
The responsibility gap: Ascribing responsibility for the actions of learning

automata

Andreas Matthias
Computing Centre, University of Kassel, D-34109 Kassel, Germany

E-mail: matthias@hrz.uni-kassel.de

Abstract. Traditionally, the manufacturer/operator of a machine is held (morally and legally) responsible for the
consequences of its operation.Autonomous, learningmachines, based on neural networks, genetic algorithms and
agent architectures, create a new situation, where the manufacturer/operator of the machine is in principle not
capable of predicting the futuremachine behaviour anymore, and thus cannot be heldmorally responsible or liable
for it. The societymust decide between not using this kind of machine anymore (which is not a realistic option), or
facing a responsibility gap, which cannot be bridged by traditional concepts of responsibility ascription.

Key words: artificial intelligence, autonomous robots, learning machines, liability, moral responsibility

Introduction

When people act, their actions have an impact on the
lives of others; and so human societies, in the course
of the centuries, have developed elaborate and dif-
ferentiating rule systems in order to ascribe the
responsibility for an action and its consequences
justly.1 When we judge a person to be responsible for
an action, we mean either that the person should be
able to offer an explanation of her intentions and
beliefs when asked to do so, or that, following
Strawson (1962), the person is rightly subject to a
range of specific reactive attitudes like resentment,
gratitude, censure, or praise (Oshana 2002: 263). For
a person to be rightly held responsible, that is, in
accordance with our sense of justice, she must have
control over her behaviour and the resulting conse-
quences ‘‘in a suitable sense’’ (Fischer and Ravizza
1998: 13). That means that the agent can be consid-
ered responsible only if he knows the particular facts
surrounding his action, and if he is able to freely form
a decision to act, and to select one of a suitable set of
available alternative actions based on these facts.

Regarding the consequences of the operation of
machines, we usually ascribe the responsibility for
them to the operator of the machine, as long as the
machine operates as specified by the manufacturer.
The operator, by putting the machine into operation
according to the manufacturer’s specification, signals

her acceptance of this responsibility. In case the ma-
chine does not operate according to the manufac-
turer’s specification (that is, in case it has a flaw in its
construction), we ascribe the responsibility to the
manufacturer of the machine instead of the operator.
This is in accordance with the principle mentioned
above of control being a necessary condition of
responsibility.2 The operating manual of a device
transfers control of that device from the manufac-
turer to the operator, by specifying the precise set of
actions and reactions (in a system theory vocabulary:
of transformations) the device is expected to undergo
during normal operation,3 thus enabling the operator

1 For the purpose of this discussion, we will not usually

need to distinguish between moral and legal responsibility
(including liability). They will be dealt with together, and
an explicit distinction will only be made where necessary.

2 Although the notion of control used here is inspired by
Fischer and Ravizza, we will not touch on the subject of

determinism. This paper is about the practical problems
which a society faces when it is trying to ascribe responsi-
bility, and these are not altered by the determinism dis-
cussion, whatever its outcome may be.

3 The ‘operating manual’ may be quite an implicit affair
when common artifacts of everyday life are concerned, for

example, candles. There is (in the framework of a given
society) a nearly universal understanding about how a candle
is to be operated and what transformations it may undergo

during operation. If, while using it properly, the operator
burns down his house, then he himself is held fully respon-
sible. If, on theother hand, the candle explodeswhile burning,
then this behaviour is considered not to be part of the or-

dinary set of candle-usage transformations, and so respon-
sibility is ascribed to the manufacturer instead, because the
(implicit) set of operation instructions for a candle does not

include provision for the case of an explosion, and thus the
operator is bound to have reduced control over the device,
which results in reduced (or absent) responsibility.

Ethics and Information Technology 6: 175–183, 2004.
� 2004 Kluwer Academic Publishers. Printed in the Netherlands.

user
Highlight

user
Highlight



to handle it in a predictable manner, according to her
own decisions on how to act.

In situations where the operator has reduced
control over the machine he also bears less or no
responsibility. If, for example a NASA technician
operates from earth a remotely controlled Mars
vehicle, and due to bad visibility in a Mars sandstorm
and long response times (radio signals take 20 min-
utes to travel from Earth to Mars) the vehicle falls
into a hole and is lost, then we would not consider the
technician responsible for the loss. But who can be
held responsible instead? In fact, nobody. In such
cases of accidents that occur through no fault of a
specific person, society refrains from ascribing
responsibility, and collectively bears the cost resulting
from the accident’s consequences.4

In the following sections of this paper we will see
how certain recent developments in the way of
manufacturing computerised, highly adaptive,
autonomously operating devices, inevitably lead to a
partial loss of the operator’s control over the device.
At the same time, the degree in which our society
depends on the use of such devices is increasing fast,
and it seems unlikely that we will be able or willing to
abstain from their use in the future. Thus, we face an
ever-widening responsibility gap, which, if not ad-
dressed properly, poses a threat to both the consis-
tency of the moral framework of society and the
foundation of the liability concept in law.

