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Foreword 

The Russian edition of this book appeared in 1976 on the hundred-and-fiftieth 

anniversary of the historic day of February 23, 1826, when Lobaéevskii 

delivered his famous lecture on his discovery of non-Euclidean geometry. 

The importance of the discovery of non-Euclidean geometry goes far 

beyond the limits of geometry itself. It is safe to say that it was a turning point 

in the history of all mathematics. 

The scientific revolution of the seventeenth century marked the transition 

from “‘mathematics of constant magnitudes’’ to ‘““mathematics of variable 

magnitudes.” During the seventies of the last century there occurred another 

scientific revolution. By that time mathematicians had become familiar with 

the ideas of non-Euclidean geometry and the algebraic ideas of group and 

field (all of which appeared at about the same time), and the (later) ideas of 

set theory. This gave rise to many geometries in addition to the Euclidean 

geometry previously regarded as the only conceivable possibility, to the 

arithmetics and algebras of many groups and fields in addition to the arith- 

metic and algebra of real and complex numbers, and, finally, to new mathe- 

matical systems, 1.е., sets furnished with various structures having no classical 

analogues. Thus in the 1870’s there began a new mathematical era usually 

called, until the middle of the twentieth century, the era of modern mathe- 

matics. Now, however, in the wake of the modern scientific and technological 

revolution, and the related appearance of computers and the significant 

development of finite mathematics, it is necessary to rename that earlier age. 

In view of the tremendous importance of the discovery of non-Euclidean 

geometry we might call it the era of non-Euclidean mathematics. 

In the present volume we investigate the mathematical and philosophical 

factors underlying the discovery of non-Euclidean geometry and the extension 

of the concept of space, the history of these discoveries, and their subsequent 

development. 

Of the ten chapters in the book the sixth, ‘“‘Lobaéevskian Geometry,” plays 

a central role. It deals with the history of the discovery of hyperbolic geom- 
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etry, the struggle for its acceptance, and the history of its more important 

interpretations. Chapters 1—5 are devoted to the prehistory of hyperbolic 

geometry and of the ideas associated with the evolution of the concept of 

space. Specifically, in chapter 1 (“Spherical Geometry”) we study the first 

geometry different from Euclidean geometry and the one which later served 

as the basis for elliptic geometry. In chapter 2 (““The Theory of РагаПе!5”) we 

give a detailed account of the attempts to prove Euclid’s fifth postulate, the 

so-called parallel postulate; these attempts led directly to ГоБабеузКИ?’з dis- 

covery. Chapter 3 (“Geometric Transformations”) deals with the history of 

geometric transformations, an evolution that subsequently led to the theory 

of groups of transformations—the latter providing the basis for the con- 

temporary non-Euclidean geometries and others related to them. In chapter 

4 (“Geometric Algebra and the Prehistory of Multidimensional Geometry”’) 

we study the history of geometric calculi, which later served as the basis for 

multidimensional geometry, and the theory of algebras, also closely related 

to non-Euclidean geometry. In chapter 5 (“Philosophy of Space’’) we con- 

sider the history of the philosophical views on space that were important to 

Lobaéevskii’s discovery as well as to later generalizations of non-Euclidean 

geometry. Chapters 7 and 8 (““Multidimensional Spaces” and ““The Curvature 

of Space’) are devoted to the subsequent development of the concept of 

space—the appearance of the concepts of multidimensional flat and curved 

spaces and their later generalizations. In chapter 9 (“Groups of Trans- 

formations’) we study the history of groups of transformations whose im- 

portance for geometry was disclosed by Klein’s famous “Erlangen Program,” 

and the history of Lie groups—in particular, the theory of simple Lie 

groups—that has given rise to the most natural generalizations of the classical 

non-Euclidean geometries. Chapter 10 (“Application of Algebras’’) deals with 

the history of associative and nonassociative algebras and their different 

geometric applications—in particular, the history of the emergence of spaces 

over various algebras. 

The English edition is a corrected and supplemented edition. In chapter 

1, I added a section on spherical trigonometry in medieval India and in the 

treatises of al-Khwarizmi; this material provides the necessary links between 

ancient and later Arabic mathematics. In chapter 2, I added information 

on new publications devoted to the history of the theory of parallel lines. In 

chapter 3, I added a section on Apollonius’ geometric transformations. In 

chapter 4, I added a section on three-dimensional geometric algebra. In 

chapter 5 of the Russian edition, I considered only pre-nineteenth century 

philosophy. In the English version of chapter 5, I brought the discussion up 

to our own time and added relevant material on medieval India. In chapters 

9 and 10, I added sections on parabolic spaces (flag manifolds) and their 

connections with the theories of groups and algebras, on finite geometries, 

and on the applications of geometries to physics. The present bibliography 
includes references to books and papers that have appeared in the last ten 
years. 
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Chapter 1 

Spherical Geometry 

The Rise of Spherical Geometry 

The first geometry other than Euclidean geometry was spherical geometry, 

or, as the ancients called it, Sphaerica. This geometry appeared after plane 

and solid Euclidean geometry. The main stimulus for the rise of plane and 

solid geometry was the need to measure the areas of fields and other plane 

figures and the capacities of vessels and storehouses of various shapes, that 

is, the volumes of different solids. The main stimulus for the rise of spherical 

geometry was the study of the starry heavens. 

Observation of heavenly bodies was carried out already in ancient Egypt 

and Babylon, largely with a view to making a calendar. The Egyptians 

divided the day into 24 hours. (The original ““temporal’”’ hours were equal to 

1/12 of daylight or darkness and were thus of unequal duration. They were 

later replaced by the generally accepted equal hours.) /384, pp. 83—86]. The 

Babylonians made a more significant contribution to the development of 

astronomy: in his Almagest, Ptolemy cites not the observations of his fellow 

Egyptians but rather the Babylonian observations of eclipses and stars dating 

back to the first centuries of the era of Nabonassar that began in the eighth 

century B.C. [44], р. 166]. It was the Babylonian astronomers who introduced 

the division of the ecliptic into the 12 signs of the Zodiac, the division of each 

sign into 30°, and the sexagesimal division of the degree into minutes and 

seconds. They described the motion of planets along the ecliptic by means of 

step and zigzag functions. They were also the founders of astrology, which 

played an important role in the solution of many problems of astronomy. The 

ancient Greeks became familiar with Babylonian astronomy not later than 

the fourth century B.c. At that time, following Babylonian usage, they re- 

placed the earlier names of the planets with names of gods. The modern names 

of the planets are Latin translations of the latter." The astronomy expounded 

1 The new names of the planets appeared in Plato’s Epinomis [427, vol. 6, р. 400]. 
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by Ptolemy in the A/magest was the result of centuries of development which 

absorbed the traditions of Babylonian astronomers and Greek geometers. 

The apparent celestial sphere is a sphere whose center is the center of the 

earth. The most important circles of this sphere are the horizon, the fixed great 

circle parallel to the tangent plane of the earth at the observer’s position; the 

celestial equator, the great circle that goes over into itself during the apparent 

daily rotation of the celestial sphere, and the ecliptic, the great circle of the 

apparent motion of the Sun whose position varies during the daily apparent 

rotation of the celestial sphere. The poles of the horizon are called the zenith 

(in the upper hemisphere) and the nadir (in the lower hemisphere). The line 

joining the celestial poles is the celestial axis. The Sun crosses the celestial 

equator at the spring and autumn equinoxes and is farthest from it at the 

summer and winter solstices; the points of the ecliptic corresponding to these 

days trace the tropics of Cancer and Capricorn” during the daily rotation of 

the celestial sphere. The ecliptic and celestial equator form a fixed angle of 

approximately 23°. The horizon and celestial equator form an angle that com- 

plements the geographic latitude (in particular, they are perpendicular at the 

earth’s equator and coincide at a pole). 

The Sphaerica of Autolycus 

The earliest mathematical work of antiquity to come down to our time is On 

the rotating sphere (Peri kinoumenés sphairas) by Autolycus /31], who lived 

at the end of the fourth century B.c. The subject of this work is, essentially, 

the celestial sphere, considered (in conformity with the traditions of Plato’s 

school) in very abstract form. Autolycus’ work consists of definitions and 12 

propositions. The definitions refer to uniform motion. Proposition 1 is that 

when a sphere rotates uniformly on its axis, then all of its points not on the 

axis describe parallel circles with the same poles as the sphere, and the planes 

of these circles are perpendicular to the axis of the sphere. Here the term circle 

denotes a circular disk, and the expression “а point describes а circle’’ means 

that the point traverses the boundary of a disk. Parallel circles are circles on 

the sphere that determine parallel planes. Proposition 2 is that the points of 

a sphere in uniform motion describe in equal times similar arcs. In proposition 

4 the “bounding circle” is introduced as that which separates the ‘“‘visible 

points” of the sphere from the invisible ones—in other words, it is the horizon 

(the Greek horizén means “‘bounding’’). The proposition deals with the 

so-called parallel sphere, which arises when the horizon coincides with the 

celestial equator (which is what happens at a geographic pole). It is shown 

that, in that case, no point of the celestial sphere “‘rises or sets,”’ that is, in- 

* During the spring and autumn equinoxes the Sun appears in the constellations Aries and Libra, 

and during the summer and winter solstices in Cancer and Capricorn. 
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tersects the “bounding circle.” Proposition 5 deals with the “upright sphere”’ 

(sphaera recta), which arises when the “bounding circle’”’ passes through the 

poles. Then the horizon is perpendicular to the celestial equator (which is 

what happens at the geographic equator). It is shown that, in that case, all 

the points of the celestial sphere “‘rise and set.”’ Proposition 6 deals with the 

“inclined sphere” (sphaera obliqua), which arises when the “bounding сие” 

is inclined to the axis. It is shown that, in that case, some points of the sphere 

are “always visible,” some are ‘“‘always invisible,” and some ‘“‘rise and set.” 

The proofs of most of the propositions use motions: the proposition is 

negated, and then the sphere is rotated and it is noted that the negation 

contradicts the state of affairs resulting from the rotation of the sphere. 

Autolycus’ second treatise, On the rising and setting of stars, deals with the 

rising and setting of the points of a certain inclined circle that can be easily 

identified with the ecliptic. 

The Sphaerica of Theodosius 

The first systematic account of spherical geometry to come down to us is the 

Sphaerica (Sphairika) of Theodosius [578], a native of Bithynia in Asia 

Minor, who lived in the second and first centuries B.c. in Tripoli, in Phoenicia. 

In addition to the Sphaerica, Theodosius wrote two astronomical treatises— 

On inhabited places and On days and nights—devoted to risings and settings 

of the Sun and to the duration of days and nights in various inhabited places 

of the earth. 

The Sphaerica of Theodosius consists of three books. The first book 

contains 6 definitions and 23 propositions, the second, 1 definition and 23 

propositions, and the third, 14 propositions. 

The first definition is 

A sphere is a solid figure contained in a single surface such that all lines 

falling on it from a single point inside the figure are equal /578, р. 1]. 

The center of the sphere is defined as the point mentioned in the first defini- 

tion. A diameter of the sphere is a line through its center ending at its surface. 

Alternatively, it is a fixed line about which the sphere can rotate. There follow 

definitions of poles of the sphere (ends of its axis), a pole of a circle on the 

sphere (a point on the surface of the sphere such that all the lines from it to 

the circle are equal), equal inclination of two planes to two other planes, and 

(at the beginning of book II) tangent circles on the sphere. 

The first three definitions of Theodosius are direct generalizations of defi- 

nitions 15—17 of book I of Euclid’s Elements (the definitions of a circle, its 

center, and a diameter) / 173, vol. 1, p. 153]. Оп the other hand, Euclid defined 

a sphere (definition 14, book XI, [173, vol. 3, р. 261]) as a solid obtained by 

revolving a semicircle about its diameter. 
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Just as in Euclid’s Elements, the propositions of Theodosius are theorems 

and construction problems. For example, proposition | is the theorem that 

the curve of intersection of a sphere and a plane is a circle, and proposition 2 

deals with the construction of the center of a sphere. To construct it, one finds 

the intersection of the sphere with a plane, erects a perpendicular to the plane 

at the center of the circle of intersection, extends the perpendicular in both 

directions to the surface of the sphere, and bisects the resulting diameter. 

Most of the propositions of the Sphaerica are stereometric theorems and 

constructions. When Theodosius speaks of circles on a sphere as meeting at a 

certain angle or being parallel he thinks of their planes’ meeting at that angle 

or being parallel. When he speaks of the mutual bisection of two circles on a 

sphere he has in mind the mutual bisection of plane figures. Some of these pro- 

positions, however, can be easily reformulated in terms of geometry on the 

surface of a sphere. The relevant propositions are proposition 6 of book I (that 

the largest circles on a sphere are those passing through its center (the “great 

circles’’)), and that of the remaining (“‘small’’) circles (those equidistant from 

the center are equal and the more distant ones are smaller); propositions 

11—12 (that two intersecting great circles bisect each other, and conversely); 

propositions 13—15 (that if a great circle on a sphere intersects a circle on that 

sphere at right angles, then it bisects it and passes through its poles, and 

conversely (two converses)); propositions 1-2 of book П (that “parallel 

circles” on a sphere have common poles, and conversely); and propositions 

3—5 (that if two circles on a sphere meet at a point of a great circle that 

contains their poles, then they are tangent, and conversely (two converses)). 

In addition to stereometric propositions, the Sphaerica of Theodosius con- 

tains propositions formulated in terms of geometry on the surface of the 

sphere. Relevant examples are propositions 20—21 of book I (construction of 

a great circle passing through two points on a sphere, and the construction 

of a pole of a circle on a sphere; the latter construction enables one to draw 

great circles perpendicular to a given circle, or, what amounts to the same 

thing, great circles passing through the poles of a given circle); proposition 

10 of book II (that if two great circles pass through the poles of two parallel 

circles, then the arcs of the small circles cut off by the great circles are similar, 

and the arcs of the great circles cut off by the small circles are equal); proposi- 

tion 16 (the converse of proposition 10); propositions 14—15 (construction of 

a great circle tangent at a given point to a small circle and passing through a 

given point of its exterior); and proposition 5 of book III (that if a number 

of parallel small circles cut off equal arcs on an inclined great circle, then they 

cut off unequal arcs on a great circle perpendicular to them). 

The Sphaerica of Menelaus 

Menelaus lived in Alexandria at the end of first century д.р. In the year 98 

he carried out astronomical measurements in Rome. The spherical geometry 
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contained in his treatise On the sphere (Peri sphairas) is more advanced than 

its predecessors. There exist only edited Arabic versions of this work. Of these, 

the best are those of Abu Nasr ibn ‘Iraq /36// and Nasir al-Din al-Tisi / 595, 

vol. 2, part 10]. Menelaus’ Sphaerica consists of three books containing (in 

the Ibn ‘Iraq version) 39, 21, and 25 propositions, respectively. In the in- 

troduction to book I Menelaus defines a spherical triangle (“а three-sided 

figure’’)—that is, part of a spherical surface bounded by three arcs of great 

circles each less than a semicircle—and the angles of such a triangle. Whereas 

most of the propositions in Theodosius’ Sphaerica are stereometric, Mene- 

laus’ book expounds geometry on the surface of a sphere in a way analogous 

to Euclid’s exposition of plane geometry. Proposition 1 of book I is the 

construction of an arc of a great circle at a given angle to a given arc of a 

great circle. Propositions 2 and 3 are the theorem stating the equality of the 

base angles of an isosceles spherical triangle and its converse (they are the 

analogues of propositions 5 and 6 of book I of Euclid’s Elements). In proposi- 

tion 4 of book Г it is proved that if the sides of two spherical triangles are 

pairwise equal, then so are their angles (analogue of proposition 8 of book I 

of the Elements). In proposition 5 of book I it is proved that the.sum of two 

sides of a spherical triangle is always greater than the third (analogue of 

proposition 20 of book I of the Elements). In propositions 7 and 9 it is proved 

that opposite a greater angle of a spherical triangle lies a greater side, and 

conversely (analogues of propositions 18 and 19 of book I of the Elements). 

Of the propositions that are not analogues of propositions of plane geometry 

we mention propositions 10 and 11, which imply that the sum of angles of a 

spherical triangle exceeds two right angles. 

The tenth proposition. If two sides of a three-sided figure are together 

less than a semicircle, then the exterior angle adjacent to one of these sides 

is greater than the opposite interior angle adjacent to the remaining side; 

if two sides are together greater than a semicircle, then the exterior angle 

is smaller than the opposite interior angle; and if the two sides are together 

equal to a semicircle, then the exterior angle is equal to the opposite 

interior angle. 

Let the sides AB and BC of a three-sided figure ABC be together less 

than a semicircle (Figure 1). Then I claim that angle BCD is greater than 

angle BAC. 

We extend the arcs AB and AC to D; each of them is a semicircle. 

Since the sides AB and BC are together less than a semicircle, they are 

less than the arc ABD. But then the remaining arc BD is greater than 

the arc BC. But then, as shown in the ninth proposition, the angle BDC, 

which is equal to the angle BAC, is smaller than the angle BCD. Similarly, 

if the arcs AB and AC are together greater than a semicircle, then the 

arc BC will be greater than the remaining arc BD. But then the angle 

BDC, which is equal to the angle BAC, is greater than the mentioned 

angle BCD. Similarly, it is clear that if the arcs AB and BC are together 
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equal to a semicircle, then the arc BC will be equal to the arc BD, and, 

as was shown in the second proposition, the angle BAC will be equal to 

the angle BCD. 

In just the same way one proves the converse of what we stated, 

namely: if the angle BCD.is equal to the angle BAC, then what was set 

forth proves that BA and BC are together equal to a semicircle; if the 

exterior angle BCD is smaller than the opposite interior angle, then what 

was set forth proves that AB and BC are together greater than a semi- 

circle, for the angle BDC is greater than the angle BCD, and hence the 

arc BD is smaller than the arc BC. Similarly, if the angle BCD is greater 

than the angle BAC, then it is greater than BDC, so that BD is greater 

than BC, and BA and BC are together less than a semicircle. And this 

is what we wished to prove. 

The eleventh proposition. An exterior angle of any three-sided figure 

is smaller than both interior angles opposite to it. 

Let the figure A BC be a triangle. We extend AC to D (Figure 2). Then 

I claim that the exterior angle BCD is smaller than both angles at the 

points A and B opposite to it. 

At the point C of the arc CD we construct an angle equal to the angle 

BAC—that is, the angle DCE. We extend AB from the point B to the 

point Е at which it meets CE. Since the angle DCE (an exterior angle 

of the triangle ACE) is equal to the angle BAC, the sum of AE and EC 

is a semicircle—as shown in the tenth proposition. But then BAC and 

ABC together are greater than the exterior angle BCD of the triangle. 

From this [it is clear that] the angles A, B, C [exceed two right angles], 

for the two angles on both sides of BC, that is, the angles BCA and 

BCD, are equal to two right:angles, and the angles A, В, С are greater 

than these two angles. That is what we wished to prove /361, рр. 8—9]. 

The difference between the sum of the angles of a spherical triangle and 
two right angles is called the angular excess of the spherical triangle. Thus if 
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the radian measures of the angles are а, В, у, then the angular excess of the 

spherical triangle is a + В + y — л. It is easy to check that if a spherical tri- 

angle is divided into two triangles, then the angular excess of the large triangle 

is equal to the sum of the angular excesses of the two small triangles. Since, as 

just indicated, the angular excess is additive, and also has the obvious prop- 

erties of invariance under rotation of the sphere and of being positive for every 

spherical triangle, it follows that the angular excess of a spherical triangle is 

proportional to its area. 

Menelaus’ Theorems 

Proposition 1 in book III of Menelaus’ work has played a special role in 

the history of spherical geometry and trigonometry. It proves the plane and 

spherical cases of a theorem now called Menelaus’ theorem or the theorem of 

the complete quadrilateral. A complete quadrilateral is a quadrilateral whose 

sides have been extended to intersection. Since in the Arabic versions of 

Menelaus’ work this theorem was subjected to extensive modernization, we 

give here the version from chapter 12, book I, of Ptolemy’s Almagest. First 

we set down the proofs of two variants of the plane theorem of Menelaus. 

To two straight lines AB and AC are drawn two straight lines BE 

and CD that intersect at a point G (Figure 3). I claim that the ratio of 

CA to AE is composed of the ratios of CD to DG and GB to BE. Through 

E is drawn EH parallel to CD (see Figure 3a). Since CD and EH are 

parallel, the ratio of CA to EA is the same as the ratio of DC to EH. 

Let us bring in GD. Then the ratio of CD to HE will be composed of 

the ratios of CD to DG and DG to HE. Thus the ratio of CA to AE is 

composed of the ratios of CD to DG and DG to HE. But the ratio of 

(b) 

Figure 3 
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DG to HE is the same as the ratio of GB to BE owing to the parallelism 

of EH and GD. Therefore the ratio of CA to AE is composed of the 

ratios of CD to DG and GB to BE, which was to be proved. 

In much the same way we shall prove that the ratio of CE to EA is 

composed of the ratios of CG to DG and DB to BA. We draw through 

Аа parallel to EB and extend to that parallel the straight line CDH 

(see Figure 3b). Since AH is again parallel to EG, CE is to EA as CG is 

to GH. If we bring in GD, then the ratio of CG to GH will be composed 

of the ratios of CG to GD and DG to GH. But the ratio of DG to GH is 

the same as the ratio of DB to BA, for BA and GH are drawn between 

the parallels AH and GB. Therefore the ratio of CG to GH is composed 

of the ratios of CG to DG and DB to BA. But the ratio of CG to GH 

is the same as the ratio of CE to EA, so that the ratio of CE to EA is 

composed of the ratios of CG to DG and DB to BA, which was to be 

proved /442, vol. 1, рр. 50-51]. 

The ancient mathematicians used the term composite ratio for our product 

of ratios; and to prove that the ratio А: В is composed of the ratios C: D and 

E: F they would find magnitudes L, M, N such that A/B = L/N, C/D = L/M, 

Е/Е = М/М (here, the role of the magnitudes Г, М, N is played in the first 

case by CD, GD, and EH, and in the second case by CG, CD, and СН). Hence 

the theorems established previously can be written as 

СА CDGB bs 
ЕА DG BE’ el) 

CE CGDB 
and — = —_—_, (1.2) 

ЕА DGBA 

Then Menelaus proves the lemma that if A, B, C are three points of a 

circle with center D and each of the arcs AB, BC is less than a semicircle, and 

if E is the point of intersection of the chord AC with the diameter DB, then 

chord 2AB и АЕ chord 2СА г СЕ 

chord2BC ЕС’  chord2AB ВЕ 

(Menelaus and Ptolemy refer to the chord of the arc AC аз “‘the straight line 

under the arc АС.”) 

What follows is Ptolemy’s exposition of the spherical variant of Menelaus’ 
theorem. 

We describe on the surface of the sphere arcs of great circles such 
that two arcs BE and CD, drawn to two arcs AB and AC, intersect at a 
point G. Let each of these arcs be smaller than a semicircle; this we shall 
assume for all such constructions. I claim that the ratio of the straight 
line under twice the arc CE to the straight line under twice EA is com- 
posed of the ratio of the straight line under twice CG to the straight line 
under twice GD and the ratio of the straight line under twice DB to the 
straight line under twice BA. 
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In fact, we take the center of the sphere, and let it be H (Figure 4). 

We draw straight lines HB, HG, and HE from H to the points B, G, E 

of intersection of the circles. Then we extend the connecting straight line 

AD and suppose that it intersects the extension of HB at the point F. 

Similarly, let the connecting straight lines DC and AC intersect HG and 

HE at the points K and L. The points F, L, and K lie on the same straight 

line, for they are simultaneously in two planes—that of the triangle 

ACD and the circle BGE. The straight line joining them, together with 

the straight lines FA and СА, gives the two straight lines FL and CD, 

drawn to them, that intersect at the point K. Therefore the ratio CL to 

LA is composed of the ratios of CK to KD and DF to FA. But the ratio 

of CL to LA is the same as that of the straight line under twice CE to 

the straight line under twice EA, the ratio of CK to KD is the same as 

that of the straight line under twice CG to the straight line under twice 

GD, and the ratio of FD to FA is the same as that of the straight line 

under twice DB to the straight line under twice BA. It follows that the 

ratio of the straight line under twice CE to the straight line under twice 

EA is composed of the ratio of the straight line under twice CG to the 

straight line under twice GD and the ratio of the straight line under twice 

DB to the straight line under twice BA [442, vol. 1, pp. 54-55]. 

This theorem can be written as 

chord 2CE = chord 2CG chord 2DB 

chord 2EA chord 2DG chord 2BA 

Starting with theorem (1.1), one can prove in the same way that 

chord 2CA “4 chord 2CD chord 2GB 

chord 2AE chord 2DG chord 2ВЕ` 
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Since the chord of an arc 2a is twice the line of the sine of the arc «, these 

theorems can be written as 

зп СЕ sinCGsinDB 

зтАЕ зтрС зш ВА’ 
(1.3) 

and 

sin CA rf sin CD sinGB 

sinAE sinDG sin BE’ 
(1.4) 

This shows that, essentially, the spherical theorem of Menelaus is a theorem 

of spherical trigonometry. We note that the equations (1.3) and (1.4) are 

obtained from the equations (1.2) and (1.1) by replacing segments by the sine 

lines of the corresponding arcs. 

Ptolemy’s Spherical Trigonometry 

On a number of occasions we have mentioned the name of Ptolemy, the famous 

astronomer of antiquity, and his A/magest. Ptolemy worked in Alexandria in 

the second century A.D. At the present time, A/magest is the generally accepted 

name of his fundamental astronomical work The Mathematical Composition 

(Mathématiké Syntaxis). Almagest is the Latin distortion of the book’s Arabic 

name A/-Majisti, derived from one of its Greek names Megisté Syntaxis— The 

Greatest Composition. The Almagest is a summary of all ancient astronomy 

which, as mentioned earlier, grew out of the union of the Babylonian and 

Greek traditions. 

The Al/magest is important because it is the first preserved work containing 

an exposition of spherical trigonometry. Chapters 10, 11, and 13 of book I of 

the Almagest are devoted to mathematics. Chapter 10 contains the geometric 

theorems needed for the computation of tables of chords, including the well- 

known “‘theorem of Ptolemy” for a quadrilateral inscribed in a circle. Chapter 

11 contains a table of chords, that is, a table of values of the function s = 

Oo Е 
rsin;, where the arc « varies by 1/2° and the chords s are computed to three 

sexagesimals. Chapter 13 contains the proofs of the plane and spherical 

versions of Menelaus’ theorem quoted previously ((1.1)—(1.4)). Ptolemy ap- 

plies the last two theorems to solve concrete problems of spherical astron- 

omy. In chapter 14 of book I Ptolemy computes the length of the spherical 

perpendicular from a point G of the ecliptic BGE to the celestial equator BDA 

(see Figure 4). To do this, he completes the spherical triangle BDG, formed 

by the arc BG of the ecliptic, the arc BD of the celestial equator, and the arc 

of the spherical perpendicular GD, to the full quadrilateral AECGBD and 

considers the special case of theorem (1.4) when CA = EB = CD = 90°. Then 

theorem (1.4) takes the form 
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sin 90° ёя sinGB 

sinB sin DG’ 

This is the special case of the spherical sine theorem, usually written in the 

form 
, 

sina  sinb sinc 

sinA sinB sinC’ 
(1.5) 

for the right spherical triangle BDG with the right angle D (and known angle 

B between the ecliptic and the celestial equator). In chapter 16 of the same 

book Ptolemy computes the right ascension of the point G of the ecliptic, that 

is, the side BD of the same triangle BDG. He again completes this triangle to 

the quadrilateral AECGBD and considers the special case of theorem (1.3) 

when CE + EA = CD + DG = AB = 90°. In that case theorem (1.3) takes 

the form 

cos EA _ COS GD sin DB 

sinEA  sinGD sin90°’ 

that is, becomes the spherical tangent theorem, usually written as 

tana = tan А: т с, (1.6) 

for the right spherical triangle with right angle B. 

Spherical Trigonometry in India 

It was in the medieval Near and Middle East that spherical trigonometry came 

close to its modern form. The trigonometry of Ptolemy and of other Alexan- 

drian astronomers reached the Muslim East through India. In the fourth 

century A.D. there turned up in India the astronomer Paulos, a refugee from 

Alexandria, who became known in India under the name of Paulisa. We 

can trace back to him the Indian astronomical work known as the Paulisa 

siddhanta. Many other Indian astronomical siddhantas are also of Hellenistic 

origin. Whereas the Greeks called chords simply “‘straight lines under arcs,” 

the Indians used more colorful terminology. They called an arc “bow,” a 

chord “‘bowstring”’ (jiva), and the perpendicular from the center of the arc 

to its chord ‘“‘arrow.” In the eighth century there appeared the Arabic work 

Sindhind, an adaptation of the Indian siddhantas. The Arabic terms gaws, 

watar, and sahm were the Arabic words for “‘bow,” “‘bowstring,” and “агго\м,” 

respectively. In turn, these words were rendered by 12th-century Latin trans- 

lators as arcus, chorda, and sagitta. Hence our “chord.” The Indians intro- 

duced in their siddhdntas the half-chord, which they called at first ardha jiva 

and then simply jiva or jyd. When jiva referred to а half-chord, the Arabs 

transliterated it as jib or jaib (instead of translating it as watar (chord)). Since 

jaib means “‘cavity, pocket,” the Latin translators rendered it as sinus. 
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In the Indian siddhdntas there are many astronomical rules equivalent to 

formulas of spherical trigonomentry such as the spherical sine theorem (1.5) 

and the spherical cosine theorem 

cosa = coshcosc + sinbsinccos A. Che) 

For example, verse 13 of chapter 3 of the astronomical treatise Khanda- 

khadyaka (The sweetest teaching) of Brahmagupta (sixth century A.D.) reads: 

Multiply the Antyd by the hypotenuse at noon and divide by the hypo- 

tenuse at the given shadow. Substract the result from the Antya. Con- 

sider the remainder as the Utkramajyd and find the corresponding arc. 

The result is the number of Prdnas in the Natakala measured from 

midday /77а, р. 61]. 

Here Antyd is the versed sine (sinus versus) of the arc of half the day and 

“shadow” is the shadow of the vertical gnomon in the horizontal plane. If 

the length of the gnomon is /, then the length of the shadow is /coth, where 

h is the altitude of the Sun (the Sun’s spherical distance from the horizon). 

“Hypotenuse” is the hypotenuse of the right triangle in the plane whose other 

sides are the gnomon and the shadow, hence its length is /csch. Natakala 15 

the hour angle ¢ and ргапа (literally: sigh) is a measure of time. If we denote 

the arc of half the day by fo, then we can express Brahmagupta’s rule by the 

formula F 

rsin vers to /с$С Й 
max 

r sin vers to = rsin vers 1, 
Iesch 

which is equivalent to 

: sinh р 
sin уе | |= — = sin vers f, 

Sih eee 

or 

(sin vers tg — sin vers f)sinh т 
a = sinh. (1.8) 

sin vers fy 

This formula connects the Sun’s altitude й, its maximal altitude h,,,,, the 

arc of half the day fg, and the hour angle ¢, that is, the Sun’s distance from 

the meridian measured along its diurnal parallel circle. Since the hour angle 

is proportional to time, it can be measured in hours and fractions of hours. 

Figure 5 shows the celestial equator EM W and the celestial pole P, the horizon 

ESWN and the zenith Z, and the celestial meridian ZLS. К denotes the Sun, 

and KL its diurnal parallel circle. The altitude h of the Sun is given by the arc 

KH, and the side ZK of the spherical triangle PZK is 90° — h. The declination 

9 is given by the arc KM, and the side PK of PZK is 90° — 6. The arc ZP is 

the complement (to 90°) of the geographic latitude ф. The hour angle { equals 

the angle ZPK. The Sun’s noon altitude, that is, its meridian altitude, equals 
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Figure 5 

the arc. SL, Since РГ. = PK and SZ.—= 90° it follows that SL. = SZ. ZP— 

PL = 90° — ф + 0. The versed sine (sinus versus) is defined by the relation 

sin verst = 1 —costif t < 90° and = 1 + созё t> 90°. 

The arc of half the day is the arc FR and its surplus over 90° is the arc FE, 

a side of the right spherical triangle EFG whose side FG is the declination 6 

of the Sun and whose hypotenuse GE is the ortive amplitude 6 (the spherical 

distance between the point G of the sunrise and the point E of the east). Since 

the angle Е of this triangle is equal to the difference 90° — ф between 90° and 

the latitude @, the spherical sine theorem (1.5) for this triangle gives 

(1.9) 

and the spherical cosine theorem (1.7) for the same triangle (“‘spherical 

Pythagoras theorem”’ cos с = cosacos b) gives 

cos 9 = создз fo. (1.10) 

Eliminating 6 from (1.9) and (1.10) we obtain 

cost) = tandtan@. 

Therefore Brahmagupta’s rule is equivalent to the formula 

tandtan@ + cost é $ 
sinh = - (cos дсо5ф + sind sin @) 

1 + tandtan@g 

or 
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sinh = sind sing + costcosdcos ф, 

which is the spherical cosine theorem (1.7), with а = 90° — h, b = 90° — 6, 

с = 90° — 9, A = ь for the triangle PZK. 

In Paficasiddhantika (‘Five siddhadntas”) of Varahamihira (fifth century 

A.D.), we find the rule (1.10) in verse 34 of chapter 4 /599a, vol. 1, р. 63], the 

rule (1.9) in verse 39 of the same chapter /599a, vol. 1, р. 65], the rule 

equivalent to the rule (1.8) of Brahmagupta in verses 41—43 of the same 

chapter /599a, vol. 1, р. 65] (in this edition we find the term “difference of 

sines”’ instead of “‘difference of versed sines.”” The same error occurs in the 

commentaries to these verses; see /599a, vol. 2, р. 43 |). The correct interpreta- 

tion of this rule is found in the book of Braunmiuhl /77Ь, vol. 1, р. 41]. In 

verses 53—54 of the same chapter Varahamihira gives the rule for the deter- 

mination of the azimuth of the Sun, that is, the angle between the two great 

circles of the celestial sphere joining the Sun and the zenith and the zenith 

and the celestial pole; this angle is equal to the angle PZK in Figure 5. This 

rule can be written as 

sing . 
in sin 6 — : sinh 

cuguass Ui om, (1.11) 
a cosh 

or, by expressing @ in terms of 6 and ф, by (1.8): 

sind — singsinh 
cos A = 

cos py cosh 

This coincides with the spherical cosine theorem (1.7), with a = 90° — 6, 

b = 90° — 9, с = 90° — fh, for the triangle ZPK and its angle Z. 

The Spherical Trigonometry of al-Khwarizmi and 
Thabit ibn Qurra 

In the ninth century we encounter the Arabic rules for the solution of astro- 

nomical problems equivalent to the spherical sine theorem (1.5) and the 

spherical cosine theorem (1.7). We find them in the astronomical treatises of 

the great Baghdad mathematician and astronomer Muhammad ibn Misa 

al-Khwarizmi (ab.780—ab.850), known in medieval Europe as Algorithmus or 

Algorismus (the Latin form of his name indicating that he originated from 

Khwarizm), who introduced in his arithmetical treatise ‘Indian numerals,” 

the ancestors of our Arabic numerals, and founded algebra as a branch of 

mathematics in his book al-Jabr wa’l-muqabala. He was also the author of 

one of the first Arabic zijes (astronomical tables). These treatises are in an 

Istanbul manuscript (library Aya Sofya, no. 4830, folios 183"—199%, 288’— 

235"). They have recently been published (see //0a/). In the treatise Determi- 

nation of the Ortive Amplitude in Each Town (МатИа si‘a al-mashriq fi kull 
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balad) al-Khwarizmi formulates the rule (1.9) and in the Geometric Construc- 

tion of the Ortive Amplitude for Every Sign in Every Latitude (Amal si‘a ayy 

mashriq shita min al-buruj fi ayy ard shi'ta bi'l-handasa) he gives a graphical 

method, based on rule (1.9), for constructing an arc equal to the ortive 

amplitude. In the treatise Determination of the Azimuth According to Altitude 

(Ma‘rifa samt min qabl al-irtifa‘) he formulates the rule (1.11) equivalent to 

the spherical cosine theorem. In the treatise Determination of the Action with 

Azimuth, Shadow, and Altitude (МатИа ‘amal bil-samt bil-zill wa bi’l-irtifa’) 

he formulates Brahmagupta’s rule (1.8), another equivalent of the spherical 

cosine theorem, for finding the altitude of the Sun given ¢, fg, and И ах. 

In the same century, Muhammad al-Mahani (с. 825—888), in his Book on 

the Determination of the Azimuth at Any Time and in Any Place (Мадайа fi 

ma'rifat al-samt li-ayya sa‘atin aradta wa-fi ayyi mawdi‘in aradta) /341/, 

gave a graphical solution of the problem of determination of the azimuth of 

the Sun according to al-Khwarizm’’s rule that was analogous to his graphical 

method. 

We also find the same rule for the determination of the Sun’s altitude, and 

a simpler rule for the Sun’s azimuth equivalent to the spherical sine theorem 
(1.5), in the Book on time instruments called sundials (Kitab #1 alat al-sa‘at allati 

tusamma rukhamat) /241; 492, рр. 252—266] of the famous Baghdad mathe- 

matician and astronomer Thabit ibn Qurra (836—901). Ibn Qurra, a native of 

Harran in northern Syria (now in Turkey), belonged to the heathen sect of 

star worshippers, Sabians, descendants of the ancient Babylonians. He trans- 
lated many Greek and Syrian works into Arabic, including a number of 

treatises of Archimedes and books У-УП of Apollonius’ Conics. The latter 

are available only in Ibn Qurra’s translation. Ibn Qurra is the author of 

specialized works on Menelaus’ theorem, the theory of composite ratios, the 

theory of parallel lines, and methods of integration. 
In the treatise on sundials Ibn Qurra solves the problem of finding the 

altitude of the Sun and its azimuth. Ibn Qurra’s solutions follow. 

Let us take the distance from the Sun to the middle of heaven [that 

is, the celestial meridian] along a small circle, at a convenient time, in 

hours or their fractions. Take its versed sine, multiply it by the sine of 

the complement of the declination of the Sun in degrees and divide the 

product by the largest sine, multiply the quotient by the sine of the com- 

plement of the latitude of the locality, divide the product by the largest 

sine and keep the quotient in mind. Then subtract that from the sine of 

the altitude of the Sun and take the arc of the remainder, and that is the 

altitude.... 
If you want to know the azimuth, take the sine of the distance of the 

Sun from the middle of the heaven along a small circle, multiply it by 

the sine of the complement of the declination of the Sun in degrees, and 

divide the product by the sine of the complement of the altitude. Take 

the arc of the quotient, and that is the azimuth in the southern or 

northern direction /241/, pp. 16—17]. 
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Ibn Qurra’s second rule can be written as 

sin A sin t 

cosé cosh’ 

or, putting 90° — 6 = a, 90° —h=b,t = В, as 

sinA sinB 

sina sind’ 

which is one of the three equalities comprising the spherical sine theorem 

(1.5). 
Neither the Indian astronomers nor al-Khwarizmi, al-Mahani and Ibn 

Qurra give proofs of their rules. We also find rules (1.8) and (1.11) in the 

Sabian Astronomical Tables (al-Zij al-Sabt) of al-Battani [381, vol. 1, pp. 23, 

31; vol. 3, pp. 33—34, 46] and in later Arabic zijes. 

The Spherical Trigonometry of Ibn ‘Iraq and al-Biruni 

For Ptolemy and the astronomers of the early Middle Ages the spherical sine 

theorem (1.5) and the spherical tangent theorem (1.6) were rules for the solu- 

tion of concrete problems of spherical astronomy. In the course of the 10th 

century, these theorems (in the case of the sine theorem, first the sine theorem 

for a right spherical triangle and then for a general spherical triangle) be- 

came independent theorems of spherical trigonometry. At the end of the 10th 

century, two scholars of Khwarizm (the already mentioned) Abu Nasr Mansur 

ibn ‘Iraq (4. 1036) and his pupil, the great scholar-encyclopedist Abul-Rayhan 

Ahmad al-Biruni (973—1048), played a major role in this development. Ibn 

‘Iraq belonged to the dynasty of the Afrigids, who ruled in Khwarizm from 

the Sth to the 10th century and in the 10th century referred to themselves as 

Bani ‘Iraq (“the sons of Тгаа”). The capital of the Afrigids was Kath, now 

the city of Beruni (named after al-Biruni) in the Qaraqalpaq Republic (in 

Soviet Uzbekistan). Ibn ‘Iraq took part in the education of al-Biruni, a native 

of Kath. Himself eminent in mathematics, astronomy, and the construction 

of astronomical instruments, Ibn ‘Iraq guided al-Biruni in these areas. After 

the conquest of Khwarizm by Ма’тип, ruler of Gurganj (the present Kunya- 

Urgenc in Soviet Turkmenia), which became the capital of Khwarizm, al- 

Biruni emigrated to Gurgan in northern Iran, but returned to Gurganj after 

Ma'mun’s death. He was employed at the court of Ma’mun’s son, Ma’mtn 

ibn Ma’mun, where he collaborated with Ibn ‘Iraq and the great Ibn Sina 

(Avicenna) from Bukhara. After the conquest of Khwarizm by the sultan 

Mahmud Ghaznawi, al-Biruni and Ibn ‘Iraq were summoned by Mahmid to 

his capital Ghazna (now in Afghanistan), where they stayed for the rest of 

their lives. The most important works of Ibn ‘Iraq are The book of azimuths 

(Kitab al-sumut), written in Kath and the (previously mentioned) edition 
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of Menelaus’ Sphaerica completed in Gurganj. While in Kath, al-Birini 

wrote An exhaustive account of all possible ways of constructing astrolabes. In 

Gurganj he wrote A chronology of ancient nations [58; 60, vol. 1], devoted to 

chronology and astronomy, and a treatise on spherical geometry (discussed 

later). In Ghazna, during Mahmid’s lifetime, he wrote The book of instruction 

in the elements of the art of astrology [59; 53, vol. 6]; a large treatise on India 

and Indian science, treatises on geometry, plane trigonometry and geodesy; 

and, under Mahmud’s successor Mas ud, he completed his main astronomical 

work The Canon of Mas‘iid on astronomy and the stars [57; 53, vol. 5]. In the 

last years of his life he wrote works on mineralogy and pharmacognosy. 

The trigonometric work of al-Biruni is called The book of the keys to 

astronomy—what occurs upon the surface of a sphere (Kitab maqalid ‘ilm 

а1-Вау’а ma yahduthu fi basit al-kura) / 138 /. The introduction to this treatise 

contains a dedication to Marzuban ibn Rustam, prince of Gilan and Tabaris- 

tan, who at that time lived in Gurgan. Then there is a reference to the astro- 

nomical treatise of al-Biruni’s older contemporary Abu Sa‘id al-Sijzi, which 

contained unproved rules, including the spherical sine and tangent theorems, 

used to solve problems of spherical astronomy. Following this reference, al- 

Biruni writes: 

My lord Abu Nasr Mansur ibn ‘Ali ibn ‘Iraq exerted his efforts to 

finding proofs of such calculations.... He asked me to check their 

validity and to discover the reasons for obtaining proofs and the reasons 

for choosing among them. [ did that. Abu Nasr wrote a book about 

this matter which he called [The book] of azimuths [138, p. 104]. 

Al-Biruni goes оп to say that he sent a copy of The book of azimuths to 

Abu-l-Wafa’ al-Buzjani in Baghdad, who, in a special treatise and in a 

subsequently written adaptation of the A/magest? gave a simpler proof of this 

theorem and communicated the theorem to Abu Mahmud al-Khujandi and 

Kishyar ibn Labban al-Jili, then working in Iran, who also presented it in 

their astronomical books. А1-ЛИ called the theorem “а proposition that frees 

one from the figure of secants” (that is, from Menelaus’ theorem), and 

al-Khujandi called. it “the rule of astronomy.” Al-Biruni formulates ibn 

‘Iraq’s theorem as follows: 

Abu Nasr said: Let there be given arcs AB and AD, each a quarter of 

a circle, and arcs CB and CHG each less than, greater than, or equal to 

a quarter [of a circle]. Then I say that the sine of DH is in the same ratio 

to the sine of GB as the sine of CH is to the sine of CG [138, р. 140]. 

Al-Birini reproduces Ibn ‘Iraq’s drawing (Figure 6), which shows the familiar 

complete spherical quadrilateral. But ibn ‘Iraq proves his theorem without 

relying on Menelaus’ theorem. Since AB = AD = 90° and B and D are right 

angles, Ibn ‘Iraq’s theorem is “the rule of four magnitudes,” which is equiva- 

3 Partly translated into French by Carra de Vaux /93/. 
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8 

Figure 6 

lent to the sine theorem for a right triangle. This rule is usually formulated 

as follows: If ABC and АВ’С' are two right spherical triangles with common 

angle A and right angles B and B’ at the arc ABB’, then 

sina sina’ 
РО ЕВЕ | he 
sinb sind’ о 

: ве Я 
(the sine theorem implies that the common value of these two ratios is gone 

If b’=c’, then the arc B’C’ equals A, and our theorem yields the sine 

theorem). Е i 

Shortly thereafter, Ibn ‘Iraq /[239, part 8; 341а] gave a proof of the spher- 

ical sine theorem (1.5) for an arbitrary triangle. This appeared in a small 

treatise entitled Treatise on the determination of arcs of the celestial spheres, 

one in terms of the other, by a method different from the method of composite 

ratios (Risala fi ma'rifat al-qisi al-falakiyya ba‘diha min ba‘din bi-tariq ghayr 

tarig al-nisbat al-mu‘allafa). Like The book of azimuths, this treatise, written 

under the name of al-Biruni, actually resulted from the cooperation of the 

two scholars. In the treatise of al-Biruni cited previously the spherical sine 

theorem is formulated as follows: 

I shall begin by recalling the method found by Abu Nasr in the treatise 

he sent me; I have in mind the freeing proposition. ... It consists in the 

following: ... the sines of the sides in a triangle made up of arcs of great 

circles on the surface of a sphere are in the same ratio, one to another, 

as are, one to another, the respective sines of the opposite angles / 138, 

PAS: 

We see that al-Biruni extends the label “proposition that frees one from 

the figure of secants”’ to the general law of sines. We present a short proof of 

this theorem, found in chapter 9, book Ш, of al-Biruni’s The Canon of Mas ‘tid 

on astronomy and the stars (Al-Qanin al-Mas‘idi fi I-hay’a wa’-I-nujim) /57; 

53, vol. 5] and similar to the proof of the plane sine theorem in chapter 8 of 

the same book: 
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We say that what we put forward as а premise for right triangles holds 

precisely for triangles made up of arcs of great circles. Namely: the sines 

of the arc sides are proportional to the sines of the angles that are 

opposite those sides [if] we take each of them [in the ratio] to its cor- 

responding side, for example, in the triangle АВС, whose sides are [arcs 

of] great circles, the sine of AB is in the same ratio to the sine of BC as 

the sine of the angle C is to the sine of the angle A. 

The proof. We extend each of the [arcs] AH, AF, CD and CG toa 

quadrant (Figure 7). From the poles A and C we draw arcs HF and GD 

at a distance equal to the side of [the inscribed] square [that is, arcs of 

great circles]. They measure the two mentioned angles. We draw the arc 

BE of a great circle perpendicular to AC. In view of what was said above 

[that is, in view of Ibn ‘Iraq’s theorem proved previously], the ratio of 

the sine of AB to the sine of BE is the same as the ratio of the sine of 

the quadrant AH to the sine of HF. Similarly, the ratio of the sine of 

BE to the sine of BC is the same as the ratio of the sine of DG to the 

sine of the quadrant GC. By the rule of mixed proportion [that is, by 

the rule of transition from the proportions 4:B = L:M and В:С = 

K:L to the proportion A:C = K: M], the ratio of the sine of AB to the 

sine of BC is the same as the ratio of the sine of [the arc] DG, the 

magnitude of the angle C, to the sine of [the arc] HF, the magnitude of 

the angle А /57, рр. 355-356, 53, vol. 5, part 1, р. 306]. 

In The book of keys al-Biruni describes a priority argument among Ibn ‘Iraq, 

al-Buzjani, and al-Khujandi concerning the discovery of the spherical sine 

theorem and says that the priority belongs to Ibn ‘Iraq. Actually, as we saw, 

the theorem in question was simultaneously discovered by Ibn ‘Iraq and 

а1-Втгапт. In the same work al-Biruni proves the spherical tangent theorem 

(1.6) and points out that this theorem was formulated as a separate theorem 

of spherical trigonometry by al-Buzjani. This theorem was also frequently 

referred to as ‘фе proposition that frees one from the figure of secants.”’ 

In The book of keys al-Birini does not give a general proof of the spherical 

cosine theorem (1.7). In chapters 20 and 22 of book IV of The Canon of 

Ма5'иа, however, he solves problems of determining an arc of the parallel 



20 1. Spherical Geometry 

circle traversed by the Sun or a star from rising to a definite moment (that is, 

the problem of determining time by the position of the Sun or a star) and gives 

the solution of such problems in the form of rules equivalent to theorem (1.7) 

[57, рр. 477, 486; 53; vol. 5, part 1, рр. 386-387, 394—395]. But unlike 

al-Khwarizmi, al-Mahani, Ibn Qurra and the authors of zijes, al-Biruni gives 

complete proofs of these rules. At the same time, when dealing in chapter 2 

of book У of The Canon of Mas‘iid with the problem of finding the difference 

of the longitudes of two towns from their latitudes and distance, a problem 

that also reduces to theorem (1.7), al-Biruni solves it not by relying on a rule 

equivalent to (1.7) but by reducing it to the solution of two right spherical 

triangles. 

The Spherical Trigonometry of Nasir al-Din al-Tusi 

Between the 11th and 13th centuries there appeared a number of works whose 

authors used Menelaus’ theorem and “propositions that free one from the 

figure of secants,” that is, the spherical sine and tangent theorems, to give 

systematic presentations of all six cases of solving spherical triangles given 

three elements. The first of these treatises is the anonymous Collection of rules 

of the science of astronomy (Тат! qawanin ‘ilm al-hay’a) [545 ] (see also [273 /) 

written in Isfahan and dedicated to a certain Amid al-Mulk Abu Nasr Mansur 

ibn Muhammad. This is the name of Kunduri (1025—1064), the vizier of 

Sultan Toghrul Bek (1056—1063), who founded the Seljuq dynasty. It is 

possible that the author of the treatise was the eminent mathematician Abu- 

1-Назап ‘Ali al-Nasawi (ab. 970—ab. 1070), a native of Nasa (near the modern 

Ashkhabad), who worked at various times in Rayy, Isfahan, and Ghazna, 

but worked at the time in Isfahan. The term rules of the science of astronomy 

is undoubtedly derived from the name given by al-Khujandi to the theorem of 

Ibn ‘Iraq. The Collection of rules consists of three parts: On composite ratios, 

On the figure of secants (that is, Menelaus’ theorem), and On a proposition 

that frees one from secants. The last part opens with a presentation of all six 

cases of the solution of a spherical triangle given three of its elements. In this 

work there appears the first reference to the so-called polar triangle, that is, 

the triangle A’B’C’ whose vertices are the poles of the sides of a given spherical 

triangle ABC. But the author of the Collection of rules is apparently unaware 

of its involutory property, that is, that the polar triangle of the triangle А’В’С' 
is the triangle ABC. 

The most complete exposition of spherical geometry in the East in the 

Middle Ages is found in the treatise Disclosing the secrets of the figure of 

secants (Kashf al-qina’ ‘an азгаг al-shakl al-qatta‘) [590] by the greatest 

mathematician and astronomer of the 13th century, Nasir al-Din al-Tusi 

(1201-1274). A native of Tus in Khorasan, al-Tusi worked for some time in 

the “‘state of Assassins,” which operated a terrorist sect that was the bane of 

the Near and Middle East. When the Mongols conquered that state in 1256, 



The Spherical Trigonometry of Nasir al-Din al-Tisi 21 

al-Tusi became court astrologer and adviser to the Mongol prince Hulagu 

Khan. In Maragha, the capital of Hulagu (in southern Azerbaijan), al-Tisi 

organized an excellent observatory and scientific school for all the mathe- 

maticians and astronomers of the lands conquered by the Mongols. Al-Tisi’s 

work was originally written in Persian in the state of Assassins, but in 1260 

he published a shorter variant in Arabic. Each consists of five books: On the 

composite ratio, On the plane figure of secants, Introduction to the spherical 

figure of secants, On the spherical figure of secants, and On propositions that 

free one from the figure of secants. 

The structure of the treatise Disclosing the secrets is very close to that of 

the Collection of rules. It is possible that an intermediate link between the two 

was the treatise of Husam al-Din al-Salar (d. 1262), al-Tusi’s predecessor in 

the post of court astrologer of Hulagu Khan. Al-Tusi refers in his treatise to 

the treatise of al-Salar and writes that the latter “gave the necessary rules for 

all cases, but supplied neither proofs nor examples” /590, р. 30], which is 

why he, al-Tusi, decided to provide rigorous proofs of these rules. 

Al-Tusi also presents all six cases of the solution of a spherical triangle 

given three of its elements. In the solution of a triangle given its three angles 

he also makes use of a polar triangle but is aware of its involutory property. 

We reproduce al-Tusi’s proof. 

All angles in a triangle are known. In the triangle A BC we extend the 

sides AB and AC to arcs AE and AD each equal to a quarter of the 

circle. We also extend the sides BA and BC to arcs BF and BH each 

equal to a quarter of the circle, and the sides CA and CB to arcs CG 

and CK each equal to a quarter of the circle. We draw the arcs of the 

great circles DE, FH, and GK. The points of intersection of these circles 

will be L, M, and М, and we obtain the triangle LMN whose sides are 

arcs of great circles (Figure 8). Since the angles A, B, C are known, the 

arcs DE, FH, GK are also known. Since K and M are right angles, L is 

a pole of KH. Similarly, M is a pole of GD and N is a pole of FE. The 

Figure 8 
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arcs GL and KM are also known, for they are complements of the arc 

KG. But then the arc LM is known. In the same way we find the arcs 

LN and MN. This means that we know all three sides of the triangle 

LMN and therefore, in view of the previous case, all three angles of that 

triangle. This implies that we know the arcs KH, DG, EF. Since each 

of the arcs KC, BH is a quarter of the circle, the complement of HC 

is BC, so that the side BC is known. The same applies to the sides AB 

and BC. We have thus determined all sides of the triangle ABC [590, 

pp. 197-198]. 

If we denote the side BC, CA. AB of the triangle ABC by a, 6, с, and the 

sides MN, NL, LM of the triangle LMN by /, т, п, then the connection 

between the sides and the angles of these triangles established by al-Tusi can 

be written in the following symmetric form: 

l=n-— A, m=n— В, ив С: 

Г=п- а, М=л-Ь, №М=л-— с. 

Substituting these values of /, т, п, N for a, b, с, C in formula (1.7) of the 

spherical cosine theorem we obtain the relation 

cos(z — С) = cos(x — A)cos(x — В) + sin(x — A)sin(x — B)cos(x — с), 

that is, 

cos С = —cosAcosB + sin Asin Bcosc, (1.13) 

which expresses the dual spherical cosine theorem. This theorem permits us to 

find the sides of a spherical triangle given its angles. But in the mediaeval East 

only the spherical sine theorem was formulated as a distinct theorem of 

spherical trigonometry, and neither the spherical cosine theorem (1.7) nor its 

dual (1.13) was so formulated—this despite the fact that mathematicians and 

astronomers used rules equivalent to the latter theorems. 

The Spherical Trigonometry of Regiomontanus 

The spherical cosine theorem first appeared as a distinct theorem of spherical 

trigonometry in the work Five books on all manner of triangles (De triangulis 

omnimodis libri quinque. Nurnberg, 1533) [450]. Its author was the German 

mathematician and astronomer Regiomontanus (Johann Miller, 1436-1476), 

a native of Konigsberg in Franconia who worked in Nirnberg. The first book 

of his work contains auxiliary geometric theorems and the elements of the 

study of plane triangles, the second deals with plane trigonometry, the third 

with elements of spherical geometry, the fourth and fifth with spherical trigo- 

nometry. The fourth book contains an exposition, modeled on Arabic works, 

of all six cases of the solution of spherical triangles. This dependence is made 

apparent by the fact that instead of denoting the vertices of a triangle as A, 



The Spherical Trigonometry of Regiomontanus 25) 

В, С, Regiomontanus denotes them by 4, В, С, the Latin letters commonly 

used to transcribe the Arabic letters, a, b, and j. In the fifth book Regiomon- 

tanus proves a number of new theorems, including the spherical cosine 

theorem (1.7). He formulates the latter as follows: 

In every spherical triangle made up of arcs of great circles, the ratio 

of the versed sine of each angle to the difference of the versed sine of the 

side that subtends the angle and the versed sine of the difference of the 

sides that bound it is the same as the ratio of the square of the complete 

right sine to the rectangle under the sines of the arcs bounding the 

indicated angle /450, pp. 270—271]. 

Here the “‘versed sines”’ are sin vers С = 1 — cosC, sinversc = 1 — cosc, 

and sin vers(a — b) = 1 — cos(a — b) = 1 — cosacosb — sinasinb; the “сот- 

plete right sine” is the same as the “‘largest зте” of Ibn Qurra, that is, the 

radius of the circle; and the “rectangle under the sines of the arcs” is the 

product sin asin b. Hence Regiomontanus’ theorem can be written as 

sin vers C 1 

sin versc — sinvers(b— с) зтазтЬ 

or as 

(1 — cos C)sinasinb = созасоз В + sinasinb — cosc, 

which reduces to the spherical cosine theorem (1.7). Regiomontanus’ drawing 

(Figure 9) differs from the drawing which we used to illustrate Ibn Qurra’s 

theorem (see Figure 5) only in that the key triangle is denoted in the former 

as ABC and in the latter as PKZ. This makes it clear that the rule that served 

Regiomontanus as a model for his theorem was analogous to Ibn Qurra’s rule. 

In Western European literature the spherical cosine theorem is sometimes 

referred to as Albategnius’ theorem. This is due to the fact that a rule equiva- 

lent to this theorem (and very close to Ibn Qurra’s rule) is found in the pre- 
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viously mentioned Sabian astronomical tables of al-Battani, known in Western 

Europe as Albategnius. 

Copernicus’ Spherical Trigonometry of Chords 

Whereas Regiomontanus used and developed the contributions to spherical 

trigonometry made in the medieval East, another eminent scholar of the 15th 

and 16th centuries, the great Polish astronomer Nicolaus Copernicus (1473— 

1543), started directly from Ptolemy. In his famous treatise On the revolutions 

of celestial spheres (De revolutionibus orbium coelestium. Nurnberg, 1543) 

[126], in which he replaced Ptolemy’s geocentric system with the heliocentric 

one, Copernicus went back to Ptolemy’s names for the constellations, and in 

the mathematical chapters (chapters 12—14 of book I) to Ptolemy’s trigo- 

nometry of chords. In chapter 12 of book I Copernicus states the geometric 

theorems needed for the computation of tables of chords and gives tables of 

chords, in steps of 10’, in parts of the radius, to which he assigns the value 

100,000. In chapter 13 Copernicus presents theorems of plane trigonometry, 

and in chapter 14 theorems of spherical geometry and trigonometry. In pro- 

position 3 of chapter 14 Copernicus proves a theorem equivalent to the sine 

theorem for a right spherical triangle: 

In right spherical triangles the ratio of the chord subtending twice the 

side opposite the right angle to the chord subtending twice either one 

of the sides including the right angle is equal to the ratio of the diameter 

of the sphere to the chord subtending twice the angle included on a great 

circle of the sphere between the remaining side and the hypotenuse / 126, 

p. 43]. 

Chapter 14 also contains rules for solving spherical triangles given any three 

elements using the theorem just quoted and Euclid’s stereometric proposi- 

tions. Specifically, in proposition 5 Copernicus proves that 

If the angles of a [spherical] triangle are given and one of them is a right 

angle, the sides are given / 126, р. 45] 

and in proposition 15 he proves that 

if all the angles of a [spherical] triangle are given even though none of 

them is a right angle, all the sides are given /126, p. 50/. 

Уве’ Spherical Trigonometry 

Close-to-the-modern versions of the spherical cosine theorem (1.7) and the 

dual spherical cosine theorem (1.9) first appeared in The eighth book of 

answers to various mathematical questions (Variorum de rebus mathematicis 



Viete’s Spherical Trigonometry 25 

responsorum liber VIII. Tours, 1593) /603, рр. 347—436] of Francois Viéte 

(1540—1603). Viéte, a French mathematician mainly known for his discoveries 

in algebra, published in Paris in 1579 extensive tables (Canon mathematicus) 

consisting largely of trigonometric tables in which the radius of the circle was 

taken to be 100,000. Already in his Canon, but especially in the 19th chapter 

of The eighth book, Viéte formulates without proofs the whole system of plane 

and spherical trigonometry. Propositions 15 and 16 in that chapter are his for- 

mulations of the two spherical cosine theorems: 

XV. Given the three sides of an arbitrary spherical triangle we can find 

its angles. Let the side opposite the required angle be the first side. Now 

apply to the complete sine two rectangular figures of which one is to be 

the same as [the rectangle] under the sines of the complements of the 

second and third sides, and the other the same as [the rectangle] under 

the sines of the second and third sides themselves. Then the width ex- 

tracted from the second application is [in the same ratio] to the sum or 

difference of the width to be extracted from the first application and the 

sine of the complement of the first side as the complete sine is to the 

sine of the complement of the required angle. 

The case of a sum [occurs] if the first side is less than a quarter of the 

circle and the properties of the second and third sides are different, or 

if the first side is greater than a quarter and the properties of the re- 

maining sides are the same. In the first case the required angle is acute 

and in the second it is obtuse. 

On the contrary, the case of a difference [occurs] if the first side is 

less than a quarter and the properties of the remaining [sides] are the 

same, call this the third case, or if the specified side is greater than a 

quarter and the properties of the remaining sides are different, call this 

the fourth case, and in the third case if the width extracted from the first 

application is less than the sine of the complement of the first side and 

the required angle is acute, or if it is greater and the angle is obtuse, and 

in the fourth case if, to the contrary, the width extracted from the first 

application is less than that same sine and the required angle is obtuse, 

or if it is greater and the angle is acute. If the difference is zero, then 

this implies that the required angle is a right angle.... 

XVI. Given the three angles of an arbitrary spherical triangle we can 

find its sides. Let the angle opposite the required side be the first. Now 

apply to the complete sine two rectangular figures of which one is to be 

the same as [the rectangle] under the sines of the complements of the 

second and third angles, and the other the same as [the rectangle] under 

the sines of the second and third angles. Then the width extracted from 

the second application is [in the same ratio] to the sum or difference of 

the width to be extracted from the first application and the sine of the 

complement of the first angle as the complete sine is to the sine of the 

complement of the required side. 

The case of a sum [occurs] if the first angle is obtuse and the properties 
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of the remaining angles are different, or if the first angle is acute and 

the properties of the remaining angles are the same. In the first case the 

required side is greater than a quarter and in the second it is less. 

On the contrary, the case of a difference [occurs] if the first angle is 

obtuse and the properties of the other [angles] are the same, call this the 

third case, or if the first angle is acute and the properties of the remaining 

[angles] are different, call this the fourth case, and in the third case if 

the width extracted from the first application yields to the sine of the 

complement of the first angle and the required side is greater than a 

quarter, or if it exceeds and [the side] is less, and in the fourth case if, 

to the contrary, the width extracted from the first application yields to 

that same sine and the required side is less than a quarter or if it exceeds 

it and the side is greater. If the difference is null, then this implies that 

the required side is equal to a quarter [of the circle] /603, рр. 407—408]. 

The following “‘dictionary” will make the meaning of Viéte’s propositions 

clear. 

Let « be the required angle and let the second and third angles be В and у. 

Let a, b, с denote their opposite sides. Viete’s “‘sines”’ are the quantities r sin a, 

rsina, and so on; his “‘sines of the complements” are the quantities rcos«, 

rcos a, and so on; “the rectangle under the sines of the second and third sides”’ 

is the product r sin br sinc; “the rectangle under the sines of the complements 

of the second and third sides” is the product r cos b- rcos с; the “application” 

of these rectangles to the “complete sine,” that is, the radius, is the con- 

struction on the radius of rectangles with correspondingly equal areas; and 

“width extracted from the application” is the width of the resulting rectangle, 

Ste rsinb-rsinc : 
that is, in one case the segment —-—————— and in the other the segment я 
rcosb-rcosc 

Е | 

With this “dictionary” in mind, we can write Viéte’s proposition 15 as the 

proportion 

rsinbsinc r 

rcosa—rcosbcosc rcosa. 

Here Убе considers the following four cases: 

(1) cosa > 0, cosbcosc < 0, cosa > 0; 

(2) cosa < 0, cosbcosc > 0, cosa < 0; 

(3) cosa > 0, cosbcosc > 0, cosbcosc < cosa, cosa > 0 

or cosbhcosc > cosa, cosa < 0; 

(4) cosa < 0, cosbcosc < 0, |cosbcosc| < |cosal, cosa < 0 

or |cosbcosc| > |cosal,. cosa > 0. 

Similarly, Viéte’s proposition 16 can be written as the proportion 

rsin В sin y r 

rcosa+rcosPcosy rcosa 
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Here Viéte considers four cases: 

Cl) scosap<a0: cos Всозу < 0, cosa < 0; 

(2) cosa > 0, cos cosy > 0, cova > 0; 

(3) cosa < 0, со5 Всозу > 0, ,cosBcosy < cosa, cosa < 0 

ог cosfcosy > cosa, cosa > 0; 

(4) cosa > 0, cos Всозу < 0, |cos Bcosy| < |cos «|, cosa > 0 

or |cosfBcosy| > |cos «|, cosa < 0. 

The complete analogy between these two propositions shows that Viéte 

was fully aware of the connection between the two cosine theorems and may 

possibly have known that the second could be obtained from the first by 

means of a polar triangle. 

Area of a Spherical Triangle and Polygon 
in the Work of Girard 

Formulas expressing the area of a spherical triangle and polygon in terms of 

their respective angular excesses appeared in print for the first time in the 

paper On a newly discovered measure of area of spherical triangles and poly- 

gons (De la mesure de la superfice des triangles & polygones sphericques, 

nouvellement inventée), published as an appendix to A new invention in 

algebra (Invention nouvelle en l’algébre, Amsterdam, 1629 [204] by the 

Flemish mathematician Albert Girard (1595—1632). Girard begins with a 

“new hypothesis” according to which the surface of a sphere is subdivided 

into 720 “‘surface degrees” (degrez superficieles), each of which is subdivided 

into 60 minutes, and so on; that is, he considers the surface of a sphere, which 

is equal to 4л for a sphere of unit radius, to be equal to 4: 180° = 720°. Next 

Girard defines a “buckle” (fibulle)—a spherical triangle two of whose sides 

are quadrants. The buckle is said to be acute, obtuse, or right in accordance 

with the size of the angle between the indicated sides. There follow three 

lemmas: 

(1) Let A be a pole of a great or small circle on the surface of the sphere 

and let AB and AC be two great arcs issuing from the pole (Figure 10a). 

Then the part of four right angles constituted by A is equal to the part 

of the spherical surface bounded by the circle BC constituted by the tri- 

angle ABC; the proof is obvious /204, f. С 2 v./; 

(2) if « and В are two arcs of the same circle not exceeding a quadrant 

and « > р, then 

tan o = и Ss sin o% 

tanp BP sinB 

(Girard points out that the second half of this assertion is equivalent to 
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(a) 

О 

(с) 

Figure 10 

an assertion in book I of Ptolemy’s A/magest and in book I of Copernicus’ 

On the revolutions of celestial spheres*); 

(3) the sum of the interior angles of a rectilinear n-gon is equal to 2n — 4 

right angles. 

Then Girard formulates the theorem: 

Every spherical polygon enclosed between arcs of great circles contains 

as many surface degrees as the amount by which the sum of its internal 

angles exceeds the sum of the internal angles of the rectilinear polygon 

with the same name; here the surface of the sphere is assumed to contain 

720 surface degrees /204, f. С 3 v.]. 

Next Girard gives some examples and proves the following proposition. 

Proposition. A spherical triangle with three great arcs contains as 

many surface degrees as the amount by which the sum of its three angles 

exceeds 180 degrees [204, f. H 1]. 

Girard gives his proof in stages: (1) For a “Басе”: if the buckle is bounded 

*The second of these inequalities is proved in chapter 10 of book 1 of Ptolemy’s Almagest [441, 

p. 54] and in theorem 6 of book I of Copernicus’ On the revolutions of celestial spheres [126]. 
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by two quadrants AB and AC, then the angles В and C are right angles, their 

sum is equal to 180°, and the sum of all three angles exceeds 180° by the angle 

А. By lemma 1, the part of 360° constituted by A is the same as the part of 

360 surface degrees constituted by the buckle. (2) For a right spherical triangle 

each of whose sides is less than a quadrant, Girard considers the right spherical 

triangle BND with right angle N and extends its sides BN and BD to quadrants 

BC and BQ (Figure 10b). Then the arc CQ contains as many degrees as the 

angle B, and the angle D contains more degrees than the arc OR, the comple- 

ment of the arc CQ. Therefore if we lay off on the quadrant RC the arc RF 

containing as many degrees as the angle D, then the point F will end up on 

the arc QC, and the arc QF contains as many degrees as the excess of the 

angle sum of the triangle BND above 180°. 

Now Girard applies the dual spherical cosine theorem (1.13) to the right 

spherical triangle BND. In this case, the theorem can be written as tan B = 

изо RL 
tan D/sec BD. In turn, this can be written as the proportion —— = ———_., 

СМ sec BD 

CM: RL MC @ RL: MC | 
so that sec BD = pe But, by lemma 2, CK > - so that el 

ВК ФСС : 
——— > OC /———.. Since RL:CK=tanC-cotD is the square of 
OC OC 

RL- MC | 
the radius, that it, OC’, and ое“ = sec BD, и follows that sec BD/OC> 

ООС ; : 
оси But зес ВР соз ВО = ОС?, or, since соз ВО = зт БО, 

вес BD sin DO = ОС". Hence’ sec BD/OC = OC/sin DQ.. But then ОС: 

СОРОС sin DQ: 

ОС. GF, 

OC 

FY to QZ and once more applies the dual cosine theorem to the triangle BND, 

this time in the form of the proportion radius/sin B = sec D/sec BN, which he 

rewrites as OC/OZ = OL/sec BN, that is, sec ВМ = ОЙ: ООС. By lemma 

: GZ) OCG 

Let = sin GQ = OX. Girard drops perpendiculars QZ to OC and 

Ой YA -ОС СВ Зо: оС 0G 

YZ = ОС? and OL:QZ/OC =sec BN, we see that secBN/OC < OC 

OC7CE 

OG. 
sec BN sin NC = OC”, or sec BN/OC = OC/sin NC. Hence OC: CF/QC < 

sin NC. Since OC: СЕ/ОС = sin GQ, we have DQ < СО < NC. 

Now Girard describes from the pole В an arc through С. This arc intersects 

the arcs DN and NC, the latter at the point P. 

Since OC: CF/OC = OX and OC = OB, we have the proportion QC/CF = 

BO/OX. Since OF = QC — CF and BX = OB — OX, this proportion yields 

. Now sec BNcos BN = OC?. Since cos BN = sin NC, it follows that 
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the proportion СО/ОЕ = OB/BX. Then Girard [204, Г. Н 3] writes that 

“from the works of Archimedes we can conclude that the ratio of OB to ВХ 

is equal to the ratio of the area of the buckle ОВС to the area of GBP.” Girard 

is alluding to proposition 42 in book I of Archimedes’ On the sphere and 

cylinder, which asserts that 

If /al' be a segment of a sphere less than a hemisphere (Figure 10c) and 

Oa the radius perpendicular to the base of the segment, the surface of 

the segment is equal to a circle whose radius is equal to al [25, р. 52]. 

It follows that the surface area of a segment that is a spherical circle with 

spherical radius r on a sphere of radius R is 

S = 2nR?[1 — cos(r/R)], 

where R[1 — cos(r/R)] is the height of the segment. 

In the case considered by Girard, the area of the buckle ОВС is to the area 

of the triangle GBP as the area of the hemisphere is to the area of the spherical 

circle with spherical radius BG, that is, as the radius OB of the sphere to the 

height ВХ of the segment. It follows that CQ is to PG as the area of the buckle 

ОВС is to the area of the triangle GBP. On the other hand, the ratio of these 

arcs is the same as the ratio of the buckles ОВС and ОВЕ, where BF is an arc 

of the great circle through В and Е. It follows that the area of the buckle OBF 

is the same as that of the triangle GBP. Girard notes that the sum of the angles 

of the buckle OBF is equal to the sum of the angles of the triangle BND, for 

that sum exceeds two right angles by the magnitude of the arc QF. Girard 

claims further that 

BGP is equal to the triangle BND for it always overlaps it, and that 

because GP always intersects DN. It follows that the buckle QBFis equal 

to the triangle BDN whose three angles exceed two right angles by the 

magnitude of the arc OF in degrees, and in view of what was said about 

buckles in the first lemma, the truth of the theorem is clear and plausible 

(204, f. НЗ]. 

Girard’s assertion about the equality of the areas of the spherical sector 

BGP and the spherical triangle BND is entirely correct, but his argument is 

not a rigorous proof. What it does is to establish the approximate equality of 

the areas of the indicated figures. 

It seems that Girard himself was not quite satisfied with his argument, for 

he adds that 

even if ND if infinitely small and BD is almost a quadrant, so that GD 

and NP are very small, nevertheless DN always intersects GP, so that 

BGP will always be equal to the triangle BND, in accordance with the 

assertion of the theorem. Note that I have proved it for two different 

cases, when GD is greater than twice NP and when BP or BG is smaller 

than the harmonic mean of DB and BN [204, ff. H 3-H Зы]. 
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This shows that Girard felt that a rigorous proof of his assertion called for 

infinitesimal arguments, which he did not have at his disposal. 

Starting with the special case of his assertion for a right spherical triangle 

Girard proved it for an arbitrary spherical triangle by dividing the latter into 

two right triangles and by noting that the angular excess above 180° of the 

given triangle is the sum of the angular excesses of the component right 

triangles. Girard reduced the theorem on spherical polygons to the case of 

triangles by subdividing the n-gon by means of diagonals into n — 2 triangles. 

Girard’s assertion for a spherical triangle can be written as 

5/4nr? = (a + B + y — 180°)/720°. 

A letter written by Briggs to Kepler in 1625 indicates that a similar rule 

was found by Thomas Harriot (1560—1621) in 1603 /271, vol. 18, рр. 228- 

229]. The same rule was published by Bonaventura Cavalieri (1598—1647) in 

his General handbook of astronomical measurements (Directorium generale 

uranometricum. Bologna, 1632) [101]. 

If the measures of the angles of a triangle are expressed in radians rather 

than in degrees, then its area is given by 

S=r’(a+Bpt+y—n). (1.14) 

Next we give the simplest proof of this theorem, which is due to Euler. 

Euler’s Spherical Geometry and Trigonometry 

During the 17th and 18th centuries there appeared a great many monographs 

devoted to spherical trigonometry, such as The construction of spherical tri- 

gonometry (Trigonometriae sphericae constructio. Rome, 1737) of Roger 

Josip Boscovich (1711-1787) [75], a native of Dubrovnik (now in Yugoslavia), 

who worked for the most part in Rome and Milan. Boscovich gave graphical 

solutions, far simpler than the earlier ones, of spherical triangles with three 

given elements. 

The modern form of spherical trigonometry, as well as of all trigonometry, 

is due to the great Leonhard Euler (1707—1783), a native of Basel, who worked 

in Petersburg and Berlin. Whereas trigonometry before Euler was concerned 

with trigonometric /ines Euler’s trigonometry dealt with trigonometric func- 

tions, which he linked to the exponential function by means of the well-known 

formula bearing his name. This banished from trigonometric formulas the 

sinus totus, the complete sine, that is, the radius of the circle, and replaced it 

with unity. 

In his On the measure of solid angles (De mensura angulorum solidorum. 

Petersburg, 1781) [ 176, vol. 26, pp. 204—223], Euler gave a remarkably simple 

proof of Girard’s theorem on the area of a spherical triangle. Euler considers 

on the unit sphere a triangle ABC and an equal triangle abc whose vertices 
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a 

Figure 11 

a, b, саге antipodal to A, В, С (Figure 11). Let a, В, у be the angles at the 

vertices A, В, С, respectively. Then the areas of the 2-gons АВаС, BCbA, and 

CAcB are, respectively, 2«, 28, and 2y. If 5 denotes the area of the triangle 

ABC common to all three 2-gons, then the areas of the remaining parts of the 

2-gons, that is, the triangles aBC, БАС, and cAB, are 2« — 5, 2В — 5, and 

2y — S. The areas of the triangles abc, Abc, Bac, and Cab are, respectively, 

equal to the areas of the triangles ABC, аВС; БАС, and cAB. Since these eight 

triangles cover the surface of the sphere, the sum of their areas is 47, the area 

of the unit sphere. Hence 

28+ 4(a+B+y) — 65 = 4(а+ B+ 7) —48 =4n. 

But then 

Sas Bee. 

In the case of a sphere of radius r the corresponding formula (1.14) is 

obtained in a similar manner. 

In Various investigations concerning the area of spherical triangles (Varia 

speculationes super area triangulorum sphaericorum, Petersburg, 1797) [ 176, 

vol. 29, рр. 253—266], Euler gave a number of expressions for the area of a 

spherical triangle on a unit sphere in terms of its sides. The simplest of these 

expressions is 

1 + cosa + cosb + cosc 

4cosa/2cosb/2cosc/2 ~ 
cos 5/2 = 

In the same paper Euler showed that the locus of the vertices of spherical 

triangles with the same base and area consists of arcs of two small circles 

whose endpoints are antipodal to the endpoints of the base. 

Many of Euler’s papers are devoted to the solution of problems of spherical 

geometry that are analogous to problems of plane geometry. For example, 
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in Construction of a problem of Pappus of Alexandria (Problematis Pappi 

Alexandrini constructio. Petersburg, 1783) Euler / 176, vol. 26, pp. 237—242], 

having solved by means of analytic geometry the problem of constructing a 

triangle inscribed in a circle whose sides, or extensions of the sides, pass 

through given points (a generalization of a theorem of Pappus in which the 

three points are collinear), solved that problem for a spherical triangle. Again, 

in the paper, Something geometric and spherical (Geometrica et sphaerica 

quodam. Petersburg, 1815) Euler / 176, vol. 26, pp. 344—358 ], having proved 

the theorem of plane geometry on the ratio of the segments into which a given 

point divides the cevians of a triangle passing through that point, proved the 

corresponding theorem for a spherical triangle. 

The following two of Euler’s papers are devoted to spherical trigonometry: 

Principles of spherical trigonometry deduced from the method of maxima and 

minima (Principes de la trigonométrie sphérique tirés de la méthode des plus 

grands et plus petits. Berlin, 1755) / 176, vol. 27, рр. 277—308], and Universal 

spherical trigonometry derived from first principles in a brief and simple man- 

ner (Trigonometria sphaerica universa ex primis principiis breviter et lucide 

derivata. Petersburg, 1782) [176, vol. 26, рр. 224—236]. In the first of these 

papers Euler constructs spherical trigonometry as the intrinsic geometry of 

the surface of the sphere. He expresses the line element ds of the surface 

of the sphere in terms of the longitude and latitude of a point, defines the 

great circles as curves that minimize the integral of the line element, and, in 

connection with the determination of the minimum of a side of a spherical 

triangle, derives 10 equations of spherical trigonometry. After the discovery 

that the shape of the earth is that of a spheroid, Euler extended his methods 

to spheroids in the paper Elements of spheroidal trigonometry derived from the 

method of maxima and minima (Elements de la trigonométrie sphéroidique 

tirés de la méthode de plus grands et plus petits. Berlin, 1755) /[ 176, vol. 27, 

pp. 309-339]. 

In the second paper on spherical trigonometry Euler developed this subject 

in its entirety. He employed a solid angle that he cut by various planes and 

used plane trigonometry to investigate the resulting plane triangles. In this 

paper Euler deduced very many of the formulas of spherical trigonometry. It 

should be noted that Euler made use of polar triangles. 

A significant number of papers on spherical geometry are due to Euler’s 

students, the Russian academicians Andrei Ivanovic Lexell (1741—1784) and 

Nicolai Ivanovié Fuss (1755—1826). In particular, in the paper Solution of a 

geometrical problem of spherical geometry (Solutio problematis geometrici ex 

doctrina sphaericorum. Petersburg, 1784) [321], Lexell, independently of 

Euler, proved the theorem on the locus of the vertices of spherical triangles 

with the same base and area (we have pointed out that Euler’s paper was pub- 

lished in 1797). Lexell also gave an analytic solution of this problem. In the 

paper On properties of circles drawn on spherical surfaces (De proprietatibus 

circulorum in superficie sphaerica descriptorum. Petersburg, 1786) [322], 

Lexell showed that in a spherical quadrilateral inscribed in a small circle of 
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a sphere the sums of opposite angles are equal, and that in the circumscribed 

quadrilateral the sums of opposite sides are equal. The first of these theorems 

is the spherical analogue of a plane theorem, and the second theorem is its 

dual, that is, the result of interchanging great circles and their poles. Of the 

many other new results in this paper we mention the formula 

— —b — —d 
Что = ian’ 5 tan 5 tan~ 5 Cte 5 (115) 

Гог the angular excess of a spherical quadrilateral inscribed in а small circle. 

at+tb+c+d 
5 : 

By Girard’s theorem on the area of a spherical triangle, this excess is pro- 

portional to the area of the spherical quadrilateral, and Lexell’s theorem 

is an analogue of the well-known theorem of Brahmagupta for the area 

s= хх ($ — a)(s — b)(s — с) (5 — а) of a plane quadrilateral inscribed in а 

circle, as well as (for d = 0) of the classical Archimedes-Heron theorem for a 

triangle. (The special case of formula (1.15) for d= 0 that expresses the 

angular excess of a triangle in terms of its sides is known as L’ Auillier’s 

theorem.) 

As for Fuss, we mention his paper On certain properties of ellipses drawn 

on the surface of a sphere (De proprietatibus quibusdam ellipses in superficie 

sphaerica descriptae. Petersburg, 1788) / 193 /, in which Fuss defines a spherical 

ellipse as the locus of points on the sphere for which the sum of the spherical 

distances from two given points is constant. Using spherical coordinates x 

and y, x for longitude and y for latitude, and assuming that the equator passes 

through the foci of the ellipse located symmetrically with respect to the first 

meridian, Fuss obtained for the spherical ellipse the following equation: 

Here a, b, c, d are the sides of the quadrilateral and s = 

/ (sin? с — sin? a) (sin? с — sin? x) 
tany = 5 

sin ccosc 

If we go over to rectangular coordinates Х, У, Z, connected with the 

spherical coordinates x, y of the (unit) sphere by means of the equations 

X = sin xcosy, Y= Sin ys = с0$ хсо$ у, 

then 

ure iar ests Ч, ВИ ene eirht< 
ay? ye ЗЕ ВУЗАИ 

If we put sina = A and sinc = С, then Fuss’s equation takes the form 

Sie = 

2 

20. (С Ах 

This shows that a spherical ellipse is the intersection of a sphere and a quadric 

cone whose vertex is the center of the sphere. 



Chapter 2 

The Theory of Parallels 

Euclid’s Theory of Parallels 

The first systematic account of the theory of parallels to come down to us is 

contained in Euclid’s Elements [173] dating from about 300 B.c. Euclid 

worked in Alexandria under Ptolemy I and was the head of the Museion, 

the most eminent scientific center of antiquity, which was founded at that 

time. Euclid’s Elements is a revised version of a number of Greek works 

from the fifth and fourth centuries B.c., namely the Elements attributed 

to Hippocrates of Chios (books I-IV and XI), the arithmetic works of 

the Pythagoreans (books VII—IX), Eudoxus’ theory of similarity and ratios 

(books V—VI) and his method of exhaustion (book XII), and Theaetetus’ 

works on quadratic irrationalities (book X) and on regular polyhedra 

(book XIII). The Elements opens with a list of 23 definitions, many of which 

bear traces of ancient traditions. The last of these definitions deals with 

parallel lines: 

Parallel straight lines are straight lines which, being in the same plane 

and being produced indefinitely in both directions, do not meet one 

another in either direction /173, vol. 1, р. 154]. 

There follow five “postulates.” The first three are axioms bearing on 

geometric constructions with an ideal straightedge and ideal compass: 

Let the following be postulated: 

(1) To draw a straight line from any point to any point. 

(2) To produce a finite straight line continuously in a straight line. 

(3) To describe a circle with any center and distance / 173, vol. 1, p. 154]. 

The fourth postulate asserts 

That all right angles are equal to one another / 173, vol. 1, р. 154]. 
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Figure 12 

According to Ivan Nikolaevié Veselovskii (1892—1977) [613] this axiom is 

meant to exclude spherical trigometry in which the right angles between a 

meridian and different parallels are different. 

Euclid’s fifth postulate asserts 

That, if a straight line falling on two straight lines makes the interior 

angles on the same side together less than two right angles, the two 

straight lines, if produced indefinitely, meet on that side on which the 

angles are together less than two right angles / 173, vol. 1, p. 155]. 

It follows from this postulate that there is at most one line passing through 

a point not on a given line that does not intersect it, that is, is parallel to it. 

In Figure 12 the angles BAC and ACD are together less than two right angles 

and the lines 4B and CD meet, whereas the angles EAC and ACD are together 

equal to two right angles and the lines AE and CD are parallel. 

Euclid goes on to state five ““common notions,” that is, axioms bearing on 

the comparison of magnitudes. They are as follows: 

(1) Things which are equal to the same thing are also equal to one 

another. 

(2) If equals be added to equals, the wholes are equal. 

(3) If equals be subtracted from equals, the remainders are equal. 

(4) Things which coincide with one another are equal to one another. 

(5) The whole is greater than the part / 173, vol. 1, р. 155]. 

Euclid tries to prove as many theorems as possible without using the fifth 

postulate. The first 28 propositions of book I are so proved. Some of the first 

26 of these propositions deal with the construction of an equilateral triangle 

on a given segment; the construction of a segment equal to a given segment 

and of an angle equal to a given angle; a theorem about the equality of 

triangles; a theorem about isosceles triangles; the bisection of a given angle 

and of a given segment; the drawing of a perpendicular straight line to a given 

infinite (that is, unbounded) straight line; theorems about adjacent and vertical 

angles; the theorem that an exterior angle in a triangle is greater than either 

of the interior angles not adjacent to it; the theorem that two angles in 

a triangle are less than two right angles; the theorems that in any triangle the 

greater side subtends the greater angle and the greater angle is subtended by 

the greater side; the theorem that in any triangle two sides are greater than 
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the third; and the construction of a triangle with sides equal to three given 

segments. Propositions 27 and 28 are 

If a straight line falling on two straight lines make the alternate angles 

equal to one another, the straight lines will be parallel to one another 

ВИЗ, ОР 307]: ‘ 

and 

If a straight line falling on two straight lines make the exterior angle 

equal to the interior and opposite angle on the same side, or the interior 

angles on the same side equal to two right angles, the straight lines will 

be parallel to one another / 173, vol. 1, р. 309]. 

The fifth postulate (the parallel postulate) is first used in proposition 29, 

inverse to propositions 27 and 28: 

29. A straight line falling on parallel straight lines makes the alternate 

angles equal to one another, the exterior angle equal to the interior 

and opposite angle, and the interior angles on the same side equal 

to two right angles / 173, vol. 1, р. 311]. 

In proposition 30 it is proved that straight lines parallel to the same straight 

line are also parallel to one another. Proposition 31 is the problem of drawing 

through a given point a straight line parallel to a given straight line. In 

proposition 32 it is proved that 

In any triangle, if one of the sides be produced, the exterior angle is 

equal to the two interior and opposite angles, and the three interior 

angles of the triangle are equal to two right angles / 173, vol. 1, р. 318]. 

In proposition 33 it is proved that 

The straight lines joining equal and parallel straight lines (at the ex- 

tremities which are) in the same directions (respectively) are themselves 

also equal and parallel / 173, vol. 1, р. 322]. 

Thus in this proposition Euclid proves the existence of a parallelogram. (We 

note that this term appears here for the first time. Earlier in the book Euclid 

defines a rhombus and a rhomboid—a nonrectangular parallelogram that is 

not a rhombus.) In proposition 34 it is proved that in a parallelogram the 

opposite sides and angles are equal to one another, and the diameter bisects 

the area. Propositions 35 and 36 establish the equality of (areas of) parallelo- 

grams “оп the same base and in the same parallels” and of parallelograms 

“оп equal bases and in the same parallels.” 

In propositions 37 and 38 analogous results are proved for triangles “оп 

the same base and in the same parallels” and for triangles “оп equal bases 

and in the same parallels.”’ The inverses of propositions 37 and 38 are proved 

in propositions 39 and 40. 

In proposition 41 it is proved that a parallelogram having the same base 

with a triangle and being in the same parallels is double of the triangle. 
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Proposition 42 deals with the construction in a given rectilinear angle of 

a parallelogram equal to a given triangle. In proposition 39 it is proved 

that in any parallelogram the complements of the parallelograms about the 

diameter are equal to one another. Proposition 44 deals with the construction 

on a given straight line in a given rectilinear angle of a parallelogram equal 

to a given triangle. This construction is called the “application” (parabole) 

of a parallelogram to a given line. Proposition 45 deals with the construction 

in a given rectilinear angle of a parallelogram equal to a given rectilinear 

figure (1.е., polygon). Proposition 46 deals with the construction of a square 

with a given side. Propositions 47 and 48 are, respectively, Pythagoras’ theo- 

rem and its inverse. 

Aristotle’s Treatment of the Problem of Parallels 

Owing to its relative complexity and scant intuitive appeal, the fifth postulate 

has given rise to a great many attempts to deduce it from the remaining axioms 

and thus prove it as a theorem. It seems that this postulate was absent from 

the works of mathematicians in the fourth century B.c. Be that as it may, 

Aristotle (384—322 B.c.), in his analysis of the logical error of petitio principii 

(the implicit use of an assertion equivalent to the one being proved), wrote in 

his Prior Analytics (Analytika protera): 

This is what happens with those who think they describe parallel lines, 

for they unconsciously assume things which it is not possible to demon- 

strate if parallels do not exist /29, vol. 1, р. 65“; 219, p.27]. 

To avoid this logical error one must explicitly assume the fifth postulate, as 

was done in Euclid’s Elements, or an equivalent proposition. 

It is possible that Aristotle stated such a proposition in a treatise that has 

not come down to us. In this connection we note that, in his commentaries 

on Euclid, “Umar Khayyam wrote: 

The cause of the error made by later scholars in the proof of this premise 

is that they did not take into account the principles borrowed from the 

Philosopher, 

that is, Aristotle. Khayyam states five such principles: 

(Г) Magnitudes are infinitely divisible, that is, they do not consist of 

indivisibles; 

(II) A straight line can be produced to infinity; 

(ПТ) Any two intersecting straight lines open and diverge to the extent to 

which they move away from the vertex of the angle of intersection; 

(ГУ) Two converging lines intersect and it is impossible for the con- 

verging straight lines to diverge in the direction of convergence; 

(V) Of two unequal bounded magnitudes the smaller can be taken with 

such multiplicity that it exceeds the larger /272, рр. 119-120]. 
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Principles I, II, and V are the following well-known assertions of Aristotle’s 

Physics (Physika): 

For there are two senses in which length and time and generally 

anything continuous are called “infinite”: they are called so either in re- 

spect of divisibility or in respect of their extremities /29, vol. 2, р. 233“ ]; 

Nothing that is continuous can be composed of indivisibles: e.g. a line 

cannot be composed of points, the line being continuous and the point 

indivisible /29, vol. 2, р. 231°]; 

Every finite magnitude is exhausted by means of any determinate quan- 

tity however small /29, vol. 2, р. 206° ]. 

The last of the principles is the axiom of Eudoxus-Archimedes. Principle III 

is equivalent to an assertion of Aristotle found in his work On the heavens 

(Peri ouranon), commonly known under the Latin title De caelo: 

The body which moves in a circle must necessarily be finite in every 

respect, for the following reasons. ... If the body so moving is infinite, 

the radii drawn from the centre will be infinite. But the space between 

infinite radii is infinite /29, vol. 2, p. 271°]. 

Only principle IV is not found in the known works of Aristotle. But it is 

possible that the medieval Eastern scholars were familiar with a work of 

Aristotle in which this principle was formulated. The principle consists of 

two assertions, each of which is equivalent to Euclid’s fifth postulate. 

Aristotle linked the problem of parallel lines to the question of the sum of 

the angles of a triangle. In Prior analytics Aristotle states: 

since it is not perhaps absurd that the same false result should follow 

from several hypotheses, e.g. that parallels meet, both on the assumption 

that the interior angle is greater than the exterior and on the assumption 

that a triangle contains more than two right angles /29, vol. 1, р. 66°]. 

Clearly, the term “parallel Ппез” is used here not in Euclid’s sense but in 

the sense of two lines that form equal opposite interior angles with a third or, 

in particular, in the sense of two lines perpendicular to a third. 

Earlier we saw that proposition 10 of Menelaus’ On the sphere proves that 

under certain conditions an interior angle of a spherical triangle is greater 

than an exterior angle, and proposition 11 proves that the sum of the angles 

of a spherical triangle exceeds two right angles. It is well known that any two 

great circles on a sphere, including circles that form equal opposite interior 

angles with a third circle and, in particular, circles perpendicular to a third 

circle, intersect. It is very likely that these facts of spherical geometry, possibly 

not supported by rigorous proofs, were known in Aristotle’s time, and that 

in his example Aristotle had these facts in mind when referring to great circles 

on a sphere as “‘straight lines.” : 

Aristotle regards triangles with angle sum equal to two right angles and 
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those with angle sum different from two right angles as being of different 

kinds. In his Metaphysics (Meta ta physika) he states: 

E.g. if we suppose that the triangle does not change, we shall not suppose 

that at one time its angles are equal to two right angles while at another 

time they are not (for that would imply change) /29, vol. 8, р. 1052°]. 

Later scholars no longer understood Aristotle’s remarks on the theory of 

parallels. Thus the author of a scholium on Euclid’s Elements wrote that 

It is impossible to find ... an isosceles right triangle whose hypotenuse 

is equal to the sides including the right angle / 172, vol. 5, р. 722], 

and Maimonides (see p. 193) wrote that 

We do not attribute to God, may He be exalted, incapacity because 

He is unable ... to create a square whose diagonal is equal to its side 

[349, p. 226]. 

We know that ona sphere there are а triangle and a square with the indicated 

properties. 

Apparently, when he refers to triangles whose angle sum is not equal to 

two right angles, Aristotle has in mind spherical triangles. But he sometimes 

refers to an angle sum that is smaller than two right angles. Thus, for example, 

in his Posterior analytics (Analytika deutera) he states: 

Thus, as we maintain, to know a thing’s nature is to know the reason 

why it is; and this is equally true of things in so far as they are said 

without qualification to be as opposed to being possessed of some 

attribute, and in so far as they are said to be possessed of some attribute 

such as [the angles in a triangle are] equal to two right angles, or greater 

or less /[29, vol. 1, р. 90°]. 

Aristotle does not investigate a geometry in which the angle sum in a triangle 

is less than two right angles. There are no simple models of such a geometry.! 

The First Attempts in Antiquity to Prove 

the Parallel Postulate 

The problem of the parallel postulate and the theory of parallel lines have 

been considered by many scholars over a period of 2000 years. It seems that 

the first work devoted to this question was Archimedes’ lost treatise On 

parallel lines that appeared a few decades after Euclid’s Elements. This title 

is one item in the list of Archimedes’ works contained in the Arabic Book 

"Concerning the problem of parallel lines in Aristotle see the papers of Imre Toth /588/, Anna 

Evgen’evna Busurina /85/, and I. М. Veselovskii /613/. 
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of bibliography of the sciences (Kitab Fihrist al-Ulum) by Abu 1-Faraj 

Muhammad ibn al-Nadim (4. 993) /240, р. 266]. 

The fact that Ibn Qurra was the author of six of the seven extant Arabic 

translations of the works of Archimedes supports the assumption that he was 

familiar with, and may have translated into Arabic, Archimedes’ treatise that 

Ibn al-Nadim called The book on parallel lines (Kitab al-khutut al-mutawaziya). 

It is therefore possible that one of Ibn Qurra’s preserved treatises on parallel 

lines considered later represents an edited version of Archimedes’ treatise. Be 

that as it may, it is very likely that Archimedes used a definition of parallel 

lines different from Euclid’s. Furthermore, given that metric relations played 

a greater role in Archimedes’ geometry than in Euclid’s, it is possible that 

Archimedes based his definition of parallel lines on distance. According 

to Proclus, the philosopher, astronomer, and mathematician Posidonius 

(ab. 135—50 B.c.), a native of Syria working in Rome, based his ‘“‘proof”’ of the 

parallel axiom on just such a definition: 

Parallel lines are lines in the same plane that come neither near nor 

apart, so that all the perpendiculars from the points of one of them to 

the other are equal /440, р. 138]. 

This definition of parallel lines, based on the assumption that the locus of 

points on one side of a line and at an equal distance from it is a straight line, 

contains an assertion equivalent to the parallel axiom; in fact, in Loba¢evskian 

geometry, in which the parallel axiom does not hold, the locus in question is 

not a straight line. Therefore the parallel postulate is a simple consequence 

of this definition of parallel lines. 

Proclus’ and Ptolemy’s “Proofs” of the Fifth Postulate 

Proclus /440, рр. 282—288] describes another “‘proof”’ of the parallel pos- 

tulate due to Ptolemy. Ptolemy first “‘proved’’ that if two parallel lines are 

cut by a transversal, then the interior angles on the same side add up to 

two right angles—an assertion equivalent to the fifth postulate. His proof is 

by contradiction. Thus, suppose that the interior angles on one side of the 

transversal are together less than two right angles. Since the corresponding 

angles on the other side of the transversal are supplementary angles, they must 

add up to more than two right angles. But the lines on one side of the 

transversal are “по more parallel” than the same lines on its other side. Hence 

the false conclusion that if the interior angles on one side of the transversal 

add up to less than two right angles, then so do the interior angles on the 

other side of the transversal. The resulting ‘‘contradiction” proves Ptolemy’s 

assertion. From it, again arguing by contradiction, he readily obtains the 

parallel postulate. 
Notwithstanding his accounts of the “proofs” of the parallel postulate of 

Posidonius and Ptolemy, Proclus gives his own “proof” of that postulate 
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[440, рр. 290-292]. He considers lines АВ and CD and a transversal EF that 

forms with these lines interior angles BEF and EFD on the same side that add 

up to less than two right angles (Figure 13). Through the point ЕЁ he draws 

a line EH parallel to CD and argues that, since the distance between the points 

on the sides of the angle BEH can be made arbitrarily large by moving 

sufficiently far away from the vertex Е, it is bound to exceed the distance 

between the parallels CD and EH. Consequently, the side EB of the angle 

EBH is bound to intersect the straight line CD. Proclus himself is guilty of 

the error of petitio principii, for his assumption that the distance between 

nonintersecting coplanar lines (he calls them parallel lines) is bounded is 

equivalent to the postulate which he wants to prove (in Lobaéevskian 

geometry the distance between nonintersecting coplanar straight lines can be 

arbitrarily large). 

Of the ancient theories of parallels that have not come down to us we 

mention those of Diodorus (first century B.c.) and Anthiniatus. Simplicius 

refers to them in these words: 

This postulate is not obvious but it is indispensable for a proof by means 

of lines. Anthiniatus and Diodorus proved many different propositions 

about it /419, р. 154]. 

Arabic Translations of Byzantine Attempts to Prove 

the Fifth Postulate 

There exist Arabic translations of two attempts, undertaken respectively 

by the Byzantine scholars Aghanis (fifth century) and Simplicius (sixth 

century) to prove the parallel postulate. G. B. Petrosyan has advanced the 

thesis that Aghanis is the Greek transcription of the name of Aghan, the 

Armenian advocate of enlightenment, connoisseur of Greek culture, and 

teacher of the famous Armenian scholars of the second half of the fifth 

century Ghazar Farpetzi and Vaghan Mamikonyan /419, рр. 153—154]. The 

extant version of Aghanis’ proof is due to Simplicius, who refers to him as 

his friend. We note that Simplicius was a student of Damaskius, himself a 

student of Proclus. Simplicius’ version of Aghanis’ proof is found in the com- 
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mentaries on Euclid’s Elements by the 10th-century Iranian mathematician 

Abu 1-‘Abbas al-Fadl ibn Найт al-Nayrizi. The title of the chapter of al- 

Nayrizi’s commentaries devoted to this exposition is Premises and propositions 

of Simplicius and Aghanis indispensable fot the twenty-ninth proposition of the 

first book [419, рр. 154—159].* Here Simplicius points out that the proof of 

proposition 29 in book I uses the fifth postulate and says about this postulate 

that “‘it is not one of the generally accepted assertions.”’ There follow the 

words of Simplicius quoted previously and his critique of Ptolemy’s “‘proof.” 

The critique is that whereas the proof is based on propositions 13, 15, and 16 

of book I of the Elements, the postulate is not applied before proposition 29. 

Then Simplicius says that “Аз regards our friend Aghanis, he does not see 

why this assertion should be taken as a postulate at a time when it requires 

a proof.” Then Simplicius gives Aghanis’ “proof” of the fifth postulate in 

“its proper form.” 

The proof consists of four propositions inserted after proposition 26 in 

book I of the Elements. They are based on Posidonius’ definition of parallels: 

We define parallel lines as lines that are in the same plane, and such that 

if they are indefinitely produced in both directions, the distance between 

then stays the same; the distance is the shortest line joining them, the 

same is said of other distances [419, р. 155]. 

In proposition | it is proved that “Ш two lines are parallel, then the distance 

between them is perpendicular to each of them’’; in proposition 2, that “‘if 

a straight line falling on two straight lines is perpendicular to each of them, 

then the lines are parallel and the perpendicular is the distance between them.” 

As for propositions 3 and 4 [419, рр. 155-156], they are, respectively, pro- 

positions 29 and 27—28 of book I of Euclid’s Elements (discussed previously). 

We note that while proving his proposition 3, Aghanis proves the existence 

of a quadrilateral with four right angles—the key point of most medieval 

proofs of the parallel postulate. We note also that whereas Euclid’s own proof 

of propositions 27 and 28 does not rely on the fifth postulate, Aghanis’ proof 

invokes his propositions that are based on an assertion equivalent to that 

postulate. After these four propositions (which he regards as propositions 

27—30 of book I of the Elements) Aghanis (to quote Simplicius) proves 

propositions 31—34 that coincide, respectively, with propositions 31, 34 (the 

part that asserts the equality of the opposite sides in a parallelogram), 30, and 

33 in book I of the Elements. In proposition 35, Aghanis uses the existence 

of a parallelogram (established in his proposition 34) to prove the parallel 

postulate in the case when the transversal is perpendicular to one of the two 

given lines (in this formulation, the statement of the postulate is that “а 

perpendicular line and an oblique line intersect”). Aghanis considers lines AB 

and CD and a transversal EG perpendicular to AB (Figure 14а). From a point 

F on the line CD he drops a perpendicular F/ to the transversal EG. Then 

2 A French translation of this chapter /248a, pp. 127-136] appeared in 1986. 
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he bisects EG enough times to obtain a division point М between Г and С 

(in Figure 14а the point М is obtained by dividing the segment ЕС into four 

equal parts), erects a perpendicular MN at М, extends it until it intersects the 

line CD, and constructs the segment GQ of the straight line CD that is the 

same multiple of the segment GN as the segment ЕС is of the segment МС. 

The rest of Aghanis’ construction is equivalent to the construction of a 

rectangle with side EG and diagonal GQ. 
The Aghanis construction is also applicable if the transversal is not рег- 

pendicular to either of the given straight lines. In those cases we have, in place 

ofa rectangle, a parallelogram (Figure 14b). The fact that halving the segment 

EG enough times will always yield a segment GM smaller than the segment GJ 

is a consequence of the Eudoxus-Archimedes axiom (mentioned previously) 

which asserts that given two unequal segments, areas, or volumes, there is 

always a natural number 7 such that 7 times the smaller magnitude exceeds 

the corresponding larger magnitude. This axiom was known to Eudoxus. It 

is given by Euclid as definition 4 of book V of the Elements, considerably 

later in the text than the theory of parallels presented in book I. 

It is possible that the “proofs” of Posidonius and Archimedes consisted of 

the same stages and, in particular, also made use of the Eudoxus-Archimedes 

axiom. It may be that these “proofs” were more complete in the sense that 

they involved parallelograms rather than rectangles or that the general case 

of the fifth postulate was deduced from the case considered by Aghanis. 

Al-Nayrizi does not give Simplicius’ proof of the parallel axiom, but a short 

version of that proof is contained in a letter written by ‘Alam al-Din Qaysar 

al-Hanafi (1178—1258) to Nasir al-Din а1- Гая. In most cases, the manuscript 

versions of this letter were attached to the manuscripts of al-Tust’s treatise 

on parallel lines (which will be discussed later). In that letter—published by 

А. I. Sabra {494 ]—al-Hanafi writes: 

One thing that may be proposed for your elevated consideration is 

what occurred to me regarding a proposition which Simplicius, in his 

commentary to the premisses of the book of Elements, mentioned 

among lemmas of the famous proposition, which is this: If a straight 

line falling on two straight lines makes the two interior angles on one 
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side equal to less than two right angles, then the two lines, if produced 

on that side, will meet. 

He said that every angle can have infinitely many chords of increasing 

magnitudes each of which cuts off equal [segments] from the two lines 

containing that angle. 

He used this in [the following]: If the line AB falls on the two lines BD, 

AC, and the angle CAB is a right angle, and the angle ABD (Figure 15) 

is acute, then the two lines AC, BD will meet on the side of С, D. 

For he constructed on the point В of the line AB an angle A BG equal 

to the angle ABD. Then there are infinitely many chords of increasing 

magnitudes which subtend the angle DBG. And one of the chords will 

fall beyond point A—-such as the chord GED. Therefore the two angles 

A, E being right angles, the line AC, if produced, will not meet the line 

ED. Ц will therefore meet the line BD [494, pp. 8-9, 19—20]. 

What Simplicius’ petitio principii comes down to is that he thinks that 

the fact that in a right angle one can draw infinitely many chords that cut 

off from its sides equal segments implies that for every interior point of the 

angle there exist chords with this property that fall “‘outside” the point in 

question. Although it is true that if the parallel axiom does not hold, that is, 

in Lobacevskian geometry, it is still possible to draw infinitely many chords 

in a right angle that cut off equal segments from its sides, it is also true that 

there are interior points of the angle that are “‘outside”’ all such chords; such 

points are the interior points of the angle on the other side of the line that is 

parallel in the sense of Loba¢evskii to both sides of the angle. This means that 

Simplicius’ assumption is equivalent to the parallel axiom. 

