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The claim that our minds and computers are related—that they are
both species of the same genus—might seem outrageous; however,
as we come to understand this claim and the research methods based
on it, we will begin to appreciate the similarities between mind and
machine. From these similarities cognitive scientists derive theories

that help explain how children learn and, consequently, how they
could be taught more effectively.

A Balance-Scale Problem

Research on how children learn to solve balance-scale problems il-
lustrates the main ideas, methods, and instructional applications of
cognitive science. ;
- Try to solve the balance-scale problem shown in figure 2.1.
:Assume the scale’s arm is locked so that it can’t rotate around the
ulcrum. If I were to unlock the arm, what would happen? Would
he scale tip left, tip right, or balance? ' E
This is a tricky problem. Figure 2.2 gives a set of rules one : ;
ght use to solve it. Each rule has an IF clause that states the

onditions under which the rule is applicable and a THEN clause
tates what to do under those conditions, To use these rules,

e rule whose conditions fit the pattern of weights and distances - ;
_problem. You find that P4 is the only rule whose IF clause d
problem. Its THEN clause tells you to compute torques for i

; that is, for each side, multiply the number of weights by

istance from the fulcrum. Doing that gives , = 5 x 3 = 15
‘ side and t2 = 4 X 4 = 16 for the right. These new data
he condition for P7: executing its THEN clause gives the
answer, “Right side down,” Some readers might remember
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the THEN clause in P4 from high school physics as a version of the
law of torques: Multiply weight by distance on each arm to find the
torque, or rotational force; the side with the larger torque goes down.
This simple law solves all balance-scale problems.

The set of rules is an English-language version of a computer
program for solving balance-scale problems. It takes as input data
about the weight on each side of the scale and the distance of the
weight from the fulcrum. The output is the answer for a balance-
scale problem: tip left, tip right, or balance. The program is a series
of IF-THEN rules. Computer scientists call the IF clauses conditions,
the THEN clauses actions, and the entire IF-THEN statement a pro-
duction rule. They call computer programs written using only pro-

duction rules production systems. Computing devices that execute
production systems efficiently have a specific internal structure (or
architecture, as computer scientists say).

Cognitive scientists claim that the human mind can be described
as a computing device that builds and executes production-system
programs. In fact, the rules in figure 2.2 are a production system an
expert would use to solve balance-scale problems. Robert Siegler, a
cognitive psychologist, showed that production systems can simulate
human performance on such problems (Siegler 1976; Klahr and Sie-
gler 1978; Siegler and Klahr 1982). He also showed that a series of
increasingly complex production systems can model the way in
which children gradually develop expertise on balance-scale problems
from ages 5 through 17. Children learn, says Siegler, by adding
better rules to their production systems. Proper instruction, he goes
on to show, can help children acquire these better rules.

The Human Computer and How It Works

At the heart of the cognitive revolution was the realization that an
adequate human psychology had to include the study of how the
mind processes symbols. Computational theory gave psychologists
a'language and a framework for studying human symbol processing.
‘Both minds and computers process symbols, use a small set of basic
€rations to manipulate them, and store them in memory. When
olve a balance-scale problem, we use a system of mental symbols
encode information about the problem, to manipulate that infor-
tion, and to store the results of the manipulations in memory.
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storage, like a computer’s hard disk. Features of these two memory
strustures account for both the strengths and the weaknesses of
human cognition.

Most of us, when we think of “memory,” think of long-term
memory—our permanent storehouse of knowledge and skills. Our
long-term memory appears, for all practical purposes, to have unlim-
ited capacity: no one has ever reported a case of an otherwise normal
person who couldn’t learn and remember new things. The most
important feature of long-term memory for learning and instruction
is not its capacity but its internal organization. Unlike a digital
computer, you don’t store a chunk of information in long-term
memory by giving it an “address” in your brain, an address that you
look up when you want to retrieve the information. Long-term
memory has what psychologists call an associative structure. Symbol
structures represent items or chunks of information in memory, and
associative links tie the items together into networks of related in-
formation. We create associative links between chunks if we use the
chunks together repeatedly, learn them together, or experience them
together.

Cognitive psychologists have discovered that long-term mem-
ory is not a single entity; it comes in a variety of forms. At the most
general level, they distinguish declarative from nondeclarative mem-
ory. Declarative memory contains a system for remembering specific
events (what psychologists call episodic memory) and a system for
remembering general facts and word meanings (semantic memory). We
consciously recall items from declarative memory, and we can ex-
press or describe the items we retrieve. This is not so for the contents
of nondeclarative memory. Among other things, nondeclarative
memory contains our memory for motor, perceptual, and cognitive
skills—our memory for procedures. The contents of nondeclarative
memory are not always open to conscious recall, nor can they always
be expressed or accurately described. Tennis players have a motor
skill to hit backhands, but when they execute the skill they don't
-consciously recall the procedure; they just hit the backhand. As you
read this text you are executing a complex motor, perceptual, and
cognitive skill, yet you can’t describe how you transform the marks
on the page into meaningful prose.

To understand problem solving and high-order cognition, we

«an focus on semantic and procedural memory—our memories for

facts and skills. Although semantic and procedural memory both
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have associative structures, their structures are slightly different. The
expert rule system illustrated in figure 2.2 is an example of a pro-
cedural memory structure. The associations in procedural memory
form rules. Individual rules represent associations between chunks
of information, where the chunks are the conditions and actions in
the rules. The expert has learned to associate certain actions with
certain conditions. The expert also associates the seven rules together
as a system because collectively the rules are useful for solving bal-
ance-scale problems. There are also implicit associations between
rules. For example, the action of P4 generates the conditions for
cither rule P5 or rule P6. Sometimes rules used together repeatedly
combine to form a single, more complex, new rule. The rules and
their organization give the expert a Way to move from chunk to
chunk in long-term memory-.

Psychologists call the associative structures in declarative mem-
ory schemas. Schemas are network structures that store our general
knowledge about objects, events, Of situations. Figure 2.4 fllustrates
how our general knowledge about animals might be stored as a
schema in semantic memory. In this example, the central node is
“apimal.” The “is a” links connect the major nodes in the hierarchy
that organizes our biological knowledge. Both mammals and birds
areian;.imals; a canary is a bird, but a bear is not. The “has,” “can,”
and “is” links associate the various biological types with important
properties or features. When we learn something new about bears
or canaries, the information isn’t passively inscribed at the end- of
out memory tape; rather, we integrate the new item intoa prcexistingr
schema.

Our associative memory structures are like little theories we
apply to negotiate and understand the world. The associative struc-
tures help us make predictions—as with the balance scale—and help
us make inferences that go beyond what we literally experience. For
example, if you tell me that Tweety is a canary, I can infer that he
is yellow, is a bird, and has feathers. Our schemas also help us know
what to expect in situations. My schema for 2 baseball game leads
me to expect that I will spend around 3 hours at the ballpark, and
that if 1 eat there my dinner will be hot dogs and soda, not Dover
sole.

These associative structures do not simply provide a way to
store information; they also influence what we notice, how we in-
terpret it, and how we remember it. In one famous memory study,

permission of Allyn and Bacon, |
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ant brought subjects, one by one, to 2 waiting room

a research assist
and told the subjects that this room was the experimenter’s office

(Brewer and Treyens 1981). After each subject had sat in the room
for 35 seconds, the assistant took him to 2 seminar room and asked

him to write down everything he could remember about the “office.”
in the room and

All the subjects recalled correctly items that were 1
re usually in most offices—a desk, a chair, etc. Yet only a third
of the subjects remembered odd items, such as a skull, that were in
the waiting room but not typically in an office. Conversely, 2 third
of the subjects incorrectly reported remembering items that are usu-
ally in an office, such as books, but which were not present in the
subjects’ office schemas influenced what they

waiting room. The
noticed, what they remembered correctly, and what they “remem-

bered” incorrectly about the waiting room.
Associative Memory Structures are powerful devices for orga-

nizing and deploying our skills and knowledge. Like other theories,
Just as scientific the-

they also actively influence what we perceive.
ories influence what scientists see and consider important (for ex=
ample, 2 social psychologist and an epidemiologist would notice
different things about a group of coughing passengers on an airliner),
our memory. structures influence what we se¢ and consider impor-

tant. Prior knowledge influences what we notice and how we inter-

ces. Thus, prior knowledge affects how we

pret new experien
interpret school instruction and thus affects what we can leamn.