Applications of learning automata

In order to provide the argument with some technical
substance, let us look at a few examples: systems that
are in development or already in regular use today.5

1. Let us first revisit the Mars vehicle case. Like the
NASA Pathfinder (Morrison and Nguyen 1996),
the vehicle will not only be controlled remotely
from Earth, but it will also have its own integrated
navigation and control system that enables it to
avoid obstacles autonomously. Unlike Pathfinder,
we will assume that the control program learns:
after crossing a certain stretch of terrain, it will

store into its internal memory an optical repre-
sentation of the terrain as a video image, together
with an estimate of how easy it was to cross that
particular type of terrain. When a similar video
image appears next time, the machine will be able
to estimate the expected difficulty of crossing it,
and it will thus be able to navigate around it if this
seems desirable.
Now let us assume that the vehicle again falls into
a hole. Who is responsible? The operator obvi-
ously is not, since what caused the vehicle to dis-
appear into the hole was not a manual control
command, but a decision taken by the machine’s
control software itself. So, can the programmer be
held responsible? He can deny responsibility by
saying that the algorithm used was appropriate
and correctly implemented. Surely one can assume
that similar kinds of terrain will give similar video
image representations. The actual decisions of the
control program were based not only on prepro-
grammed data, but on facts that were added to the
machine’s database only after it reached the sur-
face of Mars: they are not part of the initial pro-
gram, but constitute genuine experience acquired
autonomously by the machine in the course of its
operation.

2. In high-rise office buildings, adaptive elevator
systems already are used regularly.6 These systems
analyse traffic patterns, typically using artificial
neural networks and reinforcement learning algo-
rithms, and they try to minimise waiting and
transportation time for the users of the elevator.
Now let us suppose, that such a learning, adaptive
elevator leaves an important executive waiting for
half an hour in the 34th floor, so that he cannot
attend a business meeting at which he is expected.
A considerable financial damage is caused. Who
can be held responsible?7 The manufacturer can
deny responsibility because the elevator, being able
to learn, had changed the parameters of its pro-
gram during the course of its operation, so as to
better adapt to the traffic patterns in the building.
Because of this, it was no longer possible for the
manufacturer to predict or control the specific
behaviour of the elevator in a given situation
(though it might be possible to prove mathemati-
cally that eventually the used algorithm will

4 Taxation and insurances are some of the ways society
has devised to distribute the cost of such accidents to a

broad base of its members.
5 There are many other such systems in use, far too

numerous to be dealt with here explicitly, including: elec-

tronic noses for banana ripeness determination (Llobet
et al. 1999), collision avoidance systems in automatic sub-
marine navigation (Schultz 1991), autonomously flying

(Stancliff and Nechyba 2000), game playing (De Jong and
Schultz 1988), and web document filtering (Zhang et al.
2000) machines and programs.

6 OTIS (2003), Schindler (2003), Sasaki et al. (1996).
7 The case is legally more or less interesting, depending

on product liability laws in different countries and legal
traditions. But even where no legal liability can be identified

(for example in German law), it is possible to ask who
should (on moral grounds) be considered responsible for the
damage done by the machine.

ANDREASNDREAS MATTHIASATTHIAS176

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight



converge to some optimal behaviour, that is,
minimal overall waiting time for the users of the
elevator). And since the manufacturer could not
have predicted or averted the undesirable outcome
in this case, he cannot justly be held responsible
for this specific behaviour of the machine.8

3. Zhou et al. present a system for the automatic
diagnosis of lung cancer. The system learns to
identify cancer cells on microscope images of
specimens of needle biopsies obtained from the
bodies of the persons to be diagnosed. Systems like
that are supposed to be used where an experienced
senior pathologist is not available (e.g., in under-
developed rural areas). The system has been con-
structed so that false negative diagnoses are highly
improbable (proclaiming the patient to be healthy
when there are, in reality, cancer cells present), but
there is accordingly much less precaution about
false positiva. Although wrong positive diagnoses
are not immediately life-threatening, they can
cause great financial, practical and emotional
problems to the affected parties, and so again we
must find someone to ascribe responsibility to for
such erroneous diagnoses of the machine.9 As far
as the programmer is concerned, he has done
everything possible to prevent false negative
diagnoses, which is the best he could do,10 so he
can also not justly be held responsible if the limi-
tations of the machine are clearly known before-
hand.11