In the Bodleian Library at Oxford University there is a manuscript of com- 

mentaries on Euclid Бу Muhyi al-Din al-Maghribi (4. ab. 1290), an associate 

of the Maragha observatory, that contains a proof of the parallel postulate 

in four propositions. In the first of these propositions the author proves 

Simplicius’ assertion on the existence of infinitely many “‘chords” of an angle 

(these are chords of arcs drawn with appropriate radii from the vertex of 
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the angle as center; Figure 16). The second proposition is identical with the 

proposition of Simplicius quoted by al-Hanafi, and the third and fourth 

propositions are proofs of the parallel axiom in two special cases, namely, 

when a straight line falling on two straight lines makes acute angles with these 

lines, and when it makes an acute angle with one of them and an obtuse angle 

with the other. А. I. Sabra [494, р. 7] believes that the author of the first two 

propositions is undoubtedly Simplicius and the author of the last two is either 

Muhyi al-Din al-Maghribi himself or another 13th-century author. We will 

return to this matter later. 

We note that in his commentaries on Euclid, al-Nayrizi attributes to 

Simplicius the following proposition: 

if lines in the plane are such that the distances between them are unequal, 

then they are not parallel and, since they are not parallel, they meet 

[419, p. 159]. 

This proposition is very similar to the principle attributed by Khayyam to 

Aristotle. 

Al-Jawharts Theory of Parallels 

The first preserved attempt at a proof of the parallel axiom by a scholar of 

the medieval East was made by ‘Abbas ibn Sa‘id al-Jawhari, who flourished 

in Baghdad in the first half of the ninth century. Al-Jawhari’s investigation 

was included in his Improvement of the book the “Elements” (Islah Kitab 

al-Usul) and was preserved in the treatise of Nasir al-Din al-Tisi on parallel 

lines. 

Al-Tusi begins his exposition of al-Jawhari’s attempt at a proof as follows: 

As for al-Jawhari ... he is the author of Improvement of the book 

the “Elements” in which he introduced corrections in all assumptions 
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and propositions of that book. In what he said on this question there 

was the following principle: if, given any two unequal lines, one takes 

away from the longer one half [of the shorter line], then half of the half 

many times, then the number of times can be such that of the half of 

the longer one there remains a line that is shorter than the shorter line. 

The first of his six propositions is the twenty-eighth [proposition of the 

book 1 of the Elements]. In the first proposition he set forth that which 

the author of the Elements set forth in the twenty-seventh [proposition], 

and added to it [one other proposition]; the last of these propositions is 

the thirty-third. Another proposition added by him is the twenty-third 

proposition of the Elements where it is shown that if one draws from any 

point three straight lines in different directions, then the three resulting 

angles are together equal to four right angles. The six propositions are 

added to the Elements after the twenty- seventh proposition /593, p. 

501]. 

The principle formulated Бу al-Jawhari is contained in proposition | of 

book X of Euclid’s Elements (which is proved with the help of definition 4 

of book V) that is, the Eudoxus-Archimedes axiom. Apparently, al-Jawhart 

added proposition 23 of book I of the Elements before Euclid’s proposition 23 

(which deals with the construction of a given angle at a given point of a given 

line), so that Euclid’s propositions 23—26 are al-Jawharr’s propositions 24—27. 

According to al-Tusi, the six new propositions inserted by al-Jawhari after 

proposition 26 of the Elements are as follows. 

Proposition 28: 

If a straight line falling on two straight lines makes the [alternate] 

angles equal to one another, the straight lines will be parallel to one 

another, and if they are parallel then the distances from any point on 

one straight line to the corresponding point on the other straight line 

are the same. 

Proposition 29: 

If in a triangletwo of its sides are halved and the midpoints are joined 

by a line, then [the third] side of the triangle is equal to two such lines. 

Proposition 30: 

In every angle one can draw infinitely many bases. 

Proposition 31: 

If we draw in an arbitrary angle a line passing through its vertex 

and intersecting a base of a triangle and lay off on each side of the angle 

a line equal to the side of the obtained triangle, then “‘this line [that is, 

the new base] cuts off from the line dividing the given angle a line equal 

to two lines [that is, twice the line] drawn from the given angle to the 

base of the triangle’’. 
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Proposition 32: 

If we draw in an arbitrary angle a line passing through its vertex and 

choose on that line an arbitrary point, then “through this point we can 

draw in both directions a line which is a base of the given angle’. 

Proposition 33 is a proof of the parallel postulate /593, pp. 501-507]. 

The first half of al-Jawhari’s proposition.28 is the same as proposition 27 

of the Elements. In the second half al-Jawhari attempts to prove that the 

equality of the alternate angles formed by a straight line falling on two other 

straight lines implies that the latter are equidistant; what he is in fact able to 

prove is that the two straight lines are symmetric with respect to the midpoint 

of the segment of the third straight line contained between them. It is this 

result that al-Jawhari uses to prove his proposition 29: he halves the sides AB 

and AC of the triangle ABC at E and G (Figure 17), draws the midline EG, 

constructs the angle ACF equal to the angle BAC, and extends the line EG to 

the point D on the side of CF of that angle. By proposition 28, the line CF is 

parallel to the line АВ. Al-Jawhari proves the equality of triangles AGE and 

GCD which implies that EG = GD and ED = 2EG. Therefore, in view of 

his proposition 28, which he supposes established, al-Jawhari concludes that 

the lines EB and CD are equidistant and that ED = BC, which proves the 

required equality BC = 2EG. Al-Jawhari’s propositions 28 and 29 hold in 

Euclidean but not in Lobacéevskian geometry. On the other hand, al-Jawhari’s 

proposition 30 does not depend on the parallel postulate; we saw that it was 

used by Simplicius. Al-Jawharrs proposition 31 holds only in Euclidean 

geometry; its proof depends in a fundamental way оп al-Jawhari’s proposition 

29. Al-Jawhari’s proposition 32 also holds only in Euclidean geometry and 

coincides with the result used, by Simplicius. Unlike Simplicius, al-Jawhari 

proves it by using his proposition 31—that is, by ultimately basing the 

argument on proposition 28, which is valid only in Euclidean geometry. 

With the help of his proposition 32 al-Jawhari gives, in proposition 33, the 
following proof of the parallel postulate. 
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If one extends two lines from a line in the direction of angles less than 

two right angles, then they intersect on that side. Example. The lines АВ 

and CD are drawn from the line BD in the direction of the angles ABD 

and CDB that are less than two right angles (Figure 18). I claim that if 

one extends them in their direction then they intersect. [Proof]. We 

extend the line BD in its direction to the points E and H and lay off BF, 

equal to BD, as proved in proposition 3. By assumption, angles ABD 

and CDB are [together] less than two right angles. Hence angle ABE is 

greater than angle СРВ. At В on line BA we construct the angle АВК 

equal to the angle СРВ. Then angles ABD and АВК are [together] less 

than two right angles, that is angle KBL. Through the point F we pass 

the line KL—a base of angle KBL, as proved in proposition 32. Then, 

as proved in proposition 16, the angle KFB, an exterior angle of the 

triangle FBL, is greater than the interior angle FBL. Therefore we 

construct at F on the line BF the angle BFO equal to the angle FBL. As 

we know, angle KBA is equal to angle CDB. Therefore, angles BFO 

and OBF are equal to angles ABD and CDB, respectively, and BF was 

laid off equal to BD. If we superimpose BD on BF, equal to it, then 

angle CDB is superimposed on angle OBF, equal to it, and angle ABD 

is superimposed on angle BFO, equal to it. Hence lines BA and DC, if 

extended in their directions, are superimposed on lines FO and BO 

which intersect at the point О. This is what we wished to prove /593, 

рр. 507-508]. 

In spite of the crude logical error in the first proposition, al-Jawhari’s proof 

is of considerable interest, for he was the first to prove the possibility of 

drawing a line through an arbitrary interior point of an angle that intersects 

both of its sides and to use this result to prove the parallel postulate. 

Thabit ibn Qurra’s Theory of Parallels 

Thabit ibn Qurra devoted two treatises to attempts to prove the parallel 

postulate. One of them is called Book on a proof of Euclid’s well-known 

postulate (Maqala fi burhan al-musadara al-mashhura min Uqlidis) or The 
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book whose theme is that if a straight line falling on two straight lines makes 

the angles on the same side together less than two right angles, the two straight 

lines, if produced indefinitely on that side, meet (Kitab fi annahu idha waqa‘a 

Khattun mustagimum ‘ala khattayn mustaqimayn fa-sayyara al-zawiyatayn 

allatayn fi jihatin wahidatin адаПа min qa@imatayn fa-inna al-khattayn idha 

ukhrija fi tilka al-jiha iltaqaya). /493, pp. 28-32]. The title of the second 

treatise is an abbreviation of the second title of the first treatise: The book 

whose theme is that two lines drawn so as to form angles less than two right 

angles meet (Magqala fi anna al-khattay idha ukhrija ‘ala zawiyatayn aqall 

min qaimatayn iltaqaya) /493, рр. 19—17]. 

Proposition 1 of Ibn Qurra’s first treatise is formulated in the same way as 

the first proposition of al-Jawhari. His proof also involves petitio principii, 

but its manner is less crude than al-Jawhari’s. Ibn Qurra makes the naive 

assumption that if two lines diverge on one side then they necessarily converge 

on the other. This assertion is equivalent to Euclid’s parallel postulate; in 

Lobaéevskian geometry there are straight lines that diverge on both sides 

of their common perpendicular. Ibn Qurra formulates his first proposition 

as follows: 

If a straight line falls on two straight lines and the two alternate angles 

are equal to one another, then those two lines do not converge or diverge 

on either side /493, р. 28]. 

In proposition 2 he proves the converse, which coincides with the first part 

of proposition 29 of book I of the Elements: 

If a straight line falls on two straight lines which do not converge or 

diverge on either side, then the two alternate angles are equal to one 

another /493, р. 29]. 

The proof is by contradiction: the proposition that the angles are unequal is 

made to contradict what was “‘proved”’ in proposition 1. From these two pro- 

positions Ibn Qurra deduces in proposition 3 the existence of a parallelogram: 

If the extremities of two straight and equal lines which do not converge 

or diverge are joined by two straight lines, then these also are equal and 

do not converge or diverge /493, р. 29]. 

In proposition 4 Ibn Qurra, like al-Jawhari, considers a midline of a triangle 

and shows that it is equal to half of the base and is parallel to it: 

In every triangle [if] two of the sides are each divided into two halves, 

and the two points at which they have been divided are joined by a 

straight line, then [this straight line] will be half the other [i.e., third] side 

and it does not converge with or diverge from it [493, р. 30]. 

Ibn Qurra notes that using the same method one can prove that if one divides 

the sides of a triangle into an arbitrary number of parts and joins the division 

points by means of straight lines, then each of the resulting lines is the 
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same part of the base аз the segment it cuts off is of the side. Finally, in 

proposition 5, Ibn Qurra proves the parallel postulate. Using the axiom of 

Eudoxus-Archimedes, Ibn Qurra considers the lines AB and CD and the line 

EG falling on them such that the angles BEG and DGE are together less than 

two right angles (Figure 19) and claims that the lines 4B and CD meet when 

extended in the direction of the points B and D. For proof, Ibn Qurra draws 

from the point С a line GH that “‘does not converge with or diverge from 

the line AB,” chooses an arbitrary point F on GD and draws from F to GH 

the line ЕК that ‘‘becomes neither closer to nor more distant from EG.” If 

ЕК < EG, then one lays off FL = GF and KH = GK. Then the line LA is 

twice ЕК and also ‘“‘does not converge with or diverge from the line EG.” If 

LH < EG, then one continues the process until one obtains a line > EG. 

Suppose LH is such. On LH one lays off MH = EG. Then the lines GE and 

НМ are equal and “4о not converge or diverge.’ Hence the lines joining 

their ends are also equal and “Чо not converge or diverge.”’ Therefore, says 

Ibn Qurra, 

EB, if produced in a straight line on the side of В, will proceed to М... 

thus it is necessary that it should meet a point on the line CD before it 

meets the point M. Therefore AB, CD, if produced on the side of B, D, 

meet. And that is what we wanted to prove /493, р. 31]. 
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Ibn Qurra’s second treatise begins with a long introduction that justifies 

the possibility of applying motion in geometry. As is well known, Aristotle 

condemned the use of motion in geometry and said that 

the objects of mathematics, except those of astronomy, are of the class 

of things without movement /29, vol. 8, 989°]. 

Euclid also tried to avoid using motion in his Elements. Ibn Qurra points 

out that measurement of magnitudes is itself impossible without their transla- 

tion and superposition. He writes: 

[Therefore] the principles of many demonstrations of those demonstrable 

first elements among geometrical propositions consist in the use of the 

said operation—I mean moving one of the two things to be measured 

by one another and pushing it from its place and transferring it in our 

imagination without changing its shape by movement so as to place it 

with its shape [unchanged] upon that which is to be measured by it. 

Euclid was obliged to do the same thing in the demonstration of 

Proposition 4 of Book I of his work on Elements, and in the demonstra- 

tion of Proposition 8 of [the same Book]; for these are two of the oldest 

elements, knowledge and demonstration of which are premissed and 

taken as basis for other [propositions] /493, р. 20]. 

Ibn Qurra goes on to introduce “а certain simple motion,” that is, a 

translation, and formulates the following “‘premiss”’: 

Consequently, as a premiss, I have started from something known 

regarding the solid—which is this: 

If any solid is imagined to move as a whole in one direction with one 

simple and straight movement, then every point in it will have a straight 

movement and will thus draw a straight line on which it will pass 

[493, p. 21]. 

Then Ibn Qurra proves the following proposition: 

If two straight lines are in the same plane, and two straight lines equal 

to one another are drawn across them in such a way as to contain with 

one of the first two lines two equal angles on one side, then any two 

perpendiculars falling on that line from two points on the other will be 

equal. 

Let the straight lines AB, CD be in the same plane; let the straight 

lines AC, EF be drawn across them and let them be equal; and let the 
angles ACD, EFD be equal. 

I say that any two perpendiculars falling on the line CD from two 

points on the line AB will be equal (Figure 20) /493, р. 21]. 

For proof Ibn Qurra imagines “that a solid surrounds the line AC so as to 

be cut by CG which is part of [the line] СР” and imagines further that the 
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solid has moved аз a whole from the side of С to that of D—this being 

a straight simple movement along CD. 

Let analogues to the lines AC, CG be drawn in the solid and let them 

remain and preserve their shape in it. Thus the line that is drawn in the 

solid as an analogue to AB [sic; read AC] will not be situated along the 

solid’s movement; but the other line drawn in the solid as an analogue 

to CG will be situated along that movement. 

Therefore, the analogue drawn for the line CG will throughout the 

solid’s movement pass along CD and will always be placed on it /493, 

pp. 21-22]. 

Ibn Qurra goes on to say: 

If we imagine that the point C on the analogue drawn for the line 

AC has reached the point F as a result of the solid’s movement, then 

the position of the analogue drawn in the solid for the line CG will be 

that of FH, for it has moved along CD. 

But the angle EFA is equal to the angle ACG; therefore the analogue 

to the line AC in the solid will fall on FE when the point C on it comes 

to F. 

And since AC is equal to FE, it coincides with it, the point 4 in AC 

falling on the point Е in FE. 

Therefore, the point A in the solid passes to the point Е as a result 

of the movement of the solid, by its passage draws a straight line, for 

this is the case with every point in the solid. Therefore, the passage of 

the point A will be along the line AEB since there is no other straight 

line passing through the points A, Е [493, р. 22]. 

Then Ibn Qurra marks off on the line AEB an arbitrary point T and drops 

from it a perpendicular TK to CD, considers separately the case when the 

angle ACD is a right angle and the case when it is not, and proves that in both 

cases the perpendicular from A to CD—which is AC in the first case and AG 

in the second—coincides with the perpendicular ТК when the point A passes 

the position T. 
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Therefore, the perpendicular TK is equal to the perpendicular AG, 

and also equal to any perpendicular falling on CD from a point on the 

line AB. All these perpendiculars are therefore equal. And that is what 

we wanted to prove [493, рр. 22—23]. 

Actually, this proposition uses kinematic considerations to prove the exis- 

tence of a rectangle. The next four propositions also deal, basically, with the 

properties of rectangles, although the first two discuss isosceles trapezoids: 

In any quadrilateral plane [figure] if two angles on one side are equal 

and the two sides joining that side are equal, then the remaining two 

angles are equal /493, р. 23]. 

In any quadrilateral plane if two angles on one side are equal, and 

the two other angles are equal, then the two sides joining its first side 

are equal /493, р. 23]. 

If any two straight lines are in the same plane, and И two perpendicu- 

lars drawn from two points on one of them to the other are equal, then 

they will also be perpendicular to the first line, and all perpendiculars 

falling from each one of the two lines upon the other—whatever the 

points they are drawn from—will be perpendicular to the companion 

line and will be equal among themselves and equal to the first two 

perpendiculars /493, р. 24]. 

If any two straight lines are drawn from the extremities of a straight 

line in the same plane so as to contain with it two right angles, then any 

perpendicular drawn from a point on one of the two lines to the other 

will also be perpendicular to the first, and will be equal to the line from 

whose extremities the two lines have been drawn [493, р. 25]. 

Ibn Qurra goes on to prove the following proposition: 

If a straight line falling on two straight lines in the same plane is 

perpendicular to both, then any straight line cutting the two lines will 

make the alternate angles equal to one another and the exterior angle 

equal to the opposite interior angle /493, pp. 25—26]. 

Finally, implicitly using the Eudoxus-Archimedes axiom, Ibn Qurra proves 

the parallel axiom. 

From the extremities of the straight line AB let us draw the two 

straight lines AC, BD in the same plane, and let the angles BAC, ABD 

be together less than two right angles (Figure 21). 

I say that the lines AC, BD meet when produced in the direction of 
G, iD: 

Demonstration: One of,the angles BAC, ABD must be less than a 

right angle. Let it be the angle ABD. 

Then from A let us draw AE perpendicular to BD, mark a point F 

on AC at random and from it draw FG perpendicular to AE. 
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Then the lines AG, AE are finite, and AE is longer than AG, and 

therefore it is possible to multiply the smaller, viz. AG, until its multiple 

becomes greater than AE. 

Let AH be the multiple which is greater than AE. 

From СН let us cut off equals to the line AG, viz. GT, TK, KH. 

And from the line FC let us cut off equals to the line AF as many 

times as GT, TK, KH, viz. FL, LM, MN. If FC is less than is sufficient 

we prolong it until it is enough. 

I say that the line AG has cut the line BD. 

Demonstration: From the point T let us draw TS perpendicular to 

AE, and from F we draw FS perpendicular to this perpendicular. 

Then FS is also perpendicular to FG and equal to GT. 

But GT was equal to AG. 

Therefore, F'S is equal to A. 

And it is evident that the line FL will fall outside the (area) between 

FS, GT—for the angle GFS is right, and the angle AFG is less than 

a right angle since the angle AGF is right and there cannot be two right 

angles in the same triangle. 

Again, the line FG has fallen on the two lines AT, FS in such a way 

as to be perpendicular to both, and the straight line AC has also fallen 

on them. 

Therefore, the exterior angle Г.Р 5 is equal to the interior and opposite 

angle FAG. 

Therefore these two angles in the triangles AFG, FLS are equal. 

But we have shown that their sides AG, FS are also equal, and side 

AG in one of the two triangles is likewise equal to the side FL in the 

other. 

Therefore, the two bases are equal, and the remaining angles are 

respectively equal to one another. 

And the angle FSL being equal to the angle AGF, and the angle AGF 

being a right angle, then the angle FSL is right. 

55 
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But the angle FST was also right. Therefore the lines TS, SL are 

joined in such a way as to make one straight line. Therefore the line that 

joins the points Т, L is the line TSL itself, and it is perpendicular to AH. 

And likewise we show that the straight line KM joining the points K, 

М is perpendicular to AH, and that НМ is perpendicular to AH. 

Therefore the angle AHN is a right angle. 

But the angle BEH also was a right angle, being equal to the angle 

AED. 
Therefore on the straight lines HN, BD a straight line AEH has fallen 

making the alternate angles equal. 

The two lines are therefore parallel and will not meet even if produced 

indefinitely. 

But one of them, HN, has been met by the line AC in М, and therefore 

AC has gone across to the other side of BD. 

Therefore the line AC has met the line BD, cutting it and crossing it. 

And that is what we wanted to prove /493, рр. 26-27]. 

Attempts to Prove the Parallel Postulate in the 

_ Tenth Century 

Al-Nayrizi, whose commentaries on Euclid contained an account of Aghanis’ 

attempt to prove the parallel postulate, was himself the author of a treatise 

devoted to such a proof—Treatise on a proof of the well-known postulate of 

Euclid (Risala f1 bayan al-musadara al-mashhura li-Uqlidis). 

Е. $. Grigoryan /212а] investigated the incomplete manuscript of this 

treatise kept in the Paris National Library (Ar. 2467/7). Another manuscript 

of this treatise, kept in the former Prussian State Library and described in its 

catalogue, was lost during the second world war (according to information 

given to the author by the management of the library). The beginning of this 

treatise is the same as that of the Paris manuscript. The complete text of this 

treatise was published in Arabic by Abu’l-Qasim Qurbani /445, рр. 86-87]. 

There is a Russian translation /380]. An analysis of the treatise is found in 

[488, pp. 42-45 ]. 

Like the second treatise of Ibn Qurra, al-Nayrizi’s begins with a philos- 

ophical justification of the existence of equidistant lines, but the arguments 

of al-Nayrizi, to the effect that “Бу its nature, equality precedes difference,” 

are far less convincing than the kinematic argument of Ibn Qurra. Next come 

seven propositions: 

The distances between equidistant straight lines are perpendicular to 

both straight lines; 

Each of the perpendiculars to two equidistant straight lines is shortest; 

Each of the perpendiculars to one of two equidistant straight lines is 

perpendicular to the other; 
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If there is a [common] perpendicular to two straight lines, then they 

are equidistant; 

If one drops two perpendiculars EH and GF from one of two equi- 

distant straight lines 4B and CD to the other then the distance HF 

between their feet on the second straight line is equal to the distance EG 

between their feet on the first straight line; 

If a straight line falls on two equidistant straight lines АВ and CD, 

then the two interior angles on the same side are [together] equal to two 

right angles; 

If a straight line AC falls on two straight lines 4B and CD and if 

the sum of the two interior angles CAB and ACD on the same side is 

less than two right angles, then they meet on that side /380/. 

We see that al-Nayrizi’s first four propositions deal with common регреп- 

diculars to two equidistant straight lines whose existence is al-Nayrizi’s point 

of departure; in proposition 5 a property of such perpendiculars is used to 

deduce the existence of a rectangle. In proposition 6 it is shown that if two 

equidistant straight lines are cut by a third, then the sum of the interior angles 

on the same side is equal to two right angles, and in proposition 7 the parallel 

postulate is proved. The whole line of al-Nayrizi’s argument is very close to 

that in the second treatise of Ibn Qurra; in particular, like Ibn Qurra, he uses 

the Eudoxus-Archimedes axiom in his proof of the parallel postulate. 

The treatise of al-Nayrizi is mentioned in Khayyam’s commentaries on 

Euclid together with the treatises of Abu Ja‘far al-Khazin (4. ab. 965) and Abu 

“Abdallah al-Shanni (10th—11th century), who do not seem to be mentioned 

in other sources. Of these treatises Khayyam wrote as follows: 

As for such later scholars as al-Khazin, al-Shanni and al-Nayrizi, 

who tried to prove this, none succeeded in giving a rigorous proof; each 

of them based himself on something that is no simpler an assumption 

than the one to be proved /272, рр. 114-115]. 

The treatise On the intersection of two straight lines issuing from the ends 

of a straight line under angles that are [together] smaller than two right angles 

(Fi iltiqa al-khattayn al-mustaqimayn al-kharijayn min tarafay khattin 

mustaqimin ‘ala agall min zawiyatayn qaimatayn) by the Christian priest 

Yuhanna ibn Yusuf al-Harith ibn al-Bitriq al-Qass (d. ab. 980), dedicated to 

the sultan Sayf al-Dawla (d. 950), has not reached us. It is mentioned by 

Yuhanna ibn Yusuf in his Book on rational and irrational magnitudes (Maqala 

fi l-maqadir al-muntaqa wa I-summ)? and by а1-Напа in his letter (quoted 

previously) to al-Tisi, in which this treatise is mentioned in a list of treatises 

devoted to the theory of parallels together with one of the treatises of Ibn 

Qurra and the treatise of Ibn al-Haytham, to be discussed later. 

3 This treatise was studied by С. P. Matvievskaya /358, pp. 213—216]. 



58 2. The Theory of Parallels 

Ibn Sina’s Theory of Parallels 

The features of the exposition of the theory of parallels common to Aghanis, 

Ibn Qurra, and al-Nayrizi also occur in the encyclopedic treatise of the 

eminent philosopher and physician Abu ‘Ali ibn Sina (980—1037), entitled 

Book of knowledge (Danish-nama) [33; 540], who devotes to this theory 

the second section of the chapter on geometry. This chapter opens with the 

following words: 

Disjoint lines can be disposed so that the end of one is inclined toward 

the other; if extended in that direction they will intersect: they will not 

intersect if extended in the opposite direction /540, р. 21]. 

We see that this statement is very-close to the “principle” mentioned previously, 

which Khayyam ascribed to Aristotle. 

Continuing, Ibn Sina states that 

disjoint lines ... can be disjoint so that the distances between their ends 

are equal. If one extends a perpendicular erected at one of these lines to 

the other, then this perpendicular will also be perpendicular to the other 

line. In fact, if it were not perpendicular to that other line, then one 

of the angles would be acute and the other obtuse, the ends on the side 

of the obtuse angle would be further apart and the ends on the side of 

the acute angle would be closer together /540, рр. 21-22]. 

Two such lines are called parallel. 

Ibn Sina’s argument that a perpendicular to one of these lines is also 

perpendicular to the other is based on the refutation of the proposition that 

the second angle is acute or obtuse. In the sequel we will often encounter 

similar arguments in connection with two perpendiculars. Ibn Sina goes on 

to prove by contradiction that 

if a line intersects two other lines and two interior angles on the same 

side are [together] equal to two right angles, then the two lines are 

parallel /540, р. 23], 

and, finally, that 

if a line intersects two other lines and two interior angles on the same 

side are together less than two right angles then the two lines, if produced 

on that side, will intersect. 

This [says Ibn Sina] is because one of these lines is inclined toward 

the other and in consequence of this inclination they will intersect. In 

fact, if one of them did not incline toward the other, then they would 

be parallel, and if they were parallel, then, as we showed earlier, the two 

indicated angles would be equal to two right angles /540, рр. 23—24]. 

Thus, essentially, [bn Sina justifies the parallel axiom by means of the indicated 

principle. However, in defining parallel straight lines as equidistant, Ibn Sina 
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assumes a proposition equivalent to the fifth postulate. This results in a 

remarkable simplification of his argument. 

7 

Ibn al-Haytham’s’Theory of Parallels 

The famous Egyptian physicist, mathematician, and astronomer Abu ‘Ali Ibn 

al-Haytham (Alhazen, 965-1041) considered the theory of parallels in both 

of his commentaries on Euclid’s Elements, namely, in his Commentary on the 

premises to Euclid’s book the “Elements” (Sharh musadarat kitab Uglidis fi 

1-Usul) and in his Book on the resolution of doubts in Euclid’s book of Elements 

(Kitab fi hall shukuk kitab Uglidis fi 1-Usul wa’sharh ma‘anthi). Only the 

second of these two works has been published /237/. The first one was studied 

by В. Н. биде in her thesis /569 ].^ The commentaries in the first book pertain 

to the introductory parts of the Elements and those in the second book to 

the propositions themselves. The key issue of Ibn al-Haytham’s first work is 

the same as that of the second treatise of Ibn Qurra, that is, the proof of 

the existence of a rectangle. In turn, this proof is based on the proposition 

of the existence of equidistant straight lines, established with the help of 

kinematic arguments similar to those used by Ibn Qurra. The proof of the 

existence of a rectangle consists in the investigation of a quadrilateral with 

three right angles and of the three hypotheses concerning the fourth angle, 

and in the refutation of the hypotheses that the fourth angle is acute or obtuse. 

This quadrilateral and the three hypotheses pertaining to its fourth angle, 

of which the “‘right-angle hypothesis” holds in Euclidean geometry and the 

“acute-angle hypothesis’ holds in Lobacevskian geometry, have played an 

important role in the history of non-Euclidean geometry. This quadrilateral 

is often referred to as the “Lambert quadrilateral’, in honor of the 18th- 

century mathematician J. H. Lambert who also considered it. After establish- 

ing the existence of a rectangle Ibn al-Haytham first proves the parallel 

postulate for the case of a perpendicular line and an oblique line, using, like 

Aghanis before him, the Eudoxus-Archimedes axiom. Then he proves the 

parallel postulate for the case when the angles between the two straight lines 

and the transversal are acute and, finally, for the case when one of them is 

acute and the other obtuse. Ibn al-Haytham begins with a critique of Euclid’s 

definition of parallel lines: 

Euclid stated: ‘‘Parallel straight lines are coplanar lines such that if 

produced indefinitely in both directions they do not intersect in either 

direction.”” Thus the lines are represented as coplanar and noninter- 

secting if produced in both directions; which means that the lines can 

be extended constantly and simultaneously in both directions. But it is 

4 п 1986 there appeared French translations of parts of these two books devoted to the theory 

of parallels / 248а, рр. 161-184]. 
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impossible to imagine such constant increase that reaches no end; there 

is no way of imagining this, for whatever can be imagined is finite, and 

the lines dealt with here are depicted as lines of finite magnitude. 

Ibn al-Haytham goes on to define parallel lines in a way that extends Ibn 

Qurra’s definition: 

We further imagine a second bounded straight line that forms a right 

angle with the first in the same plane in which the first line is located. 

We further imagine this line to be moving with one of its ends along the 

first straight line in one direction. Its motion is one simple motion, that 

is, without change of motions, not made up of motion and rest, one 

motion, without bending. If in this translation, throughout the duration 

of the motion, the [translated] line remains perpendicular to the line in 

the plane, that is, the first line located in it, then, during the time when 

it is in motion, the end of that perpendicular line will describe a straight 

line perpendicular to it; and one can imagine this line as well as this kind 

of motion /274, р. 743]. 

In this way one can obtain two coplanar straight lines which when pro- 

duced indefinitely in both directions do not intersect in either direction, 

the distances between these lines in both directions are always the same 

as they grow in either direction, and it is impossible that they should 

intersect in any place. Thus parallel lines exist and can be imagined in 

this way /274, р. 748]. 

Ibn al-Haytham proves the parallel postulate as follows: 

As for [the assertion that], if a straight line falling on two straight 

lines makes the interior angles on the same side [together] less than two 

right [angles], then the two straight lines, if produced indefinitely in that 

direction, will meet, this assertion is the innermost of all that we present 

here. It requires proof like most assertions. In the proof one should 

use those propositions in the book in whose proofs this premise is not 

used. ... This premise must be preceded [by the following]: if one draws 

at the ends of a bounded straight line two straight lines that enclose 

together with the first line right angles, then each of the perpendiculars 

dropped from [the points] of one of these lines to the other is equal to 

the first line, that which encloses with these two lines right angles, and 

every perpendicular dropped from [the points] of one of the indicated 

lines to the other encloses with the line from which it is dropped a right 
angle. 

Example. Such is the line AB, from its ends A and B are drawn lines 

AC and BD so that each of the angles CAB and DBA is a right angle. 

Further, we take a point C on the line AC and drop from it the perpen- 

dicular CD to the line BD. I say that the line CD is equal to the line AB 
(Figure 22). 
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The proof of this, that is, that the opposite is impossible. Suppose, 

if possible, that they are unequal. If CD is unequal to AB then it is either 

greater than or smaller than it. Suppose it is greater than it. We extend 

the line CA in its direction toward А, let that be AE, we also extend BD 

in its direction toward B, let that be BF. We lay off [the line] AE equal 

to AC. We drop from the point E the perpendicular to the line BF, let 

that be EF. We draw the lines CB and BE. Since the line CA is equal 

to AE and the line AB is common, that is, the lines АС and AB are 

[respectively] equal to the lines AE and AB, the angles CAB and EAB 

are equal as two right angles, the base CB is equal to the base EB, and 

the triangle CAB is equal to the triangle EAB. Hence the base CB is 

equal to the base EB and the remaining angles [of the triangles] are 

equal [and in particular], the angle CBA is equal to the angle EBA. But 

the sum of the two angles ABD is equal to the sum of the two angles 

ABF [each being a right angle]. Hence the remaining angle CBD is equal 

[to the remaining angle] EBF. Angle CDB is equal to angle EFB as two 

right [angles]. Hence triangle CDB is equal to triangle EFB, for two 

angles of one of them are [respectively] equal to two angles of the other 

and the sides CB and BE of these triangles are equal. Hence the line CD 

is equal to EF. But [by assumption] CD is greater than AB. Therefore 

EFisalso greater than AB. Imagine the line EF moving along the line FB 

so that during this motion the angle EFB stays a right angle throughout 

the time of the motion and EF is always perpendicular to [the line FB]. 

If, in the motion of the line EF, the point F coincides with the point B, 

then the line EF will be superposed on the line BA; the reason for this 

is that the angles EFB and ABD are equal, for each of them is a right 

angle. Now if the line EF is superposed on the line BA, the point E 

will be external to the line AB and the excess will be on the side of 

the point A for, as was shown, the line EF is greater than the line AB 

as a result of the equality of the angies EFB and ABD. Therefore, upon 

superposition on the line BA, [the line] EF will be the line BH. After 

that, the line BH will move in the direction BD where it will be equal 

to its original position. If in the process of motion of the line BH the 

61 
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point B coincides with the point D, the line BH will be superposed on 

the line DC, for the angles HBF and CDB are equal as two right [angles]. 

If the line BH is superposed on the line DC, the point H coincides with 

the point C, for the line HB is the line EF and the line EF is equal to 

the line CD, that is, it coincides with it when, in the process of motion 

of the line EF along the line FD, the point F coincides with the point D 

and the point ЕЁ coincides with the point С. But when defining parallel 

lines we showed that if any [straight line] moves in this way, then its 

ends describe a straight line. Therefore, in the process of motion of 

the line EF along the line FB, the point Е describes a straight line. But 

the line described by the point Е is the line EHC. Thus the line EHC is 

a Straight line. But, by assumption, the line EAC is a straight line joining 

the points E and С, and the line EHC, different from the line EAC, has 

in common with it two points E and C. Since both of these lines are 

straight lines, two lines bound a surface area, which is absurd. It follows 

that our assumption that the line CD is greater than the line AB is 

also absurd, that is, the line CD is not greater than the line AB /274, 

pp. 748—750]. 

In the same way it is proved that the line CD is not smaller than the line AB. 

By a similar argument it is shown that every perpendicular dropped from the 

line AC to the line BD is equal to the line AB. 

Ibn al-Haytham first proves the parallel postulate for the case of a perpen- 

dicular and an oblique line. He begins by considering the lines АС and EDG 

intersected by the straight line BD perpendicular to EDG (Figure 23). From 

Figure 23 
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the point B Ibn al-Haytham draws the straight line BK perpendicular to BD, 

chooses an arbitrary point C on the straight line BC, and drops from it the 

perpendicular CH to the straight line BD. By a detailed analysis of all possible 

cases, and by using the fact that a straight line which cuts one side of a triangle 

and does not pass through any of its vertices must cut one of the two remaining 

sides (today this proposition is called “‘Pasch’s axiom,” for it was formulated 

as an axiom by M. Pasch at the end of the 19th century), Ibn al-Haytham 

proves that the foot H of the perpendicular CH to the line BD lies between 

В and D. Then the lines CH and AC are extended toward С and segments 

CF = CH and CL = BC are laid off on the extensions, the line CL is drawn, 

and the equality of the triangles LCF and BCH is proved, whence it is clear 

that CFL is a right angle. Further, the perpendicular FK to the line BK is 

dropped from the point F. In view of the premise, KFH is a right angle and 

ЕК = HB. И follows that ГЕК is a straight line and LK = 2BH. If LK is not 

greater than BD then this process is continued until one obtains a line greater 

than BD; in Ibn al-Haytham’s diagram such a line is NO = MK = 4BH. To 

justify the possibility of finding such a line Ibn al-Haytham argues that 

for any two different lines, if the smaller one is doubled infinitely many 

times, its magnitude will become larger than the greater magnitude. This 

premise was not needed earlier in this proof but Euclid used it in his 

book т his other proofs [274, р. 756]. 

Then Ibn al-Haytham lays off the line KO = BD and proves that if the line 

DG is extended to the line KM then it cuts it at the point O; at this point 

а great many propositions are again stated and refuted. Noting further that 

by his premise KOD isa right angle and again making use of Pasch’s axiom for 

the line DO and the triangle LMN, Ibn al-Haytham finds that the extension of 

the straight line EDG meets the side LN of that triangle, that is, the extension 

of the straight line AB. 
Using the same diagram (Figure 23) Ibn al-Haytham proves the parallel 

postulate in the cases when the angle BDG is acute and when it is obtuse. In 

the first of these cases Ibn al-Haytham drops a perpendicular from B to DG, 

shows that it falls on the side of G, and reduces the problem to the previous 

case. In the second case he halves the line BD at R; drops the perpendicular 

RX from К to EDG, proves that it will fall on the side of Е; constructs the 

angle RDT equal to the angle DBC; drops from R the perpendiculars RU and 

RS to the lines DT and BC, respectively; proves that the triangles RSB and 

RDU are equal and the perpendiculars RU and RS form a single line; draws 

the line SX; proves that it intersects the lines ABC and EDG at acute angles; 

and thus reduces the problem to the previous case. 

Therefore [concludes Ibn al-Haytham] that perpendicular is the line CH 

and the point H is between the points B and D. [We extend the line] CH 

in its direction toward C and we also extend it in its direction toward H, 

we lay off [on the extension of the line CH] the line CF equal to [the line] 
CH, we lay off [on the extension of the line BC] the line CL equal to 
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[the line] BC, and join F [to] L. Since the lines BC and CL are equal, 

and also the lines CH and CF, and the vertical angles LCF and BCH 

are equal, the base LF is equal to the base BH and each of the two other 

angles is equal to its corresponding one. Therefore the angle CFL is 

equal to the right angle CHB, that is, CFL is a right angle. From the 

point F we drop a perpendicular to the line BK, let this be FK. The line 

FK is equal to the line HB and, as was proved in the premise, KFH 

is a right angle. But CFL is also a right angle, so that the line LFK is 

a straight line. Since it was shown that the line LF is equal to the line BH, 

the line LK is equal to twice the line LH. If LK is not greater than the 

line BD, we extend the line BL in its direction toward L and we also 

extend the line KL in its direction toward L, we lay off the lines LM and 

LN and join N [to] M; here the lines LM and LN are [respectively] equal 

to the lines BK and LK and the vertical angles NLM and BLK are equal. 

Therefore the base MN is equal to the base BK, and the triangle NLM 

is equal to [the triangle] BLK, and the remaining angles [of the triangles] 

are equal to the remaining angles, each to the corresponding one. 

Therefore if a straight line falls on two straight lines and the interior 

angles on one of the two sides are together less than two right angles, 

then these two straight lines, when extended to that side, meet, and this 

is what we wished to prove [274, рр. 758—762]. 

In his Book on the resolution of doubts п al-Haytham refers to the fact 

that he proved the parallel postulate in the Book of commentary on the 

premises and notes that this postulate is equivalent to the assertion that two 

intersecting lines cannot be parallel to a third line (that is, it is not possible 

to pass through a point two different parallels to one line) and 

this assertion is clearer to the senses and penetrates into the soul more 

than it /237, р. 25]. 

Khayyam’s Theory of Parallels 

The first theory of parallel lines in which the proof of the parallel postulate 

is not based on petitio principii but on a more intuitive postulate is the theory 

of parallel lines of “Umar Khayyam, mathematician, astronomer, philoso- 

pher, and poet from the city of Nishapur (in Khorasan), who worked in 

Samarkand, Bukhara, Isfahan, and Магу. Especially popular 15 Khayyam’s 

Rubd ‘iyat in Persian. 

It is the first book of his Commentaries on the difficulties in the premises of 

Euclid’s book (Sharh ma ashkala min musadarat kitab Ugqlidis) [272, pp. 

113—146]° that deals with the theory of parallel lines. In the remaining two 

°There is an incomplete English translation of Khayyam’s Commentaries by Ali-Reza Amir 

Moéz [277]. In 1986 there appeared a French translation of the book devoted to the theory of 

parallels /248а, рр. 185—199]. 
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books of this work Khayyam expounds his studies of the theory of ratios, 

which we will consider later. Khayyam has no doubts of the truth of Euclid’s 

parallel postulate but views it as less obvious than many of the propositions 

that Euclid thought needed proof, suchvas the theorem that equal central 

angles cut off equal arcs from equal, circles. Khayyam refutes, as logically 

unsound, a number of the attempts of his predecessors to prove the parallel 

postulate. Khayyam includes in this category the previously mentioned at- 

tempts due to Heron, Eutocius, al-Shanni, and al-Nayrizi. Khayyam also 

refutes Ibn al-Haytham’s proof presented previously, which he criticizes for 

its use of the concept of motion. Like Aristotle, Khayyam rejected the applica- 

tion of motion in geometry. 

Further, Khayyam formulates five “‘principles borrowed from the Philoso- 

pher” (Aristotle). We cited these principles previously and pointed out that 

the fourth is equivalent to the parallel postulate. 

Khayyam proves first that two perpendiculars to the same line cannot 

intersect, for if they did then they would have to intersect in two points, one 

on each side of that line. This and the first assertion in Khayyam’s principle 

IV imply that two perpendiculars to the same line cannot converge. 

The second assertion of Khayyam’s principle IV implies that these two 

perpendiculars also cannot diverge, for they would have to diverge on both 

sides of the line they are perpendicular to. It follows that two perpendiculars 

to a single line must be equidistant. 

Khayyam goes on to prove eight propositions which, in his view, should 

be inserted in book I of Euclid’s Elements in place of its proposition 29 with 

which Euclid starts the exposition of the theory of parallel lines based on 

his parallel axiom. Here Khayyam constructs a quadrilateral formed by two 

perpendiculars AC and BD of equal length erected at a line AB and segments 

AB and CD. Like the Ibn al-Haytham—Lambert quadrilateral, this quadri- 

lateral has played an important role in the history of non-Euclidean geometry. 

It is often called the Saccheri quadrilateral for the |8th-century mathematician 

G. Saccheri who considered it anew. We note that the axis of symmetry of a 

Khayyam-Saccheri quadrilateral divides it into two Ibn al-Haytham—Lambert 

quadrilaterals. 

Before setting forth his propositions Khayyam says: 

We should now adopt the twenty-eight propositions of the book of 

Elements, for they do not involve this premise. But it requires a twenty- 

ninth proposition that embodies the law governing parallel lines. There- 

fore, let him who so desires replace the twenty-ninth proposition of 

book I with the first proposition of this book and thus include it... in 

the content of the [former] book. Here we shall see the true “‘proof of 

why this is $0” [272, р. 120]. 

“The proof of why this is so” is a well-known term of Aristotelian logic 

opposite to the Aristotelian term “proof that it is so” /29, vol. 1, р. 78“ ]. 

In Khayyam’s proposition I, which he calls the 29th proposition of Euclid’s 

book I, two equal perpendiculars AC and BD are erected at the ends of a 
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straight line AB, the upper ends of these perpendiculars are joined (Figure 24), 

and it is shown that the angle ACD is equal to the angle BDC. In proposition 

II (proposition 30 of the Elements) one erects, in the same quadrilateral 

ABCD, a perpendicular EG at the midpoint E of the line AB (Figure 25), 

and it is shown that CG = GD and that EG is perpendicular to DC. The key 

role in Khayyam’s proof is played by his proposition III (proposition 31 of 

the Elements): 

Third proposition (that is, proposition 31 of the Elements). We again 

consider the figure ABDC (Figure 26). I claim that the angles ACD and 

BDC are equal. 

Proof. We halve AB at E, erect the perpendicular EG, extend it in its 

direction to G, lay off GK equal to GE, and draw HKF perpendicular 

to EK. as 

Next we extend AC and BD. They intersect HKF at H and F, for AC 

and EK are parallel and the distance between parallel lines does not 

change and, if we produce indefinitely AC parallel to the line EK and 
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produce HK indefinitely parallel to the line GC then, obviously, they 

will intersect. We join C [to] K and D [to] K. Then, since the line DG is 

equal to GC and GK is common as well as perpendicular [to DG and 

СС], it follows that the bases DK and KC are equal and the angles ССК 

and GDK are equal. Therefore the gngles HCK and KDF are also equal, 

the complementary angles DKG and CKG are equal and the remaining 

angles KHC and KFD are also equal. Therefore, since the line DK is 

equal to KC, it follows that CH is equal to DF and HK is equal to KF. 

If ACD and BDC are right angles, this is unavoidably true. If they are 

not right angles then each of them is either smaller than or greater than 

a right angle. 

Assume first that they are smaller than a right angle. If we superpose 

the plane figure CF on the plane figure CB then GK is superposed on 

GE аз well as HF on AB, and HF will be equal to the line NS for angle 

HCG 1$ greater than angle АСС and line HF is greater than AB. In just 

the same way, if the two lines [CH and DF] are produced indefinitely, 

then each of the lines joining [them] will, progressively, be ever larger. 

Therefore, the lines AC and BD will diverge. In just the same way the 

lines AC and BD will diverge if produced in the opposite direction; this 

is proved in exactly the same way for, with regard to superposition, the 

circumstances on both sides are necessarily the same. Therefore two 

straight lines cut a straight [line] at right angles and, subsequently, on 

either side of that line the distance between them increases. But this is 

absurd in view of the axiom, if one envisages straightness. Therefore 

the two lines are a fixed distance apart. This follows from what was 

considered by the Philosopher. 

Now suppose that each of them [the angles ACD and ВОС] is greater 

than a right angle. Then upon superposition the line HF will be equal 

to LM and will be smaller than AB, just as will be all connecting lines, 

and these two lines [CH and DF] will converge. On the other side there 

will also be convergence for, with regard to superposition, the circum- 

stances are identical on both sides. If you give it some thought you will 

follow it. But, according to what was said above, this is again absurd. 

Thus the two lines [AB and FH] cannot be different, that is, they are 

equal. Since they are equal, the two angles must also be equal and thus 

are right angles. With a little thought you will follow it. Therefore, to 

avoid verbosity, we leave this question. He who will want to carry out 

a detailed proof will be able to do this without requiring our assistance. 

The mistake of later [scholars] in the proof of this premise is due 

to the fact that they did not take this axiom into consideration even 

though its subject and predicate occurred correctly. Even persons of 

profound intuition and penetrating mind may fail to consider many 

axioms because they fail to conceive their subjects and predicates. But 

the primacy and truth of an assertion lie not only in the presentation 

of its subject and predicate; for the correctness or incorrectness of 

67 
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an assertion depends not on subject and predicate alone but only on 

the connection between them. Grasp this /272, рр. 120-122]. 

We see that when he considers the acute- and obtuse-angle hypotheses 

Khayyam first folds the drawing along the line CD and shows that in the case 

of the acute angle hypothesis the segment HF coincides with the segment №5 

and in the case of the obtuse angle hypothesis HF coincides with the segment 

LM—that is, under the first hypothesis the upper base of the quadrilateral is 

greater than the lower one and its sides grow apart, whereas under the second 

hypothesis the upper base is smaller than the lower one and the sides of the 

quadrilateral come closer to one another. Further, upon folding the drawing 

along the line 4B Khayyam sees that under the acute-angle hypothesis two 

perpendiculars to a line diverge on both sides of that line and under the 

obtuse-angle hypothesis those perpendiculars converge on both sides of that 

line. But this situation contradicts Khayyam’s principle ТУ, that is, that two 

perpendiculars to the same line are a fixed distance apart. In other words, 

both the acute- and obtuse-angle hypotheses contradict this principle. This 

proves the existence of a rectangle. 

Khayyam goes on to define the “distance between two arbitrary [straight] 

lines” as “‘the line that links them in such a way that the interior angles are 

equal.” In this connection Khayyam argues as follows: 

Two lines AB and AC intersect in a point A (Figure 27). I claim that 

they open and diverge indefinitely. To this end we draw a circle with 

center A at a distance AB. The distance between the two lines at their 

intersection with the circle is the line BC. We extend AB in its direction 

and draw the circle ADE. Then we extend AC in its direction to its 

intersection with the circle [ADE] at the point Е and join D [to] Е. Then 

DE is the distance between the two lines and the line DE is greater than 

BC; and if we imagine the meaning of circle, angle and straight line 

then, undoubtedly, this is an axiom /272, р. 123]. 

We note that drawing arcs with center at the vertex of a right angle and 

their chords is reminiscent of the arguments by which Simplicius and al- 

Figure 27 
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Jawhari proved the parallel axiom. It is possible that Khayyam adopted these 

arguments from these or other proofs of that axiom by his predecessors. We 

also note that the assertion we are considering is the third “‘principle borrowed 

from the Philosopher” (Aristotle) and 1615$ a consequence of the axioms of 

Euclidean geometry that is independent of the parallel axiom. 

After defining the distance between straight lines Khayyam poses the 

following question: 

Given two straight lines 4B and DC ina plane and, assuming a point 

E on AB, the distance between the point Е and the line DC is the line 

EG and angle F is equal to angle G (Figure 28). But how is one to draw 

from the point E a line to CD such that the interior angles are equal? 

Correction of the foundations of geometry is a job for the geometer and 

not for the philosopher. Can one draw a line with this property? This 

question belongs to the art of the author of [philosophical] principles. 

We shall clarify this as follows. It is possible to draw from E countless 

lines that form at their ends countless angles that differ from one another 

in that one is greater or smaller than the other. But since at the two ends 

[of the connecting straight line] there are different [angles], one greater 

or smaller than the other, it follows from the infinite divisibility of mag- 

nitudes that the equality of two angles [EGF and СЕН] is necessarily 

possible. 

We lay off EH and GF equal to one another and join H [to] F. Then 

angle H is equal to [angle] F, as shown in the first case, so that HF is 

the distance. Hence if HF is greater than EG, the two lines diverge. 

Next we lay off HK and FL, equal to one another, and join K [to] L. 

Then KL is the distance. But if КГ is smaller than HF, the two lines 

converge in view of the axiom, for they diverged before. The same 

[contradiction] will also necessarily arise when they are equal. 

If HF is smaller than EG, the two lines converge. By what we have 

Figure 28 
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proved KL is necessarily smaller than HF, for otherwise, in view of 

the axiom, we obtain an absurdity. 
It is thus clear that if two coplanar lines converge in a certain direc- 

tion, it is impossible that they should diverge in that direction. The same 

is true if they diverge. This explanation is philosophical, not geometric. 

The example we gave is meant to make the presentation more visual 

and obvious for those without a keen intuition /272, pp. 123-124]. 

We see that in proving the possibility of drawing a line that forms equal 

angles with two given lines Khayyam refers to the first “principle borrowed 

from the Philosopher,” which in his case plays the role of a continuity 

principle. By “‘the axiom” Khayyam means the fourth principle, with which 

he replaced the parallel axiom. 

In proposition IV Khayyam shows that in a rectangle the opposite sides 

are equal. In proposition V he shows that two perpendiculars to one line 

have the property that any perpendicular to one of them is their common 

perpendicular. According to his proposition VI, if two lines are parallel in 

the Euclidean sense, that is, if they do not intersect upon extension, then they 

constitute two perpendiculars to one line. 

In proposition VII it is shown that a straight line falling on parallel straight 

lines makes the alternate angles equal to one another, the exterior angle equal 

to the interior and opposite angle, and the interior angles on the same side 

equal to two right angles. This is Euclid’s proposition 29 of book I, but in 

proving it Khayyam relies on his propositions and not on Euclid’s parallel 

axiom. 

Finally, in proposition VIII Khayyam proves the parallel postulate in 

Euclid’s formulation: 

The eighth proposition (that is, proposition 36 of the Elements). The 

line EG is a straight line. From it are drawn two lines EA and CG such 

that the angles AEG and CEG are [together] less than two right angles 

(Figure 29). I claim that they intersect on the side of A. 

Proof. We extend the two lines in their directions. Let the angle AEG 

be smaller than [the angle] EGD; we construct the angle HEG equal to 

[the angle] EGD. Then, as Euclid showed in proposition 27 of book I, 

the two lines HEF and DGC are parallel and the line AE that intersects 

[the line] НЕ will intersect the line CD on the side of A. This is what 

we wished to prove. 

This is a true proof of the assertions on parallels according to its sense 

and purpose. These propositions should be added to the Elements in 

the order in which we have set them forth in this book. They follow 

from the principles of the First Philosophy.®° We have included them 

here in spite of the fact that they go beyond the main point of this 

° By First Philosophy Khayyam means Aristotle’s philosophy (the philosophy of the First Philos- 

opher); this was originally the title of Aristotle’s Metaphysics. 
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art, for we could not avoid it owing to the fact that this is a difficult 

question that has been treated by many people. Therefore we have 

added in the introduction the mentioned principles, for this art requires 

them as a sound philosophical basis and so as not to provoke suspicions 

and doubts in the minds of those who ponder it [272, р. 127]. 

We see that Khayyam’s proposition is close to Proclus’ proof except that 

Khayyam justifies the constancy of the distance between the nonintersecting 

lines EH and CD whereas Proclus silently assumes its boundedness. 

Husam al-Din al-Salar’s Theory of Parallels 

At the beginning of the 13th century, Husam al-Din al-Salar, author of 

a treatise on the complete quadrilateral cited by Nasir al-Din al-Tusi /590, 

pp. 23, 30], tried to improve Khayyam’s proof. The title of al-Salar’s treatise 

is Premises for the proof of the postulate, given by Euclid in the beginning of the 

first book, which refers to parallel lines (Mugaddamat li-tabyin al-musadara 

allati dhakaraha Uglidis fi Sadr al-maqala al-ula fima yata‘allaga bi-l-khutut 

al-mutawaziya) /499/. Al-Salar’s proof consists of six “premises” and the 

proof of the parallel postulate itself. 

Al-Salar’s first “premise” coincides with proposition I of Khayyam’s proof. 

Here al-Salar, like Khayyam, assumes that the upper angle of his Khayyam- 

Saccheri quadrilateral can be acute as well as obtuse. Also, al-Salar says that 

the distance between two lines, or the distance between two points on 

them, is defined in terms of the magnitude of the line joining the two 

lines and forming with them two equal angles /499, р. 285] 

that is, al-Salar mentions the term distance between two lines in the same sense 

as Khayyam. 
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Next comes al-Salar’s second “‘premise,” which is the core of his proof. 

Second premise. For every straight line from whose ends are drawn 

two straight lines that stand straight on it, that is, do not incline to 

either side, like the lines AC and BD drawn from the ends of the line 

AB in the indicated manner (Figure 30), that is, are perpendicular to it, 

[it is true that] however far they go from the points of issue they do not 

tend to come together or move apart. 

While this is obvious and easy to understand we give a proof, namely, 

we draw froma point Е between the points А and Ba line EG which also 

stands on that line like the two earlier lines. If the two perpendiculars 

issuing from the ends of the given line tend to come together then, the 

position of EG relative to each of the lines AC and BD being the same 

as their mutual position, the line EG necessarily tends to come near each 

of them. On the other hand, if they tend to move apart, then it too will 

tend to move away from each of them. Obviously, such a situation 

cannot develop for, if a line ends up between two other lines then it is 

not possible that it should tend to come near one of them without 

tending to move away from the other, or that it should tend to move 

away from one of them without tending to come near to the other. 

From this we learn the proof that a line joining the ends of two equal 

perpendiculars issuing from the ends of a given line must necessarily be 

equal to the given line, just as the line CD, joining [the ends of] the equal 

perpendiculars AC and BD issuing from the ends of the line AB, is 

necessarily equal to AB: if CD were unequal to AB then it would be 

greater or smaller than it. If it is greater then the two lines tend to move 

apart, and if it is smaller, then the two lines tend to come together. But 

we know already that under these circumstances the distance between 

them is constantly in the same state, it neither increases nor decreases 

[499, p. 286]. 

The assertion that two perpendiculars to a straight line do not come 

together or move apart was proved by Khayyam in his proposition III: he 

refuted the proposition that the upper angles of a Khayyam-Saccheri quadri- 
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lateral are either obtuse or acute with the help of the fourth “principle 

borrowed from the Philosopher.’’ Al-Salar replaces Khayyam’s sophisticated 

proof with a crude and defective argument in which one first supposes that 

two perpendiculars come together or move apart and then one considers 

a third perpendicular located between,them. The author finds a contradiction 

between the notion that, in that case, the third perpendicular must simultane- 

ously come near the boundary perpendiculars or move away from them and 

the notion that if a straight line between two perpendiculars comes near one 

of them then it must move away from the other. Actually in the latter assertion 

it is tacitly assumed that the boundary perpendiculars are a fixed distance 

apart. Al-Salar goes on to say: 

If this premise is established, it suggests to us the third premise: if the 

two angles A and Bare not themselves right angles but are equal to them 

[in sum], then the position of these two lines is the same as the position 

of the [straight lines] mentioned earlier, that is, they never come near or 

move apart /499, р. 286]. 

This “‘premise” of al-Salar is identical with one of the assertions of Khayyam’s 

seventh proposition. 

Al-Salar’s fourth “‘premise’’, to the effect that 

A line joining the ends of two equal perpendiculars drawn from the 

ends of a straight line is the boundary of two right angles /499, р. 287] 

coincides with proposition III of Khayyam but is proved by using the 

notion that the sides of a Khayyam-Saccheri quadrilateral are equidistant 

straight lines. Al-Salar’s fifth “premise” coincides with proposition IV of 

Khayyam. Al-Salar’s sixth “premise” is very interesting. Its statement is that 

When two lines diverging from a point and bounding a right or nonright 

angle are indefinitely extended then the distance between them will 

exceed a multiple of any distance and of [any] given magnitude [when 

the multiple is increased] indefinitely /499, р. 288]. 

It coincides with assertion III of the “‘principles borrowed from the Philoso- 

pher,” accepted without proof by Khayyam. 

The proof of this “ргепизе,” which consists in inserting a triangle in the 

angle, doubling its sides, and proving that the base of the new triangle is twice 

as large as the base of the original triangle, is very close to the argument in 

propositions 31 and 32 of al-Jawhari. 

Al-Salar’s proof of the parallel postulate is basically the same as the proof 

of Khayyam’s proposition VIII. Al-Salar’s sixth “ргетё5е” shows that, begin- 

ning with Khayyam’s proof and trying to improve it, he proved the third 

“principle borrowed from the Philosopher” that Khayyam accepted without 

proof. However, having misunderstood the proof of Khayyam’s fundamental 

proposition Ш, al-Salar replaced it with a faulty argument in which he 

assumed what he tried to prove. 
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Nasir al-Din al-Tusi’s Theory of Parallels 

On a number of occasions we have mentioned Nasir al-Din al-Tusi’s work 

devoted to the theory of parallel lines. This work is the Treatise that heals the 

doubt raised by parallel lines (Al-risala al-shafiya ‘an al-shakk #1 I-khutut) 

[593].7 It begins with an exposition and critique of the theories of parallel 

lines of Ibn al-Haytham, al-Jawhari, and Khayyam. At the time when he 

wrote his treatise а!-Тая was in the “‘state of Assassins” and was isolated 

from the outside world (the treatise was finished not later than 1251, at which 

time ‘Alam al-Din al-Hanafi, with whom al-Tisi corresponded about it, died; 

al-Tisi remained in the state of Assassins until it was overrun by the Mongols 

in 1256) with no access to many relevant mathematical works. In particular, 

although familiar with Ibn al-Haytham’s Book on the resolution of doubts in 

Euclid’s book the ‘“‘Elements’’, he did not have a copy of his Commentaries on 

the introductions of Euclid’s book the “Elements”, which contained a proof 

of the parallel postulate. That is why he took Ibn al-Haytham’s statement 

that the parallel postulate is equivalent to the impossibility of the existence of 

two intersecting straight lines parallel to a third and that the latter assertion 

is more intuitive than the parallel postulate to mean that he (that is, Ibn 

al-Haytham) had not tried to prove the parallel postulate but only to replace it 

with a more intuitive assertion. As for Khayyam’s geometric treatise, al-Tusi 

quotes not all of the material relating to parallel lines but only the eight 

propositions that contain the proof of the parallel postulate and fails to notice 

that Khayyam’s proof is based on the fourth “principle borrowed from the 

Philosopher,” which consists of two assertions equivalent to the parallel 

postulate. Al-Tusi thinks that, by using the assertion that the distance between 

two intersecting lines increases beyond all bounds, that is, the third “‘principle 

borrowed from the Philosopher” (the principle proved by al-Salar), Khayyam 

had made a logical error. As pointed out earlier, this assertion is independent 

of the parallel axiom, so that al-Tusi’s reproach is completely unfounded. АП 

that is correct is al-Tusi’s critique of the “proof” of al-Jawhari. 

Al-Tusi goes оп to give his proof of the parallel postulate: 

As for the approaches by means of which I investigated this after 

studying the words of these scholars, we will set forth our discourse 

in seven propositions, two of which are taken from al-Khayyam’s 

propositions; they are our second and fourth which are his first and 

fourth. Let the beginning of the book the Elements, the twenty-eight 

propositions that do not include a doubtful postulate, remain unchanged, 

and then we will add these propositions /593, р. 511]. 

In proposition I al-Tusi proves that 

The shortest one of the lines drawn from a point to any line whose ends 

are not bounded, called the distance from that point to that line, is 

the perpendicular dropped from the point to the line /593, р. 511]. 

’A French translation of this treatise was published in 1986 [248а, pp. 137-144, 201-226]. 
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Al-Tusr’s proposition П is that 

If one erects two equal perpendiculars to a straight line and joins their 

ends by means of a straight line then they form equal angles [with the 

latter] /[593, р. 512]. 

This proposition coincides with proposition I of Khayyam’s proof. 

The core of al-Tusi’s proof is proposition Ш, which coincides in its formu- 

lation with Khayyam’s proposition III but differs in its proof. 

Proposition Ш. If one erects two equal perpendiculars and joins their 

ends by means of a straight line then the angles formed by them are 

right angles. 

Example. Equal perpendiculars 4B and CD are erected on the line 

BD, and their ends are connected by means of the line AC (Figure 3la 

and 31b). I claim that the equal angles BAC and DCA are right angles. 

Proof. If they are not right angles then they are obtuse or acute. 

First we assume that they are obtuse and we erect in the first drawing 

(Figure 31a) at the point A a perpendicular AE to the line AC as proved 

in proposition IT. It necessarily falls between the lines AB and CD and, 

as proved in proposition 16, the angle AED, an exterior angle of the 

triangle ABE, is greater than the interior right angle. Therefore it is also 

obtuse. Now we erect at the point Ра perpendicular EG to the line BD. 

It falls between the lines AE and CD, and the angle EGC, an exterior 

angle of the triangle EAG, is greater than the interior right angle A. 

Therefore it is also obtuse. Further, we erect at the point G a perpen- 

dicular GH, again to the line AC, and in this order we will indefinitely 

continue to erect perpendiculars. Then the perpendiculars drawn from 

points located on the line AC at a right angle to the line BD, [that is,] 

the perpendiculars AB, GE, FH, successively increase in length. The 

shortest of them is the perpendicular AB which subtends the acute 

angle AEB in the triangle AZB and is therefore shorter than AE which 

subtends the right angle ABE; this follows from proposition 19. AE, 

which subtends the acute angle AGE in the triangle AEG, is shorter than 

GE which subtends the right angle EAG. Therefore AB is also shorter 



76 2. The Theory of Parallels 

than GE. In just this way it is shown that GE is shorter than FH and 

FG is shorter than that which follows it. Thus the perpendiculars closer 

to AB will be shorter and the distances between the points that are 

the feet of the perpendiculars dropped from the points of the line AC 

to the line BD successively increase in the direction of C, so that the lines 

AC and BD diverge in the direction of C and converge in the direction 

of A. But the angle DCA is also obtuse, for it is equal to the angle BAC 

by the previous proposition. Thus we prove, as before, that the lines CA 

and DB diverge in the direction of A and converge in the direction of 

C. But this is absurd. Hence the angles BAC and DCA are not obtuse. 

If, on the other hand, these angles are acute, then in the second 

drawing (Figure 31b) we will drop from the point В а perpendicular BE 

to the line AC, as proved in proposition 12. It necessarily falls between 

the lines AB and CD, for the angle A is acute and it is impossible that 

it falls outside these lines. In the right triangle AEB the angle ABE 

is acute, so that the angle EBD which, together with the angle ABE, 

forms the right angle ABD is also acute. Next we drop from the point B 

a perpendicular EG to the line BD. It falls between the lines 4B and 

CD and the angle GEC is acute. Then we drop from the point G a per- 

pendicular GH again to the line AC and in this order we will indefinitely 

continue to drop perpendiculars. Then the perpendiculars drawn from 

the points on the line AC at right angles to the line BD, the perpen- 

diculars AB, EG, HF, successively decrease in length. The longest one 

of them is the perpendicular AB. In this way it is shown that the lines AC 

and BD converge in the direction of C and diverge in the direction of A. 

But the angle DCA is also acute, for it is equal to the angle BAC by 

the previous proposition. Hence, as before, it is shown that the lines CA 

and DB converge in the direction of A and diverge in the direction of C. 

But this is absurd. Hence the angles BAC and DCA are not acute, and 

since they are not obtuse either, they are right angles. And this is what 

we wished to prove /593, рр. 512-514]. 

Here al-Tusi, like Khayyam before him, considers Khayyam-Saccheri 

quadrilaterals and three hypotheses about their upper angles. While refuting 

the obtuse- and acute-angle hypotheses, al-Tusi shows that in the first case 

the perpendiculars he erects increase from the edge of the base toward its 

midpoint and in the second case the perpendiculars he drops decrease from 

the edge of the base toward its midpoint; and he thinks that this contradicts 

the symmetry of these quadrilaterals relative to the perpendiculars joining 

the midpoints of their lower and upper bases. In fact, all perpendiculars 

constructed by al-Tusi turn out to lie on one side of the axis of symmetry of 

the quadrilateral; this shows that in the case of the obtuse-angle hypothesis 

the bases of a Khayyam-Saccheri quadrilateral come together on both sides 

of its axis of symmetry, and in the case of the acute-angle hypothesis they 

move apart, which is what Khayyam proved for two perpendiculars and one 

straight line. 



Nasir al-Din al-Tusi’s Theory of Parallels Wf 

Al-Tus1’s proposition IV that 

Every two opposite sides of a right-angled quadrilateral are equal 

ов 31) 

coincides with proposition IV of Khayyam’s proof. Al-Tisi’s proposition У, 

that 

Ifa straight line falls on two perpendiculars erected in an arbitrary way 

on another straight line then the alternate angles are equal, each exterior 

angle is equal to the [corresponding] interior opposite angle, and interior 

angles on the same side are equal to two right angles /593, р. 515] 

coincides with proposition VII of Khayyam’s proof. In proposition VI al-Tust 

gives a proof of the parallel postulate for the case of a perpendicular and 

an oblique line that is very close to the second proof given by ibn Qurra and 

to the proof given by Ibn al-Haytham. In proposition УП al-Tusi gives a very 

original proof of the general case of the parallel postulate: 

Proposition VII containing the proof of the postulate: If a straight 

line falling on two straight lines makes the interior angles on the same 

side [together] less than two right angles, the two straight lines, if 

produced indefinitely, meet on that side. 

Example. The line AB falls on the lines CD and EG and forms angles 

CHF and EFH that are together less than two right angles (Figure 32). 

I claim that the lines CD and EG, if extended in the direction of C, 

will meet. 

Proof. If one of the angles CHF and EFH is a right angle, then the 

other angle is necessarily acute. Therefore one of the lines CD and EF 

intersects the line AB at an angle that is not a right angle and the other 

is perpendicular to it, so that if we extend them, they will meet on the 

side of the acute [angle], as was proved in the previous proposition. 

Figure 32 
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If one of the angles is obtuse, let it be the angle CHF, we erect at H 

a perpendicular H/ to the line CD, as shown in proposition 11, and from 

F we drop to it a perpendicular FK as shown in proposition 12. Then 

we claim that, since the angles CHF and EFH are together less than 

two right angles and СНГ is a right angle, the angles JHF and HFI are 

together less than a right angle. But, as was shown in the fifth of these 

propositions, the angles JHF and HFK, as alternate angles formed by 

the line AB falling on two perpendiculars JH and ЕК, are equal. Hence 

the whole angle KFI is less than a right angle, that is, it is acute. 

Therefore the lines KF and EF intersect at an angle that is not a right 

angle and the line HK is perpendicular to one of them, namely to the 

line KF. Therefore, as shown in the previous proposition, the lines CK 

and EF will meet if extended in the direction of C and E. 

If both angles are acute then we will erect at the point Ра perpendicular 

FK to the line GE, as shown in proposition 11, and drop to it from the 

point H a perpendicular НТ, as shown in proposition 12. Then EFK is 

a right angle, and the angles KFH and FH/ are equal as alternate angles 

formed by the line AB falling on two perpendiculars HJ and KF, as 

proved in the fifth of these propositions. Hence the angles FH/ and HFI 

are together equal to a right angle. Since, by assumption, the angles EFH 

and CHFare less than two right angles, the angle JHC is less than a right 

angle, that is, it is acute. Therefore the lines JH and СН intersect at 

an angle that is not a right angle and EJ is perpendicular to one of them, 

namely to JH. Therefore [the lines] CD and EG intersect when extended 

in the direction of С and Ё, as shown in the previous proposition. And 

this is what had to be proved /593, pp. 519-520]. 

Al-Tusi continues with a variant of the proof of the parallel postulate 

in which he replaces his propositions VI and VII with other propositions 

(but keeps proposition VIII). 

Instead of proposition VI. In every acute rectilinear angle, if one lays 

off equal lines on one side and drops from the division points per- 

pendiculars to the other side, then the lines cut off from that side by the 

feet of the perpendiculars are also equal. 

Example. In the acute angle BAC equal lines AD, DE and EG are 

laid off on AB and from their [ends] perpendiculars DH, EF and GJ 

are dropped to the line AC (Figure 33). I claim that the lines АН, HF 

and FI cut off by the feet of the perpendiculars are also equal. 

Proof. At the point D on the line ED we construct an angle EDK 

equal to the angle A, as shown in proposition 23. Then in the triangles 

AHD and DKE the angles A and D are equal; the angles D and E, one 

exterior and the other interior, formed by the line AE falling on the two 

perpendiculars DH and EF are equal, as shown in the fifth of these 

propositions; and the sides AD and DE are equal. Hence these two 

triangles are equal, the side AH is equal to the side DK and the right 
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Figure 33 Figure 34 

angle Н is equal to the angle К, as shown in proposition 26. Therefore 

the plane figure DHFK is a right-angled quadrilateral and its opposite 

sides DK and HF are equal, as was shown in the fourth of these pro- 

positions. Therefore the line AH, equal to DK, is also equal to HF. 

In the same way one shows that HF is equal to FI. And this is what 

we wished to prove. 

Instead of proposition ИП. If one chooses a point between the sides 

of a right angle then it is possible to join them by means of a line passing 

through that point. 

Example. т the right angle ABC one chooses a point D between the 

sides AB and BC (Figure 34). I claim that it is possible to join the sides 

AB and BC by means of a straight line passing through the point D. 

Proof. From B as center we draw at a distance BD the arc EDG 

passing through the point D. We draw the chord EG and halve the angle 

EBG by means of the line BJ, as shown in proposition 9. Then the 

triangles EBH and GBH are equal, for the sides EB and BH are equal 

to the sides GB and BH and the angles B are equal. Therefore the sides 

EH and HG and the angles H are also equal, as proved in proposition 4. 

Therefore EH is perpendicular to BH. We extend BH until it intersects 

the arc EDG at the point F. We repeat the line BH until the sum of these 

lines exceeds the line BF; let OX be that sum. On BA we lay off as many 

lines, each equal to the line BE, as the number of times ОХ is a multiple 

of BH; these are BE, EK. From the ends of these lines we drop perpen- 

diculars to the line BH; these are the perpendiculars EH, KL. As proved 

in the previous proposition, these perpendiculars will cut off from the 

line BH equal lines BH, HL. But their sum, equal to the line OX, is 

longer than the line BF, so that the end of the perpendicular KL on 

the line BJ, that is, the point Г, is outside the line BF. Further, we 

lay off on BC a line BM equal to BK and join M [to] L. Then the 

triangles BKL and BML are equal, for they have a common side BL, 

equal sides BK and BM, and equal angles B, as shown in proposition 4. 

i) 
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Therefore the angle MLB is equal to the right angle KLB and, in view of 

proposition 14, the lines KL and LM combine in direction into a single 

line. Next we join B [to] D, extend it to N and construct at D on the line 

DN an angle PDN equal to the angle DNL, as shown in proposition 23. 

Then the lines PD and NM are parallel, as before, in view of the equality 

of alternate [angles], that is, the angles PDN and DNB, as proved in 

proposition 26. We extend PD until it passes outside the triangle BKM 

at the points P and Z. The line PZ joins the sides AB and BC and 

passes through the given point D. And this is what we wished to prove 

[593, pp. 520-523]. 

Al-Tisi’s proposition VIII is the same as the last proposition in the proof 

given by al-Jawhari. 

The correspondence between al-Tusi and al-Hanafi referred to previously 

shows that al-Tusi discussed his treatise on parallel lines with other scholars. 

It seems that, influenced by criticism that followed his inclusion of both 

variants of his proof of the parallel postulate in his Exposition of Euclid 

(Tahrir Uglidis) / 596 /,® in distinction to his treatise, al-Tusi put the following 

remark after the statement of that postulate: 

I say that the latter assertion is not an axiom and can be proved only 

in the geometric science. It is best not to talk about this in the intro- 

duction, and I will prove this in the appropriate place. Instead of it I 

put the following assertion: if coplanar lines converge in one direction 

they cannot diverge in that direction, provided that they do not meet 

[353, p. 13; 596, p. 4]. 

Attempt at a Proof of the Parallel Postulate 

Attributed to al-Tusi 

The exposition of the theory of parallels referred to by J. Wallis and G. 

Saccheri in their respective papers on works on the parallel postulate and 

called by them “‘the proof of Nasir al-Din al-Tus?’” is not the same as the proof 

given previously. Wallis and Saccheri had in mind the Book of exposition of 

the “Elements” of Euclid authored by Khwaja Nasir al-Din al-Tisit (Kitab 

tahrir Usul li Uqlidis min ta’ lif khwaja Nasir al-Din al-Tisi) /175/? issued 

in Arabic with a Latin front page (Euclidis Elementorum geometricorum 

libri tredecim ex traditione doctissimi Nasiridini Tusini) in Rome in 1594. 

Exposition of the “‘Elements” of Euclid differs significantly from Exposition of 

ЗА Russian translation of the proof of the parallel postulate by Gabibulla Jafar-kulu oglu 

Mamedbeili (1914—1982) is given in /353, pp. 13-32]. 

ЗА Russian translation of the proof of the parallel postulate by С. J. Mamedbeili is given in 

[353, рр. 22—32] and in У. Е. Kagan’s book /255, рр. 119—121]. A French translation is given 

in /248а, рр. 233—241]. 
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Euclid. For one thing, Exposition of the “Elements” of Euclid is an exposition 

of just the 13 books of the Elements written by Euclid himself, whereas 

Exposition of Euclid is an exposition of all 15 books traditionally comprising 

the text of the Elements. For another thing, in the Exposition of the “Elements” 

of Euclid the text has been fundamentally reworked. An important difference 

between the two “expositions” is that there are very many preserved manu- 

scripts of the Exposition of Euclid (the author knows of 96 such manuscripts), 

whereas there are only two copies, one complete and one incomplete, of the 

Exposition of the “Elements” of Euclid, preserved in the Medici Library in 

Florence. The Roman edition is based on the complete Florentine manuscript. 

The fact that the significantly more perfect variant of the exposition of Euclid 

has been disseminated far less widely than the less perfect one has given rise 

to doubts about al-Tusi’s authorship of the Exposition of the ‘Elements’ of 

Euclid. This doubt was further substantiated after A. I. Sabra [494, р. 15] 

established that, as indicated in the Florentine manuscript, the Exposition of 

the *“*Elements” of Euclid was written in 1298, that is, after al-Tusi’s death. 

This is why J. Murdoch /379/ refers to the author of the Exposition of the 

“Elements” of Euclid as “‘pseudo-Tisi.”’'° However, a bibliography of the 
works of al-Tusi prepared by his student Nizam al-Din al-Nayshaburi, re- 

cently discovered by H. TllaSev /587/ and kept in the TaSkent Institute for 

Oriental Studies, lists three works of al-Tust devoted to commentaries on 

Euclid: number 9 is Exposition of Euclid; number 24 is Treatise on Euclid 

(Risala f1-l-Uqlidis), undoubtedly short for Treatise healing doubts about 

parallel lines; and number 27 is Remarks on Euclid (Hawashi ‘ala Uqlidis). 

The last work has not survived. It is possible that the Exposition of the 

“Elements” of Euclid was written after al-Tusi’s death by one of his students 

(very likely by his son, Sadr al-Din, whose full name was Sadr al-Din ibn 

khwayja Nasir al-Din, and who became the director of the Maragha observa- 

tory, founded by al-Tusi, after his father’s death) with due regard to the 

Remarks on Euclid. The Exposition of the “Elements” of Euclid contains a new 

and very original proof of the parallel axiom: 

First premise. If on any two coplanar straight lines such as the lines 

AB and CD there fall straight lines such as the lines EG, HF, KL, MN 

and XO, each of which is perpendicular to the line CD and intersects 

the line AB at acute and obtuse angles such that all angles directed 

toward BD are acute and [all angles] directed toward AC are obtuse 

(Figure 35), then I claim that the lines AB and CD come steadily closer 

together in the direction of BD until they meet and move steadily apart 

in the direction of AC, that is, the perpendicular EG is greater than 

the perpendicular HF, the latter [is greater] than the perpendicular 

KL, the latter [is greater] than the perpendicular MN, and the latter 

10 Тре authorship of this work has also been discussed by В. A. Rosenfeld, A. Kubesov, С. 

Sobirov and A. Ahmedov /467, 481, 10]. 
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Figure 35 

[is greater] than the perpendicular ХО, whereas the perpendicular ХО 

is smaller than the perpendicular MN, the latter [is smaller] than the 

perpendicular KL, [and so on,] to the last. In much the same way, if 

straight lines falling on two straight lines perpendicular to one of them 

increase when we take them in one of the two directions of the two lines 

and decrease when we take them in the other of the two directions of 

the two lines, that is, if two straight lines move steadily apart in the 

direction of increasing perpendiculars and come together in the opposite 

direction, that is, in the direction of decreasing perpendiculars, until 

the two lines meet, then each of the straight lines perpendicular to one 

of these two straight lines intersects that straight line at a right angle 

and that line is not oblique with respect to any of the perpendiculars; 

but each of these perpendiculars will intersect the second of the two 

straight lines at two angles one of which is acute and the other obtuse, 

and all acute angles—in the direction in which the two lines come 

together, and all obtuse angles—in the direction in which they come 

apart, and that line inclines to each perpendicular in the direction of 

decreasing separation and declines from each of them in the direction 

of increasing separation. These two assertions are obvious, and in view 

of their obviousness both were used by some ancient, as well as later, 

geometers. 

Second premise. If two straight lines erected at the ends of a straight 

line perpendicular to it are equal and their ends are joined by a straight 

line then each of the angles formed by the perpendiculars and that 

straight line is a right angle... 

Third premise. In every triangle with rectilinear sides the three angles 

[are equal to] two right angles / 175, рр. 28—30]. 

The second premise is proved on the basis of the first and second assertions 

of the first premise, and the third on the basis of the existence of a rectangle 

proved in the second premise. The latter premise is first proved for a right 

triangle and then, by the subdivision of an obtuse-angled triangle into two 

right triangles and the complementation of an acute-angled triangle, for the 
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general case. Here the first premise plays the role of an axiom. However, 

unlike in al-Tusr’s Exposition of Euclid, this axiom, obviously meant as a 

replacement for Euclid’s axiom, is incorrectly stated: taken literally, this 

assertion is independent of Euclid’s parallel axiom. However, whenever the 

author refers to the “first proposition” he invokes not this assertion but some 

assertion close to the axiom in al-Tusi’s Exposition of Euclid. In the “‘second 

premise,” in which the author proves the existence of a rectangle, he actually 

considers an Ibn al-Haytham—Lambert quadrilateral and three hypotheses 

concerning its angle D and refutes the acute- and obtuse-angle hypotheses 

by using the “‘first premise” interpreted in the indicated sense. Nevertheless, 

the quadrilateral in the ‘“second premise” can also be looked at asa Khayyam- 

Saccheri quadrilateral, which is, apparently, what Saccheri himself thought. 

In the “па premise,” the existence of a rectangle is used for the first time 

in the history of geometry to prove that the angle sum in a triangle is two 

right angles. In the formulation of this premise it is stressed that one deals 

with rectilinear triangles; the author was undoubtedly aware that the angle 

sum of a spherical triangle is greater than two right angles. 

Next the author proves the parallel postulate. He does this first for the case 

of a perpendicular and an oblique line and then for the two remaining cases. 

In the first case, his proof of the parallel postulate, based on the existence of 

a rectangle, differs little from the traditional proof used by Ibn Qurra and 

Ibn al-Haytham. In the remaining two cases the proofs are also similar to 

those of Ibn al-Haytham, but there are occasional touches of originality. 

We quote these proofs next. 

As for the second case, when each of the angles BEC and DCE is 

acute (Figure 36), the fact that angle DCE is acute implies, by the 

thirteenth poposition, that angle DCG is obtuse. By the eleventh pro- 

position, we erect at the point C a perpendicular HC to the line EC in 

8 

Figure 36 
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Figure 37 

the direction of D; it falls between the sides DC and CG. Therefore if 

we extend it toward H in its direction, it will meet the line AB in view 

of the previous proposition. It will meet it at the point H. Therefore if 

we extend the line DC in its direction toward D it will meet the line AB 

between the points E and H. This is obvious in view of the impossibility 

of two straight lines bounding a plane figure. 

As for the third case, when the angle BEC is acute and the angle DCE 

is obtuse (Figure 37), since the angles BEC and DCE are [together] less 

than two right angles and, by the thirteenth proposition, the angle DCE 

together with the adjacent angle equal two right angles, the angle C, 

adjacent to the angle DCE, is greater than the angle BEC. We mark off 

on the line EC an arbitrary point H and drop from it (by the twelfth 

proposition) a perpendicular HF to the line EB. It is clear that it will 

not fall on the point РЕ. It will not fall on the line AE either, for if that 

were so then two angles in a triangle would be greater than two right 

angles, whereas in the seventeenth proposition it was shown that they 

are less than two right angles, which is absurd. Suppose it falls on the 

point Е. We extend the line FH in its direction toward H up to К. Since, 

by the seventeenth proposition, angles HFE and EHF are together less 

than two right angles and, by the fifteenth proposition, the acute angle 

EHF is equal to the angle CHK, the angle С, adjacent to the angle DCE, 

is smaller than a right angle. Therefore each of the angles CHK and 

C adjacent to the angle DCE is acute. Therefore the lines HK and 

DC, if extended toward K, meet, by the second of the two preceding 

propositions. Suppose they meet at the point K. Since, by the fifteenth 

proposition, the angles EHF and CHK are equal, and the angle C is 

greater than the angle HEF, the right angle EFH is greater than the 

angle НКС, since the three angles of every triangle with rectilinear sides 

are equal to two right angles by the third premise; therefore HKC is an 

acute angle. But angle BFK isa right angle by the thirteenth proposition. 
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Therefore, if we extend the lines AB and CD toward BD, they meet, by 

the first of these premises, on that side of the line [ЕК] where it falls at 

[angles less than] two right angles. And ss is what we wished to prove 

[175, рр. 32-33]. 

Although the last proof is rather close to the proof of Ibn al-Haytham, what 

is special about it is the use of the equality of the angle sum in a triangle to 

two right angles. 

The incorrect formulation of the “first premise” of this proof makes it very 

unlikely that al-Tusi was the author of the whole proof as well as of all of 

the Exposition of the ‘Elements’ of Euclid. What is very likely is that the most 

original parts of this proof—the “third premise” and the proof of the parallel 

axiom in the last two cases—have been borrowed from the Remarks on Euclid 

or from another work written by al-Tisi at the end of his life. 

The Theories of Parallels of al-Hanafi and al-Abhari 

In the previous sections we presented three proofs of the parallel axiom due, 

respectively, to al-Salar, al-Tusi, and the author of the Exposition of the 

“Elements” of Euclid. These are not the only 13th-century works devoted to 

the problem of parallel lines. We have already mentioned the letter of ‘Alam 

al-Din al-Hanafi to Nasir al-Din al-Tusi about his treatise on parallel lines 

and quoted from it the beginning of Simplicius’ attempt at a proof. Al- 

Hanaf?’s critique of this attempt, which follows his exposition, is of great 

interest: 

But we may assume that, from the very beginning, the line BD will 

deviate from the direction of the line BG and every chord that subtends 

the angle GBD will fall between the points A and B if AB is infinitely 

divisible [494, pp. 8—9, 19]. 

We see that al-Hanafi points to the very case which takes place in 

Lobaéevskian geometry when all ‘‘chords” subtending the angle GBD pass 

below a certain interior point of that angle. He does this because he is aware 

that although Simplicius’ proof depends on the impossibility of this case, this 

impossibility does not follow from the axioms on which his proof is based. 

The attempt to prove the parallel axiom that enjoyed the greatest popularity 

in the 13th as well as in subsequent centuries was due to Athir al-Din 

al-Mufaddal ibn ‘Umar al-Abhari, known also as al-Abahri (d. 1263), a native 

of Abhar in Jibal and a student of the same Kamal al-Din ibn Yunis as Nasir 

al-Din al-Tusi, who worked in Mosul and Arbil (Iraq). His attempt to prove 

the parallel axiom was set forth in his reworked version of Euclid’s Elements, 

which has come down to us under the name of Improvement of the “Elements” 

(Islah al-Ustuqusat) and Improvement of the “Elements” of Euclid (ав Usul 

Uglidis). Single chapters from this book, including the one on parallel lines, 
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were reproduced in the very popular Propositions of the foundation (Ashkal 

al-ta’sis) of Shams al-Din Muhammad Ashraf al-Husayni al-Samarqandi, a 

native of Samarkand who lived in the second half of the 13th century and 

worked as a scientist at the Maragha observatory of al-Tusi. The most 

popular version of this book, reprinted a number of times in Istanbul (e.g., 

[501],) is the one with commentaries by the eminent Samarkand mathe- 

matician and astronomer of the 15th century Qadi-Zada al-Rumi and by 

Muhammad al-Hadi. The chapter of al-Samarqandi’s book containing al- 

Abhari’s attempt to prove the parallel axiom has been printed a number of 

times but without indication of al-Abhari’s authorship."? 
Al-Abhari’s proof begins as follows: 

This is the place for the promised proof of the well-known postulate. 

The philosopher Athir al-Din al-Abhari said: if an angle ABC is halved 

by a line BH then it is possible to draw in that angle infinitely many 

chords in such a way that they are located one under the other and each 

of them is the base of an isosceles triangle /500, p. 598/. 

This proposition is the same as Simplicius’ proposition 1 and al-Jawhari’s 

proposition 30, and al-Abhari’s proof differs little from other proofs of these 
propositions. Al-Abhari’s proof of the parallel postulate for the case of a 

perpendicular and an oblique line is the same as the proof of Simplicius’ 

proposition 2 (al-Abhari’s figure differs from Figure 15 only by the use 

of different letters). Unlike Simplicius, al-Abhari gives proofs of the two 

remaining cases of the parallel postulate. The case when the transversal makes 

two acute angles with the two straight lines is proved in the same way as 

the first case by using an analogous figure . The proof of the case when the 

transversal makes an acute and an obtuse angle with the two straight lines is 

the same as Ibn al-Haytham’s proof of this case. 

Al-Maghribi’s Theory of Parallels 

Al-Maghribi’s proof, contained in the manuscript of the Bodleian Library, 

is very close to al-Abhari’s. 

Muhyi al-Din Yahya ibn Abi 1-Shukr al-Maghribi, also known as al- 

Andalusi, was born in Muslim Spain (al-Andalus) or in northwestern Africa 

(Maghrib). While in Syria in 1260 he was taken prisoner by the Mongols, who 

brought him to the Maragha astronomical observatory of Nasir al-Din al- 

Tusi; he was there during the last years of his life. 

The first two of the four propositions of the manuscript just mentioned 

11 The Turkish and French translations of the proof of the parallel postulate have been published 

by H. Dilgan / 149, 150]. For a Russian translation see /500]. It was A. I. Sabra who called our 

attention to the fact that the proof is al-Abhari’s. 
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a 

D 

Figure 38 

were discussed previously. Apart from notational differences, the fourth one 

is the same as al-Abhari’s proposition IV. The third proposition is the same 

in formulation as al-Abhari’s proposition ПТ but differs from it in the proof, 

which is closer to the penultimate proposition in the proof of the Exposition 

of the “‘Elements’’ of Euclid. The statement of the third proposition in al- 

Maghribi’s work cited previously is as follows:!? 

Let each of the angles A, B be acute (Figure 38); then the lines AC, 

BD, if produced, will meet on the side of C, D. 

We draw AE perpendicular to BD. 

Then, any angle E being right and the angle EAC acute, the lines AC, 

BD will meet if produced [494, рр. 11, 20]. 

Al-Maghribi was also the author of a work whose title, Exposition of the 

“Elements” of Euclid (Tahrir Usul Uglidis), is the same as that of the work 

attributed to al-Tusi. This work of Марг contains yet another variant of 

a proof of the parallel postulate. In the introduction to this work al-Maghribt 

defines parallel lines as follows: 

Parallel straight lines are those that lie in the same plane surface and 

are such that if a straight line falls on any two of them at random it 

makes the two angles on one side equal to two right angles /494, р. 17]. 

This definition implies that every perpendicular to one of two such straight 

lines is a common perpendicular. In particular, this implies the existence 

of rectangles. Also, if two such straight lines are intersected by two other 

straight lines at equal angles then we obtain a parallelogram; that is, parallelo- 

grams exist. From the existence of rectangles it follows easily that lines 

parallel in al-Maghribi’s sense are equidistant. It is clear that al-Maghribi’s 

12 п what follows, the English translation of A. I. Sabra /494, р. 11] was corrected according 

to the Arabic text publshed by him /494, р. 20]. 
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definition includes a definition equivalent to the parallel postulate (it excludes 

Lobaéevskian and elliptic geometry). 

We quote al-Maghribi’s proof (the numbers in parentheses are numbers 

of propositions in his book; for the most part, they coincide with the numbers 

of the corresponding propositions of Euclid). The abbreviation (Post.) refers 

to a postulate, an axiom, or a definition in the introduction to al-Maghribi’s 

book. 

Premise: If a line falling on two straight lines makes the two angles on 

one of the two sides less than two right angles, then the two lines, if 

produced indefinitely on that side, meet. 

Example: The line AC has fallen on the two lines AB, CD, making the 

two angles BAC, DCA less than two right angles (Figure 39). 

I say that if the two lines are indefinitely produced, they meet. 

Demonstration: If one of the two angles is right, we complete the 

demonstration as will be shown. 

But if not, we produce DC indefinitely and let fall on it the perpen- 

dicular 4E (12) which we then produce indefinitely on the side of F. 

Then, on the point A of the line AE, we construct the angle KAE 

equal to the angle BAE (23); 

and we indefinitely produce the lines AB, AK in the directions of 

В, К (Post.) [i.e. Eucl. Post. 2 = Maghribi’s Post. 2]; 

we mark on AB the point L and cut off АМ equal to AL (3) and 

join ML. 

Then, because the angles KAE, BAE are acute (Post.), the line ML 

cuts AF in №; 

and since the two sides AL, AM are equal, and the side AN is 

common, and the two angles at A are equal, then the two angles N in 

the two triangles ANL, ANM are right (4 and Post.). 

Now if point М lies between the points Е, F, we complete the con- 

struction; 

Figure 39 
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otherwise, we cut off the lines MO, LX equal to AM, AL (3), and 

join XO which cuts AF in P. 

We then prove as before that the two angles F in the two triangles 

APO, APS are right angles (4). 

Now if point P falls between the points E, F, that will be sufficient 

for us; 

otherwise, we produce the line NL indefinitely and from point Х draw 

XQ perpendicular to it (12). 

Then, since the angle ANL is right, and the angle ГОХ is right, and 

the angles ALN, XLQ are equal (15), and the lines AL, LX are equal, 

then the lines АМ, ОХ are equal (26). 

Further, since the angle ONFis right, and the angle VFX is also right, 

as we showed, and the angle Q is right, 

then the surface FQ is a parallelogram, 

and, therefore, the lines ОХ, NF are equal (34). 

We continue with this construction, cutting off from AT multiples 

(amthdal) of the line AN until we reach a multiple (of AN) greater than 

AE; 

let it [this multiple] be AZ and let the line which has cut off AZ from 

AF be the line KZ. 

Then, the angles at Z are right—as we showed for the angle ANL, 

and the angles at E are also right, 

therefore, ED does not meet ZB (28), nor does it meet AE (Post.), 

therefore, it necessarily meets AB. 

It is evident from this and from kh [Eucl. I. 28] that every two lines 

in a plane surface are either secant or parallel; 

for if a straight line falls on them, making the two angles on one of 

the two sides less than two right angles, they meet; 

but if it makes (the angles) equal to two right angles, then the two 

lines are parallel. 

Thus the doubt concerning this question has been removed by virtue 

of what we have posited as an emendation of the introduction /494, 

pp. 15-17, 21-24]. 

Al-Maghribi’s references to the Post[ulates] pertain, respectively, to the 

following: (1) postulate II (the possibility of unlimited extension of a line); 

(2) the definition of an acute angle as an angle smaller than a right angle; 

(3) the definition of a right angle as an angle equal to the adjacent angle; 

(4) the axiom of Eudoxus-Archimedes; (5) the axiom that two straight lines 

cannot bound a plane figure. We see that, on the one hand, al-Maghribr’s 

proof of the “premise” exhibits traces of proofs derived from Simplicius’ 

proof and, on the other hand, it is analogous to proofs based on a definition 

of parallel lines that contains an assertion equivalent to the parallel postulate, 

and this makes it possible to prove the existence of a rectangle. Like Ibn 

al-Haytham and al-Tusi, al-Maghribi uses the Eudoxus-Archimedes axiom 

as well as an argument equivalent to Pasch’s axiom. 



90 2. The Theory of Parallels 

An interesting attempt to prove the parallel postulate was made by a 

student of Nasir al-Din al-Tisi, Qutb al-Din al-Shirazi (1236-1311) in his 

encyclopedia Pearls of the crown for decoration of рифа} (Durra al-taj li 

ghurrat al-Dubaj) /528; 488, рр. 107—110]. 

The Theory of Parallel Lines of Levi ben Gerson 

and Alfonso 

The first three attempts in medieval Europe to prove Euclid’s parallel postulate 

date back to the 13th and 14th centuries. The first of these attempts is due to 

the Polish scholar Vitello (about 1230—after 1275) and is found in proposition 

14 of book I of his Perspective (Perspectiva [604 ]). Vitello’s proof was studied 

by Sabetai Unguru /598/. The second and third attempts are due to scholars 
who wrote in Hebrew and were directly influenced by Arabic works, Hebrew 

translations of which were, at the time, widespread in southern France. One 

of these proofs is due to Levi ben Gerson (1288—1344), who was born in 

Bagnols in southern France and worked in the southern French cities of 

Orange and Avignon. Levi ben Gerson was a well-known Jewish religious 

philosopher and an author of a number of Hebrew mathematical works, 

including Commentaries to the introductions of Euclid’s book (Beyur ptikhat 

sefer Iqlidus) /20// and a treatise On sines, chords and arcs. The astronomical 

Book V of his philosophical work Wars of the Lord (Milhamot ha-Adonai) 

was published by Bernard К. Goldstein /208 ]. 

Levi’s proof of the parallel postulate is set forth in his Commentaries, 

written under the obvious influence of the commentaries of scholars of the 

Near and Middle East, above all Ibn al-Haytham. 

Unlike Ibn al-Haytham, who in his “proof” is guilty of petitio principii, 

Levi, like Khayyam, precedes his proof with “‘two well known premises.’ One 

of them is the ““Eudoxus-Archimedes axiom,” also used by Ibn al-Haytham, 

and the other is that 

a line which is inclined comes closer to the side where a right angle is 

formed /201, р. 764]. 

Here, Бу “а line which is inclined” is meant a straight line for which, relative 

to some other straight line and some straight line falling on these two, the 

parallel postulate holds. Before formulating his premises Levi notes that 

If a straight line falls on two straight lines and the interior angles on the 

same side are less than two right angles, every straight line falling 

one them on that side forms interior angles less than two right angles 

[2015 p27 Gosh 

Thus there is no doubt that what is intended in the second premise is that 

“а line which is inclined” approaches the given straight line throughout their 

extent. This assertion is equivalent to Euclid’s parallel axioms but is more 
intuitive. 
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In proposition 1 Levi shows that 

there can be no rectilinear quadrilateral all of whose angles are obtuse 

or acute” /201, р. 765]. 

Like Ibn al-Haytham and Khayyam, Levi considers the three hypotheses, 

respectively involving acute, obtuse, and right angles, and refutes the first 

two. Just as the Khayyam isosceles quadrilateral with two right angles can be 

obtained from the Ibn al-Haytham quadrilateral with three right angles by 

reflecting the latter in a side bordering on two right angles, so too we obtain 

the quadrilateral considered by Levi by reflecting an isosceles quadrilateral 

with two right angles in its base bordering on the two right angles. The first 

two hypotheses are refuted with the aid of the second premise. 

Of the consequences of the right-angle hypothesis found by Levi we note 

the theorem that 

if one extends one of the [equal] sides of an isosceles triangle from their 

point of intersection in its direction by the same magnitude and draws 

а base, then it forms а right angle with the first base /20/, р. 766]. 

Levi extends the side AB of an isosceles triangle ABC by a distance 

BG = BA (Figure 40) and shows that the line CG is perpendicular to AC. For 

proof, he constructs the altitude BD of the triangle ABC, extends it to E by 

an amount BE = BD, and proves that the quadrilateral CDEG is a rectangle. 

In the course of the proof he refutes the assumptions CG = KL > ED and 

CG = MN < ED corresponding to the hypotheses of the acute and obtuse 

angles. Another consequence of the right-angle hypothesis established by 

Levi is that the angle sum in a triangle is equal to two right angles. 

The parallel postulate is proved first for the case when the straight lines AB 

and CD are intersected by a line AG (Figure 41) perpendicular to the line CD. 

From the point H on the line 4B Levi drops a perpendicular to AG and 

(successively) doubles the segments AH and AF until the segment AL obtained 

by doubling the segment AF exceeds the segment AG. Then the straight line 

A 

i 8 6 

$ ГА 

Figure 40 Figure 41 



92 2. The Theory of Parallels 

CD intersects the side AL of the resulting triangle ALN and, since it cannot 

intersect the side LN or intersect a second time the side AL, it necessarily 

intersects the side AN, that is, the line AB. In this proof Levi uses his first 

premise, that is, the Eudoxus-Archimedes axiom, and, implicitly, Pasch’s 

axiom. What is refuted in his diagram (see Figure 41) is the assumption that 

the straight line /CD/ intersects the side AL of the triangle ALN a second time. 

This proof is very similar to Ibn al-Haytham’s proof. Like Ibn al-Haytham, 

Levi goes on to prove the parallel postulate for the case when two straight 

lines are intersected by a third at two acute angles and at an acute and obtuse 

angles. 

The second proof of Euclid’s parallel postulate, written in a Hebrew dialect 

used by Spanish Jews, is due to a certain Alfonso. Since its author wrote 

in Hebrew and had a Christian name, he must have been a baptized Jew. Of 

the many baptized Jews living in Spain and named Alfonso the most likely 

author of this treatise is Alfonso de Valladolid (1270—1346), known primar- 

ily as a physician and author of polemical works on religious topics as well 

as a connoisseur of calendars. Alfonso’s treatise Rectifier of the curved 

(Meyashér ‘aqom) //7/*° is more the work of a philosopher than of a mathe- 
matician. Basically, the treatise deals with the quadrature of a circle and with 

other problems involving infinitesimal considerations. Here the question of 

the parallel postulate is an example of a fruitful application of motion in 

geometry. Alfonso begins by criticizing Aghanis’ proof, which he takes to 

be the proof of al-Nayrizi, and then gives his own proof in six propositions. 

In the first proposition he proves that if we extend a median in a triangle 

by an amount equal to that median then we obtain a quadrilateral whose 

opposite sides and angles are equal. This is a theorem of absolute geometry. 

In the second proposition he applies the previous construction to a right 

triangle and, using the “simple motion” of Ibn Qurra and Ibn al-Haytham, 

shows that the resulting quadrilateral is a rectangle. In propositions 3—5 

Alfonso relies on the “proved” existence of a rectangle to establish various 

facts implied by the parallel postulate. They are that the two acute angles in 

aright triangle add up to a right angle; that the ‘‘right-angle hypothesis” holds 

for a Khayyam quadrilateral and that its upper and lower bases are equal; 

and (the theorem) that the perpendicular dropped from the midpoint of the 

hypotenuse of a right triangle to a leg halves it. In proposition 6, Alfonso, 

using the Eudoxus-Archimedes axiom, deduces the parallel postulate from 

the previous propositions / 17, рр. 54—64]. 

The Theory of Parallels in the 16th Century 

The first Latin work devoted:to a study of the theory of parallel lines was 

The astronomical Mirror which terminates the human intellect in every science 

135. Ya. Lur’e /343, р. 20] was the first historian of science to call attention to the manuscript 
of [17]. 
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(Speculum astronomicum terminans intellectum humanum in omni scientia. 

Venice, 1507). Its author, born in the city of Zadar (now in Yugoslavia), was 

Federik Bartolaci¢ Grisogono (1472—1538), who worked in Italy. This work 

was recently studied by Ernest Stipani¢ /56//. 

In the 9th chapter, entitled “Оп parallel lines,” Grisogono criticizes “тапу 

mathematicians, ancient, Arabic and Latin,” who tried to prove Euclid’s 

parallel postulate starting with the definition of parallel lines as equidistant. 

Although admitting that he has not yet found a solution, Grisogono expresses 

an interesting thought: 

I imagined a way of drawing on one surface two nonequidistant straight 

lines which can be indefinitely prolonged and yet may never meet 

[QOL DST Lf 

E. Stipanic renders the Latin superficies—surface—as the Serbo-Croat 

ravan—plane—and writes that: the lines mentioned by Grisogono occur in 

the Lobacevskian plane. The fact is that nowhere does Grisogono mention 

that his surface is flat, and it is conceivable that he had in mind the property 

of rectilinear generators of a one-sheeted hyperboloid. Be that as it may, 

Grisogono’s reflections are extremely interesting. 

We mentioned a number of authors who wrote in Greek and Arabic and 

who tried to prove the parallel postulate from the definition of parallel lines 

mentioned by Grisogono. It appears that Grisogono was familiar with some 

of these ‘ргооЁ5.’” But we know only Vitello’s work in Latin dealing with this 

question and written before 1507, and Grisogono’s evidence about the exis- 

tence of many such works is very interesting. The first Latin exposition of a 

“proof” of the parallel postulate that we know of is the exposition of Proclus’ 

“proof” in the Latin translation of Euclid’s Elements by the Italian mathe- 

matician Federigo Commandino (1509—1575) / 174]. published in 1572. 

An original ‘‘proof”’ of the parallel postulate is due to Christopher Clavius 

(Schlussel, 1537—1612), a German born in Bamberg who worked in Rome 

and took part there in the elaboration of the Gregorian calendar. Clavius’ 

proof is found in an exposition of Euclid’s Elements [117] first published 

in 1574. : 

Clavius’ proof is based on the theorem that 

A line each of whose points is at the same distance from a coplanar 

straight line is a straight line / 117, р. 50/. 

Clavius proves this from Euclid’s definition of a straight line as “а line which 

lies evenly with the points on itself.’’ Clavius thinks that since all the points 

of the line he considers are at the same distance from the straight line, this 

line “Нез evenly” with the points on it. Clavius refutes the possibility that this 

line is a circle, for a line equidistant from a circle is itself a circle, which means 

that if the line under consideration were a circle then the original line would 

likewise be a circle. Clavius deems it obvious that the only lines which “‘lie 

evenly with the points on themselves,” that is, essentially, can be superposed 

on themselves, are a straight line and a circle. In Lobacevskian geometry such 
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a line, other than a straight line and a circle, is an equidistant curve, which, 

in that geometry, is the locus of points equidistant from a straight line. 

Clavius’ starting position is very similar to Ibn al-Haytham’s. Clavius does 

not mention Ibn al-Haytham by name but says that 

I learned that this was also done in a certain Arabic Euclid but I never 

had the opportunity to read this proof in spite of the fact that I insistently, 

and on a number of occasions, asked this of the one who owns this 

Arabic Euclid / 117, р. 50]. 

Apparently, Clavius had only second-hand knowledge of Ibn al-Haytham’s 

proof. The following propositions of Clavius are also similar to those of Ibn 

al-Haytham: 

If a straight line moves along another straight line, always forming 

with its end a right angle, then its other end traces a straight line; 

If two equal perpendiculars are erected on a straight line and their 

endpoints are joined by a straight line then the perpendicular dropped 

from an arbitrary point of that straight line to the first straight line is 

equal to the first perpendicular / 117, рр. 51-52]. 

In the next proposition Clavius considers a Khayyam-Saccheri quadrilateral 

and shows that its two upper angles are equal. Unlike al-Haytham and 

Khayyam, Clavius does not consider the three hypotheses but erects a perpen- 

dicular EF at the midpoint of the lower base of the quadrilateral ABCD with 

two equal angles (Figure 42). By the previous proposition, this perpendicular 

is equal to the sides CA and DB of the quadrilateral with two equal angles. 

After proving that the upper angles of the quadrilateral ABCD are right angles 

Clavius notes that the same holds for the quadrilaterals AEFC and EBDF, 

whence it follows that all upper angles of these quadrilaterals are equal to 

one another. Since the angles CFE and DFE are adjacent, all of these angles 

are right angles. 

Having proved the existence of a rectangle, Clavius “‘proves’’ the parallel 

postulate. He proceeds like Ibn al-Haytham, al-Tusi, and Levi ben Gerson in 
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Figure 42 
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that he deals first with the case of a perpendicular and an oblique straight line 

and then with the general case. 