School instruction that ignores the influence of preexisting knowl-
edge on learning can be highly ineffective.
If long-term memory is the storehouse, then working memory
is the clearinghouse. Working memory i
to refer to the cognitive resources we use to execute mental opera-
tions and to remember the results of those operations for short
periods of time (Baddeley 1992). Working memory contains all the
symbol structures that are active and available for processing at any
given time and keeps an internal record of the current state of mental
activity. The inputs to working memory ar€ symbols that encode
information coming from the external world or symbol structures
retrieved from long-term memory. When these structures are pro-
cessed, the results can be new symbol structures in working memory,
symbols for storage in long-term memory, OT commands to the

motor system to do or say something.
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rule fires, modifying the contents of workihg memory—and the
cycle begins again. When no match can be found, the program halts.

That, in short, is how cognitive scientists think the human computer
works.

Problems and Representations

Psychology is a science of human behavior that develops theories
about how we react or respond in various situations or environments.
According to cognitive science, all humans share the same basic
cognitive architecture, although memory capacity and speed of pro-
cessing may vary among individuals. Differences in our behavior
arise from the ways in which our cognitive architectures, including
individual differences in those capacities, interact with the environ-
ment. If cognitive scientists are to describe this interaction, then not
only do they have to describe the computing device and its capacities
carefully; they also have to describe the environment carefully.

To do the latter, cognitive scientists think of the external world
in terms of task environments. A task environment is a problem plus
the context in which a subject encounters the problem. For the
balance-scale task, the environment consists of a balance scale and
an experimenter who poses the problem by asking the subject for a
prediction about what the scale will do.

Cognitive scientists use the word problem in a special way. The
idea is simple, and it borrows from our everyday use of the word.
As Newell and Simon wrote, “a person is confronted with a problem
when he wants something and does not know immediately what
series of actions he can perform to get it” (1972, p- 72). Cognitive
psychologists elaborate and refine this general notion. They think of

- a problem as consisting of an initial state or situation and a goal state
“(i.e., what the person wants). To solve a problem, a person must
figure out what to do to move from the initial state to the goal state.
‘The things a person can do, the moves he or she can make in a
roblem situation, cognitive psychologists call operators. For exam-
le, a chess game is a problem in which the initial state is the opening
osition, the goal is checkmate, and the operators are legal moves.
n: solving a problem, then, we use operators to create a chain of

orking-memory states that begins with the initial state and ends
th the goal state.
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One way to view the development of cognitive science, €Spe”
cially as it relates to education, is to see oW this characterization of
problem solving was extended and modified as researchers applied
it to increasingly complex Jomains. That is how this book is
organized.
In the balance-scale problem, the initial state 18 the locked scale
- with weights on cach arm. The goal state s the correct prediction
of a unique outcome: left, right, or balance. Among the operators
we could apply are the expert’s production rules. As we have seen,
these rules creatc 3 series of states in working memory leading from
the initial state to 3 correct prediction.
The cognitivist's core notion of a problem applies directly to
solving most school math and science problems. In a high school
geometry problem, the “givens” are the initial state, “to prove” states
the goal, and the operators ar¢ geometrical definitions, postulates,
and theorems. There is a unique, well-defined goal. but there are
various ways to move from the givens tO that goal. In reading, the
text is the given and the goal is tO construct an interpretation of the
text. However, for some kinds of texts—in contrast with solving
geometry problems——there need not be a unique interpretation. That
is what makes literature personally rewarding and intellectually chal-
lenging. Writing demands the solution of what cognitive scientists
call ill-defined problems. With writing problems (for example, writing
an essay), there is no unique solution and no standard, universal
method of finding solutions. Often, it is only after we start solving
an ill-defined problem that we have an idea of what an adequate
solution might be. Teaching a classroom ]esson presents an ill-defined
problem that the teacher has to solve on the spot, where every
student-teacher interaction can change the teacher’s goals and choice
of operators. Many everyday tasks (finding 23 job, planning 2 ‘trip)
and most creative tasks (writing 2 symphony, doing medical research)
present ill-defined problems.

- As was mentioned above, represcntations are the link between
the external world and our internal processing system- A person’s
problem representation is what the person encodes about the problem
from the task environment. It is the solver’s intgrpretadon or under-

standing of the problem—an interpretation based on experience and

on beliefs about the major variables or factors relevant to the prob-
lem. Preexisting knowledge, stored as productions Of schemas,

\ guides the solver’s interpretation.

L.
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oice of legal

the nine-dot problem results in a ch
e is so small

representation of
ead to a solution. The problem spac

moves that can't 1
that there are no paths from the initial state to the goal. A good
initial representation and a suitable problem space, in contrast, can

make an otherwise hard problem trivial.

Analyzing the Task

aved in tackling the nine-dot problem, 1 could
tell how you represented, of understood, the problem. 1 could predict
something about your psychology, your internal symbol processing.
How is this possible? The trick is that more information is available
to me than just your performance on the problem. I have a complete

k and what it demands. I know as a matter

understanding of the tas
of geometrical fact that there are only two options for drawing the

straight lines: cither they stay within the boundary or they go outside.
I also know that there is no solution using only lines that fall inside
the boundary. What [ know about the task and about your problem-
solving behavior allows me to figure out how you must have under-
stood the task. I can figure out what representation you used.

In the same way, cognitive scientists can discover what repre-
sentations and rules people use on more complex problems. Cogni-
tive psychologists begin their research on problem solving with what

is. They try to define what the major variables

they call a task analysis
en type of problem. They try to figure out

and causes are in a giv
what knowledge and skills the problem demands, and given those

demands, what ideal performance on the problem would be. Scien-
tifically, task analysis is essential for solving the problem that cog-
nitive scientists have set for themselves. We can think of what

cognitive scientists are trying to do in terms of an equation:

Task demands + Subject’s psychology = Behavior.

Most of the time, cognitive psychologists are trying to solve this
equation for Subject’s psychology, » the subject’s unobservable men-
4 values for the other two variables.

tal processing. To do so they nee
They can observe a subject’s behavior, and task analysis gives values
for the “Task demands” variable. If they have possible values for the

«Task demands” and «Behavior” variables, they can derive values
for “Subject’s psychology.” Of course, we should not overinterpret
this analogy. Doing cognitive research is not as simple as solving an
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. conflict-distance—one side has more weight, the other side has its weight at 2
greater distance from the fulcrum, and the side with greater distance goes dowt;
. conflict-balance—one side has more weight, the other side has its weight at 3
greater distance from the fulcrum, and the scale balances.

Robert Siegler called the last three types «conflict” problems, because
when one side has more weight but the other side has its weight
farther from the fulcrum one can have conflicting intuitions about
which variable dominates. (The problem illustrated in figure 2.1isa
conflict-distance problem: there is more weight on the left side, the
weight 15 farther from the fulcrum on the right side, and the right
side goes down.)

These six possibilities cover all possible cases for how weight
and distance influence the action of the scale. The six cases provide
a complete theory, Of rask analysis, of the balance scale. Notice that
the six problem types place varying demands on the solver. For 2
balance problem or 2 weight problem, 2 solver need only consider -
weight. For the conflict problems, 3 solver has to pay attention to
weight, distance, and the ways in which weight and distance interact.

Siegler formulated some psychological hypotheses about how
people might solve balance-scale problems. Using the information
from the task analysis, he could test his hypotheses by giving subjects
problems and observing their performance- Siegler called his hy-
potheses “rules” and formulated them as four production-system
programs. His rules I-111 are given in figure 2.6; his rule IV is the
expert’s production system of figure 2.2 above.

The rules make different assumptions about how and when
people use weight or distance information to solve the problems.
Rule 1 considers only weight. Rule 1I considers distance, but only
when the weights on the two sides are equal (P3). Rule 11T attempts
to integrate weight and distance information (P4 and P3). Rule IV
introduces the law of torques (P4) when one side has mor¢ weight
but less distance.

Knowing the task and having hypotheses about the subjects’
psychology gave Siegler values for two of the three variables in the
cognitivist’é equation that interrelates task, psychology, and behav-
ior. This allowed him t© generate values for the behavior variable.
He could predict how subjects would perform. Siegler analyzed how
the four rules worked on the siX kinds of problems and determined
that each rule would give a distinct pattern of right and wrong

: Figure 2.6
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answers. By giving 3 subject a set of problems that contain several
examples of each problem type, Siegler could tell which rule the
subject was using. .