4. One last example: since 1999, there has been a
mobile robot distributed by Sony (‘AIBO’), which
is supposed to be an intelligent toy for children as

well as a pet replacement for the small urban
apartment. This machine is capable of learning: in
Hornby et al. (1999) (and many other publica-
tions) we see how AIBO learns new things: words
to which it is to react (‘come here’), but also new
kinds of movements, for example when the built-in
stepping algorithm proves not to be optimal for
the crossing of deep persian carpets.12 Let us now
assume that an advanced version of the robot is
able to change its walking style with time to
optimise overall performance. With a little exper-
imentation it will be able to find out that its bat-
tery life can be prolonged by galloping, which
reduces the friction between itself and the ground.
Let us also assume, that the robot, while running
around the apartment, collides with a small child
and injures him. Who is now responsible? The
manufacturer? Why exactly? The child’s parents
for putting the pet robot into operation in their
apartment? Or is this an unforeseeable develop-
ment, which occurred due to the adaptive capa-
bilities of the robot, so that nobody can be justly
said to be responsible?

Let us summarise the points: presently there are ma-
chines in development or already in use which are able
to decide on a course of action and to act without
human intervention. The rules by which they act are
not fixed during the production process, but can be
changed during the operation of the machine, by the
machine itself. This is what we call machine learning.
Traditionally we hold either the operator/manufac-
turer of the machine responsible for the consequences
of its operation, or ‘nobody’ (in cases, where no per-
sonal fault can be identified). Now it can be shown
that there is an increasing class of machine actions,
where the traditional ways of responsibility ascription
are not compatible with our sense of justice and the
moral framework of society because nobody has en-
ough control over the machine’s actions to be able to
assume the responsibility for them. These cases con-
stitute what we will call the responsibility gap.

In order to fully understand the nature and
implications of this problem, it will be necessary to
have a look at how learning automata are being
constructed.

8 He might nevertheless be held responsible for selling
elevators of this type, if the dangers of using them are not

advertised properly in the operating manual. But this is a
different point, and, as we will see later on, there might not
have been any choice of an alternate, ‘safe’ system at all.

9 The trivial solution would be to insist that a human
expert should verify the correctness of the machine-made

diagnoses and assume the responsibility for them. But this
is obviously not possible, because the machine was devel-
oped exactly for those situations where a human expert is
not available. Were it possible to supply every machine with

a controlling human expert, nobody would need the ma-
chine in the first place.

10 When in doubt, the system will always assume that a
cancer cell is present. There is no unfailing machine (as
there is no such human) and the programmer has (cor-

rectly) decided to shift the probability of an error into the
less dangerous realm of false positive diagnoses instead of
false negative ones.

11 Here the society as a whole decides to employ an
inherently risky technology, because it is assumed that the
overall benefits of using it outweigh the risks.

12 Some of these experiments require modified versions
of the robot that are not available on the market, and so
does our thought experiment. But this is not relevant to our

discussion, since the required modifications can be done
easily, at least by the manufacturer himself (and have al-
ready been done for experimental purposes).

THE RESPONSIBILITY GAPHE RESPONSIBILITY GAP 177

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight



Engineering learning automata

This is, of course, not the place to give an introduc-
tion to artificial intelligence.13 We will only look at
those specific properties of artificial learning systems
which are of importance to the question that concerns
us, and so, the following exposition will be kept very
brief.

We can distinguish four primary types of learning
automata which are of interest in the present context:
symbolic systems, connectionist architectures
(including reinforcement learning systems), genetic
algorithms (including genetic programming), and
autonomous agents (mobile and immobile).

Symbolic systems

Symbolic systems are built on the assumption that
some of the cognitive functionality of humans which
we call intelligence can be expressed as a syntactic
manipulation of linguistic symbols.14 A system built
along these lines contains long sequences of axioms
and derivation rules that are usually expressed in
some kind of predicate calculus. The system is either
able to derive conclusions from the facts stored in its
database, or else to extend this database by adding
new rules and facts to it (which is what constitutes
learning).15

The symbolic approach to artificial intelligence
has a long tradition, and it has led to practically
usable programs: expert systems that are able to ad-
vise users and provide solutions in specific, clearly
defined application domains. Classical examples of
expert systems include medical diagnosis programs
and fault identification in complex technical systems
(see Figure 1).