Cataldi’s “РгооЁ?” of the Parallel Postulate 

At the very beginning of the 17th century there appeared A small work on 

equidistant and nonequidistant straight lines (Operetta delle linee rette equi- 

distanti et non equidistanti. Bologna, 1603) [98 ] and A supplement to а small 

work on equidistant and nonequidistant lines (Aggiunta all’ Operetta delle 

linee equidistanti et non equidistanti. Bologna, 1604) [99] by the Italian 

mathematician Pietro Antonio Cataldi (1548—1626), famous for his discovery 

of continued fractions. Cataldi’s first work contains two definitions and pro- 

positions 1—15, and his second work propositions 16—33 and the concluding 

proposition in which he “proves” the parallel postulate. Definition 1 defines 

the distance from a point to a line, and definition 2 defines equidistant and 

nonequidistant lines. From the assumed existence of equidistant lines Cataldi 
deduces in his first work a number of assertions from which it is already 

possible to prove the parallel postulate. One such assertion is proposition 2, 

If two straight lines are equidistant then the lines drawn perpendicularly 

from the first to the second are perpendicular to the first line /98, p. 3/, 

in which he proves the existence of a rectangle. Another is one of the 

consequences of proposition 10: 

If we add the three angles in any triangle then the sum is two right 

angles /98, р. 16/. 

Cataldi’s proof of the parallel postulate is based on proposition 30: 

If two nonequidistant straight lines converge in one direction, then it is 

unavoidable that, when extended in the direction in which they come 

closer, they should ultimately intersect /99, р. 59/. 

We note that the formulation of this assertion is the same as that of the 

“principle” attributed by Khayyam to Aristotle. 

“Proofs” of the Parallel Postulate by Borelli and 

by Vitale Giordano 

There are two more 17th-century “‘proofs” of the parallel postulate due to 

Italian mathematicians. In his Euclid restored (Euclides restitutus. Pisa, 1658) 

[73], Giovanni Alfonso Borelli (1608—1679) proceeds in his proof from the 

following “‘axiom 14”: 
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If a straight line which remains always in the same plane as a second 

straight line, moves so that one end always touches this line, and during 

the whole displacement the first remains continually perpendicular to 

the second, then the other end, as it moves, will describe a straight line 

ДИЗ, pase Sle Ds Lae 

Since the phrase “‘is transferred across”’ means transfer at a constant angle to 

the given line, Borelli’s assertion is essentially the same as those of Ibn Qurra 

and Ibn al-Haytham. Like these Arab mathematicians before him, Borelli 

tries to justify this assertion by means of kinematic considerations. He proves 

that two perpendiculars to the same straight line are equidistant, defines 

parallel straight lines as equidistant lines, and deduces the parallel postulate 

from the existence of a rectangle. 

A similar “‘proof” of the parallel postulate is found in Euclid restored, or 

restored and simplified ancient elements of geometry in 15 books (Euclide 

restituto, overo gli antichi elementi geometrici ristaurati, e facilitati libri XV. 

Rome, 1680) [203] of Vitale Giordano (1633—1711). Giordano “ргоуе$” that 

the locus of points equidistant from a straight line is a straight line by means 

of the following lemma: 

If two points, A, C upon a curve, whose concavity is towards X, are 

joined by the straight line AC, and perpendiculars are drawn from the 

infinite number of points of the are AC upon any straight line, then 

these perpendiculars cannot be equal to each other /203, p.4; 71, p. 14]. 

Giordano considers the straight line GF and joins the ends of the equal 

perpendiculars AG and DBF by means of the straight line AC (Figure 43). Of 

course, the line ABC is not equidistant from the straight line GF, but in 

“proving”’ that the locus of points equidistant from a straight line is a straight 

line Giordano applies this lemma to lines for which the relations between the 

straight line GF and the line ABC do not hold. Further, Giordano considers 

a Khayyam quadrilateral and proves that its upper angles are equal and from 

the existence of a rectangle deduces the parallel postulate. 
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Wallis’s Theory of Parallel Lines 

John Wallis (1616-1703), one of the greatest English mathematicians of the 

17th century, also wrote a treatise dealing with the parallel postulate and 

related matters, under the title On the fifth postulate and fifth definition in 

book 6 of Euclid; a geometric discourse (De postulato quinto et definitione 

quinta lib. 6 Euclidis; disceptatio geometrica. Oxford, 1693) [617, vol. 2, 

pp. 665—678]. The treatise consists of three parts. The first part deals with 

the so-called fifth definition of book VI of the Elements, a definition of com- 

posite ratio which is a later insertion. The second part is Edward Pococke’s 

translation from the Arabic of the “‘proof” of the parallel postulate taken 

from the previously mentioned 1594 Roman edition of the Exposition of the 

“Elements” of Euclid attributed to al-Tusi. The third part is Wallis’s proof of 

the parallel postulate. It rests on the following postulate: 

Finally (supposing the nature of ratio and of the science of similar 

figures already known), I take the following as a common notion: to 

every figure there exists a similar figure of arbitrary magnitude /6/7, 

vol. 2, р. 676]. 

Wallis justifies the naturalness of this common notion, that is, axiom, with 

the argument that Euclid’s postulate Ш (“to describe a circle with any center 

and distance’’) is a special case of this ““common notion.” In order to prove 

that two straight lines 4B and CD forming with a straight line AC angles 

whose sum is less than two right angles meet (Figure 44), Wallis moves the 

straight line AB along the straight line AC so that the angle CAB remains 

constant. If one comes sufficiently close to the point C, then the straight line 

will occupy a position «f in which it intersects the straight line CD at the point 

п. In view of Wallis’s assumption, there is a triangle ACP similar to the 

resulting triangle «Cz; the required point is the point P. 

ie a A 

Figure 44 
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Saccheri’s Theory of Parallel Lines 

In the first half of the 18th century the Italian Girolamo Saccheri (1667—1733) 

made what turned out to be an important attempt to prove the parallel 

postulate. He did this in a work entitled Euclid cleared of every flaw or A 

geometrical attempt to establish the very first elements of all geometry (Euclides 

ab omni naevo vindicatus sive Conatus geometricus quo stabiliuntur prima 

ipsa universae geometriae principia. Milan, 1733) [495; 168, pp. 45-135]. 

Saccheri criticizes Wallis’s proof of the parallel postulate as well as the proof 

attributed to al-Tisi. In his own proof Saccheri considers the same isosceles 

quadrilateral with two right angles as Khayyam and al-Tusi (we have already 

mentioned that this quadrilateral is often referred to as a ““Saccheri quadri- 

lateral’) and states the same three hypotheses about its upper angles as 

Khayyam and al-Tusi. 

Saccheri refutes the obtuse-angle hypothesis by showing that under this 

hypothesis, as well as under the right-angle hypothesis, the parallel postulate 

holds. From this he makes the deduction that under the obtuse-angle hypoth- 

esis we must have the usual geometry in which, “as is clear to all geometers,”’ 

the right-angle hypothesis holds. This being so, 

The hypothesis of obtuse angle is completely false, because it destroys 

itself (495, р. 59]. - . 

The sense of this proof is that since the remaining axioms of Euclidean 

geometry and the parallel postulate imply the right-angle hypothesis, the 

obtuse-angle hypothesis, under which the parallel postulate holds, contradicts 

the remaining axioms of Euclidean geometry. 

Now Saccheri sets about refuting the acute-angle hypothesis. Here Saccheri 

penetrates far deeper into Lobacevskian geometry, in which this hypothesis 

holds, than his predecessors. He shows that under the acute-angle hypothesis 

two straight lines intersect, or have a common perpendicular on each side 

of which they diverge, or diverge in one direction and come asymptotically 

close to one another in the other direction. In the latter case, Saccheri 

concludes that these straight lines must have a common point and a common 

perpendicular at infinity. The sense of this deduction is that if one drops 

perpendiculars from the points of one of these straight lines to the other, 

then, as the point tends to infinity, the length of the perpendicular tends to 

zero and the angle between the first straight line and the perpendicular tends 

to a right angle. But Saccheri envisages the common point and common 

perpendicular at infinity as an ordinary common point and an ordinary 

common perpendicular and deduced that in the third case the two straight 

lines touch at infinity. From this he concludes that 

The hypothesis of acute angle is absolutely false; because repugnant to 

the nature of the straight line /495, р. 173]. 
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Not satisfied with this proof Saccheri considers the locus of points in the 

plane equidistant from a straight line. Unlike his predecessors, he is aware 

that under the acute-angle hypothesis this line is neither a straight line nor 

a circle. In computing the length of an arc of this curve by means of infini- 

tesimals Saccheri makes a mistake and concludes that the required length is 

equal to the distance between the feet of the perpendiculars dropped from 

the ends of the arc to the straight line. On the other hand, Saccheri has shown 

that the perpendiculars move apart, so that the distance between the ends of 

the arc, to say nothing of the arc length, is greater than the distance between 

the feet of the perpendiculars. Having found this contradiction Saccheri again 

declares that 

The hypothesis of acute angle is absolutely false, because it destroys 

itself (495, р. 225]. 

Saccheri’s concluding remark, however, shows that he is not entirely satisfied: 

It is well to consider here a notable difference between the foregoing 

refutations of the two hypotheses. For in regard to the hypothesis of 

obtuse angle the thing is clearer than midday light.... 

But on the contrary I do not attain to proving the falsity of the other 

hypothesis, that of acute angle, without previously proving that the line, 

all of whose points are equidistant from an assumed straight line lying 

in the same plane with it is equal to this straight line /495, р. 233]. 

Notwithstanding the falsity of his deductions, Saccheri’s investigations of 

geometry under the acute-angle hypothesis were an important step on the 

road to the discovery of non-Euclidean geometry. 

We note that the existence of a rectangle, proved by Saccheri and many of 

his predecessors, was explicitly adopted as a foundation for an exposition of 

the theory of parallels by the eminent 18th-century mathematician Alexis 

Claude Clairaut (1713—1765) in his Elements of geometry (Eléments de géo- 

métrie. Paris, 174). Clairaut justifies the existence of a rectangle by the ‘“‘form 

of houses, gardens, rooms, walls” / 115, р. 4]. 

Lambert’s Theory of Parallels 

In the second half of the 18th century, Johann Heinrich Lambert (1728—1777), 

born at Mulhouse in Alsace, one of the greatest mathematicians of the 

century, wrote a special treatise under the title Theory of parallel lines (Theorie 

der Parallellinien. Leipzig, 1786) [168, рр. 152-207]. Lambert worked in 

Munich and in Berlin and is known for his proofs of the irrationality of e and 

п. In the introductory part of his treatise Lambert writes: 

This work deals with the difficulty encountered in the very beginnings 

of geometry and which, from the time of Euclid, has been a source of 
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discomfort for those who do not just blindly follow the teachings of 

others but look for a basis for their convictions and do not wish to 

give up the least bit of the rigor found in most proofs. This difficulty 

immediately confronts every reader of Euclid’s Elements, for it is con- 

cealed not in his propositions but in the axioms with which he prefaced 

the first book /168, р. 152]. 

Then Lambert formulates the 11th axiom (the parallel postulate) and 

comments: 

Undoubtedly, this basic assertion is far less clear and obvious than 

the others. Not only does it naturally give the impression that it should 

be proved, but to some extent it makes the reader feel that he is capable 

of giving a proof, or that he should give it. 

However, to the extent to which I understand this matter, this is just 

a first impression. He who reads Euclid further is bound to be amazed 

not only at the thoroughness and rigor of his proofs but also at the 

well-known delightful simplicity of his exposition. This being so, he will 

marvel all the more at the position of the 11th axiom when he finds out 

that Euclid proved propositions that could far more easily be left 

unproved / 168, р. 153]. 

Then Lambert considers the same quadrilateral as Ibn al-Haytham (we 

have already mentioned that this quadrilateral is often called the Lambert 

quadrilateral) and the same hypotheses of a right, obtuse, and acute angles. 

Like Saccheri, Lambert refutes the obtuse-angle hypothesis. He does this 

by showing that under the obtuse-angle hypothesis two perpendiculars to 

the same straight line must intersect. This does not contradict the parallel 

postulate, but it contradicts the remaining axioms of Euclidean geometry. 

Lambert notes that the obtuse-angle hypothesis holds on a sphere if we regard 

its great circles as straight lines. 

Going over to the acute-angle hypothesis, Lambert proves even more asser- 

tions that hold in Lobaéevskian geometry than had Saccheri. In particular, 

he finds that under the acute-angle hypothesis the sum of the angles in a 

triangle is less than two right angles. Comparing this fact with the theorem 

that under the obtuse-angle hypothesis the angle sum in a triangle is more 

than two right angles, Lambert says: 

It is easy to see that under the third hypothesis one can go even 

further and that analogous, but diametrically opposite, consequences 

can also be found under the second hypothesis. But, for the most part, 

I looked for such consequences under the third hypothesis in order to 

see if contradictions might not come to light. From all this it is clear 

that it is no easy matter to refute this hypothesis. I will cite some more 

consequences without considering to what extent they can be extended, 

mutatis mutandis, under the second hypothesis. 
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_ The most striking of these consequences is that under the third hypoth- 

esis we would have an absolute measure of length for every line, of area 

for every surface and of volume for every physical space. This refutes an 

assertion that some unwisely hold to be an axiom of geometry, for until 

now no one has doubted that there, 15 no absolute measure whatsoever. 

There is something exquisite about this consequence, something that 

makes one wish that the third hypothesis be true! 

In spite of this gain I would not want it to be so, for this would result 

in countless inconveniences. Trigonometric tables would be infinitely 

large, similarity and proportionality of figures would be entirely absent, 

no figure could be imagined in any but its absolute magnitude, astron- 

omers would have a hard time, and so on. 

But all these are arguments dictated by love and hate, which must 

have no place either in geometry or in science as a whole. 

To come back to the third hypothesis. As we have just seen, under 

this hypothesis the sum of the three angles in every triangle is less than 

180 degrees, or two right angles. But the difference up to 180 degrees 

increases like the area of the triangle; this can be expressed thus: if one 

of two triangles has an area greater than the other then the first has 

an angle sum smaller than the second.... 

I will add just the following remark. Entirely analogous theorems 

hold under the second hypothesis except that under it the angle sum in 

every triangle is greater than 180 degrees. The excess is always propor- 

tional to the area of the triangle. 

I think it remarkable that the second hypothesis holds if instead of 

a plane triangle we take a spherical one, Гог its angle sum 1$ greater than 

180 degrees and the excess is also proportional to the area of the triangle. 

What strikes me as even more remarkable is that what I have said 

here about spherical triangles can be proved independently of the diffi- 

culty posed by parallel lines and upon assuming solely the axiom that 

every plane through the center of a sphere divides it into two equal parts. 

From this I should almost conclude that the third hypothesis holds 

on some imaginary sphere. At least there must be something that 

accounts for the fact that, unlike the second hypothesis, it has for so 

long resisted refutation on planes / 168, рр. 200—203]. 

In spite of these sentiments Lambert also “‘disproves” the acute-angle 

hypothesis. To this end, he erects perpendiculars of equal length to a line at 

equidistant points of this line, joins their ends, and obtains a broken line. 

He states that the vertices of this broken line lie on a circular arc and obtains 

a contradiction. (In hyperbolic geometry these vertices lie on an equidistant 

curve.) This spurious contradiction ‘“‘disproved”’ the acute-angle hypothesis. 

Lambert’s error was first brought to light by Boris Lukié Laptev (b. 1905) 

[305]. 
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Bertrand’s “Proof” of the Parallel Postulate 

In 1778 the Swiss mathematician Louis Bertrand (1731—1812), a student of 

Euler’s, published a clever “proof” of the parallel postulate. This “proof” 

appeared in the second volume of his New exposition of the elementary part 

of mathematics (Development nouveau de la partie élémentaire des mathé- 

matique. Geneva, 1778) and was reissued in his Elements of geometry (Eléments 

de géométrie. Paris, 1812) [51]. The “ргооЁ” is based on operations with 

infinitely large magnitudes and consists in the following: suppose that the 

lines LC and KA (Figure 45) form with the line KL interior angles AKL 

and CLK whose sum is less than two right angles. Then there exists a straight 

line LM that forms with LC an angle CLM such that the sum of the three 

angles AKL, CLK, and CLM is equal to two right angles. Hence if the straight 

line LC did not intersect the straight line KA then the angle MLC would be 

contained inside the strip MLKA. But this strip is contained in the plane 

“infinitely many times,’’ whereas the angle MLC is contained in it only as 

many times as the arc MC is contained in the circle with center L and radius 

LM. From this Bertrand concludes that the angle MLC cannot be entirely 

contained in the strip MLKA. But then its side LC must leave that strip, and 
so intersects KA. йе 

The fact is that neither the whole plane пог its part bounded by the sides 

of the angle can be considered as a magnitude that admits of numerical 

comparisons; for example, if we move the angle in the plane into the domain 

bounded by its sides and argue like Bertrand, then we obtain an absurd equality 

between the “‘magnitude of the angle” and its sum with the “magnitude” of 

the domain bounded by the first and second positions of the angle. And yet 

even serious mathematicians of the beginning of the 19th century found the 

intuitive imagery of Bertrand’s argument convincing, and A. Crelle, the editor 

of the “Journal fur die reine und angewandte Mathematik,” who in 1834 pub- 

lished one of Lobacevskii’s papers on the geometry he discovered, published 

in 1835 a modified version of Bertrand’s proof. 

И 

Figure 45 
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“Proofs” of the Parallel Postulate by Legendre and Gur’ev 

At the end of the 18th and in the beginning of the 19th century the great 

French mathematician Adrien Marie Legendre (1752—1833) made a number 

of attempts to prove the parallel postulate in his Elements of geometry (Elé- 

ments de géométrie. Paris, 1794—1823) [309—311 ]—a textbook of elementary 

geometry that continued the tradition of A. C. Clairaut’s textbook with the 

same title. 

In the first edition of the Elements of geometry Legendre gave the following 

proof of the parallel postulate. Suppose that the straight line BD is perpen- 

dicular to the straight line АВ and the straight line AC forms with it an acute 

angle BAC (Figure 46). Then the foot G of the perpendicular FG dropped 

from some point Fon the line AC cannot coincide with the point А and cannot 

end up on the extension AL of the line AB on the other side of A. The first 

possibility cannot occur because the angle BAF is acute. The second possibility 

cannot occur because, if the point G coincided with a point H on the line AL, 

then the perpendicular FH would intersect the perpendicular AE erected at 

the point A at some point K and we would have two perpendiculars from that 

point to the straight line AL. It follows that the foot G of the perpendicular 

is on the line AJ. Similarly the foot M of the perpendicular dropped from the 

point C to the line AB cannot coincide with the point G or fall on the line GL, 

and the foot N of the perpendicular PN, dropped from some point P of the 

extension of the line AC, cannot coincide with the point M or fall on the line 

ML, and so on. Also, if a point on the straight line AC moves away from A 

then the foot of the perpendicular from that point to the straight line AB also 

moves away from A. None of the feet of these perpendiculars can be a last 

one, for the assumption that the foot N, say, is last contradicts the fact that 

Е D 
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Figure 46 
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there are points on the straight line AC that are farther away from A then 

the corresponding point P and the feet of the perpendiculars from such points 

are farther away from the point A than N. From this Legendre concluded 

that the distances from A of the feet of the perpendiculars dropped from 

the points on the straight line AC to the straight line AB can be arbitrarily 

large and therefore one of them coincides with the point B. But then the 

perpendicular BD must also have been dropped to the straight line AB from 

some point on the straight line AC, and it is this very point that is the point 

of intersection of the straight lines AC and AB. Thus Legendre “‘proved”’ that 

a perpendicular and an oblique line must intersect and from this it is not 

difficult to deduce the general case of the parallel postulate. 

The mistake in this argument was quickly brought to light by the Russian 

academician Semen Emel’yanovié Gur’ev (1746-1813) in An attempt to 

perfect the elements of geometry (Opyt ob изоуегбепи elementov geometril. 

Petersburg, 1798) [213]. Gur’ev pointed out that just as the monotonic 

increase of the partial sums of a convergent series of positive terms does 

not imply that these partial sums can exceed the sum of the series, so too 

the monotonic increase of the distances of the feet of the perpendiculars from 

the point A does not at all imply that these distances can be made arbitrarily 

large. In this connection we note that the same kind of ‘‘convergence”’ of the 

feet of perpendiculars is involved in al-Tusi’s attempt to refute the hypotheses 

of the obtuse and acute angles ina Khayyam-Saccheri quadrilateral. Legendre 

himself was dissatisfied with his proof and in the third edition of the Elements 

of geometry proposed a new “ргооЁ” based on the proposition that the angle 

sum in a triangle is equal to two right angles. To prove this proposition, 

Legendre shows first that the angle sum in question is not greater than two 

right angles. Suppose it is; specifically, suppose the angle sum in the triangle 

ABC is greater than 2d (Figure 47). On the extension of the side AC Legendre 

constructs triangles CDE, ..., NOP congruent to the triangle ABC and joins 

the vertices В, D, ..., О by means of straight lines. The sum of the angles 

ACB, BCD, and DCE is 2d. Since, by construction, angles DCE and CAB are 

equal and the angle sum of triangle ABC is greater than 2d, it follows that 

angle BCD is smaller than angle ABC. Since the sides АВ, BC of triangle ABC 

are respectively equal to the sides CD, CB of triangle BCD, it follows that 

AC > BD. Let AC — BD = 6. If there are п triangles ABC, CDE, ..., NOP 
> 
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Figure 47 
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Figure 48 

then the length of the segment АР is п: AC and the length of the polygonal 

line ABDF,...,OPisAB + ВС + (n—1)BD = АВ + BC + АР — BD — пб 

(since AC — BD = 6). Therefore the difference between the polygonal line 

and the segment AP is АВ + BC — BD — пд, which can be made negative 

by taking и sufficiently large. Then the polygonal line would be shorter than 

the segment joining its endpoints, which is impossible. 

Then Legendre tries to prove that the angle sum in a triangle cannot be 

less than 2d. He assumes that the angle sum in the triangle ABC is smaller 

than 2d (Figure 48) and argues as follows. Let A be the smallest angle of 

triangle ABC. On the side of ABC opposite to A one constructs angles 

DBC = ACB and DCB = ABC. The triangles BCD and ABC are congruent. 

One draws a line through D that intersects the sides of angle A in points E 

and F. By what has been proved, the angle sum in each of the triangles BDE 

and CDF is < 2d. The angle sum in each of the congruent triangles ABC and 

BCD is equal to 2d — 6 for some 6 > 0. Hence the angle sum in triangle AEF, 

which is 6d less than the sum of the angles in all four triangles, is less than 

2d — 26. Continuing this process one obtains a sequence of triangles with 

angle sum, respectively, less than 2d — 46, 2d — 86, and so on. In this way 

one obtains a triangle with negative angle sum, which is absurd. 

In this proof Legendre used the assertion that given a point in the interior 

of an acute angle one can always pass through it a straight line that meets 

both of its sides. Before Legendre, Simplicius, al-Jawhari, al-Abhari, and 

al-Tusi all used this assertion to derive the parallel postulate. 

Upon locating the error in his proof Legendre, in the 12th edition of 

Elements of geometry, proposed yet another proof of the proposition that 

the angle sum in a triangle is equal to 2d. Thus consider the triangle ABC 

(Figure 49), in which AB is the largest side and BC the smallest, so that 

ACB is the largest angle and BAC the smallest. Let J be the midpoint of BC. 

On the ray AJ lay off the segment AC’ = AB and on the ray AB lay off 

AK = Al and AB’ = 2А[. Then the triangles AKC’ and B’KC’ are, respec- 

tively, congruent to the triangles ABJ and AIC, and the angles А’, В’, C’ of 

the triangle 4B’C’ are connected with the angles A, В, С of the triangle ABC 
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by means of the relations С’ = В + Cand А = А' + В’, зо Фа! А + В+ С = 

А’ + В’ + С’; since АС < AB, the angle A’ is smaller than $A. Similarly, 

construct triangles АВ”С”, АВ"С”, and so on, whose angle sums remain 

constant and whose angles A”, A”, ... are, respectively, less than 34, 

4A, ... By repeating this step sufficiently many times one obtains a triangle 

whose angle at the vertex A is less than any preassigned number. 

Now Legendre concludes that in the limit this angle will be equal to 0 and 

all vertices of the triangle will lie on the same line. But then one of the two 

remaining angles will be 0 and the other 2d. Since in the process the angle 

sum remains unchanged, Legendre concludes that the angle sum must have 

been equal to 2d to begin with. 

Here too Legendre made a mistake. In hyperbolic geometry the area of 

a triangle is determined by its angle sum. Hence a variable triangle with 

constant angle sum has constant area. But this means that its vertices cannot 

tend to three collinear points. 

Legendre’s argument leading from the assertion that the angle in a triangle 

is 2d to the parallel postulate is as follows. If the straight lines АВ and CD 

form with the straight line EF angles BEF and DFE whose sum is less than 2d 

(Figure 50), then one draws the straight line FG at an angle EFG which 

supplements the angle BEF to 2d. Then angle EFD is less than angle EFG. 

Next one draws an arbitrary straight line FM that intersects the straight line 

AB ata point М, lays off on the straight line АВ the segment MN = FM, and 
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draws the line FN; in the isosceles triangle ЕММ each base angle equals half 

the angle FME = MFG, so that the angle NFG is also equal to half the angle 

MFG. Then one lays off on the straight line AB a segment NP = FN; in 

the isosceles triangle FNP each of the base angles equals half the angle FNE, 

that is, a quarter of the angle MFG, so that the angle PFG is also equal to 

a quarter of the angle МЕС. By continuing this process one obtains a sequence 

of isosceles triangles whose bases make with the straight line FG angles that 

form a geometric progression with multiplier 4. This means that after 

sufficiently many steps one obtains an angle that is less than any preassigned 

magnitude and, in particular, less than the angle DFG. By then the line FD 

will have ended up inside one of these triangles and therefore will have 

intersected its side opposite the angle with vertex at F, that is, the straight 

line AB. 

Mistakes notwithstanding, the investigations of Legendre, like those of 

Saccheri before him, have played an important role in the history of non- 

Euclidean geometry. A particularly helpful factor was the wide dissemination 

of Legendre’s Elements of geometry. 

We recall the name of S. E. Gur’ev, who first found the error in the first 

edition of Legendre’s Elements of geometry. In his Attempt to perfect the 

elements of geometry Gur’ev also proposed a proof of the parallel postulate. 

Gur’ev considers first the case when the straight lines AC and BD are cut by 

the straight line 4B perpendicular to BD (Figure 51). By dropping perpen- 

diculars from the points on the straight line AC to the straight line AB one 

obtains on the latter points such that perpendiculars erected at these points 

intersect AC. If the perpendicular BD does not intersect AC then 

among the perpendiculars erected on AB from A to Z there is one which 

intersects AC and others that do not intersect AC. 

Gur’ev concludes that 

there is a common limit where certain perpendiculars end and others 

begin, for without such a limit all perpendiculars would intersect AC... 

Figure 51 
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and thus such a limit is in order; I say that it does not exist, for no matter 

where we suppose it to be there are always perpendiculars that go 

beyond this limit and intersect AC: indeed, let the perpendicular KT be 

that limit. By taking on AC produced a point L beyond K and dropping 

from it a perpendicular LU you will find that there are a great many 

perpendiculars to AB erected between 7 and И that intersect AC and 

pass the supposed limit TK /213, рр. 237—238]. 

From the fact that there is no last perpendicular that intersects AC, Gur’ev 

draws the completely false conclusion that there is no first perpendicular 

among the perpendiculars that do not intersect AC; it is precisely this first 

perpendicular that is the “Ши!” Gur’ev has in mind. Having “‘proved”’ that 

the perpendicular and oblique line must intersect, Gur’ev easily proves the 

parallel postulate in the case when the transversal makes two acute angles 

with the two given straight lines as well as in the case when it makes with them 

an acute and an obtuse angle. 

Farkas Bolyai’s Theory of Parallels 

In the first half of the 19th century there appeared several “proofs” of the 

parallel postulate by the Hungarian mathematician Farkas Bolyai (read: 

Farkash Boyai) (1775—1856). He was born in the small town of Bolya in 

Transylvania, studied with Gauss at the university of Gdttingen, and became 

a professor of mathematics in the Reformed college at Maros-Vasarhely 

(now Tirgu-Mures in Rumania). While in Gottingen, Bolyai became interested 

in the theory of parallel lines and published The theory of parallels (Theoria 

parallelarum. Maros-Vasarhely, 1804) [67], in which he tried to prove the 

existence of equidistant straight lines. He sent this work to Gauss, who 

pointed out his error. After this, F. Bolyai made a number of attempts to 

prove the parallel postulate. 

Under Farkas Bolyai’s influence, his son Janos (read: Yanosh), subsequently 

one of the creators of non-Euclidean geometry, took an interest in the theory 

of parallels. Farkas Bolyai tried to dissuade Janos from the study of this 

theory. Mindful of his recurrent failures to prove the parallel postulate he 

wrote to his son: 

I entreat you, leave the doctrine of parallel lines alone; you should fear it 

like a sensual passion; it will deprive you of health, leisure and peace—it 

will destroy all joy in your life. These gloomy shadows can swallow up 

a thousand Newtonian towers and never will there be light on earth; 

never will the unhappy human race reach absolute truth—not even in 

geometry / 137, р. 9]. 

Е. Bolyai’s major work was a survey of attempts to prove the parallel 

postulate, with explanations of the hypotheses on which they were based. 
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Figure 52 

Its title is An attempt to introduce young students to the elements of pure 

mathematics, both elementary and advanced, by means of a specially devised 

intuitive method (Tentamen juventutem studiosam in elementa matheseos 

purae, elementaris ac sublimioris, methodo intuitiva, evidentiaque huic propria 

introducendi. Maros-Vasarhely, 1832) /68/. The most interesting proof of 

the parallel postulate is set forth in F. Bolyai’s book A short sketch of an 

attempt to (1) present arithmetic in a logically rigorous manner, (2) precisely 

define the concepts of geometry (Kurzes Grundriss eines Versuches (1) die 

Arithmetik logisch-streng darzustellen, (2) in der Geometrie die Begriffe 

scharf zu bestimmen. Maros-Vasarhely, 1851) /69/. 

The proof is based on the postulate that 

Three points not on one line are always on some circle /69, р. 246]. 

This assertion is equivalent to the parallel postulate. (In fact, in Loba¢evskian 

geometry three noncollinear points determine a circle, an equidistant curve, 

ога horocycle.) Е. Bolyai deduces the parallel postulate from this assertion as 

follows: Let 4A’ and BB’ be two straight lines, one of which is perpendicular 

to and the other oblique relative to the straight line 4B (Figure 52). Choose 

a point M on the segment AB and construct points M’ and M” symmetric to 

М relative to AA’ and BB’. By Е. Bolyai’s postulate, since these three points 

are not collinear, they are concyclic. Hence the lines AA’ and BB’ intersect at 

the center of this circle. From the fact that a perpendicular and an oblique 

line intersect, F. Bolyai proves the parallel postulate in general. 

This proof was published by Е. Bolyai after the discovery of non-Euclidean 

geometry by his son and by М. I. Lobacevskii but, regrettably, Е. Bolyai failed 

to understand this discovery.'* 

14 Many proofs of the parallel postulate made before and after the discovery of non-Euclidean 

geometry are analyzed in the book /475a/ of J.-C. Pont, published in 1986. 



Chapter 3 

Geometric Transformations 

Application of the Concept of Motion in Geometry in 

Antiquity and in the Middle Ages 

On a number of occasions we have come across the use of motions in 

geometry. In book I Euclid uses superposition in propositions 7 and 8 

(theorems on the congruence of triangles) and later relies on these proposi- 

tions. Although his definition of a circle (definition 15, book I) /173, vol. Г, 

p. 153] does not involve the concept of motion, his definitions of a sphere, a 

circular cone, and a cylinder (definitions 14, 18, and 21 in book XI) do //73, 

vol. 3, pp. 261-262]. The motions involved are, respectively, the rotation of a 

semicircle about its diameter, of a right triangle about a leg, and of a rectangle 

about a side. The use of motions in these definitions seems to reflect an older 

tradition. In fact, we saw that in Theodosius’ later Sphaerica [578, p.1] a 

sphere is defined without the use of motions, in a manner analogous to 

Euclid’s definition of a circle. 

That motions were extensively used in geometry before Euclid is apparent 

from, say, the formulations of the theorems of Thales (sixth century B.c.), the 

first Greek scholar credited with proving theorems. In his commentaries on 

Euclid, Proclus pointed out that Eudemus, in his History of geometry, at- 

tributed to Thales the proofs of the following theorems: That a circle is divided 

into equal parts by its diameter; that the base angles in an isosceles triangle are 

equal; that when two straight lines intersect, angles are equal; that two 

triangles having a side and two angles, respectively, equal are themselves equal 

[440, рр. 124—125, 195, 233, 275]. These proofs were not based on axioms 

and other theorems for, at that time, there were neither axioms nor other theo- 

rems. We see that Thales’ theorems concerned the congruence of semicircles, 

angles, and triangles. Doubtless Thales proved these theorems by folding 

drawings or by other means of superposing figures. Thales referred to con- 

gruent figures as similar; after the formulation of the theorem on the angles in 
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an isosceles triangle Proclus notes that 

in ancient fashion, he [Thales] called these angles not equal but similar 

[440, p. 195]. 
у 

It appears that the term “equal” for figures of the same size is due to the 

Pythagoreans, who thought that such figures consisted of equal numbers of 

points. Later the term “similar figures’ acquired the modern meaning, and 

Euclid and his followers called congruent figures “‘similar and equal.” 

Motions were used systematically by the Pythagoreans, who regarded lines 

as traces of moving points and surfaces as traces of moving lines. Aristotle 

debated this view in his treatise On the soul (Peri psychés), known as De anima, 
in these words: 

Since they say a moving line generates a surface and a moving point a 

line, the movements of the psychic units must be lines (for a point is a 

unit having position, and the number of the soul is, of course, some- 

where and has position) /29, vol. 3, р. 409“ ]. 

Later, the Pythagorean Archytas / 26, vol. 3, pp. 98—111] solved the classi- 

cal Delian problem of doubling a cube with side a by considering (in modern 

notation) the point of intersection of the cylinder x* + y? = 2ax, the cone 

х? + у? + z* = 4х2, and the torus x? + у? + 22 = 2a,/x? + y*, obtained by 
rotating the circle x* + 2? = 2ax about the z-axis. (The coordinates x, у, z of 
the point of intersection satisfy the proportions 

2a Be Rest nn ey 
/ 2 + у2 4 2 /х2 + у? а : 

The segment joining the origin to this point is the required side of the doubled 

cube.) 

Aristotle condemned the use of motions in geometry. In his view, “Тре 

objects of mathematics are without movement” /29, vol. 8, р. 989°]. This view 

derives from the fact that Aristotle regarded mathematical objects as abstrac- 

tions of physical objects. In his Metaphysics Aristotle states: 

As the mathematician investigates abstractions (for before beginning 

his investigation he strips off all the sensible qualities, e.g. weight and 

lightness, hardness and its contrary, and also heat and cold and the other 

sensible contrarieties, and leaves only the quantitative and continuous, 

sometimes in one, sometimes in two, sometimes in three dimensions / 29, 

vol. 8, р. 1061“]. 

Aristotle regarded a surface as more abstract than a solid (for it is devoid 

not only of “sensible properties” but also of thickness), a line as more abstract 

than a surface (for it is devoid of breadth), and a point as more abstract than 

a line (for it is devoid of length). Hence a line cannot consist of points, a 

surface of lines, or a solid of surfaces. To repeat a quotation from Aristotle: 
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Nothing that is continuous can be composed of indivisibles: e.g., a line 

cannot be composed of points, the line being continuous and the point 

indivisible /29, vol. 2, р. 231°]. 

It follows that one cannot obtain a line by moving a point, a surface by moving 

a line, and a solid by moving a surface. This explains why Euclid made every 

effort to avoid using motions and superpositions. When (as in the definitions 

in book XI) he used motions without having to do so, Euclid followed an older 

tradition. 
We saw that Ibn Qurra was critical of Aristotle’s position and extensively 

used motions in geometry. The same is true of Ibn al-Haytham. On the other 

hand, Khayyam shared Aristotle’s view and criticized Ibn al-Haytham in his 

commentaries on Euclid: 

What is the connection between geometry and motion, and what is 

meant by motion? According to scholars, there is no doubt that a line 

can only exist on a surface, and a surface in a solid, that is, a line can exist 

only in a solid and cannot precede a surface. How could it move apart 

from its object? How could a line be the result of the motion of a point 

if it precedes a point by its essence and by its existence? /272, р. 115]. 

Nevertheless, in his proof of the fifth postulate, Khayyam—as we saw—more 

than once resorted to the folding of figures. 

Asarule, later Near Eastern, Middle Eastern, and West European scholars 

systematically used motions in their geometric works. 

Geometric Transformations in the Works of Archimedes 

The earliest geometric transformations more complex than motions are axial 

affinities and central dilatations or homotheties. An axial affinity with axis a 

and ratio k maps each point A into a point A’ such that the lines AA’ are 

parallel but not parallel to aand—with A, defined as the point of intersection 

of the lines aand АА’— Фе ratio А, A'/A,A has same value k for all points A. 

Here we assume that А # —1, еп К > 0. An axial affinity is called right if 

АА’ is perpendicular to a and skew otherwise. An axial affinity with А = —1 

is called an affine reflection. A central dilatation with center A, and ratio k 

maps each point A into a point А’ such that the ratio A) А’/Аз A has the same 

value k for all points А. A central dilatation with К = — 1 is called a “‘half-turn” 

or a “reflection in a point.” Figure 53a depicts an axial affinity with axis aand 

ratio 2, and Figure 53b a central dilatation with center A, and ratio 2. 

If the x-axis of a rectangular or skew coordinate system coincides with the 

axis of an axial affinity and*the. y-axis with one of the lines АА’, then its 

analytic description is 

x =x, y = АУ. (3.1) 
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ie 

(b) 

Figure 53 

Similarly, if the origin of a rectangular or skew coordinate system coincides 

with the center of a central dilatation, then its analytic description is 

Roearkx, А (3.2) 

It seems that axial affinities first appeared in Archimedes’ treatise On 

conoids and spheroids (Peri konoeideon kai sphairoeideon /25, рр. 99-150] 

dealing with the computation of the volumes of segments of ellipsoids of 

rotation (spheroids), two-sheeted hyperboloids of rotation (obtuse-angled 

conoids), and paraboloids of rotation (right-angled conoids). The names of the 

conoids reflect the fact that Archimedes used the pre-Apollonian terms section 

of an acute-angled, right-angled, and obtuse-angled cone for an ellipse, pa- 

rabola, and hyperbola. Proposition 4 of this treatise states that 

The area of any ellipse is to that of the auxiliary circle as the minor 

axis to the major /25, р. 113]. 

Archimedes reasons as follows: Let BD be the smaller axis of the ellipse and 

EG the diameter of the circle AECG constructed on the larger axis of the 

ellipse as diameter, and such that EG and BD lie on the same straight line. Let 

Z (Figure 54) be the circle whose area is to the area of the circle AECG as BD 

is to EG. Then “‘the circle Z is equal to the ellipse.” Assuming that Z is larger 

than the ellipse, Archimedes inscribes in the circle Z a polygon with an even 

number of sides that is larger than the ellipse, inscribes a similar polygon in the 

circle AECG, joins the pairs of vertices symmetric with respect to the larger 

axis of the ellipse by means of straight lines, marks off the points in which 

these lines meet the ellipse, and shows that the resulting polygon is to the 

polygon inscribed in the circle as BD to EG. Also, this polygon is in that same 

ratio to the polygon inscribed in the circle Z. But then the polygon inscribed 

in the ellipse is equal to the polygon inscribed in the circle Z, contradicting the 

fact that the latter polygon is larger than the ellipse. The assumption that the 

circle Z is smaller than the ellipse is disproved by a similar argument. 
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Figure 54 

We see that Archimedes uses a right axial affinity with ratio equal to the 

ratio of the axes of the ellipse and shows that the ratio of the areas of his 

inscribed polygons is equal to the ratio of the areas of the figures obtained 

from these polygons by letting the number of sides tend to infinity. From this 

it follows that the area of an ellipse with semiaxes a and bis zab and the radius 

of the circle Z is Jab. 

Inversions in the Works of Apollonius 

It seems that central dilatations appeared first in Apollonius’ treatise On plane 

loci (Peri topoi epiphanoi), which we know about through Pappus’ Mathe- 

matical collection (Synagoge mathematike) /404/ of the third century д.р. In 

the same work Apollonius also considers reflections in circles or inversions. 

An inversion in a circle with center O and radius R maps a point A other 

than О to a point A’ on the ray OA such that ОА: OA’ is a constant. If that 

constant is К?2, then the points:of the circle are mapped onto themselves, the 

points of the interior are mapped to the points of the exterior, and con- 

versely. The analytic description of the inversion in the circle x? + у? = В? is 
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given by 

IR? x Rey 
/ / 

у = = (3.3) 

Whereas a central reflection maps lines into lines and circles into circles, an 

inversion maps the lines through O into themselves, the remaining lines into 

circles, circles through O into lines, and the remaining circles to circles. To 

make an inversion a bijective (one-one) mapping, we supplement the plane 

with a single point at infinity which we define as the image of O, and 

conversely. Also, we think of lines as circles passing through the point at 

infinity. Apollonius knew the properties of central dilatations and inversions 

just listed; in fact, the term ‘‘plane loci’’ referred to lines and circles (curves 

that can be drawn with ruler and compass). Referring to Apollonius’ On plane 

loci, Pappus describes central dilatations, inversions, and their combinations 

with plane motions in these words: 

If two straight lines are drawn from a single point, or from two points 

along a single straight line, or parallel to each other, or form a given 

angle and are т a given ratio, or contain a given rectangle, and if the end 

of one of these straight lines describés a plane locus, then the end of the 

other straight line also describes a plane locus of one kind or another, 

disposed in a similar manner with respect to the straight line or disposed 

in an opposite manner /404, vol. 2, pp. 663—665]. 

We obtain a central dilatation if two “‘straight lines”’ (that is, two rectilinear 

segments) are drawn from a single point along a single straight line and their 

ratio is constant, and an inversion if their product is constant (they “contain 

a given rectangle’’). If the lines are parallel, then we obtain, respectively, a 

central dilatation or an inversion followed by a translation. If the lines are 

drawn from a single point and form a fixed angle, then the transformation is 

a central dilatation or inversion followed by a rotation through this angle. 

Thus, in general, the transformation is a central dilatation followed by an 

arbitrary motion (and thus an arbitrary similitude), or an inversion followed 

by an arbitrary motion. 
The quantitative relations underlying inversion in al/ conic sections are 

found in propositions 33, 35, and 37, book I, of Apollonius’ fundamental 

Treatise on conic sections (KOnika). We quote them below. (Recall that an 

ordinate to a diameter is a semichord conjugate to it.) 

1. 37| 

In a hyperbola, an ellipse, or a circle, if QV be an ordinate to the 

diameter PP’, and the tangent at О meet PP’ in T, then 

Gl 2Gl = CP" 

[23, p. 66; 24, p. 28] (see Figures 55a, 55b, and 55c). 
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(©, (9) 

Figure 55. 

Е 
Ifa point Т be taken on the diameter of a parabola outside the curve 

and such that ТР = PV, where Vis the foot of the ordinate from О to the 

diameter PV, the line TQ will touch the parabola. 

Conversely, if the tangent at О meet the diameter produced outside 

the curve in the point 7, TP = PV [23, р. 64; 24, р. 26] (see Figure 55d). 

These propositions play the role of equations of tangents to conics. The 

inversions implicit in these propositions map a point of the plane to the point 

of intersection of the diameter of the conic through the first point and its 

polar. All these inversions are birational transformations (see рр. 140—142 

and the paper /484/). 

Projections and Perspective 

A number of projections were used in ancient Greece. In his Ten books on 

architecture (De architectura libri decem) /605; 606], Vitruvius, the famous 

Roman architect of the first century A.D., lists three projections used by 

architects: 

Arrangement, however, is the fit assemblage of details, and, arising from 

this assemblage, the elegant effect of the work and its dimensions, along 
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with а certain quality or character. The kinds of the arrangement (which 

in Greek are called ideae) are these: ichnography (plan); orthography 

(elevation); scenography (perspective). Ichnography (plan) demands the 

competent use of compass and rule; by these plans are laid out upon the 

sites provided. Orthography (elevation), however, is the vertical image 

of the front, and a figure slightly tinted to show the lines of the future 

work. Scenography (perspective) also is the shading of the front and the 

retreating sides, and the correspondence of all lines to the vanishing 

point, which is the centre of a circle. These three (plan, elevation and 

perspective) arise from imagination and invention /605, рр. 25, 27]. 

The first of these terms is made up of the words ichnos—trace—and 

grapho—I write—and denotes the construction of the horizontal projection 

of the building. The second term, derived from orthos—standing straight— 

denotes the construction of the frontal projection. The third term, derived 

from skéné—stage—denotes the perspective representation of a locality on 

theatrical decorations. We may assume that these three projections were 

known to the Greeks centuries before Vitruvius. At any rate, the Roman poet- 

philosopher Titus Lucretius Carus (98—55 B.c.) described perspective repre- 

sentations in his philosophical poem On the nature of things (De rerum 

natura). 

Though a colonnade runs on straight-set lines all the way, and stands 

resting on equal columns from end to end, yet when its whole length is 

seen from the top end, little by little it contracts to the pointed head of 

a narrow cone, joining roof with floor, and all the right hand with the 

left, until it has brought all together into the point of a cone that passes 

out of sight /342, р. 385]. 

Claudius Ptolemy’s On projection (Peri analeémmatos), usually referred to as 

Analemma [443, vol. 1, pp. 187—223 ], deals with the orthogonal projection of 

the celestial sphere on the plane of the horizon and uses it to solve problems 

of spherical astronomy. 

In book VII of Pappus’ Mathematical collection (which also contains the 

excerpt from Apollonius’ On plane loci quoted previously) there are geometric 

theorems on central projections and perspective. They are Lemmas on the 

second porism in book I of “‘Porisms’’, referring to Euclid’s lost work Porisms; 

literally, porisma means “acquisition, extraction.” It is possible that Euclid’s 

Porisms also dealt with projections and perspective. ' 

In lemma 3 (proposition 129) of book VII of the Mathematical Collection 

Pappus states: 

If three straight lines AB, CA, DA are intersected by two straight lines 

FB and FE issuing from a single point, then I assert that [the rectangle] 

on FB, DC is to [the rectangle] on FD, BC as [the rectangle] on FE, HG 

is to [the rectangle] on FH, GE (Figure 56). 

1 п connection with Euclid’s Porisms see Michel Chasles’ works /107] and [108]. 
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LA 

Figure 56 

Through [the point] F draw [the straight line] KZ parallel to the 

straight line GCA. Then DA and AB meet it in the points Капа Г. On the 

other hand, draw through L [the straight line] LM parallel to DA. It 

meets EF at М. Therefore EG is to GA as EF to FL, AG is to GH as FL 

to FM for, in view of parallelism, both ratios are the same as the ratio of 

ЕК to FH. Hence, “Бу equality,” EG is to GH as EF to FM. Hence [the 

rectangle] on FE, HG is equal to [the rectangle] on EG, FM. 

Consider another [rectangle] on EG, FH. [The rectangle] on EF, HG 

is to [the rectangle] on EG, HF as [the rectangle] on EG, FM is to [the 

rectangle] on EG, HF, that is, as FM is to FH or LF to FK. For the same 

reasons [the rectangle] on FD, BC is to [the rectangle] on FB, CD as KF 

is to FL. Therefore, upon “inverting,” we see that [the rectangle] оп FB, 

CD is to [the rectangle] on FD, BC as LF is to FK. But we showed that 

[the rectangle] on EF, HG is to the rectangle on EG, HF as LF is to ЕК. 

Hence [the rectangle] on EF, HG is to [the rectangle] оп EF, HG is to [the 

rectangle ] on EG, HF as [the rectangle] on FB, CD is to [the rectangle] 

on FD, BC [404, vol. 2, pp. 868—870]. 

Using modern notation we can write this proposition in the form of the 

proportion 

FB DG... FE: HG 

Ер-ВС FH-GE’ 
or 

FB/CB_ FE | СЕ 

FD/ Ср ЕН! HG’ 

If FB, FD, CB, and CD are directed collinear segments then we call the ratio 

FB ae 
FD | Cp 2 ross ratio; a cross ratio is the ratio of two simple ratios. We view 
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the oriented lengths of segments, their simple ratios, and their cross ratios as 

real numbers. The cross ratio 

АС [АР 
| (3.4) AB, CD) = — 

)= СЁ| DB 
is positive if the pairs of points A, B and C, D do not separate each other (the 

circles on AB and CD as diameters do not intersect) and negative if they do 

(the circles in question intersect). Using modern notation, we can write 

Pappus’ proposition in the form 

(FC, BD) = (FG, EH) 

Since the four points F, E, G, H are obtained from the four points F, B, C, 

D by projection from the point A, Pappus’ theorem is seen to be a special case 

of the general theorem to the effect that the cross ratio of four points is invariant 

under projection. Following Euclid, Pappus called the proportion а:с = A:C, 

obtained from the proportions a:b = A: Band b:c = В: С, a proportion “by 

equality,” and the ratio b:a the result of “inverting” the ratio a:b. 

In lemma 5 (proposition 131) Pappus proves the following theorem: 

Given the figure ABCDEFGH, AD is to DC as AB to BC. Andif AD 

is to DC as AB to BC, then I claim that the line passing through the 

points A, H, Fis a straight line (Figure 57). 

Pass throught Н [the straight line] KL parallel to АВ. Then AD is to 

DC as ABto BC. Now ADisto DC as KL to LH, and ABisto BCas KH 

to HM. Hence KL is to LH as KH to HM and, finally, LH is to LM as 

KL to LH, that is, as AD to DC. “Ву interchanging,” we find that AD is 

to HL as CD to LM, that is, as DE to KL. Since HL is parallel to AD, it 

follows that the line passing through A, H, F is a straight line, which is 

what was to be proved /404, vol. 2, рр. 872-874]. 

Comments are in order. The figure ABCDEFGH consists of the complete 

quadrilateral AHCFEG and its diagonals EHB, GFD, and ABC. Essentially, 

75 

Figure 57 
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the first claim made in this proposition is that two diagonals of a complete 

quadrilateral intersect the third one in points B and D such that 

(AC, BD) = —1 

(we say that the points A, C divide the points B, D harmonically, or that the 

points A, C, B, D form a harmonic tetrad). The second claim is the inverse 

theorem, which asserts that every harmonic tetrad can be obtained in the 

indicated manner from a complete quadrilateral. 

As for the missing proof of the first assertion, there is no doubt that what 

Pappus has in mind when he states that ““Then АД is to DC as AB to ВС” is 

that, in view of his lemma 3, the cross ratio (AC, BD) is equal to the cross ratio 

of the four points on the straight line СЕР obtained by projecting the points 

A, B, C, D from E—that is, the points G, F, the point of the intersection of the 

straight lines GFD and EHB, and the point D. In turn, their cross ratio is equal 

to the cross ratio (CA, BD) of the points obtained by projecting them from H 

to the line ABCD. Since interchanging the points of a pair in a cross ratio 

inverts its value, it follows that, in our case, (AC, BD) = +1 (for Pappus the 

value is 1; for us it is — 1, since the pairs A, C and B, D separate each other). 

To “interchange” a ratio is to change a:b = c:dtoa:c=)b:d. 

In lemma 10 (proposition 136) Pappus proves the following remarkable 

theorem: < 

From [a point] F draw two straight lines DF and FE to two straight 

lines BAE and DAH. Suppose that [the rectangle] on DF, BC is to [the 

rectangle] on DC, BF as [the rectangle] on FH, GE is to [the rectangle] on 

FE, GH. 1 claim that the line passing through С, A, С is a straight line 

(Figure 58). 

Draw [the straight line] КГ, parallel to CA and let К and L be the 

points in which it meets AB and AD. Through L draw [the straight line] 

LM parallel to AD and extend [the straight line] EF to M. Finally, draw 

through K [the straight line] KN parallel to AB and extend DF to N. 

Figure 58 
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By parallelism, DF is to FN as DC to CB, so that [the rectangle] on DF, 

CB is equal to [the rectangle] on DC, FN. Now take another [rectangle 

on DC, BF. Then [the rectangle] on DF, BC is to [the rectangle] on DC, 

BF as [the rectangle] on CD, FN to [therectangle] on DC, BF, that is, as 

FN to BF. But, by hypothesis, [the rectangle] on FD, BC is to [the 

rectangle] on DC, BF as [the rectangle] on FH, GE to [the rectangle] on 

FE, GH. By parallelism, FN is to FB as KF to FL and as HF to FM. It 

follows that [the rectangle] on FH, GEis to [the rectangle] on FM, GE as 

[the rectangle] on FH, GE to [the rectangle] on FE, GH. But then [the 

rectangle] on FE, GH is equal to [the rectangle] on FM, GE, and FM is 

to FE as HG to GE. Therefore, by “‘adjoining” and “interchanging,” we 

find that ME is to EH as FE to EG. But ME is to ЕН as LE to EA, and 

LE is to EA as FE to EG. This implies that AG is parallel to KL. But the 

straight line CA is also parallel to it. Hence [the line] AG isa straight line, 

which is what was to be proved /404, vol. 2, pp. 888-890]. 

Nowadays a correspondence between two straight lines such that for all 

corresponding quadruples A, В, С, D and A’, В’, С’, О’, we have the equality 

(AC, BD) = (А’С’, B'D’) 

is called a projective correspondence. Then the sets of points of these lines 

are called projective ranges. Since ordinary projection of a line onto a line 

preserves cross ratios, it is an instance of a projective correspondence. In that 

case the correspondence is called perspective, and the sets of points of these 

lines are called perspective ranges. It is clear that under a perspective cor- 

respondence the point of intersection of the lines corresponds to itself. In this 

proposition Pappus proves the converse theorem that if the point of intersec- 

tion of two projective ranges corresponds to itself, then the two ranges are 

perspective. 

Pappus used this proposition to prove—in lemmas 12 and 13 (propositions 

138 and 139)— 1$ famous theorem that the points of intersection of opposite 

sides of a hexagon inscribed in a pair of (parallel or intersecting) straight lines 

are collinear. 

These theorems of Pappus are theorems of projective geometry, which 

emerged as a distinct geometric discipline only between the 17th and 19th 

centuries. 

Stereographic Projection 

One of the most important projections—applied already in antiquity—is 

stereographic projection. This is the projection of a sphere from one of its 

points (the pole) to the plane tangent to the sphere at the point antipodal to 

the pole—the base plane—or to a plane parallel to that plane (Figure 59). 

Stereographic projection has three remarkable properties: (a) Circles through 
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Figure 59 Figure 60 

the pole are mapped onto straight lines and all other circles are mapped onto 

circles; (b) the angle between two curves on the sphere (that is, the angle 

between the tangents to the curves at their intersection point) is equal to the 

angle between the image curves; (с) if the sphere is rotated through some‘angle 

about the diameter passing through the pole, then this rotation induces a 

rotation through the same angle of the base plane about the point of tangency. 

Property (a) of stereographic projection can be proved by using proposi- 

tion 5 of book I of Apollonius’ Conics [23, pp. 9-10]. In this proposition 

Apollonius proves that, in addition to the family of circular sections by planes 

parallel to its base, an oblique circular cone has another family of circular 

sections. The following is a simple proof of this proposition. Drop a per- 

pendicular from the vertex of the cone to its base plane. This line and the line 

joining the vertex to the center of the base determine a plane of symmetry of 

the cone. An oblique cone has a second plane of symmetry, perpendicular to 

the first plane and passing through the bisector of the angle in which the cone 

meets the first plane (the planes perpendicular to these two planes of sym- 

metry meet the cone in ellipses, and an oblique circular cone may be thought 

of as a right elliptical cone whose bases are these ellipses). Upon reflection in 

the first plane of symmetry the circular sections in the first family are mapped 

onto themselves, and upon reflection in the second plane of symmetry they are 

mapped onto the circular sections in the second family. 

If the first plane of symmetry meets an oblique cone in the triangle SAB 

(Figure 60), then the circular sections in the second family meet this plane in 

straight lines parallel to a straight line A’B’ such that the angle SA’B’ is equal 

to the angle SBA, and the angle SB’A’ is equal to the angle SAB. Now, under 

stereographic projection, the circle with diameter AB on the sphere is pro- 

jected to a section of the cone under consideration whose diameter А’В’ is 

such that the angle equalities just mentioned hold. (The similarity of the right 

triangles SAN and SA’N with common acute angle 5 implies the proportion 

SA/SN = SN/SA’, that is, SA- SA’ = (SN)?. Similarly, SB- SB’ = (SN)?. 
Hence SA/SB = SB’/SA’. But then the triangles SAB and SB’A’ are similar 

and the asserted angle equalities hold.) 
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The earliest references to stereographic projections that have come down to 

our time are found in Vitruvius’ Ten books on architecture (see previous 

discussion) and in Ptolemy’s Representation of the sphere in the plane (Aplésis 

epiphaneias sphairas), usually referred to’as Planisphaerium [443, рр. 225- 

229]. (See also [156/). , 

Vitruvius described an astronomical instrument called a spider or arachne 

(arachné—spider); he writes that 

Berosus the Chaldean is said to have invented the semicircular dial 

hollowed out of a square block and cut according to the latitude; 

Aristarchus of Samos, the Bowl or Hemisphere, as it is said, also the 

Disk on a level surface; the astronomer Eudoxus, or as some say 

Apollonius, the Spider (arachne) /605, pp. 255—256; 606, р. 320; 614, 

DP. 320-327). 

On the arachne 

the hours are to be indicated cross-wise on a small column, in accor- 

dance with the analemma. The lines of the month are also to be marked 

оп acolumn.... An analemma is described, and the hours are marked 

with bronze rods, beginning from a centre on the clock face. On this 

circles are described which limit the spaces of the months. Behind these 

rods there is a drum, on which the firmament and zodiac are drawn and 

figured: the drawing being figured with the twelve celestial signs /605, 

p. 261; 606, p. 322; 614, p. 339]. 

Vitruvius’ commentator Daniele Barbaro (1513—1570) describes the prin- 

ciple of Vitruvius’ analemma (analémma—survey, projection) thus: 

[ап] analemma is projected from the pole of the sphere onto a plane. To 

project the sphere onto the plane [by means of an analemma] is to 

describe in the plane all circles and all [zodiacal] signs that are on the 

sphere. Thus all that is on the sphere is represented in the plane accord- 

ing to the same optical mode as in the making of a table of the astrolabe 

[606, р. 322,.614,.p. 339]. 

That is, the analemina is a stereographic projection. The drum bearing a 

representation of the ecliptic and some fixed stars was rotated. Before it were 

fixed wires representing hour lines. The drum was set by means of instruments 

that measured the altitudes of stars and was rotated by a hydraulic drive. In 

the Planisphaerium, the exposition of the stereographic projection of a sphere 

on a plane involves the so-called spider in a horoscopic instrument //56, 

р. 271]. A horoscopic instrument (hdroskopon organon) was an instrument for 

determining time (hdroskopos—time indicator). Later the word horoscope 

came to denote the point of intersection of the ecliptic and the eastern part of 

the horizon determined by means of this instrument, and, still later, the 

astrological prediction largely based on the location of the horoscope point. It 

seems that Theon, in his Memoir on a small astrolabe (Eis ton mikron astro- 

labon hypomnéma), was the first to combine the annular measuring instru- 
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ment, the drum (tympanum), ae the spider that modeled the celestial sphere, 

in a single compact instrument. The title of Theon’s work is mentioned by the 

10th-century Byzantine historian Suida /570, v. 2, р. 702], and the description 

of the instrument is found in the work of the 9th-century Arab historian 

Ahmad al-Ya‘qubi /280, pp. 23—25; 383, pp. 242—245 ], who referred to it as 

‘(The instrument] possessing tympanums” (“Dhat al-Safa‘ih’’). Al-Ya‘qubi 

attributed this treatise, as well as other works of Theon mentioned by him, 

to Ptolemy. Ptolemy himself used the term astrolabe (astrolabon organon), 

literally “instrument for catching stars’’) to denote an armillary sphere (from 

the Latin armilla—ring)—an arrangement rings—that combined the func- 

tions of the annular and modeling instruments /442, vol. 1, pp. 217—219]. 

The first works on the astrolabe—in the sense of a “small astrolabe’’—to 

come down to our time are the treatise On the construction and use of the 

astrolabe (Peri ton astrolabon chréseds kai kataskenés) of the 6th-century 

Alexandrian Christian philosopher and mathematician Joannes Philoponus 

[574, vol. 9, pp. 341-367 |, and the Treatise on the astrolabe (Skolion demettul 

astrolabon) of the 7th-century Syrian bishop Severus Sebokt /382/. This 

instrument was widely known in the medieval East under the name asturlab, 

so that in the Middle Ages stereographic projection was called astrolabe pro- 

jection (tastih al-asturlab). The term stereographic projection (from stereon— 

solid) was introduced by Francois D’Aguillon (1566—1617) in his Six books on 

optics (Opticorum Libri VI. Antwerp, 1613) [133]. 

In these ancient treatises properties (a), (b), and (c) of stereographic projec- 

tion were used but not proved. The earliest extant exposition of the theory of 

stereographic projection with a complete proof of property (a) is found in 

Book on the construction of the astrolabe (Kitab san‘at al-asturlab) (see /[474, 

522] by the ninth-century scholar Ahmad al-Farghant, a native of Farghana 

who worked in Baghdad. The first chapter, devoted to stereographic projec- 

tion, is called Survey of the geometric propositions from which the form of the 

astrolabe is deduced. It contains proofs of three theorems: the theorem on the 

equality of the angles SA’B’ and SBA and the angles SB’A’ and SAB (see 

Figure 60), the theorem on property (a) of stereographic projection, and 

the theorem that under stereographic projection the center of a circle is not 

mapped onto the center of the image circle. If, in Figure 60, C is the midpoint 

of AB and О’ is the midpoint of A’B’ (and thus С and О’ are the centers of 

corresponding circles) then the angle A’SD’ is equal to the angle BSC. Al- 

Farghani’s proof of property (a) is very close to the proof of proposition 5 of 

book I of Apollonius’ Conics. The later chapters of the treatise deal with the 

construction of an astrolabe. 

The astrolabe we are discussing combines an annular measuring instru- 

ment on the back side and a modeling instrument on the front side. The 

annular instrument of the astrolabe is a disk, on one side of which rotates an 

alidad—a ruler with two diopters. In use, the astrolabe is suspended in a 

vertical plane passing through the star, the alidad is aligned with it, and then 

its hand points to the star’s altitude on the degree scale on the rim of the 
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astrolabe. The second coordinate of the star is determined by means of the 

modeling instrument of the astrolabe, consisting of a fixed tympanum and a 

carved disk—the spider—rotating about the center of the tympanum. On the 

tympanum are represented the stereographic projections of the circles on the 

celestial sphere that do not change during its apparent diurnal motion: the 

celestial equator, the tropics of Cancer and Capricorn, the horizon and its 

parallels—the almucantarats, zenith points, and verticals—great circles 

passing through the zenith and nadir. In view of property (a), all these circles 

on the sphere are represented on the tympanum by circular arcs or straight line 

segments. Since the southern pole of the celestial sphere is usually taken as the 

pole of the projection, the equator and the tropics are represented on the 

tympanum by means of concentric circles. The tympanum is usually cut off at 

the circle representing the tropic of Capricorn (Figure 61). Since in a locality 

with geographic latitude @ the celestial equator forms with the horizon an 

angle of 90° — ф, it follows from property (b) that the horizon is represented 

by acircle which cuts the representation of the equator in two antipodal points 

at an angle of 90° — ф. The almucantarats are represented by circles which, to- 

gether with the representation of the horizon, form a pencil of circles that are 

the loci of points for which the ratio of the distances to the points representing 

the zenith and nadir is constant. Verticals are represented by circles passing 

through the representation of the zenith and perpendicular to the representa- 

tion of the horizon. The almucantarats and verticals form on the tympanum 

the spiderweb over which the spider moves. On the spider are represented the 

Figure 61 
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Figure 62 

ecliptic and the brightest stars that rotate during the apparent diurnal motion 

of the celestial sphere. The ecliptic is represented by a circle tangent to the 

representations of the tropics. On the ecliptic are shown the twelve zodiacal 

constellations through each of which the Sun passes in the course of a month 

as well as further subdivisions of these sections that make it possible to 

determine the location of the Sun on every day of each month. Stars are 

represented by spikes issuing from the rim of the spider and from the rep- 

resentation of the ecliptic (Figure 62). 

By means of the astrolabe one could determine the azimuth of just those 

heavenly bodies that were represented on its “‘spider,”’ that is, the Sun and the 

other stars on it. After determining the altitude of the Sun or star by means of 

the alidade, one turned the astrolabe over—so that the tympanum was on 

top—and rotated the spider through an angle such that the representation of 

the celestial body fell on the almucantarat with the same altitude. Here one 

used property (c) of stereographic projection which implies that the diurnal 

rotation of the celestial sphere is represented by a rotation of the spider. After 

rotating the spider one obtained an accurate representation of the celestial 

sphere on the plane at the corresponding moment. At that moment the 

azimuth of the celestial body was given by the angle between the vertical 

passing through that body and some initial vertical. The angle of rotation of 

the spider determined the exact time that had passed from the beginning of the 

day or night. In terms of astronomical hours,” the position of the spider 

? Astrolabes could also be used to determine time in so-called temporal hours (see chapter 1). 

Then one used hour lines on tympanums similar to the hour lines on the arachne described by 

Vitruvius. 
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corresponding to this angle of rotation was such that the Sun was on the 

horizon. The astrolabe with a “‘spider,’’ just described, can be viewed as a 

nomogram with a transparent chart /542/. 

Mathematicians in the mediaeval East tried to use other geometric trans- 

formations for constructing astrolabes. Thus Abi Hamid al-Saghani, a native 

of Saghanian (d. 990), in his Book on the perfect projection onto the plane 

(Kitab fi al-tastih al-tamm) (see [266]) suggested replacing stereographic 

projection of the sphere onto the plane from one of its poles by a projection 

from an arbitrary point on the axis. (In such a projection circles on the sphere 

are mapped onto conics). In his book Exhaustion of the ways of constructing 

[an] astrolabe (Isti‘ab al-wujuh al-mumkina fi san‘at al-asturlab) (see /483, 

pp. 152-156, 162-166, 168—172]), Abu |-Rayhan al-Biruni, after describing 

many ways of constructing astrolabes—including al-Saghani’s “perfect 

projection’ —suggested as a basis for the construction of astrolabes “‘cylindri- 

cal projection,” that is, orthogonal projection along the axis—the limiting 

case of al-Saghanti’s projection when the center of projection recedes to in- 

finity. In his Chronology of Ancient Nations (Al-Athar al-Bagqiya min al-qurin 

al-khaliya) /58; 60, vol. 1], written about 1000, al-Birunt has this to say about 

these methods of projection: 

*“Abt-Hamid Alsaghani has transferred the tops of the cones from the 

two poles, and has placed them inside or outside the globe in a straight 

line with the axis. In consequence the cones represent themselves as 

straight lines and circles, as ellipses, parabolas, and hyperbolas, as he 

(Abu-Hamid) wants to have them. However, people have not been in a 

hurry to adopt such a curious plane. (This is the central projection, or 

the general perspective projection.) 

Another kind of projection is what I have called the cylindrical 

projection (orthographic projection), which I do not find mentioned by 

any former mathematician. It is carried out in this way: You draw 

through the circles and lines of the globe lines and planes parallel to the 

axis. So you get in the day-plane straight lines, circles, and ellipses (no 

parabolas and hyperbolas). All this is explained in my book [Exhaustion 

of the ways of constructing [an] astrolabe], which gives a complete 

representation of all possible methods of the construction of the astro- 

labe /58, р. 357—358; 60, vol. 1. pp. 407—408]. 

Stereographic projection is also used to project the surface of the earth onto 

a plane, that is, for making maps. Property (b) tells us that on such maps 

angles between lines are true. This fact makes such maps especially useful for 

seamen, for the angle through which the ship’s steering wheel is rotated is equal 

to the corresponding angle on the map. Al-Biruni’s Treatise on projection of 

constellations and on the representation of countries on a map or Cartography 

(Risala fi tastih al-suwar wa-tabtth al-kuwar) /457; 11] (partially set forth in 

his Chronology of Ancient Nations [58, pp. 357—365; 60, vol. 1, рр. 407—413]), 

are devoted to the application of stereographic projection to mapmaking. 
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Figure 63 

Both treatises also describe a projection, discovered by al-Biruni and now 

known as globular,* of a sphere onto a plane. 

In globular projection a hemisphere is mapped onto a circle whose circum- 

ference is divided into 360° and whose horizontal and vertical diameters are 

each divided into 180 parts. To represent a point on the sphere with longitude 

Aand latitude ¢ one lays off, beginning at center of the circle, 4 divisions on the 

horizontal diameter and draws a circular arc through the resulting point on 

the horizontal diameter and the endpoints of the vertical diameter. Then one 

lays off, beginning at the center of the circle, ф divisions on the vertical 

diameter and, beginning at the endpoints of the horizontal diameter, ф degrees 

on the circumference and draws a circular arc through the three resulting 

points. The required point is the intersection of the two circular arcs (Figure 

63). The resulting representation resembles the stereographic projection of a 

hemisphere, that is, the stereographic projection of a sphere cut off at the circle 

representing the equator, except for the nonuniformity of the A and ф scales on 

the horizontal and vertical diameters. 

A remarkable application of stereographic projection was proposed by 

Abu Ishaq Ibrahim ibn Yahya al-Naqqash al-Zarqali al-Qurtubi (с. 1030-- 

c. 1090), a native of Cordoba, in his Book of operations with the zij of a 

tympanum (Kitab al-‘amal bi-l-safitha al-zijiyya) (see / 18, рр. 135—237; 34]). 

In the medieval East, zijes were astronomical works consisting of large 

numbers of tables, including tables for the transition from one of the three 

systems of spherical coordinates on the celestial sphere—horizontal, equa- 

torial, and ecliptic—to another.* Al-Zarqali called his invention a zij of a 

>This projection was rediscovered by Nicolosi of Paterno in 1624 and Бу A. Arrowsmith 

(1750—1823) in about 1804. It was used to construct an astrolabe by Philippe de Lahire (1640— 

NINDS) Sto) р 

+The system of horizontal а (altitude й and azimuth A) and one of the systems of 

equatorial coordinates (right ascension х and declination д) are not involved in the diurnal 

rotation of the celestial sphere. The system of ecliptic coordinates (longitude / and latitude В) and 

the second system of equatorial coordinates (hour angle ¢ and declination 6) are involved in that 

rotation. 
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tympanum because geometric operations performed on his instrument dispensed 

with the need for transition tables. Essentially, the zij of a tympanum is an astro- 

labe, whose special features earned it the name universal astrolabe.> Whereas 

the usual astrolabes are based on stereographic projection of the celestial 

sphere from a celestial pole, the zij of a tympanum is based on stereographic 

projection from a solstice point (a point of intersection of the celestial equator 

and the ecliptic). Therefore, on al-Zarqali’s tympanum, the celestial equator 

and ecliptic are represented by straight lines intersecting at its center and 

forming an angle equal to the angle between the ecliptic and the equator. On 

this tympanum are also represented parallels to the celestial equator and 

meridians, that is, great circles passing through the celestial poles (Figure 64). 

The tympanum is supplied with a ruler that can rotate about its center. A 

cursor, perpendicular to the ruler, can slide along it. A finger is attached to the 

end of the cursor by means of two hinges, and its end can be placed at any 

point on the tympanum. To go from ecliptic coordinates (longitude 4 and 

latitude В) to equatorial coordinates (right ascension « and declination д) one 

must align the ruler with the representation of the celestial equator; place 

the finger at the point representing the point of the celestial sphere whose 

equatorial coordinates a, 6 are numerically equal to the given ecliptic co- 

ordinates «, В; and rotate ruler, cursor, and finger—as a whole—until the 

ruler coincides with the representation of the ecliptic. Then the finger indicates 

5 The Dutch scholar Gemma Frisius (1508—1555) described this astrolabe in /200/ and called it 

“catholic” (katholikos—universal). 
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the representation of the required point. The arcs passing through this point 

represent a parallel and a meridian and yield its coordinates « and 6. From the 

horizontal coordinates one goes over not to the equatorial coordinates a, д, 

linked in a fixed way to the ecliptic, but to the equatorial coordinates ¢ (hour 

angle), 6, linked in a fixed way with the horizon. In this case the same 

tympanum is viewed as the projection of the celestial sphere from a point of 

intersection of the horizon and the equator onto the plane of the celestial 

meridian, that is, the meridian passing through the zenith and nadir. Again, 

the ruler is aligned with the representation of the celestial equator; the finger 

is placed at the point representing the point of the celestial sphere whose 

equatorial coordinates t, д are numerically equal to the horizontal coordinates 

A, h; and ruler, cursor, and finger are rotated—as a whole—through the 

complement of the latitude @ of the locality. This aligns the ruler with the 

representation of the horizon. Then the finger indicates the representation of 

the required point under the new projection and the circles passing through 

it—representing a parallel and a meridian—yield its 1, д coordinates. 

Al-Zarqali’s astrolabe also represents a nomogram with a transparent 

chart (see /573/). Since it is supplied with an alidad for measuring the 

altitudes of stars, one can perform on it all the operations one can perform on 

an ordinary astrolabe. The advantage it offers is that its tympanum suits all 

geographic latitudes (hence the name universal astrolabe). 

Of the works of more recent scholars on the use of stereographic projection 

in mapmaking we mention two papers of Euler’s: On the representation of a 

spherical surface in the plane (De repraesentatione superficiei sphaericae super 

plano. Petersburg, 1778), and On geographic projection of a spherical surface 

(De projectione geographica superficiei sphaericae. Petersburg, 1778) [176, 

vol. 28, рр. 228—235, 133-141]. п those papers Euler posed the problem of the 

most general angle-preserving mapping of the sphere onto the plane. To solve 

this problem Euler used a stereographic projection of the sphere onto the 

plane that mapped the point on the sphere with latitude v and longitude t onto 

the point of the plane determined by the complex number 

2 = tanv/2(cost + 151 0), (3.5) 

and then applied to the plane a conformal (that is, angle-preserving) mapping 

using a complex analytic function. 

Affine Transformations in the Works of Ibn Qurra 

and Ibn Sinan 

Central dilatations and axial affinities are special cases of affine transforma- 

tions, the most general transformations of the plane in which straight lines are 

mapped onto straight lines. Relative to rectangular, skew, and affine co- 

ordinates (in the latter the units on the coordinate axes may be different) affine 
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transformations are described by means of equations of the form 

х’ = Ах + By +a, y =Cx+ Dy +b, (3.6) 

B У 

= 
Since they are one-to-one mappings, affine transformations preserve the 

parallelism of straight lines. It is easy to show that these mappings also 

preserve simple ratios of segments on a line or on parallel lines. 

with nonzero determinant 

B 
. If this multiplier is +1, 

' и: А 
The mapping (3.6) multiplies areas by с 4 

then we call the mapping equiaffine. 

General equiaffine mappings first turn up in Thabit ibn Qurra’s Book on 

sections of a cylinder and its surface (Kitab дай al-ustuwana wa-basitha) 

[267; 492, pp. 196-236]. After proving that the area of an ellipse with 

semiaxes a and 6 is equal to the area of a circle of radius fab, Ibn Qurra 

proves the following result (proposition 17): 

Every segment of an ellipse is equal to a segment of a circle of the same 

area such that if we drop two perpendiculars from the endpoints of its 

base to a diameter of the circle, then each of them is to the diameter as 

the corresponding perpendicular, dropped from an endpoint of the base 

of the segment of the ellipse on one of its axes, is to the other axis; 

provided that the segments are both smaller or both greater [than half 

the ellipse or circle], the position of the center of the ellipse relative to the 

perpendiculars is the same as the position of the center of the circle 

relative to its perpendiculars, and the position of the feet of the perpen- 

diculars of the ellipse on its axis is the same as the position of the feet of 

the perpendiculars of the circle on its diameter /267, p. 69/. 

The provisions made by Ibn Qurra for the coincidence of the position of the 

centers and the feet of the perpendiculars (he considers eight cases of location 

of the segments of the ellipse and circle) guarantee equality of the signs of the 

corresponding oriented segments and make his mapping of the ellipse onto the 

circle affine, and the equality of the areas of the ellipse and the circle makes it 

equiaffine. 

In his theorem Ibn Qurra proves that an equiaffine transformation maps 

any segment of an ellipse onto a segment of a circle of equal area. The proof is 

by the ancient method of exhaustion. 

General affine transformations first occur in the Book of measuring the 

parabola (Kitab fi misahat al-qat’ al mukaf1) of Ibn Qurra’s grandson Ibrahim 

ibn Sinan ibn Thabit (908—946) [242, рр. 53—66] (see also [482/). Ibn Sinan’s 

treatise consists of four propositions. The following result is proved in 

proposition 1: 

If ABCDE 15 a multiangled figure and GHJIK is another multiangled 

figure (Figure 65), and if lines BL and CM are drawn parallel to [the line] 
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Figure 65 

DE and [lines] HN and JX are drawn parallel to the line 7K so that the 

lines AL, LM and ME are to one another as the lines GN, NX and XK 

and the lines BL, CM and DE are to one another as the lines HN, ЛХ and 

IK, and if the lines AD and JG are drawn, then the triangle ADE is to the 

triangle GIK as the figure ABCDE is to the figure GHJIK [242, 

рр. 57-58; 482, р. 179]. 

The assumptions that the ratios of the segments AL, LM, and ME are the 

same as those of GN, NX, and XK, and the ratios of the segments BL, CM, and 

ME are the same as those of HN, JX, and [К guarantee that the polygon 

ABCDE is mapped onto the polygon GHJIK by the same affine transforma- 

tion that maps the triangle 4DE onto the triangle С/К. 

This theorem tells us that affine transformation preserve the ratio of the 

areas of polygons. In proposition 2 Ibn Sinan extends this result by means of 

the method of exhaustion to segments of a parabola: 

One of two arbitrary segments of a parabola is to the other as the 

triangle, whose base is the base [of the segment] and whose vertex is its 

vertex, is to the triangle constructed in the same way in the other segment 

[242, p. 59; 482, p. 179]. 

The vertex of a segment of a parabola is the point of intersection of the 

parabola and the diameter conjugate to the base of the segment. Figure 66 

shows a segment of a parabola ABC and the triangle A BC inscribed in it in the 

indicated manner. In proposition 3 Ibn Sinan proves a theorem known to 

Archimedes, that 

every segment of a parabola is to the triangle with the same base and 

vertex as four is to three /242, р. 62; 482, р. 179]. 

The proof consists in comparing the parabolic segment ABC with the 

segment BGC (see Figure 66)—one of the two small segments by which the 

parabolic segment exceeds the triangle. Ibn Sinan proves that the areas of the 
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triangles АВС and BGC inscribed in the corresponding segments are in the 

ratio 8:1. By proposition 2, this implies that this is also the ratio of the 

segments. Therefore the area of the segment is to the area of the two small 

segments as 4:1, and hence to the area of the inscribed triangle as 4:3. This 

enables him to prove in proposition 4 that the ratio of two segments P and Q 

of a parabola with parallel bases and diameters 5 and 1 is related to the ratio 

of the diameters by the equality Р:О = (5:0) 32. 

The Point at Infinity in the Works of Kepler 

Affine transformations are a special case of the more general projective 

transformations. To define projective transformations of the plane we must 

add to the plane points at infinity, one for each pencil of parallel lines. The need 

for this arises in connection with the central projection of a plane to a plane, 

in which some points of the first plane have no images and some points of the 

second plane have no preimages. To ensure the one-one character of such a 

projection it is necessary to supplement each plane with points such that there 

is a one-to-one continuous correspondence between the points of the extended 

plane and the bundle of straight lines through the center of projection. The 

straight lines of the bundle that intersect the plane correspond to the points 

of intersection with the plane, and the straight lines parallel to the plane rep- 

resent the new points. They are called points at infinity for, when a straight line 

of the bundle that intersects the plane comes closer to a straight line parallel 

to it, its point of intersection with the plane recedes to infinity. 

When a plane is projected to a plane that is not parallel to it, the parallel 

lines of the first plane are mapped to intersecting lines in the second plane. An 

example of such a projection is furnished by the projective representation of 

the horizontal plane in a vertical picture plane, where the images of parallel 

lines intersect at the center of vision. 

A plane supplemented with points at infinity is called a projective plane. 
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Projective transformations (collineations) of the plane are one-one transfor- 

mations of the projective plane that map lines onto lines; that is why projective 

transformations can map parallel lines onto intersecting lines. 

Collineations are described in affine coordinates by equations of the form 

‚ Ax+ By +a к © Dyrt bp 

op ory Ae YEx+ Fy te. 
tf (3.7) 

The concept of a point at infinity is first mentioned explicitly in the Optical 

part of astronomy (Astronomiae pars optica. Frankfurt am Main, 1604) [271, 

vol. 2] of the great astronomer and mathematician Johann Kepler (1571-— 

1630). Its subtitle— Supplement to Vitello (Ad Vitellionem paralipomena)— 

shows that its was regarded as a development of the previously mentioned 

Perspective of the 13th-century Polish physicist Vitello /604 /, itself an elabora- 

tion of the Book of Optics of Ibn al-Haytham //9/. Almost simultaneously 

with Kepler’s book there appeared the book on optics by d’Aguillon discussed 

earlier. In it d’Aguillon considered not only stereographic projection but 

also orthogonal and general central projections, which he called orthography 

and scenography—terms he borrowed from Vitruvius (under whose in- 

fluence he created the term stereography). Both books on optics, Kepler’s and 

d’Aguillon’s, were prepared by the many works on perspective that appeared 

in the 14th and 1Sth centuries. Of these we mention, in the first place, the 

treatise On painting (Della pittura. Florence, 1435) by Leon Battista Alberti 

(1404—1472) and On perspective in painting (De perspectiva pingendi. Rome, 

ab. 1480) by Piero della Francesca (1416—1492). 

The first of these works develops a method of representing a row of equal 

and parallel segments as parallel segments contained by two lines intersecting 

on the line of the horizon, and the second describes the construction of the 

perspective representation of an object based on its vertical and horizontal 

projections. 

An important role in the history of perspective was also played by Leonardo 

da Vinci’s (1452—1519) Treatise on painting (II trattato della рига, published 

posthumously in 1651) and by Albrecht Diirer’s Instruction in measurement 

with compass and ruler (Unterweysung der Messung mit Zirckel und Richt- 

scheyt. Nurnberg, 1525), and On human proportion (Von menschlicher Pro- 

portion. Nurnberg, 1528). Both of these great artists were deeply occupied 

with geometric questions and, in particular, geometric transformations, and 

many pages of Leonardo’s notebooks and Diirer’s books are devoted to these 
questions. 

In the Optical part of astronomy, in the chapter “Оп conics”, Kepler notes 

that a section of a cone by a plane can be a straight line, a circle, a parabola, 

a hyperbola, or an ellipse; also, that 

a straight line goes over intoa parabola through infinite hyperbolas, and 

further through infinite ellipses into a circle (Figure 67), 

and that 
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Figure 67 

the most obtuse hyperbola is a straight line, and the most acute, a 

parabola; the most acute ellipse is a parabola, and the most obtuse, a 

circle. 

Further, Kepler introduces the foci of conics—points such that 

straight lines drawn from these points to the point of tangency of the 

tangent to the conic form with it equal angles. 

“Because of [the doctrine of] light’, says Kepler, ‘‘and with eyes intent on 

Mechanics we shall call these points ‘foci.’”’ 

He writes further: 

A circle has one focus A, which is its center. An ellipse has two foci Band 

C equidistant from the center of the figure, and the more acute the 

ellipse, the further apart the foci. A parabola has just one focus D inside 

the figure, and the second must be imagined on the axis of the conic, 

inside or outside of it, at an infinite distance from the first, so that the 

line HG or JG from the invisible focus to any point of the conic is parallel 

to the axis DK. In the case of an hyperbola, the more obtuse the hyper- 

bola the closer the outer focus F to the inner focus E. Also, the focus 

outside one of opposite conics is inside the other, and conversely [271, 

vol: 2,p. 90]. 

Kepler introduced the term focus—“‘fire, hearth’ —under the influence of 

the term ignition place, used by Ibn al-Haytham and other Eastern writers 

on optics for the focus of a parabola, often called in the East an “incendiary 
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mirror.” Kepler’s ‘directing the eyes to mechanics” shows that when he 

wrote this work he already knew of the importance of the foci of an ellipse in 

celestial mechanics—an importance bestowed on them by the first of Kepler’s 

laws of planetary motion, published in his New astronomy (Astronomia nova) 

[271, vol. 3]. What is important to us at this point is that Kepler was aware 

that ‘Бе invisible focus of the parabola” closes the straight line DK and all 

straight lines parallel to it. 

Projective Transformations in the Works of Desargues 

Projective transformations were first systematically investigated by the French 

engineer, architect, and geometer Girard Desargues (1591—1661) in his Rough 

draft of an attempt to deal with the outcome of a meeting of a cone with a plane 

(Brouillon project d’une atteinte aux éveénemens des recontres du cone avec 

un plan. Paris, 1639) [142].° Desargues added to the plane a line at infinity 

and viewed hyperbolas as closed curves that intersect it in two points, and 

parabolas as closed curves that touch it. Also, he thought of the asymptotes of 

a hyperbola as touching it at its points at infinity. Desargues studied cross 

ratios of quadruples of points (considered earlier by Pappus) and projective 

transformations of lines that preserve cross ratios (these transformations are 

called projective, for they arise as projéctive transformations of the plane that 

map the line onto itself). 

We consider the most important of Desargues’ transformations. Desargues 

used the term tree for a straight line with several given pairs of points such that 

the products of the lengths of the segments that begin at a point common to 

all pairs—the “‘trunk’’—and end at the points of a pair is constant. He called 

the points of a pair knots; a segment joining the “trunk” to a “КпоЁ” was called 

a branch, segments between “knots” were termed shoots, and corresponding 

“branches” were said to be paired. This botanical terminology was probably 

created by analogy with the arithmetic and algebraic term root. Considering a 

“tree” with “trunk” A and pairs of corresponding “branches” AC and AG, AF 

and AD, AB and AH, that is, assuming that the equalities 

AC: АС = АР: АР = AB: AH 

hold, assuming that “‘the trunk A is free relative to both branches of each ра”? 

(that is, that A lies outside the segments CG, DF, and BF (Figure 68)), and 

calling products of segments rectangles on these segments, Desargues wrote: 

In view of the equality of the rectangles on the two branches of each of 

the three pairs AB, AH; AC, AG; AD, AF, the four branches AG, AF, 

AD, AC are pairwise proportional. It follows that GD is to CF as AG to 

AF or AD to AC, and GF is to CD as AF to AC or AG to AD. 

° An English translation appeared in 1987 /182a; pp. 69-143]. 
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It follows that the branch AG is to its paired branch AC as the 

combined ratios of the shoot GD to the shoot CF and the shoot GF to the 

shoot CD, which is equal to the ratio of the rectangle on the shoots of the 

pair GD, GF to the rectangle on the shoots of the corresponding pair CD, 

Cr 

It follows that the rectangle on the shoots GB, GH—the “‘twin”’ of 

the rectangle GD, FG—is to its corresponding rectangle CB, CH, the 

twin of the rectangle CD, CF, as the rectangle GD, GF—the “мп” of 

the rectangle GB, GH—is to its corresponding rectangle CD, CF, the 

“twin” of the rectangle CB, CH ( [142, рр. 116-118] ). 

Thus beginning with AG/AF = AD/AC and AF/AC = AG/AD, Desargues 

obtains AG/AF = GD/CF and AF/AC = GF/CD, and from these, by com- 

position of ratios (in his terminology, combination of ratios), the equalities 

AG/AC = (GD/CF) -(GF/CD) = (GD: GF)/(CF: CD). In the same way he 
obtains for analogous “rectangles” (in his terminology, twins) 

AG/AC = (GB/CH) -(GH/CB) = (GB: GH)/(CH: CB), 

that is, 

(GD-GF)/(CF: CD) = (GB: GH)/(CH: CB). 

This can be rewritten as the equality of two cross ratios 

(GD/CD)/(GB/CB) = (GF/CF)/(GH/CH) 

that is, 

(GC, DB) = (GC, FR). 

Here any pair of corresponding “Кпо{$” can be replaced by any other. This 

means that Desargues proved that his correspondence between the “knots” of 

a “‘tree’’ is a projective correspondence on the points of the line. Also, in view 

of the complete equality of pairs of corresponding ‘“‘knots,” we can inter- 

change these pairs in a cross ratio without altering its value. Since an inter- 

change of the pairs of points in a cross ratio changes its value to its reciprocal, 

we conclude that all cross ratios in the Desargues correspondence are equal to 

1 if we ignore orientations of segments, and to — 1 if we take such orientations 

into consideration; that is, the corresponding point sets are harmonic. But 

then the fixed points of the Desargues correspondence divide each pair of 

corresponding points harmonically. 

° Desargues also considers the case when the “trunk” is between the points 

of each pair. Whereas in the first case the points of corresponding pairs did 
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not separate each other (were “‘apart’’), they do so in the second case (are 

“‘mixed’’). The correspondence is again a projective transformation of the line. 

Thus if there are given three pairs of points B, H; C, G; D, F such that 

the points of each pair are simultaneously mixed (Figure 69) or sepa- 

rated with respect to the points of every other pair, and if the corre- 

sponding rectangles made up of segments between these points are to 

each other as their twins taken in the same order, then this disposition of 

three pairs of points on a straight line is called here an involution //42, 

p. 119]. 

The term involution, introduced at this point by Desargues, is also of 

botanical origin, and denotes, literally, the twisted state of young leaves. Since 

involution is a projective transformation of a line that coincides with its 

inverse, the term involution is today used to designate just such transfor- 

mations. In other words, a transformation Т is an involution if T= T~! or, 

equivalently, if T* is the identity transformation. 

Incidentally, the analytic descriptions, relative to an affine coordinate 

system, of the involutions introduced by Desargues are 

xa? ss (3.8) 

and 

x’ = — а? |x. (3.9) 

In the first case, the involution has two real fixed points (x = +a) and is 

called hyperbolic (such involutions are exemplified by the mappings induced 

on the diameters of a circle of radius a by an inversion relative to this circle). In 

the second case, the involution has no real fixed points (the values of x such 

that x’ = x are x = + ар and is called elliptic (the reason for these names is 

that these involutions are induced on the line at infinity by conjugate diame- 

ters of, respectively, a hyperbola and an ellipse). 

Desargues was the first to consider ‘“‘polar transformation” relative to a 

conic. This transformation associates with a point P the locus of points S such 

that Р, 5 divide harmonically the points О, R in which the line PS intersects 

the conic. This locus turns out to bea straight line. Today, this line is called the 

polar of the point, and the point is called its pole.’ 

’The word pole is derived from the Greek polos (axis) and originally denoted a point of 

intersection of a rotating sphere with the axis of rotation. The terms pole of a line and polar of a 

point—both with respect to a conic—were introduced by Frangois Joseph Servois (1767—1847) 

and Joseph Diaz Gergonne (1771—1859), respectively. 
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Desargues showed that а conic defines on each straight line in its plane ап 

involution that associates with a point on such a line the point of intersection 

of that line with the polar of the point in question. If the line intersects the 

conic (in two points), then the involution is hyperbolic (and the points of 

intersection of the line and the conic are its fixed points). If the line and the 

conic have no common points, then the involution is elliptic. 

139 
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Desargues showed that the pairs of points on an arbitrary straight line in a 

plane that are its points of intersection with the conics of a pencil of conics (for 

example, circles) passing through two points define an involution on that line. 

Desargues also showed that if one can draw two tangents from a point in the 

plane to a conic, then the line joining the points of tangency is the polar of the 

point; that the pole of the line at infinity relative to an ellipse or a hyperbola 

is its center; and that the polar of a point on the conic is the tangent to the 

conic at that point. Desargues used these theorems to solve construction 

problems—for example, the problem of finding the axes of the conic that is 

the image under projection of a circle. 

Desargues also proved the theorem which is today known as Desargues’ 

theorem. The theorem states that if two triangles ABC and A’B’C’ are such 

that the lines 4A’, BB’, and CC’ are concurrent (at some point O), then the 

points P, О, В of intersection of the pairs of lines AB and A’B’, AC and А’С', 

BC and В’С’ are collinear (Figure 70). In that case, there exists a special 

projective transformation—a homology® (with center О and axis РОВ) that 

maps the triangle ABC onto the triangle A’B’C’. Therefore Desargues’ 

theorem is sometimes referred to as the theorem on homologous triangles. Axial 

affinities and central dilatations (both discussed previously) are instances of 

homologies. An axial affinity is a homology whose center is a point at infinity 

not on its axis, and a central dilatation is a homology whose axis is the line at 

infinity and whose center is the center.of the central dilatation. The center ofa 

homology may lie on its axis. If that is the case, and if the axis is the line at 

infinity, then the homology is a translation. If the axis is not the line at infinity, 

then the homology is a shear. 

Influenced by Desargues, Blaise Pascal (1623—1662), the great French 

philosopher, physicist, and mathematician, published his Essay on conics 

(Essay pour les coniques. Paris, 1604) [407 ].? Pascal was then only 16, and his 

Essay was a one-page poster. In it Pascal proved Pascal’s theorem, that the 

points of intersection of the pairs of opposite sides of a hexagon inscribed in 

a conic are collinear. If the conic reduces to a pair of lines, then Pascal’s 

theorem reduces to Pappus’ theorem discussed earlier. 

Projective and Birational Transformations in the 

Works of Newton 

The great English mathematician and physicist Sir Isaac Newton (1642—1727) 

used various geometric transformations extensively. In his Enumeration of 

lines of the third order (Enumeratio linearum tertii ordinis), written before 

1670 but published together with his Optics only in 1704 [388 ]}°, Newton gives 

° The term homologia (correspondence) was introduced in this sense by Desargues [142]. 

° An English translation / 182а, рр. 180-184] appeared in 1987. 

'°Newton’s notes оп this work, containing the proofs omitted from the printed text, have been 

published by Derek Thomas Whiteside /631, vol. 2, рр. 10-89]. 
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a Classification of cubics (curves “‘of the second genus’’) based on the fact that 

all these curves can be obtained by central projection (“Бу casting shadows 

from a bright point’’) of five diverging parabolas 
d 

у? = ах? + Вх? + сх+а 

that differ by the nature of the roots of the polynomial ах? + bx? + cx + а. 

Newton shows that 

If we cast on the infinite plane the shadows of figures from a bright 

point, then the shadows of conics will always be conics; the shadows of 

curves of second genus will always be curves of second genus; and the 

shadows of curves of third genus will always be curves of third genus, 

and so on to infinity. And just as, by casting shadows, the circle gene- 

rates all conics, so too five diverging parabolas generate and procure all 

other curves of the second genus /388, pp. 28—29]. 

In this famous Mathematical principles of natural philosophy (Principia mathe- 

matica philosophiae naturalis) /387/, in which he formed classical mechanics 

and—in connection with the requirements of dynamics—presented the 

foundations of the differential and integral calculus, Newton uses projective 

transformations to solve concrete problems. In chapter 5 of book I, devoted 

to the definition of the orbits of moving bodies (they are conics), we find 

lemma 22: 

To transform figures into other figures of the same kind /387, p. 90/. 

Here Newton defines the following transformation of a curve НСТ шю a 

curve hgi (Figure 71). Project an arbitrary point С on the curve НСТ, parallel 

to the line AO, onto the point D on the line AB. Then project D from O to d 

on BL. Next draw the line dg at some fixed angle « with the line BL and lay off 

on the line dg a segment dg such that dg: Od = DG: OD. If we refer the curve 

HGI to the skew coordinate system with axes AB and OA, then the co- 

ordinates of the point Gare Х = ADand У = DG. If we refer the curve hgi to 

A 8 D i 

Figure 71 
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the skew coordinate system with axis of abscissas BL, origin at the point a of 

intersection of the axis BL, and the line Oa parallel to the axis AB, and 

coordinate angle «, then the coordinates of the point g on the curve are x = ad 

and y = dg. Putting AB = p, OA = q, wecan rewrite the preceding proportion 

as y:p = Y:X.On the other hand, the similarity of the triangles Oadand OAD 

implies that ad/Oa = OA/AD, that is, x:p = q: X. But then Newton’s trans- 

formation can be written as Х = pq/x, У = qy/x. 

This transformation is projective. Newton shows that if the point G traces 

a straight line, a conic, or, more generally, an mth-order algebraic curve, then 

the point д traces a corresponding straight line, conic, or nth-order algebraic 

curve, and that this transformation maps lines that intersect on the axis of 

abscissas into parallel lines. Newton’s comment on this lemma is that it 

serves to solve difficult geometric problems by transforming the given 

figures into simpler ones.... After solving the problem for the trans- 

formed figure we need only transform it into the original figure and thus 

obtain the required solution for the latter /387, р. 91/. 

In the Enumeration of curves of the third order Newton also considers more 

general transformations, known today as birational transformations, given by 

invertible, functions х = АУ ие X= OY = 

such that f, д, ¢, and y are rational functions.'! The simplest example of such 

a transformation is inversion in a circle (3.3), mapping lines into lines or 

circles, and inversions in an ellipse, hyperbola and parabola described by 

Apollonius (see above, p. 115). In his classification of cubics Newton lists nine 

curves, which he calls hyperbolisms of conics: four hyperbolisms of a hyperbola 

(types 57—60 of his classification), three hyperbolisms of an ellipse (types 

61—63), and two hyperbolisms of a parabola (types 64—65). He writes: 

By a hyperbolism I mean a figure whose ordinate is obtained if one takes 

the product of the ordinate of that figure by the given straight line, 

divided by the common abscissa. In this way a straight line becomes a 

conic hyperbola, and every conic becomes one of the figures called here 

hyperbolisms of conics /388, pp. 23—24]. 

The analytic description 

_ a esd: Ра Оо В 

Az + Во+ С” АВ С" 

of a general collineation of the plane first appeared in Analytic exercises on 

algebraic equations and properties of curves (Miscellanea analytica de aequa- 

tionibus algebraicis et curvarum proprietatibus. Cambridge, 1762) by Edward 

Waring (1734—1798), a mathematician of Newton’s school /620, р. 82]. 

11 1 connection with birational transformations in Whiteside’s edition of the works of Newton 

see the paper /535/ of Galina Shkolenok. 
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Affine Transformations in the Works of Clairaut and Euler 

General affine transformations first turned up in Europe in a paper by the 18- 

year-old A. C. Clairaut, entitled On curves obtained by intersecting a curved 

surface by a plane т а given position (Sur’les courbes que Гоп forme en coupant 

une surface courbe quelconque par un plan donné de position. Paris, 1733) 

[116]. In this paper Clairaut gives a proof ofa result in Newton’s Enumeration 

without relying on the assertion that all cubics can be obtained by central 

projection from five diverging parabolas. Clairaut proves that sections of a 

cubic cone ху? = ax? + bx*z + cxz? + 423 by planes x = const. are diverg- 
ing parabolas, and the remaining species of cubics are sections by other planes. 

Clairaut defines affine transformations as follows: 

Here we regard two curves as being of the same species if they differ only 

in that their coordinates do not form the same angle, or the abscissas and 

ordinates of one of them are always the same parts of the abscissas and 

ordinates of the other, much as is the case with one ellipse relative to 

another if their axes are not in the same ratio / 116, р. 486]. 

Clairaut writes this transformation as 

х = (с/4)и, y=(b/e)s, 

where x, у and и, 5 denote coordinates in two systems whose axes and angles 

are, in general, different. 

Affine transformations were also considered by Euler in the 18th chapter— 

On similarity and affinity of curved lines—of the second volume of his Introduc- 

tion to infinitesimal analysis (Introductio in analysin infinitorum. Lausanne, 

1748) [176, vol. 8, 9]. First Euler considers similar figures and similarity 

transformations given by 

x= X/n, у = Y/n, 

notes that all circles form a class of similar figures, and states: 

Whereas in the case of similar curves homologous abscissas and 

ordinates increase or decrease in the same ratio, in the case when the 

abscissas follow one ratio and the ordinates another the curves are no 

longer similar. Since the resulting curves are nevertheless related, we 

shall call them affine curves. Thus affinity includes similarity as a special 

case, for affine curves become similar if the two ratios, followed sepa- 

rately by the abscissas and the ordinates, become equal. Given some 

curved line AM В (Figure 72a) one can obtain from it an infinity of affine 

curves amb (Figure 72b) as follows: one must choose the abscissa ap so 

that AP:ap = 1:m, then draw the ordinate pm so that PM: рт = 1:n. 

In this way, by changing both ratios 1:m and 1:n, or just one of them, 

one can obtain an infinity of curves that are affine with respect to the 

first curve АМВ [176, vol. 9, р. 323]. 
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Then Euler represents affine transformations by means of the formulas 

xi Xn, payin 

and notes that they map circles onto ellipses, hyperbolas onto hyperbolas, and 

parabolas onto parabolas. | 

The terms affine and affinity (affinitas—literally, legal relationship, rela- 

tionship by marriage) occur here for the first time. Undoubtedly, Euler’s term 

reflects the terms figures of the same kind and figures of the same species used 

by Newton and Clairaut, respectively. By introducing this term Euler appar- 

ently wished to emphasize that ‘affine curves” are less closely related than 

similar curves and far less closely related than “‘similar and equal’’—that is, 

congruent—curves. 
Euler also gives general formulas for affine and similarity transformations 

obtained by combining the preceding affine and similarity transformations 

with rotations about a point. 

We note that in the 15th chapter—On curves with one or several diameters 

—of the same work Euler actually undertakes to classify plane motions. By a 

diameter of a curve—more precisely, an orthogonal diameter of a curve—Euler 

means a straight line that halves all the chords perpendicular to it, that is, an 

axis of symmetry. The chapter’s main concern is to clarify the conditions 

under which a curve has one or more axes of symmetry. Basically, however, 

the more fundamental problem here is to clarify the conditions under which a 

curve is “similar and equal’ —that is, congruent—to itself. The fact that the 

curves under consideration are algebraic makes it possible to speak not of 

congruence of the curve in the large but rather of the curve as having two 

“similar and equal parts.’’ While discussing different cases of the disposition 

of two “similar and equal parts” of a curve, Euler notes all types of plane 

motions (Figures 73a—73d): (a) translation, (b) rotation, (с) reflection in a line, 
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and (d) glide reflection (that is, reflection in a line followed by translation 

along that line). 

Euler shows that an algebraic curve cannot be mapped onto itself by a 

translation and, except for a circle (which is mapped onto itself by a rotation 

through every angle), can be mapped onto itself only by a rotation through an 

angle commensurable with a right angle; if the curve has и axes of symmetry, 

then all of them are concurrent and successive axes form angles of z/n. Euler 

finds that for an algebraic curve F(x, y) = 0 to have n axes of symmetry the 

polynomial F(x, y) must be 

—1 
some rational function of the expressions x* + у? and x" — os р ) 

—1)\(n—2)(n-3 "224 n(n — 1)(n — 2)(n — 3) И ЕТО 

1.2.3.4 

р. 194]. 

The reason is that any rotation about the origin transforms x? + y? into itself, 
and the only rotations that transform (x + iy)"—the real part of which is the 

second of the expressions given by Euler—into itself are rotations through 

2п/п and their multiples. This is so because a rotation through 2z/n multi- 
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plies x + iy by cos(2n/n) + i sin(2m/n) and thus (x + iy)" by [cos(2z/n) + 

isin(2n/n)]" = 1. At this point Euler makes no explicit use of complex num- 

bers, even though in volume I of the Introduction to analysis [176, vol. 8, р. 140] 

he gives the de Moivre formula in the form we are familiar with today: 

(cosz + ./—1sinz)" = cosnz + ./—1sinnz. 

The Introduction to analysis does not include the results in Euler’s paper On 

certain properties of conics shared by infinitely many curved lines (Sur quelques 

propriétés des sections coniques qui convennent a une infinité d’autres lignes 

courbes. Berlin, 1746) / 176, vol. 27, рр. 51-73], in which he studied curves 

with arbitrary diameters, that is, with axes of symmetry associated with skew, 

as well as the usual right, affine reflections. All affine reflections—skew as well 

as right—are special axial affinities, and axial affinities are themselves special 

affine transformations. All diameters of conics are diameters with respect to 

suitable (skew or right) affine reflections. Unlike orthogonal diameters, such 

diameters can be parallel; this is so, for example, in the case of the diameters 

of a parabola. Euler shows that if an algebraic curve is mapped onto itself by 

skew reflections in two lines, then it is mapped onto itself by the affine 

transformation that is the product of these skew reflections. A detailed 

analysis is carried out in the case when a skew reflection in one diameter maps 

a second diameter onto a third. Some of the properties of affine transforma- 

tions used by Euler in this paper are that they map lines onto lines, parallel 

lines onto parallel lines, and midpoints onto midpoints. 

Finally, we mention Euler’s paper of 1777 On the center of similarity (De 

centro similitudinis. Petersburg, 1795) /176, vol. 26, рр. 276-285], which 

shows that for any two similar figures in the plane there exists a center of 

similarity—a point Г such that if a, b and A, Bare two pairs of corresponding 

points of these figures then the triangles ab and ГАВ are similar; essentially 

Euler proves that every similarity that is not an isometry has a fixed point. 

Conformal Transformations in the Works of Euler 

and Lagrange 

In his Discourse on orthogonal trajectories (Considerationes de traiectoriis 

orthogonalibus. Petersburg, 1770) /176, vol. 28, рр. 99-119], Euler investi- 

gated another class of transformations. He found that one way of obtaining 

orthogonal trajectories—that is, pairs of families of curves such that members 

of different families intersect each other at right angles—was to associate with 

each point of the plane with rectangular coordinates x, y the complex number 

x + iy (in Euler’s notation: x + y./—1) and to use functions which he wrote 

down in the form 

x+y.,/—1 = funct (T+ V./—1), 

x—y,./—1 = funct (Т- V./—1). 
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Here Euler has in mind analytic functions, and his defining condition 

means that the functions can be expanded in power series with real coefficients. 

Such functions define a conformal mapping of the complex plane that maps 

the orthogonal families of lines T = const. and V = const. into orthogonal 

families of curves. Euler pays special attention to the case when the functions 

are polynomials and the curves in the orthogonal families are algebraic. One 

such case is that of quadratic polynomials, where the corresponding curves are 

confocal ellipses and hyperbolas. Euler lays special emphasis on functions of 

the form 

Feo wv eel) (i 

his Ted hen tag a 

that is, fractional linear transformation. In geometric terms, these functions 

define the so-called circular transformations of the plane, generated by simi- 

larities and inversions in circles. Euler used conformal mappings in his geo- 

graphic papers, where he constructed a conformal mapping of the sphere into 

the plane consisting of a stereographic projection followed by a certain 

conformal mapping (see p. 130). The same problem was treated by Joseph 

Louis Lagrange (1736-1813) in a paper entitled On the construction of geo- 

graphic charts (Sur la construction des cartes geographiques. Berlin, 1781) 

[298, vol. 4, pp. 639-692]. Lagrange made use of conformal mappings effected 

by analytic functions 

x+iy=f(u+ id), x — iy = p(u — it) 

that can be expanded in power series with complex coefficients. Lagrange 

selected the functions fand ф so that they mapped the meridians and parallels 

on the sphere onto a prescribed orthogonal system of curves in the plane. The 

term conformal projection for an angle-preserving mapping of a surface onto 

the plane first appeared in the paper On geographic projection of an elliptical 

spheroid (De projectione sphaeroidis ellipticae geographica. Petersburg, 1789) 

[573] by Friedrich Theodor Schubert [Fedor Ivanovié Subert] (1758—1825), 

one of Euler’s students. 