Figure 2.7 presents the pattern of performance Siegler predicted.'
Notice that if there are three outcomes for 2 balance-scale task—t1p
left, tip right, and balance—then 33 percent correct is chance perfor-
mance; it amounts to 2 guess. Guessing is- clearly distinguishable

from always being Wrong about a problem type (getting O percent -

correct). Notice, to0, that sometimes adopting a more advanced rule
can result in lower rather than higher performance on some prob-
Jems. Going from rule 11 to rule III improves overall performance,.
but using rule Il lowers performance on conflict-weight problems
from 100 percent to 33 percent correct.

Finding Out What Children Know

If children use Siegler’s rules, then the pattern of a child’s responses
to a set of balance-scale problems that contains all six types wi
reveal what rule that child uses. Children’s responses will tell us what
they know about the balance-scale task, including how they represent
the problem. Siegler tested his hypotheses and predictions by giving
a battery of 30 balance-scale problems to 2 group of 40 children that
included equal numbers of 5-year-olds, 9-year-olds, 13-year-olds,
and 17-year-olds. He showed each child a balance scale that had
weights placed on it and asked the child to predict what the scale
would do. As soon as the child made a prediction, Siegler rearranged
the weights for the next problem. He did not let the children see if
their predictions Were correct, because he wanted to find out what
they knew initally. He wanted to avoid giving the students feedback
on their performance SO he could be sure they weren't learning about
the task during the experiment. He wanted to look at their learning,
but only after he assessed their initial understanding.

The children’s performance confirmed Siegler’s hypotheses.
Ninety percent of them made predictions that followed the pattern
associated with one of the four rules. There was also a strong de-
velopmental trend. The 5-year-olds most often used rule 1. The 9-
year-olds used rule II or rule I1. The 13- and 17-year-olds used rule

{II. Only two children, a 9—year—old and a 17-year-old, used rule IV.

The developmental trend matched almost exactly the pattern of pre-
dictions in figure 2.7. The developmental trend, like the pattern of
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predictions, included a decrease in performance on conflict-weight
problems as the children grew older. The 5-year-old children, the
majority of whom used rule I, answered 86 percent of the conflict~
weight problems correctly. The 13-year-olds and the 17-year-olds,
most of whom had progressed to rule III, answered only 50 percent
of the conflict-weight problems correctly. :

As these results confirm, Siegler’s rules qualify as 3 cognitive
and developmental theory for the balance scale. Asa cognitive theory
should, his rules explain behavior in terms of symbol structures that
children have stored in their long-term memories. The individual
rules tell us what knowledge children use. The production system
tells us how they organize their knowledge. Chunks of information
which children encode from the task environment Or generate in
working memory are the conditions that cause the rules to fire. When
written in a suitable computer language, the rules can be run as
programs on computers, and they simulate human performance. As
a good cognitive theory should, the theory embodied in Siegler’s
rules performs the task it explains and explains the task in terms of
representations and mental processes.

Taken together, Siegler’s four rules constitute 2 developmental
theory that explains development in terms of changes in knowledge
structures and problem representations. By age 5, most children are
using rule I. By age 13, almost all are using rule 1. Few children
spontaneously progress to rule IV, which represents expert perfor-
mance on the balance scale. Thus, the rules chart a course of normal
development on the task, from novice to expert performance.

Siegler’s rules also tell us what cognitive changes underlie the
transition from novice to expert. On tasks like the balance scale,
children progress through a series of partial understandings that grad-
ually approach mastery. Performance improves, ot learning occurs,
wheri children add more effective production rules to the theories
they have stored in long-term memory. Chunking plays 2 role in
this process. Children chunk information about weight and distance
to construct more complex condition clauses and build more sophis-
ticated rules. The balance-scale task presents 2 simple example of
how, as children develop or learn, the chunks or concepts they use
in problem solving become larger and richer. Bigger chunks, more
complex concepts, and better rules are ways in which experts differ
from novices, not only on the balance-scale task, but in most subjects

and problem domains.
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weight, and distance problems without computing torques but to

solve most conflict problems we have to compute torques. If experts
always compute torques, then they use the same program on all
problems and their response times should be the same for all prob-
lems. If experts usc rule IV, then they first try 0 solve the problem
without computing torques, and they do the numerical computation
only as a last resort. This means that experts’ response times on
conflict problems should be longer than their response times on

balance, weight, and distance problems.
Siegler tested twelve adult experts and found that they solved
balance, weight, and distance problems in1.5t02 seconds. To solve

conflict problems, the experts took 3 to 3.5 seconds. Using response-
time data, we can conclude that experts don’t compute torques on
all problems. Experts use rule IV.
Our ability to describe problem solving ata detailed level some-
times allows us to compare theories as We would compare computer
programs. Response-time measures give us additional data that might
support one cognitive theory OVer another. This method of response-
time analysis has been particularly useful in discovering the methods
children use to solve simple arithmetic problems.

Why do experts use rule IV and not the simpler law of torques?
Expert behavior on the balance-scale task is just one example of how
we unconsciously adopt strategies to minimize demands on working
memory. To solve balance, weight, and distance problems, all we
have to remember 1 which weight and which distance is greater.
That is, we need only two items of comparative, qualitative infor-
mation. To compute torques we have o remember the exact values
of four numbers. Experts us¢ the less demanding qualitative solution

whenever they can and avoid committing any more cognitive ca-
s necessary. The ability to manage cognitive

pacity to 2 task than i
fficiently and often unconsciously when solving problems

resources €
sign of expertise in that domain.

in a knowledge domain is a
The Balance Scale and Learning

So far, we have seen how cognitive research can generate theories
about children’s knowledge and how they use it to solve problems.
With theories like Siegler’s that describe what goes on at discrete
levels of performance, We also can begin to investigate how children
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Protocol Analysis, Encoding, and Representations

How are 8-year-olds different from 5-year-olds? Why do the older
children, but not the younger children, learn from training on conflict
problems? To answer this question, the cognitive scientist needs
finer-grained data than are provided by task analyses, response pat-
terns, and response times. Cognitive scientists use 2 met

hod called
protocol analysis tO collect such fine-grained data.

Problem solving occurs in working memory, and we are con-
sciously aware of at Jeast some of the information our working
memory contains. Parts of working memory are¢ highly auditory—
we can hear what’s going on there. When we want to remember 2

have to pick up at the supermarket,

phone number or the items we
keep the information active in working memory by re-
lves. More important, in solving

d over to ourse
doing daily tasks, we often silently tell ourselves
g. While we cook, solve crossword puzzles,
s, we silently talk our way to 2 solution.

loits this “talking to ourselves” feature of

working memory. To collect fine-grained, moment-by-moment data
on a subject’s cognitive processing, researchers have the subject
«think aloud” while solving a problem. They instruct the subject to
say everything he is thinking while engaged in a task. They then
transcribe and analyze the verbal protocols. Often, the protocols
provide data for computer simulations of problem-solving behavior.
Protocol analysis is a fundamental method of cognitive research.
Alan Schoenfeld (1987, p- 1) admits ‘that “spending 100 hours ana-
lyzing a single 1-hour videotape for 2 problem-solving session, and
perhaps 2 or 3 years writing computer programs that ‘simulate’ the
behavior that appeared in that 1 hour of problem solving, must

appear odd to someone looking from outside the discipline.” How-
ever, this often meticulous obsession with detail is what gives cog-
ths and sets it apart from earlier

nitive research its unique streng
attempts to understand mental functioning.

To find out why the 8-year-olds learned and the 5-year-olds
didn’t, Siegler and his collaborators selected several children between
5 and 10 years old for in-depth study (Klahr and Siegler 1978). Each
child had a training session with the balance scale that included
conflict problems. In the training session the child was asked to make
a prediction for each problem and to state his or her reasons for the

we often
peating it over an
problems, or even
what to do as we go alon
or do geometry problem:
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P4 and P5 in rule IIL. On the other hand, the older children, even if
they were using rule I, appeared to encode distance. They could learn
from training on conflict problems how to use that information to
build new productions and progress to rule 1L
Protocol analysis is so detailed and time consuming that re-
searchers usually do it on only a few subjects, but these detailed
analyses often suggest hypotheses that can be tested on larger groups
of subjects. That is- what happened here. To test possible encoding
differences between S-year-olds and 8-year-olds, Siegler presented
each child with 16 problems, oneata time. The child saw the pattern
of weights for 10 seconds, after which the experimenter hid the scale
from sight. The experimenter then asked the child to recreate the
configuration, Of «make the same problem” from memory, by plac-
ing weights on the pegs of a second, identical scale. The results
confirmed the hypothesis suggested by the protocol analysis. Five-
year-olds were much more accurate in encoding weight than dis-
tance. They reproduced weight information correctly 51 percent of
\ the time, but distance information correctly only 16 percent of the
time. Eight-year-olds were more highly accurate on both dimen-
sions: 73 percent correct for weight and 56 percent correct for dis-
tance information. The 5-year-old rule I users weren’t encoding
enough about the problem into their representations to benefit from
tiaining on conflict problems. The 8-year-old rule I users, on the
other hand, were encoding information about distance that they were
not using spontaneously to make predictions about the balance scale’s
actions. Training on conflict problems prompted the older children
to sée the relevance of the distance information, incorporate it into
a condition, and build new and better productions.