For our present discussion it is important to note
that the knowledge of expert systems (and therefore
also the actions of such systems, which are based on
that knowledge) are stored inside the system in the
form of explicit, distinct, quasi-linguistic symbols.
They can be inspected at any time and, should need
arise, be corrected.

Connectionism and neural nets

While symbolic artificial intelligence presupposes
the existence of clear and distinct symbolic repre-
sentations of objects and the relations between
them, connectionism does not. Instead, it attempts
to emulate the basic principles of neural operation
in living systems. It is based on the observation
that biological information processing systems do
not seem to represent symbols as discrete entities,
but distributed all over the neural net. Information
is stored by modifying the architecture of the net-
work and the strength of individual connections
between neurons (represented as input ‘weights’ in
artificial networks; see Figure 2). During learning,
the network adapts these weights in order to min-
imise the difference between the actual and the
expected output for a given learning pattern. It is
essential to this concept that there nowhere is a
‘list’ or ‘catalog’ of all learned information, as there
is in symbolic programs. Symbolic programs con-
tain axioms, predicates, facts and rules, which
represent information explicitly and verifiably.
Connectionist systems lack an explicit representa-
tion, and the contained information can only be
deduced from their behaviour. Neural networks are,
owing to the principles of their architecture, black
boxes. We can evaluate their behaviour by applying
test patterns and observing their output, but we
cannot

– have a look at the information that is stored inside
the network, and, even more importantly;

Figure 1. Example of an expert system rule base: some

rules used in the diagnosis of motor faults (after Andriole
and Hopple 1992).

13 Although we will occasionally use the term ‘artificial
intelligence’ to refer to an academic field of study, we will
not enter the discussion as to whether it constitutes ‘‘real’’

intelligence or not. The discussion about the nature of
intelligence and if artificial systems can possibly be intelli-
gent is not relevant to the question at hand, since the
responsibility gap concerns the human part of the human–

machine relationship.
14 These need not necessarily be symbols of a natural

language. Often symbolic AI systems incorporate custom
formal languages, in which the system’s knowledge of the
world can be expressed in some way that is useful to the

system.
15 These processes can get quite complex, including

programs that derive conclusions by deduction, induction,

reasoning by similarity and analogy, conflict resolution
between facts in the database, and probabilistic or fuzzy
reasoning in the face of unsure facts.

ANDREASNDREAS MATTHIASATTHIAS178

user
Highlight

user
Underline

user
Underline

user
Highlight

user
Highlight

user
Underline

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Underline

user
Highlight

user
Underline

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Underline

user
Highlight



– see what information is not represented inside it.16

The behaviour of neural networks is not programmed
in the way a procedural program is. Instead they are
trained by example: sets of input patterns are pre-
sented to the network and the internal weights are
changed gradually, so that the network eventually
produces a desired, corresponding set of output pat-
terns. It is not necessary for the trainer of a neural
network to be able to express the information to be
learned in the form of clear and distinct symbols, so
that finally neural networks can successfully learn to
make distinctions for which the human trainer him-
self is unable to provide an algorithmic representa-
tion.17

Reinforcement learning (Moriarty et al. 1999) lifts
the distinction between the training and application
phases which we find in traditional neural network
concepts. The system learns inside its final operating
environment by exploring available action alterna-
tives in a trial-and-error fashion and optimising its
own parameters according to the results. Thus, the
exploration phase is an integral part of the design of
the working machine and cannot be separated from
it. This is necessary in highly dynamic environments,
where a system needs to change continually in order
to achieve optimal efficiency. Consider, for example,

a high-rise office tower with ninety floors and a six-
teen elevator system which is controlled by software.
This system cannot work optimally if it is not always
learning and adapting to the changing traffic flows in
the building. Imagine there is, for the duration of one
week, a conference on floor 34. The system must be
able to optimise its behaviour during this time, for
example by leaving idle elevators waiting at this floor.
After the conference is over, however, this behaviour
will have to change again to accommodate new needs.
This can only be achieved with systems which learn in
their respective operating environments. And since
learning is done by trial and error, we find that errors
are unavoidable features of any reinforcement learning
system. This is quite contrary to the common, tradi-
tional understanding that technology, done correctly,
must operate free of errors, and that errors are always
the errors of the programmer, not of the programmed
machine. Reinforcement learning presents us, for the
first time, with the necessity of errors as we know it
from living systems: as a system feature, the pre-
condition for learning and adaptive behaviour, and
not merely a product flaw.