Projective Transformations in the Works of Monge 
and Carnot 

Interest in synthetic projective geometry was revived at the end of the 18th 

century as a result of the appearance of Descriptive geometry (Géométrie 

descriptive. Paris, 1799) [372] by Gaspard Monge (1746—1818), an eminent 

French mathematician and revolutionary. The main part of this work is 

devoted to the exposition of Monge’s method—widely used in technical 

drafting even in our own time and consisting in the orthogonal projection of 

3-dimensional figures to two perpendicular planes that are subsequently 

superposed—and of central projection. In addition, it contains a number of 
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theorems of projective geometry and their proofs. One such theorem is that 

the tangents from a point to a quadric (a quadratic surface) touch that surface 

at the points of a plane curve. The plane of this curve is called the polar plane 

of the point, and the point is called the pole of that plane. The polar trans- 

formation with respect to a quadric is the 3-dimensional analogue of the polar 

transformation with respect to a conic in the plane (discussed previously). 

Monge influenced his student Lazare Carnot (1753—1823), also а revolu- 

tionary and the ‘“‘Organizer of victory,” to concern himself with problems of 

projective geometry. In the paper On the correlation of figures in geometry 

(De la corrélation des figures de géométrie. Paris, 1801) [90], Carnot consi- 

ders continuous, mostly projective, transformations of figures, which he calls 

correlations (corrélations). Carnot calls the principle of correlation the pre- 

servation of the properties of figures under these transformations and the 

passing of numerical magnitudes to their limiting values. He distinguishes 

direct correlations, in which the numerical magnitudes that characterize the 

system do not change sign; indirect correlations, in which some of these 

magnitudes vanish and change sign; and complex correlations, in which some 

of these magnitudes become imaginary, such as, for example, the ‘“‘correlation” 

between the circle x? + у? = а? and the equilateral hyperbola x? — у? = a?, 
and between the ellipse х?/а? + у?/Ь? =1 and the hyperbola х?/а? — 
у2 /Ь? = 1. When two figures are linked by a “correlation,” then properties of 

one can be deduced from those of the other. 

In his Geometry of position (Géometrie de position. Paris, 1803) [91], 

Carnot defines a projective invariant of four points—their cross ratio (3.4). 

What is new in his definition is that the segments involved are oriented and 

their lengths are signed. Carnot shows that the cross ratio (3.4) is positive or 

negative according as the pairs of points A, Band C, D do not, or do, separate 

each other and proves the equality of the cross ratios of the quadruples of the 

points in which various lines—transversals—intersect four lines of a pencil. 

We saw earlier that—apart from consideration of signs—this theorem had 

been proved by Pappus. In his Essay on the theory of transversals (Essai sur la 

théorie des transversales. Paris, 1806) [92, pp. 65-112], Carnot continues the 

study of cross ratios and proves the theorem—also proved by Pappus without 

consideration of signs—that two diagonals of a complete quadrilateral inter- 

sect the third in two points which, together with the two vertices on the latter 

diagonal, form a harmonic tetrad. In his study of the complete quadrilateral 

Carnot took as his starting point Menelaus’ theorem about this figure. 

Projective Transformations in the Works of Poncelet 

Carnot’s work was continued by another of Monge’s students, the military 

engineer and participant in Napoleon’s invasion of Russia, Jean Victor 

Poncelet (1788—1867). Poncelet formulated his ideas on projective geometry 

while a Russian prisoner of war in Saratov. Upon his return to France, he 

published these ideas in his Treatise on projective properties of figures (Traité des 
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propriétés projectives des figures. Paris, 1822) [434]. After defining central 

projection and describing its properties, Poncelet writes: 

All these properties of central projection can be deduced purely 

geometrically from its own nature and from the most generally accepted 

principles, and there is no need to resort to algebraic analysis for their 

definition and proof: for example, in order to prove that an nth-order 

curve remains a curve of this order under projection, it suffices to note 

that the first curve can be intersected by a straight line in its plane in at 

most points, and this must necessarily hold for the second curve, for 

the projection of a straight line is invariably a straight line which must 

pass through all the points that correspond to the points of the first. 

According to the generally accepted definition of Apollonius, a conic 

section, or simply a conic, is the curve of intersection of a plane and a 

circular cone, and thus nothing other than the projection of a circle. 

Since a line in the plane of a circle intersects the latter in at most two 

points, it follows from the above that a conic is also a curve of order two. 

In what follows, a figure, all of the graphical dependencies of whose 

parts are of the kind discussed above—that is, they are dependencies 

that are not destroyed by projection—will be called a projective figure. 

Similarly, we shall call these dependencies and, more generally, all 

relations and properties which hold at once for the given figure and its 

projection, projective relations or properties [434, рр. 4-5]. 

Having defined projective properties, Poncelet shows that all conics are 

projective figures and—like Newton—suggests that in order to solve a dif- 

ficult problem involving a conic one should project the conic onto a circle, 

solve the corresponding problem for the circle, and apply the inverse mapping. 

In developing Carnot’s idea of complex correlations, Poncelet introduces the 

concept of imaginary points in the plane and uses them to prove certain 

theorems—for example, the theorem that all circles in the plane pass through 

two imaginary cyclic points at infinity, and the theorem that the foci of a conic 

are the points of intersection of the tangents to the conic from the cyclic 

points. ' 

Geometric Transformations in the Works of Mobius 

The projective geometry of Monge, Carnot, and Poncelet was synthetic. In 

just a few years after the publication of Poncelet’s Treatise on projective 

properties of figures there appeared The barycentric calculus (Der barycentri- 

sche Calcul. Leipzig, 1827) /369, vol. 1, pp. 5-388 ]/—an analytic treatment of 

affine and projective transformations by the German mathematician and 

astronomer August Ferdinand Mobius (1790-1868). The name of the book 

derives from Mobius’ use of “‘barycentric coordinates” of points: if ти, то, 

т. are masses located at the vertices of a fixed triangle Е, E,£3, then the 

center of gravity (barycenter) of these masses can be characterized—up to a 
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constant multiple—by the numbers m,, т, m3. These numbers, called 

barycentric coordinates, are a special case of homogeneous point coordinates. 

If m,,m,, m3 may take on negative values, then such coordinates can also be 

assigned to points of the plane outside the triangle. Barycentric coordinates 

can also be used to define points at infinity in the plane. 

Mobius showed that projective transformations can be described by linear 

transformations of barycentric coordinates. Mobius introduces the general 

concept of a geometric transformation—a one-to-one correspondence be- 

tween figures—and calls it a relationship (Verwandtschaft). This term is 

apparently a translation of Euler’s “‘affinitas.”” Mobius calls an affine trans- 

formation an “а пе relationship” or “affinity,” and a projective transfor- 

mation a “collinear relationship” or “соШпеаНоп.” M6bius was the first to 

consider general projective transformations of space mapping points into 

planes and collinear points into coaxial planes. He called such transfor- 

mations correlations—a term borrowed from Carnot. An example of a cor- 

relation is a polarity with respect to a quadric. In this Textbook of statics 

(Lehrbuch der Statik. Leipzig, 1837) [369, vol. 3, pp. 1-497], Mobius studies 

another type of correlation—a null-system—closely connected with dy- 

namical screws determined by systems of forces. If we define a point by means 

of projective coordinates x°, x', x”, x3, then a plane 

Yup! = upx? eux us x* + gx? = 0 (3.10) 

is defined by the “‘tangential coordinates” ug, u,, мо, из, a collineation can be 

written as 

be Nae (3.11) 
i] 

and a correlation can be written as 

и; = У a, ;x) (3.12) 

j 

In particular, a polarity with respect to a quadric 

ay 

is a correlation (3.12) whose coefficients a;; satisfy the symmetry condition 

а; = а; and coincide with the coefficients in eq. (3.13), and a null-system 

is a correlation whose coefficients satisfy the skew-symmetry condition 
a —a ifs ji 

Circular and Conformal Transformations 

We saw earlier that Euler and Lagrange considered circular and conformal 
transformations of the plane defined by fractional linear transformations of 
the complex plane and arbitrary complex analytic functions. The French 
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mathematician Joseph Liouville (1809-1882), in an appendix to an edition of 

Monge’s Applications of analysis to geometry (Applications de l’analyse a la 

géométrie. Paris, 1850) /373, pp. 609—616], investigated conformal mappings 

in space and showed that, in contrast to the planar case, every conformal 

transformation of space maps spheres into spheres or planes and is the space 

analogue of a circular transformation. 

Liouville’s study prompted MObius to investigate circular transformations 

without using complex numbers. He did this in the paper The theory of circular 

relationships presented purely geometrically (Die Theorie der Kreisver- 

wandtschaften in rein geometrischer Darstellung. Leipzig, 1855) [369, vol. 2, 

pp. 245-314]. 



Chapter 4 

Geometric Algebra and the Prehistory of 
Multidimensional Geometry 

Geometric Algebra 

Our terms square and cube go back to the Pythagoreans, for whom quadratic 

numbers and cubic numbers were special cases of figurate numbers. These 

included plane numbers m-n, solid numbers |-m-n, as well as the more complex 

triangular numbers n(n + 1)/2, pentagonal numbers n(3n — 1)/2, pyramidal 

numbers n(n + 1)(n + 2)/2 - 3, and so on.' This terminology derives from the 

notion that points—which the Pythagoreans identified with units—are dis- 

tributed in a discrete manner in figures in accordance with definite rules. 

The Pythagoreans called a quadratic number tetragonos (quadratic, qua- 

drangular) and dynamis (potency), and a cubic number kybos (cubic). The 

definitions of square, cubic, plane, and solid numbers in Euclid’s Elements 

(definitions 17—20 in book VII) are taken over from the Pythagoreans / 173, 

vol. 2, p. 278]. On the other hand, for geometric magnitudes Euclid used 

geometric algebra, in which rectangles played the role of products of seg- 

ments and, in particular, squares played the role of products of segments 

by themselves. For example, in proposition 4 of book II Euclid formulates the 

algebraic identity (а + 5)? = а? + 2ab + b? as follows: 

Ifa straight line be cut at random, the square on the whole is equal to 

the squares on the segments and twice the rectangle contained by the 

segments. 

For let the straight line AB be cut at random at C; I say that the 

square on AB is equal to the squares on AC, CB and twice the rectangle 

contained by AC, CB (Figure 74) /173, vol. 1, р. 373]. 

‘Pentagonal numbers turn up unexpectedly in geometry. Thus the family of (n — 1)-dimensional 

plane generators of ап (№ — 1)-dimensional quadric surface depends on Nn — [n(3n — 1]/2 

parameters /464, р. 280]. 
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Proposition 4 of Archimedes’ Book of lemmas is equivalent to this identity: 

If AB be the diameter of a semicircle and N any point on AB (Figure 

75) and if semicircles be described within the first semicircle and having 

AN, BN as diameters respectively, the figure included between the 

circumferences of the three semicircles is “‘what Archimedes called 

ап arbélos’’; and its area is equal to the circle on PN as diameter, where 

PN is perpendicular to AB and meets the original semicircle in P /25, 

p. 304]. 

In fact, the areas of the semicircles with diameters AN = a, BN = b, and 

AB=a+b are 3na’, ¢nb’, and 1п(а + Ь)?, respectively, and the area of 
the arbélos is inab = in(PN)’. 

Geometric Names of Powers in the Works of Heron and 

Diophantus and in the Medieval East 

It seems that it was precisely Euclid’s geometric algebra that blocked con- 

sideration of powers higher than the third. The fourth power first appeared 

in the first century A.D., in the Metrica (Metrika) of Heron, for whom algebra 

was a purely computational rather than geometric subject. Heron called the 

fourth power dynamodynamis (square-square) [224, v. 3, р. 48]. 

In the part of Diophantus’ Arithmetica (Arithmétika) (third century A.D.) 

that has been preserved in Greek we already find six powers. For the fourth 

power Diophantus uses Heron’s term. For the fifth and sixth powers he uses 

the analogous terms dynamokybos (square-cube) and kybokybos (cubo-cube) 

[151, 5. 2, рр. 449—514 ]. Ina recently discovered part of the Arithmetica that 

has come down to use in an Arabic translation by Qusta ibn Luqa (4. ab. 

912) [524, pp. 318, 393] we find also the eighth power (square-square-square- 

square or cubo-cubo-square) and the ninth power (cubo-cubo-cube). In the 

Arabic translation of Diophantus and in other works the mathematicians of 

the Near and Middle East called x? та! (property), хз kab (cube), x* mal 
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mal, x° mal ka‘b, хе ka‘b ka‘b, x’ mal mal ka‘b, х8 mal ka‘b ka‘b, x? ka‘b 

ka‘b ka‘b. In the 11th and 12th centuries these mathematicians went beyond 

Diophantus’ powers. 
In his Brilliant [book] on the science of arithmetic (Al-bahir #1 ‘ilm al-hisab) 

[502] (see also [469] ) Samaw‘al al-Maghribi (4. 1175) notes that the Iranian 

mathematician Abu Bakr Muhammad al-Karaji (d. 1016) stated, in one of 

his algebraic treatises, the binomial formula for integer coefficients, 

(a + by" =a" + па" В+ (3 arto? +... + ("Jarman +o 

+ ()eror nab 2b”. 

and gave a table of binomial coefficients as well as the rule of their formation, 

ее 
We find these rules in the Collection on arithmetic with slate and dust 

(Jami al-hisab bi-l-takht wa-l-turab) /592, 594] of Nasir-al-Din al-Tusi and 

in the Key of arithmetic (Miftah al-hisab) /269, pp. 41—44] of the Samarkand 

mathematician Ghiyath al-Din Jamshid al-Kashi (d. c. 1430). The latter lists 

the six powers above and goes on: 

Then square-square-cube, then square-cubo-cube, then cubo-cubo- 

cube; then [every time] the word ‘cube’ is replaced by “square-square,”’ 

the second ‘square’ is replaced by ‘cubo,’and so on ad infinitum /269, р. 

30}: 

We also note that the cited works of al-Tusi and al-Kashi present what is 

now known as the Ruffini-Horner method for extracting roots of integer 

degree of natural numbers. Apparently this method was taken over from the 

Chinese. It seems that it was first used in the Islamic world БуОтаг Khayyam 

in the lost Problems of arithmetic (Mushkilat al-hisab) which he mentions 

in his algebraic treatise /272, рр. 74—75]. All three writers use for roots of arbi- 

trary degree the word dil’—side, edge—which signifies side of a square, 

edge of a cube, and base in the case of higher degrees. But in spite of their use 

of geometric terminology the three writers did not give geometric interpreta- 

tions of powers higher than the third. Such an interpretation is attempted in 

the Book of ingenious spiritual methods and natural mysteries about subtleties of 

geometric figures (Kitab al hiyal al-ruhaniyya wa-l-asrar al-tabi‘iyya fi 

daqa ‘iq al-ashkal al-handasiyya) of the famous philosopher Abu Nasr al- 

Farabi (с. 870-950) [178, рр. 91-231], and in the Book about geometric 

constructions indispensable for craftsmen (Kitab fima yahtaju ilayhi al-sani‘ 

min a‘mal al-handasiyya) /5] by the mathematician and astronomer Abi-I- 

Wafa' al-Buzjani (940—998). 

After constructing the side of a square whose area is the sum of the areas of 
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three equal squares, in the form of the diagonal of a cube on one of these 

squares as base, both authors go on to say that 

things are exactly the same if we wish to [contruct] a square of more than 

three or less than three squares /5, p, 118; 178, p. 200]. 

It is very likely that these words mean that ‘Чт the case when the number of 

squares exceeds three”’ the side of the required square is equal to the diagonal 

of the “‘square-square” and “‘square-cube” regarded as multidimensional 

generalizations of the cube. It is possible that this problem was discussed in the 

lost Book of introduction into imaginary geometry (Kitab al-madkhal ila al- 

handasa al-wahmiyya) of al-Farabi /236, vol. 2, р. 136]. 

A four-dimensional sphere was first considered by Abu Sa‘id al-Sijzi in his 

Book on measuring of spheres by spheres (Kitab f1 misaha al-ukar bi al-ukar) 

Ио 5p239T] 2 

Whereas Diophantus and the mathematicians of the Near and Middle East 

used the additive principle in forming names of powers (х° = x?*3, 
х3*3,...), the Indian mathematicians used in its place the multiplicative 

principle, that is, Бу square-square (varga-varga) they meant x* = x*?, by 
cubo-square (ghdna-varga) х° = x*?, and by cubo-square-square (ghdna- 
varga-varga) x'? = х3`2`2, The Indians called x° the product of a square and a 
cube (varga-ghana-ghata, х° = x? x*), and x’ the product of a square, square 
and cube (varga-varga-ghana-ghata, x’ = x*- x?+x?). 

We know of just one Arabic work whose author used the additive principle 

in forming names of powers. The work in question, Book on cube, square and 

proportion numbers (Kitab al Ка`Ъ wa al-mal wa-al-a‘dad al-mutanasiba) by 

the Sabian mathematician Sinan ibn al-Fath (10th century), recently dis- 

covered by R. Rashed /446, p. 21/. 

xe = 

Hypergeometric Names of Powers in the Works of Byzantine 

and Italian Mathematicians 

In the works of European mathematicians, who were under the influence of 

Eastern mathematicians, we encounter the additive as well as the multiplica- 

tive principles of naming powers. 

In a paper on Diophantus, the Byzantine mathematician Michael Psellus 

(1018—1078) writes that a third-century Alexandrian mathematician named 

Anatolius, whom Psellus calls a computer (logist), used for x° the term alogos 

protos—the “‘first inexpressible’”’—and for x’ the term alogos deuteros—the 

“second inexpressible”’ /574, vol. 2, pp. 430-432]. 

In his Book of the abacus (Liber abaci) [318, р. 446], which was strongly 

influenced by Arabic writings, Leonardo Pisano called х? census, x* census 

2 This was pointed out to the author by Е. I. Slavutin. 



156 4. Geometric Algebra and the Prehistory of Multidimensional Geometry 

census, хб census census census, and x® census census census census. The 

additive principle is also found in an Italian manuscript of the 15th century, 

whose author calls x? both quadrato and censo, x* cubo, x* censo di censo, and 

x° censo di cubo [324, р. 288]. 
But most Italian mathematicians of the 15th century preferred the multi- 

plicative principle. In his Summary of arithmetic, geometry, ratios and propor- 

tionality (Summa de arithmetica, geometria, proportioni et proportionalita. 

Venice, 1494) /403 ], Luca Pacioli calls x? censo (in abbreviated form, ce.), x*— 

cubo (cu.), x*—censo de censo (ce. ce.), x°—primo relato (p°r°), x° —censo de 

cubo (се. cu.), x’—secondo relato (2°r°), х8 censo de censo de censo (се. се. се.), 
х? — сиро de cubo (cu. cu.), x!°—censo de primo relato (се. p°r°), x'!—tertio 
relato (3°r°), and so on, up to x**. The adjectives primo, secondo, and tertio in 
the names of x°, x’, and x! stand for first, second, and third. Similarly, x*3, 
x'7, x19, and x73 are called fouth, fifth, sixth, and seventh relato /403, f. 67 v./. 
The names used by Pacioli for x° and x’ remind one of the corresponding 

names used by Psellus. Pacioli’s relato for alogos is a distorted translation 

or the translation of a distortion: The usual Latin translation of alogos— 

“inexpressible’’—is irrationalis, where the Latin negation ir corresponds to 

the Greek negation a. It is possible that the translator confused alogos with ho 

logos—ratio—and rendered it as relatum—ratio. Another possibility is that 

alogos was interpreted as nonratio, was rendered as irrelatum, and this was 

later shortened to re/atum. Pacioli’s relate 1$ the Italian form of the Latin 

relatum. 

Three-Dimensional Geometric Algebra 

In the previously mentioned treatise of al-Sijzi, Book of measuring of spheres 

by spheres, we find three-dimensional analogues of the propositions of Euclid 

and Archimedes that interpret the identity (а + b)* = а? + 2ab + b?. Thus in 
proposition 2 of this treatise al-Sijzi proves that every sphere on whose 

diameter are constructed two tangent spheres tangent to the large sphere is 

such that the surplus of the large sphere over the two spheres is equal to the 

sphere whose diameter is the edge of a cube equal to three equal solids each of 

which is limited by the diameter of the large sphere and by the diameters of the 

two spheres /537, р. 326]. 

А1-5 1 considers the ‘“‘sphere АВ” (1.е., the sphere with diameter АВ) and 

the two spheres AC and BC (Figure 76) and says that the surplus DD is equal 

to the spheres whose diameters are equal to the edge of the cube which is equal 

to three parallelepipeds with edges AB, AC, and CB. The solid DD of al-Sijzi 

is the solid of revolution of Archimedes’ arbélos. If AC = aand CB = b, then 

the three parallelepipeds of al+Sijzi form the surplus of the cube (а + 6)? over 

the cubes а? and 3. Al-Sijzi represent this cube in Figure 77, where the 
decomposition of the cube interprets the identity 

(a + b)? = а? + 3ab(a + В) + Ь?, (4.1) 
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equivalent to the identity 

(a + b)® = a? + 3a7b + 3ab? + 63. (4.2) 

In the proposition 3 al-Sijzi also gives the interpretation of the identity 

(4.2). The decomposition of the cube into two cubes and six parallelepipeds 

interpreting this identity was proposed in the Algebra (Coss) of Christoff 

Rudolff (ab. 1500—аЪ..1545) for whom it was named Christoff’s cube) [558, f. 

173 r.] (Figure 78). 

The rule of decomposition of a cube (probably Christoff’s) was used by the 

Italian algebraists of the 16th century Niccolo Tartaglia (с. 1500—1557) and 

Girolamo Cardano (1501—1576) (who also used the Italian re/ato and the 

Latin relatum) in their solutions of cubic equations by radicals. Tartaglia 

discovered a method for solving equations by radicals, and Cardano pub- 

lished Tartaglia’s solution in his Great art, or on algebraic rules (Ars magna 

sive de regulis algebraicis. Nurnberg, 1545) [88, 89] and supplied his own 

proof. Cardano’s proof (see / 195 ]) was based on the rule of decomposition of 

(a + 5). To solve an equation x? + ax = b one put x = U — И. Substitution 

in the equation yielded the equality ИЗ —3U?V + 3UV? — V? + aU — 
aV = b, where ИЗ — ИЗ = b and 3 UV = a. Similarly, to solve an equation 

x? = ах + bone putx = U+ V; here U? + У? = b, 3UV =a. 
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Hypergeometric Names of Powers in the Works of 

German Cossists 

The additive principle of naming powers occurs also in the early algebra 

handbooks by the German cossists. The German name Coss for algebra 

derives from the Italian cosa—thing—itself a translation of the Arabic 

shay’ and the Latin res. Following the Eastern mathematicians, the Italian 

mathematicans used this term to denote the unknown in algebraic equations. 

For example, in the Dresden manuscript С. 80 (ab. 1480) we find x—res (г); 

x7 —-zensus (2); x°—cubus (сх эх = X° = 277: x = C7ZZ; x = 
2727, ХЗ = 17777; x'° = zzzzz. But already in the Vienna manuscript 3277 
(ab. 1500) x° is denoted by alt and is called guadrangularis (a distortion of 

alogos?) and хе is denoted by 2 + с (quadratus et cubus) [591, vol. 2, р. 148]. 

All subsequent cossist algebras use the multiplicative principle. In a manu- 

script of 1525, whose author refers to himself as Jnitius Algebras (founder of 

algebra) / 244 ], as well asin its abbreviated version entitled Algebra (Die Coss) 

and written a year earlier by Adam Riese (1492—1559), x? is called Zensus ог 

Quadrat and is denoted by 3, and the names and abbreviations of x? though х? 

are x*>—Cubus (©); x*—-Zensus de Zensu (33); x>—Sursolidum (В); x®— 
Zensicubus (36); x’—Bissursolidum (biB); x8—Zensus Zensui de Zensu (333); 

x?—Cubus de Cubo (cc). Higher powers are denoted in the manuscript of 

Initius Algebras as follows: x!° — 3B; x! = terB; x1? = 33¢; x13 = quadrB; 
ео. 
р. 474]. 

Initius Algebras makes the following comment about the names of х° 

angie: 

Note that these two symbols are called sursolida, that is, surda solida, for 

they are obtained from solids and surfaces, multiplied by one another in 

surdic and irrational section, arising at the fifth and seventh steps of 

multiplication” /244, р. 477]. 

The Latin surdus—that gives rise to surda solida and surdisch (literally: 

deaf )—1s a translation of the Arabic asamm (dumb, deaf), the Arabic term for 

the Greek alogos—inexpressible. The Greek, Islamic, and Western European 

scholars used (respectively) the terms alogos, asamm, and surdus for irrational 

roots. Later, surdus came to denote irrational numbers. This explains the term 

surdic and irrational section. It means that it is not possible to obtain square 

and cube roots of x° and x’, that is, such roots of these powers of integers are 

irrational. Also, we are explicitly told that sursolidum is short for surdum 

solidum. 

Riese’s definition points to the same origin of the word sursolidum: 

sursolidum is a deaf number (ist eine taube zal) that has nothing in 

common with either square or cube /455, р. 35/. 

The German taub is the equivalent of the Latin surdus. It seems that the 
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Cossist terminology derived from some lost source used by Psellus and 

Pacioli. What is new here is the use of solidum—solid—in the names of prime 

powers. This indicates that the Cossists (or the sources they relied on) viewed 

these powers as generalizations of cubes. Similar names of powers up to x° 

occur in Rudolff’s Algebra: ‘ 

x*—Zensus (3); x*—Cubus (©); x*—Zensdezens (33); x°—Sursolidum 
(В); x®—Zensicubus (30); x’ —Bsursolidum (BB); x*—Zenszensdezens 
(333); x’ —Cubus de Cubo (cc) [558, f. 63]. 

Rudolff defines sursolidum as 

an awkward number (ungeschickte zal) without square or cube root 

[258,7. 63 Of: 

In his supplements (K Gnigsberg, 1553) to Rudolff’s Algebra Michael Stifel, 

the greatest of the cossist scholars, introduced the following symbols for 

ЕЕ ром есь: хх = ОВЕН = DB: x = 388. x? = cB: 
Ех — Ех 38. xo t= (BBS > = В 
[558, f. 160 v.]. In his Complete arithmetic (Arithmetica integra. Мигибего, 

1544) /559] Stifel called х? surdesolidum rather than sursolidum and used the 

symboisin = Di =i Хх = dbx = Ва 30.00.7259, Зак. 

Later mathematicians, however, viewed sursolidum as an abbreviation of 

supersolidum—“‘supersolid”’ (sur—*‘above” in French—is an abbreviation of 

the Latin super). This name is found, for example, in On the occult part [of the 

study] of numbers called algebra (De occulta parte numerorum quam algebram 

vocant. Paris, 1560) [414] of Jacques Pelletier (1517—1582). 

The view of the fifth power as a “‘supersolid”’ is found in the 17th century in 

the works of René Descartes (1596—1650), the creator of symbolic algebra. In 

his Geometry (La géométrie. Paris, 1637) [ 143, vol. 3, pp. 307—485; 144], he 

gives the names of the powers х? through x° as 

square or cube, or square of square, or supersolid or square of cube (le 

quarré, ou le cube, ou le quarré de quarré, ou le sursolide, ou le quarré de 

cube) / 143, vol. 3, р. 373]. 

Descartes also used the term sursolide on other occasions. In one paper / 143, 

vol. 3, p. 188] he used Stifel’s term B-sursolide for x’. He called the third book 

of his Geometry, which was devoted to the solution of problems of degree 3 or 

higher, On the construction of solid or supersolid problems (De la construction 

des problémes solides ou plus que solides) / 143, vol. 3, р. 442]. Franz van 

Schooten (1615—1660) gave the following Latin translation of this quotation 

from Descartes: 

quadratum, sive cubus, sive quadrato-quadratum, sive surde-solidum, 

sive quadrato-cubus / 146, р. 5]. 

Further on von Schooten translated sursolide as surde-solidum [ 146, рр. 108— 

109]. Descartes himself used in one of his Latin letters / 143, vol. 3, р. 265] 

the term supersolidum. 
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Multidimensional Generalizations of the Cube 

in the Work of Stifel 

The “hypergeometric” names of powers and the interpretation of sursolidum 

as supersolidum rather than as the earlier surdesolidum suggested to Stifel the 

idea of a multidimensional generalization of a cube. Stifel’s idea was quite 

precise. In his reworked version of Rudolff’s Algebra, in the supplement to 

book 1, Stifel wrote: 

Such [geometric] progressions are named after true geometric pro- 

gressions in the proper sense of the word, in which the first to be 

represented is a point as the element of lines; the second to be listed is a 

line (long or short); the third [to be constructed] is a plane square figure 

named after the measure of the drawn line by length and width; the 

fourth is the cube, for which the drawn line is a cubic root or the measure 

by all of its three dimensions—length, width and breadth. The geo- 

metric progression does not go further to other, larger dimensions. That 

is why every geometric progression is translated into arithmetic: unity 

for a point, the first number for a line, the second number for a square 

plane figure, and the third number for a cubic solid. Whereas in arith- 

metic we are allowed to invent many things, even if they are completely 

devoid of form, in geometry we must not assume corporeal lines and 

surfaces (corperliche linien und superficies) and go beyond the cube as 

if there were more than three dimensions (iber den cubum hinauss 

faren gleych als weren mehr denn drey dimensiones), for this would be 

unnatural. In that case, the geometric progression would go further 

and further, without any purpose and conclusion, the cube would be 

regarded as a corporeal point, after which one would set the corporeal 

line, then the corporeal surface, then the cube, to be followed by others, 

as just indicated, without stopping. But then one would have to make 

a considerable allowance for a beautiful and remarkable application of 

algebra /558, f. 9r.—9v.]. 

Regarding a line as the trace of a moving point, Stifel called a cube a 

corporeal point, and by a corporeal line and corporeal surface he meant the 

result of the motion of a cube in one or two directions perpendicular to all 

dimensions of the cube. In another place, generalizing the notion of a solid 

line, Stifel defined a cossic line as the trace of a moving magnitude of arbitrary 

dimension, which he illustrated by the trace of a moving line ac: if this line 

moves along a line ар, then the rectangle abcd is a cossic line [558, f. 173 r.]. 

Having presented the binomial formula (а + 5)” in his Complete arithmetic, 

Stifel, in his reworking of Rudolff’s Algebra, used his ideas on multidimen- 

sional cubes to illustrate this formula. After citing the geometric interpre- 

tation of the binomial formula for n = 3 by means of Christoff’s cube, Stifel 
writes: 
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Just as square binomials decompose into 4 parts, and cubic ones into 8 

parts, square-square binomials (die binomia zensizensica) decompose 

into 16 parts, and the supersolids (die sursolida) into 32 parts, and this 

continues in a similar manner in accordance with the double progression 

[558, f. 482 v.]. , 

The idea of a space of more than three dimensions appeared at the end of 

the 16th century in the commentaries on Aristotle’s Physics by the Portuguese 

Jesuit Manuel de Gois [read: Goish], who worked in Coimbra University. 

These commentaries are famous because Cantor took from them the term 

transfinite to denote the cardinality of infinite sets—in de Gois’ words 

actually (actu) consisting of infinitely many parts /363, р. 258]. 

Following Bradwardine—of whom more later—de Gois introduced the no- 

tion of imaginary space and conjectured that it was the habitat of God /210, 

p. 561]. He went on to say that 

this imaginary space is not a real magnitude possessing three dimensions 

[210, p. 562]. 

This property of imaginary space supports the conjecture that this notion goes 

back (through a great many intermediate links) to the imaginary geometry of 

al-Farabi. 

First Attempts at a Geometric Interpretation of Functions 

of Many Variables 

Another road leading to multidimensional geometry is connected with at- 

tempts at geometric interpretation of functions of many variables. The first 

such attempt goes back to the French mathematician Nicole Oresme (ab. 

1323—1382) and his treatise On the configurations of qualities and motions (De 

configurationibus qualitatum et motum) /397/. About a linear quality (a 

function of one variable) Oresme wrote: 

Every linear quality is figured [that is, represented by figures] by means 

of surfaces perpendicularly situated on the surface informed with qual- 

ity at its Базе /397, р. 177], 

that is, by a graph in the plane. About a surface quality (a function of two 

variables) he wrote: 

A surface quality is imaginable as a corporeal figure perpendicularly 

situated on the surface, furnished with quality at its base /397, р. 208]. 

Further Oresme defines a corporeal quality, that is, a function of three 

variables: 
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Figure 79 Figure 80 

By following the present imagery with respect to [a quality being repre- 

sented as] outside of the subject in its every part, a corporeal quality is 

figured according to the figuration of [all of the] surface qualities of the 

same body. It is clear from the statements made earlier that some 

corporeal quality can be completely imagined or figured by every kind of 

solid figure, so long as a perpendicular line can be drawn to the base of 

that figure from any point of the figure by which the quality of this kind 

is designated. And therefore, no quality is designated by a perforated 

figure of this sort (Figure 79): 

and by a subconcave figure, that is, one that is concave opposite the 

base, as is this figure (Figure 80): 

or by some such figure / 397, р. 210]. 

Thus the graph of a linear quality is situated in the plane perpendicular to the 

linear base of this quality, the graph of a surface quality is also perpendicular 

to the plane base of this quality, and the graph of a corporeal quality consists 

of lines perpendicular to all dimensions of the corporeal base of this quality, 

that is, this graph is situated in the fourth dimension. 

The same idea occurs in the 17th century in the work of one of the founders 

of analytic geometry, Pierre Fermat (1601—1665), namely in his New analytic 

treatment of unknowns of second and higher order (Novus secundarum et 

ulterioris ordinis radicum in Analyticis usus) / 182, vol. 3, рр. 157—163]. After 

investigating an equation in two unknowns and showing that such an equa- 

tion defines a curve, Fermat writes: 

If the problem involves three unknowns, then to satisfy the equation one 

has to find not only a point or a curve but an entire surface. In this way 
surface loci arise, and so on / 182, vol. 3, р. 161]. 

It is clear that by and so on, that is, by further geometric loci, Fermat meant 

multidimensional geometric interpretations of equations with more than three 

unknowns. Thus by the 17th century the need for geometric interpretations 

of, first, algebraic powers beyond the third, and then functions of more than 

two unknowns, led mathematicians close to the idea of multidimensional 

space. 
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The Geometric Algebra of Viéte 

Analytic geometry was created almost simultaneously by Fermat in his /ntro- 

duction to plane and solid loci (Ad locos planos et solidos isagoge) / 182, vol. 1, 

pp. 91-103 ], and by Descartes in his Geometry (1637). The former was written 

somewhat earlier and, though not published until after Fermat’s death, was 

read by Paris mathematicians in manuscript. 

It seems that the two creators of analytic geometry were inspired by a small 

work by Viéte entitled First notes on the logistic of types (Ad logisticem 

speciosam notae priores. Paris, 1631) [603, pp. 13—41].3 This was published 

after his death and shortly before the appearance of the works of Fermat and 

Descartes. 

In proposition 46 of First notes Viéte solves the following problem: 

Given two right triangles to find a third right triangle. Let two right 

triangles be given and let the hypotenuse of the third be similar to what is 

obtained by multiplying the hypotenuse of the first by the hypotenuse of 

the second, namely Z and Х /603, р. 34]. 

A comment is called for. It is required to find a triangle whose hypotenuse is 

equal to the product of the hypotenuses of the first two triangles. Viéte says 

that the hypotenuse of the third triangle is “‘similar” to the product of the 

hypotenuses of the first two triangles because he adheres to the homogeneity 

principle adopted in antiquity and so regards the product of the two hypote- 

nuses as a rectangle and the third hypotenuse as the base of a rectangle of 

equal area whose height is equal to a unit segment. Убе considers two right 

triangles with hypotenuses Z and_X, horizontal legs D and G, and vertical legs 

B and F, respectively, and points out that the problem has two solutions: 

In the first case the first side is B by G + D by Fand the second side is B 

by F=D by G; in the second case the first side is B by G—D by Fand the 

second side is В by Е + D by G (Figure 81) [603, р. 34]. 

Viéte’s sign “==? denotes subtraction of the smaller of two magnitudes from 

the larger, that is, ““A—B” stands for | А — В|. Уве calls his composition of 

triangles generation of triangles (genesis triangulorum). 

In proposition 48 Viéte considers the composition of two equal triangles 

and calls the result a double angle triangle. In proposition 49 he composes the 

original triangle with the double angle triangle obtaining a triple angle triangle; 

repetition of the process in propositions 50 and 51 produces a quadruple angle 

triangle and quintuple angle triangle, respectively. Viéte calls his operation 

parting (diductio) of right triangles and formulates its general rule: 

3 Although this is one of the most interesting of Viéte’s works, it is little studied by historians of 

science. Attention to it was called by Isabella Grigor’evna BaSmakova and Evgenii losifovic 

Slavutin, who have investigated in /38/ various algebraic aspects of this work. See also the book 

[39] by BaSmakova and Slavutin. 
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if one forms an arbitrary power of a binomial [made up of two] roots and 

separates the resulting individual homogeneous terms into two parts, 

with positives (adfirmata) followed by negatives (negata), then the first 

of these parts will be similar to the base [that is, the horizontal leg— 

B. R.] of another triangle, the second to [its] perpendicular [that is, the 

vertical leg—B. R.], and the hypotenuse [of that triangle] is similar to the 

power itself. As for the triangle from which the similar one has been 

obtained, its base is equal to one of the combined roots, its perpendic- 

ular to the other, and its name derives from the angle subtended by its 

perpendicular. Now the triangle obtained by extending the [triangle 

constructed] on the roots is named for the angle that is a multiple of that 

angle, whatever the order of the corresponding power, according to the 

property of that power, namely, double if the power is a square, triple Ка 

cube, quadruple if a square-square, quintuple if a square-cube, and so on 

to infinity /603, р. 37]. 

In propositions 48—51 of the First remarks there are drawings of double, 

triple, quadruple, and quintuple triangles, and next to their legs are given their 

lengths expressed in terms of the lengths B and D of the legs of the initial 

triangle: 

Dq — Ba, ие. 

De — D in Bq3, Ра in B3— Вс, 

Dqq — Ба in Bq6 + Вад, В in Dc4— Bc in D4, 

Рас — De in Bqi0+ D in Bqq5, В in 29445 — Bc in 2910 + Вас. 

In modern terms, these are 

D? — B*, 2DB, 

D> — 3DB*, “3D? B— В, 

D* — 6D? В? + B*, 4BD> — 4B°D, 

р — 10D? B? + 5DB*, SBD* —10B*D* + B® 
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and thus particular cases of the expressions 

Dis (отв ze (pas ооо Е о ( ) opamp ae ea 
2m 

ft 

and 
/ 

вр" — (ув é (вер = 

ae or, oe ое. 

The coefficients (/,) denote the number of combinations of 1 objects taken mat 

a time and are thus the binomial coefficients. 

The formulations of these propositions shows that Viéte realized that his 

composition of triangles resulted in the addition of the angles between hypo- 

tenuse and base and, in the special case of the composition that he called 

parting, in the multiplication of the angle by a natural number. Viéte used this 

fact to solve problems on the division of an angle as well as on the division of 

a circle into an equal number of parts; the solutions appear in the papers 

Theorems on the division of angles (Ad angulares sectiones theoremata) and An 

answer to the problem Adrian van Roomen asked the mathematicians of the 

whole world to solve (Ad problema, quod ombibus mathematicis totius orbis 

construendum proposuit Adrianus Romanus, responsum) /603, pp. 287- 

324]. (The fact in question follows from formulas Viéte was familiar with, that 

express the cosine and sine of the sum and difference of two angles in terms of 

their sines and cosines. The expressions for the legs of the triangle constructed 

in proposition 46 reduce to these formulas if the hypotenuses of the first two 

triangles are 1.) 

In these papers, in which Viéte dealt only with angles of triangles, he used 

an analogous composition but only up to similarity. The following two 

theorems are formulated in the two papers (the first of which contains the 

proofs given by Viete’s student A. Anderson): 

Theorem I. If there are three right triangles and the acute angle of the 

first differs from the acute angle of the second by the acute [angle] of the 

third, with the excess on the side of the first, then the sides of the third are 

obtained by means of the following similarities: the hypotenuse is 

similar to the rectangle on the hypotenuses of the first and the second, 

the perpendicular is similar to the rectangle on the perpendicular of the 

first and the base of the second minus the rectangle on the perpendicular 

of the second and the base of the first, the base [is similar] to the rectangle 

on the bases of the first and second plus the rectangle on their 

perpendiculars.... 

Theorem П. If there are three right triangles and the acute angle of the 

first added to the acute angle of the second equals the acute [angle] of the 

third, then the sides of the third are obtained by means of the following 

similarities: the hypotenuse is similar to the rectangle on the hypote- 
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nuses of the first and second, the perpendicular is similar to the rectangle 

on the perpendicular of the first and the base of the second plus the 

rectangle on the perpendicular of the second and the base of the first, the 

base [is similar] to ‘the rectangle on the bases of the first and second 

minus the rectangle on their perpendiculars /603, рр. 287—289, 314— 

ИЕ 

In the reply to van Roomen each of these theorems is followed by examples: 

for theorem I three triangles whose perpendiculars are 1 and whose bases are, 

respectively, 2, 3, and 7; for theorem II three triangles whose perpendiculars 

are again | and whose bases are, respectively, 7, 3, and 2. Viéte points out that 

these two theorems form the foundation of the whole doctrine of the 

division of angles /603, р. 315/. 

Since the expressions for the legs of the triangle obtained by composing two 

triangles coincide with the real and imaginary parts of the product of the 

complex numbers D + Bi and С + Fi or С — Fi, the composition of Viéte’s 

triangles essentially coincides with the geometric interpretation of the multi- 

plication of complex numbers: the “similarity” between the hypotenuse of the 

third triangle and the product of the hypotenuses of the first two triangles 

corresponds to the fact that the modulus of the product of two complex 

numbers equals the product of the moduli of the factors, and the additive 

property of the angles of these triangles corresponds to the fact that the 

argument of the product of two complex numbers equals the sum of the 

arguments of the factors. In particular, the legs of the triangles constructed in 

propositions 48—51 are equal, respectively, to the real and imaginary parts of 

the powers 

(D + Bi)? = D? + 2DBi — B?, 

(D + Bi)? = D® + 3D? Bi — ЗОВ? — B3i, 

(D + Bi)* = D* + 4D? Bi — 6D? В? — 4DB3i + В“, 

(D + Bi)? = р? + 5D* Bi — 10D? B? — 10D? B7i + 5DB* + ВЗЬ 

and the legs of the triangle obtained in a similar way in the general case are 

equal to the real and imaginary parts of the power 

(D + Bi)" = D" + nD" Bi — (отв wy (5) D"-3 B3i + 

n 
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Since neither the First remarks nor other works of Viéte refer to complex 
numbers, it is appropriate to regard his composition of triangles as the 
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geometric interpretation not of the multiplication of complex numbers but of 

their equivalents, the Hamilton number pairs. 

Thus in Viéte’s First remarks, we encounter a correspondence between the 

points in the upper right quarter of the plane and the upper vertices of Viéte’s 

triangles. On the one hand this correspondence associates with every point in 

question a pair of segments, the base and perpendicular, coinciding with the 

rectangular coordinates of that point, and on the other hand the hypotenuse 

and the angle between the hypotenuse and base, coinciding with the polar 

coordinates of that point—its radius vector and polar angle. 

If we think of the hypotenuses of the triangles constructed by Viéte in the 

First remarks as vectors representing the radius vectors of points, then the 

hypotenuses of the triangles constructed in the Theorem on the division of 

angles and in the Reply to van Roomen represent vectors, defined up to 

multiples, known in modern geometry as pseudovectors. 

We note that Уве does not define addition of his vectors and pseudo- 

vectors but only their multiplication, analogous to the multiplication of 

complex numbers. 

It seems that Viéte came to his composition of triangles by starting with the 

rules for the multiplication of the cosines and sines of sums and differences of 

angles. But another possibility is suggested by Isabella Grigor’evna BaSma- 

kova. On the basis of her analysis //5/a, р. 218] of problem 19 in book Ш 

of Diophantus’ Arithmetica she thinks it likely that Diophantus was familiar 

with the identity 

(a? + 6?) (с? + а?) = (ac + bd) + (ad — bc)? 

= (ad + bc)? + (ac — bd)’, 

equivalent to the law of multiplication of Hamilton’s number pairs. This 

identity was applied in the Treatise on the construction of rectangular triangles 

with rational sides (Risala fi insha’ al-muthallathat al-qaima al-zawaya al- 

muntaqa а|-а а’) /275, р. 172] (see also [446, р. 217]) of the 10th-century 

mathematician Abi Jafar Muhammad Ibn al-Husain al-Khazin, and in the 

Book of Squares (Liber quadratorum) of Leonardo Pisano [317], who had а 

good knowledge of the Arabic mathematical literature. It is therefore very 

likely that Viéte borrowed the rule of composition of triangles from Pisano’s 

Book of squares and gave it a geometric form. It is altogether possible that 

Pisano borrowed this rule from works of Diophantus that have not come 

down to us, or from Arabic works inspired by Diophantus. 

It is natural to ask for motivating sources for the rectangular and polar 

coordinates introduced by Viéte in the First remarks. Although in the Conics 

Apollonius systematically used oblique and rectangular coordinates— 

admittedly linked closely to particular curves—and in On spirals Archimedes 

used polar coordinates—also closely linked to particular spirals—the only 

known scholar before Viéte who simultaneously used rectangular and polar 

coordinates and established the rules of transition from one to the other was 

Thabit ibn Qurra. In the first chapter of his Book on time instruments called 
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sundials [241; 492, р. 254] Yon Qurra determined the position of the end of 

the shadow of a gnomon by means of the /ength of the shadow and the azimuth 

of the shadow as well as parts of the length and parts of the width. If was 

therefore likely that in the matter of coordinates Viéte was influenced by Ibn 

Qurra rather than by Apollonius or Archimedes. Уве may have known some 

of Ibn Qurra’s results through al-Battani. It is difficult to tell which of the 

three roads led Viéte to his doctrine of composition of triangles; in fact, it is 

quite reasonable to assume that his teaching was the result of their simultane- 

ous influence. 

In discussions of the emergence of analytic geometry at the beginning of the 

17th century it is customary to point out the role of the Latin translations by 

Commandino and Maurolico of Apollonius’ Conics. In particular, our terms 

abscissa, ordinate, and applicate (the last two, derived from Commandino’s 

ordinatim applicata—applied in succession—meant the same thing) are Latin 

equivalents of Apollonius’ terms. There is no doubt about the influence 

of these translations on Fermat and Descartes: Fermat used the term ap- 

plicata and Descartes the term appliquée par ordre—the French translation of 

Commandino’s term. On the other hand, there is a marked similarity between 

the triangles Fermat used in his /ntroduction to introduce rectangular coordi- 

nates and Viéte’s triangles. Specifically, Fermat associates with every point J 

of the upper right quarter of the plane its rectangular coordinates A and E 

(Figure 82). These coordinates are denoted. by vowels, in accordance with 

Viéte’s principle of denoting his “required quantities.” Actually Fermat, like 

Viéte, characterizes each point J not only by means of its rectangular coordi- 

nates but also by its radius vector and polar angle, except that he does not 

introduce notations for the latter and considers exclusively equations stated in 

terms of the coordinates A and E. The fact that the Introduction was written 

soon after the publication of Viéte’s First remarks strongly suggests that 

Fermat arrived at the idea of analytic geometry not only under the influence 

of Apollonius’ Conics but also Viéte’s First remarks. Apparently as a result 

of reading Viéte’s work, Fermat thought of “disconnecting” Apollonius’ 

abscissas and ordinates of points from the curves under consideration, which 

is why he drew the coordinates of points together with their radius vectors. 

It is also possible that Descartes too came to his calculus of segments, which 

if 

Figure 82 
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is the basis of his analytic geometry, after pondering Viéte’s calculus of 

triangles. Although it is true that Descartes’s point coordinates are very close 

to Apollonius’, and that he represented coordinates but not radius vectors, it 

is nevertheless likely that his rejection of the homogeneity principle used by 

Viéte and Fermat was linked to the representation of the hypotenuse of one 

triangle as the product of the hypotenuses of two other triangles (the unit 

segment indispensable for the definition of such a product also plays an 

essential role in Descartes’s calculus of segments). 

After the publication of Descartes’s Geometry, symbolic algebra and ana- 

lytic geometry developed in forms imparted to them by Descartes, and Viéte’s 

works were all but ignored. This explains why John Wallis failed to use the 

ideas in Viéte’s First remarks when attempting to construct a geometric 

interpretation of complex numbers in his A treatise of Algebra (London, 1685) 

[618]. Had Wallis combined these ideas with his own idea that the imaginary 

magnitude ee was the mean proportional between — band cor band —c, 
that is, a segment perpendicular to the segments b and с laid off on one line on 

each side of the perpendicular /6/8, р. 56], he would have been able to con- 

struct an entirely satisfactory geometric interpretation of complex numbers of 

the kind actually obtained only at the end of the 18th and the beginning of the 

19th century. 

Descartes’s Geometric Algebra 

Descartes’s Geometry has played an exceptional role in the history of science 

in that it marked the beginning of a new period in the history of mathematics. 

It should be borne in mind that the Geometry was intended as an illustration 

of the application of Descartes’s general philosophical machinery to a con- 

crete problem. Already in his Rules for the direction of the mind (Regulae ad 

directionem ingenii), written in the twenties of the 17th century but published 

posthumously in Amsterdam in 1701 / 145, vol. 1, рр. 7-78], Descartes wrote: 

This made me realize that there must be a general science which explains 

all the points that can be raised concerning order and measure irrespec- 

tive of the subject-matter, and that this science should be termed mathesis 

universalis—a venerable term with a well-established meaning ... 

This means that by universal mathematics Descartes meant algebra, in the 

form of the symbolic algebra which he subsequently created in the Geometry. 

The universal method of solution of the most varied problems consists 1n the 

following: 

If we perfectly understand a problem we must abstract it from every 

superfluous conception, reduce it to its simplest terms and, by means of 

an enumeration, divide it up into the smallest possible parts ... We should 

make a direct survey of the problem to be solved, disregarding the fact 
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that some of its terms are known and others unknown ... For this purpose 

only four operations are required: addition, subtraction, multiplication and 

division ... Once we have found that equations, we must carry out the 

operations which we have left aside ... If there are many equations of this 

sort, they should all be reduced to a single one ... [145, v. 1, pp. 51, 70, 

71406] 

In other words, the method is to reduce every problem to a mathematical 

problem, formulate the mathematical problem in terms of algebra, and reduce 

the resulting algebraic problem to the solution of some algebraic equation. 

Descartes’s idea of reducing a large variety of problems to mathematical 

problems was generally recognized only in the 20th century, when the rise of 

new branches of mathematics made possible the genuine mathematization of 

many disciplines to which—it was thought earlier—mathematics could not be 

applied. Descartes’s historical limitation was that he restricted “universal 

mathematics” to algebra. In his subsequent Discourse on the method of rightly 

conducting one’s reasoning well and seeking the truth in the sciences (Discours 

de la Méthode pour bien conduire sa raison et chercher la vérité dans les 

sciences. Paris, 1637) [ 145, v. 1, рр. 109-175] (vol. 6 of [143] ), in which the 

Geometry [144] was the first of three supplements, Descartes formulated the 

general rules of the scientific method and went on to say: 

I observed that in order to know these proportions I would need 

sometimes to consider them separately, and sometimes merely to keep 

them in mind or understand many together. And I thought that in order 

the better to consider them separately I should suppose them to hold 

between lines, because I did not find anything simpler, nor anything 

that I could represent more distinctly to my imagination and senses. But 

in order to keep them in mind or understand several together, I thought 

it necessary to designate them by the briefest possible symbols / 145, в. 

ИРИ. 

The reduction of all magnitudes to lines was realized in the Geometry. Whereas 

Fermat formulated the equations of “geometric loci” by using the termi- 

nology of the geometric algebra of antiquity in which the product of two linear 

magnitudes is a rectangle, the product of three linear magnitudes a solid, and 

so on (the example of Viete’s formulation of the spherical cosine theorem 

illustrates the clumsiness of this terminology), in Descartes’s new geometric 

algebra the product of lines is again a line. At the very beginning of the 

Geometry Descartes writes: 

All problems in geometry can be reduced to such terms that a knowledge 

of the lengths of certain straight lines is sufficient for their construction. 

Just as arithmetic consists, of only four or five operations, addition, 

subtraction, multiplication, division, and the extraction of roots, which 

may be considered a kind of division, so in geometry, to find required 

lines it is merely necessary to add or subtract other lines; or else, taking 
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one line which I shall call the unit in order to relate it as closely as 

possible to numbers, and which can in general be chosen arbitrarily, and 

having given two other lines, to find a fourth line which shall be to one of 

the given lines as the other is to the unit(which is the same as multiplica- 

tion); or, again, to find a fourth line which is to one of the given lines as 

the unit is to the other (which is equivalent to division); or, finally, to 

find one, two, or several mean proportionals between the unit and some 

other line (which is the same as extracting the square root, cube root, 

etc., of the given line) / 144, pp. 2, 5]. 

Then Descartes constructs the segment ab as the fourth proportional to the 

segments 1, a, b, the segment a/b given the same segments, and the segment Na 

given the segments | and a. 

Leibniz’s Idea of the ““Geometry of Position” 

Descartes’s idea of the need to mathematize natural science was further devel- 

oped by the German philosopher and mathematician Gottfried Wilhelm 

Leibniz (1646—1716). But, unlike Descartes, Leibniz no longer tried to reduce 

all mathematics to algebra. Rather, he regarded the differential and integral 

calculus as universal mathematics and advanced a very general continuity 

principle [312, vol. 6, рр. 129-135]. One of Leibniz’s ideas that played an 

extremely important role in the history of geometry is connected with “geo- 

metric algebra” understood in a new sense. Leibniz stated this idea in a letter 

to Christian Huygens (1629—1695) dated September 8, 1679 [312, vol. 2, 

рр. 17—25, 315, pp. 248—258 ], in which he said 

Iam still not satisfied with algebra because it does not give the shortest 

methods or the most beautiful constructions in geometry. This is why I 

believe that, so far as geometry is concerned, we need still another 

analysis which is distinctly geometric or linear and which will express 

situation [situs] directly as algebra expresses magnitude directly. And I 

believe that I have found the way and that we can represent figures and 

even machines and movements by characters, as algebra represents 

numbers or magnitudes. I am sending you an essay which seems to me to 

be important.... 

I have discovered certain elements of a new characteristic, which is 

entirely different from algebra and which will have great advantages for 

representing to the mind exactly, and in a way faithful to its nature, even 

without figures, everything which depends on sense perception. Algebra 

is a characteristic for undetermined numbers and magnitudes only, but 

it does not express situation, angles, and motions directly. Hence it is 

often difficult to analyze the properties of a figure by calculation and still 

more difficult to find very convenient geometric demonstrations. But 

this new characteristic, which follows the visual figures, cannot fail to 



172 4. Geometric Algebra and the Prehistory of Multidimensional Geometry 

give the solution, the construction and the geometric demonstration, 

all at the same time, and in a natural way and in one analysis, that is 

through determined procedure. Algebra is compelled to presuppose the 

elements of geometry, this characteristic instead carries the analysis 

through to its end. If it were completed in the way in which I think of 

it, one could write down the description of a machine, no matter how 

complicated, in characters which would be merely the letters of the 

alphabet, and provide the mind with a method of knowing the machine 

and all its parts, their motion and use without use of any figures or 

models and the need of imagination. Yet the figure would inevitably be 

present to the mind to interpret the characters. One could also give exact 

descriptions of natural things, for example, the structure of plants and 

animals. With its aid people who find it hard to draw could explain a 

matter perfectly, provided they have it before them or in their minds, 

and could transmit their thoughts or experiences to posterity—a thing 

which cannot be done today because the words of our languages are not 

sufficiently fixed or well enough fitted for good explanation without 

figures. 

This is the least useful aspect of this characteristic, however, for if 

only description were involved, it would be better—assuming that we 

can and are willing to bear the expense—to have figures and even 

models or, better still, the original things themselves. But its chief value 

lies in the reasonings which can be done and the conclusions which can 

be drawn by operations with its characters, which could not be expressed 

in figures and still less in models without multiplying these too greatly, 

or without confusing them with too many points and lines in the course 

of the many futile attempts one is forced to make. This method, by 

contrast, will guide us surely and without effort. I believe that by this 

method one could treat mechanics almost like geometry, and one could 

even test the qualities of materials, because this ordinarily depends on 

certain figures in their sensible parts. Finally, I have no hope that we can 

get very far in physics until we have found some such method of 

abridgment to lighten its burden of imagination. For example, we see 

what a series of geometrical reasoning is necessary merely to explain the 

rainbow, one of the simplest effects of nature; so we can infer what a 

chain of conclusions would be necessary to penetrate into the inner 

nature of complex effects whose structure is so subtle that the micro- 

scope which can reveal more than the hundred-thousandth part does not 

explain it enough to help us much. Yet there would be some hope of 

achieving this goal, at least in part, if this truly geometrical analysis were 

established /315, рр. 248—250]. 

Leibniz denotes given points у the first letters of the alphabet A, B, ...and 

the unknowns by the last letters Х, У, .... He introduces the congruence 

sign 8 (Descartes’s equality sign>o rotated through 90°) and the symbol (У) 

that stands for “‘for all У” (in modern mathematical logic such a symbol is 
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called a universal quantifier and is denoted by VY). He writes the equation of 

a sphere аз AB8 BX (‘the segment ВХ with fixed endpoint is congruent to the 

fixed segment АВ”), the equation of a plane as АХЗ ВХ, the equation of a 

circle in space as АВСЗАВХ (‘‘the triangle ABX with fixed side AB is 

congruent to the fixed triangle АВС”), and the equation of a line in space as 

АУЗВУЗСУ. By means of these equations Leibniz shows that the intersec- 

tion of two spheres is a circle, and the intersection of two planes is a line. 

Leibniz’s letter was published in his collected works shortly after his death 

and was well known to mathematicians of the 18th and 19th centuries. The 

term geometry of position first appeared in Euler’s paper Solution of a problem 

pertaining to the geometry of position (Solutio problematis ad Geometriam situs 

continens. Petersburg, 1736) [ 176, vol. 7, pp. 1-10] devoted to the proof of the 

topological problem of the impossibility of the successive crossing of the seven 

bridges joining the banks of the river Pregel in K6nigsberg with two islands in 

it. Euler understood the term geometry of position in the sense of topology. 

This was also the sense given to the term by J. B. Listing. who coined the term 

topology, and by Riemann and Poincaré, the creators of combinatorial to- 

pology, who called topology by Leibniz’s term Analysis situs. We note that in 

his reply to the letter of November 1689 by the Italian geometer Vitale 

Giordano, in which the latter criticized Leibniz’s definition of a line, Leibniz 

wrote: 

Does he sin who takes as the foundation the concepts of plane and solid, 

and is he not, rather, deserving of praise? 

and praised 

the view that the concept of a solid precedes the concepts of surface and 

line /312, vol. 1, р. 19]. 

Thus Leibniz shared the opinion of those who felt that one should first define a 

solid, then a surface, and then a line. We saw earlier that this view—a con- 

sequence of Aristotle’s teaching on mathematical concepts—was advanced 

in the Middle Ages by al-Farabi, and was applied in the geometric part of the 

mathematical and.astronomical handbook of al-Birtni.* 

In A dialogue for the introduction to arithmetic and algebra (Ein Dialog zur 

Einfihrung in die Arithmetik und Algebra) [314], published only in 1976, 

Leibniz introduces a “real square-square’”’ and, in reply to the question: “Can 

you proceed to higher powers?” says 

I can do it endlessly /314, рр. 100—103]. 

This idea of multidimensional space is a development of the previously 

mentioned idea of Descartes, since Leibniz gives as an example of a five- 

dimensional object the impulse of a falling heavy mass. 

4 Al-Farabi stated this view in commentaries to Euclid’s Elements [178, рр. 233-276; see pp. 

238—239]. Al-Birini applied this idea in the geometric part of The book of instruction in the 

elements of the art of astrology [59, р. 1; 53, vol. 6, рр. 22—23]. 
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Prehistory of Vector Calculus Linked to Geometry 

Another interpretation of the term geometry of position is found in the work of 

Lazare Carnot, who used this term, géometrie de position, as the title of a book 

published in 1802 /90/. Earlier we mentioned the theorems of projective 

geometry considered in this work. But another very important characteristic 

of this book is that it concerns itself with oriented segments and angles (we 

owe to Carnot the symbol AB for an oriented segment with beginning А and 

endpoint B); these oriented segments represent vectors in geometric form. Two 

more interpretations of the term geometry of position derive from Carnot. 

Thus the 19th-century German geometers Theodor Reye /45// and Christian 

von Staudt /553 ] meant by this term (Geometric der Lage) projective geometry, 

and Hermann Grassmann /211, vol. 1], inspired by Leibniz’s idea, which he 

interpreted as the idea of vector calculus, was one of the creators of just such a 

calculus. We also note the geometric calculus of oriented segments presented 

by Bellavitis (1803—1880) in his Calculus of equipollence (Calcolo delle equi- 

polenze. Padova, lenza. Venice, 1835) /4//. Bellavitis called oriented segments 

equipollent if they had the same length and direction. Thus a class of segments 

equipollent in Bellavitis’ sense is what we now call a free vector. 
р 

Prehistory of Vector Calculus Linked to Mechanics 

In addition to this purely geometric source, vector calculus had two other 

sources, namely mechanics and algebra. 

Concrete vector magnitudes—velocities and forces—first turned up in 

mechanics. Already in Mechanical problems (Problémata méchanika), written 

in the school of Aristotle, we come across composition of motions, that is, 

velocities, according to the parallelogram law: 

Let the ratio of the two motions (i.e. speeds) be that which AB has to 

AC (Figure 83). Let AC be moved (parallel to itself) towards B, and let 

AB be moved down (also parallel to itself) towards GC. Let A have 

reached D and В have reached Е. Then, if during the two motions the 

speeds have been in the ratio of ABto AC, AD must bear to AE the same 

A D B 

E 

Figure 83 
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ratio. Therefore, the small quadrilateral (parallelogram) [ADFE] must 

be similar to the greater one so that they have the same diameter [AFG] 

and A (at the moment in question) will be at F. The same proof will apply 

at whatever point the motion is interrupted. The moving object will 

always be on the diameter /219, p» 230]. 

Since Aristotle thought that force was proportional to “motion,” this compo- 

sition rule referred, essentially, to forces. Composition of “motions” was also 

used by Archimedes in his treatise On spirals: 

Га straight line of which one extremity remains fixed be made to revolve 

at a uniform rate in a plane until it returns to the position from which it 

started, and if, at the same time as the straight line revolves, a point move 

at a uniform rate along the straight line, starting from the fixed extrem- 

ity, the point will describe a spiral in the plane. /25, p. 154] 

and then by Ptolemy in his A/magest [441, р. 442ff.] in the determination of 

the motion of planets by means of deferents and epicycles. Composition of 

“motions” was also used by the astronomers of the medieval East in their 

expositions and modifications of Ptolemy’s theory (see [270]). We quote 

from al-Biruni’s exposition of Ptolemy’s theory in his Canon of Mas‘iid: 

The motion of the center of the epicycle of each of the two lower [planets] 

is equal to the motion of the body of the Sun... similarly, the motion of 

each of the three upper planets on the circle of its epicycle is equal to the 

sum of the motion of the center of its epicycle and the motion of the Sun 

[575 в Ибн 9; Ole 5; part:2, p 3514; 

We note that in his Book of optics (Kitab al-manazir) [19] ° Ibn al-Haytham 

uses a mechanical model of the reflection of light and describes experiments 

involving the throwing of a metallic sphere on a surface of a metallic mirror 

and the rebounding of the sphere from the mirror. The “force of motion” of 

the rebounding sphere is regarded as the sum of “forces” directed per- 

pendicularly to the surface of the mirror and in the direction of this surface. 

Ibn al-Haytham writes: 

The motion of a body moving at an angle to an obstacle will be 

composed of a motion in the direction of the perpendicular erected at the 

point of contact with the surface of the obstructing body, and in a 

direction perpendicular to it drawn in the surface of the obstructing 

body (see [562, pp. 90-92]). 

European scholars continued the investigation of parallelograms of 

motions and forces. The Flemish scholar Simon Stevin (1548—1620) wrote 

5 The edition /19/] reproduces a medieval Latin translation of the Book of optics. In 1983 there 

appeared an Arabic edition with an English translation by Abdelhamid Ibrahim Sabra (b. 1924) 

[238]. 
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Figure 84 

in his Elements of statics (De Beghinselen der Weeghconst) /557, vol. 1, 

pp. 35-285]: 

Let us draw the vertical from the center of prism D as DK (Figure 84), 

meeting the side of the prism in Г. This being so, the triangle LD/ is 

similar to the triangle ABC, for the angles ACBand L/D are right angles, 

and LD is parallel to BC, and DI to AB,.Therefore, as AB is to BC so is 

LD to DI. But as AB is to BC so is the prism to the weight E.... 

Therefore, as LD is to ОГ, so is the prism to the weight Е. Let us now 

attach at the line KD the vertical lifting weight M of equal apparent 

weight to the prism. The weight М will be of equal weight to the 

prism.... Therefore, as LD is to DI, so is Мю Е [557, vol. 1, рр. 182- 

183]. 

We see from this that Stevin assumes that the force E directed along one leg of 

a right triangle, together with the force of reaction of the inclined plane 

directed along the other leg, are in equilibrium with the force M directed along 

the hypotenuse; that is, three forces applied to a single point are in equilibrium 

if they are respectively parallel and proportional to three sides of a right 

triangle; later /557, vol. 1, рр. 182—183 ] Stevin also proved this assertion in the 

case when the forces are parallel and proportional to the sides of an arbitrary 

triangle. Stevin’s assertion is equivalent to the parallelogram law of forces. 

In his treatise Mechanics, or On motion, a geometric treatise (Mechanica, 

sive De motu, tractatus geometricus, 1669) /617, vol. 1, рр. 578-1063] John 

Wallis formulated the rules of the parallelogram of forces and parallelepiped 

of forces and the rules of composition of directed segments used by him to 

denote forces, displacements, ие and accelerations. Wallis writes that, 

in particular, 

If a motion is composed of three simple motions, whose directions and 

velocities are represented by the straight lines Aa, AB, AC (Figure 85), 
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(4 

Figure 85 

then it is equivalent to the simple motion along Ау with velocity Ay [617, 

vol. 1, p. 999]. 

In the 19th century, using mechanics as the starting point, Ademar Jean 

Claude Вагге de Saint Venant (1797—1886) constructed a calculus of vectors 

in the paper On geometric sums and. differences and their application to the 

simplification of the exposition of mechanics (Sur les sommes et differences 

géométriques et leur application pour la simplification de la exposition de la 

mécanique. Paris, 1845) /498 ]. 

Prehistory of Vector Calculus Linked to Algebra 

The algebraic source of vector calculus was the complex numbers. Complex 

numbers first turned up in Cardano’s Great Art [88, 89] in connection with 

the solution of the problem of dividing 10 into two parts whose product is 40. 

Cardano wrote down the solution in the form 5р: Rm: 15 and 5m: Rm: 15, that 

is, using modern notations, 5 + Bates Complex numbers also occur in the 

solution of cubic equations. Thus in the so-called irreducible case the real root 

of a cubic equation:x* = px + q with (4/2)? — (p/3)* < Ois represented as the 
sum of two conjugate complex numbers. Although already Raphael Bombelli 

(ab. 1526—1573) had set down the rules for operating with complex numbers in 

his Algebra (L’ Algebra. Bologna, 1572) [70], even Leibniz, who used complex 

numbers for integrating certain real functions, called them in his New example 

of analysis for the science of the infinite in connection with sums and quadratures 

(Specimen novum Analyseos pro Scientia infini circa Summas et Quad- 

raturas. Leipzig, 1702) [312, vol. 5, pp. 350-360] 

a miracle of analysis, a monster in the world of ideas, an amphibian 

between existence and nonexistence /3/2, vol. 5, р. 357]. 

The mystical aura surrounding complex numbers dispersed only in the 18th 

century, when Jean Le Rond d’Alembert (1717—1783) showed in his Essay of a 
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new theory of resistance of liquids (Essai d’une nouvelle théorie sur la resistance 

des fluides. Paris, 1752) [134] that the coordinates P, О of the velocity of a 

moving fluid at a point with coordinates x, y are proportional to expressions 

that d’Alembert wrote as 

аа) 

lela) al 
that is, to the real and imaginary parts of a function A(z) of the complex 

variable 2 = x + (y/,/—1) that could be expanded in a power series with real 

coefficients; here we encounter for the first time the Cauchy-Riemann 

conditions 

Ox Oy. ду дх 

of analyticity of a function w = f(z) of a complex variable (w = u + iv, 2 = 

x + iy).® 
We find similar arguments in Euler’s Continuation of the investigations into 

the theory of motion of fluids (Continuation des recherches sur la théorie du 

mouvement des fluides. Berlin, 1757) {177.,vol. 12, рр. 92—132]. We see that 

even the algebraic road to vectors led, to a significant extent, through pro- 

blems of mechanics. 

Incidentally, implicit geometric interpretations of complex numbers occur 

in Viéte’s First remarks on logistica speciosa and in Euler’s Introduction to 

Analysis. Specifically, in Viéte’s case the cosine and sine of an angle их turn out 

to be equal, respectively, to the real and imaginary parts of the complex 

number (cosa + isin)", and in Euler’s case a (plane) rotation through ап 

angle 2z/n is connected with the real part of the complex number (x + iy)” 

[176, vol. 9, p. 194]. We also saw that Euler used conformal mappings of the 

plane effected by analytic functions of a complex variable (that admit expan- 

sions in power series with real coefficients) in his papers on orthogonal 

trajectories and cartography / 176, vol. 28, рр. 99-119, 248—297]. 

The interpretation of complex numbers as vectors in the plane with explicit 

geometric meanings for their operations is found for the first time in the paper 

Attempt at an analytic representation of direction and an attempt to apply it, 

mainly for the solution of plane and spherical polygons (Om directiones analyt- 

iske betegning et fors6g anwendt fornemellig til plane og sphaeriske poly- 

goners oplosning. Copenhagen, 1799) [624 ] by Caspar Wessel (1745—1818). 

° The Cauchy-Riemann equations that occur in the work of d’Alembert, Euler, and Cauchy were 

deduced and thoroughly investigated by Riemann in his doctoral dissertation Foundations of a 

new general theory of functions of a variable complex magnitude (Grundlagen fiir eine allgemeine 

Theorie der Functionen einer veranderlichen complexen Grésse) /454, pp. 3-48]. 
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In addition to dealing with plane vectors Wessel advanced the idea of vectors 

in space and attempted to define a multiplication for such vectors /624, 

pp. 23-28]. Mathematicians became aware of Wessel’s paper only after the 

publication of a French translation (in 1897). 

The idea of a geometric interpretation of the operations on complex 

numbers was also advanced by Jean Robert Argand (1768—1822) in his 

Attempt to represent complex numbers in a certain way by means of geometric 

constructions (Essai sur une maniére de représenter les quantités dans les 

constructions géométriques. Paris, 1806) [27], and became widely known 

after the publication of the Course of algebraic analysis (Cours d’analyse 

algébrique. Paris, 1821) [ 100, vol. 3] of Augustin-Louis Cauchy (1789-1867), 

and the Theory of biquadratic residues П (Theoria residorum biquadratorum. 

Commentatio secunda. Gottingen, 1832) of Gauss /196, vol. 2, pp. 95-178]. 

That is why 19th-century mathematicians frequently referred to the complex 

plane as the Cauchy plane or the Gauss plane. In the first half of the 19th 

century Hamilton and other English algebraists tried to generalize complex 

numbers to three- and then four-dimensional space. These attempts led them 

first to various triplets and then to quaternions, whose calculus contains the 

algebra of vectors in three-dimensional space. 

The Idea of Multidimensional Space in the 18th Century and 

at the Beginning of the 19th Century 

The idea of multidimensional space was first advanced in a very clear form by 

the German philosopher Immanuel Kant (1724—1804) in his early paper 

Thoughts on the correct assessment of living forces (Gedanken von der wahren 

Schatzung der lebendigen Krafte. Ko6nigsberg, 1876) [260, pp. 1-181]. The 

young Kant tried to give physical reasons for the three-dimensionality of 

space, writing that 

It is likely that three-dimensionality is the result of the fact that in the 

world around us substances interact so that the forces involved are 

inversely proportional to the squares of distances ... another law would 

imply a space form with other properties and dimensions. A science of 

all such space forms would undoubtedly be the most sublime geometry 

(héchste Geometrie) which finite reason could pursue. ... If the existence 

of space forms with other dimensions is possible, then it is very likely 

that God has realized them somewhere / 260, р. 23]. 

Also in the 18th century, the concept of the fourth dimension was first 

linked with time. In the paper Dimension, in the Encyclopedia, or rational 

dictionary of the sciences, arts and handicrafts (Encyclopédie, ou Dictionnaire 

raisonné des sciences, des arts et des métiers. Paris, 1764) / 135], published by 

d’Alembert and Diderot, d’Alembert wrote: 
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A clever acquaintance of mine believes that it is possible to think of time 

as a fourth dimension, so that the product of time and solidity would 

in some sense be the product of four dimensions; it seems to me that this 

idea, while debatable, has certain merits—at the very least the merit of 

novelty / 135, р. 1010]. 

The development of multidimensional spaces was strongly influenced by 

Lagrange’s introduction—in his Analytical Mechanics (Mécanique analyti- 

que. 1788) [299, vol. 1, р. 36]—of generalized coordinates of mechanical 

systems, which he called “‘variables €, у, ф,...,” and characterized as inde- 

pendent variables, since they determine all change in the position of the system 

[299, vol. 1, p. 36]. Although Lagrange himself emphasized in the introduc- 

tion that his 

methods require neither constructions nor geometric or mechanical 

considerations; they require just algebraic operations /299, vol. 1, р. 1], 

there can be little doubt that his readers, forced to make their own drawings, 

must have associated with his generalized coordinates some geometric 

interpretation—visual for one and two degrees of freedom and mental for a 

larger number. 

Four-dimensional space, with the reservation that it “cannot be imagined,” 

was introduced by Mobius in 1827 in his Barycentric calculus. In connection 

with congruent sets of points that cannot be brought into coincidence by 

means of continuous transformations but can be obtained from one another 

by means of reflection in a plane, MObius writes: 

Suppose that А, В, С, D,... and A’, В’, C’, D’,... are two equal and 

similar systems in three-dimensional space, and that the points D, E,... 

and О’, E’,... lie on differently named sides of the planes АВС and 

A’ B’C’. One might conclude by analogy that in order for the systems to 

coincide we must carry out a half turn in the space of four dimensions. 

But since such a space cannot be imagined, the coincidence is, in this 

case, impossible /369, vol. 1, р. 172]. 

Mobius’s idea was later used by Н. С. Wells (1866—1946) in his science 

fiction Story of Platner, whose hero visited the fourth dimension and returned 

with his heart on the right-hand side. 
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Philosophy of Space 

The evolution of philosophical notions of space played an important role in 

the preparation of the discovery of non-Euclidean geometry and the sub- 

sequent generalizations of the idea of space. That is why we give a brief survey 

of this evolution. 

The Idea of the Infinity of Space and of the 

Finiteness of the World 

The idea of the infinity of space seems to have arisen in ancient Greece, 

notwithstanding the fact that the ancient Greek scholars viewed the world as 

finite. The idea of the finiteness of the world was spelled out in its most 

obvious form by Plato. In the Timaeus (Timaios), Plato (425—347 B.c.) says of 

God: 

And for shape he gave it that which 1s fitting and akin to its nature. For 

the living creature that was to embrace all living creatures within itself, 

the fitting shape would be the figure that comprehends in itself all the 

figures there are; accordingly, he turned its shape rounded and spherical, 

equidistant every way from centre to extremity—a figure the most 

perfect and uniform of all; for he judged uniformity to be immeasurably 

better than its opposite /425, р. 54]. 

Elsewhere in the same dialogue Plato assigns to the atoms of the four 

elements—fire, air, water, and earth—the forms of four regular polyhedra 

(‘platonic solids’’)—the tetrahedron, the octahedron, the icosahedron, and 

the cube, and says that 

There still remained one construction, the fifth; and the god used it for 

the whole, making a pattern of animal figures thereon /425, р. 218]. 
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That is, Plato connected the fifth regular polyhedron—the dodecahedron— 

with the Universe. Here “‘animal figures” are zodiacal signs, one for each face 

of the dodecahedron. 

Next we describe the position of Democritus (460?—370? в.с.). The writings 

of Democritus have not come down to us, and we know his views only from 

quotations by later philosophers. Thus Joannes Philoponus (sixth century 

A.D.), in his commentaries on Aristotle’s Physics, described Democritus’ 

position as follows: 

Democritus assumed the existence of infinite worlds, supposing that the 

vacuum is infinite. For on the basis of what principle of distribution 

would one part of the vacuum be filled with some world and another 

not? Thus, if the world exists in a certain part of the vacuum then, 

obviously, [it exists] in all of the vacuum. But since the vacuum is 

infinite, the worlds are also infinite (see /344, р. 207/). 

The Epicurean Lucretius describes the doctrine of the ancient atomists on the 

infinity of space in his poem On the nature of things as follows: 

space is without bound or limit, and I have shown in many words, and it 

has been proved by true reasoning, that it spreads out immeasurable 

towards every quarter everywhere /342, р. 241]. 

In the Timaeus, Plato enters into a polemic with the doctrine of Democritus on 

the multiplicity of worlds: 

Accordingly, to the end that this world may be like the complete Living 

Creature in respect of its uniqueness, for that reason its maker did not 

make two worlds nor yet an indefinite number; but this Heaven has 

come to be and is and shall be hereafter one and unique. /425, p. 49/, 

and thus rejects Democritus’ doctrine of the infinity of worlds. 

Aristotle considers the question of the infinite in his Physics. He admits 

only the potential infinite: 

For generally the infinite has this mode of existence: one thing is always 

being taken after another, and each thing that is taken is always finite, 

but always different /29, vol. 2, р. 206°]. 

Aristotle thinks that time, motion, and thought are infinite but spatial magni- 

tudes are not: 

Time indeed and movement are infinite, and also thinking, in the 

sense that each part that is taken passes in succession out of existence. 

Magnitude is not infinite either in the way of reduction or of magni- 

fication in thought /29, vol. 2, р. 2087]. 

Aristotle thought that mathematicians require just the notion of the potential 
infinite: 



The Doctrine of Independence of Space from Matter and Its Critique 183 

Our account does not rob the mathematicians of their science, by 

disproving the actual existence of the infinite in the direction of increase, 

in the sense of the untraversable. In point of fact they do not need the 

infinite and do not use it. They postulate only that the finite straight line 

may be produced as far as they wish. It is possible to have divided in the 

same ratio as the largest quantity another magnitude of any size you 

like. Hence, for the purposes of proof, it will make no difference to them 

to have such an infinite instead, while its existence will be in the sphere of 

real magnitudes /29, vol. 2, p. 207°]. 

But, at the same time, the previously mentioned doctrine of Aristotle that 

mathematical concepts are obtained by abstracting from objects of the real 

world enables one to disengage oneself from the finiteness of physical magni- 

tudes. That is why Ibn Rushd (Averroes, 1126-1198), a follower of Aristotle, 

wrote in his commentaries on Aristotle’s Physics [28] that a geometer “‘can 

admit” an arbitrarily large magnitude—something a physicist cannot do, and 

“having thought of an arbitrarily large magnitude he can take an even larger 

one.” In postulate II of his Elements [ 173, vol. 1, р. 154] Euclid required the 

possibility of indefinite extension of every straight line (““To produce a finite 

straight line continuously in a straight Ппе”). 

The questions of the vacuum and of space, infinite in Aristotle’s sense, were 

extensively debated by theologians and philosophers in the 14th century —by 

Henry de Gondavo, Richard of Middleton, Walter Burleigh, and Thomas 

Bradwardine (see /291; 292, pp. 33—84 ]); the latter, in the treatise Of the cause 

of God (De causa Dei), called empty space beyond the world the imaginary 

vacuum (vacuum imaginarium) (see / 292, р. 78]; also, see р. 155 of this book. 

Since, in chronological terms, the imaginary vacuum of Bradwardine occurs 

between the imaginary geometry of al-Farabi and the imaginary space of de 

Gois (see p. 161), it is possible that Bradwardine represented one of the 

intermediate links between al-Farabi and de Gois. 

The Doctrine of Independence of Space from Matter 
and Its Critique 

The ancient scholars had also created the doctrine of the independence of 

space from matter. There is no doubt that Democritus, who referred to space 

as the “vacuum,” supported this view. The explicit formulation of this doc- 

trine is due to Aristotle, who referred to space as “‘locus’”—place. In his 

Physics Aristotle wrote: 

For place is supposed to the something like a vessel—the vessel being a 

transportable place. But the vessel is no part of the thing. 

In so far then as it is separable from the thing, it is not the form: qua 

containing, it is different from the matter. /29, vol. 2, р. 209]. 
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The doctrine of independence of space from matter was criticized by 

Descartes, who wrote in his Principles of Philosophy (Principia Philosophiae. 

Paris, 1644): 

Space, or interior place, differs from the physical substance contained in 

it only in our thought. Actually, extension in length, width, and depth 

that makes up space also makes up a body. The only difference between 

them is that we ascribe to a body a definite extension and think that one, 

together with the other, changes place when it moves; whereas to space 

we ascribe extension so general and indefinite that whenever we remove 

from some space the body that fills it we do not assume that we have also 

moved the extension of this space which, in our view, exists unchanged 

as long as it has the same magnitude and figure and does not change 

position relative to outside bodies by means of which we define this 

space / 143, vol. 8, р. 45]. 

In the same work Descartes said this of ““empty space”’: 

As for empty space, in the sense in which philosophers understand this 

word, that is, space devoid of all substance, it is clear that there is no 

space in the world that is such, for the extension of space as inner place 

does not differ from the extension of a body. And just as from the single 

fact that a body extends in length, width and depth we correctly con- 

clude that it is substance (for it is impossible that “пот?” has extent) 

so too with respect to space, supposed empty, it must be concluded that 

as soon as there is in it extension then, necessarily, there must as well be 

in it substance / 143, vol. 8, р. 49]. 

Descartes’s view of the impossibility of empty space was further developed 

by Leibniz in his New essays on human understanding (Nouveaux Essais sur 

Entendement humain. Paris. 1765), written in 1704. Leibniz wrote: 

Itis necessary rather to conceive space as full of a matter originally fluid, 

susceptible of all the divisions, and even actually subject to divisions and 

subdivisions to infinity, but with this difference, however, that it is 

divisible unequally in different parts on account of the motions which 

more or less concur there. This it is which causes matter to have every- 

where a degree of rigidity as well of fluidity, and no body to be hard or 

fluid in the highest degree, 1.е., no atom to be found of an insurmount- 

able hardness nor any mass entirely indifferent to division /3/2a, р. 54]. 

Unlike Descartes and Leibniz, Newton favored the doctrine of indepen- 

dence of space from matter. In the Principia he states that 

absolute, true and mathematical time, of itself, and from its own nature 

flows equally without relation to anything external and by another name 

is called duration / 387, р. 6], 

defines “relative, apparent or ordinary time,” and then gives the following 
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definition of absolute space: 

Absolute space, in its own nature, without relation to anything external, 

remains always similar and immovable /387, p. 6/. 

Then follows the definition of “‘relative’’ space. 

It is clear that the epithets true and mathematical that Newton applied to 

“absolute time” apply equally to his “absolute space.”” For Newton, the basic 

characteristics of mathematical space were its uniformity, immovableness, and 

independence “‘of everything external.’’ Newton’s ‘“‘absolute зрасе”” became 

one of the cornerstones of the theoretical mechanics founded in the Principia 

and developed by the great 18th-century mathematicians and mechanists 

Euler, d’Alembert, and Lagrange. 

We note that the ancient doctrine of independence of the ‘“‘vacuum”’ or 

“place” from the objects in it was also directed against the view of the 

Pythagoreans, who identified the points of space with the souls of the dead or 

of the unborn, and that Newton’s doctrine of “‘absolute space” was directed 

against Leibniz’s doctrine of monads—simple substances that make up the 

multiformity of the world and that Leibniz identified with the points of space. 

Descartes’s viewpoint was supported by Mihail Vasil’evi¢é Lomonosov 

(1711-1765) in the same Discourse on the solidity and fluidity of bodies (Ras- 

suzdenie о tverdosti i zidkosti tel. Petersburg, 1760) in which he formulated 

the “universal natural law” of conservation of matter and motion /336, pp. 

340-352]. Here Lomonosov criticizes Newton’s law of universal gravitation: 

At this point, might not someone ask that I show the cause, or the 

matter, or the manner by which are held together the very indivisible 

particles of particles, compressed by the liquid matter that bathes them. 

Must I not here admit, someone will say, the existence of an attractive 

force? Absolutely not. 

Then Lomonosov tries to explain the attraction of bodies by means of 

properties of space: 

Whoever knows the difference between absolutely necessary properties 

of bodies and their variable characteristics can see clearly that when it 

comes to all that is indispensable for things and their existence one can 

neither show the cause nor should one ask for it; for example, why does а 

triangle have three sides; why is a body extended, and similar questions; 

for one should look for the cause of conjunction where we see that 

insensitive particles are in a state of conjunction at one moment and 

forfeit it at another, that its force now increases now decreases. Here one 

might ask why it is so and not otherwise. And in the conjunction of 

insensitive particles that make up bodies change is not declared; for this 

reason one must not ask for a cause. The philosophical justification 

called sufficient reason does not extend to the indispensable properties of 

bodies. From this improper usage has arisen the debate, famous in the 
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scholarly world, about single substances, that is, about particles with no 

extention whatever. Since extension is an indispensable property of a 

body without which it cannot be a body, and since virtually all of the 

force of the definition of a body consists in extension, the question and 

argument about inextensive particles of an extensive body is futile; for in 

this case one must look for proofs of the definition instead of, as is 

customary, deriving consequences, in good order, from the definition 

[336, pp. 342-243]. 

We see that Lomonosov criticizes Newton’s doctrine as well as Leibniz’s 

doctrine, in many respects its opposite, of the principle of “sufficient reason” 

and of “simple substances”—Leibniz’s monads. His own position corre- 

sponds to the tradition of the ancient atomists. Lomonosov sees space as “а 

conjunction of particles insensitive” as well as “‘inextensive.”” What is most 

important for us, however, is that he connects gravitational properties of 

matter with properties of space. 

The Doctrine of the a Priori Nature of Space 

Aristotle’s doctrine that mathematical concepts are obtained by abstraction 

from objects of the real world was directed against the Pythagoreans, who 

explained all regularities in the world by numerical regularities, and against 

Plato, who explained them by geometric regularities. The reason for Plato’s 

pushing geometry into the foreground (the inscription over the door of Plato’s 

academy was Medeis ageometrétos eisito—let no one ignorant of geometry 

enter here) was the collapse of the Pythagoreans’ worldview after their dis- 

covery of incommensurable magnitudes, that is, magnitudes whose ratios can 

not be expressed as ratios of natural numbers. Earlier we mentioned the role in 

the structure of the world that Plato assigned to regular polyhedra. Aristotle 

points out that a mathematician “effects an abstraction, for in thought it is 

possible to separate figures from motion” and adds that 

without realizing it, the philosophers who teach about ideas do the same 

thing: they abstract physical properties, less separable than mathemat- 

ical ones” /29, vol. 2, рр. 193°—194°]. 

‘Philosophers who teach about ideas” are Plato and his students. For Plato 

mathematical concepts are a special case of the “‘ideas’’ that Aristotle also 

regards as abstractions from “‘things,”’ that is, objects of the real world. Plato 

thinks that mathematical, and, in particular, geometric notions are inborn and 

for proof describes in the dialogue Meno (Мепоп) an experiment in which a 

bright slave boy, prompted by a number of leading questions, proves that a 

square constructed on the hypotenuse of a right isosceles triangle is twice as 

large as the square on one of its legs. Socrates, the principal figure of the 
dialogue, concludes: 
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Then he who does not know may still have true notions of that which he 

does not know?... And at present these notions have just been stirred up 

in him as in a dream; but if he were frequently asked the same questions 

in different forms, he would know as accurately as anyone at last /426, 

p. 284]. : 

The doctrine of the a priori nature of geometric views in its most distinct 

form was expressed by Immanuel Kant in his fundamental philosophical 

work The critique of pure reason (Kritik der гетеп Vernunft. K6nigsberg, 

1781) [261]. In this connection Kant writes: 

1. Space is not a conception which has been derived from outward 

experiences. For, in order that certain sensations may relate to some- 

thing without me, (that is, to something which occupies a different part 

of space from that in which I am); in like manner, in order that I may 

represent them not merely as without of and near to each other, but also 

in separate places, the representation of space must already exist as a 

foundation. Consequently, the representation of space cannot be bor- 

rowed from the relations of external phenomena through experience; 

but, on the contrary, this external experience is itself only possible 

through the said antecedent representation... . 

2. Space then is a necessary representation а priori, which serves for 

the foundation of all external intuitions. We never can imagine or make a 

representation to ourselves of the nonexistence of space, though we may 

easily enough think that no objects are found in it. It must, therefore, be 

considered as the condition of the possibility of phenomena, and by no 

means as a determination dependent on them, and is a representation а 

priori, which necessarily supplies the basis for external phenomena 

[261, pp. 23—24 ]. 

However, later Kant writes: 

It is, moreover, not necessary that we should limit the mode of 

intuition in space and time to the sensuous faculty of man. It may well 

be, that all finite thinking beings must necessarily in this respect agree 

with man (though as to this we cannot decide), but sensibility does not 

on account of this universality cease to be sensibility /26/, р. 43/. 

These words of Kant show that he did not entirely rule out the possibility of 

generalizing the notion of space; we saw earlier (p. 179) that the young Kant 

suggested the idea of one such generalization. 

The most striking proof of the falsity of the doctrine of the a priori nature of 

geometric notions is the origin of universally accepted names of geometric 

objects sphere from sphaira—ball; cylinder from kylindros—roller; cone from 

konos—pine cone; prism from prisma—something sawn off; trapezium from 

trapezion—small table; rhombus from rhombos—top, and so on. These names 

show that, originally, bodies of the form of a sphere, cylinder, cone, and so on, 

were named for concrete objects having these respective forms. 
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The doctrine of the a priori nature of geometric notions was criticized by 

many philosophers and mathematicians. In chapter VI we will consider its 

critique by Lobaéevskii that helped him make his remarkable discovery. At 

this point we quote the critique of Kant’s doctrine by Timofei Fedorovic 

Osipovskii (1765—1832), rector of Harkov University, in his work On space 

and time (0 prostranstve 1 vremeni. НагКоу, 1807): 

I agree with the founder of critical philosophy [that is, Kant] that it is 

impossible to deduce irrefutable synthetic conclusions from notions 

acquired from experience when this acquisition is understood precisely 

in the sense in which he assumes it, that is, when one acquires ideas about 

certain special cases belonging to a single whole but not marked with the 

stamp of universality. But the notion of space is acquired in a very 

different manner: it begins with the whole and the parts are already 

contained in it; for everybody knows, and Mr. Kant himself says, that 

the notion of space precedes the notion of all things that borrow parts of 

this whole. The possibility of obtaining an idea of the whole space 

together with its parts is implicit, in the first place, in the very manner in 

which we acquire this notion, that is, in our sense of vision that is so 

constructed that the whole is imprinted on it together with all its parts; 

and in the second place, in that the whole is uniform in its entirety and 

continuous /398, рр. 14—15]. 

And as for Kant’s thought that if space were the condition of the existence 

of things and therefore “were in them and not in us” then we could not be sure 

that this property of space that our senses impart to a certain object actually 

belongs to it, Osipovskii replies: 

No one will take it upon himself to prove that the space that we perceive 

in things is completely the same in them as we perceive it; it is enough 

that there is in them something that corresponds to what we observe, and 

that it corresponds in accordance with a constant law of dependence 

between what is in them and that which it imprints on our sensations. If, 

on the contrary, there is nothing in the thing that corresponds to the 

notion, related to space, that is born in us when we sense it, that is, if 

there is no mutual dependence whatever between this thing and our 

notion, then why will the notion relate to the thing? For example, if 

nothing corresponds in a sphere to the roundness that we perceive when 

we look at a sphere why then сап we link the notion of roundness to the 

notion of sphere; for then these ideas will be totally unrelated to one 

another. In that case, all synthetic chains of ideas proposed and proved 

in Mathematics in relation to space would be pure chimeras, that arise 

just in our heads in an involuntary but incoherent manner, have no 

relation whatever to things and are therefore incapable of any applica- 

tion to them; but it is well known that no one ever said anything more 

true than Euclid in his elements [that is, the Elements] and nowhere is 
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there a more precise correspondence than the one between the truths 

proposed in these elements and what is actually observed in things /398, 

pp. 15-16]. 
Ра 

Finally, Osipovskii arrives at the following conclusion: 

All that has been said above makes one think that space and time are 

conditions for the existence of things that exist in nature and in them- 

selves and not only in our form of sensation. As regards space, my view is 

this: the notion about it arises from impressions that originate in it with 

the aid of [the action of] our outer senses on our inner senses /398, p. 16/. 

One of the founders of Marxist philosophy, Friedrich Engels (1820—1895), 

engaged in a polemic with the well-known botanist Karl Wilhelm Nageli 

(1817—1891). In the paper The limits of natural scientific knowledge (Die 

Schranken der naturwissenschaftlichen Erkenntniss. Mtinchen, 1877) Nageli 

wrote: 

We know exactly the meaning of an hour, a metre, a kilogram, but we do 

not know what time, space, force and matter, motion and rest, cause 

and effect are. 

Engels’s response, contained in his Dialectic of nature (Dialektik der Natur. 

1925), was: 

It is the old story. First of all one makes sensuous things into abstrac- 

tions and then one wants to know them through the senses, to see time 

and smell space. The empiricist becomes so steeped in the habit of 

empirical experience, that he believes that he is still in the field of 

sensuous experience when he is operating with abstractions. We know 

what an hour is, or a metre, but not what time and space are! As if time 

was anything other than just hours, and space anything but just cubic 

metres! The two forms of existence of matter are naturally nothing 

without matter, empty concepts, abstractions which exist only in our 

minds / 169, р. 235]. 

We see that Engels calls space and time two forms of existence of matter. In 

his Anti-Diihring, Herr Eugen Diihring’s revolution in science (Herrn Eugen 

Dihrings Umwalzung der Wissenschaft. London, 1878) 

Engels wrote: 

But it is not at all true that in pure mathematics the mind deals only with 

its own creations and imaginations. The concepts of number and figure 

have not been derived from any source other than the world of reality. 

The ten fingers on which men learnt to count, that is, to perform the first 

arithmetical operation, are anything but a free creation of the mind. 

Counting requires not only objects that can be counted, but also the 

ability to exclude all properties of the objects considered except their 

number—and this ability is the product of a long historical evolution 
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based on experience. Like the idea of number, so the idea of figure is 
borrowed exclusively from the external world, and does not arise in the 

mind out of pure thought. There must have been things which had shape 

and whose shapes were compared before anyone could arrive at the idea 

of figure. Pure mathematics deals with the space forms and quantity 

relations of the real world—that is, with material which is very real 

indeed. The fact that this material appears in an extremely abstract form 

can only superficially conceal its origin from the external world. But in 

order to make it possible to investigate these forms and relations in their 

pure state, it is necessary to separate them entirely from their content, to 

put the content aside as irrelevant; thus we get points without dimen- 

sions, lines without breadth and thickness, a and Б and x and у, constants 

and variables; and only at the very end do we reach the free creations 

and imaginations of the mind itself, that is to say, imaginary magni- 

tudes. Even the apparent derivation of mathematical magnitudes from 

each other does not prove their a priori origin, but only their rational 

connection. Before one came upon the idea of deducing the form of a 

cylinder from the rotation of a rectangle about one of its sides, a number 

of real rectangles and cylinders, however imperfect in form, must have 

been examined. Like all other sciences, mathematics arose out of the 

needs of men: from the measurement of land and the content of vessels, 

from the computation of time and fram mechanics. But, as in every 

department of thought, at a certain stage of development the laws, 

which were abstracted from the real world, become divorced from the 

real world, and are set up against it as something independent, as laws 

coming from outside, to which the world has to conform. That is how 

things happened in society and in the state, and in this way, and not 

otherwise, pure mathematics was subsequently applied to the world, 

although it is borrowed from this same world and represents only one 

part of its forms of interconnection—and it is only just because of this 

that it can be applied at all /170, рр. 58—59]. 

Continuity and Discreteness of Space in Antiquity 

and in the Middle Ages 

The question of whether space is discrete or continuous was debated already 

by the ancient philosophers. In his commentaries on Aristotle’s Physics, Sim- 

plicius tells us that Anaxagoras (fifth century B.c.), one of the ancient philoso- 

phers, maintained that 

For in small there is no least but only a lesser / 148, р. 83], 

that is, he subscribed to the principle of infinite divisibility, apparently apply- 

ing it to matter as well as to space. His older contemporary Leucippus and 
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younger contemporary Democritus favored atomistic notions of matter as 

well as of space. In connection with these views Aristotle wrote in De caelo that 

There is, further, another view—that of Leucippus and Democritus 

of Abdera—the implications of which are also unacceptable. The pri- 

mary masses, according to them aré infinite in number and indivisible in 

mass /29, vol. 2, р. 303°]. 

In his Letter to Eratosthenes on the method of mechanical theorems (Peri ton 

méchanik6n thedrematon pros Eratosthené ephodos)' Archimedes wrote: 

in the case of the theorems the proof of which Eudoxus was the first to 

discover, namely that the cone is a third part of the cylinder, and the 

pyramid of the prism, having the same base and equal height, we should 

give no small share of the credit to Democritus who was the first to make 

the assertion with regard to the said figure though he did not prove it 

[255A ppp. 13 J: 

Archimedes did not consider Democritus’ reasoning as a proof, for in his time 

proofs of theorems about areas and volumes were thought rigorous only if 

they employed the so-called method of exhaustion. Since the theorems men- 

tioned by Archimedes are based on the theorem about the equality of volumes 

of two pyramids with the same base and height, there is no doubt that 

Democritus’ arguments were based on the idea of two such pyramids as made 

up of layers of indivisible “primary magnitudes,” that is, geometric atoms. All 

this indicates that Democritus viewed space as consisting of atoms of finite 

size and every finite body as consisting of a “‘pretersensually”’ large number of 

such atoms. 

Another variant of atomistic notions of space is found among the Pytha- 

goreans. It is not clear whether these notions arose in the original school of 

Pythagoras or later, under the influence of Democritus. The fact remains that 

the later Pythagoreans thought of solids as made up of discrete points. This 

notion is at the basis of the Pythagorean doctrine of ‘‘figurate numbers” that 

we mentioned in chapter 4. It is set forth in the Treatises of the Brethren of 

Purity (Каза’И Ikhwan al-Safa’), which is strongly influenced by the Pytha- 

goreans of the philosophical school that functioned in Basra and other towns 

in the 10th century. The Treatises, published under the collective pseudonym 

of the school, represent an encyclopedia of a number of sciences as well as—in 

accordance with Pythagorean traditions—a number of mystical doctrines. 

In the geometric treatise the Brethren of Purity wrote: 

The shortest line—of two points, thus .., then of three points, thus..., 

then of four points, thus...., then of five, thus..... , then they increase 

by one, like the numbers in the natural sequence. The tiniest trigonal 

1Tn English works this is usually referred to as the Method and wiil be so referred to in the sequel. 

(Translator.) 
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figure—of three points, thus .’., then of six points, thus .-., then of ten 

points, thus .-.-.*., and they increase according to this sample /243, vol. 1, 

р. 83] (see also [586 /). 

It is clear that the Pythagoreans viewed geometric figures as made up of 

discrete points separated by finite, although very small, distances. 

Aristotle supported the opposite point of view. He wrote in Physics: 

Nothing that is continuous can be composed of indivisible parts: e.g., a 

line cannot be composed of points, the line being continuous and the 

point indivisible /29, vol. 2, р. 231“ ]. 

As we have already pointed out, Aristotle held that atomistic views lead to a 

contradiction. He found contradictory the notion that a continuous magni- 

tude, for example a line, consists of points; for on this view a line of finite 

length, a plane figure of finite area and a body of finite volume consist of 

points whose length, area, and volume are each equal to zero. Actually, 

atomistic notions included attempts to eliminate this contradiction by ascrib- 

ing to “points” small but finite dimensions, as was done by Democritus, or by 

linking the length of a line to the distances between points and by representing 

plane figures and solids as, respectively, plane or spatial lattices or other plane 

and spatial configurations,as was done by the Pythagoreans. Aristotle solved 

this problem differently. He regarded lines, planes, and solids as infinitely 

divisible but did not view them as collections of points but rather as loci where 

points can be located. This notion of Aristotle was taken over by Euclid who 

in proposition 10 of book I of the Elements solved the problem: 

To bisect a given finite straight line / 173, vol. 1, р. 267] 

for every segment, including arbitrarily small ones. It was this view that gave 

rise to the term /ocus that is now thought of as meaning a “‘set of points.” 

At the same time, some of the definitions of Euclid’s Elements bear traces 

of atomistic traditions. For example, consider the definitions 1, 2, and 5 of 

book I: 

A point is that which has no part; 

A line is breadthless length; 

A surface is that which has only length and breadth / 173, vol. 1, р. 153]. 

Here “that, which has no part” is an indivisible ‘primary magnitude,” an 

atom of space; ““breadthless length” is a chain of atoms; and “‘only length and 

breadth” is a layer of atoms of the type considered by Democritus in his 

theorem on the volume of a pyramid. 

We have already mentioned Archimedes’ remarks about the atomistic 

reasoning of Democritus. In the Method he wrote: 

for certain things first became clear to me by a mechanical method, 

although they had to be demonstrated by geometry afterwards because 

their investigation by the said method did not furnish an actual demon- 
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stration. But it is of course easier, when we have previously acquired, 

by the method, some knowledge of the questions, to supply the proof 

than it is to find it without any previous knowledge /25, App., р. 13]. 

In The Sand-reckoner (Psammités) Archimedes mentions an assertion of 

Aristarchus of Samos (310?—230? в.с.): 

His hypotheses are that the fixed stars and the sun remain unmoved, that 

the earth revolves about the sun in the circumference of a circle, the sun 

lying in the middle of the orbit, and that the sphere of the fixed stars, 

situated about the same centre as the sun, is so great that the circle in 

which he supposes the earth to revolve bears such a proportion to the 

distance of the fixed stars as the centre of the sphere bears to its surface 

125, р. 222) 

and continues: 

Now it is easy to see that this is impossible; for, since the centre of the 

sphere has no magnitude, we cannot conceive it to bear any ratio 

whatever to the surface of the sphere /25, р. 222]. 

It is clear that Euclid’s younger contemporary Aristarchus thought of the 

center of a sphere as a geometric atom of finite dimensions. 

Although the majority of mathematicians of the medieval East shared the 

viewpoint of Aristotle and Euclid, atomistic views were not entirely unknown. 

We have already mentioned the atomistic views of the Brethren of Purity. 

Similar views were held by Muslim theologians, the ти tazila and the mutakal- 

Птип. Among the mu‘tazila there were adherents of both types of mathe- 

matical atomism, the one represented by Democritus and the one espoused by 

the Pythagoreans. Abu-l-Hashim al-Jubba’t (820—933) belonged to the first 

school and Abw-I-Qasim al-Ka’‘bi (4. 932) to the second. Al-Ka‘b1’s nickname 

(‘“‘cubical’’) shows that in his doctrine a key role was played by the arrange- 

ment of atoms as knots of a cubical lattice. The book The contentious questions 

between the Basrians and the Baghdadians (al-Masa‘il fi1-khalaf bayna al- 

Basriyyin wa |-Baghdadiyyin) of Abu Rashid al-Nayshaburi /424, р. 2] deals 

with the issues dividing the two doctrines. Al-Nayshaburi states that the main 

argument was about whether or not “ап atom partakes of extension.” А]- 

Jubba’t’s answer is in the affirmative since, in his view, it is difficult to imagine 

a body made up of atoms without extension. Al-Ka’‘bi argued that the exten- 

sion of bodies is due not to the atoms but to the distances between them /424, 

Deke 
The doctrine of the mutakallimiin was set forth by the famous philosopher 

Moses Maimonides (1135—1204) in The guide of the perplexed in which he says 

about the mutakalliman that 

They thought that the whole world—I mean to say every body in it—is 

composed of very small particles that, because of their subtlety, are not 

subject to division. The individual particle does not possess quantity in 
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any respect. However, when several are aggregated, their aggregate 

possesses quantity and has thus becomes a body /349, р. 195]. 

The mutakallimin held similar views of time and, since “‘time is made up of 

‘now,’” they concluded that God creates the world anew every instant and 

claimed on this basis that all events in the world “соте from God.” 

We have already mentioned that the Brethren of Purity developed a mathe- 

matical atomism of the Pythagorean type. Among the followers of mathe- 

matical atomism in. the medieval East there were also philosophers who 

developed the materialistic traditions of ancient philosophy. One such scholar 

was Abu Bakr Muhammad ibn Zakariya al-Razi (865—952), who, in many 

respects, followed the “Ппе of Democritus.” In his Book on matter (al-Kitab 

al-hayula) al-Razi wrote that 

the structure of all bodies is the result of the mixing of particles of 

primary matter with particles of the vacuum, that is, absolute space 

[424, p. 104]. 

These ‘‘particles of the vacuum” are mathematical atoms. Mathematical 

atomism explains the title of al-Razi’s (lost) Treatise that [the assertion that] 

the diagonal of a square is incommensurable with a side is not geometric (Risala 

fi anna qutr al-murabba' 1a yushariku al dil’ min ghayr handasa) / 236, vol. I, 

р. 309]: in atomistic geometry all segments, including the diagonal of a square 

and a side, are commensurable. In the treatise Concerning what was between 

him and Abu-l-Qasim al-Ka'bi on the question of time (Ма jara baynahi wa- 

bayna Abw' I-Qasim al-Ka‘bi fi l-zaman) /52, р. 11] al-Razi debated with al- 

Ка questions about the atomistic structure of space. In his philosophical 

correspondence with ibn Sina, al-Biruni wrote: 

If for each of these things, that is, boundaries of a body, there are two 

sides and one middle then division is indefinite, and this is impossible 

[527, p. 40]. 

Al-Biruni himself had a great deal of sympathy for atomists of the al-Razi 

variety and in his second letter to ibn Sina wrote: 

Why does Aristotle regard as fallacious the doctrine of indivisibility of a 

particle if the assertion of the indefinite divisibility is even more 

fallacious.... Atomists are characterized by quite a few [debatable] 

assertions well known among geometers but the words of those who 

oppose the atomists are even less acceptable /54, рр. 13—14]. 