Can 5-year-olds learn to encode both weight and distance, or is
it beyond their level of cognitive development? Siegler found that
giving 5-year-olds more time to study the configurations or giving
them more explicit instructions (“See how the weights are on the
pegs? See how many are on each side and how far they are from the
center on each side?”) made no difference in their ability to reproduce
the configurations from memory.

. Only one intervention seemed to work. The 5-year-olds had to be

v told explicitly what to encode and how to encode it. The instructor had to
tell them what was important and teach them a strategy for remem-=
bering it. The instructor taught the children to count the disks on

the left side, count the pegs on the left side, and then rehearse the

result (i.e. “

res thé rjg,hsta:'i ;l?ud three weights on peg 4”); to repeat ¢

weights s c: and then to rehearse both results fo : tl"

i C}ﬁ[;dg and two weights on peg 3”). The u? e

deseribed. Ten to try to reproduce the pattern th r
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seven problems. With ea
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facts or teaching strategies in isolation from the facts won’t work.
The difficulties children have in learning about the balance scale are,
as we shall see, highly similar to the difficulties they encounter in
Jearning mathematics, science, and literacy skills.

From Rule III to Rule IV

also of educational interest.

The transition from rule III to rule IV is
ds in his original study. The

Siegler almost did not include 17-year-ol
principal of the school where he was doing the research assured-him
that high school juniors and seniors had already studied the balance

scale and the law of torques at Jeast twice and “knew all there was

to know about it.” Siegler tested the high school students anyway.

Much to everyone’s surpris%a, only 10 percent of the high school
20 percent discovered

students used rule IV spontaneously and only
it after a training session. This suggests that rule IV is deceptively
difficult, that high school science education is inadequate, or (most
likely) both.
What kind of instruction ot training sessions might help older
students learn rule IV? On the basis of task analysis and how the
balance scale works, Siegler; conjectured that there were at least two
points where students might have trouble: they might not realize
that balance-scale problems have quantitative, mathematical solu-
tions; and, even if they did, they might have trouble figuring out
which algebraic equation to apply to the four variables to find and
compare torques. To address the first point, training should empha-
size the quantitative nature of the task. Rather than just asking on
each training problem “What do you think will happen?” one should
“Three weights on the third peg versus two weights
on the fourth peg; what do you think will happen?” The second
point could be addressed by giving the student an external memory
aid. Each time the experimenter presents 2 training problem, he could
give the student 2 diagram of the problem on a piece of paper. The
student could keep the diagrams and refer to them during the training
session. Then, when the student developed 2a hypothesis about a
possible equation, he or she could check the hypothesis using the
data from all the previous problems as shown on the diagrams.
In an experiment, Siegler gave 13- and 17-year-olds training
experiences that included hints on quantitative encoding, or the ex-
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Intelligent Novices: Knowing How to Le

Imagine that a small, peaceful country is being threatened |
belligerent neighbor. The small country is unprepared h;
temperamentally, and militarily to defend itself: howev
among its citizens the world’s reigning chess champion. 1
minister decides that his country’s only chance is to outv
gressive neighbor. Reasoning that the chess champion is a fi
strategic thinker and a deft tactician—a highly intelliger
skilled problem solver—the prime minister asks him to a
sponsibility for defending the country. Can the chess cham
his country from invasion?
This scenario is not a plot from a Franz Lehar opere!
ght experiment devised by David Perkins and Gavriel
(1989). As they point out, our predictions about the chess ch
performance as national security chief depend on what w
intelligence and expertise are. If the goal of education is tc
our children into intelligent subject-matter experts,
““about the chess champion, based on what we belic

‘gence and expertise, have implications for what we
“:schools.

thou

our pr
ve abot
should ¢

Since the mid 1950s cognitive science has contribute
~formulation and evolution of theories of intelligence,
ﬁhderstanding of what causes skilled cognitive perform

hould be taught in schools. In this chapter, we will review |
understanding of intelligence and expertise has evolved over

0 decades and see how these theories have influenced ‘ed
licy and practice.

Four theories will figure in this story.
The oldest theory maintains that a student builds up hi
ellect by mastering formal disciplines, such as Latin, Greel

and s
ance 3
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ind maybe chess. These subjects build minds as barbells build mus-
cles. On this theory the chess champion might succeed in the national
security field. If this theory is correct, these formal disciplines should
figure centrally in school instruction.

In the early years of the cognitive revolution, it appeared that
general skills and reasoning abilities might be at the heart of human
intelligence and skilled performance. If this is so, again the chess
champion might succeed, and schools should teach these general
thinking and problem-solving skills—maybe even in separate critical-
thinking and study-skills classes.

By the mid 1970s, cognitive research suggested that general
domain-independent skills couldn’t adequately account for human
expertise. Researchers then began to think that the key to intelligence
in a domain was extensive experience with and knowledge about
that domain. Expertise was domain specific. This suggested that the
chess expert was doomed to failure, and that schools should teach
the knowledge, skills, and reptesentations needed to solve problems
within specific domains.

In the early 1980s researchers turned their attention to other
apparent features of expert performance. They noticed that there
were intelligent novices—people who Jearned new fields and solved
novel problems more expertly than most, regardless of how much
domain-specific knowledge they possessed. Intelligent novices con-
trolled and monitored their thought processes and made use of gen-
eral, domain-independent strategies and skills where appropriate.
This suggested that there was more to expert performance than just
domain-specific knowledge and skills.

‘Perkins and Salomon call this latest theory or view the “new
synthesis,” because it incorporates what was correct about the earlier
views, while pointing out that none of the earlier theories alone
provides an adequate basis for effective educational practice. Accord~
ing to the new synthesis, we should combine the learning of domain-
specific subject matter with the learning of general thinking skills,
while also making sure that children learn to monitor and control
their thinking and learning.

The new synthesis introduces an important new idea into. dis-
cussions about educational reform. The first three theories of intel-
ligence emphasize what we should teach in our schools—formal
disciplines, general thinking and learning skills, or domain-specific
knowledge and skills. The new synthesis, as we shall see, implies
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that we should be as concerned with how we teach as we traditionall
have been concerned with what we teach. The most recent researcz
shows that if we can apply the new synthesis in the classroom, w
should be able to teach school subjects as high-order cognitive s’kilic
and help children become intelligent novices and expert learners. i

Transfer

Sthllat licom.n:cts the chess champion, theories of intelligence, and
\; ooling is a phfenomenon psychologists and educators call tr;nsfer
\ tla genfrally believe that learning a certain skill or subject area car;
telp us learn a related one. If we first learn tennis, we should be able
o ea;lm uslcéuash more easily. If we learn Spanish as a second language
I\ZE s (])d b; able to learn Italian as a third language more easily,.
Sec;):‘rj e siethrom. t}lxe first skill or domain should transfer to thc;
, ere is less to learn. Notice, thou i i
_ ) gh, that in neither of
;l:les: ;x:‘ilmlivlle?s are we simply applying previously learned knowc;-
o eg a.r S ?1 S?S 151;dt tle(ilnms, and Italian isn’t Spanish. In these situations
ing old skills or knowledge in novel situati :
‘ tions where w
: :}l]s;: vl‘lriv? :% learn new things. Qne cognitive scientist describes i:
s ;'.nov ;ﬁ;ﬁi{tn:leans applying old knowledge in a setting suf-
it also - . ” .
5%, 5 200 requires learning new knowledge.” (Larkin
If this description is correct
, we should be able to tell wh
. ;.gjssf:r v:l;:cu;s. Iflknowclledge transfers from task A to task B vih::
o have learned A should be able to 1 api
..than people who did not first | & play i bl
earn A. A tennis player should
..to learn squash more rapidl ith m prioe i
e reeuetsports. apidly than a person with no prior experience
e 'Il;ranélfer is central to designing and developing effective instruc-
por . Problems of transfer pervade schooling. Teachers want to teach
é_sox?s so th?t students can transfer what they have learned durin
;mst ml:tmcnor? to solve new problems at the end of a 'ch.apter. Wi
a ;A at le.armng to transfer to the unit, semester, or standardized
ld ost important, we want school learning to transfer to real-
rld problem solving at home and on the job. If this is our goal
at and how should we teach? =
If we want to teach so as to
o ‘ > promote transfer of knowled
hav; to answer a prior question: What kinds of knowledge andgsel,cil‘;vse
ny, transfer between tasks? What, if anything, might transfe;
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hess to national security? Theories of intelligence and expertis®
from © wers to this question. Theories differ in their claims about
ueee alrulsthér and when knowledge transfers from one task or
whas z . dor’nain to another. Of the theories outlined above, the_
lg:g":leyf;“ general mental strength tran‘sfers, the seco.nd ;h;: ,ii?;