Genetic algorithms

While neural networks are modelled after the neural
infrastructure of living systems, genetic algorithms
(Holland 1975) imitate the principle of evolution
through variation, genetic recombination, and selec-
tion. In a genetic algorithm system the solution to a
problem is typically represented by an ordered chain
of symbols that are selected out of an ‘alphabet’.
Think, for example, of a program that is supposed to
find its way through a maze. A solution to the
problem of traversing the maze would consist of a
sequence of direction change commands: ‘right,’
‘left,’ ‘left,’ ‘right,’ and so on, which together describe
the way from the entrance to the exit of the maze (see

f(i)

i1

i2

i3

w1

w2

w3

Input side ("dendrites")

Output ("axon")

Input layer Hidden layer Output layer

(a) (b)

Figure 2. Neural networks.(a) The basic structure of a single artificial neuron. The input signals (i1–i3) are multiplied with
(changing) weight factors (w1–w3) and then used as parameters to a function that calculates the output of the neuron.
During the learning process these factors change, thus modifying the neuron’s behaviour. (b) In a basic backpropagation
neural network there are multiple layers of neurons which are interconnected, so that the output of one layer serves as input

to the next.

16 All the social procedures that humans and animals
have developed to evaluate other individuals (rituals of
introduction, teaching by demonstration, examinations and

psychological tests) are attempts to solve this problem: that
we cannot look into the heads of others and see the
knowledge, intentions and beliefs stored therein. Instead we

are forced to infer them indirectly through observation of
the other’s behaviour and the application of test patterns.

17 This is especially true when we consider noisy or dis-

torted input, as in the case of optical character recognition,
which is very hard to do algorithmically, but almost trivial
with artifical neural networks.

THE RESPONSIBILITY GAPHE RESPONSIBILITY GAP 179

user
Underline

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Underline

user
Underline

user
Underline

user
Underline

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Underline



Figure 3). In the world of the genetic algorithm
metaphor, we describe this sequence as the ‘genome’,
which is composed of directional genes with the al-
leles ‘right’ and ‘left’. The search for a solution begins
with a big population of virtual organisms which are
initialised with a random genome, that is, with a
random sequence of direction-change statements.
Limiting factors in the simulated environment pro-
vide the required selection pressure: if an organism
has been moving around unsuccessfully for a while,
or has collided too often with the walls of the maze, it
is removed from the simulation (it ‘dies’) and its ge-
netic information is lost. Successful organisms (that
move forward without colliding with the walls or
moving in circles) are given the chance to ‘reproduce’.
During reproduction the genetic material of one or
more parental organisms is inherited by the filial
organisms.18 After a while, the simulation produces
organisms which can cross the maze successfully
(though the solutions found are not necessarily
optimal).

Genetic algorithms can be best applied to prob-
lems which solutions are representable as (not overly
long) chains of symbols, and for which the solution
can be approximated gradually by trial and error.
Some applications are the evolution of behaviours for
mobile robots (Schultz 1994), the classification of
sensoric input (Stolzmann et al. 2000), and the navi-
gation of autonomous vehicles (Schultz 1991).

What we have seen just now could be addressed as
the ‘‘symbolic’’ variant of genetic algorithms. But it is

also possible to combine genetic algorithms with
connectionist architectures, by evolving neural nets,
instead of defining their architecture by hand (Belew,
et al 1990; Nolfi and Parisi 1991).

Genetic programming still goes one step further.
Here, the result of the simulated evolution is not the
solution vector itself any more, but a software pro-
gram that implements the solution. Thus, the genetic
algorithm acts itself as a programmer. We will ad-
dress the significance of this fact in the context of
responsibility ascription later in this paper.

Autonomous agents

Finishing this brief survey of artificial intelligence
programming methods, we will have a parting look at
the technology of artificial agents. Autonomous
agents are artificial entities that fulfil a certain, often
quite narrow purpose, by moving autonomously
through some ‘space’ and acting in it without human
supervision. The agent can be a software program that
moves through information space (e.g., an internet
search engine spider), but it can also have a physical
presence (e.g., a computer-driven vacuum cleaner or
a robotic pet) and move through the space of an
apartment.

Two points concerning agents are interesting in
the present context: First, that agents are per defi-
nitionem designed to act, and that, in the course of
their operation, they must inevitably interact with
other things, people, and social entities (laws, insti-
tutions and expectations). Second, that agents which
have a physical presence constitute a new category
of machines: such that can learn from the direct
interaction with a real environment and that can in
return directly manipulate this same environment.