In his reply to al-Biruni, Ibn Sina defended the viewpoint of Aristotle. Al- 

Biruni also mentions atomists on other occasions. Thus in one of the astro- 

nomical books of the Canon of Mas‘ud he writes: 

When we speak of moving [bodies] there is no limit that one can apply to 

oneself in the matter of rigor. ... To approximate the truth it is necessary 

to repeat the process of making things accurate. Finally, the solution of 
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this is possible only after the resolution of the contention between the 

“followers of the particle” [that is, atomists] and the followers of its 

rejection [57, р. 937; 53, vol. 5, part 2, р. 214]. 

“Umar Khayyam also admits the possibility of the triumph of mathematical 

atomism. In a chapter of his Commertearies on the difficulties in the premises of 

Euclid’s book devoted to the theory of ratios Khayyam considers first the ratios 

of pairs of magnitudes ‘чт which the smaller is a fraction or fractions of the 

larger.” After mentioning the third possibility —‘“‘they may have no numerical 

ratio, which characterizes only geometric magnitudes’”—Khayyam writes: 

If they will say that there is no third case altogether and there are only 

two numerical cases, we will reply that consideration of the rules of 

ratios and proportions of magnitudes in these three cases does not 

confound us, and if this case is refuted they will not reproach us for 

anything, but, since it has not been refuted, we consider it and complete 

the two indicated cases /[272, р. 129]. 

The mathematician Qutb al-Din al-Shirazi (1236—1311) wrote in his commen- 

taries to Nasir al-Din а1-Тизт$ Treatise on the motion of rolling and the relation 

between the straight and the curved (Risala fi harakat al-dahraja wa'l-nisba 

bayn al-mustawi wa’l munhan1): 

As to those who mention that [points and lines] follow one after the 

other and recognize formation [of lines from points and of surfaces from 

points and lines]... since for them the equality and the inequality [of 

figures] is [established] only by the number of points, for them is possible 

equality and inequality between line and body, between line and surface 

and between surface and body /529, р. 197]. 

Thus al-Shirazi recognizes the existence of mathematical atomism in his time. 

Mathematical atomism existed also in ancient and medieval India. In his 

Description of three worlds (Tiloyapannati) the Jainist scientist Yativrisabha 

(fifth century) defined an atom of space called pradesa. Yativrisabha considers 

pradesa to be the smallest unit of length and gives the names of the units of 

length equal to 8, 82,..., 811 pradesas. The last of these units is angula—finger 

(width of a man’s finger) /250, pp. 22—23]. He also gives the least even and 

odd numbers of pradesas for various geometric figures: for lines they are 2 and 

3, for squares 4 and 9, for cubes 8 and 27, for rectangles 6 = 2:3 and 15 = 3-5, 

for parallelepipeds 12 = 2-2-3 and 45 = 3-3-5, for triangles 6 and 3, for 

tetrahedra 4 and 35, and for “‘circles’”’ (squares without angle points) 12 and 5 

[250, p. 48]. 
Atomistic ideas took a different form in Buddhist doctrines. For Buddhists 

the world is a set of physiopsychological elements called dharmas (see the 

studies of the eminent Soviet indologist Fedor Ippolitovié Séerbatskoi 

[Stcherbatsky] /534; 554/) and space is a form of ordering these elements. 

Atomistic views of space also developed in Western Europe. In his Treatise 
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on the continuum (De continuo tractatus) Bradwardine (ab. 1290—1349) wrote: 

there are five famous opinions concerning the composition of the con- 

tinua among ancient and modern philosophers. For certain [philoso- 

phers], like Aristotle, Averroes and most of the moderns, hold that a 

continuum is not composed of atoms but rather of parts divisible 

without end. Others, however, hold with its composition out of indivis- 

ibles. But there are two variants [of this position]. For Democritus 

maintains that a continuum is composed of indivisible bodies. Others 

claim it is composed of points, and fall into two groups. For Pythagoras, 

the father of this sect, Plato and Walter the modern contend that a 

continuum is composed of a finite number of indivisibles. Others, how- 

ever, [believe] in its composition out of an infinite number [of indivis- 

ibles], and these [indivisibilists] are [again] twofold. For certain of them, 

like Henry the modern, say a continuum is composed of an infinite 

number of indivisibles immediately joined to one another; others still, 

like [the Bishop of] Lincoln side with an infinity of indivisibles which are 

mediate to one another /210, р. 314; 652, pp. 402—403]. 

Here Walter is Walter Catton (d. 1342), who worked in Oxford; Henry is Henry 

Harley (ab. 1270—1317); Robert of Lincoln is the archbishop Robert Grosseteste 

(ab. 1175—1255). Mathematical atomism was also developed in France by 

Gerald Odonis (4. 1349) and his follower Nicola Bonetus (see /652, р. 102]).? 

Continuity and Discreteness of Space in Newer Times 

In the 17th century these questions were taken up by mathematicians. Thus 

Kepler in his New stereometry of wine barrels (Stereometria nova doliorum 

vinariorum. Linz, 1615) [271, vol. 9, pp. 5-133] and in his Archimedes’ 

Geometry (Messekunst Archimedis) /27/, vol. 9, pp. 135-274] restores 

Archimedes’ atomistic arguments employed by him to compute areas and 

volumes. Kepler was not aware of Archimedes’ the Method and used these 

methods to determine the volumes of many new solids. 

At the same time the Italian mathematician Bonaventura Cavalieri ad- 

vanced what is now known as the principle of Cavalieri in his Geometry of 

indivisibles of the continuous developed by a new method (Geometria indi- 

visiblibus continuorum nova quadam ratione promota. Bologna, 1635) [102]. 

According to this principle, comparing areas of plane figures reduces to 

comparing “all lines” of these figures, and comparing volumes of bodies 

reduces to comparing “all planes” of these bodies; by ‘“‘all lines” and “all 

planes” Cavalieri has in mind parallel sections of the various figures. Cavalieri 

* Concerning the history of mathematical atomism see also the book of Anatolii Nikolaevit 

Vyal’cev /616/. 
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formulated his principle as follows: 

Regardless of whether the continuous consists of indivisibles or not, 

totalities of indivisibles can be compared with one another and their 

magnitudes are in a definite ratio to one another //02, р. 18]. 

These words of Cavalieri show that in spite of the obvious atomistic origin of 

his principle he formulates it so that it should be true in both cases—in the 

case of the atomistic structure of space as well as in the case of its continuity 

and indefinite divisibility. 

Of great interest are the views on the structure of space held by the creators 

of the differential and integral calculus, Newton and Leibniz. When he defines 

a derivative as the “ultimate ratio of evanescent quantities’”’” Newton does not 

identify these ““evanescent quantities” in the last moment before their vanish- 

ing with mathematical atoms. He writes in the Principia: 

It may also be objected, that if the ultimate ratios of evanescent quan- 

tities are given, their ultimate magnitudes will also be given: and so all 

quantities will consist of indivisibles, which is contrary to what Euclid 

has demonstrated concerning incommensurables in the tenth Book of 

his Elements. But this objection is founded on a false supposition / 387, 

Peo]: 

At the same time Newton introduces the notion of moments—magnitudes 

that are not zeros but at the same time are not finite variables—and views the 

derivative as the ratio of the moment of the function and the moment of its 

argument. 

These quantities I here consider as variable and indetermined, and 

increasing or decreasing, as it were, by a continual motion or flux; and I 

understand their momentary increments or decrements by the name of 

moments; so that the increments may be esteemed as added or affirma- 

tive moments; and the decrements as subtracted or negative ones. But 

take care not to look upon finite particles as such. Finite particles are not 

moments but the very quantities generated by the moments. We are to 

conceive them as‘the just nascent principles of finite magnitudes /387, 

p. 249]. 

In the differential calculus of Leibniz the counterpart of Newton’s “то- 

ment” is Leibniz’s differential. Unlike Newton, Leibniz admitted the atomistic 

structure of lines, and in his paper A new method for maxima and minima as 

well as tangents which is neither impeded by fractional nor irrational quantities, 

and a remarkable type of calculus for them (Nova methodus pro maximis et 

minimis, itemque tangentibus, quae nec fractas, nec irrationales quantitates 

moratur et singulare pro illis calculi genus. Leipzig, 1684) /3/2, vol. J, 

рр. 220-226] he wrote: 

To find a tangent is to pass a straight line that joins two points of a curve 

the distance between which is infinitesimal, or to produce a side of an 
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infinite-angled polygon which is for us equivalent to a curve /312, vol. 1, 

pp. 223]. 

In spite of their different attitudes with respect to indivisibles the views of 

Leibniz and Newton on the structure of space were very close. What was 

indispensable for the differential calculus was the continuity of lines, surfaces, 

and all space. At the same time, the study of functions required transition from 

point to point. Thus neither Newton nor Leibniz could be satisfied with the 

views of the ancients concerning the mutual relation of points and space. They 

somehow had to synthesize these views, and this could not be achieved 

without the introduction of moments and differentials—neither zeros nor 

finite quantities but the ‘‘just nascent principles of finite magnitudes” — 

actual infinitesimals, that could not, in the 17th century, be defined without 

contradictions. 

In his work The historical course of development (Der historische Entwick- 

lungsgang) Karl Marx (1818—1883), the founder of Marxist philosophy who 

took a lively interest in the philosophical questions of mathematics, character- 

ized the differential calculus of Newton and Leibniz as a mystical differential 

calculus [355, p. 165] and summarized a survey of it in the following manner: 

They themselves believed in the secret character of the newly discovered 

calculus that gave correct (and in the case of geometric applications truly 

astounding) results by means of an approach that was mathematically 

absolutely incorrect. Thus they mystified themselves and all the more 

valued the new discovery /355, р. 169]. 

Continuity and Discreteness of Space in the 19th Century and 
in the Beginning of the 20th Century 

We conclude our survey of the philosophy of space up to the beginning of the 

19th century with a look at the reflections on the continuity and discreteness of 

space by the greatest philosopher of the beginning of the 19th century, one of 

the founders of the dialectic method and the creator of a famous idealistic 

system Georg Wilhelm Friedrich Hegel (1770—1831). These reflections are 

contained in his Philosophy of nature (Philosophie der Natur) [221]. Hegel 

defines space as follows: 

The first or immediate determination of Nature is Space: the abstract 

universality of Nature’s self-externality, self-externality’s mediationless 

indifference. It is a wholly ideal side-by-sideness because it is self- 

externality; and it is absolutely continuous, because this asunderness is 

still quite abstract, and contains no specific difference within itself. 
(2217 р. 251, 

Then Hegel considers the points of space: 
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It is not permissible to speak of points of space, as if they constituted the 

positive element of space, since space, on account of its lack of dif- 

ference, is only the possibility and not the actual positedness of being- 

outside-of-one-another and of the negative, and is therefore absolutely 

continuous; the point, the being-for-self, is consequently rather the 

negation of space, a negation which is posited in space /221, р. 29]. 

Thus Hegel contrasts continuous space, which he calls ‘‘self-externality” or 

‘“being-outside-of-one-another”’ with points, which he calls “‘being-for-self.”’ 

He regards continuity as the fundamental property of space and discreteness 

as the fundamental property of points and arrives at the following conclusion. 

The unity of these two moments, discreteness and continuity, is the 

objectively determined Notion of space. This Notion, however, is only 

the abstraction of space, which is often regarded as absolute space 

[221i fp. 30); 

These words of Hegel mean that he regards mathematical space, which he, like 

Newton, calls absolute space, as an abstraction from physical space, and 

considers as the essence of the concept of this mathematical space the unity of 

discreteness and continuity—two properties of space that are, in the termi- 

nology of Hegel’s philosophy, dialectical opposites. 

In his synopsis of Hegel’s Lectures on the history of philosophy the great 

Marxist philosopher, Vladimir П?16 Lenin (1870—1924) wrote: 

Motion is the essence of time and space. Two fundamental concepts 

express this essence: continuity (Kontinuitat) and “punctuality” 

(= denial of continuity, discontinuity). Motion is a unity of (infinite) 

continuity (of time and space) and discontinuity (of time and space) 

ур. 29. 

Here punctuality is the fact that that space is а set of points. As in Hegel, this 

property of space and time is opposed to continuity, but in contradistinction 

to Hegel, V. I. Lenin emphasizes the connection of space and time with 

motion, called by him the essence of time and space. 

Positivists on Space 

In the middle of the 19th century the French philosopher Auguste Comte 

(1798—1857) advanced his so-called positivist philosophy, whose followers be- 

came known as positivists. Comte tried to rely exclusively on experience and 

regarded any theory of matter and all forms of cognition that cannot be tested 

as “‘metaphysics.”’ On the whole, Comte’s own position was closer to material- 

ism than to idealism, but later positivists interpreted the principles of “positivist 

philosophy” in the spirit of subjective idealism. Comte’s philosophical system 

assigned great importance to mathematics and, in particular, to geometry. 
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Comte’s doctrine of the origin of geometric notions is very close to Aristotle’s 

materialist doctrine of the derivation of these notions by way of abstraction 

from objects of the real world. Therefore Comte, like al-Farabi in the 10th 

century and Leibniz in the 17th century, criticizes Euclid’s exposition of the 

foundations of geometry; Euclid first defines point, then line, then surface, 

and then body, and Comte demands that the order of exposition of these 

notions be reversed. Thus Comte’s view of space is intimately tied to matter 

and differs radically from the Newtonian notion of absolute space that was 

universally accepted at the time. In his Course of positive philosophy (Cours de 

philosophie positive. Paris, 1830—1842) [124] Comte writes: 

I put first the question of space, that has served the metaphysicians as the 

subject of so many sophistic debates and empty and childish arguments. 

If this notion is reduced to its positive sense then it will turn out that it is 

simply a matter of considering extension not in bodies but in some 

indefinite medium of which we assume that it holds within it all bodies in 

the universe. This notion arises in a natural way from observation, 

namely as the idea of an imprint which a body placed in a fluid leaves in 

it. Indeed, it is clear that from the geometric point of view such an 

imprint can be substituted for the body without the slightest change in 

our discourse. / 

As for the physical nature of this indeterminate space we should, for 

greater simplicity, think of it as similar to the real medium in which we 

live; indeed, if this medium were not gaslike but liquid then we would 

think of spdce as fluid. It is obvious that this matter is of secondary 

significance and that the main purpose of such a representation is to 

enable us to consider extension independently of body. Its a priori 

importance derives from the fact that it enables us to study geometric 

notions in and of themselves by eliminating all other phenomena that 

permanently accompany the latter in the case of physical bodies but 

have no effect whatsoever on them.... 

If geometric considerations were endowed with an abstract character 

in the indicated manner then they would become not only simpler but 

also more general. As long as extension was considered in connection 

with bodies one could take as a subject of investigation only those forms 

that actually exist in nature, and this restricted the scope of geometric 

investigations to an extraordinary degree. If we adopt the opposite 

viewpoint and think of extension as belonging to space then the human 

spirit is free to consider all imaginable forms; this generalization is 

indispensable before geometry can be given an entirely rational charac- 

ter. The sole purpose of the concepts of surface and line, considered in 

and of themselves, is to enable us to discuss with greater ease these two 

forms of extension while setting aside all that need not be taken into 

consideration. To this end it suffices to imagine that the dimension we 

wish to exclude decreases ever more while other dimensions remain the 
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same and reaches such limits of smallness that it is no longer capable of 

attracting our attention. It is in this way that we naturally learn the true 

doctrine of a surface, and by repeating this operation, that is, by 

eliminating width just as one earlier eliminated depth, also the notion of 

a line. Finally, if we repeat this process once more, then we arrive at the 

notion of point or of extension, considered exclusively relative to place, 

completely independent of its magnitude and intended exclusively for 

the precise designation of position.... 

From the above it is obvious how devoid of any sound sense are the 

arguments of metaphysicians concerning the foundations of geometry. 

It must also be noted that the geometers do not present these primary 

ideas in a sufficiently philosophical manner for, to give an example, they 

set forth the notions on different forms of extension in an order that is 

the very opposite of their natural connection, and this gives rise to very 

serious difficulties in elementary teaching //24, vol. 1, part 2, рр. 144— 

146]. 

The Austrian physicist, mechanist and philosopher Ernst Mach 

(1836—1916) advanced his philosophical doctrine at the end of the 19th 

century. Mach himself called his teaching the newest positivism and thereby 

stressed his indebtedness to Comte. But Mach brought the efforts of the 

positivists to base themselves on experience alone to the subjective-idealist 

teaching according to which the “‘elements of the world” are identical with our 

sensations. 

In The science of mechanics presented in a historical-critical manner (Die 

Mechanik in ihrer Entwicklung historisch-kritisch dargestellt. Prague, 1883), 

Mach, proceeding from his subjective-idealistic teaching, defined space and 

time as ‘“‘well-ordered systems of sensations” /345, р. 484 ] and in Knowledge 

and error (Erkenntnis und Irrtum. Vienna, 1905) he wrote: 

As regards physiology, time and space are systems of sensations of 

orientation that determine the release of sensations proper and of bio- 

logically appropriate reactions of adaptation. As regards physics, they 

are special dependences of physical elements on each other / 347, р. 339]. 

We must not forget that, in line with the “principle of economy of thought,” 

Mach meant by “‘physical elements” sensations. 

Mach’s aspiration to proceed solely from experience resulted in his critique 

of Newton’s teaching about absolute space and time, a view that has played an 

important role in the history of physics. In The science of mechanics Mach 

wrote: 

In the quoted argument Newton betrays his intention to investigate the 

factual alone. No one can say anything about absolute space and ab- 

solute motion; these are purely abstract things that cannot be experi- 

mentally observed /345, pp. 222-223]. 
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Mach continues: 

But if we do not wish to leave the realm of facts then we know only of 

relative spaces and motions / 345, р. 226]. 

In Knowledge and error Mach returns to this issue and says: 

Considering that Newton’s gravitational mechanics could no longer 

regard the fixed stars as an absolutely unchanging, stationary and rigid 

system, his daring attempt to relate the whole of dynamics to an absolute 

space, and correspondingly to absolute time, appears in some measure 

intelligible. In practice, this seemingly senseless assumption did not alter 

the use of the fixed stars as space-time coordinates, so that it remained 

harmless and long escaped serious criticism /347, р. 345]. 

Mach’s critique of the Newtonian doctrine of inertia, linked by him to mass, 

is closely related to his critique of the doctrine of absolute space. 

Proceeding from experience Mach, like Comte, held to the Aristotelian 

view of the origin of geometric notions and wrote in Knowledge and error: 

A point, by its motion, generates a one-dimensional line, a line a two- 

dimensional surface, and a surface a three-dimensional solid space. No 

difficulties are presented by this concept to minds at all skilled in 

abstraction. If suffers, however, from the drawback that it does not 

exhibit, but on the contrary artificially conceals, the natural and actual 

way in which the abstractions have been reached. A certain discomfort 

is therefore felt when the attempt is made from this point of view to 

define the measure of surface or unit of area after the measurement of 

lengths has been discussed. 

A more homogeneous conception is reached if every measurement be 

regarded as a counting of space by means of immediately adjacent, 

spatially identical, or at least hypothetically identical, bodies, whether 

we be concerned with volumes, with surfaces, or with lines. Surfaces may 

be regarded as corporeal sheets, having everywhere the same constant 

thickness which we may make small at will, vanishingly small; lines, as 

strings or threads of constant, vanishingly small thickness. A point then 

becomes a small corporeal space from the extension of which we pur- 

posely abstract, whether it be part of another space, of a surface, or of a 

line. The bodies employed in the enumeration may be of any smallness 

or any form which conforms to our needs. Nothing prevents our idealiz- 

ing in the usual manner these images, reached in the natural way 

indicated, by simply leaving out of account the thickness of the sheets 

and the threads. The usual and somewhat timid mode of presenting the 

fundamental notions of geometry is doubtless due to the fact that the 

infinitesimal method which freed mathematics from the historical and 

accidental shackles of its early elementary form, did not begin to 

influence geometry until a later period of development, and that the 
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frank and natural alliance of geometry with the physical sciences was not 

restored until still later, through Gauss. But why the elements shall not 

now partake of the advantages of our better insight, is not to be clearly 

seen. Even Leibniz adverted to the fact that it would be more rational to 

begin with the solid in our geometrical definitions /347, р. 270]. 

We see that in this matter Mach simply refers to Leibniz. 

Elsewhere in the same book Mach wrote: 

The fundamental truths of geometry have thus, unquestionably, been 

derived from physical experience, if only for the reason that our visualiza- 

tions and sensations of space are absolutely inaccesssible to measure- 

ment and cannot possibly be made the subject of metrical experience. 

But it is no less indubitable that when the relations connecting our 

visualizations of space with the simplest metrical experiences have been 

made familiar, then geometrical facts can be reproduced with great 

facility and certainty in the imagination alone—that is by purely mental 

experiment /347, р. 291]. 

Since he was well acquainted with the progress of contemporary mathema- 

tics, Mach mentions in the same book many achievements of 19th-century 

geometry: 

Analogues of the geometry we are familiar with, are constructed on 

broader and more general assumptions for any number of dimensions, 

with no pretension to being regarded as more than intellectual scientific 

experiments and with no idea of being applied to reality. In support of 

my remark it will be sufficient to advert to the advances made in 

mathematics by Clifford, Klein, Lie, and others. Seldom have thinkers 

become so steeped in reverie, or so far estranged from reality, as to 

imagine for our space a number of dimensions exceeding the three of the 

given space of sense, or to conceive of representing that space by any 

geometry that appreciably departs from the Euclidean. Gauss, Loba- 

chevsky, Bolyai, and Riemann were pérfectly clear on this point, and 

certainly cannot‘be held responsible for the grotesque fictions sub- 

sequently stated in this field /347, рр. 322-323]. 

Mach presents the work of Saccheri, Lambert, Loba¢evskii, Riemann, and 

other geometers /347, pp. 309-322] and engages in a polemic with the 

followers of Kant’s doctrine of the a priori nature of geometric knowledge: 

If further we may assume without scruple that physiological space is 

innate, it shows too slight an agreement with geometrical space to be 

considered as an adequate basis for an a priori development of geometry 

in Kant’s sense / 347, р. 256/. 

Here Mach refers to Listing’s book Preliminary studies on topology, which we 

will discuss in chapter 8. 
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In The science of mechanics Mach wrote; 

It is well known that as a result of efforts by Lobaéevskii, Bolyai, Gauss, 

and Riemann the view has established itself that what we call space is a 

special real case of a more general conceivable case of a manifold of a 

greater number of dimensions. The space of our vision and our feelings 

is a triple manifold, it has three dimensions, and each place in it can 

be determined by three independent indices. What is conceivable is a 

manifold of four and possibly more folds. Even the genus of a manifold 

is conceivable differently than in given space. The credit for this clarifica- 

tion, which we regard as very important, goes to Riemann. The pro- 

perties of given space immediately present themselves to us as objects of 

experience, and all geometric pseudotheories that aim to establish them 

by philosophizing alone fall away /345, р. 467]. 

Then Mach considers the “grotesque fictions”’ that arose as a result of the rise 

of multidimensional geometry: 

The fourth dimension came opportunely for some theologians, intent 

on the complete destruction of hell, as well as for spiritualists. For 

spiritualists the utility of the fourth dimension consists in the following. 

From a bounded line one can pass into a second dimension without 

passing through its end points; from a surface bounded by a curved line 

one can pass into a third dimension and ftom closed space into a fourth 

without penetrating boundaries. Thanks to the fourth dimension even 

the innocent things performed by conjurers in three dimensions take on 

some new halo. All tricks of the spiritualists, such as the forming of 

knots in closed threads or the removal of objects from closed spaces 

succeed only whenever this is quite beside the point. All reduces to 

endless tricks. The obstetrician who could deliver a baby through the 

fourth dimension is, as yet, unborn /345, p. 468/. 

Here Mach has in mind the “experiments” of Zollner, mentioned by Klein and 

Engels, that we will speak of in chapter 7. 

At the time atoms were not objects of “ехрепепсе.” Considering them as 

purely conceivable schemes Mach admitted the possibility of their interpre- 

tations in multidimensional spaces. In The history and roots of the law of 

conservation of work (Die Geschichte und die Wurzel des Satzes der Erhaltung 

der Arbeit. Prague, 1872) Mach wrote: 

The larger the number of atoms in a molecule the larger must be the 

number of dimensions of the space if all conceivable connections among 

them are to be actually realized. We give just an example that shows in 

how narrowminded a manner we proceed if we imagine chemical ele- 

ments to be set out one after the other in space (of three dimensions) and 

how very many of the relations among elements can escape our notice if 

we express them by means of a formula that cannot fully encompass 

them /346, р. 29]. 
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Mach notes that he arrived at this idea already in 1865 after familiarizing 

himself with multidimensional geometry which was being developed at that 

time / 346, р. 55]. у 

We mention two further interesting thoughts of Mach on space and time. 

With regard to the chapter ‘““Time and’space from a physical viewpoint” of his 

book Knowledge and error he makes the following observation: 

The considerations of this chapter show that space and time cannot well 

be severed during investigation /347, р. 350]. 

At the end of the same chapter Mach writes: 

That physiologically time and space represent only an apparent con- 

tinuum and are probably composed of discontinuous though imprecisely 

discriminable elements may bé mentioned in passing. How far in physics 

we can uphold the assumption of spatial and temporal continuity is 

merely a question of what is appropriate and what agrees with expe- 

rience [347, р. 349]. 

These thoughts of Mach, as well as his critique of Newtonian dogmas, 

have played a positive role in the history of physics, for the physicists inter- 

preted his term experience in a materialist sense, notwithstanding the fact, 

mentioned previously, that Mach himself interpreted it in the sense of subjec- 

tive idealism and viewed space as one of the ways of ordering our sensations. A 

similar view of space was espoused by Henri Bergson (1859—1941), founder of 

the “philosophy of life.”” Like the positivists, Bergson tries to stand “аБоуе” 

materialism and idealism by assuming that “Ш” is neither matter nor spirit, 

both of which are products of its disintegration. 

We note that Mach’s physical elements are very close to Buddhist dharmas. 

Е. I. Séerbatskoi /534; 554] pointed out the strong similarity between posi- 

tivist philosophy, and especially the philosophy of Bergson, and Buddhist 

philosophy. 

The philosophical views of the positivists and, specifically, their views of 

space and time, were criticized by Lenin in his philosophical work Materialism 

and empiriocriticism (Materializm i empiriokriticizm. Petersburg, 1909) /316; 

313, vol. 18]. (The reference to the paragraph Space and time is [316, рр. 181- 

195 ].) 
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Lobacevskian Geometry 

М. I. Lobaéevskii’s Discovery 

Centuries of attempts to prove the parallel postulate led to the discovery of 

non-Euclidean geometry made at the beginning of the 19th century. This 

discovery was first publishéd by the great Russian mathematician and pro- 

fessor at Kazan University Nikolai [уапоу16 ГоБабеузКи in the paper On the 

principles of geometry (О naéalah geometrii. Kazan, 1829) [333, vol. 1, pp. 

185—261]. The first public announcement about this discovery was made 

during a meeting of the division of the physicomathematical sciences of Kazan 

University and took the form of a lecture entitled A brief exposition of the 

principles of geometry including a rigorous proof of the theorem on parallels 

(Exposition succincte des principles de la Géométrie avec une démonstration 

rigoureuse du théoréme des paralleles). Loba¢evskii notes that he drew on 

this lecture for the first part of the memoir “Оп the principles of geometry.” 

In the beginning of this part he writes: 

Who would not agree that a Mathematical discipline must not start 

out with concepts as vague as those with which we, in imitation of 

Euclid, begin Geometry, and that nowhere in Mathematics should one 

tolerate the kind of insufficiency of rigor that one was forced to allow 

in the theory of parallel lines.... The initial concepts with which any 

discipline begins must be clear and reduced to the smallest possible 

number. It is only then that they can provide a firm and adequate 

foundation for the discipline. Such concepts must be learned by the 

senses—the inborn ones must not be trusted /333, vol. 1, рр. 185-186]. 

After introducing the basic concepts of geometry that do not depend on 

the parallel postulate Lobacevskii writes: 

The sum of the angles in a rectilinear triangle cannot be >7; the 

sum of the angles in a spherical triangle is, on the contrary, always >л 

[333, 00: 1. p. 1921. 
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And further: 

We saw that the sum of the angles in a rectilinear triangle cannot be 

>л. It remains to assume that this sim is =z or <z. Both can be 

assumed without any subsequent contradiction, and this gives rise to 

two Geometries: one, in common use to this day owing to its simplicity, 

actually agrees with all measurements; the other, an imaginary one, 

more general and therefore more difficult in its calculations, admits the 

possibility of dependence of lines on angles. 

If one assumes that the angle sum is z in one rectilinear triangle then 

it will be that in all. If, on the contrary, we allow it to be less than z in 

one then it is easy to show that it decreases as the sides of the triangle 

increase. 

Thus two lines cannot meet in the plane if they form with a third 

angles whose sum is л. They need not intersect in the case when this sum 

is <л provided that we make the additional assumption that the angle 

sum in a triangle is <7. 

Thus, relative to a line, all lines in the plane can be divided into those 

that meet it and those that do not. The latter will be called parallel (to 

that line) if they represent a limit, or, to put it differently, mark the 

transition from those in one category to those in the other among all 

lines issuing from one point.... 

A consequence of the assumption that the angle sum in a triangle is 

<л is that, with increasing radius, a circle tends not to a straight line 

but to a special kind of curve that we will call a Пти circle. In this case, 

a sphere will tend to a curved surface which we will similarly call a limit 

sphere. The intersection of this surface with a plane is either a circle or 

a limit circle. 

Geometry on the limit sphere is exactly the same as we know it in the 

plane. The limit circle takes the place of the straight line in the latter 

and the angles between the planes in which the limit (circles) lie replace 

the angles between straight lines. The shorter their arcs, the closer the 

limit circles are to straight lines, so that the difference in ratio to the 

length of an arc can be made arbitrarily small. Therefore, whatever 

applies to the first applies to the second, provided that we suppose the 

first and the second extremely small. 

Thus if the Geometry of nature is such that two parallel lines must 

be inclined to a third at angles whose sum is <7, then the Geometry in 

common use is a Geometry of extremely short lines in comparison with 

those (of the geometry) where the angle sum in a triangle is perceptibly 

different from л /333, vol. 1, pp. 194—196]. 

We note that the name imaginary geometry that Lobaéevskii gave to the 

geometry he discovered echoes the name imaginary numbers that he used for 

complex numbers. This name emphasizes that the relation of the geometry 

he discovered to the commonly used Euclidean geometry is the same as the 

relation of the complex numbers to the real numbers. Loba¢evskii’s statement 
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that “‘concepts must be learned by the senses—-the inborn ones must not 

be trusted” shows that since the rejection of the parallel postulate had not 

led to contradictory consequences, he repudiated the notion that Euclidean 

geometry is the only conceivable consistent geometry and concluded that 

different consistent geometric systems are in fact, conceivable. Having 

inferred the consistency of “imaginary geometry,” Loba¢evskii refuted the 

idealistic doctrine of the inbornness of our notions of space—an idea that 

originated with Plato and was subsequently redeveloped by Kant. In this 

connection Lobaéevskii posed the question of measuring the angle sum of a 

triangle with very large sides. Using the data supplied by the latest astro- 

nomical calendar Lobaéevskii computes the angle sum in a triangle whose 

vertices are the star Sirius and two diametrically opposed positions of the 

earth and finds that this angle sum differs from z by less than 0.000372 seconds. 

So small a difference could not be measured with contemporary angle- 

measuring intruments (actually, at this point, Loba¢evskii had made a mis- 

take in his computations: the difference in question is 100 times smaller than 

his figure). 

Having carried out these computations, Lobacevskii writes: 

Thus, the smaller the triangle, the less its angle sum differs from two 

right angles. After this, one can imagine to what extent this difference, 

on which our theory of parallels is based, supports the accuracy of all 

calculations of ordinary Geometry and lends support to the attitude 

of regarding the principles of the latter to have been, presumably, 

rigorously established /333, vol. 1, р. 209]. 

This passage explains the sense of the words “including a rigorous proof of 

the theorem on parallels” in the title of Loba¢evskii’s lecture of 1826: by 

“a rigorous proof” of “the principles of ordinary geometry’? Lobaéevskii 

means the impossibility of experimental determination of which of the two 

geometries—the “imaginary” or the one in common use— obtains in the real 

world. This implies the complete suitability of the ““geometry in common use” 

for practical applications. 

Lobacevskii’s Struggle for the Recognition of His Discovery 

ГоБасеузКИ’$ memoir On the principles of geometry met with incompre- 

hension. In 1832, Loba¢evskii, then rector of Kazan University, asked the 

university council to send his paper for review to the Petersburg Academy. 

Academician Mihail Vasil’evi¢ Ostrogradskii (1801-1862) was assigned to 

review the memoir. Ostrogtadskii ignored the geometric questions in the 

memoir and concentrated оп two definite integrals computed by Lobaéevskii 

by geometric reasoning. Ostrogradskii’s review, contained in the transactions 
of the Academy, states: 
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Having pointed out that of the two definite integrals Mr. Lobaéevskii 

claims to have computed by means of his new method one is already 

known and the other is false, Mr. Ostrogradskii notes that, in addition, 

the work has been carried out with so little care that most of it is 

incomprehensible. He therefore is’of the opinion that the paper of 

Mr. Lobaéevskii does not merit the attention of the Academy /254, 

РЕ 

In 1834 there appeared in the Petersburg literary journals Syn otecestva 

(Son of the fatherland) and Severnyi arhiv (Northern archive), published by 

the noted reactionaries М. Стеб and Е. Bulgarin, a review by a certain “‘S.S.” 

entitled On the principles of geometry, a work of Mr. Lobaéevskii that was 

an insulting lampoon. Having failed to understand the essence of the new 

geometry and having concluded that one of the integrals considered by 

Loba¢evskii is “now 2/4, now oo,” the author of the review says ironically: 

Glory to Mr. Lobaéevskii who took upon himself the labor of reveal- 

ing, on the one hand, the insolence and shamelessness of false new 

inventions, and on the other the simpleminded ignorance of those who 

worship their new inventions. 

However, while I realize the full value of Mr. Lobaéevskii’s work, I 

cannot but hold it against him that, having failed to give his book an 

appropriate title, he forced us to think for a long time in vain. For 

instance, why not write, instead of On the principles of geometry: A satire 

on geometry or A caricature of geometry or a similar thing /254, р. 247]. 

In the view of A. P. Kotel’nikov /254, рр. 250-251], whose geometric 

papers we will discuss in chapter 10, this review was written by one, and 

possibly two, of Ostrogradskii’s students, 5. A. Buraéek and S. I. Zelenyi, the 

first of whom was on the staff of Syn otecestva. The integral mentioned in 

both reviews was an integral depending on a parameter; it took on different 

values for different values of that parameter. 

It was thus an irony of fate that Ostrogradskii, a former student of T. Е. 

Osipovskii, whose views on Kant’s doctrine of space were very close to those 

of Lobaéevskii, and who, as we will see in Chapter 7, played a nontrivial 

part in the rise of another generalization of ordinary geometry, namely 

n-dimensional geometry, should have failed to understand Lobaéevskii’s 

discovery and, by the weight of his authority, delayed its recognition. 

Another Petersburg academician who failed to understand Loba¢éevskii’s 

discovery was Victor Yakovlevi¢é Bunyakovskii (1804—1889). Bunyakovskii 

himself had studied the theory of parallel lines and in 1853, after the publi- 

cation of the basic papers of Lobaéevskii, published the book Parallel lines 

(Parallel’nye linii. Petersburg, 1853) /82/ containing a survey and classifi- 

cation of the ‘“‘proofs” of the parallel postulate and his own “ргооЁ” based 

on the definition of a straight line as a curve all of whose points have the same 

properties. The book made no mention of Lobaéevskii. Later Bunyakovskii 



210 6. Loba¢evskian Geometry 

devoted a special paper— Reflections on certain singularities in the construc- 

tions of non-Euclidean geometry (Considérations sur quelques singularités 

qui se présentent dans la constructions de la géométrie non euclidienne. 

Petersburg, 1872) /77/—to a discussion of Lobaéevskii’s geometry. In this 

paper he tried to show that there is a contradiction between the geometry of 

Lobaéevskii and the visual notions of space, but, unlike Ostrogradskii and 

his students, he spoke respectfully of Lobacevskii’s talents. 

Lobaéevskii’s Further Papers on Non-Euclidean Geometry 

Lack of recognition by the Academy of Sciences and the (vicious) review 

in the literary journals, clearly inspired by Ostrogradskii, failed to break 

Lobaéevskii. His first memoir was followed by other papers in which he 

developed his discovery: Imaginary geometry (Voobrazaemaya geometriya. 

Kazan, 1835; French translation: Berlin, 1836) /333, vol. 3, рр. 16-70]; 

Applications of imaginary geometry to certain integrals (Primenenie voo- 

brazaemoi geometrii k nekotorym integralam. Kazan, 1836) /333, vol. 3, 

pp. 181-294]; New principles of geometry with a complete theory of parallels 

(Novye naéala geometrii $ polnoi teoriei parallel’nyh. Kazan’, 1835—1838) 

[333, vol. 2, рр. 147—45 7]; Geometrical researches on the theory of parallel 

lines (Geometrische Untersuchungen zur theorie der Parallellinien, Berlin, 

1840) [333, vol. 1, рр. 79-127; 332]; Pangeometry (Pangeometriya. Kazan, 

1855; French translation: Kazan, 1856) [333, vol. 3, рр. 435—524]. The word 

Pangeometry (Universal geometry) used by Lobaéevskii in the last of these 

papers shows that he viewed his geometry as the general case of which 

Euclidean geometry is a special (more precisely, a limiting) case. What played 

an essential role in convincing ГоБабеузКи of the consistency of his geometry 

was that he could use it to compute by means of geometric considerations 

certain definite integrals that he thought of as expressions for areas of surfaces 

and volumes of solids in imaginary geometry. (We recall that some of these 

applications were already present in his first memoir and provoked Ostro- 

gradskii’s attacks.) In some cases Lobaéevskii found new ways of evaluating 

known integrals and in other cases both the integral and the method of 

evaluation were new. 

Loba¢éevskii’s Philosophy of Space 

We saw that Loba¢evskii’s discovery was closely linked to his philosophical 

views on space and to his critique of Kant’s philosophical views. Already in 

his Geometry (Geometriya) written in 1823, but published only in the 20th 

century (Kazan, 1909), Lobaéevskii writes in the introduction: 

A geometric body takes from natural bodies just the property of 

extension. Extension is the property of bodies such that when they dilate 

they touch /333, vol. 2, р. 43]. 
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A systematic exposition of the basic notions of geometry was given by 

Lobacevskii in his New principles of geometry with a complete theory of 

parallels (Kazan, 1835—1838). This exposition begins as follows: 

Touching is a distinctive state of bodies and gives them the name geo- 

metric when we retain in them this property and disregard all others, 

whether essential or accidental.... When they touch, two bodies A and 

B form a single geometric body C, where the component parts A and B 

remain distinct and are not lost in the whole of C. Conversely, an 

arbitrary section S divides a body C into two parts A and B.... In this 

way, one can imagine all bodies in nature to be parts of one whole that 

we call space [333, vol. 2, p. 168]. 

Then Lobaéevskii defines congruence (“‘sameness’’) and equality of size 

(“equality”) of two bodies. After defining a body А that fills a location В, 

Lobaéevskii states that 

all other bodies that, without any interchange with them, also fill 

location B will be geometrically the same in all respects. Two bodies are 

merely equal if the parts of one must be rearranged before it can fill the 

location of the other /333, vol. 2, р. 189]. 

Having defined a body and three “principal sections” that divide it into eight 

parts Lobacevskii defines surface, line, and point: 

After three sections have been made in a body and eight mutually 

touching parts have resulted, then, relative to the first section two parts 

touch along a surface, relative to two sections two parts touch along a 

line and relative to all three sections two parts on opposite sides touch 

at a point [333, vol. 2, p. 173]. 

Next distance is defined: 

The relative location of two points is called their distance and it is 

determined by the touching of two bodies in which one allows all 

transformations that do not transform the points themselves /333, 

О, р. 175]. 

Using the notion of distance, ГоБабеузКи defines a sphere as the locus of 

points equidistant from a point, a plane as the locus of points equidistant 

from two points, and a /ine as the locus of points in a plane equidistant from 

two of its points. 

We see that these definitions are very close to the definitions given by 

Leibniz. Like Leibniz in his letter to Vitale Giordano (and like al-Farabi and 

al-Biriini )! Lobaéevskii starts out with the definition of a geometric body and 

then defines surface, line, and point. 

Like Leibniz in his letter to Huygens, Lobacevskii defines a plane by means 

1 See footnote 4 in Chapter 4 (р. 173). 
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of the distances of its points from two points. Lobaéevskii’s definition of a 

straight line is somewhat different from Leibniz’s definition. 

In Geometry and in New principles Lobaéevskii stresses that a geometric 

body “retains” only the geometric properties of physical bodies, that is, is а 

geometric abstraction from such bodies. 

What is very interesting is Loba¢evskii’s attempt, sketched in Geometry 

and consistently implemented in New principles, of basing geometry on purely 

topological properties of contact and section. 

The following thought, likewise expressed by Lobacevskii in New prin- 

ciples, after the exposition of the geometry he discovered, is especially note- 

worthy: 

Strictly speaking, all we know in nature is motion, without which sense 

impressions are impossible. Thus all other notions, for example, Geo- 

metric ones, are artificially made by our minds, for they are abstracted 

from properties of motion: therefore space in itself, separately, does not 

exist for us. This being so, no contradiction can arise in our minds if we 

allow that certain forces in nature follow one, and others their own 

particular Geometry /333, vol. 2, p. 147]. 

Lobaéevskii’s idea that the geometric properties of space may be different 

in different parts of space and may depend on “‘forces,” that is, on matter, is 

a distant anticipation of an idea of Einstein’s general theory of relativity. 

We have adduced a number of Loba¢éevskii’s thoughts. They show that he 

reflected very broadly on the fundamental notions of geometry and that his 

discovery of non-Euclidean geometry was the result of his reflections on only 

one of the questions he contemplated. 

The Work of Janos Bolyai 

Simultaneously with Loba¢evskii, the same discovery was made by the ге- 

markable Hungarian mathematician Janos Bolyai (1802—1860), son of Farkas 

Bolyai whom we mentioned earlier, and by Carl Friedrich Gauss (1777— 

1855), the greatest German mathematician of the end of the 18th and the first 

half of the 19th century. The young Bolyai became interested in the theory of 

parallel lines under the influence of his father and continued to study it in 

spite of his father’s opposition. J. Bolyai published his discovery in the form 

of a supplement to F. Bolyai’s book published in Maros-Vasarhely in 1832. 

The full title of this work is Supplement containing the absolutely true science 

of space, independent of the truth or falsity of Euclid’s axiom XI? (that can 

never be decided a priori) (Appendix scientiam spatii absolute veram exhibens: 

a veritate aut falsitate Axiomatis XI Euclidis (a priori haud umquam deciden- 

*In some editions of Euclid’s Elements “Axiom XI” is the same as the parallel postulate. 
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Figure 86 

da) independentem /65; 66]. Hence the usual references to this work as the 

Appendix. 

The Appendix is written in an extremely condensed manner, using a great 

many symbolic notations. For example, ab is the infinite straight line passing 

through the points a and b; ab is the ray with vertex at a passing through 6; 

abc is the angle with sides ba and bc; К stands for a right angle. The Appendix 

opens with the words: 

If the ray amis not cut by the ray bn, situated in the same plane, but is 

cut by every ray bp comprised in the angle abn, we will call ray bn parallel 

to ray am; this is designated by bn||am (Figure 86). 

It is evident that there is one such ray bn, and only one, passing through 

any point b (taken outside of the straight am), and that the sum of the 

angles bam, abn cannot exceed 2R; for in moving b¢ around 6 until 

bam + abc = 2R, somewhere ray БС first does not cut ray am, and it is 

then bc||am. It is clear that Бя|ет, wherever the point e be taken on the 

straight am [65, р. 41; 66, р. 5]. 

If the parallel postulate (Bolyai’s “ахлот ХГ”) holds, then the straight lines 

be and am are parallel. If the parallel postulate does not hold, then these 

straight lines are parallel in the sense of ГоБабеузКи (bn does not intersect 

am but can be obtained by passage to the limit from those bc that intersect 

am). Bolyai calls ‘фе system of geometry that takes the hypothesis of Euclid’s 

axiom XI to be true” the system У`, and the system based on the “opposite 

hypothesis” the system 5. What holds in both systems Bolyai calls absolute 

and this is what he means Бу “‘the absolutely true science of space independent 

of the truth or falsity of Euclid’s axiom XI’’; this branch of geometry is now 
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called absolute geometry. Bolyai tries to set forth as many facts of absolute 

geometry as he can. To illustrate Bolyai’s notation we write down his version 

of the law of sines, 

sinA зшВ sinC 

Oa Tob. vO. 

where Or is the circumference of a circle of radius и, a result that is true in 

Euclidean as well as in Loba¢evskian geometry. 

Gauss’s Notes and Letters 

Gauss, who independently made the same discovery as ГофабеузКИ and 

Bolyai, stated his views on this question only in rough notes and in letters. In 

1799 he wrote to F. Bolyai about his study of the theory of parallel lines: 

It is true that I have come upon much which by most people would 

be held to constitute a proof [of the parallel postulate]: but in my eyes 

it proves as good as nothing. For example, if one could show that a 

rectilinear triangle is possible, whose area would be greater than any 

given area, then I would be ready to prove the whole of geometry 

absolutely rigorously. Most people would certainly let this stand as an 

Axiom; but I, no! It would indeed be possible that the area might always 

remain below a certain limit, however, far apart the three angular points 

of the triangle were taken. I have many such statements but I find none 

of them satisfactory /196, vol. 8, pp. 159-160; 71, pp. 65-66]. 

One recognizes in Gauss’s statement a well-known fact of Lobacevskian 

geometry, which is that in this geometry the area of a triangle is proportional 

to its defect, defined as the difference between л and the angle sum of the 

triangle. If the defect of a triangle is 6 and the area is Кд then, since д < л, we 

see that kd cannot exceed kz. 

In 1804 Gauss wrote to F. Bolyai in connection with his attempts to prove 

the parallel postulate in his Theory of parallels: 

Your method does not yet satisfy me. I will try to make the critical point 

(which belongs to the same kind of obstacles that made my own efforts 

so futile) as clear as I can. I still hope that these cliffs will be navigated 

eventually, and this before I die /196, vol. 8, р. 160].* 

* This is not a literal translation. The original German text is: 

Dein Verfahren mir noch nicht Geniige leistet. Ich will versuchen, den Stein des 

Anstosses, den ich noch darin finde (und der auch wieder zu derselben Gruppe von Klippen 

gehort, voran meine Versuche bisher scheiterten) mit so vieler Klarheit als mir méglich 

ist, ans Licht zu ziehen. Ich habe zwar noch immer die Hoffnung, dass jene Klippen einst, 

und noch vor meinem Ende, eine Durchfahrt erlauben werden. 

(Translator). 
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These words show that at that time Gauss had not yet given up trying to 

prove the parallel postulate. 

By finding ever more consequences of the denial of the parallel postulate 

Gauss penetrated ever deeper into what we call Lobaéevskian geometry. In 

1816, in a letter to his former student the KOonigsberg astronomer Christian 

Ludwig Gerling (1788—1864), Gauss wrote that the denial of the parallel 

postulate would imply the existence of an absolute measure of length: 

It seems paradoxical that there could be a constant straight line given 

as if a priori but I do not find in this any contradiction. In fact, it would 

be desirable that Euclidean geometry were not true, for we would then 

have a universal measure a priori. One could use the side of an equi- 

lateral triangle with angle = 59°59’59”, 9999 as a unit of length / 196, 

vol. 8, р. 169]. 

Here too the words “‘it would be desirable that Euclidean geometry were not 

true” show that Gauss still regards it as true. 

But in 1817, in a letter to his old friend Heinrich Wilhelm Olbers (1758— 

1840), Gauss writes: 

I am ever more convinced that the necessity of our geometry cannot be 

proved—at least not by human reason for human reason. It is possible 

that in another lifetime we will arrive at other conclusions on the nature 

of space that we now have no access to. In the meantime we must not 

put geometry on a par with arithmetic that exists purely a priori but 

rather with mechanics / 196, vol. 8, р. 177]. 

These words of Gauss point to the source of his doubts concerning the 

existence of a geometry other than Euclidean: Gauss initially adhered to 

Kant’s doctrine of the a priori nature of mathematical concepts, but, as a 

result of reflecting on the theory of parallel lines, he arrived at the conclusion 

that, whereas the concepts of arithmetic are a priori, the concepts of geometry, 

like those of mechanics, are abstracted from the material world. It is possible 

that this is why, after having concluded that non-Euclidean geometry (which 

is what Gauss called the new geometry in an 1831 letter to Heinrich Christian 

Schumacher (1780—1850) / 196, vol. 8, р. 216] is noncontradictory Gauss did 

not publish his results. In 1818, in a letter to Gerling, he wrote: 

I am glad that you have the courage to express yourself as if you 

acknowledged the falsity of our theory of parallels and with it of all our 

geometry. But the wasps whose nest you stir up will fly at your head 

[196, vol. 8, р. 179]. 

A. P. Norden’s /396] view that by “‘stirred-up wasps’? Gauss meant the 

proponents of the a priori nature of mathematical concepts is very plausible. 

In 1832 Gauss read J. Bolyai’s Appendix and wrote to his father: 

If I commenced by saying that I must not praise this work you would 

certainly be surprised for a moment. But I cannot say otherwise. To 
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praise it, would be to praise myself. Indeed-the whole contents of the 

work, the path taken by your son, the results to which he is led, coincide 

almost entirely with my meditations, which have occupied my mind 

partly for the last thirty or thirty-five years. So I remained quite stupe- 

fied. So far as my own work is concerned, of which up till now I have 

put little on paper, my intention was not to let it be published during 

my lifetime. Indeed the majority of people have not clear ideas upon the 

questions of which we are speaking, and I have found very few people 

who could regard with any special interest what I communicated to them 

on this subject. To be able to take such an interest it is first of all 

necessary to have devoted careful thought to the real nature of what is 

wanted and upon this matter almost all are most uncertain. On the other 

hand, it was my idea to write down all this later so that at least it should 

not perish with me. It is therefore a pleasant surprise for me that I am 

spared this trouble, and I am very glad that it is just the son of my old 

b 

(a) 

(c) 

Figure 87 
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friend who takes the precedence of me in such a remarkable manner 
[71, p. 100]. 

Then Gauss gives some advice on tefminology. He suggests the name 

parasphere for J. Bolyai’s “surface F’” (Lobaéevskii’s limit sphere), paracycle 

for “line Е”? (Loba¢evskii’s limit circle), hypercycle for the locus of points of 

the plane equidistant from a line, and hypersphere for the locus of points in 

space equidistant from a plane. Also, he gives an original 

proof of the proposition that the difference between the angle sum ш а 

triangle and 180° is proportional to the area of the triangle /196, vol. 8, 

pret fi. 

Gauss denotes Бу ¢ the least upper bound of the area of a triangle. This means 

that ¢ stands for the area of the part of the plane between three pairwise 

parallel lines ab, cd and fe (Figure 87a). The part of the plane between the 

angle bac, equal to ф, and the line de parallel to its sides (Figure 87b) is to ¢ 

as 180° — gis to 180°. It follows that the areas а, р, y in Figure 87c are equal 

to At/180°, Bt/180°, Ct/180°, respectively. If Z is the area of the triangle ABC 

At + Bt+ Ci 
in Figure 87c then we have t = ie + Z, that is, 

pat 180° —(4+ B+C) 

вы 180° 

Gauss had a very high opinion of the papers of Lobacevskii; he read а 

German version of Geometrical investigations and studied Russian in order 

to be able to read the other papers in the original. 

The Papers of Wachter, Schweikart, and Taurinus 

In addition to Gerling there were other correspondents who discussed 

with Gauss the issue of the parallel postulate. They were Friedrich Ludwig 

Wachter (1792—1818), Ferdinand Carl Schweikart (1780-1859), and Franz 

Adolf Taurinus (1794—1874). 

Wachter was Gauss’s student at Gottingen. Later he became a teacher 

of mathematics in a gymnasium in Danzig (now Gdansk) and published a 

brochure Proof of Euclid’s eleventh geometric axiom (Demonstratio axiomatis 

geometrici in Euclidis undecimi. Danzig, 1817) [607] containing a “proof” 

of the parallel postulate based on the premise that four arbitrary points 

determine a “‘surface of four points” and two such surfaces intersect along a 

single line determined by three points. Wachter tried to prove that the “surface 

of four points” is a sphere and the “‘line of three points” is a circle but this is 

impossible without rigorous definitions of these surfaces and lines. More 

important was Wachter’s letter to Gauss, written in 1816. Here Wachter 

considered the limit of a sphere as its radius tends to infinity and claimed that, 
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even if the parallel postulate does not hold, the geometry of this surface is 

Euclidean. We know that if the parallel postulate holds then the surface in 

question is a plane, and if it does not hold then this surface is Loba¢evskii’s 

“limit sphere,” for which Wachter’s claim is true. 

Schweikart was a lawyer by profession. He began his study of geometry 

with the publication of the book The theory of parallel lines including a 

proposal that it be banned from geometry (Die Theorie der Parallellinien nebst 

dem Vorschlage ihrer Verbannung aus der Geometrie. Leipzig, 1808) [518]. 

Contrary to the promise of the title, the book contained a false “‘proof” of 

the parallel postulate. But after 1812—1817, during which time Schweikart 

was a professor of jurisprudence at Har’kov University, he changed his point 

of view. It is possible that this was due to the influence of Osipovskii (who 

was rector of Har’kov University in 1813—1820), author of the previously 

mentioned book On time and space [398] that was a critique of Kant’s views 

on the a priori nature of the concepts of space and time. Be that as it may, in 

1818 Schweikart gave Gerling a note for Gauss which stated, among other 

points, that 

There are two kinds of geometry—a geometry in the strict sense—the 

Euclidean; and an astral science of magnitudes. 

Triangles in the latter have the property that the sum of their three 

angles is not equal to two right angles. This being assumed we can prove 

rigorously: 

(a) That the sum of the three angles of a triangle is Jess than two right 

angles; 

(b) that the sum becomes ever less, the greater the area of the triangle; 

(c) that the altitude of an isosceles right-angled triangle continually 

grows as the sides increase but it can never become greater than a 

certain length which I call the Constant. ... [ 196, vol. 8, рр. 180-181; 

И ро], 

In calling non-Euclidean geometry the “astral science of magnitudes” 

Schweikart was making the assumption that it held somewhere in the universe. 

Upon receipt of Schweikart’s note Gauss wrote to Gerling: 

Professor Schweikart’s note has given me a great deal of pleasure and 

I ask to convey to him for this my very best wishes. Almost all of this 

is copied from my soul / 196, vol. 8, р. 181]. 

Under the influence of his uncle Schweikart, Taurinus got interested in the 

problem of the parallel postulate and published two brochures entitled, 

respectively, Theory of parallel lines (Theorie der Parallellinien. Кош, 1825) 

[168, pp. 255-266] and First elements of geometry (Geometriae prima ele- 

menta. Koln, 1826) [ 168, рр. 267—283]. In the first of these Taurinus refuted 

the obtuse-angle hypothesis and showed that in case of the acute-angle 

hypothesis there must be a Schweikart “‘constant,”’ which he called a param- 
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eter. He rejected the acute-angle hypothesis because it led to the possibility 

of many values of the ‘‘parameter.”’ In the second brochure he developed the 

consequences of the acute-angle hypothesis even further. He found the trig- 

onometric formulas of this geometry and showed that they can be obtained 

from the formulas of spherical trigonémetry by replacement of the radius of 

the sphere by a pure imaginary number. He expressed his ‘“‘parameter’’ in 

terms of this imaginary magnitude and computed the circumference of a 

circle, the areas of a circle and of a sphere, and the volume of a sphere. 

Taurinus expressed trigonometric formulas of this geometry in terms of the 

hyperbolic functions 

e~+te~* у . ее Ue 
cosh x = ———— = cos ix, sinh x = ————- = -—sinix. (6.1) 

2 о i 

Gauss, who corresponded with Taurinus, terminated the correspondence 

when Taurinus, in the preface to his brochure, asked him to state his views 

on the subject. Gauss’s reaction reduced Taurinus to despair, and he burned 

all copies of the brochure in his possession. 

The Struggle for Recognition of Lobacevskian Geometry 

During Lobaéevskii’s lifetime there was only one mathematician who pub- 

licly accorded high praise to his work in geometry. He was Petr Ivanovié 

Kotel’nikov (1809—1879), professor of mathematics at Kazan University and 

father of A. P. Kotel’nikov, whom we mentioned earlier. In an address entitled 

On bias against mathematics (O predubezdenii protiv matematiki), delivered 

in the university aula on May 31, 1842, Kotel’nikov said, among other things: 

In this connection I cannot pass over in silence that the futile millennial 

attempts to prove with all mathematical rigor one of the fundamental 

theorems of geometry, to the effect that the angle sum in a rectilinear 

triangle is equal to two right angles, inspired Mr. Lobacevskii, a revered 

and meritorious professor of our university, to undertake the prodigious 

task of building a whole science, a geometry based on the new assump- 

tion that the angle sum in a triangle is less than two right angles—a task 

that is bound to gain recognition sooner or later [444, pp. 9-10] 

It is possible that P. I. Kotel’nikov understood Lobaéevskii’s ideas after 

reading the excellent exposition of his discovery contained in Geometrical 

researches on the theory of parallel lines.. This work, sent by Lobaéevskii to 

Gauss, made the latter study Russian and familiarize himself with Lobacev- 

skii’s Russian memoirs. In February of 1841 Gauss wrote to J. F. Encke: 

I am making reasonable progress in learning to read Russian and this 

gives me a great deal of pleasure. Mr. Knorre sent те а small memoir of 

Lobaéevskii (in Kazan), written in Russian, and this memoir, as well as 
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his small German book on parallel lines (an absurd note about it has 

appeared in Gersdorff’s Repertorium) have awakened in me the desire 

to find out more about this clever mathematician. As Knorre told me, 

many of his papers are in the Russian Proceedings of Kazan University 

[196, vol. 8, p. 232]. 

On September 28, 1846, Gauss wrote to Schumacher: 

Lately I had reason to reread the small work of ГофабеузКи (Geometri- 

sche Untersuchungen zur Theorie der Parallellinien, at G. Fincke, 4 

signatures). This work contains the foundations of the geometry that 

would obtain, and form a coherent whole, if Euclidean geometry were 

not true. A certain Schweikart called this geometry Astralgeometrie. 

Lobaéevskii calls it imaginary geometry. You know that for 54 years 

(since 1792) I have shared the same views with some additional develop- 

ment of them that I do not wish to go into here; thus I have found 

nothing actually new for myself in Lobacevskii’s work. But in develop- 

ing the subject the author followed a road different from the one I took; 

Lobaéevskii carried out the task in a masterly fashion and in a truly 

geometric spirit. I see it as my duty to call your attention to this work 

that is bound to give ‘you truly exceptional pleasure /196, vol. 8, 

pp. 238—239]. 

Although Gauss, for reasons indicated previously, published nothing about 

non-Euclidean geometry, it was as a result of his suggestion that Lobacevskii 

was elected a corresponding member of the Gottingen Scientific Society. 

Gauss’s letter to Schumacher, quoted previously, was published shortly 

after his death in the book The correspondence between C. G. Gauss and 

Н. С. Schumacher (Briefwechsel zwischen С. Е. Gauss und Н. С. Schumacher. 

Altona, 1860—1865); the remaining letters of Gauss were published in the 

eighth volume of his collected works /196, vol. 8. Géttingen, 1900]. 

The publication of Gauss’s letter to Schumacher about ГоБабеузКИ made 

a strong impression on European mathematicians. The activities of a number 

of advocates of the new geometry date to the sixties of the last century. 

At that time there appeared the Notes on Lobatschewsky’s Imaginary 

Geometry (London, 1865) by the English algebraist and geometer Arthur 

Cayley (1821—1895) [103, vol. 5, рр. 471-472], in which he compared the 

trigonometric formulas of Lobacevskii and the formulas of spherical trig- 

onometry. And although this note shows that the author of the theory of 

projective metrics (which we will discuss later) failed to understand the essence 

of Lobaéevskii’s discovery, it helped to make it known. 

The French mathematician Jules Hotel (1823—1866) published a French 

translation of Loba¢evskii’s Geometrical researches together with excerpts 

from the correspondence between Gauss and Schumacher (Etudes géomé- 

triques sur la théorie des paralléles, suivie d’un extrait de la correspondance 

de Gauss et de Schumacher. Bordeaux, 1866; Paris, 1866) [331] and а 
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book—A critical essay on the fundamental principles of geometry (Essai cri- 

паче sur les principes fondamentaux de la géométrie, Paris, 1867) /234]— 

containing an exposition of the basic ideas of Lobaéevskii’s geometry. The 

German Richard Baltzer (1818—1887) set forth the foundations of Lobaéev- 

skian geometry in the second edition of his Elements of mathematics (Die 

Elemente der Mathematik. Dresden, 1867) /35/. The Italian mathematician 

Giuseppe Battaglini published a paper On the imaginary geometry of Lobaéev- 

skii (Sulla geometria immaginaria di Lobatschewsky. Naples, 1867) [40] as 

well as an Italian translation of Loba¢éevskii’s Pangeometry (Naples, 1867) 

[335] and J. Bolyai’s Appendix (Naples, 1868). The Moscow mathematician 

Aleksei Vasil’evié Letnikov (1837—1888) published in an early volume of 

the journal Matematiceskii sbornik (The mathematical collection) a Russian 

translation of Loba¢éevskii’s Geometrical researches (Moscow, 1868) [334] 

with an introduction in which he described his geometric works as “remark- 

able but not well known” and said that these works were likely to contribute 

to the improvement of teaching methods and to destroy all hope of proving 

the parallel postulate. The Kazan mathematician Erast Petrovié YaniSevskii 

(1829—1906) published a Historical note on the life and work of М. I. Lobacev- 

skii (Istori¢eskaya zapiska о zizni i deyatel’nosti М. I. Loba¢éevskogo. Kazan, 

1868) [643] that was soon translated into French and Italian. Also in 1868 

there appeared a paper by E. Beltrami, to be discussed in greater detail later, 

devoted to an interpretation of the geometry of Lobacevskiil. Through these 

publications the geometry of Lobacevskii became known by about 1870 to 

the geometers of the most important countries in Europe. 

Lobaéevskii’s Trigonometry 

After setting forth the basis of imaginary geometry in The principles of geome- 

try Lobaéevskii defines the angle of parallelism. He drops a perpendicular 

of length a from a point B to a straight line and draws through B a parallel 

to that line (Figure 88). The angle of parallelism is the angle between the 

perpendicular and the parallel. In Euclidean geometry this angle is always 

Ma 

Figure 88 
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equal to 2/2, whereas in Lobaéevskian geometry it is acute and is a function 

of a. Lobaéevskii denotes this function here by F(a) but in later papers by 

П(а). It is clear that 

lim (a) = >, lim П@) = 0. 
a>0O a>oo 

Lobaéevskii extends this function to all real values of a by putting П(0) = 

п/2 and II(—a) = x — П(а), and shows that for every angle A, acute or 

obtuse, there is a value а (а > Oif A is acute and а < Oif A is obtuse) such that 

А = Пе). 

Then Lobaéevskii finds the trigonometric formulas for rectilinear and 

spherical triangles in his space. In the first case he expresses these formulas 

in terms of the function F(a). In the second case his formulas coincide with 

the formulas of spherical trigonometry in Euclidean space: 

Thus in a right triangle with legs a and b, opposite angles A and B, 

hypotenuse C, we have, in the rectilinear case, 

sin F(c) = sin F(a)sin Е(Ь), 

tan F(c) = tan F(a)sin A, 

cos F(b) = cos F(c)cos A, 
ae (14) 

sin F(c) = tan A tan B, 

tan А = cos F(a)tan Е(Б), 

sin B = sin F(a)cos A; 

and in the spherical case 

cosc = cosacosh, 

sina = sin A sinc, 

tana = tanccos В, 

(15) 
cosc = cot Acot В, 

tana = tan Asinb, 

cos A = созазш В 

—well-known formulas of spherical geometry by means of which it is 

easy to show that in every spherical triangle with sides a, b, c, and 

opposite angles A, B, C we have 

cos Asinbsinc + cosbcosc = cosa, 

sinasin В = sinbsin A, 
(16) 

cot AsinC + cos Ccosb — cotasinb = 0, 

cos asin Bsin С — cos BcosC = cos А. 
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This shows that measurement of spherical triangles does not depend on 

the assumption concerning parallels. This is not so for measurement of 

rectilinear triangles. Just as equations (15) imply (16), so too with the 

aid of equations (14) we can show that'in every rectilinear triangle with 

sides a, b, c and opposite angles А; В, С we have 

tan F(a)sin A = tan F(b)sin В, 

ПАЯ 

cos А cos F(b)cos Е(с) + — о во —1=0, 
sin F(a) 

F ЕЛ 
cot A sin Bsin F(c) + cos В — OS®) =: Wee 

cos F(a) 

и 

cos С + cos А с0$ В — Еж. = 
sin F(c) 

[333, vol. 1. pp. 205—206]. 

The first of the formulas in (16) is the spherical cosine theorem (1.7); the 

second formula in (16) is the spherical sine theorem (1.5); the fourth formula 

in (16) is the dual spherical cosine theorem (1.13); and the third formula in (16) 

is an algebraic consequence of these formulas. The first, second, third, and 

sixth formulas in (15) are obtained from the formulas in (16) for С = 2/2, and 

the fourth and fifth formulas in (15) are algebraic consequences of the others; 

the first of these formulas is the spherical Pythagorean theorem and the fifth 

coincides, essentially, with the spherical tangent theorem. 

At the end of the paper Lobacevskii writes: 

After we have found equations (17) which represent the dependence 

of the angles and sides of a triangle; when, finally, we have given general 

expressions for elements of lines, areas and volumes of solids, all else in 

the Geometry is a matter of analytics, where calculations must neces- 

sarily agree with each other, and we can not discover anything new that 

is not included in these first equations from which must be taken all 

relations of geometric magnitudes, one to another. Thus if one now 

needs to assume that some contradiction will force us subsequently to 

refute the principles that we accepted in this geometry, then such con- 

tradiction can only hide in the very equations (17). We note, however, 

that these equations become equations (16) of spherical Trigonometry 

as soon as, instead of the sides a, b, c, we put a,/— il. b,/— il, c./— if 

but in ordinary Geometry and in spherical Trigonometry there enter 

everywhere only ratios of lines: therefore ordinary Geometry, Trig- 

onometry and the new Geometry will always agree among themselves 

[3330011 pe 261]. 

If the sides a, b, c of a spherical triangle are measured in radians and if we 

denote the radius of the sphere by r then formulas (1.5), (1.7), and (1.13) of 

the spherical sine, cosine, and dual cosine theorems can be written as 
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ad ab ИС 
sin— sin—  sin— 
wae a eee (6.2) 

sinA зпВ sinC 

bets С фбс 
cos” = cos—cos— + sin—sin—cos A, (6.3) 

i Fo ST, er 

: к а 
cos А = —cosbcosC + sinbsin Gos: (6.4) 

Multiplication of the sides of the triangle by i is equivalent to multiplying 

the radius of the sphere by i. Putting г = gi and making use of formulas (6.1) 

we can rewrite these formulas as 

sinha/q _ sinhb/q _ sinhc/q 
= — =— (6.5) 

sin A sin B sin C 

cosh a/q = cosh 6/4 cosh с/а — sinh b/g sinh c/qcos А, (6.6) 

cos A = —cos BcosC + sin Bsin Ccosha/q. (6.7) 

Formulas (6.5)—(6.7) are the formulas of Loba¢evskian trigonometry in 

the form in which they were written down by Taurinus. 

The asymptotic triangle of the Lobacevskian plane shown in Figure 88 can 

be obtained by passage to the limit from a right spherical triangle with right 

angle C by movement of its vertex A to infinity, in which case the angle A 

tends to zero. If we apply this passage to the limit to formula (6.7) and put 

init = 0, В = П(а), and С = z/2 then we obtained the relation 

1 = sinII(a)cosha/q, 

which we write as 

in II(a) = ———_. 
С cosh a/q 

The latter implies the relations 

sinh a/q 
П(а) = ———— = tanh cos IT (a) cota tanh a/q 

and 

a II(a)__1—cosII(a)_ 1 — tanha/q _ cosh a/q — sinha/q 

2) 1 + соз П(а) 1+ tanha/q  созва/а + sinha/q 
—а/ 

к е-2(а/а) 
4/4 . 

so that 

II 
aie ны (6.8) 
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that is, 

П(а) = 2arctan(e~“). (6.9) 

It is easy to check that П(0) = 2 arctan Y= 7/2, Шт, _‚„ П(а)=2 arctan0=0. 

Lobaéevskii notes that , 

if a, b, с, are supposed very small, so that it is permissible to ignore 

powers and products whose dimensions are higher /333, vol. 1, p. 206]. 

Then the formulas of his trigonometry reduce to those of ordinary trigonom- 

etry. In fact 

sin a = me? пы 5 cos xX = р ; 

inh ver pe sinhx=x+—+-°:-, cosh x = Sa ere 
i) 2 4! 

Also, if in formulas (6.2)—(6.3) and (6.5)—(6.6) we replace sin x and sinh x by 

x, cos x by 1 — x?/2, and cosh x by 1 + x?/2, and in formulas (6.4) and (6.7) 
we replace cosx and coshx by 1, then we obtain the formulas of plane 

trigonometry 

GD ae (6.10) 

sinA sinB sinC’ : 

а? = b? + с? — 2becos А, (6.11) 

cos A = —cos BcosC + sin BsinC = —cos(B + C). (6.12) 

The last of these formulas is equivalent to cos А = cos(z — B— С), 

thatis, to А + В + С = л. We note that cos(a/r) < 1 and formula (6.4) imply 

that cos A < —cos BcosC + sin BsinC = —cos(B + С); that is, cos А < 

cos(z — В — С). This means that in spherical trigonometry A > x — B—C, 

that is, A + B+ С > т. In much the same way cosha/q < 1 and formula 

(6.7) imply that cos A > —cos BcosC + sin Bsin C = —cos(B + С); that is, 

cos А > с0$(л — В — С). This means that in Lobacevskian geometry А < 

x—B—C;thatis,A+B+C<n. 

It is not difficult to see that if the angle sum in a triangle is greater than or 

less than z then the angular excess ¢= A+B+C-—1 or angular defect 

6 =n — A— B— Cofa triangle made up of two triangles is equal to the sum 

of the excesses or defects of the component triangles. In fact, if the triangle 

ABC consists of the triangles ACD and CBD (Figure 89) and А + С, + D, = 

mre, B+C,+D,=a+6, then 4+84+C,4+0,4+D),+D,=At 

B+C4+n=2n+ 6, +6, that is A+B+C=7+ 6, +в», so that ё = 

&, + €); putting &, = —d,, #2 = —d, we obtain 6 = 6, + 6. Since the mea- 

sure of area of a plane region is an additive function of the region that is 

invariant under motions and positive (for a region containing an arbitrarily 

small triangle), it follows that the angular excess & or the angular defect д is 

a measure of the areas of triangles; that is, the measure of areas in terms of 
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Г 

4 D 8 

Figure 89 

squares of the measures of length is proportional to ¢ or 6. To determine each 

of the proportionality coefficients we use the fact that, in the small, spherical 

geometry and Lobacevskian geometry are close to Euclidean geometry and 

compute the area of a small isosceles right triangle with legs a. In view of 

formulas (6.4) and (6.7), putting С = л/2 and A = В, we have, respectively, 

Е а : Е 
cos A = зш Acos-, that is, cot А = cosa/r, and cos А = sin Acosha/q, that 

r 

is, cot A = cosha/q. Since in the first case A = 2/4 + &/2 and in the second 

case A = n/4 — 6/2, expansion of cot x in a Taylor series 

COUN = СОН СО. 
м о 

about the point хо = 7/4 yields the formulas 

1 ё 
сох =1-= =1—2+°, 

Рае 
sin* — 

4 

cotx = 1 + ~—— 4+ :::=1+64°-°-, 

sin? = 
4 

and comparison of these with the expansions 

2 2 a a a a 
COSs = Neen cosh—-= 1 + —] + >>>, 

r 2r q 24? 

yields the relations a?/2r? = в, а?/24? = 6. On the other hand, the Euclidean 
formula for the area S of the small triangle yields 5 = a?/2. Replacing in the 

last relations 42/2 by 5 we obtain expressions for S in terms of ¢ and 6, 

respectively. Since S is proportional to ¢ and 6, these expressions hold, 

respectively, for arbitrary р triangles and for triangles in the Lobagéev- 
skian plane. 

For spherical geometry the expression in question is 

$ = 72а, (6.13) 
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and for Lobaéevskian geometry it is 

S= qo. (6.14) 

We know that already Lambert knew that in the case of the “‘acute-angle 
hypothesis” S and 6 are proportional. 

Consistency of Loba¢evskian Geometry 

We saw that, in Lobacevskii’s view, what attested to the consistency of the 

geometry he discovered was that its trigonometric formulas are obtained from 

the corresponding formulas of spherical geometry by multiplying the sides of 

a triangle by an imaginary unit. 

The inadequacy of these arguments is that here the consistency of plane 

Lobatevskian geometry is based on the consistency of its trigonometric 

formulas, but all that is proved in the paper is that these formulas are 

consequences of the assumptions of Lobacevskian geometry. To deduce the 

consistency of Loba¢evskian geometry from the consistency of its trigono- 

metric formulas one must show the opposite. Specifically, one must show that 

all propositions of Loba¢éevskian geometry are consequences of its trigono- 

metric formulas and the propositions of absolute geometry, that is, the 

propositions that are independent of the parallel postulate. Lobacevskii gives 

a relevant proof in his Imaginary geometry, where he writes at the beginning: 

Now, putting aside geometric constructions and choosing a short 

reverse road, I intend to show that the principal equations I found [in 

the paper quoted previously] for the connections between the sides and 

angles of a triangle in imaginary geometry can be profitably adopted in 

Analytics and will never lead to conclusions that are false in any manner 

whatever /333, vol. 3, р. 17]. 

Then Lobaéevskii defines the function П(а) by means of the relation (6.8) 

and adjoins to the propositions of absolute geometry the trigonometric rela- 

tions in a right triangle that are equivalent to the preceding relations (14) of 

his previous paper. From these Loba¢evskii first derives the preceding trig- 

onometric relations (17) ((13) in that paper) in an arbitrary triangle and then 

the assertion that the angle sum in a triangle is less than two right angles. 

Since the latter assertion is equivalent to the parallel postulate of Loba¢ev- 

skian geometry, he thereby showed that all propositions of his geometry that 

he derived in the previous paper from the propositions of absolute geometry 

and the parallel postulate of his geometry can also be derived from the 

propositions of absolute geometry and the indicated trigonometric formulas. 

By comparing the mentioned trigonometric formulas and the formulas (16) 

of spherical geometry in his previous paper ((15) in that paper) Loba¢evskii 

again arrives at the conclusion that 
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nothing in the theory prevents us from taking the angle sum of a right 

triangle to be less than two right angles, 

and that 

with this assumption equations (13) replace equations (15) and cannot 

lead to false conclusions /333, vol. 3, р. 26]. 

Lobaéevskii’s arguments do not represent a finished proof of the consis- 

tency of his plane geometry. It seems that what Lobaéevskii meant by consis- 

tency is the consistency of the totality of these formulas and the axioms of 

absolute geometry. But the formulas of spherical trigonometry, which imply 

that the angle sum in a triangle is greater than 2, contradict the axioms of 

absolute geometry when viewed as axioms of plane trigonometry. Thus 

Lobaéevskii’s reasoning proves only the internal consistency of the trigono- 

metric formulas, and this alone is no proof of the consistency of his geometry. 

Nevertheless one can begin with Lobacevskii’s arguments and prove the 

consistency of his geometry rather than of its trigonometric formulas. To do 

this it is necessary to make use of the idea of a complex space. We saw that 

Poncelet introduced the notion of imaginary points of space in his Treatise on 

projective properties of figures. Complex Euclidean space is defined as the 

totality of imaginary points of Euclidean space together with its real points; 

E. Cartan suggested that the latter be called a spatial chain [94, p. 126]. Every 

algebraic or analytic curve and surface in teal space can be regarded as part 

of a curve or surface in complex space defined by the same equations; the 

points of the given complex curve or surface that do not belong to the spatial 

chain are the imaginary points of the corresponding curve or surface. The 

distance between two points of complex space is expressed in terms of their 

coordinates by the same formulas as in real space, and a corresponding 

statement holds for angles between straight lines. The consistency of complex 

Euclidean space is proved with the help of its complex arithmetic model just 

as the consistency of real Euclidean space is proved with the help of its real 

arithmetic model. Just as the real dimension of a complex line interpreted in 

the complex plane is 2, so the real dimension of three-dimensional complex 

space is 6. 

Since distances and angles in complex space are defined by the same 

formulas as in real space, it follows that the formulas of plane and spherical 

trigonometry in complex space also coincide with the corresponding formulas 

in real space. In particular the formulas of spherical trigonometry on а sphere 

of complex radius r are formulas (6.2)—(6.4), where the lengths of the sides a, 

b, c and the angles A, В, С are complex. If one writes the complex radius г in 

the form gi then these formulas can also be written in the form (6.5)—(6.7), 

where a, b, c and A, B, C are also complex. This shows that Loba¢éevskian 

geometry is realized in a certain set of points of a sphere with pure imaginary 

radius qi (4 real) of complex Euclidean space. The points with real rectangular 

coordinates x, у (x = X,y = у) and pure imaginary coordinate 2 (z = —2) 
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(a) (b) (с) 

Figure 90 

form such a set. Such a set of points in complex Euclidean space was first 

considered by the French mathematician Henri Poincaré and the German 

mathematician Hermann Minkowski in connection with an interpretation of 

the special theory of relativity. Such a set of points can also be characterized 

by means of three real coordinates x, y, z, but then the distance between two 

points with respective coordinates x,, y,, 2, and x, y, 22 is defined not by 

means of the usual formula of Euclidean space 

ap a) + Oy)? He 2) (6.15) 

but by means of the formula 

Gea) ao а (6.16) 

The space of points with the distance formula (6.16) is now called pseudo- 

Euclidean space.? In this space there are point pairs with 4? > 0, 4? < 0, and 
4? = 0. The corresponding straight lines are called, respectively, lines with 

real length, lines with imaginary length, and isotropic lines. In this space there 

are three types of planes: Euclidean planes, all of whose straight lines are lines 

of real length; pseudo- Euclidean planes, with straight lines of all three types; 

and isotropic planes, with straight lines of the first and third types only. 

Similarly, this space contains three types of spheres (Figures 90a, 90b, and 

90c), namely spheres with real, pure imaginary, and null radii, respectively. 

All spheres are given by equations of the form 

iy Sr? (6.17) 

but their radii satisfy the respective relations r? > 0, и? < 0, and г = 0, and 

the spheres themselves are represented by a one-sheeted hyperboloid (Fig- 

3 Concerning pseudo-Euclidean space see р. 264. 
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ure 90a), a two-sheeted hyperboloid (Figure 90b), and a cone (Figure 90c), 

respectively. . 
A model of the Lobaéevskian plane is one sheet of a sphere with pure 

imaginary radius in pseudo-Euclidean space or a sphere of pure imaginary 

radius with identified antipodal points.* This explains why the trigonometric 

formulas (6.5)—(6.7) of the Lobaéevskian plane are obtained from formulas 

(6.2)—(6.4) of spherical trigonometry by replacement of r by gi. This sphere 

of pure imaginary radius is the “imaginary sphere”’ anticipated by Lambert 

(see р. 101). The existence of this model of the Lobaéevskian plane proves its 

consistency. 

Two straight lines in the Lobacevskian plane intersect if the diametric 

planes of the sphere with pure imaginary radius that correspond to these lines 

intersect along a straight line of imaginary length and do not intersect if the 

corresponding diametric planes intersect along a straight line of real length 

or along an isotropic straight line. In the second of the two latter cases the 

nonintersecting straight lines of the Lobacevskian plane can be obtained from 

intersecting ones by passage to the limit and are called parallel straight lines 

in the sense of Lobaéevskii. In the first of these two cases the nonintersecting 

lines cannot be obtained from intersecting ones by passage to the limit and 

are called diverging straight lines. Two diverging straight lines have а common 

perpendicular that corresponds to the diametric plane of the sphere of imag- 

inary radius that is perpendicular to the two diametric planes corresponding 

to the given straight lines; these straight lines move apart on each side of the 

common perpendicular. In the case of the acute-angle hypothesis, such a 

common perpendicular for the sides of a Khayyam-Saccheri quadrilateral 

is its lower base. Parallel lines behave in a radically different way in the 

sense that they approximate each other asymptotically in the direction of 

parallelism. If we intersect a sphere of pure imaginary radius by means of a 

nondiametric pseudo-Euclidean plane then we obtain a curve that is equi- 

distant from the straight line that corresponds to the diametric plane parallel 

to the given nondiametric one. If we intersect the sphere by means of an 

isotropic plane we obtain Loba¢evskii’s “‘limit сте.” The two latter curves 

are now known as the equidistant curve and the horocycle, respectively. 

Whereas circles are orthogonal trajectories of pencils of intersecting straight 

lines, equidistants are orthogonal trajectories of pencils of diverging straight 

lines that correspond to pencils of diametric planes of the sphere with an axis 

of real length; such straight lines are perpendiculars to a single straight 

line. Similarly, horocycles are orthogonal trajectories of “‘pencils of parallel 

straight lines” that correspond to pencils of diametric planes of the sphere 

with an isotropic axis. By rotating an equidistant curve about one of the 

straight lines of its associated pencil we obtain an equidistant of a plane—a 

surface equidistant from (the corresponding) plane. By rotating a horocycle 

* This interpretation is the basis of the exposition of Lobaéevskian geometry in the author’s books 

[465, see p. 151 ff, 466, p. 119 ff]. 
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about one of the straight lines of Из associated pencil we obtain a horosphere— 

Loba¢evskii’s limit sphere. By a similar interpretation of Lobaéevskian space 

in four-dimensional pseudo-Euclidean space it is possible to show in a very 

intuitive manner that the geometry of an equidistant surface of a plane is 

Loba¢evskian (with a different constant 9) and the geometry of a horosphere 

is Euclidean. Lobaéevskii used this fact to prove the trigonometric formulas 

of the geometry he discovered. 

On a sphere of imaginary radius it is possible to introduce coordinates that 

are similar to latitude and longitude on an ordinary sphere. If we denote by 

p the spherical distance of a point on the sphere from its point of intersection 

with the Oz-axis and by ¢ the angle between the plane passing through the 

point and the Oz-axis and the plane xQz, then the expressions for the coordi- 

nates x, у, z in terms of p and ф are: 

x = cosh” cos 9, у =qcosh"sing, z = qsinh@. (6.18) 
q q q 

These coordinates were first introduced by Carl Weierstrass (1815—1897) 

in a seminar on Lobacevskian geometry conducted by him in the late sixties at 

Berlin University, which is why these coordinates are now called Weierstrass 

coordinates (see [283, р. 189]). 

The Beltrami Model 

The first model of the Lobaéevskian plane was given by Eugenio Beltrami 

(1835—1900) in his Attempt at an interpretation of non-Euclidean geometry 

(Saggio di interpetrazione della geometria non euclidea. Naples, 1868) /42, 

pp. 374—405]. In this paper Beltrami showed that Lobacevskian geometry is 

realized on surfaces of constant curvature that he called pseudospherical 

surfaces. We will consider this model in chapter 8 in connection with the 

discussion of the intrinsic geometry of a surface. Beltrami used coordinates 

related to the Weierstrass coordinates by means of the equations 

= aXx/7Z, Y = ay/z, (6.19) 

that is, 

p pS 
и = atanh—cos@Q, v = atanh р sin @ (6.20) 

q 

These coordinates are now called Beltrami coordinates. 

It is easy to see that 

и? + 0? =a? tanh?” < a?, (6.21) 
q 

whence 
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и? + v? 
р = qarctanh -—_——- , 

a 

or 

а, at+./u? + v? 
In : (6.22) 
ао 

Formulas (6.19) show that the coordinates и, v can be regarded as the 

rectangular coordinates of the projection ofa sphere of imaginary radius from 

its center to the plane z = a. Here the whole sphere of imaginary radius is 

represented by the interior of the circle и? + v? = a”. The diametric sections 
of the sphere that correspond to the straight lines of the Loba¢evskian plane 

intersect this plane along straight lines, so that the straight lines of the 

Lobaéevskian plane are represented by chords of the indicated circle (Figure 

91). Figure 92 shows a straight line a as well as straight lines through a point 

A variously related to a. Thus the straight lines В and b’ are parallel to a, с 

and с’ intersect a, and d and d’ diverge from a. 

Beltrami considers и and v as rectangular coordinates of an auxiliary plane. 

In Beltrami’s words, 

If we denote by the letters x and y the rectangular coordinates of points 

of an auxiliary plane, then the questions 

х =и, у=и 

determine a representation of the region under investigation in which 

to every point of the region there corresponds a uniquely determined 

point of the plane and conversely; and the whole region turns out to be 

represented in the interior of a circle of radius a with center at the origin 

Figure 91 Figure 92 
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that we will call the Jimit circle. In this representation the chords of 

the limit circle correspond to the geodesics of the surface and, in partic- 

ular, the parallels to the coordinate axes correspond to the coordinate 

geodesic lines /42, р. 379]. 

Beltrami gave no formula for the distance between two arbitrary points 

and did not explain how the motions of the Loba¢éevskian plane are герге- 

sented in his model, but this model provided the first proof of the consistency 

of Loba¢éevskian plane geometry for it represented the entire Lobaéevskian 

plane in the Euclidean plane. 

Cayley’s Projective Metrics 

A paper by Arthur Cayley, published a few years before the appearance of 

Beltrami’s paper, essentially answered the questions left open by Beltrami. 

Cayley was then a practicing lawyer but later became a professor of mathe- 

matics at Cambridge University. Cayley was one of the creators of the theory 

of invariants of algebraic forms. In his algebraic papers Cayley made extensive 

use of geometric interpretations. In A sixth memoir upon quantics (London, 

1859) [ 103, vol. 2, рр. 561-592 ] he introduces the notion of a projective metric 

in the plane. Given a conic (conic section) in the projective plane, whose 

equation Cayley writes in the form 

А а V2) 0 

and which he calls Absolute, it is possible to associate to two points with 

respective coordinates x, у, z and x’, у’, z’ a distance, denoted by Cayley as 

р ли) 

S (gets Rye) (anes а) 

= arccos), such that, in view of what he had proved earlier, 

COS — 

(cos! 

ИР, P’, Р” be points on the same line, then we have, as we ought to have, 

Dist.(22) + Dist (Ps Р”) =] Dist. (PP): 

L103; val 27. 2077. 

The left side of the equation of the Absolute is a quadratic form. If we 

denote the coordinates x, у, 2 by хо, хи, X, and the coefficients a, b, с, а; e, f 

of the quadratic form by аоо, 411, 422, 401 = 10> 412 = 421 A290 = 402, then 

the quadratic ee can be written as ));) ,a,;x;x;. The numerator of the 
argument of cos ' is a bilinear form. If we write yo, у1, у› instead of x’, y’, 

2’, then we can write this bilinear form as )); )) ; 4;;x;y;. Thus, the equation of 

the absolute takes the form 

» о. азх:х, = 0, (6.23) 
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and the distance p between points with respective ordinates x; and y; takes 

the form 

—1 У лах ] (6.24) 

У My, Diy HiXpn/ Yj Hs 

р = cos 

Cayley notes that 

The general formule suffer no essential modification, but they 

are greatly simplified in form by taking for the point-equation of the 

Absolute 

x? + у? +27 =0, 

or, what is the same, for the line-equation 

о 

In fact, we then have for the expression of the distance of the points 

(х, у, 2), (X', 52), 

Е Vy Ва, 

Vx + y? + 27,/x'? + y? + 2? 

for that of the lines (€, 7, €), (€’,.’, ¢’), 

й СЕ Е nn etl 
Е Yao cn iia en 

and for that of the point (x, у, 2) and the line (¢’, 7’, ©’), 

cos! 

aot Feat Oa Se 
A + у? age а eee 

Suppose (x, y, z) are ordinary rectangular coordinates in space satis- 

fying the condition x* + у? + 22 = 1; then the point having (x, у, 2) for 
its coordinates will be a point on the surface of the sphere, and (the 

last-mentioned equation always subsisting) the equation €x + ny + 

¢z = 0 will be a great circle of the sphere; and since we are only con- 

cerned with the ratios of €, п, С, we may also assume 2 + и? + 62 = 1. 
We may of course retain in the formule the expressions x? + у? + 22 

and 22 + n? + (2, without substituting for these the values unity, and it 

is in fact convenient thus to preserve all the formule in their original 

forms. We have thus a system of spherical geometry; and it appears that 

the Absolute in such system is the (spherical) conic, which is the inter- 

section of the sphere with the concentric cone or evanescent sphere 

x? + у? + z* = 0. The circumstance that the Absolute is a proper conic, 

and not a mere point-pair, is the real ground of the distinction between 

spherical geometry and ordinary plane geometry, and the cause of the 

sin 
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complete duality of the theorems of spherical geometry //03, vol. 2, 

pp. 590-591]. 

By a spherical conic is meant the imaginary circle of intersection of all spheres 

in space with the plane at infinity; this circle is also the intersection of the 

sphere х? + у? + z* = 1 and the imaginary concentric cone x? + у? + 22 =0 
that Cayley also calls the evanescent sphere. In this case Cayley has in mind 

the realization of his projective metric in the plane at infinity of Euclidean 

space. 

Cayley also notes that 

In ordinary plane geometry, the Absolute degenerates into a pair of 

points, viz. the points of intersection of the line infinity with any evane- 

scent circle, or what is the same thing, the Absolute is the two circular 

points at infinity. The general theory is consequently modified, viz. there 

is not, as regards points, a distance such as the quadrant, and the 

distance of two lines cannot be in any way compared with the distance 

of two points; the distance of a point from a line can be only represented 

as a distance of two points / 103, vol. 2, р. 292]. 

By distance of two lines Cayley means the metric invariant of two straight 

lines, that is, the angle between two intersecting lines and the distance between 

two parallel lines. When he speaks of the Absolute degenerating into a pair 

of points Cayley has in mind not the usual conic but the tangential conic 

уз ay GQ, jUjU; = 0: (6.25) 

ie 1) 

where и; are the tangential coordinates of the straight line }),u,x; = 0, that 

is, the totality of tangents to the conic. If an ordinary conic is singular (that 

is, if the determinant of its matrix is zero), then it splits into a pair of real or 

imaginary straight lines, and if a tangential conic is singular then it splits into 

a pair of real or imaginary pencils of straight lines, that is, a pair of real or 

imaginary points. In that case, formula (6.24) defines an angle between two 

lines, but the distance between two points cannot be so expressed and for 

them there is no “‘distance similar to a quadrant,” that is, equal to 7/2. 

We note that the collineations of the projective plane that preserve a 

“spherical conic’ represent the rotations of a sphere, and the collineations of 

the projective plane that preserve the line at infinity of a Euclidean plane and 

its pair of circular (‘‘cyclic’?) points are not motions but similarities of the 

Euclidean plane. 
If the absolute of a projective plane with a Cayley metric is an imaginary 

conic then this plane is isometric to a sphere of radius | with identified 

antipodal points. Such a plane is now called an elliptic or Riemannian non- 

Euclidean plane. Cayley did not study the case when the absolute is a real 

conic and the case when this conic splits into a pair of real points. The 

corresponding planes are now called the hyperbolic or Lobacevskian non- 
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Euclidean plane and the pseudo-Euclidean plane, respectively. Nevertheless, 

he was aware of the exceptional importance of the projective metrics he 

introduced, and at the end of the memoir he wrote: 

Metrical geometry is thus a part of descriptive geometry, and descriptive 

geometry is аЙ geometry, and reciprocally //03, vol. 2, р. 592]. 

Cayley’s descriptive geometry is projective geometry. 

Cayley failed to see the connection between his metrics and Loba¢evskian 

geometry. His previously mentioned Notes on Lobatschewsky’s Imaginary 

Geometry [103, vol. 5, рр. 471-472 ] shows that although he was familiar with 

Lobaéevskii’s papers he did not at all understand the paper of the Russian 

geometer he quoted. 

Klein’s Model 

The connection between the results of Cayley and Loba¢evskian geometry 

was established by Felix Klein (1849—1925), whose paper, published shortly 

after Beltrami’s, provided the essential development of the Beltrami model 

discussed previously. Klein, a student of Plucker, was a professor at the 

universities of Erlangen and Gottingen. In his paper On the so-called non- 

Euclidean geometry (Uber die sogenannte Nicht-Euklidische Geometrie. Leip- 

zig, 1871-1872) [282, vol. 1, рр. 254-305] Klein showed that if the Cayley 

absolute is a real curve then the part of the projective plane in its interior is 

isometric to the hyperbolic plane, and he constructed a similar model for 

space. Klein writes: 

My definition of a projective metric generalizes somewhat the definition 

given by Cayley. In order to define the distance between two points I 

represent them as joined by means of a straight line. It intersects the 

fundamental curve in two other points that are in a definite cross ratio 

with the two given points. J call the distance between the two points the 

logarithm of this cross ratio multiplied by an arbitrary, but permanently 

fixed, constant c. In order to define the angle between two straight lines 

I pass through their point of intersection the two tangent lines to the 

fundamental curve. Together with the two given straight lines they 

determine a certain cross ratio. I call the angle between the two straight 

lines the logarithm of this cross ratio multiplied by another arbitrary, but 

permanently fixed, constant с’. These geometric definitions coincide with 

Cayley’s analytic definitions as soon as we assign particular values to c 

and с’, putting both equal to ./—1/2 /282, vol. 1. p. 255]. 

To see that this is indeed the case we note that the right side of formula 

(6.24), which is virtually the same as Cayley’s distance formula in the metric 

defined by him, is the cross ratio (xy, wz) of the points x, y with coordinates 

x; and у; and the points 2, и of intersection of the straight line they define 
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with the polar planes of these points relative to the ‘‘absolute.” Also, the 

points i, j of intersection of this straight line and the absolute divide harmon- 

ically the pair of points x, z and the pair of points y, w. 

It is easy to check that the cross ratios (xy, wz) and (ij, xy) are connected 

by the relation ‘ 

(ij, xy) + 1)? 
4(ij, xy) 

(for proof it suffices to map the points x, у, i, j to the respective points 1, a, 

0, co by means of a fractional linear transformation that necessarily preserves 

(a+ 1)? 

4a ) 
If we denote the distance between the points x, y by p, then Klein’s 

definition can be written as 

(xy, Wz) = (6.26) 

cross ratios. Then (ij, ху) = a, 2 = —1, и = —a, and (xy, wz) = 

p= Cltly.xy): (6.27) 

Hence, in view of (6.26) with c = i/2 we have 

‘a ны an, (еР atts 1)? ry eplze 3 e 2/2 2 r ePlt a e Plt 2 a ee 

Nace а = 2 м 5) rc A 

On the other hand, for a real c = 1/2 we have 

В (её + 1)? ее 6 2 еее? а 
и rm = — = = . Ai дер" 2 2 cs 

Klein notes that the latter case obtains for a real conic and, most impor- 

tantly, that in this case—the case of so-called hyperbolic geometry—the 

geometry realized in the interior of the conic is Lobacevskian geometry. 

To see this we consider in greater detail some propositions of hyperbolic 

geometry (they will be enclosed in quotation marks): 

“Through a point in the plane one can pass two parallels to a given 

straight line, that is, there are two straight lines that intersect a given 

straight line at points at infinity.” These are straight lines that join the 

point to the two points of intersection of the given line and the funda- 

mental conic section... [282, vol. 1, р. 289]. 

For angles with vertices in the interior of the conic Klein takes c’ = i/2. 

It is easy to see that the Beltrami model in a circle is a special case of the 

Klein model in the case when the conic is a circle. Also, if the point x is the 

center of the circle and the point y in the interior of the circle has rectangular 

coordinates и, v and is at a distance ./u* + v* from the center, then the cross 

ratio (ij, ху) = (—a,a;0,y) has the value (a + ./u? + v*)/(a — ./u? + 5?) 
and formula (6.22) is a special case of formula (6.27) for с = 4/2. Thus, apart 

from the element of generality, formula (6.27) determines the distance 

between two arbitrary points in the Beltrami model. 
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Klein also showed that the motions of the Lobaéevskian plane, that is, the 

one-to-one distance-preserving transformations of this plane, are represented 

in his model by the collineations that map the fundamental conic onto itself. 

Collineations preserve cross ratios, that is, if a collineation maps four points 

i, j, x, у of one straight line of which i, j are on the conic onto four points Г, 

j', x’, у’ of another straight line of which 7’, j’ are on the conic, then (i, xy) = 

(Гу, x'y’). In view of (6.27), this implies that the distance р of x and y is equal 

to the distance р’ of x’ and у’. This implies that in the Beltrami model the 

motions of the Lobaéevskian plane are given by the collineations that map 

the ‘‘limit сие” onto itself. 

If in the case of the elliptic plane we put the constant c in formula (6.22) 

equal to ri/2 rather than i/2 then we get the elliptic plane obtained by 

identifying antipodal points of a sphere with arbitrary radius r. Similarly, if 

in the case of the hyperbolic plane we put the same constant equal to q/2 

rather than 1/2 then we obtain a hyperbolic plane with arbitrary constant 4. 

In all three geometries we put c’ = i/2 so as to ensure the usual measure of 

angles. 

In the case of a pair of conjugate complex points Klein restricts himself to 

considering the interior of the conic; in the exterior of the conic, that is, in 

the so-called ideal region of the Lobacevskian plane, and in the case of a pair 

of real points, that is, in pseudo-Euclidean geometry, the measure of angles 

requires that the constant c’ be real. 

Klein also defines projective metrics in space: 

The basis of a general projective metric in space is provided by an 

arbitrary fundamental surface of the second order. 

To define the distance between two points one joins them by a 

straight line. It intersects the fundamental surface in two new points 

that are in a definite cross ratio with the two given points. The logarithm 

of this cross ratio multiplied by an arbitrary constant c yields what one 

should call the distance between the two given points. 

The angle between two planes is defined in a similar manner. One 

passes through their line of intersection the two tangent planes to the 

fundamental surface. Together with the given planes they determine a 

certain cross ratio. The angle between the planes is the logarithm of this 

cross ratio multiplied by an arbitrarily chosen constant с’ /282, vol. 1, 

р 201: 

Here Klein also considers three cases: the case of an imaginary funda- 

mental surface is the case of e/liptic geometry; when that surface is “‘real, not 

ruled and surrounds us” we have the case of hyperbolic, that is, Lobaéevskian, 

geometry; and in the “‘limiting case,’ when the fundamental surface degener- 

ates into an imaginary conic‘in a certain plane, we have the parabolic case of 

Euclidean geometry (the imaginary conic is the imaginary spherical circle at 

infinity). For the first two geometries the distance p is given by the same 

formula (6.27) as in the plane, but in the case of elliptic geometry the constant 
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с is pure imaginary, and in the case of Lobaéevskian geometry it is real. In 

all three cases angular measure is determined by the same formula with 

с’ = i/2. This ensures the usual measure of,angles. 

Klein considers neither the exterior of an oval quadric, that is, the ideal 

region of Lobacevskian space, nor a ruled fundamental surface, nor the case 

when the fundamental surface degenerates into a real conic—the case of 

pseudo-Euclidean space; that is, he does not consider the cases for which c’ 

is real. 

The Poincaré Model in a Half-Plane and in a Circle 

The great French mathematician and physicist Henri Poincaré (1854—1912), 

who worked at the Sorbonne and at the Ecole Polytechnique, proposed two 

versions of a model of Lobacéevskian geometry. In 1882 he published a paper 

entitled The theory of Fuchsian groups (Théorie des groupes fuchsiens. Stock- 

holm, 1882) /43/, vol. 2, рр. 108-168] devoted to fractional linear trans- 

formations of a complex variable (the groups are named for the German 

mathematician Lazarus Fuchs (1833—1902)). When he considered complex 

fractional linear transformations with real coefficients (“‘real substitutions’) 

he noticed that they preserve the complex upper half-plane and that this 

half-plane provides a model for the Lobaéevskian plane. In this paper Poin- 

caré writes: 

We will say that two figures are congruent if one is the image of the other 

under some real substitution. Since real substitutions form a group it is 

clear that two figures congruent to a third are congruent to each other. 

First of all one can formulate the following theorems. 

Homologous angles of two congruent figures are equal. 

If in two congruent figures a point y is homologous to « and a point 6 

is homologous to В then 

(a, В) = (7, 0) 

[431;vol. 2, pps 112113]. 

Ву (a, В) Poincaré means the cross ratio 

a /p-—a 
ap,ap) = а р 

After noticing that points a, р, и, В Не оп a circle with center оп the real 

X-axis and denoting the points of intersection of this circle with the X-axis 

by А (on the arc Bf) and К (on the arc «%) Poincaré introduces another cross 

ratio 

= peel —h 
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and shows that 

Ala, В] 
([o, В] + 1)?’ 

where [«, В] is real and greater than 1, and that 

(a, B) ЗЕ 

if y is a point of the circle «f then 

[ay] [yB] = [a] 

[431, vol. 2, p. 114]. 

If the points «, В lie on a perpendicular to the X-axis, then the points a, В 

lie on the same perpendicular. Thus these perpendiculars are considered as 

special cases of circles orthogonal to the X-axis. 

By ignoring higher-order infinitesimals Poincaré shows that 

d. 
pene wall 

Y 

and that 

dz 
и In{z,z + dz] = Kel 

у 

ji 
y > 

“taken along an arc of some curve, the length Г, of this агс,” and the double 

integral 

Е 

yee 
“taken over some plane figure, the area S of this figure.’’ He continues: 

Poincaré calls the integral 

From what was said earlier it follows that two congruent arcs of a curve 

have the same L and two congruent plane figures have the same S. The 

arc «В of a circle with center on the X-axis has Г, equal to [«, В]. 

I cannot ignore the connection that exists between the notions just 

introduced and the non-Euclidean geometry of Loba¢éevskil. 

We will agree not to assign to the words straight line, length, distance, 

area their usual meanings. We will call a straight line any circle with 

center on the X-axis, the length of a given curve, the magnitude that we 

denoted by L, the distance between two points the magnitude L of the 

arc that joins them and that belongs to a circle with center on the X-axis 

and, finally, the area of a plane figure that which we called earlier the 

magnitude S. 

Furthermore, we will consider that the words angle and circle have 
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their usual meanings but that the center of a circle is the point that is at 

the same distance (we have in mind ‘“‘distance’’ in the new sense of the 

word) from all points of the circle, and that the distance itself is the 

radius of the circle. 

The theorems of Lobaéevskian geometry hold for the magnitudes 

understood in the new sense, that is, all theorems of ordinary geometry 

other than those that are consequences of Euclid’s postulate (on par- 

allels) can be applied to them. 

Such geometric terminology has turned out to be tremendously 

useful to me in the course of my investigations /431, vol. 2, р. 114]. 

The application of Lobacevskian geometry to the theory of Fuchsian 

groups was that the Poincaré model made it possible to represent these groups 

as discrete groups of motions of the Lobaéevskian plane. 

If we denote the cross ratio [«, В] of two complex numbers a, В and two 

real numbers h, А by (hk, af) then we can write Poincaré’s definition of the 

distance р between « and В as 

р = In(hk, В). (6.28) 

By mapping the complex upper half-plane onto the unit disk |z| < 1 by 

means of a fractional linear transformation we obtain a form of the Poincaré 

model in which, as in the Beltrami model, the Lobaéevskian plane is repre- 

sented by the interior of a circle. In contrast to the Beltrami model, straight 

lines are represented in this model by arcs of circles orthogonal to the limit 

circle and by diameters of this circle, and the distance between two points 

represented by complex numbers « and р is given by (6.28), where h and К are 

the points of intersection of the limit circle with the circle through « and В 

orthogonal to the limit circle (Figure 93). In one form of the Poincaré model 

parallel straight lines are represented by semicircles or rays with common 

endpoint on the X-axis and in the other by circular arcs or diameters with a 

common endpoint on the limit circle. If in this description of parallel straight 

lines we stipulate that the various pairs of curves have no points in common 

then we obtain a description of diverging straight lines. Poincaré’s statement 

that “Бе words angle and circle have the usual meaning” indicates that in 

Figure 93 
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Figure 94 

both forms of his model angles between straight lines in the Lobacevskian 

plane are the same as angles in the complex plane with the usual Euclidean 

metric, and circles in the Lobacevskian plane are represented by circles that 

have no points in common with the X-axis and the limit circle, respectively. 

We will prove these two remarkable properties of the Poincaré model by 

employing a stereographic projection of a sphere of imaginary radius from 

one of its poles to a tangent plane to that sphere that is a Euclidean plane 

(Figure 94). Just as in the case of the stereographic projection of a sphere to 

a plane in Euclidean space considered in chapter 3, one can show that the 

stereographic projection of a sphere of imaginary radius has three properties 

analogous to those of the former projection: (a) projections to the plane of 

plane sections of the sphere of imaginary radius are circles or, if the sections 

of the sphere pass through a pole, straight lines; (b) angles between curves on 

the sphere are the same as the angles between their projections in the plane; 

(с) a rotation of the sphere about the diameter passing through its pole induces 

a rotation in the plane through the same angle about its point of tangency 

with the sphere. In this projection one of the planes of the sphere of imaginary 

radius is represented by the interior of the “‘limit circle,” that is, the inter- 

section of the plane with the isotropic cone, and the second plane is repre- 

sented by the exterior of this circle; here it is easy to check that pairs of 

antipodal points of the sphere are represented by pairs of points of the plane 

that are mutually inverse with respect to the “‘limit circle.’ It follows that 

diametric sections of the sphere of imaginary radius are represented by circles 
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Figure 95 

that are mapped onto themselves under this inversion, that is, by circles 

orthogonal to the “Пти circle.” The central angle NOA subtended by the arc 

NA of a great circle of the sphere of imaginary radius (Figure 95) is pro- 

portional to the length p of this arc, where p = Sind, NA’) and can be 

expressed in terms of the cross ratio, equal to the cross ratio (LJ, NA’) of the 

straight lines ОГ, OJ, ON, OA that project the points J, J, №, A from the center 

of the sphere, in the form + NOA = с’ ш(ОГ ОЛ: ON, OA). The inscribed 

angle NSA, subtended by the same arc, is equal to half the angle NOA, that is, 

Х NSA = 5 In(O1, OJ; ON, OA) = 5 Ind, NA’). 