i d strategies transfer, and the third that. expertise is d ain
o §kﬂls mthat we might find some transfer within a domain, bu
S_PCCIﬁC (so(zle across domains). The new synthesis §uggests that t;ans-
l;;;l:airox::mr within and across domains, but only if we teach students

appropriately.
Formal Disciplines and Mental Fitness

Our oldest theory of expertise and inte.lhg;nce ;glczieiz;agxl:estos ;l:g
classical Greeks, who believed that n}astenng orm i teﬁi enc,e ach
;thmetic and geometry, would improve general m hgd  and
e eoning bility. By the eighteenth century, scholaxzs had a
feasomn% ;nemy;)nics, Greek, and Latin to the list. of dxscxphm;s1 gliesu:
gzlnc;nxe;lcal fitness. The theory was that chc.:se dxfﬁ.ml:ot;c::mhyﬁcal
ciplines would build general mental strength, justas il.i;xgo beuive il

i cise builds physical strength. On thfs theo;y, we e that
f:}}::s is a formal discipline on a par with logic and geometry,

i ’s chances.
mghlf:;z:;rd&’?hiﬁﬁiknex?:tz;ﬁﬂ studies of learning and of W:I:i.t.
knowledge transfers from one sul?ject to anoth'er wc(:;:c a’}l‘l}f:ridjkc

tific psychology’s first contributions to education. ncike
md Y;P leorth 1901.) At the turn of the twenne.th cenmry,h
a'Ir';xomgicl):e did his work, the prevailing view, den'vecl fr:; t ; ::1

.ent Greeks, was that learning formal disciplines improved g e
aemal func;ioning. Thorndike, however, noted that no dc;;le had
mz:;nted scientific evidence to support this view. ’I;l;c;.:ncﬁ ‘:ning
o d that if learning Latin strengthens general mental fun ;he;
Sﬁne dents who had learned Latin should be gble to l.earrll o :
bjects ore quickly. He found no evidence of .thls. Hav:mg. ean;:a
o nall d.isgi line did not result in more efficient learning in ot ::1'
dor f°_l'm M tar; “strength” in one domain didn’t transfer to ment :

d()"rrmln}?.in szlers. Thorndike’s results contributed. to the dem‘xse csf
iltlriznagx:cient theory of intelligence and_ to a decline in the teaching 0
formal disciplines as mental calisthenics.
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However, in some experiments where two subject domains
shared surface similarity, Thorndike did observe faster learning in
the second domain. He proposed a theory of “identical elements” to
explain this. Thorndike suggested that where two domains share
common elements of knowledge—not formal rigor—a person who has
learned one of them might be able to learn the second more quickly.
But because psychologists at the turn of the century had no precise
way to describe and identify “elerhents,” Thorndike couldn’t test his
theory rigorously. The methods he needed were those that cognitive
psychologists developed more than 50 years later.

Elements, Productions, and Transfer

Once psychologists accepted the assumption that our minds process
symbols, and once they realized they could study minds as infor-
mation-processing devices, it became possible to test theories such
as Thorndike’s. Psychologists, using the framework of computa-
tional theory, could describe “elements” as symbol structures and
devise problem-solving simulations and experiments to see which
symbol structures two disciplines might share. .
Production systems are among the things that allow psycholo-
gists to test modern versions of Thorndike’s theory. If minds are
devices that execute production systems, and if (as on the balance
scale) learning occurs when we add new productions to long-term
memory, then we might be able to formulate and test Thorndike’s
claim. We can think of each individual production rule as a piece of
knowledge needed for a task; we can think of it as one of Thorndike’s
elements. If so, the transfer of learning from one task to another

should be directly related to the number of productions the tasks
share.

M. K ngley and John R. Anderson (1985) performed an ele-

‘gant study o test this hypothesis. They studied the way in which

secretarial students learned to use three different text editors or word
processors. Two of the editors, ED and EDT, were line editors that

allowed the user to edit one line of text at a time. EMACS was a

“screen editor, more like a standard word processor, that allowed the
- user to edit a document one screen at a time.

As is typical of cognitive scientists, Singley and Anderson first
id a careful task analysis of the three editors. The two screen editors
sed different names for the editing commands and differed in how
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e superficial differences,

the user located 2 line to edit. Once past thes
stems used to simulate

however, they found that the production sy '
expert performance on the two line editors were nearly identical.

However, the production system that simulated expert performance
on EMACS, the screen editor, was almost entirely different from
able production

those for the line editors. Thus, there was consider
overlap between the line editors and almost none between the line

editors and the screen editor. o
How did this affect learning? Students who learned either line

editor first took as long to learn the screen editor as students who
ditors didn’t transfer

started out on the screen editor. Skill on thelinee
to the screen editor. In the case of the two line editors, students who

learned one learned the second much more quickly. There was con=

siderable transfer between the two line editors. Anderson (1985,

p. 241) estimates that learning one of the line editors eliminated up
to 90 percent of the work normally needed to learn the second.
Singley and Anderson concluded that the amount of production
overlap between two skills predicts the amount of transfer between

the skills.
Relying on computational theory, production systems, and task
e precise scientific sense of

analysis allowed cognitive science o mak
Thorndike's hypothesis. The information-processing approach can
give us fine-grained representations—-in this case, productions—-—of

Thorndike’s common elements. Cognitive research gives us methods

for stating and testing claims about the transfer of knowledge be-

tween tasks.
General Methods and Intelligent Behavior

Cognitive scientists started applying computational insights to issues
of expertise, intelligence, and transfer in the late 1950s. To under-
stand their initial approach, recall the model of problem solving
presented in chapter 2. As We saw there, problems have initial states
and goal states. The solver chooses operators that create a chain of

knowledge states linking the initial state to the goal. The operators,

themselves composed of basic information processes, combine to
blem-solving behavior.

form procedures Or programs that guide pro
How do we choose operators when solving problems? Cognitive
se methods or strategies tO choose them. Imagine

scientists say that we u
e to choose a move,

we are playing chess. One method 1 might us

—
e

————————
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or an operator, is to pick a pi
Ih piece at random .
mediate op t?o:n opening I have studied in a chess book. Xnni:: -
principles: [ mig‘fl‘:uclgo::eto use 2 method based on general ch:;
defend i my moves so as to contr
o strat :g‘iYCSP;CCes, .and attack yours. The same spectt:-u::xl odf}fnce;tet'
s predicon ; avgﬂ;ble for balance-scale problems. I might :l' ods
At the other ethlr.aeI:n On;ly Ny hoosing among left, right, and %;:;:;c
.. €, 14 * ’ ' *
it in 2 book. might use Siegler’s rule IV, having studied
These iFer i
ofien T ooe uf;l;t:r?:st ;:lhffer In ways that are more interesting than h
tion. First, they diffei gizn;e or m‘::lkcf a correct balance-scale Predoi‘c”
th i : ow widely applicabl -
Ch?;s?;ffe:n in what I have to know to pli::he;the’r)"h:re. ond,
o knowgan ;ﬁ;rator at random works for anY'Pto!;lem- 11315;1’1 O}? of
In contrascy follg about chess or balance scales to use random c; iy
works only’ o ;wmg a line from a chess book or usin rulmce'
o Know a lot : ; ess gt balance-scale problemis Furthcrmogre I; .
' out chess or balanc ° 7 ave
rule. Cogniti . e scales to use a book or Si J
and thatgrr:u:i: Plsi}"ihOIOglsts call methods that are 'widel; : Sx;gle; :
call methogs ; ttle or no specific knowledge weak methofz3 ;‘; N
methods. R that are. situation-specific and domain. .;iﬁ. hey
PsYchoiOgin:om a‘iil oice is a weak method; rule IV 1s— Sap :tr o
see all strategies ; . ong one.
wh - , procedures, and :
CI;; 2Eethe ;:ontmupm between weak and strs:)l;ﬂgls;sef;m; pome
carly days of computer and cognitive science ‘:h:;e
) were

" divergent views about ho
o w to make computers
- fe?;;- ls)zge thought the key to undergtandin;riri:llx?l:n?gre
';derstanding Weakmacll';mes and humans, lay in developing gand -
S ading methods that were applicable across man b““"
ers thought the better scientific bet was to};ggy lfl'rxn
e

knowledge needed i ;
in specific d ins.
methods that experts usid. ¢ domains and find the specific strong

I L . . - .
: g:[ re IC suggss C t

Solver, could solve

o ’ problems in a vari N

gebra, variety of do .

