q)
(n) Op,Oq i O(p A Q)
(o) ¥Opop
(p) #Op>op
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(@ p¥ Op

(r) ¥ Op > O0p

(s) ¥ Op D> OOp

(t) #p>OCp

(w) ¥ op > OOp

W) ¥ oV -p)

. How might one reply to the objections of 2.5-2.8, and what other objec-
tions are there to the views on the nature of possible worlds explained
there? What other views could there be?

. *Check the details omitted in 2.9.3 and 2.9.6.