On the other hand, this angle can be expressed in terms of the cross ratio of 

the straight lines SH, SK, SN, SA that project the points H, K, N, A from the 

pole 5, as well as in terms of the equal cross ratio (HK, МА”), by the formula 

x NSA = c’lIn(SH, SK; SN, SA) = c'ln(HK, NA"). 

Therefore 

1 
In(HK, NA”) = 5 ind, NA’), 

and the distance р is expressed in terms of the cross ratio (HK, NA") by the 

formula 

р = qin(AK, МА”). 

If we regard the points H, K, N, A” as points of the complex plane and 

replace them with the corresponding complex numbers h, К, «, В, whose cross 

ratio (hk,«P) is equal to the cross ratio (НК, NA”), and if we apply ап 

arbitrary fractional linear transformation of the complex plane that preserves 

the limit circle and denote the images of these points by the same letters, then 
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Figure 96 

we obtain an expression for the distance р between two points of the Loba¢ev- 

skian plane in terms of the corresponding complex numbers «, В and the 

points h, К of intersection of the limit circle and the circle af orthogonal to 

it in the form 

“p= qIn(hk, af). (6.29) 

If we compare formulas (6.29) and (6.28) then we see that we have obtained 

the Poincaré model in a circle that differs from the earlier exposition of this 

model only in that all distances have been multiplied by a factor q. 

That the circles of the Lobaéevskian plane are represented by circles that 

have no points in common with the limit circle follows from property (a) of 

the stereographic projection. The same property implies that the horocycles 

are represented by circles that touch the limit circle, and the two branches of 

an equidistant curve by two circular arcs that intersect the limit circle in two 

points (under inversion in the limit circle each of these arcs is mapped onto 

the supplement of the other). Figure 96a shows a circle, a horocycle, and an 

equidistant curve in the Poincaré model in a circle. 

That angles between curves in the Poincaré plane are measured the 

Euclidean way is a consequence of property (b) of stereographic projection. 

Figure 96b shows a triangle of the Lobacevskian plane in the Poincaré model 

of this plane in a circle (it is visually obvious that the angle sum of this triangle 

is smaller than п). The motions of the Lobaéevskian plane are represented in 

the two versions of the Poincaré model by fractional linear transformations 

that map onto themselves the real axis and the limit circle, respectively; these 

transformations can also be viewed as circular transformations of the plane. 

In the paper Non-Euclidean geometries (Les geométries non-euclidiennes. 

Paris, 1891) [432] Poincaré extended the two versions of his model to space. 

In one version of this model Loba¢evskian space is represented by a half-space 

and in the other by the interior of a sphere; straight lines of Lobaéevskian 

space are represented in one version by circular arcs (and rays) orthogonal to 
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the boundary plane of the half-space and in the other by circular arcs orthog- 

onal to the limit sphere and by its diameters; the distance between two points 

a and р is given by the same formula, (6.28) or (6.29), as in the case of the 

plane (й and К are the endpoints of the’ arc or segment af). Angles are 

measured the Euclidean way; spheres 6f Lobacevskian space are represented 

in both versions by spheres without common points with the boundary plane 

of the half-space and with the limit sphere, respectively; horospheres by 

spheres that touch the boundary plane and the limit sphere, respectively; the 

two sheets of the equidistant surface of a plane are given in the spherical 

version of the model by segments of a sphere that intersect the limit sphere 

along a circle (under inversion in the limit sphere each segment is mapped 

onto the supplement of the other). 

In his popular account Science and hypothesis (Le science et ’hypothése. 

Paris, 1902) [433, pp. 1-197] Poincaré returns to the first version of his model. 

He writes: 

Let us consider a certain plane, which I shall call the fundamental plane, 

and let us construct a kind of dictionary by making a double series of 

terms written in two columns, and corresponding each to each, just as 

in ordinary dictionaries the words in two languages which have the same 

signification correspond to one another: — 

Space .-. +++ +: The portion of space situated above the fundamental 

plane. 

Plane ... -.. -.. Sphere cutting orthogonally the fundamental plane. 

Line .-.. ++ ++ Circle cutting orthogonally the fundamental plane. 

Sphere ... ... +++ Sphere. 
Circle --- -.: ++: Circle? 
Angle Nee GORI ee Angle. 

Distance between 

two points ... ++) + Logarithm of the anharmonic ratio of these two 

points and of the intersection of the fundamental 

plane with the circle passing through these two 

points and cutting it orthogonally. 

Etc. Ete: 

Let us now take Lobatschewsky’s theorems and translate them by 

the aid of this dictionary, as we would translate a German text with the 

aid of a German-French dictionary. We shall then obtain the theorems 

of ordinary geometry [433, рр. 59—60]. 

Рошсаге’з Model on a Hyperboloid 

Poincaré proposed another model of the Lobacevskian plane in the paper 

“On the fundamental hypotheses of geometry” (Sur les hypothéses fonda- 

mentales de la géométrie. Paris, 1887) [431, vol. 11, pp. 79-91]. Here he wrote: 
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If we restrict ourselves to two dimensions then Riemann’s geometry 

admits of a very simple interpretation: as is well known, there is no 

difference between it and spherical geometry provided that we agree to 

call the great circles on the sphere straight lines. 

First, I will generalize this interpretation so that it can also be 

extended to Lobaéevskian geometry. We consider any quadric surface. 

We agree to call its plane diametric sections straight lines and its plane 

nondiametric sections circles. 

It remains to determine what is to be meant by the angle between 

two intersecting lines and by the length of a segment of a straight line. 

Through a point on the surface we pass two plane diametric sections 

(that we agreed to call straight lines). Now we consider tangent lines to 

these two sections and two rectilinear generators of the surface passing 

through the selected point. These four straight lines (in the ordinary 

sense of the word) have a certain cross ratio. The angle that we wish to 

define will be equal to the logarithm of this cross ratio if the two 

generators are real, that is, if the surface is a one-sheeted hyperboloid, 

and to the quotient of this logarithm by ./ — 1 otherwise. 

Consider an arc of a conic section—part of a plane diametric section 

(what we agreed to call a segment of a straight line). Like any four points 

on а conic, the two endpoints of the arc and the two points at infinity 

of the conic section have a certain cross ratio. We agree to call the 

logarithm of this cross ratio the length of the segment under con- 

sideration if the conic section is an hyperbola and the quotient of this 

logarithm by ./ —1 if the conic section is an ellipse. 

The angles and lengths defined in this way are connected by a number 

of relations that form a body of theorems analogous to the theorems of 

plane geometry. 

This body of theorems may be called a quadric geometry, for our 

starting point was the study of a basic quadric surface (quadrique). 

Since there are several types of quadric surfaces there are several 

types of quadric geometries. 

If the basic surface is an ellipsoid then the quadric geometry does 

not differ from the geometry of Riemann. 

If the basic surface is a two-sheeted hyperboloid then the quadric 

geometry does not differ from the geometry of Lobacevskii. 

If this surface is an elliptic paraboloid then the quadric geometry 

reduces to Euclidean geometry; it is a limiting case of the two previous 

ones /431, vol. 11, pp. 80-81]. 

It is easy to see that if we introduce in space pseudo-Euclidean geometry, 

in which the square of the distance from the center of the hyperboloid to its 

surface is given by the left side of its equation, then the two-sheeted hyper- 

boloid, on which, according to the preceding interpretation, is realized plane 

bacevskian geometry, is the very sphere of imaginary radius that we 

cussed previously (p. 246). 
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Chapter 7 

Multidimensional Spaces 

Multiple Integrals 

Earlier we saw that the idea of a multidimensional space arose in connection 

with the geometric interpretation of, first, algebraic equations of degree higher 

than the third, and, later, of functions of three and more variables. 

A genuine geometry of multidimensional spaces arose when the develop- 

ment of the theory of algebraic forms of n variables and of n-tuple integrals 

called for geometric interpretation of functions of many variables. 

The theory of n-tuple integrals was effectively developed in the first half 

of the 19th century by many mathematicians. One of them was the Russian 

mathematician Mihail Vasil’evi¢ Ostrogradskii, who, in the Note on the theory 

of heat (Note sur la théorie de la chaleur. Petersburg, 1831) /400; 399, 

рр. 131-141], discovered his famous formula of transformation of a triple 

integral over a volume into a double integral over its surface and extended 

it in the Memoir on the calculus of variations of multiple integrals (Mémoire 

sur le calcul des variations des intégrales multiples. Petersburg, 1835) [401; 

399, pp. 9-37] by expressing ап n-tuple integral over an n-dimensional region 

in terms of an (и — 1)-tuple integral over its surface. Ostrogradskii wrote his 

formula as [399, р. 27] 

diy ade adi 
PaO 24 he rer as 

dP dQ dR dx dy dz 
—+4——+4—+::: }dxdydz...= 
dx dy 42 АТ? di? adi? 

Ge ary ay 
where L = 0 is the equation of the surface that bounds the region, 

dL dL 

dx dy 
ice lig a pirile Gita ede | 
[at S+ Ste [e+ +E 
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aL 

dz 

Wid edhe 

я i dy т 42? й 

are the components of the normal to this surface, and dS is its surface element 

(Ostrogradskii denoted partial derivatives by an ordinary 4). 

In the same year there appeared the paper On the transformation of 

two arbitrary homogeneous functions of the second order by means of linear 

substitutions into two others containing only squares of the variables; to- 

gether with many theorems on the transformation of multiple integrals (De 

binis quibuslibet functionibus homogeneis secundi ordinis per substitutiones 

lineares in alias binas transformandis, quae solis quadratis variabilium con- 

stant; una cum variis theorematis de transformatione integralium. Berlin, 
1834) [246, vol. 3, pp. 191-268] by the German mathematician Carl Gustav 

Jacob Jacobi (1804—1851) devoted to both of the preceding problems, that is, 

the theory of quadratic forms in n variables and multiple integrals. First 

Jacobi poses the problem: 

To find linear substitutions 

vA = ax, Но АЕ Юн 

у = ох, + 5х, +" + их, 

Е AS Xo Ра 

such that 

У + Y2¥2 FF уж = XX + Хо НХ, 

[246, vol. 3, p. 199] 

and shows that the required substitution must satisfy the conditions 

Olea + Oe OZ + > + of? af? = 0, 
МАМИ ОО О а 

Jacobi’s problem is the problem of finding the matrices of rotations of 

n-dimensional Euclidean space; his conditions are the orthogonality condi- 

tions for the matrix of the linear substitution. Jacobi solves the problem 

indicated in the title of his paper, that is, the problem of finding a linear 

substitution x, = >, By, that simultaneously reduces two quadratic forms 
V = У «лак ахкх, W = > «ad, 4% ¢%, to the respective forms 

Г = Gy yyy + Goyoy2 + °°: + GaVnYns 

W = Н; уу, + Ну2у› + + Нулу, 

[246, vol. 3, р. 247], 



Cayley’s Analytical Geometry of n Dimensions 249 

or, briefly, the problem of finding a linear substitution that simultaneously 

reduces two quadratic surfaces to canonical form. At the end of the paper 

Jacobi solves a number of problems dealing with the computation of multiple 

integrals, including the problem of computing ап (и — 1)-tuple integral over 

all (positive) values of the real variables x,, x,..., x, Satisfying the equation 

Х1Х1 =F Х2Х2 aR бо а XnXn = Ie 

Jacobi writes down the answer in the following form: 

Ги is even then 

оо 

and Ши is odd then 

(р2)"-58 
Ро 

[246, vol. 3, р. 267]. 

The integrals give the surface of the segment of the unit sphere in n- 

dimensional Euclidean space in the region x; > 0. This means that in order 

to compute the surface of the whole sphere we must multiply the values of 

these integrals by 2”. Thus Ши is even then 

5 Я 21/2 прп? 

ЕР 

and Ши is odd then 

5 2(и+1)/2 д" 02 

УЕ 

For a sphere of radius г these expressions must be multiplied by и" ". 

It should be noted that neither Ostrogradskii nor Jacobi employed geometric 

terminology. 

Cayley’s Analytical Geometry of n Dimensions 

The term geometry of n dimensions first appeared in an early paper of Arthur 

Cayley, Chapters in the analytical geometry of (n) dimensions (Cambridge, 

1843) / 103, vol. 1, рр. 55-62]. The term geometry of п dimensions appears 

only in the title, and the paper is purely algebraic in nature. Cayley considers 

systems of several homogeneous linear equations in и variables of the form 
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A,X, + A,X, + 7% +A x= 0, 

K,x, + K,x,+:°-:+ K,x, = 9 

and reciprocal equations of such systems relative to a homogeneous quadratic 

function U that Cayley writes in the form 

2U =} (a?) x2 + 2 >) (аВ)х.хь. 

One obtains these equations by equating to zero determinants made up of 

partial derivatives of the function U with respect to the x, and the coefficients 

of the equations of the given system. Cayley shows that if the system has r 

linearly independent equations then the reciprocal system has n — r linearly 

independent equations. 

At the end of the paper Cayley writes that 

in the case of four variables the investigations set forth above prove the 

following properties of quadric surfaces: 

I. Ifacone intersects a second-order surface then one can pass through 

their curve of intersection three different cones whose vertices lie in 

a plane that is the polar conjugate of the vertex of the intersecting 

cone. 
II. If two planes intersect a surface of second order then it is possible 

to pass through their curves of intersection two cones whose vertices 

lie on a straight line which is the polar conjugate of the line of inter- 

section of the two curves / 103, vol. 1, р. 62]. 

This example shows that Cayley treats the variables x,, x2, ..., X, 

as projective coordinates not of n-dimensional but of (и — 1)-dimensional 

projective space and views systems of linear equations as equations of 

(п — r — 1)-dimensional planes. He views the equation И = 0, where U is a 

quadratic function, as the equation of a quadric surface. Then the ‘‘reciprocal 

equations” determine conjugate polar (п — г — 1)-dimensional and (r — 1)- 

dimensional planes. The general theorem, of which the example given by 

Cayley at the end of the paper is but a special case, can be formulated as 

follows: if a degenerate quadric surface with (г — 1)-dimensional ‘‘vertex”’ 

intersects a nondegenerate quadric surface then one can pass through the 

surface of their intersection г + 1 cones whose vertices lie on the (и — r — 1)- 

dimensional polar of the “‘vertex’’ of the degenerate quadric surface. 

It is clear that in naming his paper Chapters of analytical geometry of (n) 

dimensions Cayley had in mind this theorem of multidimensional projective 

geometry, but in the absence of multidimensional geometric terminology he 

restricted himself to a “multidimensional” geometric title. 

It is very likely that Cayley arrived at the notion of multidimensional space 

under the influence of Hamilton’s discovery of the quaternions interpreted 

as vectors in a four-dimensional space. Be that as it may, two years later, 
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in the paper On Jacobi’s elliptic functions and on quaternions (London, 1845) 

[103, vol. 1, р. 127], Cayley not only considers quaternions but also extends 

them to so-called Cayley numbers, or octaves, interpreted as vectors of an 

eight-dimensional space. 

Grassmann’s Science of Linear Extension 

In 1844 there appeared The science of linear extension (Die lineale 

Ausdehnungslehre. Leipzig, 1844) [211, vol. 1, part 1, pp. 1-319], Hermann 

Grassmann’s (1809—1877) fundamental work on multidimensional geometry. 

Grassmann defines an extended manifold of the first degree as 

the totality of elements into which a generating element passes under 

continuous motion /2//, vol. 1, part 1, р. 48] 

and, in particular, he defines a 

simple extended manifold—one obtained as a result of continuous 

extension of one and the same basic variation /211, vol. 1, part 1, р. 48] 

that is, he defines an oriented arc of a continuous line and, in particular, 

an oriented rectilinear segment. He regards segments as equal if they are 

generated by “one and the same variation” and associates to each class of 

equal oriented segments 

an extended magnitude or an extension of the first degree, or a stretch 

[211], vol. 1, part 1, р. 49] 

that is, a free vector. He also defines a 

system of the first degree—the totality of elements that can be obtained 

by the extension of one and the same or of the opposite variation, /2//, 

vol. 1, part 1, p. 49] 

that is, an abstract straight line. Then Grassmann defines a system of second 

degree, that is, an abstract two-dimensional plane, as follows: 

To begin with, I take two basic variations of different kinds and subject 

an element of the first basic variation (or its opposite) to an arbitrary 

extension and then subject the thus modified element to the second 

mode of variation, likewise arbitrarily extended; I call the totality of 

elements formed in this manner a system of second degree [211, vol. 1, 

part Lo pe52]: 

Then, in an entirely analogous manner, Grassmann defines systems of third 

and higher degrees, that is, three-dimensional and multidimensional spaces: 

Further, if I take the third basic variation that does not transform that 

same initial element into an element of this system of second degree— 
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which I will therefore call independent of the first two—and subject an 

arbitrary element of this system of second degree to this third variation 

(or to its opposite) arbitrarily extended; then the totality of elements 

formed in this way is a system of third degree, and since this method of 

formation, according to the idea, is applicable without any restriction, 

I can in this way define systems of arbitrarily high degree /2/J, vol. 1, 

Part] pales 

After pointing our that a plane in ordinary space can be regarded as a 

system of second degree and “‘all infinite space” as a system of third degree, 

Grassmann notes that 

geometry goes no further but abstract science knows no bounds 

1211, vol, 1, part, p. 3}. 

These words show that Grassmann meant by geometry only the geometry of 

three-dimensional space, of plane and straight line, and regarded what we call 

geometry of multidimensional space not as geometry but as an abstract 

science of extension. 

We note that Grassmann considers curves, surfaces, ‘‘all infinite space,” 

and multidimensional manifolds as “‘totalities of elements.” 

To any two elements & and В Grassmann associates the ‘“‘segment”’ [a] 

and formulates the following theorem: 

If [В] and [Ву] represent arbitrary variations then [ay] = [af] + [fy] 

[2 vol] part Г. 30/- 

It is clear that Grassmann’s “segments” are bound vectors and his 

“variations” are free vectors. Grassmann goes on to apply his concepts to 

geometry (that is, to geometry of three-dimensional space, where to each pair 

of points Х, У one can associate the “‘segment”’ [XY Y]), and to mechanics, 

where “segments” represent velocities, accelerations, and forces. 

Then Grassmann defines an exterior product of vectors: 

By the exterior product of m segments is meant an extended magnitude 

of n-th order that is obtained if every element of the first order gives rise 

to the second, every element formed in this way gives rise to the third, 

and so on /211, vol. 1, part 1, pp. 89-90] 

—that is, the exterior, or outer, product of two segments is a parallelogram, 

the outer product of three segments is a parallelepiped, and the outer product 

of m segments is an m-dimensional parallelepiped. Grassmann uses outer 

products of two and three segments to define the area of a parallelogram, the 

volume of a parallelepiped, the static moment of a force, and the condition of 

equilibrium of forces in mechanics. 

Subsequently Grassmann reworked his book into The science of extension 

(Die Ausdehungslehre. Leipzig, 1862) /211, vol. 1, part 2, pp. 1-506] where 

he introduced the notion of linear dependence of magnitudes 
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а = В + ус + --. 

(“a is numerically derived from the magnitudes b, c, ... by means of the 

numbers р, у, ...”); units—linearly independent basis elements; exten- 

sive magnitudes, “numerically derived from the system of units,” which 

Grassmann wrote as ле, + а»е, +. or, in abbreviated form, as ) ae; 

the sum and difference of extensive magnitudes )' ae + У. Be = У` (я + Ве, 

Уве — У Ве=У (a — В)е; the product of an extensive magnitude by a 
number У ae: В = )'(«B)e; the inner product (a,b) of two extensive magni- 
tudes; and the exterior products [а В], [a b c], ... of two or more extensive 

magnitudes. Grassman’s extensive magnitudes are, essentially, vectors of 

an abstract vector space. Grassmann also associated with them concrete 

representations in the form of directed segments that he called Stab (literally, 

stick). The inner product of extensive magnitudes coincides with the inner 

product of vectors, and the outer products of two and three segments 

in three-dimensional space coincide with the cross and mixed products, 

respectively. Outer products are represented as linear combinations of outer 

products of the basis vectors. Since the coordinates of these linear combina- 

tions, called Grassmann coordinates of m-dimensional planes, continue to be 

the fundamental characteristic of m-dimensional planes in n-dimensional 

space, manifolds of such planes are now called Grassmann manifolds. 

Grassmann was well acquainted with the previously mentioned letter of 

Leibniz to Huygens, as witness his paper Geometric analysis linked to the 

geometric characteristic found by Leibniz (Geometrische Analyse geknupft an 

die von Leibniz erfundene Geometrische Charakteristik. Leipzig, 1847) [211, 

vol. 1, part 1, рр. 321-398]. Undoubtedly, Grassmann viewed his geometric 

calculus as a realization of Leibniz’s idea. 

In New geometry of space based on regarding straight lines as space elements 

(Neue Geometrie des Raumes gegrundet auf die Betrachtung der geraden 

Linien als Raumelement. Leipzig, 1868) [430], the German geometer Julius 

Pliicker (1801-1868) investigated the four-dimensional manifold of straight 

lines of three-dimensional space and characterized straight lines by means of 

Pliicker coordinates that are Grassmann coordinates in the special case п = 3, 

m= |. 

Schlafli’s Theory of Multiple Continuality 

In 1851 the Swiss mathematician Ludwig Schlafli (1814—1895) finished a large 

monograph devoted to multidimensional Euclidean geometry called Theory 

of multiple continuality (Theorie der vielfachen K ontinuitat. Basel, 1901) /507, 

vol. 1, pp. 169-387], which he submitted to the Vienna Academy of Science. 

In the beginning of the book Schlafli writes: 

The treatise that I have the honor of presenting to the Imperial Academy 

of Science contains an attempt to found and elaborate a new branch of 
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analysis which is, in a way, a kind of analytic. geometry of dimensions 

and includes that for plane and space as special cases for n = 2, 3. I call 

it a theory of multiple continuality, generally speaking, in the sense in 

which, for example, the geometry of space can be called a theory of triple 

continuality. Just as in this theory a group of values of three coordinates 

determines a point, so too in that theory a group of values of n 

coordinates x, y, ... determines a solution (Losung). The reason I use 

this term is that this is precisely the name of any group of values 

satisfying one or more equations in many variables. The only thing that 

is unusual about the name is that I also use it in the case where the 

variables are not connected by even a single equation. In this case I call 

the totality of all solutions an n-tuple totality. If, on the contrary, 1, 2, 

3, ... equations are given then I call the totality of their solutions an 

(n — 1)-tuple, (и — 2)-tuple, (и — 3)-tuple ... continuum [507, vol. 1, 

jE VOOR 

We see that Schlafli, like Grassmann, does not extend the terminology of 

geometry of three-dimensional space to multidimensional geometry and calls 

ап n-tuple totality what we call n-dimensional space, a “‘solution” what we call 

a point, and an m-tuple continuum what we call an m-dimensional surface. 

Also, Schlafli assumes that it is possible to choose a system of variables such 

that the “the distance between two. given solutions (x, y,...), (х’,у’,...)” 18 

equal to 

ME OS et ee 
In this case he calls the system of variables orthogonal, as against skew. In the 

latter case the distance between two solutions is of the form 

RY CTEM EG IG a) Sg) Rho 
[507, vol. 1, p. 172]. Then Schlafli takes two linear homogeneous poly- 

nomials р = ax + Бу + с2 +++: + йм апа p’=a'x + b'y + -:: + A'win the 

“orthogonal variables” x, y, ..., w and considers the totality of solutions for 

which p and p’ are simultaneously >0. He thinks of this totality of solutions 

as a fraction of the whole unbounded totality, and if the denominator of this 

fraction is taken as 27 then he calls its numerator the “‘angle between the 

polynomials р and р’” and denotes it by X(p,p’). Schlafli states that the 

“angle between the polynomials,” that is, in modern terminology, the angle 

between two (и — 1)-dimensional planes, is given by the formula—see /507, 
vol. 1, р. 172]— 

аа’ + bb’ + сс’ +-+::+hh' 

Иа? + + EHR a Eb? Ph? 

where both roots in the denominator are supposed to be positive. 

Schlafli calls a plane a linear continuum, and curved surfaces he calls higher 

continua; “one-tuple continua” (lines) he calls paths, and linear ‘‘one-tuple 

cos Х(рр’) = 
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continua” he calls rays. His book consists of three parts: The science of linear 

continua, The science of spherical continua, and Various applications of the 

theory of multiple continuality that go beyond the “linear” and “spherical” 

(that is, deal with “quadratic” and “‘higher continua’’). Although the in- 

stances of Schlafli’s use of the term distance quoted earlier suggest that he 

thought of it as a real number, the fact is that he often used this term in the 

sense of a segment joining two points. For example, at one point Schlafli 

states: 

Let x, у, 2,... be the projections of the distance г and x,, y,, Z,,... the 

projections of another distance и, .... We put 

XX У te 221 = ТЯ COS WwW 

and call w the angle of the directions of the two distances r and r, 

ПО во Ty pel iol 

Then Schlafli defines the totality of solutions for which 

x is contained between two constants whose difference is a, y between 

two linear functions of x whose difference is b, 2 between two linear 

functions of x, y whose difference is c, and so on. Then the totality is 

contained between и parallel continua; it is called a parallelescheme 

1207, Vila, р: 11). 

Schlafli’s parallelescheme is а multidimensional parallelepiped. Schlafli shows 

that “Фе measure of a parallelescheme is equal to the determinant of 

the orthogonal projections of its edges’ /507, vol. 1, р. 182]; that is, 

if a multidimensional parallelepiped is constructed out of ‘“‘distances” with 

“projections” x), xj, ..., х then its volume is equal to the determinant (x). 
Then Schlafli defines multidimensional polyhedra, which he calls polyschemes 

and computes the volumes of multidimensional pyramids and other poly- 

hedra. He also determines the volume of an m-dimensional plane region as 

follows: he finds the projections of this region to all (/,)m-dimensional 

coordinate planes and shows that 

the measure of an arbitrary closed m-tuple continuum is equal to the 

square root of the sum of the squares of its projections /507, vol. 1, 

P2153), 

In the last chapter of the first part of his book Schlafli proves the 

generalized Euler theorem which asserts that if a polyhedron in n-dimensional 

space is homeomorphic to a sphere then the numbers №, of p-dimensional 

faces (for p = 0, vertices; for p = 1, edges) are connected by the relation 

1 No + Ny — Ny 0+ +(=1)N, +27 + ("М - (1) = 0 
(for n = 2 а special case of this formula is the equality № = N,, and Гоги = 3 

we have Euler’s theorem № — М, + М, = 2) [507, vol. 1, р. 193], and 

constructs the theory of regular polyhedra in n-dimensional space. Here 
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Schlafli introduced for regular polyhedra in n-dimensional space the Schldfli 

symbol { p;,P2,--+sPn-1}- The faces of such a polyhedron are regular poly- 

hedra { p;,P2,---,Pn-2}, and the vertex figures, being regular polyhedra with 
vertices in the midpoints of the edges with common ends in one vertex of the 

given polyhedron, are regular polyhedra {p,,p3,..-,Pn-1}. For a regular 

polygon with р vertices the Schlafli symbol is {р}. For regular polyhedra in 

three-dimensional space the Schlafli symbols are {3,3} for a tetrahedron, 

{4,3} for a cube, {3,4} for an octahedron, {5,3} for a dodecahedron, 
and {3,5} for an icosahedron. Schlafli shows that for n > 5 there are only 

three types of regular polyhedra, namely a simplex {3,3,...,3,3}, a cube 
{4,3,...,3,3} and a cross polyhedron {3,3,...,3,4} with n+ 1, 2n, and 

2" faces, respectively, and for n = 4 there are six types of regular polyhedra 

13,3, 3}, (4,331, [3, 3,41, (3, 4, 3}, {5,3, 3} and {3,3, 5} 2 with 5,.8,.16, 24.120 

and 300 three-dimensional faces, respectively /507, vol. 1, рр. 212-226]. 

The vertices of the polyhedron {3, 4, 3} are 16 vertices of a cube and 8 points 

resulting from the reflection of the center of symmetry of this cube in its 

faces. 

In the second part of the book Schlafli finds, among other things, the 

surface of an n-dimensional sphere that reduces to the integrals (7.1) and 

(7.2) above. In the third part Schlafli finds the center and principal axes of a 

quadratic continuum—a multidimensional quadric surface. 

Schlafli’s monograph was published in its entirety only in 1901, after the 

author’s death. However, its most important results (including the results 

given above) were published in his papers Reduction of a multiple integral 

containing as special cases the arc of a circle and the area of a spherical triangle 

(Reduction d’une intégrale multiple qui comprend Рагс du cercle et l’aire 

du triangle spherique comme cas particuliers. Paris, 1855) and On the multi- 

ple integral |" dx dy... dz whose limits are py = a,x + by +++: + #2 > 0, 

P2>0,.-.,P,>0 and х?+у? +z? < 1 (London, 1858—1860) /507, vol. 
2, pp. 164—190; 219-270]. Schlafli’s papers gained little fame in his life- 

time, and regular polyhedra in n-dimensional space were rediscovered in 

the eighties of the 19th century by scholars such as Washington Irving 

Stringham (1847—1909) /563/ and Reinhold Hoppe (1816—1900) /233/. 

Schlafli’s work was continued by Peter Hendrik Schoute (1846—1913) in his 

Multidimensional geometry (Mehrdimensionale Geometrie. Leipzig, 1902— 

1905) [509]. In addition to developing Schlafli’s analytic and synthetic 

geometry Schoute solved problems of multidimensional descriptive geometry. 

In particular he proposed the following method of representing a point in 

2n-dimensional Euclidean space in the plane, now known as the Schoute 

diagram: a point with coordinates x,, хо, ..., X2, 18 represented by n points 

with coordinates) о Аз, X40 М1, Xap (09, vol. 1; ps200 |. 

In this famous paper of 1854 On the hypotheses which lie at the foundations 

of geometry (Uber die Hypothesen welche der Geometrie zu Grunde liegen) 

[454, рр. 272-287; 122, рр. 55—75 (English translation by И’. К. Clifford; the 

reader may wish to consult the more modern translation of M. Spivak /552a, 
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pp. 135—153])] Bernhard Riemann (1826-1866) introduced a notion of an 

n-ply extended manifold far more general than those of Grassmann and 

Schlafli. We note that as early as 1872, after describing various groups of 

transformations on three-dimensional space, Klein wrote in the final para- 

graph of his Erlangen program (1872):’ 

It is obvious how to realize the transfer of the above space to the notion 

of a pure manifold /282, vol. 1, pp. 486—487 ]. 

In the seventies Klein wrote a number of papers on multidimensional 

geometry. That of 1876, in which he showed that a closed curve with corners 

in three-dimensional space can be freed of corners in four-dimensional space, 

prompted the German astronomer and physicist Е. Zéllner to make his 

notorious “attempt to enlist the aid of spirits for an experimental verification 
of this fact.” 1 

The Terminology of Multidimensional Geometry 

Modern geometric terminology first appeared in a paper by the Italian 

geometer Enrico Betti (1823—1892), On spaces of an arbitrary number of 

dimensions (Sopra gli spazi di un numero qualunque di dimension. Milan, 

1871) [55, vol. 2, pp. 273-290], that played an important role in the history 

of topology. Betti’s paper opens with the following words: 

Let z,, Z2, ..., Z, be и variables that can take on all real values from 

—oo to +00. We will call the n-ply infinite field of systems of values 

of these variables a space of n dimensions and denote it by S,. A system 

(20,20,...,20) will define a point Го of this space; we will call z?, z3,..., 

z° the coordinates of this point. A system of т equations will determine 

a field of systems of values of n — m independent variables that will be 

a space S,_,, of that number of dimensions contained in S,. We will 

call a space of just one dimension, forming a simple infinity, a Лие [55, 

VOL Le pees i. 

One year later this terminology was taken over by the French mathe- 

matician Camille Jordan (1838—1922) in the note Essay on the geometry of п 

dimensions (Essai sur la géométrie а п dimensions. Paris, 1872) [251, vol. 3, 

pp. 3—5] soon to appear in enlarged form as a paper with the same title /251, 

vol. 3, рр. 76-149]. At the beginning of both papers it is stated that 

We will consider a point of a space of и dimensions that which is 

determined by и coordinates x,, x2, ..., X, [251, vol. 3, рр. 3, 79]. 

Unlike Betti, for whom the space 5, and its subspaces S,_,, were arbitrary 

1This attempt is described by Klein in Lectures on the development of mathematics in the 

19th century [283, рр. 169—170] and by Engels in the paper Natural science in the world of spirits 

in his Dialectic of nature [169, pp. 50-61]. 
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manifolds, Jordan defines multidimensional Euclidean space and its planes: 

A linear equation between the coordinates determines a plane, k 

consistent linear equations, a k-plane; n — | equations, a straight line. 

The distance between two points will be ER — x)? +... (251, vol. 3, 

РВ 

This terminology coincides with the modern terminology except for the 

term k-plane, which now stands for a k-dimensional rather than an (и — k)- 

dimensional plane. We note that after analyzing the conditions of parallelism 

and perpendicularity of planes and transformations of coordinates, Jordan 

finds in this paper the metric invariants of a k-plane and an /-plane— 

stationary angles and smallest distances between planes. He defines stationary 

angles as follows: 

A system consisting of a k-plane P, and an /-plane P, passing through a 

point of the space has p different invariants, where p is the smallest of 

the numbers k, 1, n —k, n —1. These invariants can be regarded as 

angles between the multidimensional planes (multiplans) /25/, vol. 3, 

pp. 4, 110]. 

Jordan defines the squares of the cosines of these angles as the eigenvalues of 

a certain matrix of order р. Here he also finds the canonical form of a rotation 

of n-dimensional space / 251, vol. 3, р. 128]. 

Algebraic Manifolds 

In the seventies of the last century there arose a special branch of multi- 

dimensional geometry, namely the geometry of algebraic manifolds (surfaces) 

in multidimensional spaces. This theory was a generalization of the theory of 

algebraic curves in the complex plane that arose in the first half of the 19th 

century. Whereas Newton, in Enumeration of curves of the third order [388], 

and Euler, in volume II of Jntroduction to infinitesimal analysis [176, vol. 9, 

pp. 122—155], classified curves of the third and fourth orders in the real plane, 

Plucker, in Theory of algebraic curves (Theorie der algebraischen Curven. 

Bonn, 1839) [430], constructed a theory of algebraic curves of all orders in 

the complex projective plane. In addition to the usual “‘point”’ equations of 

curves Plucker introduced tangential equations of curves: since the equation 

of a straight line in the projective plane is 

Up Xo + их, НЕ И›Х› = 0, 

the numbers uy, u,, “2, can be viewed as coordinates of a straight line и in the 

projective plane, and an equation 

P(Up, и! , и) = 0, 

which determines a one-parameter family of straight lines, can be viewed as 
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the equation of the envelope of this family of straight lines. The equation is 

called a tangential equation for it defines a curve in terms of its tangents rather 

than in terms of its points. The degree of the point equation of a curve is called 

its order, and the degree of its tangential equation is called its class. Pliicker 

showed that in the complex projective plane the order n of a curve, its 

class т, the number д of its double points, the number к of its recurrence 

points, the number 7 of its double tangents, and the number т of its inflection 

points—in the absence of other singularities—are connected by the ‘‘Pliicker 

formulas” 

m=n(n—1)—26—3k, n=m(m-— 1) — 21 — 3t, 

т = 3n(n — 2) — 66 — 8k, Kk = 3m(m — 2) — 61 — Bt. 

By comparing the number of parameters the curve depends on with the 

number of constants in its equation Pliicker discovered a number of errors 

Euler had made in his classification of curves of the fourth order. 

In The theory of Abelian functions (Theorie der Abelschen Functionen. 

Gottingen, 1857) [454, рр. 88-142] Riemann introduced an important 

characteristic of plane algebraic curves that he denoted by the letter p. Alfred 

Clebsch (1833—1872), in the paper On plane curves whose coordinates are 

rational functions of one parameter (Uber diejenigen ebenen Curven deren 

Coordinaten rationale Functionen eines Parameters sind. Berlin, 1865) [118] 

called p the genus (Geschlecht) of a curve. Riemann showed that for p = 0 

the coordinates of a curve can be expressed by means of rational functions of 

one parameter; for p = 1 they can be expressed by means of elliptic integrals, 

and for p> 1 they can be expressed by means of hyperelliptic abelian 

integrals. For p = 0 the curves are called unicursal, for they can be drawn in 

the projective plane with one stroke of the pen, and for р = 1 they are called 

elliptic or bicursal. 

In the paper On singularities of algebraic curves (Uber die Singularitaten 

algebraischer Curven. Berlin, 1965) [119] Clebsch showed that in the case of 

curves for which the Pliicker formulas hold, the genus p and the numbers n, 

т, д, к, 1, and т are connected by the relation 

(n — 1)( — 2) Ши. 
= 5 6-K= 5 

Of other papers on the theory of plane curves we mention that of Gustav 

Roch (1839—1866) On the number of arbitrary constants in algebraic functions 

(Uber die Anzahl der willktrlichen Constanten in algebraischen Functionen. 

Berlin, 1864) [458] in which Roch, in the course of developing the ideas of 

Riemann’s Theory of Abelian functions, proved what is known as the Riemann- 

Roch theorem. 

Significant results in the theory of algebraic surfaces of three-dimensional 

complex projective space were obtained by Max Noether (1844—1921) in On 

the theory of univalent correspondence of algebraic configurations (Zur Theorie 
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des eindeutigen Entsprechens algebraischer Gebilde. Leipzig, 1870—1875) 

[390] and in other papers, of which we mention Extension of the Riemann- 

Roch theorem to algebraic surfaces (Extension du theoréme de Riemann- 

Roch aux surfaces algébriques. Paris, 1886) [391], by Federigo Enriques 

(1871-1946) in Introduction to geometry on algebraic surfaces (Introduzione 

alla geometria sopra le superficie algebraiche. Rome, 1896) [171], and Бу 

Francesco Severi (1879—1961) in many papers generalized in the Treatise on 

algebraic geometry (Trattato di geometria algebraica. Bologna, 1926) /525/. 

Of Severi’s papers we mention the article On the Riemann-Roch theorem 

and on continuous families that belong to algebraic surfaces (Sul teorema 

de Riemann-Roch e sulle serie continue appartenenti ad una superficie 

algebraica. Turin, 1905) /526 ] devoted to further generalization of Riemann- 

Roch theorem. Of the many papers on multidimensional algebraic mani- 

folds we mention the article of the famous chess master Emmanuel Lasker 

(1868—1941) On the theory of modules and ideals (Zur Theorie der Moduln 

und Ideale. Leipzig, 1905) [306 ] in which he gave a criterion for when a given 

algebraic equation is one of the equations of an algebraic manifold. 

Enumerative geometry is a branch of mathematics that goes back to 

Pliicker’s method of counting the number of parameters of algebraic curves 

and their equations. It was founded by Hermann Schubert (1848—1911) 

in Calculus of enumerative geometry (Kalkiil der abzahlenden Geometrie. 

Leipzig, 1879) [514], Schubert also.extended these methods to multidimen- 

sional geometry in the paper n-dimensional generalizations of the fundamental 

numerical characteristics of our space (Die n-dimensionalen Verallgemeine- 

rungen der fundamentalen Abzahlen unseren Raumes. Leipzig, 1886) [515]. 

In this paper Schubert showed, among other things, that the dimension of a 

Grassmann manifold, that is, the manifold of all m-dimensional planes of 

n-dimensional space, is (т + 1)(m — т), and enumerated the dimensions of 

the so-called Schubert manifolds—manifolds of planes whose intersections 

with a nested system of fixed planes have prescribed dimensions (such a 

system of planes is now called a flag). Schubert’s work was continued by 

the geometer and historian of mathematics Hieronymus Georg Zeuthen 

(1839—1920) in his Textbook of enumerative methods of geometry (Lehrbuch 

der abzahlenden Methoden der Geometrie. Leipzig, 1914) [647]. The princi- 

ples of enumeration of parameters, not adequately justified by Schubert 

himself, were justified by topological methods by Bartel Lendert van der 

Waerden (b. 1903) in the Topological foundatians of enumerative geometry 

(Topologische Begrtiindung der abzahlenden Geometrie. Leipzig, 1929) 
[609]. 

By the end of the 19th century the idea of multidimensional space had 

become an integral part of mathematics. In this connection we quote the 

opening words of Henri Poincaré’s famous memoir Analysis situs (Paris, 
1895), devoted to combinatorial topology: 

Geometry of n dimensions is concerned with the investigation of 

reality; no one doubts this. Bodies in hyperspace are carefully defined 
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just as bodies in ordinary space and while we cannot represent them we 

can imagine and study them. And, whereas, say, mechanics of more 

than three dimensions must be considered pointless, the position of 

hypergeometry is completely different. ” 

Indeed, the aim of geometry isnot only the direct description of 

bodies apprehended by our sense organs: above all, it is the analytic 

investigation of a certain group, and, consequently, nothing prevents us 

from studying other groups that are analogous and more general. 

But immediately there arises the question: should we replace the 

language of analytic investigation by the language of geometry which 

loses all its advantages as soon as the possibility of using the senses has 

vanished? It turns out that this new language is more accurate; also, the 

analogy with ordinary geometry can give rise to fruitful associations of 

ideas and suggest useful generalizations /431, vol. 6, р. 193].? 

Axiomatics of Euclidean Space 

The broad view of space that marked the end of the 19th century called 

for the elaboration of a firm logical basis for Euclidean space as well as its 

various generalizations. The first such attempt was made by Moritz Pasch 

(1843—1930) in Lectures on modern geometry (Vorlesungen Uber neuere 

Geometrie. Leipzig, 1882) [408 ]. Of other relevant works one should mention 

two books by Giuseppe Peano (1858—1932), Geometric calculus according 

to Grassmann’s Ausdehnungslehre preceded by an exposition of the opera- 

tions of deductive logic (Calcolo geometrico secondo |’ Ausdehnungslehre di 

Grassmann preceduto dalle operazioni della logica deduttiva. Turin, 1888) 

[410] and Logical exposition of the foundations of geometry (I principii di 

geometria logicamente espositi. Turin, 1889) [411], and the book of Peano’s 

student Mario Pieri (1860—1913) entitled On elementary geometry as a 

hypothetical deductive system (Della geometria elementare come sistema 

ipotetico deduttivo. Turin, 1899) [420]. Pasch’s book, the second of the books 

by Peano just mentioned, and Pieri’s book are devoted to the axiomatics of 

three-dimensional Euclidean space, whereas the first of the two Peano books, 

based on Grassmann’s Ausdehnungslehre, contains an axiomatization of n- 

dimensional linear space. 

David Hilbert’s (1862—1943) The foundations of geometry (Grundlagen der 

Geometrie. Leipzig, 1899) [229; 230] was the most popular work on problems 

of axiomatics to appear at the end of the 19th century. Hilbert defines 

three-dimensional Euclidean space simply as a set of elements of arbitrary 

nature subdivided into three systems. Hilbert writes: 

Let us consider three distinct systems of things. The things composing 

the first system, we will call points and designate them by the letters A, 

2 What Poincaré meant by “reality” is discussed оп рр. 268—270. 
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B, C, ....; those of the second, we will call straight lines and designate 

them by the letters a, В, c, ....; and those of the third system, we will 

call planes and designate them by the Greek letters a, B, y,.... The points 

are called the elements of linear geometry; the points and straight lines, 

the elements of plane geometry; and the points, lines, and planes, the 

elements of the geometry of space or the elements of space [229, p. 3]. 

Then Hilbert states that points, straight lines, and planes are thought of as 

subject to certain relations called lying on, between, congruent, parallel, and 

continuous. A precise, and for mathematical purposes complete, description 

of these relations is obtained by means of axioms of geometry that Hilbert 

divides into five groups: 

I, 1-8. Axioms of incidence. 

II, 1-4. Axioms of order. 

Ш, 1-5. Axioms of congruence. 

IV. Axiom of parallels. 

У, 1-2. Axioms of continuity [229, р. 3; 230, р. 2]. 

The incidence axioms define the relation “а point lies оп a straight Ппе,” 

“а point lies on a plane,” and so on. The order axioms define the relation 

“а point lies on a straight line between two points” by means of which one 

defines a segment of a straight line with given endpoints. Here is also included 

Pasch’s axiom: if A, B, C are three points that do not lie on the same straight 

line and ais a straight line in the plane ABC that does not pass through any 

of the points A, B, C, then, if a passes through one of the points of the segment 

AB, it must also pass through one of the points of the segment AC or one of 

the points of the segment ВС.3 The congruence axioms define the relation 

of congruence of segments and angles. The parallel axiom is equivalent 

to Euclid’s postulate У (= Euclid’s parallel postulate).* One of the two 

continuity axioms is Archimedes’ axiom, which states that for any two 

segments there is a natural number и such that if we lay off the smaller segment 

n times then we obtain a segment larger than the larger segment; the second 

is Cantor’s axiom, which states that every nested sequence of intervals has a 

common point.* 

Weyl’s Axiomatics of n-Dimensional Euclidean Space 

A well-known axiomatics of n-dimensional Euclidean space was given by 

Hermann Weyl (1885—1955), who worked in Switzerland, Germany, and 

3 This axiom was first stated explicitly by Pasch in the book /408/. 

Scop eso Е 

5 Archimedes’ axiom was formulated by him in the treatise On the sphere and cylinder [24, p. 5], 

but it appears earlier (in a slightly different form) as definition 4 of book V of Euclid’s Elements 

[173, vol. 2, p. 120]. Since book V is a reworked version of one of the works of Eudoxus, 

Archimedes’ axiom is sometimes called the Eudoxus-Archimedes axiom. Cantor’s axiom was 

formulated by him in the paper /86/. 
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the United States of America, contained in his book Space-Time-Matter 

(Raum-Zeit-Materie. Berlin, 1918) /626/. Weyl added to Peano’s axioms of 

n-dimensional linear space axioms that deal with the connection between 

points and vectors and axioms of an innef product. His undefined terms are 

vector and point. Vectors are subject to the following axioms: 

1. Vectors 

Two vectors a and b uniquely determine a vector а + bas their sum. 

A number / and a vector a uniquely define a vector да, which is “А 

times а” (multiplication). These operations are subject to the following 

laws:— 

(a) Addition— 

(1) a+b=b +a (Commutative Law). 

(2) (a+b) +c =a+ (b+ с) (Associative Law). 

(3) If a and с are any two vectors, then there is one and only one 

value of x for which the equation a + x = c holds. It is called 

the difference between с and a and signifies с — a (Possibility 

of Subtraction). 

(В) Multiplication— 

(1) (A+ pa = (Aa) + (a) (First Distributive Law). 

(2) 1(иа) = (Яма (Associative Law). 

(3), Ja =a, 

(4) A(a + b) = (Aa) + (Ab) (Second Distributive Law) /626, р. 17]. 

Wey] observes that for rational multipliers А and и the laws (В) follow from 

the axioms of addition provided that multiplication by such multipliers is 

defined by means of addition. Then one can use the principle of continuity 

to extend multiplication by rational multipliers to multiplication by arbitrary 

real multipliers. However, Weyl prefers to introduce separate multiplication 

axioms 

because they cannot be derived in the general form from the axioms of 

addition by logical reasoning alone /626, р. 17]. 

Wey! points out that 

By refraining from reducing multiplication to additon we are enabled 

through these axioms to banish continuity, which is so difficult to fix 

precisely, from the logical structure of geometry /626, р. 17-18]. 

After defining linear dependence and independence of vectors Weyl 

formulates the Axiom of Dimensionality (y) in the form: 

There are и linearly independent vectors, but every п + 1 are linearly 

dependent on one another /626, p. 19/. 

Further Weyl formulates axioms about the connection between points and 

vectors: 
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2. Points and Vectors 
1. Every pair of points A and B determines a vector a; expressed 

symbolically AB =a. If A is any р. point and a any vector, there is one 

and only or one point J B for which Aj AB =a. 

2. If AB = a, ВС =b, then AC = a+ b /626, р. 18]. 

The set of points and vectors satisfying Weyl’s axioms I and П II form an 

n-dimensional affine space E,,. The points B for which the vector ABisa linear 

combination of m linearly independent vectors form an m-dimensional plane; 

Гог т = 1 they form a straight line. 

To obtain n-dimensional Euclidean space R, Weyl adds the following 

axiom: 

METRICAL Axiom: If a unit vector e, differing from zero, be chosen, 

every two vectors x and у uniquely determine a number (x, у) = Q(x, у); 

the latter, being dependent on the two vectors, is a symmetrical bilinear 

form. The quadratic form (x, x) = Q(x) which arises from it is positive 

definite. O(e) = 1. 

We shall call О the metrical groundform. We then have that an affine 

transformation which, in general, transforms the vector x into x’ is a 

congruent one if it leaves the metrical groundform unchanged:— 

Q(x’) = Q(x) 

Two geometrical figures which can be transformed into one another by a 

congruent transformation are congruent [626, р. 28]. 

The fact that the inner product is a bilinear form implies that 

(Aa, b) = A(a, b), (a + a’,b) = (a,b) + (a’,b) 

(and similarly for the second factor) and that one has the commutative law 

(a,b) = (b, a). 

The form Q(x,y) can be used to define the /ength of a vector a as 

|а| = ./Q(a), the distance between points A and В as the length of the vector 

AB, and the angle ф between vectors a and b as the number 

(a, b) 

|a| |b” 
OS @~ = 

If in Weyl’s axiomatics we require only that the form Q(x) is a nonsingular 

form of index / (instead of requiring it to be positive definite), that is, if we 

stipulate that among n basis vectors e; satisfying the orthogonality condition 

(e;,e;) = 0 for i #7 there are / vectors e, with Q(e,) > 0 and п — / vectors e,, 

with Q(e,,) <0, then we obtain an axiomatic definition of n-dimensional 

pseudo-Euclidean space 'R,, of index 1. In the previous chapter we considered 

the special case и = 3, [= 2, of such a space (we saw that one model of 

the Loba¢evskian plane is a sphere of imaginary radius in this space with 
identified antipodal points). 
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Spacetime of the Special Theory of Relativity as a 

Pseudo-Euclidean Space 

In Chapter 6 we mentioned that pseudo-Euclidean space appeared for the 

first time in connection with the special theory of relativity in the papers of 

Poincaré and Minkowski. 

The special theory of relativity was founded by Einstein in the paper 

On the electrodynamics of moving bodies (Zur Electrodynamik der bewegter 

Korper. Leipzig, 1905) [340, pp. 37—65]. After analyzing the electromagnetic 

phenomena associated with a moving conductor and a stationary magnet 

as well as a stationary conductor and a moving magnet, and the famous 

Michelson experiment that aimed to determine the absolute motion of the 

earth, Einstein arrived at the following conclusion: 

Examples of this sort, together with the unsuccessful attempts to 

discover any motion of the earth relatively to the “light medium,” 

suggest that the phenomena of electrodynamics as well as of mechanics 

possess no properties corresponding to the idea of absolute rest. They 

suggest rather that, as has already been shown to the first order of small 

quantities, the same laws of electrodynamics and optics will be valid for 

all frames of reference for which the equations of mechanics hold good. 

We will raise this conjecture (the purport of which will hereafter be 

called the “‘Principle of Relativity”’) to be status of a postulate, and also 

introduce another postulate, which is only apparently irreconcilable 

with the former, namely, that light is always propagated in empty space 

with a definite velocity c which is independent of the state of motion of 

the emitting body /340, pp. 37-38]. 

From this Einstein concluded that upon transition from one inertial 

coordinate system to another the space coordinates x, y, z and the time 

coordinate ¢ transform linearly, and that in the case of motion along the 

Ox-axis with velocity v this transformation can be written as 

И 
о ® 

4 — UL (G 
А ga a ee ee ee CTD) 

2 7 

1 ва 1 в 
с? с? 

(Here с stands for the velocity of light; although Einstein denoted the velocity 

of light by V in the previously mentioned paper he replaced V by c in the 

subsequent papers.) 

These transformations are called Lorentz transformations for the Dutch 

physicist Hendrik Antoon Lorentz (1853—1928), who first introduced such a 

transformation in the paper Electromagnetic phenomena in a system moving 

with any velocity smaller than that of light (Amsterdam, 1904) [340, pp. 1-36]. 

Almost simultaneously Poincaré advanced similar ideas in the paper On 
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the dynamics of the electron (Sur la dynamique de l’electron. Palermo, 1906) 

[431, vol. 9, pp. 494-550]. Referring to the experiments of Fresnel and 

Michelson, Poincaré, like Einstein, arrived at the following conclusion: 

It appears that the impossibility of demonstrating experimentally 

absolute motion of the earth is a law of nature; we essentially are led to 

accept this law, which we will call the relativity postulate, and to accept 

it unconditionally /431, vol. 9, р. 494]. 

Although he did not penetrate as deeply as Einstein into the laws of physics, 

Poincaré in this paper formulated a number of important mathematical 

results: he showed that 

the Lorentz transformations form a group [431, vol. 9, р. 514] 

and gave it the now universally accepted name the Lorentz group, and he then 

defined what we now call pseudo-Euclidean space: 

We will regard 

x, pie, 

Ox, ду, 92, Ot./ —1, 

0,X, 0, y, 0,2, 0,t,/—1 

as the coordinates of three points P, P’, P” in four-dimensional space. 

It is easy to see that the Lorentz transformations represent just 

rotations in this space about the origin regarded as fixed /431, vol. 9, 

p. 542]. 

In chapter 6 we saw that, essentially, when he considered Lobaéevskian 

geometry on a hyperboloid in the paper On the fundamental hypotheses of 

geometry (1887) (431, vol. 11, рр. 79-91], Poincaré considered a pseudo- 

Euclidean space in which this hyperboloid played the role of a sphere of 

imaginary radius. Be that as it may, in Science and hypothesis (1906) Poincaré 

pointed out that in addition to Euclidean, Lobaéevskian, and elliptic ge- 

ometries there is a “fourth geometry,” which is readily seen to be pseudo- 

Euclidean geometry. While mentioning “hidden axioms” Poincaré wrote: 

Among these implicit axioms there is one which seems to merit some 

attention, because when it is abandoned a fourth geometry can be 

reconstructed as coherent as those of Euclid, Loba¢éevskii and Riemann. 

To prove that a perpendicular may always be erected at the point A 

to a straight [line] АВ we consider a straight [line] coincident with the 

fixed straight [line] АВ, and we make it turn about the point А until it 

comes into the prolongation of AB. 

Thus two propositions are presupposed: First that such a rotation is 

possible, and next that it may be continued until the two straight [lines] 

come into the prolongation one of the other. 

If the first point is admitted and the second rejected, we are led to a 
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Figure 97 

series of theorems even stranger that those of Lobaéevskii and Riemann, 

but equally exempt from contradiction. 

Г shall cite only one of these theorems and that not the most singular: 

A real straight [line| may be perpendicular to itself [433, р. 62]. 

In Chapter 9 we shall see that the notion of pseudo-Euclidean space, 

ruled out by his hypothesis IV, is already found in the work of Helmholtz 

(see pp. 336-337). 

Another mathematician who arrived at the idea of the spacetime of the 

special theory of relativity was Hermann Minkowski. In his paper Time and 

space (Zeit und Raum. Leipzig, 1909) [340, pp. 73—91] Minkowski wrote: 

The world-postulate permits identical treatment of the four co- 

ordinates x, у, 2, 1. By this means, as I shall now show, the forms in which 

the laws of physics are displayed gain in intelligibility. In particular the 

idea of acceleration acquires a clear-cut character. 

I will use a geometrical manner of expression, which suggests itself 

at once if we tacitly disregard z in the triplex x, y, z. I take any 

world-point О as the zero-point of spacetime. The cone c?t? — x? — 

у? — 22 =0 with apex О (Figure 97) consists of two parts, one with 
values ¢t < 0, the other with values 1 > 0. The former, the front cone of 

О, consists, let us say, of all the world-points which “send light to О,” 

the latter, the back cone of O, of all the world-points which ‘“‘receive 

light from O.” The territory bounded by the front cone alone, we may 

call “‘before’’ О, that which is bounded by the back cone alone, “‘after” 

O. The hyperboloidal sheet already discussed 

Е = СР — x? —y*—27?=1, t>0 

lies after O. The territory between the cones is filled by the one-sheeted 

hyperboloidal figures 

—F=a=x7?4+y42—-C?P =k? 

for all constant positive values of k. We are specially interested in the 
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hyperbolas with О as centre, lying on the latter figures. The single 

branches of these hyperbolas may be called briefly the internal hyper- 

bolas with centre O. One of these branches, regarded as a world-line, 

would represent a motion which, for t= —oo and t= +0, rises 

asymptotically to the velocity of light, с. 

If we now, on the analogy of vectors in space, call a directed length 

in the manifold of x, у, 2, Га vector, we have to distinguish between the 

time-like vectors with directions from О to the sheet + F = 1, t > 0, and 

the space-like vectors with directions from O to —F = 1. The time axis 

may run parallel to any vector of the former kind. Any world-point 

between the front and back cones of O can be arranged by means of the 

system of reference so as to be simultaneous with O, but also just as well 

so as to be earlier than O or later than O. Any world-point within the 

front cone of O is necessarily always before O; any world-point within 

the back cone of O necessarily always after О /340, pp. 83-84]. 

Poincaré’s paper On the dynamics of the electron appeared in a specialized 

mathematical journal, and for a long time physicists had no knowledge of 

it. This explains why the four-dimensional pseudo-Euclidean space which 

models the spacetime of the special theory of relativity is often referred to as 

Minkowskian space rather than, more appriopriately, Poincaré space. 

4 

Poincaré’s Philosophy of Space 

In this book we come across the work of Poincaré on three main occasions. 

In chapter 6 he appears as the author of two models of Lobacevskian 

geometry, in chapter 8 he is mentioned in connection with the part he played 

in the creation of topology, and in this chapter he appears in connection with 

his part in the evolution of the theory of relativity. Poincaré was one of the 

greatest mathematicians, mechanists, and astronomers of the end of the 19th 

and the beginning of the 20th century. In his books Science and hypothesis 

(La science et ’hypothése. Paris, 1906) /433, pp. 1-197] and The value of 

science (La valeur de la science. Paris, 1913) [433, рр. 199-355] Poincaré 

also considered a number of philosophical questions pertaining to space. 

Poincaré’s philosophical views are very close to those of Mach. 

We mentioned that in the paper On the dynamics of an electron Poincaré 

arrived at a “relativity principle” very close to the relativity principle of 

Einstein. After this, in Science and hypothesis and in The value of science, 

Poincaré began to treat the relativity of space and time in a philosophical 

sense. In particular, in Science and hypothesis he wrote: 

Another frame that we impose on the world is space. Whence come 

the first principles of geometry? Are they imposed on us by logic? 

Lobacevskii has proved not, by creating non-Euclidean geometry. Is 
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space revealed to us by our senses? Still no, for the space our senses could 

show us differs absolutely from that of the geometer. Is experience the 

source of geometry? A deeper discussion will show us it is not. We 

therefore conclude that the first principles of geometry are only сопуеп- 

tions, but they are not arbitrary, and if we transferred to another world 

(that I call the non-Euclidean world and seek to imagine) then we should 

have been led to adopt others. 

In mechanics we should be led to analogous conclusions and should 

see that the principles of this science, though more directly based on 

experiment, still partake of the conventional character of the geomet- 

rical postulates /433, р. 29]. 

At the end of his paper On the fundamental hypotheses of geometry quoted 

previously Poincaré wrote: 

The fundamental hypotheses of geometry are not facts based on 

experiment. Rather, observation of certain physical phenomena makes 

us choose these very hypotheses out of all possible ones. 

On the other hand, the collection we choose is simply more con- 

venient than others and we cannot claim that Euclidean geometry is true 

and Lobacevskian geometry is false any more than we can say that 

Cartesian coordinates are true and polar coordinates are false [431, 

bol ЕТО, 

In The value of science Poincaré wrote: 

Next must be examined the frames in which nature seems enclosed 

and which are called time and space. In “Science and Hypothesis” I 

have already shown how relative their value is; it is not nature which 

imposes them upon us; it is we who impose them upon nature because 

we find them convenient. But I have spoken of scarcely more than space, 

and particularly qualitative space, so to say, that is of the mathematical 

relations whose aggregate constitutes geometry. I should have shown 

that it is the same with time as with space and still the same with 

“qualitative space’; in particular I should have investigated why we 

attribute three dimensions to space /433, р. 207]. 

We note that, as he explains later, by “qualitative space” Poincaré means 

topology. Then Poincaré defines space and time as a peculiar “language” of 

science: 

... without this language most of the ultimate analogies of things would 

have remained forever unknown to us; and we should forever have been 

ignorant of the internal harmony of the world which is, we shall see, the 

only true objective reality /433, р. 207]. 

However, by “‘objective reality’ Poincaré means not what exists outside 

human cognition but, on the contrary, human sensations: 
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Does the harmony the human intelligence thinks it discovers in 
nature exist outside of this intelligence? No, beyond doubt a reality 

completely independent of the mind which conceives it, sees or feels it, 

is an impossibility. A world as exterior as that, even if it existed, would 

for us be forever inaccessible. But what we call objective reality is, in 

the last analysis, what is common to many thinking beings, and could 

be common to all, this common part, we shall see, can only be the 

harmony expressed by mathematical laws. It is this harmony then which 

is the sole objective reality, the only truth we can attain /433, р. 209]. 

We see that Poincaré considers space and time as well as all laws of nature as 

mere symbols created by men for their convenience. This explains the sharp 

critique of the philosophical works of Poincaré in V. I. Lenin’s Materialism 

and empiriocricitism [316, p. 148]. 

We see that at the beginning of the 20th century Poincaré came close to 

the greatest discoveries in physics. Undoubtedly, what prevented him from 

making these discoveries was his philosophical bias. 

The Special Theory of Relativity and Lobaéevskian Geometry 

The application of Lobaéevskian geometry to problems of the special theory 

of relativity is based on the fact that, as we saw, the spacetime of special rela- 

tivity is a four-dimensional pseudo-Euclidean space, and three-dimensional 

Loba¢cevskian space can be regarded as a sphere of imaginary radius in that 

space with identified antipodal points. As noted already by Poincaré, the 

Lorentz transformations of spacetime can be interpreted as rotations of 

pseudo-Euclidean space, so that the group of Lorentz transformations is 

locally isomorphic to the group of motions of three-dimensional Lobaéev- 

skian space. 

The direct connection between Lobacevskian geometry and special relativity 

was established by the German physicist Arnold Sommerfeld (1868—1951) in 

the paper On the composition of velocities in relativity theory (Uber die 

Zusammensetzung der Geschwindigkeiten in der Relativtheorie. Leipzig, 1909) 

[548]. 
This connection can be obtained as follows. Let a material particle move 

in the direction Ox, of some coordinate system moving rectilinearly and 

uniformly. This motion can be described by a graph (Figure 98) in the plane 

x, Ox, which can be thought of as the pseudo-Euclidean plane 'R,(x4 = сд. 

The velocity of this particle is v = = se. The differential dx, is опа 
4 

spacelike line and the differential dx, is on a timelike line. Therefore the length 

of the differential dx, is real and the length of the differential dx, is imaginary 

and equal to idx,. The tangent of the angle between the tangent to our curve 

and the Ox,-axis is imaginary and equal to idx,/dx,. This angle is imaginary 
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Figure 98 

and we denote it by ф = iw. Therefore 

sin isinh И] 

cos@  coshyw dx; 

and the velocity of the particle is 

dx 
v =c—— =ctanhy Я) 

aX, 

The relation (7.2) is invariant under a transition from one coordinate 

system to another which moves with respect to the first system with constant 

velocity v along the Ox,-axis provided that the origins of the two systems 

coincide at ¢ = 0 (Figure 99). In that case the Lorentz transformation (7.1) is 

of the form 

x; = x,coshy — x,sinhy, ао. 

x4, = —x,sinhwy + x,coshy. 

The formula (7.2) shows that the velocity of a particle in a coordinate 

system is determined by the angle between the tangent to the world line 

described by this particle and the time axis of the system. Therefore the 

velocity of the motion of a coordinate system moving rectilinearly and 

uniformly relative to another such system is determined by the angle ф = iw 

between the time axes of these systems. If we imagine a hemisphere of radius 

iin the space 'R,, then these axes define two points on this hemisphere 

whose spherical distance is у. But this hemisphere can be considered as the 

Lobaéevskian space 1S, with curvature —1. 

Let us consider two coordinate systems with the time axes represented by 

the points A and В of the Loba¢éevskian space 'S, and a moving particle 

with a tangent to its world line represented by the point M of that space 

(Figure 100). Then the velocities of the particles in these systems are connected 

with the distances y, = АМ, у, = BM by the relations 

2; = ctanhy;; v, = ctanhy, (7.3) 
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Figure 100 

and the velocity of the second system relative to the first one is connected 

with the distance у: AB by the relation (7.1). 

Let us consider the triangle ABM in the space 'S,. Then the angle between 

the velocities v and v, is equal to the angle adjacent to the angle B of this 

triangle. The law of cosines for the triangle ABM has the form 

coshy, = coshw cosh у, — sinhw sinh, cos(z — «) 

= coshwcoshw, + sinh у sinh Ч, cos «. 

In view of (7.1) and (7.2) we have 

@ С С 

This yields the following formula for addition of velocities in the special 

theory of relativity: 

Uv, 
1+ —5 COS o 

С 

Although Sommerfeld established the connections between the formula for 

the addition of velocities in the theory of relativity and the trigonometric 

formulas for hyperbolic functions he was not aware that these formulas are 

formulas of Lobacevskian geometry. This was shown by the Yugoslav 

geometer Vladimir Vari¢ak (1865—1942) in the paper On the non-Euclidean 

interpretation of the theory of relativity (Uber die nichteuklidische Inter- 

petation der Relativtheorie. Leipzig, 1912) [601] (see also his book Repre- 

sentation of the theory of relativity in three-dimensional Lobaéevskian space 

(Darstellung der Relativitatstheorie im dreidimensionalen Lobatschefski- 

jschen Raume. Zagreb, 1924) [600]. The geometry of Lobaéevskian three- 

space has been applied, respectively, to problems of relativistic physics and 
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kinematics by N. A. Cernikov in Lectures on Lobaéevskian geometry and 

the theory of relativity (Lekcii po geometrii Lobaéevskogo i teorii otnosi- 

tel’nosti. Novosibirsk, 1965) / 110] and by Yakov Abramovié Smorodinskii 

(b. 1917) in Kinematics of collisions presented geometrically (Kinematika 

stolknovenii у geometri¢eskom izlozenii. Yerevan, 1963) /543/. 

Infinite-Dimensional Spaces 

At the end of the 19th century mathematicians had become so used to the 

notion of a multidimensional space that they posed the question of defining 

an infinite-dimensional space. In the paper Remarks on the geometry of a 

function space (Cenno sulla geometria dello spazio funzionale. Palermo, 

1896—1897) [423, vol. 1, pp. 368-377], in which he generalized his recent 

work, the Italian mathematician Salvatore Pincherle (1853—1936) wrote as 

follows: 

In some of my recently published papers I introduced a notion that can 

be conveniently regarded in many investigations of analysis as the 

totality of analytic functions of one variable or, for greater definiteness, 

as the totality of series of positive integer powers of x—a totality, or 

space, of which every series is an element. Such a manifold, which 

obviously has an infinite number of dimensions, may be called a 

function space. Every power series in x is a point of this space and the 

coefficients of the series can be regarded as the coordinates of this point 

[423, vol. 1, р. 368] (see also [360, р. 75]). 

Pincherle also considered linear operators on his “functional space” and, 

among other things, showed that in that space, the role played in finite- 

dimensional spaces by the discrete set of eigenvalues of a linear operator 

is played by a continuous set of values now known as the spectrum of a linear 

operator. 

An important class of infinite-dimensional spaces that can be regarded as 

a direct multidimensional analogue of Euclidean space was introduced into 

mathematics by Hilbert and is now known as the class of Hilbert spaces. 

In a series of papers entitled Foundations of a general theory of linear integral 

equations (Grundziige einer allgemeinen Theorie der linearen Integralglei- 

chungen. Gottingen, 1904—1910) /227] Hilbert proposed that an integral 

equation 

b 

f(s) = p(s) + | K(s, фа 

be regarded as the limiting case of systems of linear equations 

ар =Х, + о ЯЧраХа (7.4) 
q 
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as the number of variables x, tends to infinity, Hilbert generalized his own 

and his students’ work in а monograph of the same title (Leipzig, 1912) [228]. 

In connection with the investigation of infinite systems of the form (7.4) 

Hilbert also considered linear forms L(x) = ).,/,x, in infinitely many vari- 

ables x, such that the series }’,/7 converges and called the convergence 

condition the condition of boundedness of the form L(x). Hilbert regarded 

the coefficients /,, as well as the variables x,, subject to the convergence of 

the series )°, x2, as coordinates of “‘infinite-dimensional vectors” for which 

he introduced an inner product (u,v) = )\,u,v,, as well as orthogonal 

transformations x), = )\4 OpqXq- 
Hilbert linked ‘‘infinite-dimensional vectors”? to continuous functions by 

looking at the coordinates a, as Fourier coefficients of a continuous func- 

tion f(s) with respect to functions Ф, (5), ®,(s), ... that form, as he put it, а 

“complete orthonormal system” on an interval a < 5 < b. By the orthog- 

onality condition Hilbert meant the conditions 

: 0 
| ®,(s)®,(s) ds = | 

а 

(p#4Qq), 

(p=), 

and by the completeness condition he meant the condition 

By tk u(s)®,(s) aw) = ib [u(s)]? ds. (75) 

Hilbert wrote the Fourier coefficients of a function f(s) with respect to 

the ‘orthonormal system of functions” in the form 

b 
ap = | I (s)®,(s) ds. (7.6) 

Thus Hilbert actually considered two models of denumerably infinite- 

dimensional linear space, now denoted by /? and L?, respectively. The space 
1? consists of sequences of numbers и, such that У`, и? < co with the inner 
product (и, о) given above, and the space L? consists of functions on a real 

interval [a,b] such that the squares of their absolute values are Lebesgue 

integrable on [a, b], with the inner product 

(19) =| f(s)g(s) ds, (7.7) 

where the integral is a Lebesgue integral. Hilbert’s completeness condition 

(7.5) means that the inner product of the function u(s) with itself is equal to 

the sum of the squares of its ‘‘coordinates”’ (the so-called Parseval equality 

that is an infinite-dimensional generalization of Pythagoras’ theorem; the 

French mathematician Marc Antoine Parseval (1775—1836) found this condi- 

tion in 1805 for trigonometric series). 

The spaces /? and L?, as well the more general spaces /? and L” obtained 

from /? and L? by replacing the squares and square roots in the “vector 

moduli” \/)',x; and ./{*[f(s)]? ds by p-th powers and p-th roots, were 
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introduced by the Hungarian mathematician Frigyes Riesz (1880-1956) 

in Investigations on systems of integrable functions (Untersuchungen @бег 

Systeme integrierbarer Funktionen. Leipzig, 1910) /456, vol. 1, pp. 441-497]. 

The orthogonal systems of functions that Hilbert referred to had appeared 

already in the 19th century. The most important system of this kind is 

the system of functions 1, cosm@t, cos2mt, cos3mt, ..., sinwt, т 20, 

sin 3@t, ..., that form a complete orthonormal system on the interval [0, 7] 

(би 27/ T ). 

Representations of functions as linear combinations 

f(t) =a) + ¥ a, cos pat + ¥ В, sin ра (7.8) 
Р Р 

of these functions were widely used already in the 18th century. Today, 

series of the form (7.8) are called Fourier series after Jean Baptiste Fourier 

(1768—1830), who constructed a theory of such series in his famous Analytic 

theory of heat (Théorie analytique de chaleur. Paris, 1822), and, in particular, 

computed the Fourier coefficients a, by means of formula (7.6). 

More general orthogonal systems of functions are defined by replacing the 

inner product (7.7) with the more general inner product 

b 

(4,9) = | w(s) f(s)g(s) ds, (7.9) 

where w(s) is a so-called weight function assumed to be nonnegative. 

If a=0, b= 1, w(s) = $ then the orthogonal functions are the Bessel 

functions (cylindrical functions); if a= —1, b= 1, and w(s) = 1 then the 

orthogonal functions are the Legendre polynomials (spherical functions) 

obtained by orthogonalizing the monomials 1, 5, 52, s°,...;ifa = —1,b=1, 

and w(s) = (1 — s)*(1 — 5)! then the orthogonal functions are the Jacobi poly- 

nomials (hypergeometric functions); if a= — oo, b = o, and w(s) =e * then 

the orthogonal functions are the Cebysev-Hermite functions obtained by or- 

thogonalizing the system of functions е` "1, ве", ??e", ...; and ifa= 
0, b = 00, and w(s) = s*e~* then the orthogonal functions are the Cebysev- 

Laguerre functions. 

We see that orthogonal systems of functions were used by such eminent 

mathematicians of the 18th and 19th centuries as Euler, Jacobi, Hermite, 

Laguerre, and Pafnutii L’vovié CebySev (1821-1894). In connection with the 

investigation of orthogonal systems of functions at the beginning of the 20th 

century we mention the works of Vladimir Andreevicé Steklov (1864—1926), 

of which the most important is the memoir On the theory of closedness of 

systems of orthogonal functions that depend on an arbitrary number of variables 

(Зиг la théorie de fermature des systémes de fonctions orthogonales dépen- 

dent d’un nombre quelconque de variables. Petersburg, 1911) [556]; by 

closedness Steklov meant completeness of a system of functions. Using 

Hilbert’s term, Steklov showed that the functions he considered “Бу the 

presently accepted terminology ... form an orthogonal sequence.” In this 

paper Steklov obtained the completeness condition for orthogonality with 
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respect to an arbitrary weight function, 

a 

a= | w(s) f(s) ds, 

that generalizes Hilbert’s condition (7.5), as well as an analogous condition 

for the orthogonality of a system of functions of many variables. We note 

that, without realizing it, Steklov worked at the time in the area of infinite- 

dimensional geometry. Nevertheless, following the traditions of the Petersburg 

mathematical school and its preference for concrete results in mathematical 

physics, he rejected not only infinite-dimensional but also multidimensional 

geometry and shared the viewpoint of his friend and teacher Aleksandr 

Mihailovi¢é Lyapunov (1857—1918), who, in the article The life and works of 

Р. L. CebySev (Zizn’ i trudy P. L. CebySeva, 1985) [ 109, рр. 7-26], wrote: 

At a time when worshippers of the very abstract ideas of Riemann 

become ever more absorbed in function-theoretic investigations and 

pseudogeometric researches in spaces of four and more dimensions 

and go so far in these researches that it is impossible to see their 

significance with respect to any applications not only in the present 

but in the future, Р.Г. CebySev and his followers always stay on 

solid ground and are guided by the viewpoint that the only valuable 

researches are those that are inspired by applications (scientific or 

practical) / 109, pp. 19—20]. 

We note that after mentioning “‘pseudogeometric researches” Lyapunov 

remarks: 

These researches have recently been linked to the deep geometric 

investigations of М. I. Lobactevskii with which, however, they have 

nothing in common. Like Р. L. CebySev, this great geometer always 

remained on real ground and would hardly see in these researches of a 

transcendental nature the development of his ideas / 109, р. 20]. 

Steklov’s works, with their important applications to problems of mathe- 

matical physics, have made it obvious that “‘pseudogeometric investigations” 

in spaces of not just ‘four and more” but even infinitely many dimensions 

turned out to be extremely useful for the solution of very concrete problems. 

The requirements of quantum mechanics have resulted in extensive use 

of complex Hilbert spaces, in which a point is a sequence of complex numbers 

(coordinates) x, such that the series У, хьх, = ).,|x,|? converges, with the 
inner product 

(u,v) = Upp, 
р 

or else a function of a complex variable оп an interval [a,b] such that the 

square of its absolute value is Lebesgue integrable on [а, 6], with the inner 

product 
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b 

(7,9) = 15) 9 (5) ds, (7.10) 

where the integral is also а Lebesgue integral. This space was first axiomat- 

ically defined by John von Neumann (1903—1957), who worked in Hungary, 

Germany, and the United States of America, in his Mathematical foundation 

of quantum mechanics (Mathematische Begriindung der Quantenmechanik. 

Gottingen, 1927) /385, vol. 1, рр. 151-207]. This axiomatic definition, 

together with a finite-dimensional analogue of the space, was reproduced 

in von Neumann’s book Mathematical foundations of quantum mechanics 

(Mathematische Grundlagen der Quantenmechanik. Berlin, 1932) /386, 

pp. 36-46]. 

Von Neumann developed the theory of self-adjoint (Hermitian-symmetric) 

operators and, in particular, showed that just as Hermitian-symmetric matrices 

in finite-dimensional spaces can be represented relative to a basis of eigen- 

vectors as sums ));A,E;;, where Е; is a matrix whose element а;; is 1 and 

the other elements are 0, so too self-adjoint operators can be expressed as 

Lebesgue-Stieltjes integrals [%,, AdE,, where A varies over the “spectrum” 

of the operator, and dE, is the differential operator ({%,, dE, is the unit 

operator). 

Other models of real and complex Hilbert spaces are furnished by spaces 

of, respectively, real- and complex-valued functions of several variables 

defined on various manifolds. 

The basis for the application of complex Hilbert spaces to quantum 

mechanics is that the elementary particles of quantum mechanics (electrons, 

photons, and so on) are characterized by wave functions у“(х, у, 2, t) defined 

on a certain region D of spacetime. If one defines the inner product of two 

such functions ф and у by means of the integral 

ей | py dV (7.11) 

then these functions form a space that satisfies von Neumann’s axioms. 

To physical magnitudes there correspond self-adjoint operators A on this 

space. The probability that a particle, determinable by a given wave function 

у, is characterized by the values of a given physical magnitude within given 

bounds [a, b] and is in a given region of spacetime is expressed by means of 

the integral over this region of the expression (у, (?4dE,)W). In particular, 
to the space coordinates x' and to the time coordinate { of a particle there 

correspond operators that determine multiplication of the wave functions by, 

respectively, x' and ¢, and to the coordinates р; of the impulse and to the 
0 ih д 

Qni Oxi“ In Ot’ energy H of the particle there correspond the operators 

where Й is the so-called Planck constant. 

In the space of wave functions there also act unitary operators U that 

determine unitary linear representations of noncompact Lie groups and, in 
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particular, the Lorentz group. These representations turn out to be very useful 

for the solutions of many problems of quantum physics. 

Infinite-Dimensional Analogs of Pseudo-Euclidean and 

Non-Euclidean Spaces 

The problems of quantum mechanics not only provided an impulse for the 

development of Hilbert space, which is an infinite-dimensional analogue of 

Euclidean space, but also for the development of an infinite-dimensional 

analog of pseudo-Euclidean space. In the paper The physical interpretation of 

quantum mechanics (London, 1942) [153] Paul Adrian Dirac (1902—1984) 

posed the problem of modifying the formalism of quantum mechanics so as 

to allow for probabilities of the appearance of particles with positive as well 

as negative energies (that could be viewed as probabilities of their emission 

as well as absorption). In the paper On Dirac’s new method of field quantization 

(London, 1943) /409/, Wolfgang Pauli (1900—1958) analyzed Dirac’s method 

and wrote that “ш Dirac’s formalism of field quantization one generalizes the 

usual metric in the Hilbert space of states of a system” and that the resulting 

modification amounts to replacing the integral (7.11) with the integral 

|| onw av, (7.12) 

where the operator и can be reduced “‘to a normal form that is diagonal, 

where, however, each diagonal element is 1 or —1”’ by a suitable coordinate 

transformation. Pauli points out that the usual theory is obtained in the case 

when И is the identity operator and notes that 

We obtain something essentially new if we use indefinite bilinear 

forms to define the length of vectors in Hilbert space. They have as a 

consequence that operators with exclusively positive eigenvalues can 

have negative values of mathematical expectations. One can also express 

this by saying that one introduces negative probabilities of the realiza- 

tion of certain positive eigenvalues /409, р. 177/. 

It is possible to define an inner product analogous to the inner product 

(7.12) by means of the equality (7.9) by admitting weight functions w(s) that 

take on both positive and negative values. 

Shortly thereafter, infinite-dimensional analogs of pseudo-Euclidean 

spaces were considered by Soviet mathematician Lev Semenovié Pontryagin 

(b. 1908) in the paper Hermitian operators in a space with indefinite metric 

(Ermitovy operatory s indefinitnoi metrikoi. Moscow, 1944) [438]. Such 

spaces were also studied in a number of papers by Mark Grigor’evié Krein 

(b. 1907) and his students. One of these papers is Twist lines in Lobacevskian 

space of an infinite number of dimensions and Lorentz transformations (Vintovye 
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linii у prostranstve ГоБабеузКого БезКопебпого Cisla izmerenii i lorencevy 

preobrazovaniya. Moscow, 1948) [294]. In this paper Krein investigates an 

infinite dimensional analog of pseudo-Euclidean space of index /; the term 

Lobaéevskian space of an infinite number “of dimensions refers to one sheet 

of a sphere in this space. So far, Krein’s paper is the only piece of research 

dealing with infinite-dimensional non-Euclidean geometry, although it is not 

difficult to define infinite-dimensional analogues of elliptic space and of 

hyperbolic spaces of arbitrary index. 

Another branch of infinite-dimensional geometry was introduced by 

Abram Mironovié LopSic (1891—1984) in Certain problems of tensor algebra 

and linear dimensionless spaces (Nekotorye zadaci tenzornoi algebry v 

lineinyh bezrazmernyh prostranstveh. Moscow, 1948) [338] and Detlef 

Laugwitz (b. 1932) in Differential geometry without the axiom of dimension 

(Differentialgeometrie ohne Dimensionaxiom. Berlin, 1954) [307]; LopSic’s 

dimensionless space is a linear space without the dimension axiom. This 

incomplete system of axioms is satisfied not only by n-dimensional space but 

also by its infinite-dimensional analogue. In the work Certain questions of 

projective, affine and descriptive geometry in dimensionless space (Nekotorye 

voprosy proektivnoi, affinnoi i nacertatel’noy geometrii у bezrazmernom 

prostranstve. Moscow, 1956) [339] LopSic studied analogous spaces ob- 

tained by not including the dimension axiom in the axioms for projective 

and affine spaces. The resulting incomplete axiom systems are satisfied by 

finite-dimensional affine and projective spaces as well as by their infinite- 

dimensional analogs. Undoubtedly, unification of the approaches of Krein 

and LopSic will lead to the study of a large class of infinite-dimensional 

analogs of non-Euclidean spaces. 

We note recent works in this area by Tat’yana Borisovna Tapero (b. 1942): 

Metric invariants of pairs of planes in infinite-dimensional space (Metriceskie 

invarianty par ploskostei у beskone¢nomernom prostranstve. Leningrad, 

1978) [576], Common perpendiculars of pairs of planes in infinite-dimensional 

space (ObS¢ie perpendikulary ploskostei у beskone¢nomernom prostranstve. 

Ul’yanovsk, 1979) [577], and her survey of the history of infinite-dimensional 

spaces [575], and the book of Viktor Egorovié Fomin Differential geometry 

of Banach manifolds (Differencial’naya geometriya banahovyh mnogoobrazii. 

Kazan, 1983) [183]. 



Chapter 8 

The Curvature of Space 

Curvature and Intrinsic Geometry of a Surface 

in the Works of Euler 

By the curvature of a curve at a point we mean the limit of the ratio of the 

angle Aw between the tangents at the endpoints of an arc to the length As of 

that arc as the latter contracts to the point; that is, the limit 

A 
Е (8.1) 
ЕАК > 

К 

К is also the reciprocal of the radius of curvature at the point in question, that 

is, the radius of the osculating circle at that point. (The osculating circle at a 

point P of a curve is defined as the limit of circles determined by three points 

on the curve as they tend to P.) The concepts of the curvature of a curve and 

of the osculating (literally “kissing,” from the Latin osculans) circle were 

already known to Leibniz.' Leibniz also suggested the possibility of charac- 

terizing the curvature of a surface by means of an osculating sphere.” 

Euler characterized the curvature of a surface in his /nvestigations of the 

curvature of surfaces (Recherches sur la courbure des surfaces. Berlin, 1767) 

[176, vol. 28, рр. 1-22]. Euler called a normal section of a surface 2 = f(x, у) 

perpendicular to the xOy plane a principal section. By varying the angle ф 

between a normal section and the principal section Euler found that at each 

point of the surface there is a maximal radius of curvature f and a minimal 

radius of curvature g, that their planes are perpendicular to one another, and 

' Leibniz first considered osculation of curves—in particular, osculation of curves and circles—in 

his New reflections on the nature of the angles of tangency and osculation and their use in 

mathematical practice to replace complex figures with simpler ones (Meditatio nova de natura 

Anguli contactus et osculi, horumque usu in practica Mathesi ad figuras faciliores succedaneas 

difficilioribus substituendas. Leipzig 1686) [312, v. 7, pp. 326-329]. 

2 па letter to Johann Bernoulli, dated July 29, 1698. 
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Я , O 8 

Figure 101 

that the connection between an arbitrary radius of curvature г = г(ф) and the 

radii of curvature f and д is given by 

че 2/9 
Л-+9-— (У -— 9)с0$ 2. 

Euler writes: 

For a simple derivation of this formula we join the maximal and minimal 

osculating radii by putting Of = fand Og = g and describe on fg a semi- 

ellipse with one focus at O (Figure 101). Then for the section MN one 

must take the angle fOr, doubled with respect to the angle EZM, and 

the line Oz will be equal to the osculating radius for the section MN. 

Thus drawing conclusions about the curvature of surfaces, at first glance 

a matter of great complexity, reduces for each element to the determina- 

tion of two osculating radii one of which is maximal and the other 

minimal for that element; these two things entirely determine the nature 

of the curvature, and we obtain the curvature of all possible sections 

perpendicular to the given element / 176, vol. 28, р. 21]. 

In 1837 Charles Dupin (1784—1873) / 157, р. 109] modified Euler’s formula 

to read 

1 5 Avs; 
— ='—COS* » + —sin* @. 
rif g 

In this paper On solids whose surfaces can be developed onto a plane (De 

solidis quarum superficiem in planum explicare licet. Petersburg, 1772) [176, 

vol. 28, рр. 161-186] Euler introduced the concept of a developable surface, 

that is, a surface that can be applied to a plane without folding or tearing, 

and proved the fundamental theorem that such a surface is a cylinder, or a 

cone, or a surface formed by the tangents to a space curve. His point of depar- 

ture was that on such a surface an infinitesimal triangle must be congruent 

to the corresponding triangle in the plane to which the surface is applied. 

Further, he introduced on the surface curvilinear coordinates 1, и equal to 

the rectangular coordinates of the corresponding points of the plane and, 

denoting the partial derivatives дх/01, ду/01, 02/01 by 1, т, п, and дх/ди, 

ду/ди, д2/ди by A, и, у, set down the developability conditions in the form 

Р + т? +n? = 1,42 + pw? + v7? =1,1. + mu t+ nv = 0, that is, as the require- 
ments of unicity and perpendicularity of the partial derivatives with respect 
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to t and и of the radius vector of a point of the surface. An equivalent 

form of this condition is that the square of an arc element of a curve on a 

developable surface equals the sum of the squares of the differentials of the 

coordinates, 

ds? = ай + du’, 

that is, the arc element of a developable surface coincides with the arc element 

of a plane. 

In a note published only in 1862 [176, vol. 29, pp. 437—440] Euler also 

established the general conditions of applicability of a surface to other sur- 

faces. These results of Euler pertain to the so-called intrinsic geometry of a 

surface, that is, the study of properties of a surface that are unchanged when 

the surface is bent. 

Euler’s work on geodesics also pertains to the intrinsic geometry of sur- 

faces. A geodesic is the shortest of all curves on a surface joining two of its 

points (in the plane the geodesics are straight lines and on a sphere they are 

great circles).? 
The problem of finding geodesics on a surface was first posed in 1697 by 

Johann Bernoulli (1667—1748). Shortly after that, Johann Bernoulli wrote a 

letter to Hospital to the effect that he had found the general differential 

equation of geodesics. This result was published only in 1742 [50, р. 364]. 

Jacob Bernoulli (1654—1705) showed in 1698 that when cylindrical and conical 

surfaces are applied to planes, their geodesics go over into straight lines. 

Euler was the first to publish the differential equation of geodesics. He did 

this in the paper On the shortest curve on an arbitrary surface joining two 

arbitrary points (De linea brevissima in superficie quacumque duo quaelibet 

puncta jungente. Petersburg, 1732) / 176, v. 25, рр. 1-12]. Euler’s equation 

was 

Qddx + Раду _ dxddx + dyddy 

Ode + Рая а вах Ge dy?” 

where f, x, у are rectangular coordinates in three-dimensional space, and the 

functions P and Q are determined from the differential equation of the surface 

Pdx = Qdy + Radt. Euler returned to the problem of geodesics many times. 

In the second volume of his Mechanics (Mechanica. Petersburg) / 177, v. 2, 

р. 426] he showed that, “‘in the absence of forces,” the path of a point on a 

surface is a geodesic (an assumption used earlier by Bernoulli). In this con- 

nection, Euler showed that the principal normal of a geodesic (a straight line 

in the osculating plane of that curve passing through the point of contact and 

perpendicular to the tangent) always coincides with the normal to the surface. 

*Many of Euler’s papers deal with the determination of geodesics. The first was published 

in 1728 [176, vol. 25, pp. 1-12],’and the last was published posthumously [176, vol. 25, 

pp. 269-279]. Euler called geodesics shortest curves. The term geodesic first appeared in Laplace’s 

Celestial Mechanics (Paris, 1799). Later it was applied to all quadrics. After the appearance of 

Liouville’s paper (1814) it was applied to all surfaces. 
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We note that in the cartography paper On the representation of the surface 

of a sphere in the plane Euler compared the arc length elements of the plane 

and the sphere and proved the impossibility of an isometric mapping of a 

sphere to a plane. Also, he posed the question about the three mappings 

of the sphere to the plane that are of’greatest importance in cartography, 

namely, the mapping in which the meridians and parallels are mapped onto 

an orthogonal system of lines, the mapping that preserves angles between 

curves (conformal mapping), and the mapping that preserves areas (equiareal 

mapping). 

Independently of Euler, Monge considered developable surfaces in his 

Memoir on evolutes, radii of curvature and various kinds of inflection of curves 

with twofold curvature (Mémoire sur les développées, des rayons de courbure 

et les differents genres d’inflexion des courbes а double courbure. Paris, 1785) 

[374]. We note that Monge’s book Applications of analysis to geometry 

(Applications de l’analyse a la géométrie. Paris, 1807) [373] contained the 

first systematic exposition of the theory of surfaces. 

Intrinsic Geometry of Surfaces in the Work of Gauss 

The general theory of the intrinsic geometry of a surface was formulated by 

Carl Friedrich Gauss in his General investigations of curved surfaces (Dis- 

quisitiones generales circa superficies curvas. Gottingen, 1828) /196, vol. 4, 

pp. 217-258]. Gauss’s paper was the result of the assignment, given to him 

in 1820, to produce a cartographic survey of the kingdom of Hanover. This 

assignment made him reflect on problems of geodesy. In turn, this brought 

him to the theory of surfaces. 

Gauss’s theory unified the surface theories of Euler and Monge and the 

theory of quadratic forms developed by him in his Arithmetical investigations 

(Disquisitiones arithmeticae. Gottingen, 1801) /196, vol. 1]. In Investigations 

of curved surfaces Gauss introduced curvilinear coordinates p, g of points of 

the surface and defined the functions 

Ri) en перен: иди ск 
Pie ap tile dq’ dq’ 

ба sak be’ — cb’ = A, ca’ — ас’ = B’, ab’ — ba'=C; 
dq 

ddx _ ddx _ В ddx _ 4% _ , 

а пн 
ddy ; аа , 442 я 442 ; daz 
Cee = ’ ED =, РРР =; с В 9 Po) eae 
dpdq dq dp dpdq dq 

In modern terms, the vectors {а, b, с} and {a’, b’,c’} are the partial deriva- 
tives of the radius vector of a point on the surface with respect to p and q 
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(Gauss denoted ordinary and partial derivatives the same way); the vector 

{A, В, С} is the cross product of {a,b,c} and {a’,b’,c’} and its direction is 
that of the normal to the surface; and {a, В, у}, {a’, В’, y’}, and {a”, В", y”} are 

the second partial derivatives of the radius vector of a point on the surface 

with respect to p and q. 

Further, Gauss introduced the quadratic forms 

ds* = Edp? + 2Fdpdq + Gdq’ 

and 

Дар? + D'dpdq + D" dq’, 

where 

aa+bb+cc=E, aa’'+bb'+cc'=F, a’'a'+b'b'+c'c'=G, 

Aa+ BB+ Cy=D, Ao’ + ВВ' + Су =D', Aa’ + BB" + Cy” =D". 

The first of these forms, the so-called first fundamental form, gives the 

square of an arc length element of the surface, that is, of an element of length 

of an arc of a curve on the surface, and the second differs from the modern 

second fundamental form only by the multiplier 44 + ВВ + CC = EG — FF. 

Gauss introduced the all-important concept of “measure of curvature”’ 

now known as the Gaussian curvature of a surface. Making use of the spherical 

image of the surface, that is, the mapping that associates to a point P on the 

surface, a point P’ on the unit sphere, such that the radius OP’ is parallel to 

the normal to the surface at P (in modern terms, the end of the unit normal 

to the surface with beginning at a fixed point), Gauss defined the concepts of 

total curvature and “теазиге of curvature” as follows: 

We shall say that a part of a curved surface bounded by a given contour 

has total curvature given by the area of the corresponding figure on the 

surface of the sphere. One must draw a clear distinction between the 

total curvature and a kind of specific curvature that we shall call the 

measure of curvature. The latter pertains to a point on the surface and 

is the fraction obtained by dividing the total curvature of an element of 

the surface adjacent to the point by the area of that element, and thus 

gives the ratio of corresponding infinitesimal areas on the sphere and 

on the curved surface. We hope that our subsequent exposition will fully 

explain the utility of these new concepts” / 196, vol. 4, р. 226]. 

Gauss goes on to show that 

the “measure of curvature” at a point of the surface is equal to a fraction 

whose numerator is | and whose denominator is the product of the two 

principal curvatures of the normal sections. 

It is clear that the measure of curvature is positive for convex-convex 

or concave-concave surfaces (this is a trivial distinction) and negative 

for convex-concave ones. If the surface is made up of parts of both 
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kinds, then on their boundary the measure of curvature must vanish 

[196, vol. 4, pp. 231]. 

Then Gauss obtains further expressions for the “measure of curvature” of 

which the most important are the expression of the ‘measure of curvature” 

k in terms of the coefficients of his two forms, 

DD* — D'D! 

EG — FF ” 

and the expression in terms of the coefficients of the first form alone and their 

derivatives with respect to р and а: 

dE dG dF dG dG \* 

dq 44 dp dq_ \dp 

(2 dG dEdG dE dF " dF dF 

dp аа dq dp dq аа dp аа 

dF dG dE dG dEdF GEN 
— 2— —]+G — + 

dp dp dp dp dp dq dq 

ddE _ddF ddG 

dq? dpdq dp?) 

4(EG — FF)?k = al 

(ЕО = FF) 

In connection with the last formula Gauss makes the following comment: 

The formula in the last section leads, of itself, to the following remarkable 

Theorem. If a curved surface is applied to any other surface then the 

measure of curvature at each of its points remains unchanged. 

Also, it is clear that every finite part of a curved surface will, after 

application to another surface, retain its total curvature. 

The special case to which geometers have until now limited their in- 

vestigations is the case of surfaces applicable to a plane. Our theory 

readily shows that the measure of curvature of such surfaces at any point 

В МЕТО: 12. : 

What we have set forth in the previous section involves a special 

approach to the investigation of surfaces worthy of the close attention 

of geometers. Namely, when a surface is regarded not as the boundary 

of a solid but as a solid with one vanishing dimension, flexible but not 

stretchable, then the properties of the surface are partly dependent on 

the form to which it has been reduced and in which it is being studied, 

and partly independent [of it in the sense that] they remain invariant 

regardless of its form under bending. The latter properties, whose inves- 

tigation opens a new and fruitful area of geometry, include the measure 

of curvature and total curvature as defined by us. They also include the 

study of geodesic curves, as well as many other matters to be discussed 

in the sequel. When this approach is adopted, then the plane, and sur- 

faces applicable to a plane, such as cylindrical and conical surfaces, 
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are regarded as essentially the same, and.the general method of char- 

acterizing a surface studied in this manner is based on the formula 

Ry) Еар? + 2Fdpdq + Gdq? that expresses the connection of the line ele- 

ment of the surface with two variables р and q [196, vol. 4, рр. 237-238]. 

Gauss is defining the intrinsic geometry of a surface invariant under bending 

and application to another surface. Some of the properties studied in intrinsic 

geometry are the lengths of curves on the surface, the angles between curves, 

and what Gauss calls geodesic curves, that is, geodesics. Gauss’s theorem, 

called by him a remarkable theorem (Theorema Egregium), asserts that the 

measure of curvature is a property that belongs to intrinsic geometry. 

Further, Gauss considers the total curvature of a geodesic triangle (that is, 

a triangle whose sides are arcs of geodesics). The total curvature of such a 

triangle is given by | kdo, where do is an element of the surface of the triangle. 

He finds that 

the total curvature of a triangle is equal to the part of the spherical 

surface that corresponds to the triangle taken with a plus or minus sign 

according as the surface on which the triangle lies is concave-concave 

or concave-convex; as the unit of area we take a square with side one 

(the radius of the sphere); then the area of the sphere is 4z. It follows 

that the [surface of the] part of the sphere corresponding to the triangle 

is to the surface of the sphere as +(A +. В + С — п) to 4z. This theorem, 

that undoubtedly belongs with the most beautiful theorems of the theory 

of surfaces, can be stated as follows: 

The excess above 180° of the sum of the angles of a triangle formed by 

geodesic curves on a curved concave-concave surface and the defect below 

180° of the sum of the angles of a triangle formed by geodesic curves on 

a concave-convex surface are each measured by the area of the part of the 

spherical surface that corresponds to the given triangle via normal direc- 

tions, provided that the whole surface (of the sphere) is taken as 720 

degrees [196, vol. 4, рр. 245—246]. 

This theorem of Gauss implies that the Gaussian curvature at a point is 

equal to the limit of the ratio of the angular excess А + В+ С-—л ofa 

geodesic triangle ABC on the surface to its area as the triangle shrinks to the 
given point. 

Minding’s Theory of Surfaces of Constant Curvature 

Gauss’s work on the intrinsic geometry of surfaces was continued by Ferdinand 

Minding (1806-1885), who worked in Dorpat (now Tartu). In his Remark on 

the development of curved lines on surfaces (Bemerkung tiber die Abwickelung 

krummer Linien auf Flachen. Berlin, 1830) /366/, Minding introduced the 

fundamental concept of geodesic curvature of a curve on a surface, defined as 



Minding’s Theory of Surfaces of Constant Curvature 287 

the limit of the ratio of the angle between tangent geodesics at the endpoints 

of an arc of the curve to the arc length as the arc shrinks to a point, and 

showed that this limit is invariant under bending. In the paper How to decide 

whether two surfaces are mutually applicable; including remarks on surfaces of 

constant measure of curvature (Wie sich entscheiden lasst ob zwei gegebene 

krumme Flachen auf einander abwickelbar sind, nebst Bemerkungen tiber die 

Flachen von unveranderlicher Kriimmungsweise. Berlin, 1839) /367] Minding 

expressed the line element of a surface with constant ‘measure of curvature” 

as 

1 2 

ds? = ар? + G sin pe) dq? 
k 

and concluded that 

two surfaces of equal constant measure of curvature can be applied to 

each other in infinitely many ways, since any two points of one can be 

associated to two arbitrary points of the other provided that the lengths 

of the shortest curves between the points of each pair are equal. This 

implies the following consequences: 

Every surface whose measure of curvature is zero [results from] the 

bending of a plane—this much is well known. 

Every surface whose measure of curvature (К) is constant and positive 

can be applied to a sphere of radius 1//k [367, pp. 375-376]. 

Further, Minding discovered helical surfaces and, in particular, surfaces of 

constant negative curvature. One such surface is given by the parametric 

equations 

PSR) KE YR = А 2 =ф- tanh@g. 

Minding comments that 

This surface is the result of rotating а сигуе like... CBE... (Figure 102) 

about the zz-axis which it approaches asymptotically /367, р. 380]. 

The curve CBE, which is characterized by the constancy of the length of the 

segment of the tangent between the point of tangency and the zz-axis, is called 

a tractrix, and the surface of revolution referred to by Minding is called a 

pseudosphere. 

In Contributions to the theory of shortest curves on curved surfaces (Beitrage 

zur Theorie der kiirzesten Linien auf krummen Flachen. Berlin, 1840) /368/ 

Minding established the trigonometric relations in geodesic triangles on such 

surfaces and noted that these formulas could be obtained from the corre- 

sponding formulas of spherical geometry оп a sphere of radius г by multiplying 

r by the complex number i. 
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Figure 102 

Interpretation of the Lobacevskian Plane on a Pseudosphere 

In spite of the fact that Minding’s paper appeared in the same journal 

(Crelle’s) as Lobaéevskii’s Imaginary geometry, neither of them noticed that 

the trigonometric formulas of the hyperbolic plane coincide with the trigo- 

nometric formulas of a surface of constant negative curvature.* 

The person who did notice the sameness of these formulas was E. Beltrami, 

who considered the matter in An attempt at an interpretation of non-Euclidean 

geometry [42, pp. 374—405 ]. Beltrami constructed a model of the hyperbolic 

plane in a circle and associated to the points of the hyperbolic plane of curva- 

ture —1/R? the coordinates и, v of the corresponding points of the circle. He 

found that in this coordinate system the line element is given by 

— u*)du? + 2uvdudv + (а? — v*)dv? 
2 

7 а о = tine | ПА 5 1 2 р 
a* —u* —v 

Beltrami computed the total curvature of a surface with this line element 

and noticed that the Gaussian curvature of the hyperbolic plane is everywhere 

equal to the same number — 1/R?; that is, the hyperbolic plane can be viewed 

as a surface of constant negative curvature. 

Thus, speaking of surfaces of constant negative curvature, Beltrami con- 
cluded that 

* Lobaéevskii’s paper appeared in vol. 17 (1837) of Crelle’s Journal and Minding’s paper in vol. 

20 (1840) of that journal. В. L. Laptev /265, р. 20] explains that Lobaéevskii did not borrow the 

latter volume from the library of Kazan University. 
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the theorems of non-Euclidean planimetry apply to them. Further, most 

of these theorems can be thought of concretely only if we refer them to 

such surfaces and not to the plane /42, р; 3917. 

That is why Beltrami suggested that а] surfaces of constant negative curva- 

ture be called pseudospherical surfaces. 

Beltrami also showed that each of the sheets of Minding’s pseudosphere 

is isometric to the part of the hyperbolic plane enclosed between two parallel 

lines and a horocycle perpendicular to them. He also found parts of the hyper- 

bolic plane isometric to other surfaces of revolution of constant negative 

curvature determined by Minding. 

Riemannian Geometry 

In the paper On the hypotheses which lie at the foundations of geometry [ 122, 

pp. 55-71] Riemann introduced a notion of an n-ply extended manifold 

broader than either of the similar notions introduced by Grassmann and 

Schlafli. After defining this manifold Riemann posed the question of the 

““measure-relations of which such a manifold is capable” and of the possibility 

“to express geometrically the calculated results.”’ After noting that the foun- 

dations of these two parts of the question are established in Gauss’s celebrated 

memoir Disquisitiones generales circa superficies curvas [122, рр. 59-60], 

Riemann writes: 

Position-fixing being reduced to quantity-fixings, and the position of a 

point in the n-ply extended manifold being consequently expressed by 

means of 7 variables x,, х>, Хз,...х„, the determination of a line comes 

to the giving of these quantities as functions of one variable. The 

problem consists then in establishing a mathematical expression for the 

length of a line, and to this end we must consider the quantities x as 

expressible in terms of certain units. I shall treat this problem only under 

certain restrictions, and I shall confine myself in the first place to lines 

in which the ratios of the increments dx of the respective variables vary 

continuously. We may then conceive these lines broken up into elements, 

within which the ratios of the quantities dx may be regarded as con- 

stant; and the problem is then reduced to establishing for each point a 

general expression for the linear element ds starting from that point, an 

expression which will thus contain the quantities x and the quantities 

dx. I shall suppose, secondly, that the length of the linear element, to 

the first order, is unaltered when all the points of this element undergo 

the same infinitesimal displacement, which implies at the same time that 

if all the quantities dx are increased in the same ratio, the linear element 

will vary also in the same ratio. On these suppositions, the linear element 

may be any homogeneous function of the first degree of the quantities 
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dx, which is unchanged when we change the signs of all the dx, and in 

which the arbitrary constants are continuous functions of the quantities 

x. To find the simplest cases, I shall seek first an expression for mani- 

foldness of n — 1 dimensions which are everywhere equidistant from the 

origin of the linear element; that is, I shall seek a continuous function 

of position whose values distinguish them from one another. In going 

outwords from the origin, this must either increase in all directions or 

decrease in all directions; I assume that it increases in all directions, and 

therefore has a minimum at that point. If, then, the first and second 

differential coefficients of this function are finite, its first differential 

must vanish, and the second differential cannot become negative; I 

assume that it is always positive. This differential expression, then, of 

the second order remains constant when ds remains constant, and in- 

creases in the duplicate ratio when the dx, and therefore also ds, increase 

in the same ratio; it must therefore be ds* multiplied by a constant, and 

consequently ds is the square root of an always positive integral homo- 

geneous function of the second order of the quantities dx, in which the 

coefficients are continuous functions of the quantities x. For Space, 

when the position of points is expressed by rectilinear co-ordinates, 

ds = ./¥\ (dx)? [122, pp. 60-61]. 

(In Clifford’s translation we changed his term n-dimensional manifoldedness 

to Riemann’s n-ply extended manifold). By Space Riemann means three- 

dimensional Euclidean space. After considering various possible cases of the 

dependence of ds on the differentials dx, Riemann restricts himself to “‘mani- 

folds for which the line element is given by the square root of a differential 

expression of the second degree,” that is, 

ds? =) У gijdxjax;, (8.2) 
i у 

where g;; = 9; are functions of the variables x;. 

Riemann’s requirement guarantees that his n-dimensional space is locally 

Euclidean. The quadratic form (8.2) is assumed to be positive definite, that 

is, for all dx; not simultaneously zero ds* > 0. Hence each pair of points with 

infinitesimally different coordinates x; and x; + dx; are a definite distance ds 

apart. By integrating this distance along different lines we determine their 

length. Among the different lines we can find the shortest (geodesic) lines 
x; = x,(0) that are solutions of the differential equations 

ь [ee АО 
ds? + 2d ^ ds ds i G2) 

where the Г», are point functions expressed in terms of the coefficients gi; by 
means of the relations ; 

1/09 Og; 99; eee Ik il ik | 
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The spaces defined in this way are called Riemannian spaces. Surfaces in 

ordinary space are particular Riemannian spaces for n = 2; in this case, an 

instance of a geometry of the kind defined by Riemann is the so-called intrinsic 

geometry of a surface, elaborated by Gauss‘n the work General investigations 

of curved surfaces alluded to by Riemann. Clearly, Euclidean space is a special 

case of a Riemannian space whose geodesics are Euclidean straight lines. 