2 usg;o‘zzetl:y, and chess (Ernst and Newell lggg;ns',l’}lizludmg

SR ak methods such as hill climbing and means. end arfalpr?-
- ysis.
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Hill climbing is a weak method that chooses intelligent next
moves on a problem if the problem zeyuires progress along a single
dimension. If you were trying to find the top of a hill in the dark,
you would keep taking steps that tended in an upward direction.

When you couldn’t take any more upward steps, you would stop,

assuming you had reached the top of the hill. The children’s game
clues of “hotter”

of helping a playmate find a hidden object by giving
and “colder” as the playmate moves toward or away from the object
is a hill-climbing game. '
Means-end analysis, the method General Problem Solver used,

is more complex. Hill climbing considers only one difference be-
and goal states—in the children’s game, all that

tween the current
matters is distance from the hidden object. Means-end analysis iden-
tifies several differences between the current situation and the goal,

then picks an action Of an operator that will reduce one or more of
those differences. If more than one action Of operator could be used,
means-end analysis chooses the one whose conditions of applicability
best match the current situation. Sometimes, after choosing the ac-
tion best suited to the situation, one still can’t execute the action
because the conditions aren’t right. In this case, means-end analysis
establishes ‘2 subgoal to create conditions that permit the chosen

action.
The wide applicability of means-end analysis is suggested by the

example Newell and Simon (1972, p- 416) used:

1 want to take my son to nursery -school. What is the difference between
what I have and what I want? One of distance. What changes distance? My
automobile. My automobile won't work. What is needed to make it work?
A new battery. What has new batteries? An auto repair shop. 1 want the
in a new battery; but the shop doesn’t know I need one. What

shop to put
is the difficulty? One of communication. What allows communication? A
telephone . . . and so on.

The solver here looks at where he is and where he wants to be, then
works back and forth between the ends and the means to achieve
those ends until he has a set of actions, Or Operators, that achieve the
goal. His finding a telephone starts 2 chain of events that results in
his son’s arriving at nursery school. Students often use means-end
analysis to solve school math and science problems.

In the late 1960s and the early 1970s, programs such as General
Problem Solver suggested that general skills might be fundamental
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experts reproduced the positions on the board, they did it in chunks.

They rapidly placed four or five pieces, then paused before repro-
ducing the next chunk.

Expertise, these studies suggest, depends on highly organized,
domain-specific knowledge that can arise only after extensive expe-
rience and practice in the domain. Siegler’s balance-scale study (chap-
ter 2) is another example. Under normal conditions, it takes a child
at least 17 years to become expert at balance-scale problems. More
knowledge about and experience with the balance scale results in
more sophisticated, expert-like performance. Chunking helrs chil-
dren develop more complex rules that contribute to their growing
expertise on the balance-scale task.

Other studies of problem solving also argue against general
strategies. Try to solve the two problems illustrated in figure 3.1.
Philip Johnson-Laird (1983, p. 30) found an interesting difference in
individuals’ abilities to solve them. This is interesting because for-
mally, or logically, they are the same problem. The same general
strategy or formal rule solves both.

The correct answers are “E and 7” and “Manchester and car.”
Many people answer, incorrectly, that they have to turn only E, or
else E and 4, in the first problem. You do have to turn E, because
if that card has an odd number on the other side the rule is false.
You don’t have to turn 4, because even if that card had a consonant
on the other side it doesn’t matter; the rule doesn’t say anything
about what is on the other side of a consonant card. You have to
turn 7, because a vowel on the other side of that card would make

the rule false. The same problem-solving strategy works for the
_second problem, and for any “if-then” rule as logicians interpret such
‘statements. (According to the laws of logic, an “if-then” staternent
is false only in the case where the “if” clause is true and the “then”
Clause is false; in every other case the statement is true.)

... The two problems in figure 3.1 differ only in their subject
‘matter. The first problem is an abstract one about letters and num-
bers, but the second one deals with a possible real-life situation.
Johnson-Laird’s subjects were much better at the second problem.
"Only 12 percent of them said they would turn over the “7” card to
est the first rule, but over 60 percent said they would turn over the
ar” card to test the second rule. Furthermore, he found that giving
ubjects experience with real-life if-then problems didn’t improve
heir performance on more abstract versions. Apparently, most of
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strategies can work. When an experimenter asks subjects to - memo-
rize lists of words (e.g., “dog, gold, carrots, diamond, cat, peas™),
subjects rarely repeat the words in that order. Usually, subjects say
something like “dog, cat, carrots, peas, gold, diamond.” To remem-
ber the words, subjects group them into meaningful categories—
here animal, vegetable, and mineral. Psychologists call this often-
unconscious strategy clustering. Clustering helps us remember things
by exploiting the schema structure of long-term memory; we re-
member the words by associating them with the appropriate
schemas.

When college students and young children were the subjects in
such experiments, psychologists found that the college students re-
called more words and did more clustering. Initially, psychologists
attributed young children’s poor performance to their inability to use
the clustering strategy. Later it was discovered that if the word list
included things young children know more about than college stu-
dents, the results would be different (Lindberg 1980). If the experi-
menter used a 30-word list that included names of children’s
television celebrities, cartoon stars, and comic book characters,
young children recalled more and used more clustering than. the
college students. Thus, there is an interaction between knowledge
and strategy use—between facts and skills. Subjects are more likely
to use a general memory strategy the more they know about a
domain or a topic. Strategies can help us process knowledge, but
first we have to have the knowledge to process.-

While granting the possibility that strategies might play some
role in problem solving, by the mid 1970s many cognitive scientists
had come to believe that domain-specific knowledge and strong
methods are the bases of expertise and intelligence—that the chess
champion would fail to deter the belligerent neighbor nation. If they
are right, there may not be a simple way to make people better
general problem solvers. Siegler (1985, p. 184) sums up what this

- means for education: “Seen from this perspective, much of the task
of education in problem solving may be to identify the encoding that
‘we would like people to have on specific problems, and then to
devise instructional methods to help them attain it.” In other words,
the educational challenge might be to identify the representations we
“want students to have in specific domains and then develop methods
nd curricula to teach those representations.
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Most of these programs teach general skills in stand-alone
courses, separate from subject-matter instruction. The assumption is
that students would find it too difficult to learn how to think and to
learn subject content simultaneously. Like the early Al and cognitive
science that inspire them, the courses contain many formal problems,
logical puzzles, and games. The assumption is that the general, weak

methods that work on these problems will work on problems in all
subject domains.

A few of these programs, such as the Productive Thinking
Program (Covington 1985) and Instrumental Enrichment (Feuerstein
et al. 1985), have undergone extensive evaluation. The evaluations
consistently report that students improve on problems like those
contained in the course materials but show only limited improvement
on novel problems or problems unlike those in the materials (Mans-
field et al. 1978; Savell et al. 1986). The programs provide extensive
practice on the specific kinds of problems that their designers want
children to master. Children do improve on those problems, but this
is different from developing general cognitive skills. After reviewing
the effectiveness of several thinking-skills programs, one group of
psychologists concluded that “there is no strong evidence that stu-
dents in any of these thinking-skills programs improved in tasks that

were dissimilar to those already explicitly practiced” (Bransford et
al. 1985, p. 202). Students in the programs don’t become more
intelligent generally; the general problem-solving and thinking skills
they learn do not transfer to novel problems. Rather, the programs
help students become experts in the domain of puzzle problems.
The evaluations of these programs undercut the basic assump-
tion about the power of weak methods in another way, too. If general
skills, or weak methods, are the stuff of intelligence, then teaching
these skills to students who had not previously used them should
improve their performance. This doesn’t happen. The programs
don’t help all students who were initially naive about the general
skills taught. Typically, these programs help low-performing stu-
dents most, average students some, and more able students hardly
~at all (Nickerson et al. 1985, p. 325).
i Although we should not dismiss approaches that might help
- low-achieving students, this inverse pattern—low achievers benefit-
g most and high achievers hardly at all—is exactly what we would
pect if school performance depends on domain-specific knowledge
strong methods. Low-performing students have neither general