R L RL R L

R L R

R L R

L

R

R

LR L L LL

L

R L

Figure 3. The way through a maze and its representation in a quasi-genetic ‘alphabet’ of direction-change statements (left).

The chain of left–right-statements (the ‘genetic material’) is manipulated with operations like the cross-over shown here, so
that eventually the algorithm arrives at a solution (right).

18 The specific rules of reproduction and genetic material

transfer vary widely between different implementations of
the genetic algorithm, but this makes no difference for the
purpose of this paper.

ANDREASNDREAS MATTHIASATTHIAS180

user
Highlight

user
Highlight

user
Underline

user
Underline

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Underline

user
Highlight

user
Highlight

user
Underline



These machines have (contrary, for example, to
desktop computers) an unmediated access to sensory
impressions, their symbolic representation, and
subsequent actions that lead to new sensory
impressions, and they act in the same environment
as humans do.

The responsibility gap

Let us now return to the central question of this
paper.

To what extent is it possible to hold the manu-
facturer/programmer/operator of an autonomous,
learning automaton responsible for the actions of the
machine?

If we look at the role of the machine’s manufac-
turer (or, in our case, the programmer) and the
change of this role, from the straightforward pro-
gramming concepts of traditional software engineer-
ing (see Figure 4), to the construction of autonomous
artificial intelligence systems, we can clearly see the
profound change that has taken place in the past few
years. In the beginning we find the programmer as
coder, that is, someone who expresses the program
(and thus the operating behaviour of the machine)
line by line and statement by statement in a linguistic
representation that can be executed directly by the
machine (the statements of a programming lan-
guage). At any moment, it is possible to inspect the
memory of the machine and to determine the precise
extent of the program. Changes can be made directly
through the addition, removal or exchange of par-
ticular statements in the program. The programmer,
in control of the behaviour of the machine in every
single detail, can explain the way his algorithm
works, and an observer can follow this explanation

and check its correctness. Errors are always errors of
the programmer, not errors of the program. They can
always be identified, isolated and fixed, and the pro-
grammer can rightly be held responsible for any
misbehaviour of the machine.

As the techniques of artificial intelligence pro-
gramming develop further, the role of the program-
mer changes. This change is not sudden but gradual,
and its extent differs according to the technology
employed.

It begins with the programmer who uses logic-
oriented programming languages and symbolic ex-
pert systems losing control over the execution flow of
the program. Programming languages based on
predicate logic are not executed in the same linear
fashion as their procedural, imperative counterparts:
instead of being executed from the first to the last
‘command,’ they use a run-time system which sear-
ches (in a way not always known to the programmer)
for deductions from given axioms and inference rules.
The flow of control in such systems is typically diffi-
cult to describe and should, ideally, be of no interest
to the programmer. This is, in itself, not a big prob-
lem because as long as there is a symbolic represen-
tation of facts and rules involved, we can always
check the stored information and, should this be
necessary, correct it.

In artificial neural networks, the symbolic repre-
sentation of information and flow control disappears
completely: instead of clear and distinct symbols we
have a (possibly very large) matrix of synaptic
weights, which cannot be interpreted directly any
more. The knowledge and behaviour stored in a
neural network can be only inferred indirectly
through experimentation and the application of test
patterns after the training of the network is finished
(as is the case with living systems).

Figure 4. Part of a program in the ‘C’ programming language. The programmer of such a procedural or imperative program
must enter every single program statement herself. All program statements together implement an algorithm for the solution
of the problem at hand.

THE RESPONSIBILITY GAPHE RESPONSIBILITY GAP 181

user
Underline

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight



Reinforcement learning, being usually based on
neural network concepts, shares the same problems,
but additionally it lifts the distinction between a
training and a production phase. Reinforcement
learning systems explore their action space, while
working in their operating environment, which is
their central feature (enabling them to adapt to ever-
changing environments) as well as a big drawback
concerning their predictability. The information
stored in the network cannot be fully checked, even
indirectly, because it always changes. Even if we can
prove mathematically that the overall performance of
such a system will eventually converge to some
optimum, still there will be unavoidable errors on the
way to that optimised state. The creator of such a
system (not really being a programmer in the tradi-
tional sense any more) cannot go about eliminating
errors; instead he must explicitly permit them, so that
the system can stay operational and improve its
performance.