A more general example of a Riemannian space is a hypersurface in 

(n + 1)-dimensional Euclidean space and, in particular, a hypersphere in this 

space. The geodesics of a hypersphere are its great circles—sections by two- 

dimensional planes passing through its center. Elliptic space, obtained from 

a sphere by identifying antipodal points, and Loba¢éevskian space are also 

examples of Riemannian spaces. 

One of the most important concepts of Riemannian geometry is the cur- 

vature of a space. The curvature is defined at every point in every two- 

dimensional direction passing through this point. To determine the curvature 

of a Riemannian space at a point one considers a geodesic triangle, that is, a 

curvilinear triangle bounded by arcs of three geodesics, one of whose vertices 

is at the given point and two of whose sides issuing from this vertex are tangent 

to the given two-dimensional direction. For this triangle АВС one computes 

the angular excess A + B+ C— 1 (as defined, the angular excess can be 

positive, zero, or negative), as well as the area, and forms the ratio of the 

angular excess over the area of the triangle. Now one lets the triangle shrink 

to the given vertex but insists that the sides issuing from it continue to be 

tangent to the given two-dimensional direction. It is obvious that in this 

limiting process the area of the geodesic triangle tends to zero. Since the geo- 

metry of the two-dimensional surface in which the passage to the limit is 

taking place is locally Euclidean and the angular excess of a Euclidean plane 

is zero, it follows that the angular excess of the geodesic triangle also tends to 

zero. But the ratio of the angular excess over the area of the triangle tends to 

a definite limit called the curvature of the Riemannian space at the given point 

in the given two-dimensional direction. 

The curvature of n-dimensional Euclidean space, regarded as a special case 

of a Riemannian space, is equal to zero at all of its points; that is why a 

Euclidean space is called Riemannian space of zero curvature and Riemannian 

spaces different from Euclidean space are called curved spaces. 

Riemann defined the curvature of his space in the following manner; in a 

neighborhood of the point at which he wanted to define curvature he intro- 

duced coordinates x; equal to zero at the point and such that distance s of 

points in the neighborhood of this point was given in terms of the coordinates 

by the relation s* = )’;x?. Riemann writes: 

When we introduce these quantities, the square of the line-element is 

Ydx? for infinitesimal values of the x, but the term of next order in it is 

equal to a homogeneous function of the second order of the 4n(n — 1) 

quantities (x,dx,—x,dx,), (x,dx3 —x3dx,) ... an infinitesimal, there- 
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fore, of the fourth order; so that we obtain a finite quantity on dividing 

this by the square of the infinitesimal triangle, whose vertices are 

(0, 0; OR) Opa hen) (ахнах ах... Thisiquantity retains 

the same value so long as the x and the dx are included in the same 

binary linear form, or so long as the two geodesics from 0 to x and from 

0 to dx remain in the same surface-element; it depends therefore only 

on place and direction. It is obviously zero when the manifold repre- 

sented is flat, 1.е., when the squared line-element is reducible to > dr’, 

and may therefore be regarded as the measure of the deviation of 

the manifold from flatness at the given point in the given surface- 

direction. Multiplied by —? it becomes equal to the quantity which 

Privy Councillor Gauss has called the total curvature of a surface / 122, 

pp. 62-63]. 

In view of Riemann’s choice of coordinates, the expansion of the square of 

the line element ds? in the neighborhood of the point he considered is given 

by 

ds? =) dx +) > 2. сук жажах, + У. >, py >. сах ж АХ, + ..., 
7 т J 1 J 

0g; and Ogi; 

OX, OX,0X, 

point under consideration. In the first place, Riemann notes that there is no 

linear term in this expansion, that is, that c;; , = 0. The reason for this is that 

his coordinate lines are geodesics satisfying equation (8.3), where the coeffi- 

cients I}, are expressed in terms of g,, by formulas (8.4). Then Riemann claims 

that the second-order terms in the expansion of ds? form a quadratic form in 

the x;dx; — x,dx;. If for the sake of uniformity we denote the infinitesimals x; 

by 6x; then the latter magnitudes can be written as Ax,; = dx,dx; — 6x,dx;. 

These quantities determine a parallelogram on the vectors {dx;} and {6x;}, 

so that the quadratic terms in the expansion can be written as 

Ac? = № _ » > К иАх,Ахи. 

1 J 

The quantity obtained by Riemann, which he calls the fraction from the 

division of До? by the area of the triangle on the vectors {dx;} and {5x;}, is 
actually the limit of this fraction as the triangle in question shrinks to the 

point. Nowadays, a quantity proportional to that defined by Riemann (with 

a proportionality factor such that in the case of a surface it coincides with the 

Gaussian curvature) is called the Riemannian curvature of the space at a given 

point in a given two-dimensional direction. Riemann goes on to give our 

earlier geometric interpretation of the curvature he defined. He notes that 

on surfaces in ordinary space “the difference between the angle sum of an 

infinitesimal triangle and two right angles is proportional to the area of the 

triangle” and writes: 

where c;;, and 2c;;,, are the values of the derivatives ij,k 
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To give an intelligible meaning to the curvature of ап n-fold manifold 

at a given point and ina given surface-direction through it, we must start 

from the fact that a geodesic proceeding from a point is entirely deter- 

mined when its initial direction is given? According to this we obtain a 

determinate surface if we prolong all the geodesics proceeding from the 

given point and lying initially in the given surface-direction; this surface 

has at the given point a definite curvature, which is also the curvature 

of the n-fold continuum at the given point in the given surface-direction 

[122, p. 64]. 

Riemannian geometry was applied by Riemann to the theory of differential 

equations in A mathematical work containing an attempt to answer the question 

proposed by the most illustrious Paris Academy: To determine the heat state of 

a homogeneous solid so that a system of isothermal curves given at a certain 

moment in time remains a system of isothermal curves at an arbitrary moment 

in time and so that the temperature at a point is expressed as a function of time 

and two more independent variables (Commentatio mathematica qua respondere 

tentatur questioni ab Ш”* Academia Parisensi proposita: Trouver quel doit 

étre l'état calorifique Чип corps solide homogéne pour qu’une systéme de 

courbes isothermes, 4 un instant donné, restent isothermes aprés un temps 

quelconque, de telle sorte que la température d’un point puisse s’exprimer en 

fonction du temps et de deux autres variables indépendentes), written in 1861 

and published in his collected works (Leipzig, 1876) [454, pp. 391—404]. In 

this paper Riemann solved the problem of reducing the differential equation 

of heat conduction 

д ди ди eae и — 
2. 05; (x bi =) 01 

to simplest form—a problem equivalent to that of transforming the quadratic 

form У`, У. ; В, 45:5, to a sum of squares. Riemann found that this can be done 
if and only if the expression 

] » » 2 >. (ij, kl) (45:95, — 45,05;) (45,05, — 4105) 

оные Br? 

ae tae), ae 

that is invariant under a change of variables, vanishes. Of this expression, he 

denotes by (111), Riemann says: 

The expression ,/)); >) ;5,;4s,ds; can be regarded as a line element of an 

n-tuply extended space that is outside the bounds of our intuition. If we 

lead from point (s;,52,...,5,) in this space all possible geodesics whose 

initial directions are characterized by the ratios ads, + Bds,: ads, + 

lines form a certain surface which we can think of as located in the 
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ordinary space of our intuition. Then expression (111) is the curvature 

of this surface at the point (s,,5,,...,5,) [454, р. 403]. 

The quantities (ij, АГ), the so-called four-index Riemann symbols, are the 

same quantities that we denoted earlier by Rj и. We note that the quantities 

К; и can be expressed in terms of the coefficients 9; and their derivatives, 

using the quantities Гу (expressed in terms of the g,; and their derivatives by 

formulas (8.4)), by means of the formula 

OLA. ely Г Е 
Кум = Е = ax, se Ie ke ГИГА Эт- 

In the paper mentioned previously Riemann also used the quantities Tj, 

but denoted them as pijix. 

Riemann’s investigations were continued by Elwin Bruno Christoffel 

(1829—1900) in the paper On the transformation of homogeneous differential 

expression of second degree (Uber die Transformation der homogenen Dif- 

ferentialausdrticke zweiten Grades. Berlin, 1869) / 114, vol. 1, рр. 368—377], 

in which he posed the question of the conditions under which the geometry 

determined by a form >, >; 9 ‚Ах: Ах, coincides with the geometry determined 
bya form >, )) ,A,dy;dy;. Just as Riemann’s intention was to develop Gauss’s 
theory of surfaces, so Christoffel’s intention was to generalize the problem 

of superposition of surfaces. Christoffel’s necessary condition for the coin- 

cidence of geometries turned out to be the cdincidence of the differential forms 

Vid Med В, иАх,Ахидх,дхь, computed for the two given forms. Christoffel 
denoted the quantities Г; by {/*} and the quantities )’,g,,Tj, by [*]. That 
is why these quantities are often called Christoffel symbols of the first and 

second kind, respectively. 

Riemannian Spaces of Constant Curvature 

After defining Riemannian spaces of variable curvature and noting that 

Euclidean spaces are spaces of zero curvature Riemann dwelled at length on 

spaces of constant nonzero curvature: 

Manifolds whose curvature is constantly zero may be treated as a special 

case of those whose curvature is constant. The common character of 

these continua whose curvature is constant may be also expressed thus, 

that figures may be moved in them without stretching. For clearly 

figures could not be arbitrarily shifted and turned round in them if the 

curvature at each point were not the same in all directions. On the other 

hand, however, the measure-relations of the manifold are entirely 

determined by the curvature; they are therefore exactly the same in all 

directions at one point as at another, and consequently the same con- 

structions can be made from it: whence it follows that in aggregates with 
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constant curvature figures may have any arbitrary position given them. 

The measure-relations of these manifolds depend only on the value 

of the curvature, and in relation to the analytic expression it may be 

remarked that if this value is denoted by a, the expression for the line- 

element may be written $ 

1+ OTe 2. 4х" 

[122, р. 65]. 

The latter expression generalizes the previously mentioned expression, obtained 

by Minding, of the line element of a surface of constant curvature in terms 

of its Gaussian curvature. 

The simplest example of a Riemannian space of constant positive curvature 

is a sphere in (и + 1)-dimensional Euclidean space; the Riemannian curvature 

of a sphere of radius r, of any dimension, in all two-dimensional directions is 

equal to 1/r?, for the area of any spherical triangle is the product of r? and 
the angular excess of the triangle. 

An example of an n-dimensional Riemannian space of constant negative 

curvature is n-dimensional Loba¢éevskian space, first defined by Beltrami in 

the paper Fundamental theory of spaces of constant curvature (Teoria fonda- 

mentale degli spazi di curvatura costante. Milan, 1869) [42, pp. 406-429] 

published in the same year as his previously discussed paper. This space can 

also be viewed as one of the sheets of a sphere of radius gi in (n + 1)- 

dimensional pseudo-Euclidean space. The Riemannian curvature of such a 

sphere in all two-dimensional directions is — 1/4? since the area of an arbitrary 

spherical triangle on this sphere is the product of its angular defect by —q?. 

We wish to mention here a remarkable theorem of F. Schur established in 

the paper On the connection between spaces of constant curvature and projective 

spaces (Uber dem Zusammenhang der Raume constanten Kriimmungmasses 

mit den projectiven Каитеп. Leipzig, 1886) [517] which asserts that, on a 

Riemannian manifold, the constancy of the Riemannian curvature in all two- 

dimensional directions at each point implies the constancy of the Riemannian 

curvature at all points. Schur’s proof is purely geometric and is based on a 

projective mapping of the bundle of linear elements at one point onto a similar 

bundle at another point. An analytic proof of this result was given by Luigi 

Bianchi (1856—1928) in the paper On four-index symbols and on Riemannian 

curvature (Sui simboli a quatro indici e sulla curvatura di Riemann. Rome, 

1902) [56]. 

Elliptic Geometry 

Another form of n-dimensional Riemannian space of constant positive cur- 

vature is a sphere in (п + 1)-dimensional Euclidean space with identified 
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antipodal points called n-dimensional elliptic space or non-Euclidean space 

of Riemann. When (n + 1)-dimensional Euclidean space is completed to 

(n + 1)-dimensional projective space, pairs of antipodal points of a sphere 

in (n + 1)-dimensional Euclidean space are projected from its center onto the 

points of its plane at infinity. Since this plane is an n-dimensional projective 

space, elliptic space can be viewed as a metrized projective space. The details 

are as follows. 

An arbitrary sphere of (n + 1)-dimensional Euclidean space is given by an 

equation of the form 

AY xi +2) bx; +с=0, 

which can be written in homogeneous coordinates as 

AY x? +2 У bx,xo + c(xo)? = 0. 

The latter equation shows that our sphere intersects the plane at infinity, 

Хо = 0, in the imaginary quadric У`,х? = 0. Hence an elliptic space can be 
described as a projective space with a given imaginary conic. The distance w 

between two points X and Y of an elliptic space of curvature 1/r? is connected 

with the angle ф between the corresponding diameters of the sphere by the 

relation © = gr. On the other hand, Edmond Laguerre (1834—1886) showed 

in the paper On the theory of foci (Sur la theorie des foyers. Paris, 1853) /298, 

vol. 2, pp. 6-15 ] that the angle ф between two straight lines in Euclidean space 

can be expressed in terms of the cross ratio (ij, xy) of the straight lines x, y and 

two isotropic straight lines i, j, that is, imaginary lines of zero length that lie 

in the plane of x and y and pass through the point of intersection of x and y, 

by means of the relation 

1 
ф= 20 ху). (8.5) 

Since the imaginary lines i, 7 that join the center of the sphere to the points 

I, J of the imaginary quadric )'; x? = 0 in the plane at infinity are, in view 
of the equation of the quadric, isotropic, Laguerre’s formula (8.5) yields an 

expression for the distance m between points X, У of elliptic space in terms 

of the cross ratio (JJ, XY) of these points and the two points of intersection 

of the straight line ХУ and the imaginary quadric: 

oS 5 ny, XY). (8.6) 

An elliptic metric in the projective plane was defined in 1859 by Cayley in 

the Sixth memoir upon quantics [103, vol. 2, рр. 561-592]. An elliptic metric 

in space, and the term elliptic geometry, were introduced by Klein in 1871 in 

the paper On the so-called non- Euclidean geometry [282, vol. 1, pp. 254-305], 

in which he wrote that 
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The basis of a general projective metric in space is provided by an 

arbitrary fundamental surface of the second order. 

To define the distance between two points one joins them by a 

straight line. It intersects the fundamental surface in two new points 

that are in a definite cross ratio with the two given points. The logarithm 

of this cross ratio multiplied by an arbitrary constant c yields what one 

should call the distance between the two given points [282, vol. 1, p. 300]. 

Klein gave a similar definition of the angle between two planes (see p. 238). 

Further Klein wrote: 

By a motion is meant the totality of linear transformations that leave 

the fundamental surface invariant. 

By spheres one means quadric surfaces that meet the fundamental 

surface along a plane curve. The center of the sphere is the pole of the 

plane that contains the osculating curve.... 

If the fundamental surface is imaginary then all straight lines have 

finite length and each pencil of planes has finite angle sum. Elliptic 

geometry comes under this case (provided that the constant c’ in the 

definition of angles is taken as ./ — 1/2, so that the sum of the angles in 

a pencil of planes is п). 

We do not investigate the case when the fundamental surface is real 

and ruled (like a hyperboloid of one sheet) for this case is no way 

connected with the three geometries (elliptic, hyperbolic, parabolic) 

considered here. 

Finally, if the fundamental surface is real and nonruled then for the 

interior points of the surface we obtain a metric that includes the metric 

of hyperbolic geometry provided that we again take the constant c’ to 

Be iy 
Parabolic geometry is included as a special case of the general metric; 

this case arises if the fundamental surface specializes (degenerates) into 

an imaginary conic section. The fundamental conic section of parabolic 

geometry is the so-called imaginary circle at infinity /282, vol. 1, p. 301]. 

Klein’s fundamental surface is now called by Cayley’s term the absolute. 

We note that Klein’s Диеаг transformations are collineations, his hyperbolic 

geometry is Lobaéevskian geometry, and his parabolic geometry is Euclidean 

geometry; the imaginary circle at infinity is the imaginary circle )’; x? = 0 in 

the plane at infinity of Euclidean space that plays the role of the absolute of 

this space. Klein did not investigate the geometry of the exterior of an oval 

(nonruled) quadric and the geometry of a ruled quadric. The reason for this 

is that, unlike elliptic geometry and Lobaéevskian geometry, the geometry of 

these spaces is locally not Euclidean but pseudo-Euclidean. 

We also note that the only difference between formula (8.6) and formula 

(6.27) for Lobaéevskian space is that in one case we have the pure imaginary 

constant r/i and in the other the real constant 4. 
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Clifford Parallels and-Surfaces 

The geometry of elliptic space was significantly developed by William Kingdon 

Clifford (1845—1879) in his Preliminary sketch of biquaternions (London, 

1879) [122, рр. 181-200]. 
After defining elliptic, hyperbolic, and parabolic geometries whose absolutes 

are, respectively, an imaginary quadric, a real (oval) quadric, and an imaginary 

conic in a real plane, Clifford investigates elliptic geometry. After defining 

poles and polar planes and mutually polar straight lines with respect to an 

absolute and pointing out that two points that are polar conjugates with 

respect to the absolute “‘are a quadrant apart,” that is, are (п/2)г apart, or, if 

г = 1, are л/2 apart, Clifford notes that 

Through an arbitrary point can in general be drawn one line perpen- 

dicular to a given plane; namely, the line joining the point to the pole 

of the plane. If, however, the point is the pole of the plane, every line 

through it is perpendicular to the plane. Similarly, from a point not on 

the polar of a given line can be drawn one and only one perpendicular 

to the line; namely, the line through the point which meets the given line 

and its polar / 122, р. 192]. 

and further: 

In general, two lines can be drawn so that each meets two given lines 

at right angles, and these are polars of one another. One line may therefore 

be converted into another by rotation about two polar axes. These axes 

are determined as the lines which meet the two given lines and their 

polars. If we travel continuously along one of these lines and draw per- 

pendiculars on the other, one of these axes determines the shortest dis- 

tance between the lines, and the other the longest. If then these two are 

equal, the lines are equidistant along their whole length. Thus there is 

a case of exception in which two lines and their polars belong to the same 

set of generators of a hyperboloid; the lines are then equidistant along their 

whole length, and meet the same two generators of one system of the 

absolute. I shail use the word parallel to denote two lines so situated; 

and they shall be called right parallel or /eft parallel according as one 

is converted into the other by a right-handed or left-handed twist. 

Through an arbitrary point can be drawn one right parallel and one left 

parallel to a given line; the angle between them is twice the distance of 

the point from the line. There are many points of analogy between the 

parallels here defined and those of parabolic geometry. Thus, if a line 

meets two parallel lines, it makes equal angles with them; and a series of 

parallel lines meeting a given line constitute a ruled surface of zero 

curvature. The geometry of this surface is the same as that of a finite 

parallelogram whose opposite sides are regarded as identical /122, 

pp. 192-193]. 
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Figure 103 Figure 104 

The parallels defined by Clifford are now called paratactic straight lines;> one 

must bear in mind that, unlike parallels in Euclidean (parabolic) geometry, 

Clifford parallels are skew straight lines. Figure 103 illustrates the construc- 

tion of a right, CD, and left, CE, Clifford parallel through a point C to a 

straight line АВ. From the point С one drops the perpendicular CA to the 

straight line AB and constructs its polar DBE. On the latter one lays off on 

either side of the point B segments BD and BE equal to the segment CA = a. 

The required parallels are the straight lines CD and CE; the angle DCE is 

measured in terms of the segment DE = 2a and is equal to 2a/r. The surface 

constructed by Clifford is now known as a Clifford surface. It is a ruled 

quadric obtained by rotating one of two paratactic straight lines about the 

other; its rectilinear generators in both families are paratactic to the axes; at 

the same time it is also a surface of revolution about the polar of the first axis. 

The geometry of a Clifford surface is Euclidean. Its area is finite and equal 

to 2*r? sin 2a/r, for it is isometric to a rhombus with sides zr and acute angle 

2a/r (Figure 104) with sides in each pair of opposite sides glued together. To 

prove that the geometry of this surface is Euclidean it suffices to write down 

its parametric equations in homogeneous coordinates whose basis points are 

located on the axes of the surface, 

a OL 
Хо = COS—COS u, x, = cos—sinu, 

r p 

Le ae 
X2 = sin—cospv, хз = sin-sinv, 

r if 

and to compute the line element 

a а 
АХ =r (cos? a + sin? ae?) 

i r Г 

>This term was introduced Бу Е. Study in the paper /568/. 
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If in the latter we put 

a ne 
ЕЕ COS 1 И =rsin-—-v, 

r r 

then we have ds? = dU? + dV’. 
If one eliminates from the parametric equations of the Clifford surface the 

parameters u and v then one obtains its equation in the form 

ee a 
sin?—(x2 + x7) — cos*—(x3 + x3) =0. 

r r 

A Clifford surface is the simplest solution of the Clifford-Klein problem 

of finding spaces with a Euclidean metric that are not isometric to Euclidean 

space in the large. 

Clifford’s Idea of the Geometrization of Physics 

W. K. Clifford was also interested in questions of the philosophy of space. In 

his philosophical work Philosophy of pure science (London, 1873) there are 

his famous words on Lobaéevskian geometry! 

What Vesalius was to Galen, what Copernicus was to Ptolemy, that 

was Lobatchewsky to Euclid. There is, indeed, a somewhat instructive 

parallel between the last two cases. Copernicus and Lobatchewsky were 

both of Slavic origin. Each of them has brought about a revolution in 

scientific ideas so great that it can only be compared with that wrought 

by the other. And the reason of the transcendent importance of these 

two changes is that they are changes in the conception of the Cosmos 

[123 vol. 1; pr 356). 

What Clifford is saying here is that Lobaéevskii’s discovery that Euclidean 

geometry is not the only conceivable geometry is just as revolutionary as 

Vesalius’ shattering of the myth of the exclusive position of man in the animal 

kingdom and Copernicus’ discovery that the Earth is just one of the planets. 

Clifford expressed his interesting thoughts on space in his posthumously 

published The Common sense of the exact sciences (London, 1885) [121]. 

Clifford begins the chapter on space with the words 

Geometry is a physical science / 121, р. 43], 

and at the end of the chapter on position he writes: 

We may conceive our space to have everywhere a nearly uniform 

curvature, but that slight variations of the curvature may occur from 

point to point, and themselves vary with the time. These variations of 

the curvature with the time may produce effects which we not unnaturally 

attribute to physical causes independent of the geometry of our space. 
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We might even go so far as to assign to this variation of the curvature 

of space “‘what really happens” in that phenomenon which we term the 

motion of matter / 121, pp. 202-203]. 

Clifford developed these ideas in greater detail in his report On the space 

theory of matter (Cambridge, 1876). First he paraphrases Riemann: 

Riemann has shewn that as there are different kinds of lines and sur- 

faces, so there are different kinds of space of three dimensions; and that 

we can only find out by experience to which of these kinds the space in 

which we live belongs. In particular, the axioms of plane geometry are 

true within the limits of experiment on the surface of a sheet of paper, 

and yet we know that the sheet is really covered with a number of small 

ridges and furrows, upon which (the total curvature not being zero) 

these axioms are not true. Similarly, he says although the axioms of solid 

geometry are true within the limits of experiment for finite portions of 

our space, yet we have no reason to conclude that they are true for very 

small portions; and if any help can be got thereby for the explanation 

of physical phenomena, we may have reason to conclude that they are 

not true for very small portions of space //22, p. 21]. 

Then he states the following four principles: 

(1) That small portions of space are in fact of a nature analogous to 

little hills on a surface which is on the average flat; namely, that the 

ordinary laws of geometry are not valid in them. 

(2) That this property of being curved or distorted is continually being 

passed on from one portion of space to another after the manner 

of a wave. 

(3) That this variation of the curvature of space is what really happens 

in that phenomenon which we call the motion of matter, whether 

ponderable or etherial. 

(4) That in the physical world nothing else takes place but this varia- 

tion, subject (possibly) to the law of continuity / 122, pp. 21-22] 

These principles forma program of geometrization of physics. 

Riemann’s Topology 

In addition to the theory of Riemannian spaces Riemann also founded 

topology—one of the most important disciplines that significantly broadened 

our notions of space. 
We have already pointed out that Euler interpreted Leibniz’s term geo- 

metry of position in a topological sense, whereas Carnot and Grassmann gave 

it narrower interpretations. Euler’s interpretation of the term was developed 

by the German physicist Johann Benedict Listing (1808—1862), who suggested 
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the now generally accepted term topology in his Preliminary studies on to- 

pology (Vorstudien zur Topologie. Géttingen, 1847) [329]. Listing’s term 

comes from replacing Leibniz’s Latin situs (place) with its Greek counter- 

part topos. Listing studied 

linear complections, that is, lines or curves or sets of such, located on a 

surface, such as a plane or a sphere, or arbitrarily disposed in space [ 329, 

p. 867]. 

He investigated knots, chains, plaits, and other forms of mutual disposition 

of linear complections—later he called them /inear complexes—with numer- 

ous examples drawn from biology and technology. Listing’s work The census 

of spatial complexes or a generalization of Euler’s therorem on polyhedra Der 

Census raumlicher Komplexe oder Verallgemeinerung des Euler’schen Satzes 

von den Polyedern. Gottingen, 1862) [330] dealt with more general spatial 

complexes. 

Gauss interpreted Leibniz’s ideas in the same topological sense. Gauss 

devoted to topological investigations, as to non-Euclidean geometry, a num- 

ber of rough notes and letters (see / 196, vol. 8, рр. 407—410] and the study 

of Jean Claude Pont /435a, рр. 31—38]). When he founded the topology of 

two-dimensional manifolds and laid the foundations of multidimensional 

manifolds Riemann also interpreted Leibniz’s ideas in the same way. Riemann 

laid the foundations of two-dimensional,topology in his Theory of Abelian 

functions (1857) [454, рр. 82-142], mentioned earlier. In this work he wrote, 

with reference to Leibniz, that 

For the study of functions which arise as integrals of exact differentials, 

some theorems belonging to analysis situs are nearly indispensable 

[454, p. 91]. 

Riemann associates to algebraic functions f(x, у) in the complex variables x 

and y multisheeted surfaces now called Riemann surfaces. He divides these 

surfaces into 

simply connected ones, in which every closed curve bounds a region of 

the surface—as, for example, a disk—and multiply connected ones, for 

which this does not happen—as, for example, an annulus bounded by 

two concentric circles [454, р. 22]. 

and points out that by means of a system of cuts it is possible to make a 

multiply connected surface into a simply connected one. Riemann introduces 

the characteristic р of a plane algebraic curve (later called by Clebsch /119] 

the genus of the curve) which he defines as half the number of cuts needed to 

make the corresponding multiply connected Riemann surface into a simply 

connected one. The number.p is now called the genus of the surface. We note 

that, as S. L’Huillier showed /323/, for polyhedra the genus p is connected 

with the Euler characteristic y = № — М, + М, of a polyhedron by means of 

the relation y = 2 — 2p. Fora sphere p = 0, fora torus р = 1, and for a sphere 
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with p handles it is equal to p. Riemann showed that for a Riemann surface 

the genus р, the number и of its sheets, ‘and the number w of its branch points 

are connected by the relation w — 2n = 2p — 2. 

In a survey that is a supplement to the afticle On the hypotheses that lie at 

the foundations of geometry Riemann adds a remark in connection with the 

first chapter of the article Notion of an n-ply extended magnitude: 

Chapter | is at once an introduction to investigations on analysis situs 

[454, p. 286]. 

Fragments dealing with analysis situs were published in 1876 in an edition of 

Riemann’s collected works /454, рр. 479-482]. In these fragments Riemann 

generalized the topological properties of a two-dimensional surface to an 

n-dimensional manifold, here called an n-stretch (n-Streck). Here Riemann 

defines what are now called homologous n-stretches: 

an n-stretch A is said to be transformable into an n-stretch B if A and 

parts of B together form the complete boundary of an interior (n + 1)- 

stretch /454, р. 479]. 

Then he gives the extremely important definition: 

If in the interior of a continuously extended manifold it is possible to 

make every unbounded n-stretch bounding by means of m definite parts 

of nonbounding n-stretches then this manifold has (m + 1)-tuple con- 

nection of the n-th dimension. 

A continuously extended manifold is called simply connected if the 

connection of every dimension is simple /454, р. 479/. 

It is easy to verify that for a two-dimensional manifold of genus p Riemann’s 

connection is (2p + 1)-ple. Then Riemann explains the dependence of the 

connection of the boundary of a manifold on the connection of the manifold 

itself. 

These ideas of Riemann were set forth by his friend Enrico Betti in the 

previously mentioned paper On spaces of an arbitrary number of dimensions 

[55, vol. 2, pp. 273—290]. By “spaces” Betti meant manifolds in multidimen- 

sional Euclidean spaces. He wrote: 

If in an n-dimensional space К, bounded by one or more (и — 1)- 

dimensional spaces, every closed m-dimensional space, т < и, is the 

boundary of a part of a linear connected (m + 1)-dimensional space, 

entirely contained in А, then we shall have a connection in m+ 1 

dimensions and we shall say that R has a simple connection of the m-th 

species. If a space R has only simple connections, then we shall say that 

it is simply connected. If, however, one can imagine in R a number p,, 

of closed m-dimensional spaces which cannot form the boundary of a 

linear connected part of an (m + 1)-dimensional space, entirely con- 

tained in R, and such that every other closed m-dimensional space forms 
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by itself or with some or all of these spaces the boundary of a linear 

connected part of an (m + 1)-dimensional space, entirely contained in 

R, then we shall say that R has a connection of (p,, + 1)-th order of the 

m-th species [55, vol. 2, р. 278]. 

These ideas were further developed by Poincaré. Already in the memoir 

On curves defined by differential equations (Sur les courbes defines par les 

équations differentielles. Paris, 1881—1885) /431, vol. 1, pp. 90-161] he made 

extensive use of topological properties of curves to give qualitative descrip- 

tions of solutions of differential equations. Poincaré devoted to the topology 

of multidimensional manifolds the large memoir Analysis situs (the title is 

taken over from Riemann) (Paris, 1895) /431, vol. 6, pp. 193—288] and five 

supplements to it (Palermo-London-Paris, 1899—1904). 

Poincaré determined (и — p)-dimensional manifold in n-dimensional space 

by means of p equations and g inequalities between the и coordinates. Then 

he defined the boundary of a manifold, homomorphism between manifolds, 

and homology—the fundamental concept of combinatorial topology. Using 

this concept he defined the Betti numbers of a manifold, that is, Betti’s orders 

of connection (in the twenties of this century Solomon Lefschetz (1884—1972) 

and James Alexander (1888—1971) proposed to call Betti numbers numbers 6; 

one less than Poincareé’s Betti numbers; cf. [308 |). Poincaré extended Euler’s 

theorem to polyhedra with arbitrary Betti numbers by showing that 

Nf SEN ENG SoS NI be Sr ea ee 

The polynomial )'5,t' is called the Poincaré polynomial. In the same paper 
Poincaré also laid the foundation for the homotopic theory of manifolds in 

which a leading role is played by the noncommutative Poincaré group in- 

troduced by him. 

Topological Spaces 

At the beginning of the 20th century, in connection with the spread of the 

group-theoretic viewpoint, mathematicians began to study abstract spaces 

together with the study of topological invariants of manifolds that are sub- 

manifolds of Euclidean spaces or are obtained from such manifolds by identi- 

fication of points (as in the case of obtaining the projective plane from a 

sphere) or by splitting them into points of various sheets (as in the case of 

constructing the Riemann surface of an algebraic function out of its domain 

of definition in the complex plane). One of the first works in this direction 

was the paper On certain points of the functional calculus (Sur quelques points 

du calcul fonctionelles. Palermo, 1906) [184] of the French mathematician 

Maurice Fréchet (1878—1973). In this paper Fréchet defines for the first time 

an abstract metric space exemplified by a space of functions or curves. To 

construct an abstract space Fréchet found it necessary 
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to generalize, first of all, the theory of linear sets that has brought about 
so much progress in the theory of functions of a single variable, 

by which theory he meant the, by that time; extensively developed theory of 

sets of points of the real line. Fréchet goes on to say: 

If we assume this preliminary investigation of sets then there arises a 

difficulty. The first generalization that seems natural is that of the notion 

of a continuous function. But if one wishes to consider operations where 

the variable is an element of arbitrary nature, then we must first know 

what is to be meant by neighboring elements or by the limit of a sequence 

of elements. This seems impossible: usually one gives a special definition 

of limit for each category of elements under study—points, curves, and 

so on. I circumvented this difficulty by a method similar to that which 

allows one to reason in the theory of abstract groups about a composi- 

tion of explicitly indeterminate form. 

Now I note that almost all (but not all) classical definitions of limit 

can be formulated as follows: in the given category of elements one can 

associate to each pair of elements a number p(A, B) whose properties 

are very close to the properties of distance of two points, namely that 

A coincides with B if p(A, B) = 0 and A tends to B if p(A, B) tends to 

zero. If we accept this hypothesis, less general but nevertheless very 

broad, then we obtain numerous more specific results. 

The approach just outlined leads to the generalizing of almost all 

theorems about linear sets and about continuous functions (at least 

those that can be formulated independently of the nature of the inves- 

tigated sets) / 184, рр. 1-2]. 

When mentioning abstract groups Fréchet emphasizes that he is applying 

the same methods of creating abstract mathematical concepts that have 

hitherto been used only in algebra, where, together with the abstract theory 

of groups, founded in the seventies of the 19th century, there also appeared 

Dedekind’s abstract ring theory. 

Developing his program, Fréchet defines a general metric space, which he 

calls class (Г), as 

aset of elements of arbitrary nature such that we know how to determine 

whether two given elements are identical or not and, in addition, such 

that to any two of them, A, В, we can associate a number (A, В) = (В, A) 

with the following two properties: 

|’ The necessary and sufficient condition that (A, В) is zero is the 

identity of A and B. 

2’ There exists a completely determined positive function /(¢) such that 

the inequalities (A, В) < ¢ and (В, С) < г imply (A, C) < (=) for all 

elements A, B, C. In other words, for (A, C) to be small it suffices that 

(A, В) and (В, С) are small / 184, р. 18]. 
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At present, metric spaces are defined by means of three axioms: the identity 

axiom that coincides with Frechet’s axiom 1’; the symmetry axiom (A, B) = 

(B, A) that Frechet regards as part of the definition of distance; and the 

triangle inequality axiom (A, В) + (B,C) > (А, С) that replaces Fréchet’s 

axiom 2’, 

Fréchet goes on to consider sets in metric spaces, limits of sequences, and 

limit points of sets. All limit points of a set form its derived set. Sets that 

contain all their iimit points are called closed, and complements of closed sets 

with respect to the whole space are called open sets. The intersection of ail 

closed sets containing a given set M is called the closure M of the set M. Then, 

after defining the Cauchy criterion for a sequence of elements A,, 42, ... of 

the metric space as the possibility of associating to every & > 0 an integer п 

with the property that the inequality (A,, A,,,) > € is satisfied for every р, 

Fréchet defines a complete metric space as a metric space in which every 

sequence satisfying the Cauchy criterion has a, necessarily unique, limit. 

Fréchet restricts himself to spaces that can be regarded in at least one way 

as the derived sets of countable sets of their elements. He considers metric 

spaces of functions with different definitions of distance. 

The definition of limit points and closed sets made it possible to introduce 

continuous mappings and homeomorphisms of the metric spaces considered 

by Fréchet. Fréchet’s paper became the starting point for the development 

of a general theory of abstract spaces and for the development of the basic 

concepts of functional analysis. 

Since distance is not needed for the study of topological properties of 

abstract spaces, just as it is not needed for the study of topological properties 

of lines and surfaces, soon after the appearance of abstract spaces Felix 

Hausdorff (1868—1942) in his Foundations of set theory (Grundzige der 

Mengenlehre. Leipzig, 1914) [217; 218 ] defined an abstract topological space. 

Hausdorff defined a topological space as any collection of elements, called 

points, with a distinguished collection of subsets {U}, such that to each point 

x there are associated some, and, at the very least, one of the sets of the system 

{U}, called neighborhoods U(x) of x; the intersection of any two neighbor- 
hoods U,(x) and U,(x) contains a neighborhood U;(x) of this point, and if 

y is a point of a neighborhood U(x) then there exists a neighborhood U(y) 

of y contained in U(x). Prescribing neighborhoods makes it possible to define 

limit points of any set M as points x such that every neighborhood of x 

contains at least one point of M other than x. Just as in Fréchet spaces so too 

in a topological (Hausdorff) space one defines derived, closed, and open sets. 

It is easy to see that all neighborhoods are open sets. 

Every Fréchet metric space is a topological space. In fact, one can take as 

neighborhoods the sets of points whose distances from the points of a (fixed) 

countable set, whose derived set is the whole space, are less than some 

rational numbers. It is easy to see that the number of such neighborhoods is 

countable, or, as one says, the space has a countable basis. 
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A further development of the Hausdorff definition is the definition of a 

topological space proposed by the Polish mathematician Kazimierz Kura- 

towski (1896-1980) in the paper The operation A of analysis situs (L’operation 

A del’analysis situs. Warsaw, 1922) [296]. By. operation A Kuratowski means 

the transition from a set А to its closure A. According to Kuratowski, a 

topological space is a collection of elements of arbitrary nature, called points, 

on whose subsets A there is defined an operation of closure satisfying the 

following axioms: 

|’ for the union A + B of two sets A and Bwe have A+ B= A + В; 

2’ aset A is contained in its closure, А < A; 

3’ the closure of the empty set @ coincides with it, © = ©; 

4’ the closure of the closure coincides with the closure, А = A. 

If for every set there is defined its closure A then the points of A not in A 

are called the Пий points of А; the sets A that coincide with their closures A 

are called the closed sets, and their complements relative to the whole space 

are called the open sets. 

The Soviet mathematician Pavel Sergeevi¢ Aleksandrov [Alexandroff] 

(1896—1983) proposed in the paper On the foundation of n-dimensional topology 

(Zur Begriindung der n-dimensionalen Topologie. Leipzig, 1925) [14] amore 

symmetric form of Kuratowski’s definition: 

1. A topological space is a set of elements of arbitrary nature, called points, 

in which certain subsets, called open sets, have been singled out such that: 

|’ the whole space is an open set; 

2’ the null set is an open set; 

3’ the intersection of finitely many open sets is an open set; 

4’ every union of open sets is an open set. 

2. A topological space is a set of elements of arbitrary nature, called points, 

in which certain subsets, called closed sets, have been singled out such that: 

1’ the whole space is a closed set; 

2’ the null set is a closed set; 

3’ every union of closed sets is a closed set; 

4’ the intersection of finitely many closed sets is a closed set. 

In the first case a closed set is defined as the complement of an open set 

and in the second case an open set is defined as the complement of a closed 

set. Neighborhoods can be defined as subsystems of open sets such that an 

arbitrary open set can be represented as the union of sets of this subsystem 

(see. [218, p..258]). 

To different systems of closed or open subsets in the same set of points 

there correspond different topologies on this set. For example, our axiom 

systems are satisfied if 

(A) the only closed (and open) sets are the whole space and the null set; 

(B) the closed (and open) sets are all sets of points of the space. 
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In case (A) the closures of all nonempty sets, including single points, 

coincide with the whole space. In case (B) the closure of each set coincides 

with this set, and a minimal system of neighborhoods is a system in which the 

neighborhood of each point is that point alone. Then the space has no limit 

points and is called discrete; the space of case (A) is called trivial. 

Hausdorff ruled out case (A) by means of the following axiom: for any 

two points of the space there are disjoint neighborhoods /2/8, р. 260]. 

Sometimes Hausdorff’s axiom is replaced with a weaker one due to Frigyes 

Riesz, that the closures of all single points of the space are the points them- 

selves [456, vol. 1, рр. 155—169 ]—ог by an even weaker axiom introduced 

by the Soviet mathematician Andrei Nikolaevi¢ Kolmogorov (1903—1987), 

that any two points of the space have different closures / 15, р. 58]. 

A very important class of topological spaces is the class of compact spaces 

such that every covering of the space by means of open sets contains a 

finite subcovering. The Soviet mathematicians P. S. Aleksandrov and Pavel 

Samuilovié Uryson [Urysohn] (1898—1924) studied such spaces in the case 

when the minimal cardinality of a system of neighborhoods is greater than 

the cardinality of a countable set and called them bicompact [16]. For these 

spaces P. S. Aleksandrov developed a homology theory analogous to the 

homology theory of manifolds in Euclidean spaces. By now mathematicians 

have found a great many topological invariants of the most varied topological 

spaces. ; у 
One of the most obvious topological invariants is the dimension of a 

topological space. Whereas it is possible to have a one-to-one correspondence 

between manifolds of different dimensions, a one-to-one bicontinuous corre- 

spondence can only be established between manifolds of the same dimension. 

If the points of a topological space have neighborhoods homeomorphic to 

n-dimensional Euclidean space then it is natural to say that the dimension 

of the space is n. In more complicated cases dimension was defined by the 

Dutch mathematician Luitzen Egbertus Jan Brouwer (1882—1966) in the 

paper Proof of the invariance of the dimension number (Beweis der Invarianz 

der Dimensionzahl. Leipzig, 1911) /80/. The ideas of Brouwer were devel- 

oped by Urysohn in A memoir on Cantor manifolds (Memuar о kantorovyh 

mnogoobraziyah. 1928) [599 ] and by the German mathematician Karl Menger 

(b. 1902) in Dimension theory (Dimensionstheorie. Leipzig, 1932) [362]. They 

defined dimension by induction on the dimension number, beginning with the 

dimension — 1 which they assigned to the empty set. 

Urysohn and Menger also proposed another definition of dimension, 

equivalent to the preceding for the most important topological spaces: a non- 

empty space is n-dimensional if every finite covering of the space has a finite 

subdivision of order <nand there exists a finite covering of the space without 

finite subdivisions of order <n. A nonempty space is infinite-dimensional if it 

is not n-dimensional for any nonnegative n. The dimension of the null set is 

again taken to be —1. 

In the previously mentioned paper Brouwer proved his famous fixed-point 
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theorem: every continuous mapping of an n-dimensional simplex into itself 

has at least one fixed point. This theorem was first proved by the Latvian 

mathematician Piers Bohl (1865—1921), who worked in Riga, in the paper On 

the motion of a mechanical system near an equilibrium position (Uber die 

Bewegung eines mechanischen Systems in der Nahe einer Gleichgewichtlage. 

Berlin, 1904) [64, рр. 79-125]. The Bohl-Brouwer theorem was extended to 

infinite-dimensional analogues of an n-dimensional simplex by the Soviet 

mathematician Andrei Nikolaevié Tihonov [Tychonoff] (b. 1906) [597]. Bohl 

came to the fixed-point theorem in connection with the problem of proving 

the existence of a solution of a system of differential equations connected with 

the notion of certain mechanical systems he investigated. The Bohl-Brouwer 

theorem was later used to prove the existence of solutions of finite systems of 

ordinary differential equations, and the Tihonov theorem was used to prove 

the existence of solutions of infinite systems of differential equations. 

The Influence of the General Theory of Relativity 

We have already pointed out the importance of Einstein’s discovery of the 

special theory of relativity for the elaboration of the concept of pseudo- 

Euclidean geometry. For example, the appearance of Weyl’s book Space, 

time, matter [626] in which, among other matters, he set forth his axiomati- 

zation of n-dimensional Euclidean space, was connected with the general 

theory of relativity. But the importance of the general theory of relativity for 

the development of geometry is far broader and deeper. Whereas in the special 

theory of relativity spacetime was viewed as a pseudo-Euclidean space, in the 

general theory it is viewed as an analogue of a Riemannian space that stands 

in the same relation to such a space as pseudo-Euclidean space to Euclidean 

space. Such a space is now called а pseudo- Riemannian or general Riemannian 

space. Just as in a Riemannian space, so too at each point of this space there 

is given the square of a line element 

а: он dx? 
ina 

where the g;; are point functions and, although the quadratic form is no longer 

positive definite, it can be reduced at each point to the form 

ds* = —(dx°)? + (dx')? + (dx*)? + (dx?)?. 

The first sketch of the general theory of relativity was set forth by Einstein 

together with the German mathematician Marcel Grossmann (1878—1936) in 

Outline of a generalized theory of relativity and theory of gravitation (Entwurf 

einer verallgemeinerten Relativitatstheorie und Theorie der Gravitation. 

Leipzig, 1913), and the final theory was presented in Foundations of the general 

theory of relativity (Grundlagen der allgemeinen Relativitatstheorie. Leipzig, 

1916) [340, рр. 109—164]. 
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Already in the 1913 paper Einstein and Grossmann used the tensor calculus 

created by the Italian geometer Gregorio Ricci-Curbastro (1853—1925) in 

Principles of a theory of differential quadratic forms (Principii di una theoria 

delle forme differenziale quadratiche. Milan, 1884) /453, vol. 1, рр. 138—171] 

and subsequently developed together with Tullio Levi-Civita (1873—1941) in 

Methods of the absolute differential calculus and their applications (Méthodes 

du calcul différentiel absolu et leurs applications. Leipzig, 1901) [453, vol. 2, 

рр. 185—271]. Ricci gave the name covariant system of the first order to the 

functions а; of the coordinates х' that change as a result of a coordinate trans- 

formation x! = x'(x',...,x") in accordance with the rule 

dx! ee ee 8.7 
а; % а; ox! ( ) 

‘eh nak 
exemplified by the law of transformation of partial derivatives а and the 

name contravariant system of the first order to functions a’ of the coordinates 

x! that transform in accordance with the opposite rule 

з Oxt 
a’ =) a'—, (8.8) 

и i x 

exemplified by the law of transformation of the differentials dx' of the co- 

ordinates. Ricci considered scalars as systems of zero order. 

Ricci called the functions а,,, a, and a} that transform in accordance with 
the respective rules 

дх ox! A RGR OX? р Ox" Oxi 
ayy = Osa are = аа Я. 

й dd, РО Ox! ES ox! dx у Xd J Ox' Axi 

(8.9) 
J 

twice covariant, twice contravariant, and mixed systems of the second order. 

Ricci defined in a similar way systems of higher order. Contravariant 

systems of the first order at a point can be regarded as coordinates of vectors; 

covariant systems of the first order at the same point can be regarded as 

coefficients of linear forms defined on these vectors; twice covariant systems 

of the second order can be regarded as coefficients of bilinear forms defined 

on these vectors, and mixed systems of the second order can be regarded as 

matrices of linear transformations defined on these vectors. Einstein and 

Grossmann proposed that Ricci’s “systems” be called tensors (and thus 

extended to them the term elastic tensor and that the “‘orders’’ of the systems 

be called ranks. The Dutch geometer Jan Arnoldus Schouten (1883—1971) in 

his Ricci calculus (Der Ricci-Kalkiul. Berlin, 1924) [510] called Ricci’s systems 

affinors and thereby extended, to them a term used by F. Jung for linear 

operators; he called “ог4ег$” of the systems valences, borrowing this term 

from chemistry. 

Most mathematicians now use the term tensor in the sense of Einstein and 
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valence in the sense of Schouten. Following Einstein’s suggestion, in the tensor 

calculus one omits the summation sign when summing with respect to co- 

variant and contravariant indices. We will follow this rule in the following. 

The coefficients of the quadratic form that defines the metric of a Rieman- 

nian space form a twice covariant tensof g,,; the quadratic form is written in 

tensor notation as 

ds? = духах! (8.10) 

and the equation of the geodesics is written as 

de ite dxi dx* 

dt? Mat dt 
0: (8.11) 

The Christoffel symbols Гу, do not form a tensor and transform under 

coordinate transformations in accordance with A more involved law. But the 

four-index Riemann symbols, now written as R;;,, do form a tensor of valence 

four calied the curvature tensor. 

Covariant differentiation as defined by Ricci associates to every tensor 

field in a Riemannian space—that is, to every function that defines a tensor at 

every point of a region in a Riemannian space—the field of a new tensor that 

has one additional covariant valence. The covariant derivative V;@ of a scalar 

ij, к 

derivatives V,a‘ and У,а; of vectors a‘ and а; are given by 

a Nea? да; 
Via = Ba. j at Tj,a У;а; = ae => Tidy. (8.12) 

The covariant derivatives У,а;; and У, а; of the tensors а,; and aj have the form 

0a;; да; р 
V4; — = =— Ty =~ Ган, Ука; = = Bx === =F Гна; — Г; а. (8.13) 

The Geometry of the General Theory of Relativity 

Einstein formulated the principle of general relativity in The foundations of 

the general theory of relativity as follows: 

The general laws of nature are to be expressed by equations which 

hold good for all systems of co-ordinates, that is, are covariant with 

respect to any substitutions whatever (generally covariant) /340, 

ed ME 

The most important element of the general relativity theory is the geometric 

interpretation of gravity. In this theory gravitation is linked to the curvature 

of space, whose definition in a pseudo-Riemannian space is the same as that 
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in a Riemannian space; the greater the density of matter in a certain region, 

and thus the intensity of the gravitational field, the greater the curvature 

of pseudo-Riemannian spacetime. A mass point subject to gravitational 

forces alone moves along a geodesic which satisfies the same equations as in 

Riemannian space. 

Light rays, too, propagate along geodesics of pseudo-Riemannian space- 

time. The deflection of the trajectories of material particles and of light rays 

from straight lines represents the attraction of particles of matter and of light 

by the heavy masses that gives rise to the gravitational field. In this connec- 

tion we quote from Einstein’s paper On the ether (Uber den Aether. Zurich, 

1924) [166]: 

General relativity theory sets aside one other shortcoming of classical 

dynamics: in the latter, inertia and weight appear as phenomena that 

are completely independent from one another in spite of the fact that 

both are conditioned by the same material constant—mass. Relativity 

theory surmounts this shortcoming by establishing for the dynamical 

behavior of an electrically neutral particle the law of geodesics in which 

the interaction of inertia and gravitation is already inseparable. This 

interaction imparts to the ether a metric that varies from point to point 

and properties that determine the dynamical behavior of material points. 

In turn, these are determined by physical factors, namely the distribu- 

tion of mass or energy. Thus the ether of general relativity differs from 

the ether of classical mechanics in that it is no longer ‘“‘absolute”’ but is 

determined in the sense of its properties, that vary in space, by the dis- 

tribution of weighted matter. This definition is complete provided that 

the world is spatially finite and closed /166, р. 89]. 

Here the word ether is used in the sense of curved space whose geometric 

properties are determined by matter; in other papers Einstein replaces this 

term by the term space-time continuum. Einstein’s reference to the finite and 

closed character of the universe reflects his original view that the curvature 

of space implies that space is finite and closed. (Cf. the paper [649] of Yakov 

Borisovic Zel’dovic (1914—1988).) 

General relativity theory has given a physical interpretation to the curva- 

ture of pseudo-Riemannian spacetime. Light rays propagate along the iso- 

tropic geodesics of this spacetime. The deviation of the trajectories of 

material points and light rays from geodesics represents the attraction of 

material points and light by the heavy masses that give rise to the gravitational 

field. 

The primary connection between non-Euclidean geometry and general 

relativity is that the discovery of non-Euclidean geometry extended the range 

of conceivable spaces and..thus prepared the ground for the discovery of 

spaces of variable curvature, both Riemannian and pseudo-Riemannian; the 

latter represents the mathematical apparatus of general relativity. How- 

ever, there is also a direct link between general relativity and non-Euclidean 
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geometry, but what is involved is a four-dimensional rather than a three- 

dimensional space as in the case of special relativity. The geometry in question 

describes the spacetime of general relativity ‘Чт the mean,” under the assump- 

tion of the uniform distribution of matter. This view was presented by Einstein 

already in the paper Cosmological considerations linked to the general relativity 

theory (Kosmologische Betrachtungen zur allgemeinen Relativitatstheorie. 

Berlin, 1917) /340, рр. 175—189]. Here Einstein considered а uniform distri- 

bution of matter in space alone, regarding space itself as a sphere in four- 

dimensional Euclidean space and spacetime as a cylinder in five-dimensional 

space. However, if we proceed from the assumption that we are dealing with 

a uniform distribution of matter throughout the spacetime continuum then 

spacetime is a sphere of real or imaginary radius in five-dimensional pseudo- 

Euclidean spaces of indices 4 and 3, respectively. If we assume, for simplicity, 

that the hypersurfaces { = const. are parallel hyperplanes, then, in time, the 

“space section” of the world decreases or increases, depending on the position 

of the cutting hyperplane. In the first case the curvature of the “space section”’ 

is constant and positive, whereas in the second case it is constant and negative 

(Figures 105a and 105b), in full agreement with astronomical observations. 

This confirmation shows that real spacetime, that is, a pseudo-Riemannian 

space of variable curvature, corresponds in the mean to the picture just out- 

lined; the theory of an expanding universe of constant negative curvature was 

proposed by A. A. Friedmann in the paper On the possibility of a world of 

constant negative curvature (Uber die MOéglichkeit einer Welt mit konstanter 

negativer Krimmung des Raumes. Leipzig, 1924) [188]. 

The view of spacetime as a four-dimensional pseudo-Riemannian space of 

index 3 with positive curvature was proposed by the Belgian astronomer 

Willem de Sitter (1872—1934) in the paper On Einstein’s theory of gravitation 

and its astronomical consequences (Brussels, 1917) [541]. In the paper Geo- 

metrical note on de Sitter’s world (London, 1924) [158] Patrick du Val 
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showed that ‘‘de Sitter’s world” is a Lobaéevskian space of positive curvature, 

that is, a sphere of real radius in five-dimensional pseudo-Euclidean space of 

index 4 with identified antipodal points (see also /129a/). 

Einstein’s Philosophy of Space 

The discovery of the general theory of relativity was a brilliant concretization 

of the connection between matter and space and time, which are an existence 

form of matter—an issue often addressed by the classics of Marxism. 

Einstein dealt with the philosophical questions of space in many of his 

papers. One relevant passage is the preceding quotation from his paper On 

the ether. The following quotation is from the paper Geometry and experience 

(Geometrie und Erfahrung. Berlin, 1921) [165]: 

Of all sciences mathematics is held in especially high esteem, for its 

theorems are absolutely true and indisputable while the areas of other 

sciences are to some extent debatable and there is always the danger of 

their results being overturned by new discoveries. But it is not fitting for 

a researcher working in some other area of science to envy mathematics, 

for the propositions of mathematics rest not on real objects but exclu- 

sively on objects of our imagination. In fact, it is little wonder that one 

attains logical agreement of deductions if one earlier reached agreement 

concerning the principal propositions (axioms) as well as the methods 

to be employed for deriving from the principal propositions other pro- 

positions. At the same time, the deep esteem for mathematics has 

another basis, which is that mathematics is that which gives to the exact 

sciences a measure of confidence which they could not otherwise attain. 

In this connection there arises a riddle that has worried researchers 

of all times. Whence the remarkable correspondence between mathe- 

matics and real things if mathematics is just a product of human thought 

unrelated to any experience? Can the human mind understand the prop- 

erties of real things without any experience, just by way of reflection? 

To my mind, a concise answer to this question is this: to the extent 

to which the theorems of mathematics can be applied to reflect the real 

world they are not exact; they are exact to the extent to which they do 

not refer to reality. It seems to me that complete clarity in this matter 

can be achieved only by following the kind of mathematics known as 

axiomatics. The progress achieved through axiomatics consists in the 

fact that it sharply separated its formal-logical content from its objective 

and intuitive content. By point, straight line, and so on, in axiomatic 

geometry one should mean only contentless ideas. That which gives 

them content lies outside mathematics. 

On the other hand, however, it is true that mathematics in general 

and geometry in particular owe to their origins the necessity of learning 
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a little about the behavior of objects existing in reality. This is shown 

by the very word “geometry” which means “‘measurement of the earth” 
[165, рр. 3-5]. 

4a 

In this paper Einstein arrives , 

at the viewpoint held by as original and deep a thinker as Henri Poincaré: 

Euclidean geometry differs from all conceivably possible axiomatic geo- 

metries by its simplicity. And since axiomatic geometry contains no 

statements about actual reality and can make such statements only in 

conjunction with physical laws, it seems possible and reasonable to 
adhere to Euclidean geometry regardless of the properties of reality. On 

the other hand, in case of an observed disagreement between theory and 

experience, it is easier to agree to change physical laws than axiomatic 

Euclidean geometry. If one forgets all about the connection between a 

practically rigid body and geometry, then it is not easy to refuse to admit 

that Euclidean geometry must be viewed as simplest. 

Why did Poincaré and other researchers reject the equivalence that 

thrusts itself upon one between a practically rigid body of real experi- 

ence and a geometric body? Simply because, when one considers them 

more closely, real rigid bodies in nature turn out not to be rigid at all, 

since their geometric behavior, that is, their possible mutual disposition, 

depends on temperature, external forces, and so on. Thus the initial 

direct connection between geometry and physical reality is destroyed 

and we are forced to shift to the following more general position char- 

acteristic of Poincaré’s viewpoint. Geometry (G) tells us nothing about 

the behavior of real objects; this behavior is described only by geometry 

together with the totality of physical laws (Ph). In symbolic terms we 

can say that only the sum (G) + (Ph) lends itself to experimental verifi- 

cation. Thus one can choose arbitrarily (G) as well as different parts of 

(Ph); all of these laws represent agreements. To avoid contradictions it 

is necessary to choose the rest of (Ph) so that (G) and all (Ph) are 

experimentally verifiable / 165, pp. 7-8]. 

We see that Einstein refers here to the philosophical works of Poincaré 

mentioned earlier but, unlike Poincaré, who treated “objective геаШу” and 

“laws of nature” in the spirit of Mach, Einstein proceeds from “physical 

reality”’ and the possibility of “choosing arbitrarily” (©), that is, geometric 

axioms which, together with (Ph), that is, physical laws, must confront experi- 

ence. Thus Einstein interprets Poincaré’s position in materialistic terms and, 

like Lobaéevskii, believes that the question of which of the conceivable geo- 

metric systems corresponds to the geometry of the real world must be decided 

experimentally. 

It should be pointed out that Einstein frequently refers to Mach, whom he 

regards as one of his predecessors. In the obituary Ernst Mach (Ernst Mach. 

Leipzig, 1916) Einstein considered Mach’s critique of Newton’s mechanics 
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and wrote: 

The quoted lines show that Mach clearly understood the weak points 

of classical mechanics and came close to discovering the general rela- 

tivity theory. And that half a century before its creation! / 167]. 

Einstein regarded Mach’s idea that the inertia of a body is explainable by its 

interaction with other bodies—what Einstein called Mach’s principle—as one 

of the factors in the preparation of the general relativity theory. Mach’s idea 

that “space and time cannot be completely separated from one another” /347, 

p. 350] is very close to the ideas of special relativity theory. 

Undoubtedly, Einstein’s famous thought experiments were influenced by 

Mach. At the same time Einstein did not agree with Mach’s doctrine of sensa- 

tions as elements of the world. He not only interpreted the terms sensations 

and experience in a materialist spirit but also ascribed his viewpoint to Mach 

when he said (apropos Mach’s use of the term sensations) that 

frequently, as a result of insufficient familiarity with his, that is, Mach’s, 

works, some persons tend to confuse them with the terminology of 

philosophical idealism and solipsism /167/. 

Here Einstein’s opinion was based on the fact that he took Mach’s materialist 

terminology literally and throught it inconceivable that a serious physicist 

could be a subjective idealist. Later Einstein changed his opinion about 

Mach’s philosophy and during a meeting of the French philosophical society, 

while answering a question from Emile Meyerson, he referred to Mach as 

a “deplorable philosopher” (ии déplorable philosophe) and accused him of 

a “myopic view of science that led him to reject the existence of atoms’ 

[364, p. 62]. 

Parallel Displacement 

The heightened interest in Riemannian geometry brought about by general 

relativity theory resulted in an extremely important discovery in this geo- 

metry, a concept known as parallel displacement of vectors. The discovery was 

made by Levi-Civita in the paper The notion of parallelism in an arbitrary 

manifold and the geometric characterization of Riemannian curvature implied 

by it (Nozione di parallelismo in una varieta qualunque e consequente specifi- 

cazione geometrica della curvatura Riemannina. Palermo, 1917) [320]. 

If a vector а' is defined at a point A of a Riemannian space then the result 

of its displacement to a point В of the line x'(f) is a solution of the differential 
equation 

ит 8.14 и да п (8.14) 

that can be written with the help of the covariant derivative as 
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ах" 
а = 0. (8.15) 

It follows that if one defines along a coordinate line a vector field of vectors 

obtained by parallel displacement of a given vector then at all points of this 

line the covariant derivative with respect to the corresponding coordinate is 

equal to zero. Parallel displacement of vectors admits of a visual geometric 

definition. Parallel displacement of vectors from a point A of the space to an 

infinitely near point В 1$ generated by mapping a neighborhood of the point 

A onto a neighborhood of the point B that is the result of applying first a 

reflection (along geodesics) in the point A in the neighborhood of A, and then 

a reflection in C, the midpoint of the geodesic arc from A to B, in a neighbor- 

hood of C that contains the neighborhood of A. Under this neighborhood 

mapping the increments of the coordinates of the point A map to the incre- 

ments of the coordinates of the point B and, consequently, the differentials 

of the coordinates of A, that is, the vectors at A, map to the differentials of 

the coordinates of B, that is, the vectors at B. The name parallel displacement 

is due to the fact that the product of two reflections in two points in ordinary 

space is a translation of this space. Levi-Civita showed that the curvature of 

a Riemannian space, at a given point, in a two-dimensional direction is the 

limit of the ratio of the angle by which a vector is rotated as a result of parallel 

displacement along a closed contour passing through the given point to the 

area of the surface bounded by this contour when the contour shrinks to the 

given point (this is Levi-Civita’s geometric characterization of Riemannian 

curvature). 

The Problem of a Unified Field Theory 

In general relativity theory the geometric properties of space are determined 

by the gravitational field alone, without any effect of the electromagnetic field 

on the geometry of space. After creating the general theory of relativity 

Einstein posed the problem of constructing a geometry of four-dimensional 

spacetime determined by the electromagnetic as well as the gravitational 

field. The first attempt of construction of a unified field theory was made 

by Hermann Wey] in his paper Gravitation and electricity (Gravitation und 

Elektrizitat. Leipzig, 1918) [340, pp. 200-216]. Besides the metric quadratic 

form 

@ => Ч ал ах, (2) 
и, У 

Weyl considers also the linear form 

dp => фах, (7) 

and writes that 
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The internal metrical connexion of space thus depends on a linear form 

(7) besides the quadratic form (2)—which is determined except as to an 

arbitrary factor of proportionality /340, р. 206]. 

The vector ¢, is the vector-potential of the electromagnetic field F,, given 

by 

Fy = 06,/0x, — 0, /0X,. 

The geometry constructed by Weyl is called the Weyl connection. Weyl 

expounded this theory also in his Space, Time and Matter (1918) [626]. 

Einstein himself devoted the last 35 years of his life to the search for a 

unified field theory. Of other attempts at constructing a unified field theory 

we note, first of all, the paper of Theodor Kaluza (1885—1954) On the unicity 

problem of physics (Zum Unitatsproblem der Physik. Berlin, 1921) [259]. To 

increase the number of relevant parameters Kaluza went in the direction of 

increasing the number of dimensions of his space and assumed that in addition 

to the four dimensions of physical spacetime there is a fifth dimension without 

a direct physical sense. Proceeding from Kaluza’s idea the mathematician 

Veblen and the physicist Pauli proposed in 1930—1933 a unified field theory 

in which five coordinates are viewed as the projective coordinates of particles 

in a four-dimensional space. 

A detailed history of unified field theories in the first third of the 20th 

century is given by Vladimir Pavlovic Vizgin in the book Unified field theories 

in the first third of the 20th century (Edinye teorii polya v pervoi treti XX veka. 

Moscow, 1985) [615]. 
We note that when Einstein posed the question of a unified field theory he 

assumed that the theories of interactions of the gravitational and electro- 

magnetic fields exhaust all forms of physical interactions. The discovery, in 

the last few decades, of ‘“‘strong”’ and “‘weak”’ interactions that do not coincide 

with these interactions deprived the problem posed by Einstein of the impor- 

tance he attached to it. In his ““Remarks to the Einsteinian sketch of a unified 

field theory” the famous German physicist Werner Heisenberg (1901—1976) 

wrote: 

This attempt, grandiose in its conception, failed from the very begin- 

ning. At the time when Einstein concerned himself with the unified field 

theory new elementary particles were continuously discovered and with 

them their associated new fields. This meant that there existed no hard, 

solid, empirical basis for the implementation of the Einsteinian program 

and Einstein’s attempts produced no conclusive results whatever. How- 

ever, the failure that dogged the Einsteinian program also had deeper 

foundations than the uncertainty of empirical facts; these foundations 

have to do with the relations of Einstein’s field-theoretic view of quantum 

theory. Einstein proceeded from the classical nonlinear field theory of 

matter for the metric tensor of the field that defined his geometry. 
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Einstein hoped that in the end it will be possible to think of atoms and 

elementary particles in such a theory as singular solutions of the non- 

linear equations of the field. In reality, however, the element of dis- 

creteness that expresses the existence of elementary particles has a far 

wider character. It becomes dominant as soon as we go over to the 

domain of atoms and elementary particles; which is why their descrip- 

tion by means ofa field theory of the classical type is out of the question. 

Conversely, we now know that there operate here quantum-mechanical 

laws whose structure was understood in the twenties. Since Einstein 

could not come to terms with such a structure, he did not make an 

attempt to approach the unified field theory using quantum laws. 

Nevertheless, experiments with elementary particles carried out in 

connection with quantum theory contain very many arguments in favor 

of Einstein’s program. 

In the last ten years many elementary particles have been discovered 

and thus also many new fields. Also, it became clear that elementary 

particles can change into one another. If two elementary particles with 

very high kinetic energy collide in some way then there can arise new 

particles, and the laws that govern the coming into existence and the dis- 

appearance of elementary particles can, apparently, be formulated by 

means of relatively simple selection rules and the corresponding quantum 

numbers. It follows that all elementary particles “consist,” so to say, of 

one and the same substance that can be simply called “епеггу” or 

“matter”; their structure and their ability to go over into one another 

should follow from a simple law for matter. 

Thus, by the nature of things, a satisfactory theory of elementary 

particles must, at the same time, be a unified field theory of matter 

[221a, рр. 120-125]. 

An attempt to create such a unified theory of elementary particles was 

made by Heisenberg himself. 

Spaces with Affine Connection 

Although the problem of a unified field theory has not yielded any substantial 

results for physics, it has been remarkably fruitful for geometry. Weyl’s theory 

was further developed by Schouten, who introduced the general notion of a 

space with an affine connection in the paper On different forms of connection 

that can be laid at the foundation of a differential geometry (Uber die ver- 

schiedenen Arten der Ubertragung die einer Differentialgeometrie zugrunde 

gelegt werden k6nnen. Berlin, 1922) /5///. A detailed exposition of Schouten’s 

theory is found in his Ricci calculus. A space with an affine connection is 

defined аз a manifold of points with coordinates х' at each of whose points 

there is given a point function I}, = Ij, that is not expressible in the general 
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case in terms of the point functions g,,. Because of this last condition it is not 

possible, in the general case, to define in a space with an affine connection 

the length of lines, but it is possible to define parallel displacement of vectors 

by formula (8.14). In a space with an affine connection geodesics are defined. 

They are solutions of the equations (8.11). For each arc of a geodesic there 

is defined its midpoint. In such a space one can define reflections in points 

along geodesics. Just as ina Riemannian space, the geometric sense of parallel 

displacement of vectors is that it is determined by a mapping of a neighbor- 

hood of a point of the space onto a neighborhood of an infinitely near point 

that is the result of two reflections in two points along geodesics. The name 

affine connection is due to the fact that the mapping of vectors at a point 

of space onto vectors at an infinitely near point of this space is an affine 

transformation of vector spaces. 

It is clear that Riemannian and pseudo-Riemannian spaces are special cases 

of spaces with an affine connection. In such spaces the mapping of vectors at 

one point onto vectors at an infinitely close point under parallel displacement 

is an isometry of Euclidean and pseudo-Euclidean spaces, respectively. 

The space introduced by Wey] in his unified field theory is also a space 

with an affine connection. In this space the mapping of vectors at one point 

onto vectors at an infinitely close point under parallel displacement is a 

similarity transformation. 

Even more general spaces were introduced by the French mathematician 

Elie Cartan (1869—1951). In the papers On manifolds with an affine connection 

and the generalized relativity theory (Sur les variétés a connexion affine et 

la théorie de la relativité généralisée. Paris, 1923) [96, part 3, рр. 659-746, 

798—825, 921-992], Spaces with a conformal connection (Les espaces а con- 

nexion conforme. Paris, 1923) [96, part 3, рр. 747—797] and On manifolds 

with a projective connection (Sur les variétés а connexion projective. Paris, 

1924) [96, part 3, рр. 825-861] Cartan introduced the notion of a space with 

a homogeneous connection. Whereas in the case of a space with an affine con- 

nection there is associated to every point a vector space that can be regarded 

as an affine space, and under parallel displacement of vectors the space at 

one point is mapped by an affine transformation onto the space at an infinitely 

near point, in the case of a space with a homogeneous connection there cor- 

responds to every point of the space a homogeneous space with a definite 

group of transformations. Also, for every pair of infinitely near points there 

is specified a transformation of the spaces associated with these points that 

preserves their geometry. In addition to spaces with an affine connection and 

special cases of such spaces noted above, the most important spaces with a 

homogeneous connection are spaces with a projective and conformal connec- 

tion, respectively. To each point of these spaces there is associated, respec- 

tively, a projective or conformal space, and for each pair of infinitely near 

points of a space with a connection there is specified, respectively, a projective 

or conformal mapping of one of the spaces associated with these points onto 
the other. 
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Differentiable Manifolds 

The spaces introduced by Riemann and the groups introduced by Lie, bearing 

the names of their respective inventors, as well as pseudo-Riemannian spaces, 

Weyl spaces, and the more general spdces with an affine or other homo- 

geneous connection were defined only locally—in the domain of a certain 

coordinate system. The introduction of topological manifolds made possible 

the study of differential-geometric spaces in the large. In every n-dimensional 

topological manifold one can define a homeomorphic mapping of a neighbor- 

hood U of every point onto some domain of n-dimensional Euclidean space, 

and the coordinate system in the Euclidean space provides coordinates for 

the neighborhood U. This system of coordinates in the neighborhood U is now 

called a system of local coordinates or a local map of the manifold, and the 

totality of local maps is called the atlas of the manifold. A manifold is called 

differentiable of class v if (1) the domains of the maps of the atlas cover the 

whole manifold; and (2) if Uand U’ are two domains of maps of the atlas with 

nonempty intersection and a point x in the intersection has coordinates x! 

and x’ in the two maps then the functions x’ = f(x',..., x”) have continuous 

2 : ; OMENS 
partial derivatives up to and including order v, and the jacobian det ( 5 г) 1$ 

by 

different from zero throughout the intersection of the domains. The manifold 

is called analytic if the functions in (2) are analytic. 

The definitions of a differentiable manifold and of an analytic manifold 

were formulated by Oswald Veblen (1880—1960) and by John Henry Con- 

stantine Whitehead (1904—1960) in The foundations of differential geometry 

(Cambridge, 1932) [612]. 

With every point of a differentiable manifold there is associated a vector 

space with vectors {dx'} whose coordinates are the differentials of the co- 

ordinates x'; these spaces are called the tangent spaces of the differentiable 

manifold. Under coordinate transformations х' > x’ the coordinates of the 

vectors and tensors of the tangent spaces transform according to the rules 

(8.7)—(8.9), and so on. If in every tangent space of a differentiable manifold 

there is given a metric tensor g,, that determines an inner product in the 

Euclidean or pseudo-Euclidean space then the differentiable manifold is called, 

respectively, a Riemannian or pseudo- Riemannian space in the large. If in each 

of the tangent spaces of a differentiable manifold there is given an object Гу, 

that transforms under coordinate transformations according to the same rule 

as the coefficients Гу of Riemannian spaces then the differentiable space is 

called a space with an affine connection in the large. 

Fibrations 

Spaces with connections are special cases of fiber spaces. Unlike spaces with 

Schouten-Cartan connections, fiber spaces are considered in the large. The 
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initial form of the theory of fiber spaces in the large was the theory of 

““sphere-spaces,” that is, fiber spaces whose “fibers” are spheres. This theory 

arose in connection with the solution of the problem of continuous mapping 

of an n-dimensional sphere onto an m-dimensional one for, if n > m, then 

to every point of the m-dimensional sphere there corresponds ап (и — m)- 

dimensional manifold of the n-dimensional sphere, so that the latter “stratifies” 

or ‘“‘fibrates” into these manifolds; the resulting fibres are also called spheres. 

The theory of such spaces was constructed by the American mathematician 

Hassler Whitney (b. 1907) in the paper Sphere-spaces (Boston, 1935) [632]. 

In the paper On the theory of sphere bundles (Boston, 1940) [633] Whitney 

calls these spaces sphere-bundles. The most complete account of Whitney’s 

theory is contained in his lectures On the topology of differentiable manifolds 

(Ann Arbor, 1941) [634]. Together with sphere-bundles Whitney also con- 

sidered plane-bundles. Whitney associated to every differentiable manifold a 

tangent plane-bundle consisting of the tangent spaces of the manifold and 

tangent sphere-bundle consisting of spheres in these tangent spaces with centers 

at the points of tangency, with one sphere in each tangent space. In the first 

case, the points of the fibers characterize the vectors of the differentiable 

manifold; in the second, they characterize the directions issuing from a point 

of the manifold. 

Soon Whitney’s sphere-bundles were replaced by arbitrary manifolds. Then 

there arose the more general concept of a fiber bundle or a fiber space. The 

general theory of such spaces was set forth by the American mathematician 

Norman Steenrod (1910—1971) in the monograph The topology of fiber bundles 

(Princeton, 1951) /560/, which completed the development of this theory. 

The simplest fiber space is the direct product of two topological spaces 5 

and Т, that is, the totality of pairs (5, t) of elements s in S and ¢ in T where 

the closed sets of the topological product are sets of pairs (5, 1) in which both 

elements s and ¢ vary over closed sets in the spaces S and T, respectively. In 

this case one may view the set of pairs (5, fp) with fixed (5 as a fiber and the 

space T of all possible elements fy as a basis of the fiber space. One can also 

view the set of pairs (50, #) with fixed sg as a fiber and the space 5 as a basis 

of the same fiber space. In this case the fibration is called trivial. 

In more complicated cases, a fibre space is not simply the direct product 

of a fiber by a basis but also consists of homeomorphic fibers, and, if the latter 

are viewed as points of some new space, then this space can be regarded as 

a basis of the fiber space. The simplest fiber space of this kind is a Mébius 

strip obtained from the lateral surface of a right circular cylinder by iden- 

tification of pairs of points that are symmetric with respect to its center, or 

from a rectangle (which may be thought of as the application of half of the 

preceding cylinder to a plane) by gluing the points of a pair of its opposite 

sides that are symmetric with respect to its center. (Hence the name skew 

products for general fibrations of a space used in the Russian translation of 

N. Steenrod’s book /560/). One usually considers also the group of topological 

mappings of a fiber onto itself that preserves a certain structure of these fibers 

and mappings of fibers, one onto another, that preserve this structure. 



Exterior Forms, Curvature and Betti Numbers 323 

The most important fiber spaces are the tangent plane-bundles defined by 

Whitney for differentiable manifolds. Now they are called simply tangent 

bundles of differentiable manifolds. The bases of these fiber spaces are the 

differentiable manifolds, and the fibres are their tangent spaces. To the class 

of fiber spaces there belong Riemannian spaces, pseudo-Riemannian spaces, 

and spaces with an affine connection in the large together with their tangent 

spaces that are, respectively, Euclidean, pseudo-Euclidean, and affine, as well 

as spaces with a projective, conformal, and arbitrary homogeneous connec- 

tion together with the corresponding homogeneous spaces that also form 

fibers. The groups of transformations of the fibers of these spaces are, respec- 

tively, the groups of Euclidean and pseudo-Euclidean motions, of affine, 

projective, conformal, and other transformations. 

Exterior Forms, Curvature and Betti Numbers 

The field of a skew-symmetric covariant tensor a;,;,___;, in a domain of a 

differentiable manifold defines at every point of this domain an exterior 

differential form 

Op= Me WO ae A ах? A+++ a ах*, 
и Uk 

where A denotes exterior multiplication. The form is invariant under even 

permutations of the dx‘: and changes sign under odd permutations of the dx" 

(in virtue of the skew symmetry of a;,___;, the ordinary differential form ay 

„а... Ах" ах”... ах is equal to zero). For exterior forms we define 
the operations of exterior multiplication 

Ок = Wy ^ (991 

and exterior differentiation 

Е = i Are, i +1 = DOH, =)... >, аа. в, ^ AX! A A ах*. 
iy i, 

The differential forms in multiple integrals defining areas and volumes are 

exterior forms, and the Ostrogradskii formula in the beginning of chapter 7 

can be written as 

| O= | Bo, 
OM M 

where М is a bounded domain and ОМ is its boundary. 

The theory of exterior forms was founded by E. Cartan in the paper On 

certain differential expressions and the Pfaff problem (Sur certaines expressions 

différentielles et le probléme de Pfaff. Paris, 1899) [96, part 2, pp. 303—396]. 

It was extensively developed by E. Cartan (see his book Exterior differential 

systems and their geometrical applications (Les systémes différentiels exterieurs 

et leurs applications geométriques. Paris, 1945) [97], by the Soviet geometer 

Sergei Pavlovié Finikov (1883—1964), and by their students. 
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If a moving orthonormal frame {e;} is associated with every point of a 

curve or surface in the space А, or with every figure of a family of figures in 

this space, then the differentials of the radius vector x and of the vectors е; 

of the frame can be written as 

dx = e,a', de; = ea}, (8.16) 

where 

eee (8.17) J 

and the exterior differentials of the forms w' and со; satisfy the equations of 

structure 

PO A ol, haan Aw}. (8.18) 

A curve, surface or family of figures is defined by a system of Pfaff equa- 

tions 0! = 02 = --- = 0" = 0, where the forms 0“ are linear combinations of 

the forms w', w}. For a curve with arc length 5 and tangent vector e, these 
equations are 02? = --: = @" = 0 and for a hypersurface with normal vector 

e, the equation is w” = 0. If for the curve we put de, /ds = k,e, and choose 

vectors e3,..., €, $0 that de;/ds is a linear combination of e,,..., e;4,, then 

w;*'/ds = —aj,,/ds = К; are curvatures of the curve and the remaining 0; 
are zeros. In this way we obtain the Frenet formulas 

de, /ds = k,e,, y 

de,/ds = —k,e, + ke3,..., 

de;/ds = —k;_,e;-, + Кель... , de,/ds = —Ky—1Cn-1 

discovered for R, in 1847 by Frederic Frenet (1816—1900) and for R,, in 1874 

Бу С. Jordan. The curvatures К; define the curve up to a motion of R,,. 

For a hypersurface we direct the vectors e,,..., е„_, along curvature lines 

of the hypersurface and the vector e, along its normal. Exterior differentiation 

of the Pfaff equation ©" = 0 gives, in view of (8.18), Ja" = ),.0* A of = 

Hence ви = У зв? (a, В = 1,2,..., — 1). We note that the analogues of 
Gauss’s quadratic forms for surfaces in К. and for hypersurfaces in R, are 

dx? => (w*)*, 

e,d?x = —de,dx = -(-5 ое (5 otey) = Dec 

In our basis b,, = 6,01, —b, = К, аге main curvatures of the hypersurface; 

they are differential invariants of the hypersurface. Exterior differentiation 

of other forms yields a complete system of differential invariants of the hyper- 

surface which defines it up to a motion of the space R,,. 

Formulas (8.16) and (8.18) also hold in the affine space Е, and in the 

pseudo-Euclidean space 'R,. In the case of Е, the forms «} are not connected 
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by any condition. In the case of 'R,, with scalar square of a vector x? = J"; ¢;(x')? 
the conditions (8.17) become 

8:00} = —&,00}. (8.19) 

In the spaces P,, 5, and '5, the points are represented by vectors of the 

spaces E,,,,, „+, and'R,,,, respectively. In these spaces the role of the radius 

vector x is played by e,. In these spaces hold the second formulas (8.16) and 

(8.18). In P, the forms w; are connected by the condition У`, а! = 0, in 5, by 

the condition (8.17), and in 'R, by the condition (8.19). 

Analogous methods can be applied in all homogeneous spaces. 

These methods can also be applied in spaces with affine connection and in 

Riemannian and pseudo-Riemannian spaces. In these spaces the vectors e; are 

vectors of the tangent spaces of E,, К, and 'R,, respectively. In these spaces 

hold formulas (8.16) and in Riemannian and pseudo-Riemannian spaces for- 

mulas (8.17) and (8.19), respectively. The equations of structure there have 

the form 

Go’ = У" no + > > Siow! Л o*, 
k ja 

Go} =V of Aa + У У Кило" 
Kah 

where S;, is the torsion tensor (equal to zero in spaces without torsion, in 

particular, in Riemannian and pseudo-Riemannian spaces), Rij,’ is the cur- 

vature tensor (in Riemannian spaces Rj. = Jp Кл is the Riemann tensor). 

An exterior differential form @ is called closed if Pw = 0 and exact if 

@ = Yo. Every exact form is closed since Y(Ym) = 0. Exterior differentiation 

is similar to the taking of a boundary, except that in the latter case the dimen- 

sion of a manifold decreases and in the former case the “‘order” of a form 

increases. This analogy was made use of in the paper On analysis situs [1.е. 

topology] of n-dimensional manifolds (Sur Vanalysis situs des variétés а n- 

dimensions. Paris, 1931) /452/ by the Belgian mathematician Georges de 

Врат (1903—1969). In this paper de Rham defined the cohomology groups, 

in a certain sense dual to Betti’s homology groups, and applied exterior 

differential forms for the calculation of Betti numbers. The integral of a closed 

form is said to be homologous to zero, and A integrals of closed forms on a 

p-dimensional submanifold which are independent in the usual topological 

sense are said to be homologically independent if no linear combination of 

these integrals with constant coefficients not all zero is homologous to zero. 

De Rham has shown that the Betti number 5, is equal to the number of 

homologically independent integrals of exact differential forms of order p. 

This method of calculation of Betti numbers was applied by Cartan in his 

Topology of compact homogeneous spaces (La topologie des espaces homogénes 

clos. Moscow, 1937) [96, part 1, рр. 1331-1338] and by his student Charles 

Ehresmann in the paper On the topology of certain homogeneous spaces (Sur 

la topologie de certains espaces homogénes. Princeton, 1934) [164]. 
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The Betti numbers are connected with the Gaussian curvature of a surface: 
if the Gaussian integral curvature | Kdo is taken over a closed compact surface 

b 
in R,, then this integral is equal to an(1 — *), where В, is the first Betti 

number of the surface. This number is equal to double the number of handles 

of the surface (6, = 0 for a sphere and =2 for a torus). About this problem 

see the book of Kentaro Yano and Salomon Bochner Curvature and Betti 

numbers (Princeton, 1953) [645 ]. 



Chapter 9 

Groups of Transformations 

The Emergence of the Group Concept 

The group concept was first defined for a certain class of concrete groups, 

namely groups of substitutions, which were studied in connection with 

attempts to obtain solutions in radicals of algebraic equations of degree 

п > 5. Permutations of roots of algebraic equations were first studied by 

J. L. Lagrange in his Reflections on the solution of equations (Réflexions sur 

la résolution des équations. Berlin, 1771) [298, vol. 3, pp. 205—515]. Lagrange 

noticed that if x,, x,, хз are the roots of a cubic equation, then each of the 

cubic radicals in the Cardano form can be written as (x, + ях, + w*x3), 
where w is а cube root of 1. Since the function (x, + mx, + w*x3)? takes on 
two values under all possible permutations of the roots, it follows that this 

function is a root of a quadratic equation whose coefficients are rationally 

expressible in terms of the coefficients of the given equation. Lagrange 

also noticed that in the case of the fourth-degree equation the function 

X,X, + x3x, of the four roots of this equation takes on only three values as 

a result of all permutations of the roots and is therefore a root of a cubic 

equation whose roots are rationally expressible in terms of the coefficients of 

the given equation. He called this pattern 

the true principle, and, so to say, the metaphysics of the solution of an 

equation of third and fourth degree /298, vol. 3, p. 357]. 

Lagrange posed the problem of the number v of values that can be taken on 

by a rational function V of the roots of an equation as a result of all possible 

permutations of the roots and showed that у is a divisor of the number и! of 

all possible permutations of the n roots. 

Permutations of the roots were also studied by Paolo Ruffini (1765—1822) 

in his General theory of equations in which is demonstrated the impossibility of 

an algebraic solution of general equations of degree higher than the fourth 

(Teoria generale delle equazioni in cui si dimostra impossibile la soluzione 
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algebrica delle equazioni generale di grado superiore al quatro. Bologna, 

1799) [489]. In this work Ruffini explicitly supported the point of view that it 

is impossible to obtain a solution in radicals of the general equation of degree 

п > 5. Ruffini’s proof was incomplete. Essentially, it was also based оп 

the investigation of groups of substitutions. A complete solution of the 

problem was obtained by Niels Henrik Abel (1802—1829) in his Proof of 

the impossibility of an algebraic solution of general equations exceeding the 

fourth degree (Démonstration de l’impossibilité de la résolution algébrique 

des équations générales qui passent quatriéme degré. Berlin, 1826) /4, vol. Г, 

рр. 66-94]. The virtual identity of the titles of the works of Abel and Ruffini 

is an indication of their “зиссеззог” connection. 

Explicit groups of substitutions were investigated by Augustin Louis 

Cauchy in his Memoir on the number of values that can be taken on by a function 

if one permutes in all possible ways the quantities it contains (Mémoire sur les 

nombre des valeures qu’une fonction peut acquérir lorsqu’on y permute de 

tout les maniéres possibles les quantités qu’elle renferme. Paris, 1815) [ 100, 

vol. 1, pp. 64-90]. 

Cauchy called groups of substitutions systems of conjugate substitutions 

(systémes de substitutions conjugées). In this paper Cauchy first used such 

now generally accepted terms as transitive for a system of substitutions (a 

system such that for any two of the permuted elements there is a permutation 

that permutes them), and transposition (a substitution that interchanges the 

positions of two elements and leaves each of the remaining elements fixed). 

Of Cauchy’s many papers on the theory of groups of substitutions we mention 

the Memoir on arrangements which can be formed of given letters and on 

permutations and substitutions by means of which one can pass from one 

arrangement to another (Mémoire sur les arrangement qu Гоп peut former 

avec les lettres données et sur les permutations et substitutions a l’aide 

desquelles on passe d’un arrangement а un autre) which is part of volume III 

of Cauchy’s Exercises in analysis and in mathematical physics (Exercises 

d’analyse et de physique mathématique. Paris, 1844) /100, vol. 13, pp. 171- 

282]. One of the results proved in this paper is that a group with pg elements, 

p a prime, has at least one subgroup with p elements. 

The term group first appeared in a paper by the French mathematician 

Evariste Galois (1811—1832), Memoir on the conditions of solvability of equa- 

tions by radicals (Mémoire sur les conditions de resolubilité des équations 

par radicaux) written in 1830 and published by J. Liouville in 1846 /194, 
pp. 43—71]. 

Galois introduced the term group only for substitutions and formulated 

the basic property of groups as follows: 

If in such a group there are the substitutions S and T then there is the 

certainty of there being the substitution ST /194, р. 47]. 

For groups of substitutions, the remaining group properties—associativity, 

the existence of a neutral element, and the existence of an inverse (0 and —a 
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for addition and 1 and а ' for multiplication)—are automatically satisfied. 

Galois wrote the group operation as multiplication. He used the word group 

in a wider sense than we do. This is clear from the following phrase in Galois’s 

letter to his friend Auguste Chevalier, written the night before his fatal duel: 

When a group G contains another group H then the group G can be 

decomposed into groups each of which can be obtained by applying to 

the substitutions of H one and the same substitution in such a way that 

G=H+HS + AS т °-- / 194, рр. 173-175]. 

This phrase shows that Galois called groups also what we now call right 

cosets of a group with respect to a subgroup. Galois defined a similar 

decomposition of a group into left cosets, © = H+TH+T'H+:::. 

We note that since all permutations of n roots of an equation form a group 

and the permutations that preserve a value of a rational function V of the n 

roots of the equation form a subgroup of this group, Lagrange’s theorem, 

that the number у of values that can be taken on by the function V under 

all possible permutations is a divisor of the number и! of all possible 

permutations of the и roots, is a special case of the general theorem that the 

number of elements of a subgroup of a finite group divides the number of 

elements of that group. Lagrange’s argument can be applied to any group G 

and its subgroup H. Essentially, the argument amounts to this: one considers 

products of elements of G not in H by all elements of H. These products form 

right or left cosets, depending on whether the subgroup elements are the left 

or right factors in the products. The theorem follows from the fact that the 

number of elements in each coset is the same as the number of elements in 

the subgroup H and each element belongs to exactly one coset. That is 

why the general theorem is now called Lagrange’s theorem. The equations 

introduced by Abel and subsequently named for him are characterized by the 

fact that they admit a commutative group of permutations of their roots. That 

is why commutative groups are often called Abelian groups. 

Galois Theory 

The problem of solvability of equations in radicals was finally settled by 

Galois in his Memoir on the conditions of solvability of equations in radicals 

(mentioned previously). 

In this paper Galois also introduces the notion of a number field. A number 

field is a set of numbers including 0 and 1 whose elements form a group under 

addition and whose nonzero elements form a group under multiplication. The 

simplest examples of fields are the fields Q, R, and C of rational, real, and 

complex numbers, respectively. Another example of a number field is the 

set of numbers of the form a + b,/3, a, b rational. If the coefficients of a 

polynomial belong to a certain field F and the polynomial can be written 
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as a product of polynomials with coefficients from that field then the 

polynomial is said to be reducible; otherwise it is said to be irreducible. If a 

number « is not in F then we can form the field F(«) of numbers of the form 

а + ba, where a and b are in Е. The field F(«) is called an extension of the 

field Е generated by «. In particular, the field of numbers of the form a + b,/3 

where a and b are rational is the field Q(./3). If the coefficients of a 

polynomial of degree п belong to a field Е then the extension F(«,,02,...,,) 

of F generated by the roots of that polynomial is called its splitting field, for 

the polynomial in question can be written as a product of linear factors 

(x — «,)(x — ча)... (х — a,). In particular, the extension Q(./3) of the field 

О of rational numbers is the splitting field of the polynomial х? — 3 which is 

irreducible over Q but can be factored, x* — 3 = (x — J3) (x + Е оуег 

the field Q(,/3). 
Galois shows that the splitting field K of a polynomial irreducible over F 

has the property that any polynomial irreducible over F with one root in K 

splits into linear factors over K; that is, K contains the splitting field of that 

polynomial; such an extension is called a normal extension of the field F. To 

every field K which is the splitting field of a polynomial that is irreducible 

over some field Е, Galois associates the group of bijective mappings a — a 

of K onto itself that preserve sums and products, that is, mappings such that 

ам, (ap) = 058%, 
and that fix all elements of F; briefly, the group in question is the group of 

automorphisms of K that fix the elements of F. This group is now called the 

Galois group of the field K over the subfield F. If a polynomial 

Ио = x Ha, x") + Eg =0 (9.1) 

with coefficients in F has at least one root « in K then we have the equality 

a" + аа" "+... ааа, =0. 

By applying to this equality the mapping a > «* of the Galois group we 

see that 

(a’)" ae aor SE con le eae aie a= 0, 

that is, «° is also a root of the polynomial (9.1). This means that the Galois 

group of an irreducible polynomial (that is, the group of its splitting field) 

may be regarded as a group of permutations of its roots. 

Galois also showed that if L is a field contained in the field K and 

containing the field F then the Galois group of K over L is a subgroup of the 

Galois group of K over F, and that to a subgroup of the Galois group of K 

over F there corresponds the subfield of elements of K that are left fixed by 
the elements of that subgroup. 

Galois singled out an important class of subgroups with the property that 

the decompositions of the group into left and right cosets with respect to the 

subgroup coincide. Another way of saying this is that every product gh of a 
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group element д € С by a subgroup element И Е H can be written as h’g where, 

ЙЕН (in general, h’ #h). The equality gh = h’g can also be written as 

h' = ghg~', and one says that the subgroup is invariant under the transforma- 

tion that consists in multiplying by an arbitrary group element g on the left 

and by its inverse д ' on the right. In such a case, Galois called the decomposi- 

tion into cosets (“into groups”) a proper decomposition. Today we call the 

subgroups singled out by Galois normal subgroups of the group С. If Nis a 

normal subgroup of a group G and we associate to each element g of G the 

coset gN consisting of all products of g by elements of N, then for two elements 

9: and g, from different cosets the product (g,7,)(g2n2) = 9, (п! 92)". = 

9192M{N2 = J,92N3 1$ in the coset that corresponds to the element 9192. 

Therefore the cosets form a group under multiplication. This group is called 

the factor group of the group G with respect to its normal subgroup N and is 

denoted by G/N. If there is а mapping ф from a group A onto a group В that 

preserves products (that is, the element corresponding to a product is the 

product of the elements corresponding to its factors), then ф is called a 

homomorphism and B is said to be a homomorphic image of A (from the 

Greek words homos—the same—and morphé—form); if there is a bijective 

correspondence between the two groups with the above property, then we 

say that the groups are isomorphic (isos—equal). Thus the group G/N is 

a homomorphic image of the group G; the identity element of G/N is the 

normal subgroup N of С; that is, under the homomorphism the elements of 

the subgroup N of G correspond to the identity element of the group G/N. It 

is easy to verify that under a homomorphism between groups С and С’ the set 

of elements of G that are mapped onto the identity of G’ forms a normal 

subgroup of G. 

Galois showed that if a field L that corresponds to a subgroup of the Galois 

group of K over F is a normal extension of F then the Galois groups of K and 

L are homomorphic, so that the subgroup of the Galois group is normal. 

By means of these concepts Galois found necessary and sufficient condi- 

tions for solvability in radicals of an algebraic equation f(x) =0 with 

coefficients in the field F. This condition is that the Galois group of the 

splitting field K of the polynomial f(x) must have a nested sequence of 

subgroups 

N, Ld О ppt 

such that М, is normal in С (that is, is а normal subgroup of С), №, is normal 

in N,-,, and the factor groups G/N,, ..., Nj/Nj+, and the subgroup М, are 

isomorphic to the groups of the different powers of the cycle (a,,4,...,4p,)- 

The cycle (a,, a ,...,d,,) is the permutation that sends a, Гог К 4 и, о в 

anda, into а, . bon # 0, and j # r,n;is the number of elements onthe factor 

group NIN, 41; for j = Oitis the number of elements of the factor group G/N,, 

and for j = r it is the number of elements of the group N,. The powers of the 

cycle (а! , а2,...,а»,) form а group called a cyclic group of order п;. (This group 

is isomorphic to rie group of rotations of a circle through the арене angles 
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0, 2x/n,, 4n/n;, ..., 2(n; — Пл/и,, as well as to the group of complex numbers 

а = cos 2nk/n,; + isin 2nk/n,, that is, the group of n,-th roots of 1.) Groups 

with such chains of subgroups are called solvable groups. 

Cyclic groups are the simplest solvable groups. To such groups belong the 

Galois groups of the splitting fields of the left sides of equations of the form 

x" — a = 0, provided that the field F that contains the number a also contains 

a root @, of 1 such that К is relatively prime to n (a so-called primitive root of 

1; w, has the property that every n-th root of | is a power of @,.). In this case, 

the Galois group consists of the transformations a > a* = ха. 

All commutative groups are solvable. The following is a sketch of an 

argument that supports this assertion. Let Gand G’ be two commuting groups 

(that is, groups for which gg’ = g’g for all ge G and g’ € С’) that have no 

common elements other than 1, and let us define the direct product G x G’ 

of С and С’ as the group of products gg’. It can be shown that every 

commutative group is a direct product of cyclic groups. Since the groups 

С and С’ are normal subgroups of the group G x С’, and С and С’ are, 

respectively, isomorphic to the factor groups G x G’/G’ and G x G’//G, it 

follows that for a commutative group that is the direct product of cyclic 

groups Z,, Z,, ..., Z, the role of the normal subgroups N,, М№,, ..., №, is 

played by the nested sequence of direct products of r— 1,r — 2,..., 2 of the 

groups Z; and the last one of these groups. The Galois group of an Abelian 

equation is commutative. 

In the case of a solvable Galas group, the solution of the corresponding 

equation reduces to the solution of a chain of binomial equations, and a 

solution of a binomial equation x” — а = 0 is a radical ба 

In the case of an algebraic equation of degree n the largest possible Galois 

group is the group of и! permutations of n elements. Such a group is called 

the symmetric group of degree n and is denoted by S,. Every group S, has a 

normal subgroup consisting of the even permutations, that is, permutations 

that are products of an even number of transpositions; this subgroup is called 

the alternating group of degree п and is denoted by A,,. The factor group S,/A, 

consists of 2 elements and is a cyclic group of order 2. The group S, is cyclic 

of order 2. The group 5. consists of 6 elements and has the normal subgroup 

Аз which is a cyclic group of order 3. The group S, consists of 24 elements 

and has a normal subgroup A, of 12 permutations. In turn, the group A, has 

a normal subgroup B, whose elements are the identity permutation and the 

three products of cycles (a, a2) (4344), (а, аз)(азал), and (a,a,)(a,a;). This 

group 1s commutative and is a direct product of two cyclic groups of order 2, 

and the factor group А. / Ву is a cyclic group of order 3. Thus in the case of 

equations of degree 2, 3, and 4 the maximal Galois groups are solvable, and 

if the Galois groups are not maximal then they are subgroups of the maximal 

subgroups and as such are also solvable. 

The group S, for n > 5 contains the normal subgroup A, and the factor 

group S,/A, is cyclic of order 2. But for > 5 the group A, has no normal 

subgroups other than the trivial ones (itself and the group identity). Therefore 
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the groups 5, are not solvable for и > 5, and so, in general, algebraic 

ues of degree > 5 are not solvable in radicals. In particular, the equation 

x° + x — a= 015 not solvable in radicals for many integer values of a, such 

asa@ = 3, 4, 5, 7, 8, 9, 10, 11, 
/ 

Abstract Groups 

The concept of isomorphism permits us to talk about groups abstracted 

from various realizations as groups of substitutions, motions, and other 

transformations of objects of one kind or another. The concept of an abstract 

group was first formulated by A. Cayley in his paper On the theory of groups, 

as depending on the symbolic equation 0" = 1. London, 1854 [103, vol. 2, 

pp. 123—192; vol. 4, рр. 88—91]. In this paper was given the first axiomatic 

definition of a group. An important role in the propagation of the group 

notion among mathematicians was played by the Treatise on substitutions and 

algebraic equations (Traité sur les substitutions et des équations algébriques. 

Paris, 1870) [249] of the French mathematician Camille Jordan in which are 

also considered general problems of group theory. 

At the end of the 19th century Heinrich Weber (1842—1913) formulated 

an axiomatic definition of a group in his Algebra (Leipzig, 1898) [621], 

written at the same time as Peano’s treatises on axiomatics and Hilbert’s 

Foundations of geometry. Here a group is defined as a set of elements of 

arbitrary nature on which there is defined a group operation ao b = c. This 

operation is associative; that is, for any three of its elements a, b, с 

(аор) ос = ао (Бос), 

there exists a neutral element e such that Гог every a in the group 

e°ca=daoe=a, 

and for every element a there exists an element a such that 

aca=aca=e. 

One of the earliest expositions of abstract group theory is Abstract group 

theory (Abstraktnaya teoriya grupp. Kiev, 1916) by the Russian algebraist 

(later a famous Soviet arctic explorer) Otto Yul’evié Schmidt (1891—1956) 

[536 вор. 17-175). 

The Helmholtz Paper 

The appearance of the paper On the facts which lie at the foundations 

of geometry (Uber die Thatsachen die der Geometric zu Grunde liegen. 

Gottingen, 1868) [223, рр. 618—639] by the great German naturalist Her- 
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mann Helmholtz (1821—1894) played a vital role in the application of the 

group concept to geometry. The very title of this paper indicates that it was 

meant to be a response to Riemann’s paper discussed in the previous chapter. 

In the fifties and sixties Helmholtz investigated the physiology of vision and 

hearing and, as he points out at the beginning of his paper, it was physiological 

findings that made him reflect on problems of space. He wrote: 

My investigations on space perceptions in the area of vision led me to 

investigate the question of the origin and essence of our general views 

on space /223, р. 618]. 

and continued as follows: 

As in the case of Riemann, my immediate objective was to investigate 

which characteristics of space belong to every manifold that depends 

on many variables and that changes continuously, a manifold whose 

differences admit of quantitative comparisons and, conversely, which 

of them, not conditioned by this general character, belong to space 

alone. 

I happened to have in physiological optics two examples that 

admitted of spatial representation of variable manifolds, namely the 

system of colors mentioned by Riemann and measurements of the field 

of vision by means of an ophthalmometer. Both manifolds represent 

well-known basic differences and they suggested to me a comparison 

1223. р. 0197. 

Helmholtz goes оп to say that, in many things, he obtained the same results 

as Riemann and, although the publication of Riemann’s paper took away his 

priority rights for a number of his results, the coincidence of these results is 

for him “ап important guarantee of correctness”’ of the road he chose “‘in an 

area of problems discredited by earlier unsuccessful attempts.’’ Helmholtz 

goes on to consider those of his results that do not agree with the results of 

Riemann. He writes: 

My investigations differ from the findings of Riemann in that I have 

studied more closely the effect of his restriction—a restriction that 

distinguishes real space from other multiply extended manifolds—on 

the validation of the condition that is the cornerstone of all research, 

namely that the square of a line element is a homogeneous quadratic 

function of the differentials of the coordinates. It is possible to show 

that if one adheres from the very beginning to the requirement of 

unconditionally free mobility of rigid bodies, without change of form, 

throughout space, then it is easy to deduce Riemann’s initial hypothesis 

from more general assumptions. 

My starting point was that every initial measurement of space is 
based on the observation of superposition; obviously, the rectilinearity 
of light rays is a physical fact based on different experiences and is 
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meaningless for a blind person who can, nevertheless, be fully convinced 

of the truth of geometric propositions. As for coincidence, one cannot 

talk about it if rigid bodies or systems of points cannot be moved 

without change of form and if the coincidence of two spatial magnitudes 

is not a fact that exists independently of all motions. That is why I 

assumed from the very beginning the possibility of spatial measurement 

based on the verification of coincidence and set for myself the task of 

finding the most general analytic form of a multiply extended manifold 

which admits of motion of the required kind /223, pp. 620-621]. 

Helmholtz goes on to list “the hypotheses that form the foundations of the 

research”: 

I. A space of n dimensions is an n-ply extended manifold, that is, every 

individual (Einzelne)—every point—is determined by measuring 

certain quantities (coordinates), n in number, that vary contin- 

uously and independently of one another. Thus every motion of a 

point is accompanied by continuous variation of at least one of 

its coordinates. If exceptions occur, where either the variation 

becomes discontinuous or, in spite of motion, none of the co- 

ordinates varies, then such exceptions will pertain only to certain 

definite locations (points, lines, a surface) determined by equations; 

we exclude all such locations from our investigations. ... 

II. One assumes the existence of mobile but immutable (rigid) bodies or 

systems of points; such an assumption is necessary for equating 

spatial quantities by means of superposition. Since we cannot, as 

yet, assume any special devices for measuring spatial quantities, we 

can now give only the following definition of a rigid body: The 2n 

coordinates of every pair of points of a rigid body are connected by 

an equation which is independent of the motion of the rigid body and 

is the same for all coincident pairs of points. 

Pairs of points are superposable if they coincide simultaneously 

or successively with the same pair of points in space. 

In spite of its apparent vagueness, this definition is extremely 

fruitful for it implies that m points must be connected by m(m — 1)/2 

equations, at a time when the number of unknown coordinates 

contained in them is mn, of which, moreover, n(n + 1)/2 must 

be available for the determination of the variable position of 

the immutable system. Therefore, if т > п + 1 then the number 

of equations exceeds the number of unknowns by (4)(m — п): 

(m—n— 1). It follows that the equation connecting the coordi- 

nates of any two fixed points cannot be of arbitrary form and that 

such equations must have special properties. This gives rise to the 

definite analytic problem of a more detailed determination of the 

form of these equations.... 

Ш. One admits completely free mobility of rigid bodies, that is, one 
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assumes that each of their points can continuously shift to the 

position of every other, insofar as this first point is not restricted 

by equations between it and other points of the immutable system 

to which it belongs. 
Thus the first point of an immutable system is absolutely mobile. 

If it is fixed, then the second point is subject to one equation and 

one of its coordinates becomes a function of the remaining n — 1 

coordinates. If that second point is also fixed then there already are 

two equations for the first, and so on. Hence, all told, n(n + 1)/2 

quantities are needed for the determination of the position of an 

immutable system. 

From this assumption, as well as from the assumption made 

under II, it follows that two immutable systems of points A and B 

that can be brought to superposition of corresponding points for one 

position of A can also be brought to superposition of all those points 

that were previously superposed for every other position of A. In other 

words, the superposition of two spatial forms does not depend on 

their positions, so that all parts of space are mutually superposable 

if we ignore their boundaries, much as all parts of the same spherical 

surface can be superposed if we ignore their contours. 

IV. Finally, we must ascribe to space one other property, analogous to 

the monodromy property of-functions of a complex variable, which 

is that two superposable bodies remain superposable even if one of 

them is rotated about some axis. As for a rotation, it is characterized 

analytically by the fact that, during the period of motion, the 

coordinates of a certain number of points of the moving body 

remain fixed; as for the inverse motion, or reversion, it is character- 

ized by the fact that the continuously varying sets of numerical 

values of the coordinates passed earlier are now passed in the 

opposite direction. 

This fact can be expressed in the following manner: if a rigid body 

rotates about п — 1 points selected so that the position of the body 

depends on just one independent variable, then a rotation alone returns 

the body to its initial position. 

We shall see that this last property of space need not necessarily 

obtain even if the first three conditions hold. Therefore, regardless 

of its complete obviousness, it must be spelled out as a special 
property of space. 

In ordinary geometry one assumes this last property without 

special mention, as indicated by the fact that one regards a circle 

as a closed curve; one assumes postulates II and III in all proposi- 

tions that involve superposition, for the existence of rigid and 

freely moving bodies with the abovementioned properties is the 

precondition of all superposability ... /223, pp. 621-624]. 

After studying various consequences of these hypotheses Helmholtz states: 
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Further investigation refers to the questions of the consequences 

that follow from the assumption, in accordance with postulate III, of 

superposability of finite parts of space independently of boundary and 

under all possible rotations. Riemann showed that just as in the case of 

two dimensions, when a curved surface changes into the surface of a 

sphere or into a surface obtained from the latter by bending without 

stretching, so too in the case of three and more dimensions the quantity 

he calls curvature remains constant. I will not here set forth the 

part of my investigations that is implicitly contained in Riemann’s 

investigations. 