Chapter 3

66 i low
. : dge. Teaching 10

cognitive skills nor domain-specific kno;:;';;: the level of initial

: he hild
: ral skills can only help. T ; wledge a ¢
achn:verjl f::ethough, the more domam—spemﬁcd kz.(; e o ehods to
erfol?n ou l;ave domain-specific knowledge ar;n :he standard varia-
i gic why use weak ones? If you know hoose chess moves at
g.o wit tlzle Queen’s Gambit Declined, wl:IY ¢ 10 > Teaching generiﬂ
rons on' why even rely on general chess principies w ho haven't heard -
rand?‘?:”e Ski&l’ls to able students (ever o ; cude:r:ze because they are
cogmnt . s heir performance, . Gfi
doesn’t improve t ain-specific
Zlfthgserilltltlisv?e experts. Able students already have dom
k;:;v?;dge and use strong methods. s against

rgue
Evidence from the laboratory and the classr:lo;ziﬁsgin e
vi ntal' role for weak methods ax_ld gener L S king-
. fgr;d:rtfng Weak methods, in the guise of study ,
and learning.

short-cut to
;cula, or critical-thinking programs, are nota
skills curricula, ©

. i utcomes. . . ized that
improved edusstilg;l(é)li othen most cognitive theorists r::Ognc‘s expert
’ 4 evs
d - tgegiltl‘m knowledge and strong iethk?d:s ;:;;i n’:’my woul
omain- . m ence. t tha y . .
d human inteligent . sful diplomatic
performance art the chess champion’s having a succes 3 ;
have bet agans {

d it has even
career. ) ) by some-educators, an h
This message &2 é’;;keé ulg. lYﬁrsch’s Cultural Literacy (138;712)‘1;
reached the general publc. d highly popular presentation O

a thoughtful, sustained, an fundamental to literacy.

; d skills are ; i
domain-specific kn;’f:l;iii ?:an extended discussion of how cog

Chapter 2 of FI” orts this educational philosophy. ACC:SO iiutga::;
pitive research S“PE1 <hould make us skeptical of attemp'dve R
Hirsch, the .re_seafcand critical thinking 3s general cogme subjects,
g, o | problems. Skilled performance it tdie S demands
ﬁphﬁledt;e?i%:;fnce in Simon and Chasﬁi(:hes‘?(si::‘:xerzsl,Programs
ike skilie in-specific knowledge. -

- ext.en;ivsos t(t);:c?lf i:ﬁl:li ?killaf are ineffective,” Hirsch argues
contrive

. . » ment——-an at-
(p- 61): _ “critical thinking™ move
; es the “cnl
Hirsch charactenz

i joned program “to
thods—as a well-intention e
tempt O teactljle \n;«:(llct}r;e inimal basic skil'ls requxr;d b}sf 1:;1:1;:5 8(11;87‘
?k:f:;lg rte: enZouragc the teaching og ‘?xag;x:;;:e :ZE nigher-order
n - tha ;
he sees 1it, 15 " " din
p. 132). .Thedd::gi;:;;i the importance of “mere facts.” According
thinking ten

Intelligent Novices 67
to Hirsch, “we should direct our attention undeviatingly toward
what schools teach” (p. 19).

There are also dangers associated with arguments, such as
Hirsch's, for the primacy of domain-specific knowledge and skills.
It is easy to oversimplify and misinterpret what the research means
for educational practice. Certainly the research implies that we can’t
ignore “mere facts” in school instruction—domain knowledge is
essential. But, conversely, curricula that merely transmit facts aren’t
desirable either. Cognitive research also implies that we have to be
as concerned with how we teach as we are with what we teach. The
danger with cultural literacy is embracing the what to the detriment
of the how. Lists of proper nouns, such as appear in the appendix to
Hirsch’s book, might help outline curricular content, but they say
nothing about how to teach that content effectively. Researchers have
known for a long time that teaching word meanings to children can
increase vocabulary knowledge, but more vocabulary knowledge
doesn’t necessarily improve reading comprehension. If better reading
comprehension is the goal, how one teaches vocabulary matters.
Similarly, current social studies texts may present the facts about
geography or history, but fail to teach course content so that students
have an understanding of geography or history. As we will see, how
texts present the facts is vitally important.

Finally, the majority of the cognitive research Hirsch cites was
done in the 1970s. But cognitive research didn’t stop then. The
prevailing view of 20 years ago was not the final word, nor should
it necessarily guide educational practice. Research that started to
appear in the early 1980s suggests that domain-specific knowledge
and skills are necessary for expert performance but may not be

sufficient. There is more to intelligence and expert performance than
domain knowledge.

- Metacognition

Around 1980, cognitive scientists introduced a new element, called
metacognition, into discussions of intelligence and expert performance.
Metacognition is the ability to think about thinking, to be con-
usly aware of oneself as a problem solver, and to monitor and
trol one’s mental processing.

- John Flavell, one of the developers of this notion, described
Mietacognition as the fourth and highest level of mental activity
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though, do not use the study time effectively. They remember more
about the text, but tend to remember more details or isolated ideas
from the text. They don’t remember more about the text's themes
or about how those themes interrelate. In short, before age 12 chil-
dren don’t seem to know what kinds of things are important for
better understanding of texts and can't direct their mental energy to
those things. The younger children lack important reading compre-
hension strategies, or, if they have the strategies, they lack control
over them. They have weaknesses at Flavell’s third and fourth cog-
nitive levels. In contrast, children of age 12 and older usually remem-
ber more of the text’s important ideas after additional study. The
older children know what is important in texts, have strategies for
reading texts and studying that are directed at those important fea-
tures, know how and when to use the strategies, and can monitor
their use of them. They can control their cognitive activity—they
have metacognitive skills. Ann Brown and Judy Deloache, who
reported some of these results, conclude that “one main aspect of
‘what develops’ is metacognition—the voluntary control an individ-
ual has over his own cognitive processes,” and that “the growth of
metacognitive abilities underlies many of the behavioral changes that
take place with development” (Brown and DeLoache 1978, p. 26).
Hirsch emphasizes the necessity of domain-specific knowledge
in learning and doesn’t mention metacognition explicitly. Nonethe-
less, the importance of metacognition is implicit in his diagnosis of
literacy problems. Although domain-specific knowledge contributes
to expertise in all domains, in reading (as Hirsch carefully explains)
background knowledge—knowledge that goes beyond what is lit-
erally printed on the page—is crucial for comprehension. Teaching
the schemas of cultural literacy is intended to give students the
background knowledge needed to be culturally literate. Note that
such knowledge would fall into level 2 of Flavell’s taxonomy: facts
stored for recall in long-term memory. .

But Hirsch alludes to knowledge that literate individuals have
that would fall into Flavell’s fourth level: “In effective reading, one
must not only call up one’s own schematic associations but also
monitor [my italics] whether they are appropriate ones shared by the
wider speech community.” Literate adults do this automatically, but

young children and other semi-literates do not confidently know
vhat other members of the speech community can be expected to
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to use in each case; (2) ability to recognize which parts of the text
were difficult, which dictated where to start reading and how-much
time to spend; (3) awareness of the need to take problems and ex-
amples from the text, order them randomly, and then try to solve
them; (4) knowing when he didn’t understand, so he could seek help
from the expert; and (5) knowing when the expert’s explanations
solved his immediate learning problem. These are all metacognitive
skills; they all involve awareness and control of the learning problem
that Bransford was trying to solve. Bransford might have learned
these skills originally i» one domain (cognitive psychology), but he
could apply them as a novice when trying to learn a second domain
(physics).

This self-experiment led Bransford and his colleagues to examine
in a more controlled way the differences between expert and less-
skilled learners. They found that the behavior of intelligent novices
contrasted markedly with that of the less skilled. Intelligent novices
used many of the same strategies Bransford had used to learn physics.
Less-skilled learners used few, if any, of them. The less-skilled did
not always appreciate the difference between memorization and com-
prehension and seemed to be unaware that different learning strate-
gies should be used in each case (Bransford et al. 1986; Bransford
and Stein 1984). These students were less likely to notice whether
texts were easy or difficult, and thus were less able to adjust their
strategies and their study time accordingly (Bransford et al. 1982).
Less-able learners were unlikely to use self-tests and self-questioning
as sources of feedback to correct misconceptions and inappropriate
learning strategies (Brown et al. 1983; Stein et al. 1982).