An additional layer of obscurity comes with the
use of genetic programming methods. Here, the result
of the simulated evolution is not the solution itself,
but a program that implements the solution. Thus, we
get an additional layer of machine-generated code
that gets between the programmer and his product.
While in neural networks the designer still defines the
operating parameters of the system (the network
architecture, the input and output layers and their
interpretation); and while with genetic algorithms at
least he can define the alphabet used and the
semantics of its symbols; with genetic programming
he loses even this minimal amount of control, and he
creates a machine that programs itself.

Finally, autonomous agents also deprive him of
the spatial link between him and his product. The
agent acts outside the observation horizon of its
creator, who, in the case of a fault, might be unable to
intervene manually (because he might not know
about the fault until a much later point in time). This
is the case for pure information agents (internet
indexing programs) as well as for agents which have a
physical manifestation (autonomous space vehicles,
targeting systems of military missiles, mobile
electronic pets).

Thus, we can identify a process in which the de-
signer of a machine increasingly loses control over it,
and gradually transfers this control to the machine
itself. In a steady progression the programmer role
changes from coder to creator of software organisms.

In the same degree as the influence of the creator
over the machine decreases, the influence of the
operating environment increases. Essentially, the
programmer transfers part of his control over
the product to the environment. This is particularly

true for machines which continue to learn and adapt
in their final operating environment. Since in this
situation they have to interact with a potentially great
number of people (users) and situations, it will
typically not be possible to predict or control the
influence of the operating environment.19

Conclusion

We presented some of the reasons why certain classes
of autonomously adaptive machines must inevitably
display suboptimal or even outright erroneous
behaviour; behaviour that must be attributed to the
machine itself and not to its designer or operator.

1. In the course of the progression of programming
techniques: from the conventional procedural
program, via neural network simulations, to
genetically evolved software, the programmer loses
more and more of her control over the finished
product. She increasingly becomes a ‘creator’ of
‘software organisms’, the exact coding of which
she does not know and is unable to check for
errors.

2. The behaviour of the machine is no longer defined
solely by some initial, and henceforth fixed pro-
gram, but increasingly shaped by its interaction
with the operating environment, from which the
machine adapts new behavioural patterns that
constitute solutions in the machine’s problem
space.

3. In order to be able to adapt flexibly to new situa-
tions (which is necessary if they operate in dy-
namic and changing environments), automata
must leave behind the clear separation between
programming, training, and operation phases.
Practically useful technologies will have to learn
during operation, which also means that they will
have to make ‘mistakes’ during operation (a
‘‘mistake’’ being just the exploration of the solu-
tion space by the machine itself, which enables it to
arrive autonomously at new solutions).

4. There are an increasing number of situations in
which the supervision of an operating machine by
a human expert is either in principle or for eco-
nomic reasons impossible. The supervision of an
operating machine is impossible when the machine
has an informational advantage over the operator
(e.g., navigation computers in cars, radar-based

19 Except statistically, but a statistical fact (97% of ele-

vators operate within 1% of their optimal performance) is
not a guarantee against errors of the machine, and therefore
not a useful answer to the responsibility question.

ANDREASNDREAS MATTHIASATTHIAS182

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight



flight control systems, a lung-cancer diagnosis
machine in a remote rural area). It is also impos-
sible when the machine cannot be controlled by a
human in real-time due to its processing speed and
the multitude of operational variables involved
(e.g., the control system for a group of 16 elevators
in a 90-floor building, or the controlling computer
for a nuclear power plant).

5. Still, we cannot do without such systems, because
the pattern processing and systems control tasks
that we must accomplish in our highly dynamic and
complex environments are so complicated that they
cannot be addressed by simpler, statically pro-
grammed machines. Planetary exploration, traffic
control, automated medical diagnosis: these are
tasks that cannot be solved by simple, verifiable
algorithms. Not to address such tasks seems not to
be an acceptable option to most citizens today.

Automatic machines leave their traditional oper-
ating environments, and increasingly move into
problem areas that, owing to their dynamic nature
and complexity, have previously only been accessible
to humans. It is natural that in the course of this
transition they will not be able to avoid also acquir-
ing some of man’s limitations (e.g., learning from
experience as the basis of flexible behaviour; experi-
ence being just another word for potential error.)

If we want to avoid the injustice of holding men
responsible for actions of machines over which they
could not have sufficient control, we must find a way
to address the responsibility gap in moral practice
and legislation. The increasing use of autonomously
learning and acting machines in all areas of modern
life will not permit us to ignore this gap any longer.

References

S.J. Andriole and G.W. Hopple. Applied Artificial Intelli-
gence: A Sourcebook. McGraw-Hill, New York, 1992.