Hirsch, in his discussion of reading, notes how expert readers
“monitor” their schematic associations. Monitoring comprehension
s also a metacognitive skill. Ellen Markman (1985) studied this skill
- by having students in grades 3 through 6 read short passages which
_they had never seen before and which contained obvious contradic-
- tions. For example, a passage about ants might say in one place that
.ants navigate by leaving a chemical trail which they can smell and
.in another place that ants have no sense of smell. Most of the younger
_children and even a few of the older ones were oblivious to the
inconsistencies; they weren’t monitoring their comprehension. Chil-
Iren did improve on the task with age, so Markman first interpreted
he results in terms of developmental differences between younger
‘and older children. Subsequent research supported a more general
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‘conclusion: that the ability to apply this metacognitive skill differ-
entiated strong from weak learners at al] ages.

The ability to monitor comprehension is an essential learning
skill. Often poor students are totally unaware that they don’t com-
prehend class material. If they aren’t aware that they have a learning
problem, they can’t take steps to overcome it. '

Everyday experience suggests there are intelligent novices. Re-
search tells us that metacognitive skills contribute to these expert .
learning performances. Some people develop these skills naturally;
others do not. Those who do can become intelligent novices; those

who don’t may have difficulty learning.
Metacogniticn and Education

The importance of metacognition for education is that a child is, in
effect, a universal novice, constantly confronted with novel learning
tasks. In such a situation it would be most beneficial to be an intel-
ligent novice. What is encouraging is that the research also shows
that it is possible to teach children metacognitive skills and when to
use them. If we can do this, we will be able to help children become
intelligent novices; we will be able to teach them how to learn.

Just as.there are basic math and reading skills, there are basic
metacognitive skills. Among the basic metacognitive skills are the
abilities to predict the results of one’s own problem-solving actions,

. to check the results of one’s own actions (Did it work?), to monitor
one’s progress toward a solution (How am I doing?), and to test
how reasonable one’s actions and solutions are against the larger
reality (Does this make sense?). For example, a metacognitively adept
chess player tries to predict the consequences of a series of moves,
checks the results of those moves, and monitors whether those moves
might contribute to'a possible checkmate. Such a player also checks
possible strategies against the larger reality. In a game against a
higher-rated opponent, a metacognitively aware player would not
look for an easy mating combination early in the game; a quick
reality check would convince him that such a strategy doesn’t make
sense. Brown and DeLoache (1978, p. 15) call these skills “the basic
characteristics of efficient thought.” To become efficient thinkers—
intelligent novices—students have to learn the skills and learn when
to use them. Although a student might first learn the skills in the
context of some specific subject matter (as Bransford first learned
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problem is not with general skills but with how we have traditionally
tried to teach them.

Let us review briefly what we think we know about intelligence
and expertise. First, we have seen the importance of domain-specific
knowledge for expert performance. The scientist’s use of general
strategies is based on deep understanding of at least one scientific
domain. We can agree with the advocates of domain specificity that
general programs contrived to teach general skills are ineffective, but
that leaves open the possibility of teaching general skills within spe-
cific subject-matter instruction. General strategies do need a knowl-

Ny edge base on which to work, but once icarned in a specific context
they should be applicable in other domains. Second, both from the
Johnson-Laird experiment (figure 3.1) and from research on study
skills, we have seen that adults and children have difficulty transfer-
ring a skill or a strategy from one context to a similar context. In
some cases, subjects could make the transfer between contexts only
after the experimenter told them that the strategy applied in the new
situation.

Perhaps, just as children have to be taught metacognitive skills
and when to use them, they have to be taught general learning
strategies and when to use them. Perhaps, then, previous attempts
to teach general skills failed because course designers and instructors
overestimated children’s ability to generalize from one learning sit-
uation to another. Maybe children don’t see how and why the situ-
ations are similar. In general-strategy and learning-skill instruction,
rather than assume that students see the similarities between various
learning situations, perhaps we should explicitly tell them how and
why the situations are similar. This has led cognitive scientists to
think that general-strategy instruction has a place in schools, but that
strategy instruction has to be informed. By this they mean that strategy
instruction should include explicit descriptions of the strategies, in-
struction about when the strategies are useful, and an explanation of
thy they are useful.

Paris et al. (1982) ran an experiment in which they compared

ormed instruction with a more traditional approach to strategy
truction. On each of the first two days of the experiment, they

ad_7- and 8-year-old children study sets of 24 pictures. After a

eriod of study, they asked the children to remember as many of the
tures as they could. On average, the children could recall 12 or
ictures. On the third day, all the children were taught memory
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strategies: naming or labeling each item, sorting the items into related

groups (clustering), learning the items one group at a time, and then
(a meta-

testing themselves by trying to recall the items in groups
cognitive skill).

Half the children (the control group) saw the instructor dem-
onstrate the memory strategies and were permitted to practice them,
but were given no explanations of why the strategies worked and
no feedback on their performance when they tried to use them. In,
short, the control group received traditional strategy instruction.

The other children (the experimental group) received the same

instruction as the control group but in addition were told why the
Also, when the children

strategies worked and when to use them.
in this group used a Strategy they received immediate feedback on
how successful they had been with it. This group received informed

instruction. ,

Immediately after learning the strategies, children in the control
group could recall on average 16 pictures and children in the exper-
imental group 19 The experiment was continued for two more days.

By the fifth day, children in the experimental group could still recall

16 items. These children continued to use the memory strategics
out being told, they continued to label, sort;

spontaneously. With
cluster, and self-test. In contrast, by the fifth day children in the

control group had fallen to the pre-instruction level of 12 to 13 items
and had reverted to passive, pre-instruction learning strategies, such

as looking at the pictures and trying to remember them. This ex-
periment shows that children will use 2 strategy spontaneously—
they will transfer it to a new situation—if they understand why it
works and when it can help them learn. Informed strategy instruction
works; traditional instruction doesn’t. A
General thinking, learning, and study strategies are important

" elements of intelligence and expert performance, and now it seems
ding to Brown (1985,

we may know how to teach them. Accor

p- 335), «ideal cognitive skills training programs include practice in
the specific task-appropriate strategies, direct instruction in the or-
chestrating, overseeing and monitoring of these skills, and infor-
mation concerning the significance of those activities.” Such
instruction recognizes the necessity of domain-specific knowledge in
that the strategies areé specific, task appropriate, and integrated into
subject-matter learning. The instruction is also metacognitively

aware, in that the children receive direct instruction about how to
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This characterization of high-order skills relies primarily on the
kinds of problems students can sole and on students’ observed
behaviors. But “high-order” also refers to the thought processes
_eeded to solve such problems and guide such behaviors. Susan
Chipman, Program Manager for Cognitive Science at the Office of
Naval Research, argues that “behind our choice of the term ‘higher-
order,” there are strong intuitions about the way in which our cog-
nitive activities are structured and controlled” (Chipman 1992). These
intuitions link high-order skills with our current theory of intelli-
gence and expert performance.

First, Chipman points out that higher-order skills in a subject
domain, such as those needed to solve ill-structured complex prob-
lems; are skills grounded in deep factual and procedural knowledge
of the domain. As the new synthesis implies, high-order skills require
extensive domain knowledge.

Second, she notes that students who genuinely possess high-
order skills in a subject domain not only have the requisite factual
and procedural knowledge, they also can recognize when the knowl-
edge is applicable and can use it appropriately. It is this feature of
high-order skills that accounts for the flexible, spontaneous use of
knowledge in novel situations. This connects high-order skills with
the notion of transfer. High-order skills should transfer from school
learning to real-world situations and allow students to use what they
already know to learn new things more rapidly. The key to transfer,
and so to. high-order skills, is knowing when to use knowledge. If

we want to teach high-order skills, then, as the new synthesis says,
the instruction should be informed.

Third, implicit in our use of “high-order,” according to Chip-
man, are intuitions about how students control and monitor their

cognitive skills. High-order skills, in this sense, involve awareness
of what is happening in working memory, of how those processes
determine eventual action, and of how to control those processes.
Thus, metacognitive abilities are implicit in our notion of high-order
skills. For this reason, if we want students to acquire high-order
skills, instruction must be metacognitively explicit.

In short, high-order skills require extensive domain knowledge,
understanding when to use the knowledge, and metacognitive mon-
itoring and control. Students who have these things can solve novel,
ambiguous problems; students who have high-order skills are intel-

ligent novices.
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