R.K. Belew, J. McInerney and N.N. Schraudolph. Evolving
Networks: Using the Genetic Algorithm with Connec-

tionist Learning. Cognitive Computer Science Research
Group, Computer Science & Engineering Department
(C-014), University of California at San Diego. CSE

Technical Report #CS90–174, June, 1990.
K.A. De Jong and A.C. Schultz. Using Experience-Based
Learning in Game Playing. Proceedings of the Fifth

International Machine Learning Conference, (pp. 284–
290). Ann Arbor, Michigan, June 12–14, 1988.

J.M. Fischer and M.S.J. Ravizza Responsibility and Con-
trol. A Theory of Moral Responsibility. Cambridge

University Press, Cambridge, 1998.
J. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, 1975.

G.S. Hornby, M. Fujita, S. Takamura and others. Auton-
omous Evolution of Gaits with the Sony Quadruped Robot.

Group 1, D-21 Laboratory, Sony Corporation Ph: 81-3-

5448-5901. Tokyo, Japan, 1999.
E. Llobet, E.L. Hines, J.W. Gardner and S. Franco. Non-
Destructive Banana Ripeness Determination Using a

Neural Network-Based Electronic Nose. Measurement
Science & Technology 10: 538–548, 1999.

D.E. Moriarty, A.C. Schultz and J.J. Grefenstette. Evolu-

tionary Algorithms for Reinforcement Learning. Journal
of Artificial Intelligence Research, 11: 199–229, 1999.

J.C. Morrison and T.T. Nguyen. On-Board Software for
the Mars Pathfinder Microrover. Jet Propulsion Labora-

tory report IAA-L-0504P, 1996.
S.Nolfi andD.Parisi.GrowingNeuralNetworks. Institute of
Psychology, National Research Council Technical Report

PCIA-91-15, Rome, Italy, 1991. (Presented at Artificial
Life III, Santa Fe, New Mexico, June 15–19, 1992.)

M.A.L. Oshana. The Misguided Marriage of Responsibility

and Autonomy. The Journal of Ethics, 6: 261–280, 2002.
OTIS Elevators. Redefining Elevator Performance, Safety
and Comfort: The OTIS Elevonic Class. Product
Description, 2003. Available: http://www.otis.com

K. Sasaki, S. Markon and M. Makagawa. Elevator Group
Supervisory Control System Using Neural Networks.
Elevator World, 1, 1996.

Schindler Elevator Corporation AITP: Artificial Intelli-
gence Traffic Processor. Technical Product Description,
2003. Available: http://www.us.schindler.com

A.C. Schultz. Using a Genetic Algorithm to Learn Strat-
egies for Collision Avoidance and Local Navigation. In
Proceedings of the Seventh International Symposium on

Unmanned Untethered Submersible Technology, (pp. 213–
215). University of New Hampshire Marine Systems
Engineering Laboratory, New Hampshire, September
23–25, 1991.

A.C. Schultz. Learning Robot Behaviors Using Genetic
Algorithms. In. Proceedings of the International Sympo-
sium on Robotics and Manufacturing. Washington DC,

August 14–18, 1994.
S.B. Stancliff and M.C. Nechyba. Learning to Fly: Mod-
eling Human Control Strategies in an Aerial Vehicle.

Machine Intelligence Laboratory, Electrical and Com-
puter Engineering, University of Florida, 2000. Avail-
able: http://www.mil.ufl.edu/publications.

W. Stolzmann, M.V. Butz, J. Hoffmann and D.E.
Goldberg. First Cognitive Capabilities in the Anticipa-
tory Classifier System. Illinois Genetic Algorithms Labo-
ratory Report No. 2000008, University of Illinois,

Urbana, 2000.
P. Strawson. Freedom and Resentment. Proceedings of the
British Academy, 48, 1962.

B.-T. Zhang and Y.-W. Seo. Personalized Web-Document
Filtering Using Reinforcement Learning. AI Lab, School
of Computer Science and Engineering, Seoul National

University, Korea, 2000. Available: http://www.scai.
snu.ac.kr

Z.H. Zhou, Y. Jiang, Y.B. Yang and S. F. Chen. Lung
Cancer Cell Identification Based on Artificial Neural

Network Ensembles. Artificial Intelligence in Medicine,
24(1): 25–36, 2002.

THE RESPONSIBILITY GAPHE RESPONSIBILITY GAP 183

user
Highlight

user
Underline

user
Highlight

user
Highlight