My result is as follows. 

If our assumptions I-IV hold, then the most general system of 

geometry would be the one obtained in accordance with the rules of 

our usual analytic geometry applied to a spherelike three-dimensional 

configuration whose equation in four-dimensional rectangular coordi- 

nates can be represented as 

Х? + У? + 12 + (5+ В)? = R?. 

Here Х, У, Z can become infinitely large only for К = со. The latter 

special case corresponds to our real geometry based on Euclid’s axioms. 

Then Х, У, Z can take on finite values only if S = 0; the equation 5 = 0 

is the equation of a flat configuration. Therefore, like Riemann, we must 

consider Euclidean space flat in comparison with spaces with a greater 

number of dimensions. 

Finally, I note that, if we dispense with postulate IV then we obtain 

geometric systems very different from ours but capable of entirely 

consistent development. This is easiest to prove in the case of two 

coordinates. If the quantity 0 in equation (5°) were not equal to zero 

then the linear dimensions of every plane figure would increase at a 

constant rate upon rotation by a constant angle in one and the same 

direction; in this case the locus of points physically equidistant from a 

fixed point is a spiral. 

Another easy-to-study example can be obtained if in plane analytic 

geometry with rectangular coordinates we suppose the y-coordinates to 

be imaginary. This corresponds to the assumption that h, and h, are 

real and h, + h, = 0. 

In this case the locus of points equidistant from a point is an isosceles 

hyperbola /223, pp. 637—638]. 

Helmholtz’s final conclusions are: 

My own investigations, together with those of Riemann, show that 

the above postulates, together with two additional stipulations, namely 

that 

V. Space has three dimensions, 

and that 
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VI. Space can be indefinitely extended, 

provide a sufficient basis for the development of a study of space.’ I 

have already pointed out that postulates should be adopted in ordinary 

geometry where they are not even mentioned; thus our postulates allow 

less than what is usually assumed in geometric proofs. 

Here one cannot but point out that the very possibility of our system 

of spatial measurements depends, as is shown by the above exposition, 

on the availability in nature of objects that are sufficiently close to our 

notion of rigid bodies. The independence of superposition from the 

position and direction of the superposed spatial forms and of the way 

along which they are brought into coincidence is a fact that provides a 

basis for the possibility of measurement of space /223, pp. 638—639]. 

Helmholtz’s hypothesis III represents the requirement of existence in space 

of a group of geometric transformations that not only carry every point in 

space into every other point but also every line element issuing from the first 

point into every line element issuing from the second point. For Riemannian 

spaces this condition is equivalent to the condition of constant curvature. 

Hypothesis IV rules out pseudo-Euclidean and pseudo-Riemannian spaces. 

The Norwegian mathematician Sophus Lie (1842—1899) had this to say of 

the Helmholtz paper in his Remarks on Helmholtz’s paper “Оп the facts which 

lie at the foundations of geometry” (Bemerkungen zu v. Helmholtz’ Arbeit 

“Uber die Thatsachen die der Geometrie zu Grunde liegen.” Leipzig, 1886) 

[326 )2 

Helmholtz’s remarkable paper On the facts which lie at the foundations 

of geometry is extremely closely linked to the new theory of groups of 

transformations /326, р. 337]. 

Lie goes on to analyze Helmholtz’s hypotheses from the viewpoint of his 

(Lie’s) theory of continuous groups. 

Groups of Geometric Transformations 

We consider in greater detail continuous groups of geometric transforma- 

tions, that is, groups of transformations of geometric spaces for whose 

elements it is possible to define the notions of passing to a limit and continuity. 

Felix Klein, who met C. Jordan in Paris on the eve of the Franco-Prussian 

War and became familiar with his works, noticed that Euclidean motions, 

non-Euclidean motions, as well as similarity, affine, projective, circular, and 

conformal transformations, form groups if the product of two transforma- 

tions is defined to be the result of their successive application. In 1872, 

when he became a professor at the University of Erlangen, Klein gave 

' They do not separate Euclidean geometry from Lobaéevskian geometry (Helmholtz’s remark). 
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a lecture entitled Comparative overview of recent geometric investigations 

(Vergleichende Betrachtungen tiber neuere geometrische Forschungen) known 

as the Erlangen Program [282, vol. 1, pp. 460—497 ]. 

First Klein defines groups of transformations of space, that is, three- 

dimensional Euclidean space that can be extended to projective space: 

The result of composition of an arbitrary number of transformations 

of space is again a transformation of space. If a given set of transforma- 

tions has the property that every change resulting from the successive 

application of certain of the transformations that belong to the set then 

we Call the set a group of transformations. 

Anexample ofa group of transformations is the set of motions (every 

motion is viewed as an operation on the whole space); its subgroup is, 

for example, the rotations about a point. The set of all collineations is 

a group containing the group of motions /282, vol. 1, р. 462]. 

Klein points out that correlations (“‘dual transformations’’) do not form 

a group, but the totality of collineations and correlations does form a group. 

Then Klein considers the geometric properties of spatial figures: 

By their very definition, geometric properties do not depend on the 

position occupied in space by the investigated figure, on its absolute 

magnitude or, finally, on the orientation and disposition of its parts. 

Therefore the properties of a spatial figure are unchanged by any 

motion of space, by its similarity transformations, by the process of 

reflection, or by any transformations that can be composed of them. 

We call the set of all these transformations the principal group of 

transformations of space. Geometric properties are unaltered by the 

transformations of the principal group and, conversely, one may say: 

geometric properties are characterized by their unalterability under the 

transformations of the principal group [282, vol. 1, р. 463]. 

Thus the geometric properties of space, by which Klein means three- 

dimensional Euclidean space, are determined by “the principal group of 

transformations of space’, that is, by its group of motions and similarities. 

After considering space Klein considers arbitrary manifolds. 

By analogy with transformations of space we speak of transformations 

of a manifold; they also form groups. But now there is no longer a group 

which is distinguished from the other groups by its significance—each 

group is equivalent to every other group. Thus the following com- 

prehensive problem arises as a generalization of geometry: 

Given a manifold and a group of transformations on it. It is required 

to investigate those properties of the figures belonging to the manifold that 

are unchanged by the transformations of the group. 

Using modern terminology, which, incidentally, is usually applied 

only to a certain group—the group of all linear transformations—we 

can put it thus: 
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Given a manifold and a group on it. It is required to develop the theory 

of invariants of this group. 

This general problem includes not only ordinary geometry but also 

the latest geometric methods to be mentioned in the sequel and various 

devices for the investigation of manifolds of an arbitrary number of 

dimensions. Above all, one should emphasize the arbitrariness in the 

selection of the associated group of transformations and the resulting 

equality, understood in this sense, of all types of investigations that fit 

this general requirement /282, vol. 1, pp. 463—464]. 

Next Klein investigates ““groups of transformations of which one contains 

the other”’ in space as well as in various manifolds. In the case of space, such 

groups are the group of motions, the principal group, and, on the one hand, 

the affine group, the group of collineations and the group of all projective 

transformations (collineations and correlations), and on the other hand, 

groups of inversive transformations, that is, groups of circular transformations 

of the plane and of conformal transformations of space generated by inversions 

in circles or spheres. These transformations are also called Mébius transforma- 

tions. After noting that the addition of correlations “‘implies the simultaneous 

introduction of points and planes as elements of space’’, Klein calls attention 

to the enlargement of ~ 

the basic group of collinear and dual,transformations by the introduc- 

tion into it of the corresponding imaginary transformations. This step 

calls for the preliminary extension of the class of basic elements of space 

by the addition of imaginary elements /282, vol. 1, р. 467]. 

The Transfer Principles 

Further Klein considers cases of isomorphic groups of transformations which 

enable one to interpret one geometry within another or, as Klein puts it, to 

transfer one geometry into another. 

In particular, by projecting a line A to a conic А’ from its point 5 (Figure 

106) Klein notices that the group of collineations of the line is isomorphically 

м! и 

Figure 106 
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represented by means of the group of collineations of the plane that map the 

conic onto itself. In the first case, there is defined on the straight line a 

geometry of binary forms )' a;x; in two projective coordinates ху and x, of 

the points of the line, each of which determines a point of the line. Therefore 

Klein says that: : 

The theory of binary forms and projective geometry of systems of points 

on a conic are the same thing, that is, to each binary-form theorem there 

corresponds a theorem about such point systems and conversely [282, 

vol. 1, р. 469]. 

Further, by considering on a conic pairs of real or conjugate complex 

points instead of single points, and lines that determine the pairs of points on 

the conic instead of the pairs of points, or the poles of these lines relative to 

the conic, Klein arrives at the conclusion that 

the theory of binary forms and the projective geometry of the plane that 

we study by adopting as a basis a certain conic are equivalent. 

Since 

projective geometry of the plane, with a conic as a basis, coincides, as a 

result of group equality, with projective metric geometry, 

Klein also finds that 

the theory of binary forms and general projective metric geometry of the 

plane are one and the same thing, 

and adds that 

instead of a conic in the plane we can take in this study a third-order 

curve in space and so on [282, vol. 1, p. 471]. 

If the conic is nondegenerate and real, then “general projective metric 

geometry in the plane” coincides with the projective interpretation of the 

Lobaéevskian (hyperbolic) plane set forth by Klein in the paper On so-called 

non-Euclidean geometry. Klein points out that 

the connection [established here] between plane geometry and, further, 

geometry of space or of manifolds of an arbitrary number of dimensions, 

coincides, in its essential features, with the transfer principle proposed by 

Hesse [282, vol. 1, рр. 471-472]. 

Here Klein has in mind the paper of Otto Hesse (1811-1874) On a transfer 

principle (Uber ein Ubertragungsprinzip. Berlin, 1866) [225]. This transfer is 

called the Hesse transfer. 

After stereographically projecting an oval quadric onto a plane Klein notes 

that the principal group of the plane is isomorphic to the group of collinea- 

tions of space that map onto themselves the quadric and the center of 

projection, respectively, and concludes that 
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plane elementary geometry and projective investigation of a surface of 

second order with adjunction of one of its points are the same thing [ 282, 

vol. 1, p. 470]. 

Klein goes on to consider projective geometry of space, which he calls “the 

theory of quaternary forms.’ The reason for this is that planes, which by the 

duality principle have the same standing as points, are determined by linear 

forms )\a;x; of the four projective coordinates хо, хи, X2, Хз of points in 

space. After pointing out that the so-called Pliicker coordinates 

ри = У; — ХУ (9.2) 

of the lines passing through the points Х(х,) and Y(¥;), introduced by Plucker 

in his New geometry of space based on considering a straight line as a spatial 

element [429], are connected by the quadratic relation 

PoiP23 + Po2P31 + PosP12 = 9 (9:3) 

(which is easy to obtain from the determinant whose first and third rows are 

the coordinates x; and whose second and fourth rows are the coordinates у; 

by expanding it by its first and second rows), and noting that as a result of 

collineations of space the coordinates p, also transform linearly and the 

relation (9.3) is preserved, Klein arrived at the conclusion that 

the theory of quaternary forms coincides with the projective metric in 

a manifold of six homogeneous variables /282, vol. 1, р. 472]. 

This transfer of three-dimensional projective geometry to five-dimensional 

hyperbolic geometry whose absolute is given by equation (9.3) is called the 

Plicker transfer. We note that equation (9.3) can be reduced to the form 

Хе + Х? + Х2 — Х2 — X2 — X2 =0. 

This shows that a quadric with this equation has not only rectilinear 

generators but also two families of two-dimensional plane generators; here 

the points of the quadric represent lines in 3-space, the rectilinear generators 

represent plane pencils of lines, the plane generators of one family represent 

bundles of lines, and the plane generators of the other family represent plane 

fields of lines dual to the bundles. 

Considering once more a stereographic projection of an oval quadric onto 

a plane Klein notes that if one adjoins to the plane a single point at infinity, 

and thus makes it into a conformal (inversive) plane that is in one-to-one 

correspondence with the quadric, then the circular transformations of the 

plane are represented by the collineations that map the quadric onto itself. 

This leads him to the conclusion that 

plane inversive geometry and projective geometry on a quadric surface are 

identical [282, vol. 1, p. 475]. 

Similarly, by projecting an oval quadric in four-dimensional projective space 
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stereographically onto a three-dimensional plane in that space Klein notes 

that if one adjoins to this plane a single point at infinity, and thus makes it 

into three-dimensional conformal (inversive) space which is in one-to-one 

correspondence with the quadric, then the conformal transformations of the 

space are represented by the collineations of the four-dimensional space that 

map the quadric onto itself. This makes Klein conclude that 

inversive geometry in space coincides with the projective study of the 

manifold represented by a quadratic equation connecting five homogeneous 

variables [282, vol. 1, p. 475]. 

We note that here the conformal plane and three-dimensional conformal 

space are mapped onto the absolutes of three-dimensional and four- 

dimensional hyperbolic space, respectively, and the circles of the conformal 

plane and the spheres of conformal space are represented by the poles of the 

planes that determine their images on the respective absolutes, that is, by 

the points of the so-called ideal domains of three-dimensional and four- 

dimensional hyperbolic space. The projective coordinates of these points 

coincide with the tetracyclic coordinates of circles and pentaspheric coordinates 

of spheres introduced by Gaston Darboux (1842—1917) in the paper On 

a remarkable class of algebraic curves and surfaces and on the theory of 

imaginaries (Sur une classe remarquable des courbes et des surfaces algébri- 

ques et sur la théorie des imaginaries. Bordeaux, 1873) [136], so that this 

transfer is often called the Darboux transfer. 

Noting that the conformal plane can be viewed as the extended complex 

plane as well as a projective line, Klein formulates the first of the above 

transfers in the following alternative form: 

the theory of binary forms is represented by inversive geometry in the real 

plane in such a way that, at the same time, the complex values of the 

variables are also represented [282, vol. 1, p. 476]. 

or, by viewing an oval quadric as a sphere, in the form: 

the theory of binary forms of a complex variable is represented in projec- 

tive geometry on the surface of a sphere [282, vol. 1, p. 476]. 

Klein extends the study of groups of transformations of space to manifolds 

(that is, n-dimensional spaces) and notes in particular that 

If we consider a stereographic projection of a manifold then we obtain 

the well known theorem: in a multiply-extended domain (in space) 

there are no conformal point transformations other than the inversive 

transformations. On the other hand, there are arbitrarily many such 

transformations in the plane /282, vol. 1, р. 479]. 

Klein has in mind the relevant theorem proved by J. Liouville for three- 

dimensional space in an appendix to his 1850 edition of G. Monge’s Applica- 

tions of analysis to geometry [373, pp. 609-616]. This theorem explains the 
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fact that the two-dimensional analogue of conformal transformations of 

space is the circular transformations of the plane. 

Klein considers an even larger group of transformations of spheres, namely 

the so-called group of Lie’s higher geometry of spheres, introduced by Sophus 

Lie in his paper On complexes, in particular line and sphere complexes, with 

applications to the theory of partial differential equations (Uber Komplexe, 

insbesondere Linien—und Kugelcomplexe mit Anwendungen auf die Theorie 

partieller Differentialgleichungen. Leipzig, 1872) [325, vol. 2, part 1, pp. 1- 

121]. These transformations map spheres onto spheres and preserve their 

tangency; here points and planes are viewed as spheres of zero and infinite 

radius, respectively. The subgroup of this group that maps points onto 

points is the group of conformal transformations that preserves angles be- 

tween spheres; the subgroup of this group that maps planes onto planes is 

the group of Laguerre transformations introduced by E. Laguerre in his paper 

On the geometry of direction (Sur la géométrie de la direction. Paris, 1880) 

[300, vol. 2, pp. 592—607]. This group preserves the tangent distance between 

spheres, that is, the segment of the common tangent of two equally oriented 

spheres contained between the tangency points. We note that if we take the 

angle between two spheres as a measure of their distance then the manifold 

of spheres of three-dimensional Euclidean space is isometric to the ideal 

domain of four-dimensional hyperbolic space of curvature +1 (that is, 

a sphere of radius | in five-dimensional pseudo-Euclidean space having 

the form of a one-sheeted hyperboloid with identified antipodal points). 

If we take the same manifold of spheres, consider their orientations, and 

define the distance between two spheres to be their tangent distance, then 

it is isometric to four-dimensional pseudo-Euclidean space; and the same 

manifold of spheres, including points and planes, can be mapped in one-to- 

one bicontinuous manner onto a five-dimensional ruled quadric in six- 

dimensional projective space. Also, the groups of conformal transformations, 

of Laguerre transformations, and of the transformations of Lie’s higher 

geometry of spheres are, respectively, isomorphic to the group of motions of 

four-dimensional hyperbolic space, the group of motions of four-dimensional 

pseudo-Euclidean space, and the group of motions of five-dimensional hyper- 

bolic space whose absolute is a ruled quadric. 

Finite and Discrete Groups of Transformations 

Klein also studied finite groups of geometric transformations. He did this in 

his Lectures on the icosahedron and the solution of equations of the fifth degree 

(Vorlesungen uber das Ikosaeder und die Auflésung der Gleichungen fiinften 

Grades. Leipzig, 1884) [28:1 ], where he defined the groups of symmetries of 

regular polyhedra, that is, the finite groups of symmetries of these polyhedra. 

Since every motion of the Euclidean space R, is a product of reflections in 

not more than n + 1 hyperplanes, every finite group of rotations is generated 
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(а) оо... 

Figure 107 

by reflections. А very clear classification of such groups was proposed by 

Harold Scott Macdonald Coxeter (b. 1907) in the paper Discrete groups 

generated by reflections (Princeton, 1934) [128]. In the Coxeter diagrams 

proposed in this paper each hyperplane, reflections in which generate the 

group, is represented by a point. These points are joined by a line without a 

2 
number if the angle between the corresponding hyperplanes is equal to = 

2 
and with a number А if this angle is equal to = 

Figure 107 shows Coxeter diagrams for groups of symmetries of the 

following figures: (a) an n-dimensional simplex {3,3,..,3} (for n=2 a 
triangle {3}, forn = За regular tetrahedron {3, 3}; (b) an n-dimensional cube 

and cross polyhedron {4,3,...,3,3} and {3,3,...,3,4} (for n = 2 a square 

{4}, for n = 3 a cube {4, 3}, and an octahedron {3, 4}); (с) an n-dimensional 
semicube and semicross polyhedron (convex polyhedra obtained from previous 

polyhedra by selection of one vertex on each edge and rejection of the other 

vertices on this edge; Гоги = 3 this polyhedron is a tetrahedron); (4) a regular 

polygon {r}; (e) a regular dodecahedron {5, 3} and an icosahedron {3, 5}; (f) 
a regular polyhedron {3, 4, 3}; (g) regular polyhedra {5, 3, 3} and {3, 3, 5}; (В) 
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the polyhedron with 27 vertices and 99 faces, of which 72 are {3, 3, 3, 3}’s and 

27 are {3, 3, 3, 4}’s, and the configuration of 27 straight lines on a cubic surface 

without double points in three-dimensional space (see /129/); (i) the poly- 

hedron with 56 vertices and 702 faces of which 576 are {3, 3, 3, 3, 3}’s and 726 

are {3,3,3,3,4}’s and the configuration of 28 double tangents of a plane 

quartic without double points; (j) the Gosset polyhedron with 240 vertices and 

19440 faces of which 17280 {3, 3, 3, 3, 3, 3}’s and 2160 are {3, 3, 3,3, 3, 4}’s; 

the latter figure, discovered by Thorold Gosset (see /209/), can also be 

defined with the aid of integer octaves (see /127/); about all these figures see 

also Coxeter’s Regular polytopes [130]. Many of these groups can also be 

interpreted with the aid of finite geometries (see chapter 10). The orders of 

these groups are, respectively, equal to (а) (п + 1)!, (b) 2". n!, (с) 2”"* - nl, (а) 

2r, (©) 120, (£) 1152, (©) 14,400 5h) 27 139-5 151-840, 0) 2723S 5 eee 

2,903,040, (j) 214: 3°-5*-7 = 696,729,600. If we restrict ourselves to sym- 
metries preserving the orientations of simplices then the orders of the groups 

decrease by half. 

Klein showed that the orientation-preserving group of the regular tetra- 

hedron is isomorphic to the alternating group A,, the groups of the cube and 

the octahedron are each isomorphic to the symmetric group S, and the groups 

of the icosahedron and the dodecahedron are each isomorphic to the alter- 

nating group А5. The connection between the icosahedron and quintic 

equations consists in the isomorphism between its group and the group A; 

whose simplicity, as we saw, is closely related to the unsolvability in radicals 

of certain quintic equations. 

A number of papers by Klein and Poincaré are devoted to finite groups 

of fractional linear transformations of the complex plane (first considered 

by the German mathematician Lazarus Fuchs and therefore called Fuchsian 

groups) and to functions of a complex variable whose values are preserved 

under the transformations of these groups—the so-called automorphic 

functions. The group of fractional linear transformations of the complex 

plane and its subgroup whose elements preserve a line or a circle are, 

respectively, isomorphic to the groups of motions of three-dimensional 

Lobacevskian space and the Lobacevskian plane. These isomorphisms are 

established by means of interpretations of the latter groups in the complex 

plane. They are the basis of the application of Lobacevskian geometry to the 

theory of automorphic functions. The title of Poincaré’s paper, The theory of 

Fuchsian groups, is connected with the name of these groups. (This paper 

contains Poincaré’s interpretation of Lobacevskian geometry.) 

The discrete infinite subgroups of the group of motions of the Euclidean 

plane and space were studied by C. Jordan in his Treatise on theory of 

substitutions (1870) and by Leonhard Sohnke (1842—1893) in the paper 

Unbounded regular point systems as foundation of a theory of crystal structures 

(Die unbegranzten regelmassigen Punktsysteme als Grundlage einer Theorie 

der Krystallstrukturen. Leipzig, 1876). Jordan and Sohnke found all 17 plane 

crystallographic groups. We note that 11 of these groups were used in 
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ornaments in the Alhambra in Grenada, and the remaining groups were used 
in ornaments in China and Africa. 

The space crystallographic groups, of great importance in crystallography 

(a fact Sohnke was aware of), were determined by the Russian geologist 

and crystallographer Evgraf Stepanovié Fedorov (1853—1919), the German 

mathematician Arthur Sch6nflies (1853—1928) and the English mineralogist 

and crystallographer William Barlow (1845—1934). Fedorov, in his Symmetry 

of regular systems of figures (Symmetrii pravil’nyh system figur. Petersburg, 

1890) [181, pp. 109-255], Sch6nflies in his Crystal systems and crystal 

structure (Krystallsysteme und Krystallstruktur. Leipzig, 1891) [508], and 

William Barlow in his paper On geometrical properties of homogeneous rigid 

structures and their application to crystals (Leipzig, 1894) [37] found that the 

number of such groups, mapping regular spatial systems of points onto 

themselves, is 230. Of these, 65 consist solely of motions that preserve the 

orientation of tetrahedra and 165 include motions that do not. 

Birational Transformations 

As for other geometric transformations, we mention birational transforma- 

tions, that is, transformations of projective space such that they and their 

inverses are expressible by means of rational functions of projective co- 

ordinates. The simplest birational transformations are inversions ш circles. 

Since we are dealing with the projective plane, the image of the center of a 

circle of inversion is not a single point at infinity of the plane but all points 

of the line at infinity. Another extremely simple birational transformation of 

the projective plane is the transformation x; = 1/х; studied by J. Plucker in 

Analytic-geometrical studies (Analytisch-geometrische Entwicklungen. Essen, 

1828—1831). We have already mentioned inversions in an ellipse, hyper- 

bola, and parabola in Apollonius’ Conica and hyperbolisms in Newton’s 

Enumeration of curves of the third order. A systematic study of birational 

transformations was‘ undertaken by Luigi Cremona (1830-1903) in his 

paper On geometric transformations of plane figures (Sulle transformazioni 

geometriche delle figure plane. Bologna, 1862—1865) [132] and in sub- 

sequent papers, so that these transformations are often called Cremona 

transformations. Our examples of birational transformations show that these 

transformations do not preserve the order of algebraic curves. Cremona 

showed that the genus p of these curves is an invariant of birational 

transformations. 
Inversions in circles and conics are quadratic birational transformations 

and so is Pliicker’s transformation x; = 1/x;. We note that every quadratic 

birational transformation is a combination of inversions in conics, transfor- 

mations of the form x; = 1/x; and collineations. This and many other results 

of the theory of birational transformations are expounded in the monograph 
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of Hilda Hudson (1881-1965) Cremona transformations in the plane and т 

space (Cambridge, 1927) [235]. 

Continuous Groups 

The groups studied in Jordan’s Treatise on substitutions are all finite. (We 

note that the groups of linear transformations investigated by Jordan that 

gave rise to what is now known as the Jordan normal form of a matrix had 

integer coefficients modulo an integer). But the year in which Jordan’s treatise 

was published was also the year when the theory of continuous groups was 

born. Specifically, it was inspired by conversations between Jordan and Klein 

and Lie, who visited France on the eve of the Franco-Prussian War. All 

groups studied in the Erlangen Program are continuous groups. Lie developed 

the general theory of continuous groups. The main stimulus behind the 

creation of this theory was his desire to develop a theory of solvability 

in quadratures of differential equations analogous to Galois’s theory of 

solvability in radicals of algebraic equations. Lie published his theory in The 

theory of groups of transformations (Theorie der Transformationsgruppen. 

Leipzig, 1886) [325, vol. 5, pp. 9-223] and in his General investigations on 

differential equations that determine a continuous finite group (Allgemeine 

Untersuchungen Бег Differentialgleichungen die eine continuierliche end- 

liche Gruppe gestalten. Leipzig, 1885) [325, vol. 6, pp. 139—223] and gave a 

detailed account of it in the three-volume work Theory of transformation 

groups (Theorie der Transformationsgruppen. Leipzig, 1888—1893) /327/, 

coauthored with Friedrich Engel (1861—1941). The main object of his study 

were groups that Lie called finite continuous groups and that are now known 

as finite Lie groups. 

In his previously mentioned Remarks on Helmholtz’s paper [326] Lie 

replaces Helmholtz’s hypotheses with simpler requirements formulated in 

terms of groups of geometric transformations. Lie writes: 

By rather simple means I managed to show that the equations 

of Euclidean as well as non-Euclidean motions of the space of three 

dimensions can be characterized as follows: 

Г. They determine a continuous group of motions of the space of three 

dimensions. 

2’. In this group there exists free mobility in the following sense: if we 

fix in the interior of a given domain an arbitrary point as well as an 

arbitrary line element passing through it then continuous motion is 

still possible. On the other hand, if we fix not only a point and a 

line element passing through it but also an element of a plane that 

passes through it, then all further continuous motion is impossible. 

I managed to show, rigorously, I think, but hardly concisely, that in 

spaces of more than three dimensions the totality of Euclidean and 
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non-Euclidean motions can be characterized in an entirely analogous 
manner /326, pp. 341-342]. 

Topological Groups 

In spite of the fact that, when he mentioned examples of the groups he studied, 

Lie often had in mind groups in the large, in his theory he studied only their 

neighborhoods of the identity. Lie assumed that the groups he considered 

were realized as groups of geometric transformations. 

The theory of Lie groups in the large was created on the basis of the concept 

of a continuous, or topological, group—a concept that first appeared in 

L. E. J. Brouwer’s paper The theory of finite continuous groups independent of 

the axioms of Lie (Die Theorie der endlichen continuierlichen Gruppen, 

unabhangig von der Axiomen von Lie. Leipzig, 1909—1910) /8//. The 

theory of general topological groups was to a large extent created by 

Г. 5. Pontryagin, who gave a full account of it in his monograph Continuous 

groups (Nepreryvnye gruppy. Moscow, 1938). An English translation appeared 

almost simultaneously (Topological groups. Princeton, 1939) [436 ]. Pontryagin 

defines topological groups as follows: 

A set G of elements is called a topological group if 

1) Gis an abstract group, 

2) Gis a topological space, 

3) the group operations in G are continuous in the topological space G 

[436, р. 12]. 

The last condition means that if а and b are two elements of С then 

for every neighborhood W of ab there exist neighborhoods U and V of a and 

b such that the totality of products uv of the elements и and в of these 

neighborhoods are in W and, if ais an element of G, then for every neighbor- 

hood Г of a™! there exists a neighborhood И of a such that all inverses u7! 

of the elements и of U are in И. 

Brouwer indicates that he arrived at the notion of a finite continuous group 

independent of the axioms of Lie under the influence of Hilbert’s fifth problem. 

In 1900, at the Second International Congress of Mathematicians in Paris, 

Hilbert presented a now celebrated paper entitled Mathematical problems 

(Mathematische Probleme. Leipzig, 1901) in which he formulated 23 of the 

(in his view) most important problems bequeathed by the 19th century to the 

20th. An edition with extensive commentaries is Die Hilbertsche Probleme 

(Unter der Red. von Р. $. Alexandroff. Leipzig, 1971) [231]. (See also 

[231a]) 
The groups considered by Brouwer are topological groups that are 

manifolds in Brouwer’s sense; that is, their elements have neighborhoods 

homeomorphic to n-dimensional Euclidean space (in view of the properties 

of a group it suffices to require that such a neighborhood exists for the identity 

of the group). If x, y, and z = xy are three elements in a neighborhood of the 
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identity then, in view of the stated property, these elements have coordinates 

x‘, уг, z', neach, and clearly, the coordinates z‘are functions of the coordinates 
x' and y! that are continuous in view of the properties of the topological 
group. The axioms of Lie imply that these functions are differentiable a certain 

number of times. 

Hilbert’s fifth problem is the question: 

To what extent is Lie’s concept of continuous groups of transforma- 

tions useful for the solution of the posed problem (in the calculus of 

variations) if one does not require the functions that define the group 

to be differentiable /231, р. 44]. 

The contemporary statement of Hilbert’s fifth problem is formulated for 

groups in the large as follows: (For a suitable choice of coordinates) is every 

topological group which is a manifold a Lie group? 

For certain classes of Lie groups this question was answered in the affirma- 

tive by John von Neumann in his paper Jntroduction of analytic parameters in 

topological groups (Die Einfiihrung analytischer Parameter in topologischen 

Gruppen. Leipzig, 1933) /385, vol. 2, pp. 366-386] and by Pontryagin in 

the paper The theory of topological commutative groups. Baltimore, 1934) 

[437]. The solutions of these problems are given in detail in Pontryagin’s 

Topological groups [436, pp. 153-171, 212—216]. Later the French mathe- 

matician Claude Chevalley (b. 1909) answered Hilbert’s fifth problem affir- 

matively for solvable Lie groups in the paper Two theorems on solvable 

topological groups (Ann Arbor, 1941) [111]. In the paper Solvable topological 

groups (Topologiceskie razreSimye gruppy. Moscow, 1946) [351] the Soviet 

algebraist Anatolii Ivanovi¢ Mal’cev (1909—1967) showed that solvable 

topological groups belonging to a wider class are Lie groups. Finally, Hilbert’s 

fifth problem was solved by the American mathematicians Andrew Gleason 

(b. 1921) in the paper Groups without small subgroups. (Baltimore, 1952) 

[206], and Dean Montgomery and Leo Zippin in the paper Small subgroups 

in finite dimensional groups (Baltimore, 1952) [375]. This proof is set forth in 

the book by Montgomery and Zippin entitled Topological transformation 

groups (New York, 1955) [376]. Modified versions of that proof were pre- 

sented by the Japanese mathematician H. Yamabe in the paper On the 

conjecture of Iwasawa and Gleason (Baltimore, 1953) [641] and by the Soviet 

mathematician Viktor Mihailovi¢é GluSkov (1923—1982) in the paper The 

structure of locally bicompact groups and Hilbert’s fifth problem (Stroenie 

lokal’no bikompaktnyh grupp i pyataya problema Gil’berta. Moscow, 1957) 

[207]. In the paper [642] Yamabe has given a generalization of Gleason’s 

theorem. 

Lie Groups in the Large 

After the affirmative answer to Hilbert’s fifth problem, Lie groups in the large 

can be defined as topological groups that are manifolds. We note that in Lie 
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groups it is always possible to choose coordinates in a neighborhood of the 

identity in such a way that the coordinates 2' of the product 2 = xy can be 

expressed in terms of the coordinates x‘ and у’ of the factors by means of 

functions that are not only differentiablevan arbitrary number of times but 

also analytic. Therefore, to every real,group G there corresponds a complex 

group CG called a complex extension of the group G for which the functions 

that express the dependence of the coordinates 2' of the product 2 = xy on 

the coordinates х' and у’ of the factors are the same analytic functions as in 

the group G. Also, to one and the same complex form there corresponds a 

certain number of different real functions. 

If two Lie groups have the same neighborhoods of the identity then the 

two groups are said to be locally isomorphic. Therefore we can say that Lie 

considered Lie groups up to a local isomorphism. 

Lie Algebras 

The analyticity of the functions that define the group operation implies that 

in order to characterize Lie groups up to local isomorphism it suffices 

to consider the group elements in an infinitely small neighborhood of 

the identity. Lie called such elements infinitesimal transformations. Giv- 

ing an infinitesimal transformation is equivalent to giving the derivatives 

dx' 
= ( = ) of the functions х' = x'(f) that define in the group a curve that 

0 

passes at ¢ = 0 through the group identity. The numbers Х' can be viewed as 

the coordinates of a vector X tangent to the curve at the group identity. 

These vectors form a linear space in which the group operations induce a 

multiplication Z = [XY] that is neither commutative nor associative but 

satisfies the identities [ХУ] = —[YX] and [[XY]Z] + [[YZ]X] + [[ZX]Y] = 0. 

The latter is called the Jacobi identity, for it was C. G. J. Jacobi who first 

proved it for Poisson brackets. A linear space with an operation Z = [XY] 

satisfying the above identities is now called a Lie algebra. An example of a 

Lie algebra is the set of vectors in three-dimensional space with the usual cross 

product operation. Instead of vectors, Lie considered the differential operators 

a : 
Eos cae and called Lie algebras infinitesimal groups. Lie showed that every 
i x 

Lie group has a Lie algebra and is determined by it (of course, to within 

a local isomorphism). (We note that the Lie algebra of vectors in three- 

dimensional space determines its group of rotations.) Therefore the study of 

Lie groups is often reduced to the study of the corresponding Lie algebras. 

If the Lie group is a group of matrices U and we consider the one-parameter 

subgroups U(t) of this group with canonical parameter t: U(t, + t2) = 

U(t,)U(t,), then the Lie algebra of this group consists of the matrices 

A nace . The Lie algebra of the group SL, of unimodular matrices 
t=0 
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(matrices with determinant 1) consists of traceless matrices: if we consider the 

columns u,,U,,...,U, of the matrix U as vectors, then the determinant det И 

can be viewed as a skew product [u,,u5,...,u,], and the differentiation of 

dU 
this product for t = 0 when U(0) = J = (6,;) gives for A = (a;;) = a the 

t=0 

value ТгА = )\a,; = 0. For the group О, of orthogonal matrices we have the 

equality ИТИ = I (T denotes transposition). Differentiation of this equality 

gives A’ + A =0, ie., the Lie algebra of the group О, consists of skew- 

symmetric matrices. Similarly, for the group 'O, of pseudoorthogonal matrices 

of linear transformations preserving the quadratic form У`,&;х? of index /, 

where &; = —1 if i< J and в, = 1 if i> J, we have the equality U’E,U = E,, 

where E, = (¢;6,;), and its Lie algebra consists of matrices A with 

ALE, + Е = 0. (9.4) 

Again, for the group Sy, of symplectic matrices of linear transformations 

preserving a skew bilinear form )\(x'y"*! — x"*'y') (i = 1,2,...,п) we have 
the equality U' JE = J, where J is the block matrix 

and its Lie algebra consists of matrices 4 for which 

ЛЕА = 0, (9.5) 

If we replace the multiplication AB in the algebras R,,, С, and Н, of real, 

complex, and quaternion matrices by commutation [АВ] = AB — BA, then we 

obtain the Lie algebras В, , С; and H, . If we designate the Lie algebras of 

traceless matrices by PR, and PC, , the Lie algebras of skew-symmetric 

matrices by SR, and SC, and the Lie algebras of hermitian skew-symmetric 

matrices by SC, and 'SH,, then the Lie algebras satisfying the conditions 
(9.4) and (9.5) are, respectively, ‘SR, ,'SC, and SpR,;, SpC, . If we replace 

АТ with A’ in (9.4) and (9.5), then we obtain the Lie algebras 'SC, , 'SH7 
and SpH, . 

Solvable and Semisimple Lie Groups 

The most important class of Lie groups—the solvable ones—was defined by 

Lie by analogy with Galois’ solvable finite groups. Just as Galois created the 

group concept to explain when an algebraic equation is solvable in radicals 

and gave as the required criterion the solvability of the group of permutations 

of the roots of the equation, so too Lie posed the question of when the integral 

of a differential equation is expressible by means of quadratures. This is 

reflected in the name of the paper, mentioned earlier, in which Lie built the 
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foundations of the theory of Lie groups—General investigations on differential 

equations that determine a continuous finite group (Lie called Lie groups finite 

continuous groups). Like a finite solvable group, a solvable Lie group is 

defined as a group С that contains a nested sequence of normal subgroups 

Hi] i, ©. > >. such ahat,the factor groups G/H,, Hy/H,, ..-, 

H,_,/H, as well as H, are commutative. We note that with every Lie group 

there is associated the so-called commutator subgroup—a Lie group whose 

Lie algebra is the subalgebra of the Lie algebra of the given group consisting 

of the commutators [ХУ] of that algebra. It is clear that the subalgebra of a 

Lie algebra corresponding to the commutator subgroup is an ideal of the Lie 

algebra, so that the commutator subgroup of a Lie algebra is its normal 

subgroup. From the definition of the commutator subgroup it follows that 

the factor group of a group by its commutator subgroup is commutative. If 

the Lie group is itself commutative then its commutator subgroup consists of 

the identity element of the group; if the group is solvable then its subgroup 

H, is its commutator subgroup and each subgroup H,; is the commutator 

subgroup of H,_,. Lie proved that if a linear partial differential equation 

У; А,0//дх, = 0 in n variables x,, x2, ..., x, admits an (п — 1)-dimensional 
solvable group whose infinitesimal transformations, together with the infini- 

tesimal transformation determined in the domain of the variables x; by the 

differential operator )’;A,0/0x;, form an independent system, then the 

differential equation can be integrated by quadratures; that is why solvable 

Lie groups were originally called integrable groups. 

A Lie group without solvable normal subgroups is called semisimple. This 

notion was introduced by E. Cartan in his dissertation On the structure of 

finite continuous groups (Sur la structure des groupes finis et continus. Paris, 

1894) [96, part 1, vol. 1, рр. 137-287], in which he gave criteria for the 

solvability and semisimplicity of groups (the term semisimple (halbeinfach) 

was introduced by the German mathematician Wilhelm Killing (1847—1923) 

in the paper The structure of continuous finite groups of transformations 

(Zusammensetzung der stetigen endlichen Transformationsgruppen. Leipzig, 

1888—1890) /278a/). Knowledge of the structure of solvable and semisimple 

groups enables one to establish the structure of an arbitrary Lie group. This 

is so because of Levi’s theorem, established by Elia Levi (1883—1917) in a 

paper of the same title as Cartan’s dissertation (Sulla struttura dei gruppi 

finiti e continui. Turin, 1905) /319], to the effect that if a Lie group has a 

normal subgroup with semisimple factor group then it also has a subgroup 

isomorphic to that factor group. The term semisimple Lie groups is due to 

their connection with simple Lie groups, that is, Lie groups without normal 

subgroups of smaller dimension. Simple Lie groups were introduced by Lie 

himself in his General investigations on differential equations that determine a 

finite continuous group (1885). In his dissertation, Cartan showed that every 

semisimple group is isomorphic, or locally isomorphic, to the direct product 

of a certain number of simple Lie groups, that is, to a group consisting of 

the products of the elements of a number of noncommutative simple groups 
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such that the elements from different groups commute; each of these simple 

groups is a normal subgroup of the direct product (this property was named 

semisimplicity by Killing). 

The Classification of Complex Simple Lie Groups 

In the abovementioned paper Lie showed that there are four infinite series of 

simple complex groups—the group CSL, ,,; of complex unimodular matrices; 

the groups СО, „+, and CO,,, of complex orthogonal matrices of odd and even 

order; and the group CSy,,, of complex symplectic matrices. The latter group 

was originally called the complex-group, and later, to avoid confusion with 

the term complex group, the Latin word complexus (complicated) was replaced 

by its Greek equivalent symplektikos. (The term symplectic group was first 

used by H. Weyl in the book /628/.) 

Cartan called simple Lie groups, locally isomorphic to the groups CSL,,,, 

CO,,,41, CSy2, and CO,,,, complex simple groups of the four /агде classes Ав, 

B,, C, and D,, respectively; the subscript n is the rank of the group and is 

equal to the dimension of the set of elements of the group that commute with 

a regular element—an element of common state. This set is a commutative 

subgroup called the Cartan subgroup and the corresponding subalgebra of the 

Lie algebra of the group is the Cartan subalgebra. 

For example, for the groups SL,,, and CSL,,, the regular elements 

are the matrices with distinct eigenvalues. If such a matrix has the form 

И = (u;6,;), then the condition det U = 1 can be written as H;u; = 1. The 

Cartan subgroup of these elements consists of matrices of the same form and 

the Cartan subalgebra of these elements consists of the matrices of the form 

H = (h,6,;) for which У.,й, = 0. If we denote the matrix with 1 at the 
intersection of the i-th row and j-th column and with 0 in all remaining places 

by £;;, then the matrices of the Cartan subalgebra can be written in the form 

H=Y hE y. 
In the previously mentioned paper The structure of continuous finite 

groups of transformations [278a], Wilhelm Killing showed that in addi- 

tion to these complex simple groups there are also certain exceptional simple 

groups. 

In his dissertation Cartan showed that all simple complex Lie groups 

belong either to the four Jarge classes ог to the five exceptional classes with 

respective dimensions 14, 52, 78, 133 and 248 and called the latter classes G,, 

Раз Ee; Вл, Ев respectively. 

In order to classify simple Lie groups Cartan considered а map А > [АН] = 

AH — HA of the Lie algebra of a simple group of matrices onto itself. 

This map is a linear transformation. For A = Е,; this map takes the form 

Ey > ЕЕ) — Or h, Ex.) Ej; = (h; — h;) E,;. This shows that the matrices 
Е; (i # J) play the role of eigenvectors of this transformation and that the 

corresponding eigenvalues are the linear forms И; — h; defined on the Cartan 
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subalgebra. These forms are called roots and can be considered as inner 

products of elements H, R of this subalgebra, viewed as vectors. The vectors 

R are called vector roots. For the groups SL,,, and CSL,,, these vectors are 

Е, — Е; where Е; stands for Е;. Analogous vector roots are defined for all the 

remaining simple Lie groups. 

Since among all real simple Lie groups with common complex form there 

is a single compact one, the classification of complex simple Lie groups is 

equivalent to the classification of compact real simple Lie groups. 

The classification of real compact simple Lie groups was greatly simplified 

by B. L. van der Waerden in The classification of simple Lie groups (Die 

Klassifikation der einfachen Lieschen Gruppen. Berlin, 1933) [610] and by 

Eugene Dynkin (b. 1925; worked in Moscow and in Ithaca) in The structure 

of simple Lie groups (Struktura prostyh grupp Li. Moscow, 1946) [159]. 

Both made use of the study of vector roots of compact simple Lie groups 

by Hermann Wey] in his paper The theory of representations of continuous 

semisimple groups by linear transformations (Theorie der Darstellung kon- 

tinuierlicher halbeinfacher Gruppen durch lineare Transformationen. Berlin, 

1925) [625, рр. 262-366]. 
Cartan noted that all vector roots are linear combinations with integer 

coefficients of several fundamental roots equal in number to the rank of the 

group. Weyl showed that the vector roots form regular figures, and van der 

Waerden noted that these figures have the following property: if a and b are 

two vectors of such a figure, then the numbers 2ab/a? are integers. Therefore 

ate 2 мл 
the angles bet th t ly be—,—,-,~, —,—, 6 angles оегмееп ese vectors Can only 6 4 3 5 3 4 6 5 es MIE 

: п 2 
lengths of vectors forming angles a and =e are equal, the lengths of vectors 

3 
forming angles Е апа г are in the ratio oy 2: 1, and the lengths of vectors 

5 
forming angles 2 and 2 are in the ratio ae 1. For rank 2 these figures have 

the forms shown in Figure 108. 

The systems of vector roots for simple Lie groups are: 

„Ю-В, j#K, j,k =0,1,...,n. 

Dot Ee az Ts th Ey, Jk = 2 и 

СЕ = И; bE, Я о И, 

р, : Е, + Е,, (ae Y BY A a St SRY 

1 
НЕ, Е, (+ Е, + Е, ЖЕ, + Е.), &/=1,2, 3,4. 
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Figures 108a, 108b, 108c, and 108d represent the systems of vector roots of 

the groups А», B,, C,, О», and С», respectively. Dynkin suggested that one 

should take as fundamental roots the simple positive roots: if vector roots are 
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written in the form У`; а; Е;, where the Е; are a basis of a Cartan subalgebra, 

then call a root positive if the first a; 4 0 is positive: if a — b is positive then 

the root а = )’,a,E; is longer than b = 9; 5,E;. 
The systems of simple positive roots for simple Lie groups are: 

A,! Eo = Е, Е, “es Е,, ...э E,-1 —Е,. 

BOW, Е Ев в 

В hee ee BOR 

ne Е, <> Е,, Е, a, E3, sey E,—1 ==“ Е, Е Е Е 

G,: Е, ма Е,, Е, =P E, a 2Е.. 

1 
УС Е, ==. Е,, Е, sae E,, E,, rie = E, Е Е. a E,). 

Es: E, i E,, E, ag Е,, Е, a Е., Е, 2m Es, Е; Е. Es, 

ро 1 
oe — 2: se Е, Е Е. бы Е, = Е; — Kg). 

Ел: Е — E,, Е, — Е, Е — E,, Е, — E,, Е; — E,, Е — E,, 

(E, — Е, — E, —E,; —E,+ E;+E,+ E,). 

Ез: Е, ыы Е,, Е. с E,, Е, = E., Е; ыы Е, Еб к: E,, Е. а E;, 

1 
о Е, Е. E, — Е; — Е — E, + Es), E, + Eg. 

Dynkin also suggested that these systems of simple roots be repre- 

sented by means of certain diagrams now named Dynkin diagrams. In these 

diagrams, similar to Coxeter diagrams for groups generated by reflections, 

each simple positive root is represented by a point. These points are joined 

7 
by a single line if the angle between corresponding roots is equal to = by 

3 5 
a double line if it is 7 and by a triple line if it is a If two points, 

corresponding to two roots are joined by a single, double, or triple line and 

the first root is longer that the second, there is an arrow from the first point 

to the second. The Dynkin diagrams for simple Lie groups are shown in 

Figure 109. 

The similarity between the Dynkin diagrams for the groups A,, B,, C,, О, 

G,, F,, Eo, Ел, Ez, and the Coxeter diagrams (a), (b), (с), (4) for r = 6, (f), 

(h), (i), (j) is explained by the close connection between the groups of 

symmetries of systems of vector roots and the groups generated by reflections; 

we note that the vector roots +E,,4(+E, + E, + Е, + E,) of the group F, 

are radius vectors of vertices of a regular polyhedron {3, 4, 3} in Rg. 
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The Classification of Real Simple Lie Groups 

In the paper Real simple finite continuous groups (Les groupes réels simples 

finis et continus. Paris, 1914) /96, part J, vol. 1, рр. 399-530] Cartan deter- 

mined all real simple Lie groups. The number of such groups is consider- 

ably larger than that of the complex groups, for a number of nonisomorphic 

real groups can have the same complex form. The real groups in the class A, 

are the group SL,,, of unimodular real matrices, the groups CSU,,, and 

C'SU,,, of unimodular complex unitary and pseudounitary matrices (that 

preserve Hermitian positive-definite and indefinite forms, respectively) and 

the group HSL,,,:)2 of unimodular quaternion matrices. The real groups in 

the class В, are the groups O,,,, and 'O,,,, of real orthogonal and pseudo- 

orthogonal matrices (that preserve positive definite and indefinite quadratic 

forms, respectively). The real groups in the class C, are the group Sy,, of real 

sympletic matrices and the groups HU, and H’U, of quaternion unitary and 

pseudounitary matrices. The real groups in the class О, are the groups O,, 

and 'O,, of real orthogonal and pseudoorthogonal matrices and the group 

HSy, of quaternion symplectic matrices. The letter / in the symbols for 

groups of pseudoorthogonal and pseudounitary matrices denotes the number 

of minus signs in the canonical expressions )); +(x’)? and У; хх! of the 
corresponding quadratic and Hermitian forms. Later, the classification of 

noncompact real simple Lie groups was simplified by Cartan himself in 
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the paper Compact and noncompact simple groups and Riemannian geometry 

(Groupes simples clos et ouverts et geométrie петаптеппе. Paris, 1929) /96, 

part 1, pp. 1011-1043], where this classification was connected with the 

theory of symmetric spaces. 

Real simple Lie groups are defined by their Satake diagrams. As complex 

simple Lie groups, these groups have vector roots. Some of these roots are 

real and some are imaginary. All vector roots of compact simple Lie groups 

are imaginary. The real Lie groups all of whose vector roots are real are called 
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split simple groups (or anticompact simple groups). The remaining real simple 

Lie groups have both real and imaginary roots. 

Satake diagrams, introduced by I. Satake in the paper On representations 

and compactifications of symmetric Riemannian spaces. Princeton, 1960 [503], 

have the same form as Dynkin diagrams, but white points in these diagrams 

correspond to real roots, and black points to imaginary roots, and pairs of 

white points are joined by a double arrow to pairs of imaginary conjugate 

roots. Satake diagrams of all noncompact real simple Lie groups are repre- 

sented in Figure 110. The designations АГ, АП, ... of noncompact simple 

Lie groups were introduced by E. Cartan. 

In the Table I below, the first line gives the Cartan designations of the 

noncompact simple Lie groups in Figure 110 and analogous designations A O, 

BO, CO, DO for compact simple Lie groups in the same classes; on the 

second line gives the corresponding Lie algebras, and the third line gives the 

spaces whose fundamental groups are these groups: 
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Table I 

ies | Pe [Pie | [a 
НА, - 1)/2 

Pane | ms [om Е ИС 

Geometric Interpretation of Simple Lie Groups 

Since the simple groups O,,, are isomorphic to groups of rotations of 

(n + 1)-dimensional Euclidean spaces, they are locally isomorphic to the 

groups of motions of n-dimensional elliptic spaces S,; since the simple groups 

О, +: are isomorphic to groups of rotations of (п + 1)-dimensional pseudo- 

Euclidean spaces of index и — / + 1, they are locally isomorphic to groups of 

motions of n-dimensional hyperbolic spaces 'S, of index / (for п = 1 these 

are the Lobaéevskian spaces 'S,). Similarly, the simple groups SL,,, and 

Syz, are locally isomorphic to groups of collineations of n-dimensional 

projective spaces P, and to groups of symplectic transformations of (2n — 1)- 

dimensional symplectic spaces Sp>,_,, that is, projective spaces P,,,-, in which 

there is given an invariant complex of (и — 1)-dimensional isotropic planes 

(Гоги = 2 an invariant linear complex of isotropic /ines). In view of the 

Darboux transfer, the groups of conformal transformations of n-dimensional 

conformal spaces С, are locally isomorphic to the groups 'O,,,5. Thus the 

fundamental groups of projective, elliptic, symplectic, and conformal spaces 

are simple Lie groups.’ 
The space whose fundamental group is the compact group CSU,,, in the 

class A, was first considered at the beginning of the 20th century by the Italian 

geometer Guido Ghirin Fubini (1879-1943) in the paper On definite metrics 

of a Hermitian form (Sulle metriche definite da una forma Hermitiana. Venice, 

1903) [191] and by the German geometer Eduard Study (1862—1930) in the 

paper Shortest paths in the complex domain (Kurzeste Wege im komplexen 

Gebiete. Leipzig, 1905) [566]. These papers dealt with complex projective 

space with a real metric defined by the relation 

cos? — = RBIS (9.6) 

2 А detailed account of the geometry of these spaces is given in chapters IX and XI of the author’s 

book /464] and in chapters П-ТУ of his books /465; 466]. 
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The right side of this formula is the cross ratio of the points X(x) and Y(y) 

and their polar hyperplanes relative to the imaginary Hermitian quadric 

хх = 0. In the same paper Study considered the space with the imaginary 

Hermitian quadric replaced by a real Hermitian quadric of index /. At 

present, n-dimensional spaces of this type defined by an imaginary 

Hermitian quadric and a real Hermitian quadric of index / are called, respec- 

tively, complex Hermitian elliptic and hyperbolic spaces CS, and C'!S,. For 

n = 3 these spaces are described in Geometry of the complex domain (Oxford, 

1924) [125] by Julian Lowell Coolidge (1873-1958) and in Lectures on 

complex projective geometry (Lecons sur la géométrie projective complexe. 

Paris, 1931) [94] by В. Cartan. In the case of Hermitian quadrics of arbitrary 

index / the groups of motions are locally isomorphic to the noncompact 

groups C'SU,,, of the same class. On the basis of a geometric interpretation 

of the groups HU, given by C. Chevalley in The theory of Lie groups (Princeton, 

1946) [112], a similar interpretation of the compact and noncompact groups 

HU,,, and H'U,,, of the class C,,, as quaternion Hermitian elliptic and 

hyperbolic spaces HS, and H'S, was given in the forties of this century. One 

of the earliest definitions was given by the author in an appendix to his book 

of Russian translations of E. Cartan’s papers, entitled Geometry of Lie groups 

and symmetric spaces (Geometriya grupp Li i simmetriceskie prostranstva, 

Moscow, 1949 [268, pp. 331-368 ].3 

The group HSL,,,, admits an interpretation, analogous to the interpreta- 

tion of the group SL,,,,, as the group of collineations of a qguaternion projective 

space and the group HSy,,, as the group of symplectic transformations of a 

quaternion Hermitian symplectic space. The group HP, was considered for 

п = 3 by Е. Cartan in /94]. The group HSp, was considered by Lyudmila 
Viktorovna Rumyanceva in Quaternion symplectic geometry (Kvaternion- 

naya simplekti¢eskaya geometriya. Moscow, 1963) /490/. 

Isomorphisms of Simple Lie Groups and Transfers 

The following isomorphisms hold for a simple Lie groups of low dimensions: 

A, =B,=C,, B, =C,, А. = О, and О, = В, ® B,. These isomorphisms 

determine geometric interpretations of the corresponding spaces in one 

another. On the isomorphism 4, = B, are based the isometricity of a complex 

Hermitian elliptic line CS, and a two-dimensional real sphere covering 

twofold the elliptic plane S,, the Poincaré interpretation of the Lobaéevskian 

plane S, in the complex plane with the metric of a complex Hermitian 

hyperbolic line C'S,, and the Hesse transfer of the projective line P, in the 

plane '5.. 
On the isomorphism B, = С, are based the analogous isometricity of 

3 See also chapter У of the author’s book /465/. 
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a quaternion Hermitian elliptic line HS, and a four-dimensional real sphere 

covering twofold the elliptic space S,, the Poincaré interpretation of the 

Lobacevskian space 'S,, and the interpretation of the manifold of lines of the 

symplectic space Sp; in the hyperbolic $расе *S,. 

On the isomorphism A, = D; are based a number of interpretations of 

which we mention the Pliicker transfer, in which the manifold of lines in the 

projective space P; is represented by the absolute of the hyperbolic space 355, 

the interpretation (by E. Study in the paper Companion to the theory of linear 

transformations of a complex variable (Ein Seitenstiick zur Theorie der 

linearen transformationen einer komplexen Veranderlichen. Berlin, 1923— 

1924) [567]) of the quaternion projective line HP, by the absolute of the 

Lobaéevskian space '5., the interperation of the manifold of lines of CS; in 

the analogous manifold of 55, the analogous interpetation of the line mani- 

folds of C?.S, and 25. , and the interpretation of the manifold of lines of C'S, 
in the quaternion symplectic plane Н5р.. 

On the isomorphism D, = В, © В, are based the interpretation (by С. С. 

Fubini in the paper Clifford parallelism in elliptic spaces (П rapallelismo di 

Glifford negli spazi ellittici. Pisa, 1900) /192/) of the manifold of lines of the 

elliptic space 5, in the manifold of pairs of points of two spheres covering 

twofold the plane S,, the Kotel’nikov-Study transfers (by A. P. Kotel’nikov 

in his Projective theory of vectors (Proektivnaya teoriya vektorov, Kazan, 

1899) /289] and by Е. Study in his Geometry of Dynames (Geometrie der 

Dynamen. Leipzig, 1903) /565/) of the manifolds of lines of 5, and 'S; to 

the spheres covering the planes 'CS, and C'S, over the respective algebras 'С 
of split complex numbers а + be, е? = 1 (a,b real) and the field С of complex 

numbers, the interpretation (by Klein in his Lectures on non-Euclidean geo- 

metry (Vorlesungen uber nicht-Euklidische Geometrie. Berlin, 1928) /284/) 

of the complex projective line CP, by the absolute of 'S,, an analogous 

interpretation of the absolute of 25, in the split complex projective line 'CP,, 
and the interpretation of the quaternion symplectic line HSp, in the manifold 

of pairs of points of the planes S, and 'S, or by the “product” of these 

planes. 
We shall discuss the interpretations by spaces over algebras in the next 

chapter.* 

Symmetric Spaces 

There is a close connection between Lie groups and symmetric spaces. 

Symmetric Riemannian spaces were introduced by the Soviet geometer Petr 

Alekseevié Sirokov (1895—1944) in the paper Constant fields of vectors and 

second-order tensors in Riemannian spaces (Postoyannye polya vektorov 1 

4 For details of these interpretations see the author’s books /464—466/ and the paper /490/. 



364 9. Groups of Transformations 

tenzorov vtorogo poryadka v rimanovyh prostranstvah. Kazan, 1925) /533, 

рр. 256-280] and by Е. Cartan in the paper On a certain remarkable class of 

Riemannian spaces (Sur une classe remarquable d’espaces de Riemann. Paris, 

1926) [96, part. 1, pp. 587-659]; see also the books [222] of Sigurdur 

Helgason and /337] of Ottmar Loos. These spaces can be defined as 

Riemannian spaces in which reflections in points along geodesics preserve 

the metric of the space. A necessary and sufficient condition for this is the 

vanishing of the covariant derivative of the curvature tensor (УВ; = 0, 

spaces satisfying this condition were studied by P. A. Sirokov). The simplest 

examples of symmetric spaces are Euclidean and non-Euclidean spaces whose 

curvature in all two-dimensional directions is constant (and equal to zero in 

the case of Euclidean spaces). 

In The geometry of groups of transformations (La géométrie des groupes 

de transformations. Paris, 1927) [96, part. 1, pp. 673-791]. Е. Cartan 

introduced the notion of symmetric spaces with an affine connection in which 

reflections in points along geodesics preserve the affine connection (that is, 

map geodesics to geodesics with preservation of the affine parameter). As 

in the case of Riemannian spaces, a necessary and sufficient condition for a 

space with an affine connection to be symmetric is that У, Rj? = 0. 

In the same work Cartan also showed that every Lie group is a symmetric 

space with an affine connection if one takes as geodesics of the Lie group its 

one-parameter subgroups and their cosets, and if one takes as an affine 

parameter on them the canonical parameter of the one-parameter subgroups 

(the parameter ¢ such that g(t,)g(t.) = g(t, + t,)) and the corresponding 

parameters of the cosets. Reflections in points of a symmetric space generate 

a subgroup of the group of isometries of the space that is a Lie group. If we 

associate to every point of a symmetric space the reflection o in that point 

then, as Cartan showed, the products оду, where оу is a reflection in a 

fixed point, form a totally geodesic surface in that Lie group with an affine 

connection defined by Cartan. 

Symmetric spaces admit geometric interpretations as manifolds of sym- 

metry figures in spaces with the same fundamental groups, in particular, in 

the cases when these groups are simple Lie groups in the projective, elliptic, 

hyperbolic, symplectic, and conformal spaces defined above. 

The classification of symmetric spaces with simple groups of motions is 

equivalent to the classification of the involutory automorphisms of non- 

compact simple Lie groups carried out by Marcel Berger in the papers 

Classification of irreducible symmetric homogeneous spaces (Classification des 

espaces homogénes symétriques irreductible. Paris, 1955) /45] and Structure 

and classification of symmetric spaces with semisimple isometry group (Struc- 

ture et classification des espaces symétriques a groupe d’isométrie semisimple. 

Paris, 1955) [46] (see also [47]), and by Anatolii Semenovié Fedenko 

(b. 1929) in the paper Symmetric spaces with simple noncompact fundamental 

groups (Simmetriceskie prostranstva $ prostymi nekompaktnymi funda- 

mental’nymi gruppami. Moscow, 1956) /179/ (see also [180/). 

The first column in Table II below gives the class designation (A, B, C or 
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D). The second gives the space whose fundamental group is the compact 

simple Lie group of this class. The third gives the involutory motion of the 

group which generates its involutory automorphism. The fourth gives the 

corresponding symmetry of the space. The fifth gives Cartan’s designation of 

the corresponding noncompact group and symmetric space. The sixth column 

gives the space whose fundamental group is the corresponding group in 

column five. 
The calculation of the Poincaré polynomial )’ bt‘ for symmetric spaces is 

easier than for general homogeneous spaces. These polynomials and the Betti 

numbers b; for compact simple Lie groups were calculated by L. 5. Pontryagin 

in the paper On Betti numbers of compact Lie groups (Moscow, 1935) [439] 

(see also / 113]: these polynomials have the form 

CO at), (9.7) 

where for the-group Аа =... ос Dp and с ао р 

Ома. Ло: а ао Е обв. 

a, =2, 5.6, 8, 9. 12; fork, a= 2,6. 8.105 2 М. 18: зла ЮГЕ; auras, 

12. 14 18. 20: 24530: 

“ 

Reductive and Parabolic Spaces 

Reductive spaces are a generalization of symmetric spaces. They were intro- 

duced by the author of the well-known monograph Riemannian geometry and 

tensor analysis (Rimanova geometriya i tenzornyi analiz. Moscow, 1953) 

[447] Petr Konstantinovié RaSevskii (1907—1983) in the paper Symmetric 

spaces with an affine connection with torsion (Simmetriceskie prostranstva 

affinnoi svyaznosti s Кгабешет. Moscow, 1950) [449], and by Kakumi 

Nomizu in the paper Invariant affine connections on homogeneous spaces 

(Baltimore, 1954) [392]; the term reductive is due to Nomizu. Whereas 

symmetric spaces are spaces with an affine connection without torsion and a 

covariantly constant curvature tensor, in reductive spaces both the curvature 

and torsion tensors are covariantly constant. Reductive spaces also admit of 

interesting geometric interpretations. 

The term parabolic space which in 19th century was equivalent to the term 

Euclidean space (intermediate between elliptic and hyperbolic spaces) has now 

received a new meaning: parabolic spaces are homogeneous spaces whose 

fundamental groups are simple Lie groups and whose stabilizer subgroups 

are parabolic subgroups of these groups, i.e., subgroups containing the 

maximal solvable subgroup of this group. These spaces were first considered 

by Charles Ehresmann (1905-1979) in his paper On the topology of cer- 

tain homogeneous spaces (Sur la topologie des certains spaces homogénes. 

Princeton, 1934) / 164]. Ehresmann found topological invariants of these 

spaces. Izrail Moiseevié Gelfand (b. 1913) and Mark Aronovié Naimark 
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(1909—1980) used these spaces in their paper Unitary representations of the 

classical groups [199]. Jacques Tits considered these spaces in the paper On 

certain classes of homogeneous spaces (Sur certaines classes d’espaces homo- 

genes. Brussels, 1955) /579], introduced these spaces and named them R- 

spaces (R-espaces). J. Tits studied the cases of these spaces with maximal 

nonsemisimple stabilizer subgroups in the papers Exceptional Lie groups and 

their geometric interpretation (Les groupes de Lie exceptionnels et leur inter- 

prétation géométrique. Brussels, 1955) [580], and On the geometry of R- 

spaces (Sur la geometrié des R-espaces. Paris, 1957) [581]. 

Each parabolic subgroup of a simple Lie group is determined by one 

or several simple roots of this group. The maximal solvable subgroup is 

determined by all these roots. The parabolic subgroups determined by one 

simple root are maximal nonsemisimple subgroups of this group. Tits named 

the figures of the spaces with simple fundamental group with maximal 

nonsemisimple stabilizer subgroup fundamental elements of these spaces. In 

his paper Simplicity and semisimplicity figures (Obrazy prostoty i polu- 

prostoty. Moscow, 1963) [470] the author called these figures simplicity 

figures and other elements of R-spaces semisimplicity figures. J. A. Wolf calls 

parabolic spaces flag manifolds. All maximal nonsemisimple subgroups of 

complex simple Lie groups were found in the thesis of Vladimir Vladimirovic 

Morozov (1910—1975) Оп nonsemisimple maximal subgroups of the simple 

groups (O nepoluprostyh maksimal’nyh podgruppah prostyh grupp. Kazan, 

1943) [378] (see also the paper /263/ by I. L. Kantor). 

We have seen previously that in the Lie algebra g of a simple Lie group G 

there exists a basis consisting of the basis of the Cartan subalgebra of this 

algebra and of eigenvectors of the linear transformation A > [AH], where Н 

is an element of the Cartan subalgebra. Therefore, for each simple root there 

is a decomposition of the Lie algebra into the direct sum of linear subspaces 

£=8-,08-1410°°'Os1,O2,02:0°°'' Og8,-1 O8,, (9.8) 

where each g, for « # 0 is a linear combination of eigenvectors such that the 

corresponding vector roots have the coefficient « at a selected simple root and 

20 is the direct sum of analogous linear combinations and the Cartan sub- 

algebra. For example, the eigenvectors in the Lie algebra of the group SL, 4, 

are the matrices E;; and the corresponding vector roots are Е; — E;. The simple 

roots of this group being those of A,,, they are, as was shown above, the vectors 

a, = Е —E,, o, =E, —Е,, ..., «, = E,-; — E,. Therefore, if we put in 

place of the element a;, in the matrix of this algebra the linear combination 

of the roots ©; corresponding to the eigenvectors E,;, we obtain for п = 3 the 

matrix 

0 Oy Oph, Oy + +0, 

=i 0 02 A> ata 03 

— Oy = Ao — 65 0 As 
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In this case in the formula (9.8) 4 = 1, the decomposition has the form 

g = g_, ® go Фо, , and, with x a nonzero element, we have for the root «,: 

oO O@ @ ©¢ x A) OG OP ex 

Хх 00а хх ИН 

ко а оо 
x Ш 0-1 ORGS tx 0 ORO RO 

for the root «,: 

On ORO RO) хх MW 0 Оно Хх 

оО Ри 0 м ONT 

Eick | ООО оков Oe ijidy СОЯ ОЗОН 
x x OC оохх гос 

for the root «3: 

000 ых в) ох 

= 0000 ое х | р о Хх 

К о OWbOI Maen, banlEGre eanO о в. 
ee Wow ipre rs 1G) р го х ORO ORO 

The stabilizer subgroup is determined by the subalgebra 

f=g,02,:0°''@g,-, Og, (9.9) 

and the supplementary direct sum 

l=g_,@g-4,:0°°°@g-; (9.10) 

can be considered the tangent space of the parabolic space. Therefore for the 

determination of the dimension of the parabolic space it is sufficient to find 

the dimension of the direct sum (9.8). 

The decomposition (9.8) is also defined for an arbitrary set of simple roots. 

In that case, g, for « 7 0 is a linear combination of eigenvectors such that the 

corresponding vector roots have coefficients at selected simple roots whose 

sum is «, and gy is defined as in the case of a single root. In our example, for 

two selected roots A = 2 and for the roots a,, «, we have 

0 006 000 0 ar OSORIO 
0:00 О Ох оо 
о ао. 

О 0x 0 0 Ong Soe 

Oma Om ох 

Ws 10 Se. 8 Ont 9020220 

и от" 
0-6-0) 0 00 0 0/ 
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and for all three roots 4 = 3 and 

Ро о 0000 ооо 
10 0 0 0 06 0 0 % 10° 00 
о а о, 

хооо 0x 0.0 00 x 0 

x 0 0 0 пи 
ОВО 0 @ <% © 

Soe 
Ох 000 0 

оо обох 
a yO ONG 
ЮГ 000, ON Om 

000 0 00 0 0 

Let us call the figure corresponding to the simple root «; the «;-figure 

and the figure corresponding to the set «;,, %;,, ..., %, Of simple roots the 

(%;,,0%;,,---,%;,)-figure. If we consider the matrices of the group SL,,, аз 

matrices of collineations of the projective space P, and determine the stabilizer 

groups corresponding to the subalgebras г, @ g, for each root «;, go ® 

21 © g, foreach pair (a;,,«;,) and #0 ® в, © в, © в, for the triple (и, , >, a3), 

then we find that in P, the «,-figure is a point, the «,-figure is a line, the 

a,-figure is a plane, the (~, , «,)-figure is a flag consisting of a point and a line 

through this point, the (a, , «3 )-figure is a flag consisting of a point and a plane 

through this point, the («,, «3 )-figure is a flag consisting of a line and a plane 

through this line, and the («,,«,,,)-figure is a flag consisting of a point, а 

line through it, and a plane through this line. 

Similarly, we find that the «,-figures of the spaces P,, "S,,_, and "S},, 

SP2,-1 Whose fundamental groups are split real simple Lie groups are as 

shown in Table III. The first column of this table gives class, the second the 

space, the third the simple roots, and the fourth the «;-figures. The (a;,, ;,, 

.., a;,)-figures of these spaces are flags consisting of the corresponding 

a;,—,-.., ;,-figures. This fact explains the name flag manifold for parabolic 

spaces. 
An a,-figure and an «figure are called incident if they are contained in an 

(a;,a,;)-figure. Note that the (и — 2)-dimensional planes of the absolute 

of "S,,-; are (a,-,,%,)-figures, for they are intersections of two (n — 1)- 

dimensional planes of different families on the absolute. 

The Dynkin diagrams of complex and compact real groups, shown in the 

Figure 109a and the Satake diagrams of split real groups that coincide 

with them can be considered as diagrams of «;-figures of the spaces with 

these fundamental groups. The bilateral symmetry of the diagram for А, 

corresponds to the principle of duality of the space P, and the bilateral 
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Table Lil 

Point 7 

Line 

(i — 1)-dimensional plane 

Hyperplane 

Point of the absolute 

Line of the absolute 

(n — 1)-dimensional plane on the absolute 

Point 

Isotropic line 
SPon+1 

Point of the absolute 

_ Line on the absolute 

(n — 1)-dimensional plane of first family on the absolute 

(п — 1)-dimensional plane of second family on the absolute 

symmetry of the roots a,_, and «, for О, corresponds to the equality of two 

families of (и — 1)-dimensional planes of the absolute of the space "S,,,_,. All 

a,-figures, and therefore all (a;,,«;,,...,%;,)-figures of the spaces with split 

real fundamental groups, are real, all figures of the spaces with compact real 

fundamental groups are imaginary; such are points, lines and planes on the 

absolutes of the elliptic spaces S,,, and S,,_,. 

The Satake diagrams of noncompact and nonsplit real groups shown in 

Figure 110a can also be considered as diagrams of «;-figures of the corres- 

ponding spaces, but the «,-figures represented by white points are real, the 

a,-figures represented by black points are imaginary, and the a,-figures 

represented by white points joined by double arrows are conjugate imaginary 

(if an a,-figure and an a,-figure are such imaginary figures, then the («;, a,)- 

figure is real). For example, the «,-figures of the spaces 'S,, and 'S,,_, 
(points, lines and i-dimensional planes on the absolute) are real for {< / and 

imaginary for i> /, and the «,_, and a,-figures of ""'S,,_,; are conjugate 

imaginary and determine real (и — 2)-dimensional planes on the absolute (in 
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Figure 111 

particular, forn — 2 the «, and «,-figures of 'S, are conjugate imaginary lines 

intersecting in real points). 

The Dynkin and Satake diagrams of isomorphic groups are similar. Such 

diagrams are shown in Figures 111 a, b, c and d. 

Quasisimple and k-Quasisimple Lie Groups 

The group of motions of the Euclidean space К, is not simple for it contains 

a normal subgroup, namely the group of translations. However, Euclidean 
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space can be obtained from elliptic space S,.and from Lobaéevskian space 

15, by passage to the limit, and its group of motions can be obtained from the 

groups of motions of these spaces in the same way. Similarly, the group of 

motions of the pseudo-Euclidean space 'R,, can be obtained from the groups 

of motions of the hyperbolic spaces 'S, and '*'S, by passage to the limit. 
F. Klein, in his paper On the geometric foundations of the Lorentz group 

(Uber die geometrische Grundlagen der Lorentzgruppe, Leipzig, 1910) /282, 

vol. 1, рр. 533—552] devoted to the study of the pseudo-Euclidean space 'R, 

used in the special theory of relativity, put forward the idea of arbitrary 

projective metrics. He noted that the metrics of the elliptic plane S,, the 

Lobaéevskian plane 'S,, the Euclidean plane К, and the pseudo-Euclidean 

plane 'R, can be considered as geometries of the projective plane P, with 

absolutes (1) м2 + м? + м2 = 0 (imaginary conic), (2) ug + uj — м3 = 0 (real 
conic), (3) м2 + и? = 0 (imaginary pair of points), and (4) иё — м1 = 0 (real 
pair of points). In adding to these 4 cases the Sth case (5) uj = 0 (double 

point), Klein wrote: 

We obtain five kinds (and only five kinds) of metric geometries in the plane 

from which only one, corresponding to the imaginary pair of points, is known to 

us from the example of the elementary metric. We call the totality of theories 

occurring in this way the general theory of projective metrics [282, vol. 1, 

p. 540]. 

This general theory of projective metrics was constructed by Duncan 

Maclaren Young Sommerville (1879—1934), author of the well-known biblio- 

graphy of non-Euclidean geometry /549/ and of an introduction to n- 

dimensional geometry /550/, in the paper Classification of geometries with 

projective metrics (Edinburgh, 1910—1911) [551]. 

First Sommerville considers three-dimensional geometries. We quote: 

Let us now investigate the different systems of geometry. We have three 

constants to fix, and any of them may be infinite, real or imaginary, hence 

there are 27 possible systems. These depend upon the form of the absolute 

and the conditions laid down with regard to the actual* and ideal elements. 

We shall make the following assumptions: 

1. An actual geometric form contains actual elements. 

2. The distance between two actual elements of an actual geometric form is 

real. 

Having fixed upon one plane « as an actual plane, a line ain о as an actual 

line, and a point A in а аз an actual point, all points at a real finite distance 

from A are actual points.** A line is actual if it makes a real angle with a, or 

if it makes a real angle with an actual line; and similarly for planes. The actual 

*The term “actual” here is opposed to “‘ideal,”’ and is preferred to real, which is opposed to 

“imaginary.” (Sommerville’s note.) 

** [{ may happen that the harmonic conjugate А’ of A is at a real finite distance from A, but 

points of AA’ in the vicinity of A are ideal. In this case A’ is ideal. (Sommerville’s note.) 
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points are separated from the ideal points by the absolute. The actual elements 

of an actual sheaf (e.g. a sheaf of lines passing through an actual point and 

lying in an actual plane) are separated from the ideal elements by the two 

absolute elements of the sheaf. $ 

The values of the constants are a$ оПо\мз:— 

К, К or x is infinite if the absolute degenerates to two coincident planes, 

lines or points. 

K is real or imaginary, according as actual lines do or do not cut the 

absolute. 

к is real or imaginary, according as actual lines do or do not project the 

absolute. 

К is real or imaginary according as actual points in actual planes do or 

do not project the section of the absolute. 

When К, К, к is infinite, real, imaginary, the measure of distance, plane 

angle, dihedral angle is parabolic, hyperbolic, elliptic. In ordinary geometry, 

in hyperbolic geometry, and in elliptic geometry the measure of angles, plane 

and dihedral, is elliptic; k and к are both imaginary, while К is infinite, real, 

or imaginary. 

The forms of the absolute and the various geometries are discussed as 

follows: — 

A. Absolute a proper quadric. 

I. Imaginary. 

К, К, x all imaginary. Distances and angles are always real and 

periodic. (ELLIPTIC GEOMETRY.) 

II. Real and not ruled. 

The absolute divides space into an actual and an ideal region of 

points, lines, and planes, and possesses an interior and an exterior. 

A line projects the quadric if it does not cut it. 

1. Actual points within. Actual lines and planes cut the quadric. 

К real, А and к imaginary. (HYPERBOLIC GEOMETRY.) 

2. Actual points outside. Actual lines and planes cut the quadric. 

К and К real, к imaginary. 

3. Actual points outside. Actual planes cut the quadric, but actual 

lines do not. К imaginary, К and к real. 

4. Actual points outside. Actual lines and planes do not cut the 

quadric. К and k imaginary, к real. 

III. Ruled. 
There is no point from which real tangent lines and planes may not 

be drawn to the quadric, and every plane cuts the quadric. A line 

projects the quadric if it cuts it. 

1. Actual lines cut the quadric. 

Take any such line and draw an arbitrary plane through it, 

cutting the quadric in a conic S. Let this plane be actual. Then 

there are two cases. 
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(a) Points within S are actual. 

К real, А imaginary, к real. 

(b) Points outside S are actual. 

К, k, к real. 

2. Actual lines do not cut the quadric. 

К imaginary, К real, к imaginary. 

In the case of a ruled quadric there are two systems of lines which do not 

cut the quadric, and these are separated by the quadric. If, therefore, we fix 

upon one line as actual, all lines of the other system are ideal since they contain 

no actual points. The absolute divides the points of space into two sets, and 

it is arbitrary which set we agree to take as actual. 

B. Absolute a simply degenerate quadric. 

li 

iat 

Ш. 

A cone, two coincident points. к = ©. 

1. Imaginary cone. 

K and k imaginary. 

2. Real cone. 

(a) Actual points within. К real, А imaginary. 

(b) Actual points outside. Actual lines cut the cone. K, k real. 

(c) Actual points outside. Actual lines do not cut the cone. 

K imaginary, k real. 

Two coincident planes, proper conic. К = ©. 

1. Imaginary conic. 

К, к imaginary. (PARABOLIC GEOMETRY). 

2. Real conic. 

(a) Actual lines pass within the conic. k real, « imaginary. 

(6) Actual lines and planes pass outside the conic. К imaginary, 

к real. 

(с) Actual lines pass outside, actual planes cut the conic. k, к 

real. 

Two planes, two coincident lines, two points. К = oo. 

1. Imaginary planes, imaginary points. 

К, к imaginary. 

2. Imaginary planes, real points. 

К imaginary, к real. 

3. Real planes, imaginary points. 

K real, « imaginary. 

4. Real planes, real points. 

К, к real. 

С. Absolute a doubly degenerate quadric. 

|6 

II. 

Two coincident planes, two coincident lines, two points. К, К = oo. 

1. Imaginary points. к imaginary. 

2. Real points. к real. 

Two coincident planes, two lines, two coincident points. К, к = ©. 

1. Imaginary lines. к imaginary. 

2. Real lines. к real. 
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Ш. Two planes, two coincident lines, two coincident points. k, к = ©. 

1. Imaginary planes. K imaginary. 

2. Real planes. K real. 

D. Absolute a triply degenerate quadric. 

Two coincident planes, two coincident lines, two coincident points. K, k, 

к = 00. [551, рр. 28-31]. 

Sommerville considers geometries with different kinds of points, lines and 

planes as different geometries. His geometry A 11$ the geometry of the elliptic 

space §,. His geometries A JJ are geometries of the Lobacevuskian space '|S;3;: 

(1) with points inside the absolute, hyperbolic lines and planes, (2) with points 

outside the absolute and hyperbolic lines and planes, (3) with the same points, 

elliptic lines, and hyperbolic planes, (4) with the same points and elliptic 

lines and planes. Sommerville’s geometries А ПГ are geometries of the hyper- 

bolic space 7S3; the absolute divides this space into two equal parts and he 

distinguishes between two cases: (1) geometries with hyperbolic lines and (2) 

geometries with elliptic lines. Sommerville’s geometries B/ are geometries of 

(1) the co-Euclidean space R* dual to the Euclidean space R;, (2) the copseudo- 

Euclidean space 'R*¥ dual to the pseudo-Euclidean space 'R;: (a) with points 

inside the cone and hyperbolic lines, (b) with points outside the cone and 

hyperbolic lines, (c) with points outside the cone and elliptic lines. His ge- 

ometries В [Ш are geometries of (1) the Euclidean space Ку, (2) the pseudo- 

Euclidean space *R,: (a) with timelike lines, (b) with spacelike lines and 

pseudo-Euclidean planes, (c) with spacelike lines and Euclidean planes. His 

geometries В ПГаге geometries (1) of the quasielliptic space 541 with absolute 

consisting of two imaginary planes and two imaginary points on their inter- 

section line, (2) of the guasihyperbolic space °'S} with imaginary planes and 

real points of the absolute, (3) of the quasihyperbolic space ‘°S} dual to 
previous one, (4) of the guasihyperbolic space ''S} with real planes and points 
of the absolute. His geometries D J are geometries (1) of the Galilean space Гу 

and (2) of the pseudo-Galilean space 'T;; DII are the geometries (1) of the 

isotropic space I, and (2) of the pseudoisotropic space 'S,; D II] are geometries 

(1) of the co-Galilean space Y¥ dual to Г, and (2) of the copseudo-Galilean 

space 'T¥ dual to 'T,. Sommerville’s geometry D is the geometry of the flag 

space F;. 

The quasielliptic space 53 was first investigated by Wilhelm Blaschke 

(1885—1962) in the paper Euclidean kinematics and non-Euclidean geometry 

(Euklidische Kinematik und nichteuklidische Geometrie. Berlin, 1911) /6// 

as the space of the group of motions of the Euclidean plane R,: if the product 

АВ”! of the motion А and the motion inverse to the motion В is a rotation 

with angle ф then the distance d,(A, В) is ф. If this product is a translation 

with distance d, then the distance 4, = 0 but there is also the distance 

d,(A, B) = d. Blaschke introduced the term quasielliptic space. The Galilean 

space I,—the four-dimensional analogue of the space Г. —1$ the spacetime 

geometry of classical mechanics of Galileo and Newton (hence its name). In 

connection with this interpretation, this space was investigated by Ludwik 
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Silberstein in his Projective geometry of Galilean space-time (London, 1925) 

[538] and by Aleksandr Petrovié Kotel’nikov (1865—1944) in the paper The 

principle of relativity and the Lobacevskian geometry (Princip otnositel’nosti 

i geometriya ГофабеузКого. Kazan, 1927) [290]. Another form of two- 

quasielliptic space is the isotropic space I,, studied by Karl Strubecker in 

Differential geometry of isotropic space (Differentialgeometrie des isotropen 

Raumes. Vienna, 1941) /564/. The flag space Е; was first studied by Ivan 

Vasil’evié Parnasskii (b. 1923) in the paper Axiomatic construction of three- 

dimensional parabolic geometry (Aksiomati¢eskoe postroenie trehmernoi 

paraboligeskoi geometrii. Moscow, 1956) [405 ] and Бу С. W. М. Kallenberg 

in the paper Differential geometry of a particular group of projective trans- 

formations (Amsterdam, 1957) [258]. In the same paper Sommerville extends 

his investigations to n-dimensional spaces. We quote: 

Here there are и constants, ky, k,,...,k,-,;, and therefore 3" geometries. 

The absolute takes the following forms: 

Ao. A proper hyperquadric of п dimensions (‘“‘n-quadric’’). 

I. Imaginary. 

II. Real and not ruled. 

Ш. Ruled. у 

A,. Simply degenerate. : 3 

(r)A hypercone of species г of п dimensions (“(и, г)-сопе”). This is 

formed by joining the points of a proper (и — r)-quadric to the 

points of an (г — 1)-flat (the axis), and in the axis is taken a proper 

(r — 1)-quadric. An (n,n)-cone consists of two coincident (и — 1)- 

flats with ап (и — 1)-quadric; an (n,m — 1)-cone consists of two 

(п — 1)-flats with an (и — 2)-quadric; and an (и, 0)-cone is a proper 

n-quadric. 

A,. /-ply degenerate. 

(7,,1%2,...,%). Two coincident (г, — 1)-, (r, — 1)-, ..., и — 1)-flats 

(7, < ry <... <7). An (и, п)-сопе with an (и, r,_, )-cone in its axis, 

and an (7,_,,/~2)-cone in the axis of the second hypercone, and so 

on, and finally an (r, — 1)-quadric in the axis of the last hypercone. 

The number of geometries with non-degenerate absolute is 2”. With an 

l-ply degenerate absolute with the symbol (r,,r,...,7) there are 2" ' geome- 

tries; and there are „С, different /-ply degenerate absolutes /551, р. 36]. 

Sommerville’s spaces Ао/ are the elliptic spaces 5,, his spaces A, // are the 

Lobaéevskian spaces '5,, and his spaces АИГ are the hyperbolic spaces |S, for 

n> 1. His spaces A,(r) are the quasielliptic spaces 5" (m=n—~r) with 

absolute consisting of an imaginary degenerate quadric which is an imaginary 

cone with real (r — 1)-dimensional vertex (called axis by Sommerville) and an 

imaginary nondegenerate quadric on this vertex, and the quasihyperbolic 

spaces “'*25™ with analogous absolute with real cone and quadric or with real 
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cone or quadric. His spaces 4,(r,,r,...,7,) are /-quasielliptic spaces 5"1т2--.т 

or /-quasihyperbolic spaces *1*2:--ki4 gmm2---™ (и, = и — г.) with absolutes 
consisting of a degenerate quadric with (r, — 1)-dimensional vertex and оп 

this vertex a second degenerate quadric with (r, — 1)-dimensional vertex, and 

so on, and of a nondegenerate quadric on the (и, — 1)-dimensional vertex. The 

Euclidean and pseudo-Euclidean spaces R,, and 'R,, are, respectively, the spaces 

5» and °'S?, the dual spaces R* and 'R* are the spaces S"~! and sr, 
respectively, the Galilean and pseudo-Galilean spaces Г, and "Г, are, respec- 

tively, the spaces 521 and °°'S°!, the isotropic and pseudoisotropic spaces I, 
and ‘1, are, respectively, the spaces S$$°:""! and °°%S°-""!, and the flag space Е, 
istthespace:Sy “2 и 

The groups of motions of the Euclidean and pseudo-Euclidean spaces А, 

and 'R,, and of all quasielliptic and quasihyperbolic spaces 5” and **1§” are 

instances of quasisimple Lie groups obtained from simple groups by passage 

to the limit. This transition, by passage to the limit, from simple Lie groups 

to quasisimple Lie groups is an example of the process of contraction of Lie 

groups, introduced by the American physicist Eugene Wigner (b. 1902) and 

his student Erdal шопа in the paper On the contraction of groups and their 

representations (Washington, 1953) [245 ]. Similar groups were considered on 

a number of occasions by the Soviet mathematician Izrail Moiseevi¢ Gelfand 

(b. 1913) and his students, in particular in the papers of Feliks Aleksandrovié 

Berezin (1931-1980) and I. М. Gel’fand Some remarks on the theory of 

spherical functions on symmetric riemannian manifolds (Neskol’ko zame€anii 

К teorii sferi¢eskih funkeii na simmetri¢eskih rimanovyh mnogoobrariyah. 

Moscow, 1956) [44] and Laplace operators on semisimple Lie groups and on 

some symmetric spaces (Operatory Laplasa na poluprostyh gruppah Li i 

nekotoryh simmetri¢eskih prostranstvah. Moscow, 1957) [43]. A complete 

classification of all quasisimple Lie groups was given by the author and 

by Lyudmila Mihailovna Karpova (b. 1934) in the paper Flag groups and 

contraction of Lie groups (Flagovye gruppy i szatie grupp Li. Moscow, 1966) 

[479]. In the same paper the authors introduced the notion of k-quasisimple 

Lie groups obtained from simple Lie groups by passage to the limit, in 

the same way, k times, instances of which are the groups of motions of the 

k-quasielliptic and k-quasihyperbolic spaces S7m2--™— and [ofthe бит тк, 

In the Soviet Union, the initiator of the study of k-quasielliptic and 

k-quasihyperbolic spaces was Isaak Moiseevié Yaglom (b. 1921),° author of 

the well-known books /636/ and [639]. By now, this theory has been sub- 

stantially developed.°® 
Quasielliptic and quasihyperbolic spaces S;” and "5" are special cases 

of quasi-Riemannian and quasipseudo- Riemannian spaces, and k-quasielliptic 

and k-quasihyperbolic spaces Som™--™-1 and lolt--heSmomi--™-1 are special 

>See I. M. Yaglom’s book /637/ and other publications by him and his students. 

6 See the papers of Iraida Ivanovna Zelezina (b. 1931) [648], Tamara Grigor’evna Cahlenkova 

(b.1932) /104], Evgeniya Ustinovna Yasinskaya (b. 1929) [646], and also the survey paper of 

Yaglom, the author, and Yasinskaya /640/ and chapter У of the author’s book /466/. 
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cases of k-quasi- Riemannian and k-quasipseuda- Riemannian spaces, which are 

spaces with a homogeneous connection in whose tangent spaces there are 

defined corresponding projective metrics. Such spaces were first considered 

by Nil Aleksandrovié Glagolev (1886—1945) in the paper Riemannian mani- 

folds of projective structure (Rimanovy mnogoobraziya proektivnoy struk- 

tury. Moscow, 1925) [205], by Enea Bortolotti (1896—1942) in the paper On 

specialized quadratic forms (Sulle forme differenziale spezializzate. Rome, 

1930) [74], by Grigore Constantin Moisil (1906-1973) in the paper On 

geodesics of singular Riemannian surfaces (Sur les géodésiques des espaces de 

Riemann singuliers. Bucharest, 1940) [370], and by Aleksandr Petrovic 

Norden (b. 1904), author of the well-known monograph Spaces with an affine 

connection (Prostranstva affinnoi svyaznosti. Moscow-Leningrad, 1950) /393/, 

in the papers On the interpretation of spaces with a degenerate metric (Ob 

istolkovanii prostranstva $ vyrozdayuSeisya metrikoi. Moscow, 1945) [394] 

and Generalized geometry of a two-dimensional line space (ОБоБ$беппауа 

geometriya dvumernogo linei¢atogo prostranstva. Moscow, 1946) /395/. In 

connection with physical problems, similar spaces were investigated by P. 

Defrise in the paper Geometric analysis of the kinematics of continuous media 

(Analyse géométrique de la cinematique des milieux continus. Brussels, 1953) 

[139], Czestaw Jankiewicz (Yankevi¢) in the paper On degenerate Rieman- 

nian geometries (O vyrozdayustihsya rimanovyh geometriyah. Warsaw, 1954) 

[644], and В. A. Toupin in the paper. World invariant kinematics (New York, 

1958) [589]. The general case of a quasi-Riemannian and quasipseudo- 

Riemannian space was defined by I. V. Parnasskii in the paper On degenerate 

Riemannian geometries (О vyrozdayuScihsya rimanovyh geometriyah. Kuiby- 

Sev, 1962) [406]. Revolt Ivanovic Pimenov (Ъ. 1931) considered the physical 

applications of this theory in the paper Application of semi-Riemannian ge- 

ometry to unified field theory (Primenenie polurimanovoi geometri К edinoi 

{еоги polya. Moscow, 1964) [421]; we also note his paper On the definition 

of semi- Riemannian spaces (K opredeleniyu polurimanovyh prostranstv. Lenin- 

grad, 1965) [422]. In the paper Symmetric semi-Riemannian spaces (Sim- 

metriéeskie polurimanovy prostranstva. Kazan, 1964) [478 ],7 Т.. М. Karpova 

investigated symmetric quasi-Riemannian and k-quasi-Riemannian spaces 

and, in particular, has defined invariant quasi-Riemannian and k-quasi- 

Riemannian metrics in quasisimple and k-quasisimple groups obtained from 

simple groups by passage to the limit. A special case of this metric is the metric 

of quasielliptic space in the group of motions of the Euclidean plane intro- 

duced by W. Blaschke in the paper mentioned previously. 

While quasisimple groups, obtained by passing to the limit from the simple 

groups О, and 'O,, are interpreted as groups of motions of real quasielliptic 

and quasihyperbolic spaces, quasisimple groups, obtained by passage to the 

limit from the simple groups.CSU, and C’SU,, are interpreted as groups of 

motions of complex Hermitian quasielliptic and quasihyperbolic spaces, of 

7See also chapter VI of the author’s book /466/. 
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which complex Hermitian Euclidean and pseudo-Euclidean spaces are special 

cases, and quasisimple groups, obtained by passage to the limit from the 

simple groups HU, and H'U, are interpreted as analogous quaternion spaces. 

Complex Hermitian Euclidean space CR, (unitary space) was introduced, 

together with its infinite dimensional analogue, by John von Neumann in the 

paper Mathematical foundations of quantum mechanics [386, рр. 35-42]; 

this space is often used in linear algebra (see, for example, /198, 350/). 

Complex and quaternion Hermitian quasielliptic spaces CS," and HS” and 

analogous k-elliptic spaces Сбто"и тк: and HS”o"--™-1 were first studied 

by Tamara Mihailovna Klimanova (b. 1937) in the paper Unitary semielliptic 

spaces (Unitarnye poluellipti¢eskie prostranstva. Baku, 1963) [285]. In the 

paper The algebra and group deformations I™[SO(n) ® SO(m) = SO(n, т), 

I™(U(n) ® U(m)] = U(n,m) and I™[Sp(n) © Sp(m)] = Sp(n,m) for 1<m< 

n—1, 1974) [635], К. В. Wolf and С. В. Boyer, independently of Soviet 

authors, also arrived at the notions of real, complex and quaternion matrices 

representing groups of motions of real, complex and quaternion quasielliptic 

spaces, respectively. Wolf and Boyer denote the groups O,, CU, and HU, by 

O(n), U(n), and Sp(n), respectively, the groups "О, т, С" U,+, and H” U,.,, by 

O(n,m), U(n,m) and Sp(n,m), respectively, and use the symbol /" (from 

inhomogeneous) for groups of matrices of motions of the corresponding 

quasielliptic spaces. In their paper, Wolf and Boyer consider the transition 

from these groups to the groups of motions of the corresponding hyperbolic 

spaces. Other classes of quasisimple and k-quasisimple groups and their 

geometric interpretations have been considered by Lyudmila Pavlovna 

Andreeva (b. 1937) and L. У. Sestyreva (= Rumyanceva) in Limit symplectic 

spaces (Predel’nye simplekticeskie prostranstva. Kolomna, 1964) [22] and by 

Table IV 

CS, = (Н © С) 5-12 

een 

5. 
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Irina Nikolaevna Semenova (b. 1928) in Limit projective spaces (Predel’nye 

proektivnye prostranstva. Kolomna, 1964) [521]. Dual hermitian non- 

Euclidean spaces (Dual’nye érmitovy neevklidovy prostranstva. Moscow, 

1969) [354] have been considered by Larisa Mihailovna Markina (b. 1940), 

Semiantiquaternion spaces (Poluantikvaternionnye prostranstva. Moscow, 

1969) [389] have been considered by Lyudmila Sergeevna Nikitina (b. 1945). 

The first four lines of Table IV coincide with the first, second, fifth and 

sixth columns of Table II. The fifth line of this table shows the spaces 

whose fundamental groups are quasisimple groups intermediate between the 

corresponding compact and noncompact groups. 

Symmetry, Duality and Stability 

The application of the theory of continuous groups to the theory of differen- 

tial equations initiated by Sophus Lie is today an important branch of 

the theory of differential equations having varied mechanical and physical 

applications. At the end of the 19th century and in the beginning of the 20th 

century Emile Picard (1856-1941), one of the teachers of В. Cartan, worked 

in this area. The present state of the studies in this area is described in the 

book of Lev Vasil’evic Ovsyannikov (b. 1919) Group analysis of differential 

equations (Gruppovoi analiz differencial’nyh uravnenii. Moscow, 1978) [402]. 

Studies in soliton theory (see the book Solitons ([76]) Бу В. К. Boullough, 

P. J. Caudry, S. P. Novikov, and others; see also /648/) show that the inte- 

grability of differential equations defining mechanical and physical systems 

is closely connected with the inner symmetry of the system and with its 

stability. The term soliton originally denoted a stable solitary wave in hydro- 

dynamics, but later this term came to denote stable dynamic structures in 

different domains of physics defined by similar differential equations. Soliton 

structures in plasma are especially important. 

The connection between symmetry and stability was known in antiquity. 

In his book Symmetry [629] Hermann Weyl compares Babylonian, Greek 

and medieval images of gods and prayers and notes that all these images have 

bilateral symmetry and that divinity in antiquity and in the Middle Ages was 

a synonym of stability. A deeper bilateral symmetry, which may be called 

duality, is found in mechanics: it is well known that the kinetic energy of a 

conservative mechanical system characterized by generalized coordinates g; 

and generalized impulses р; has the form T = )’; )’, a,,p;p,; where the quadratic 
form T is positive definite, and that the potential energy of such a system has 

the analogous form U = )';);c,q;q; only in the case of stability of the 
system (see P. L. Dirichlet’s On the stability of equilibrium (Uber die Stabi- 

litat des Gleichgewichts) //54, vol. 2, pp. 3—8]. In this case the canonical 

dq; ОН dp; dH 
Hamilton equations of the syste = у = — АУете И 1 а у ме бр ay where ++ U's 

т 
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dq; dp; 
: = ЗУ aypj, = —2),¢,,q,;and the 

motion of the system has an oscillatory character. The coefficients а, define 

the inertia of the system, and the c;, its elasticity. The kinetic and potential 

energies T and И of a stable electric ’system have similar form. For such a 

system the а; are quantities of electricity, the р; are electric tensions in the 

elements of the system, the а;, determine the impedance, and the c;; the electric 

capacity of the system. The physical meaning of the stability of such systems 

consists in the accumulation of the energy in its potential form, the setting of 

the system in motion, and the return of the energy to potential form. This 

oscillatory motion has stable character. In the simplest cases this motion is a 

harmonic oscillation—mechanical or electric. An analogous instance is the 

inner motion of hydrodynamic or electromagnetic solitons and of stable 

phenomena on different levels of development of matter: the atom as the 

junction of the electric field of electrons and the positive charges of the nucleus 

with the inert mass of the nucleus, the Дота cell as the junction of the nucleus 

capable of accumulating energy and information with inert protoplasm, etc. 

To this harmony undoubtedly relate the previously mentioned words of 

Poincaré “Ц is this harmony then which is the sole objective reality” /433, 

p. 209], but here the words objective reality must be understood literally and 

not in the conventionalist sense of Poincare. 

We note that certain soliton resolutions of differential equations are con- 

nected with geometric problems. For example, the Sine—Gordon equation 

2. = Sinz is connected with the problem of determination of surfaces of con- 

stant negative curvature in the Euclidean space R;, the hyperbolic Sine— 

Gordon equation z,, = sinhz with the analogous problem in the pseudo- 

Euclidean space 'К., and the Klein—Gordon equation z,, = mz with the 
analogous problem in the Galilean space Г,. Many physical problems con- 

nected with non-Euclidean geometry are described in the book of Anatolii 

Kuz’mi¢ Lapkovskii Relativistic kinematics, non-Euclidean spaces and the 

exponential mapping (Relativistkaya kinematika, neevklidovy prostranstva 1 

eksponencyal’noe otobrazenie. Minsk, 1985) /302/. 

Hamilton’s function, have the form 



Chapter 10 

Application of Algebras 

Attempts to Extend Complex Numbers to Space 

The geometric interpretation of complex numbers as points of the plane 

appeared for the first time in the 18th century. After that there arose the 

natural idea of generalizing complex numbers in such a way that they could 

be interpreted as points of three-dimensional space. One of the earliest attempts 

of this kind was due to Caspar Wessel. It appeared in his previously men- 

tioned Attempt to represent direction [624]. Having thought of the operation 

of multiplication of complex numbers in geometric terms, Wessel associated 

to a point in space with rectangular coordinates x, y, z the expression x + 

ye + zy, where & and и are two different imaginary units, and interpreted by 

means of these numbers rotations about the Oy- and Oz-axes. Wessel used 

his ‘‘algebra” to solve problems involving spherical polygons. 

Further attempts to construct a three-dimensional analog of the complex 

numbers were made by English algebraists. In their case, the problem arose 

in connection with the publication of The theory of conjugate functions or 

algebraical couples (Dublin, 1835) [214, vol. 3, рр. 1-96] by the Irish 

mathematician and mechanist William Rowan Hamilton (1805—1865). This 

paper contained a rigorous justification of the complex numbers based on 

their representation as pairs of real numbers, equivalent to the view of them 

as vectors in the plane. Between 1837 and 1838 Hamilton tried to construct 

an analogous theory for triples of real numbers /2/4, vol. 3, pp. 106-110], 

but all systems of numbers of this kind constructed by him contained divisors 

of zero, that is, pairs of numbers «, В such that 

aX#0, B#0, of =0. (10.1) 

In the fourth part of his treatise On the foundation of algebra, entitled On 

triple algebra (Cambridge, 1847), [377], Augustus de Morgan (1806—1871) 

considered numbers of the form аё + by + сб. De Morgan investigated dif- 
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ferent algebras of this type, including the algebra with the following multipli- 

cation table of the basis elements: 

In this algebra the basis element € plays the role of 1 and the elements 7 and 

¢ are connected by the relations n°? = (3 = —€. If we replace &, —y, and —¢ 

with, respectively, 1, e, and е?, then we can write the elements of this algebra 

as a + be + се? with e? = 1, which is how this algebra was introduced by 
Charles Graves (1810-1860) in the paper On algebraic triplets (Dublin, 

1847) [212]. Triplets is what Graves called the elements of his algebra. Graves 

showed that with every triplet there are associated three moduli 

|| =a? + 53 + с3 — 3abe, lols = ./a? + b? + с? — ab — be — a 5) 

[а = а +В + el, 

such that for each of three moduli the modulus of a product is equal to 

the product of the moduli of the factors, and such that [|3 = |a|2-|o|,. 
Graves showed that each triplet has an exponential representation which 

is the product of the first modulus by ехр(фе + уе?) (we recall that exp a = 

1+ a+ 92/2! + «3/3! +---), where the ‘“‘amplitudes” ф and у of a product 
of two triplets are the sums of the corresponding amplitudes of the factors. 

Graves’ triplets include zero divisors characterized by the vanishing of the 

second or third (and therefore also the first) modulus. The equality (10.1) 

holds if the second (third) modulus of « and the third (second) modulus of В 

vanish. | 

Graves identified a triplet x + уе + ze? with a point in space whose rect- 

angular coordinates are x, y, and z and proposed the following interpretation 

of the product of two triplets. He drew a sphere with center at the origin and 

denoted by /, m, n its points of intersection with the respective positive 

coordinate axes (Figure 112). Next he drew the circle determined by the points 

т, п, the symmetric axis OA through the center of that circle and the 

symmetric plane S passing through O and perpendicular to the axis OA. Then 

he considered the projections of triplets, which he here called /ines, on the axis 

OA and on the plane S and noted that 

the projections of the lines of a product, of the lines of the factors, and 

of the unit line on the syrnmetric axis form a proportion in the sense of 

Euclid, 



384 10. Application of Algebras 

Figure 112 

that is, a proportion of real numbers, 

and the projections of the same lines on the symmetric plane form a 

proportion in which one considers lengths as well as directions of these 

proportions, 

that is, a proportion of complex numbers /2/2, р. 74]. Graves was saying 

that every triplet can be represented as a sum of a real number—its projection 

on the axis OA—and a complex number—its projection on the plane S. Also, 

multiplication of triplets reduces to the multiplication of these real and com- 

plex numbers. It is not difficult to check that, similarly, addition of triplets 

reduces to the addition of these numbers. Using the language of modern 

algebra we can say that this representation shows that the algebra of triplets 

is the direct sum of the field of real numbers and the field of complex numbers. 

It is not difficult to check that the triplets e, and e,, the “unit lines” of the 

OA axis and the plane S, are given in terms of the basis elements of the algebra 

by the formulas 

l+e+e? Lee фе ое” 
ЕТО УР е$ == 3 ° 

and that every triplet is a linear combination with real coefficients of the trip- 

lets ед, €s, and its conjugate complex és = 4(1 + we + we’), or, equivalently, 
of the triplet e, with a real coefficient and the triplet e, with a complex 

coefficient (see /30/). Also, it is easy to check that the coefficients in the latter 

representation of a triplet a + be + ce? are, respectively, the third and second 

moduli in (10.2). If we denote the fields of real and complex numbers by R 

and C, then we can write the algebra T of triplets as the direct sum R @ C of 

these two fields. 
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Quaternions 

Upon discovering that all triple algebras he investigated had divisors of zero, 

Hamilton decided to look for algebras without divisors of zero among qua- 

druple algebras. He found a quadruple algebra without divisors of zero that 

had all the properties of real and complex numbers other than commutativity 

of multiplication. Hamilton called this generalization of the complex numbers 

quaternions (from the Latin guaternus—quadruple). He first presented his 

theory in the paper On quaternions, or On a new system of imaginaries in 

algebra (Dublin, 1844—1850) [214, vol. 3] and then in his Lectures on quater- 

nions (Dublin, 1853) [215] (see also [216/). Hamilton writes quaternions аз 

sums of the form a + bi + cj + dk that are added and multiplied like poly- 

nomials subject to the conditions i? = 1? = —1, ij = —ji=k. It is easy to 
check that these imply the relations А? = —1, jk = —kj =i, ki= —ik =j. 

The quaternions form a commutative group under addition, and the non- 

zero quaternions form a noncommutative group under multiplication. Also, 

multiplication is distributive over addition. Thus the quaternions form a skew 

field. This skew field is denoted by H (in honor of Hamilton). 

If we associate with each quaternion « = а + bi + cj + dk the conjugate 

quaternion « = a — bi — cj — dk, then it is easy to check that 

28 = Ва (10.3) 

The product о is the nonnegative real number а? + 5? + с? + d?. Formula 
(10.3) implies that 

|? В? = |“. (10.4) 

This implies that, given two quadruples of numbers, we can use the multi- 

plication rule for quaternions to obtain a third quadruple such that the sum 

of the squares of its entries is the product of the sums of the squares of the 

entries comprising the given quadruples. 

In 1748, in a letter to Goldbach, Euler mentioned his discovery of a law, 

very similar to that given previously, for transition from two quadruples to 

a third. Specifically, Euler’s law corresponds to the transition from quater- 

nions a, В to the quaternion #f. Euler’s result appeared in the paper Proof 

of Fermat’s theorem on the representation of all numbers, integers as well as 

fractions, as sum of at most four squares (Demonstratio theorematis Fer- 

matiani omne numerum sive integrum sive fractum esse summam quattuor 

pauciorumque quadratorum. Petersburg, 1760) [176, vol. 2, рр. 338—372]. 

Hamilton called expressions of the forms xi + yi + zk vectors (from the Latin 

vector—carrier) and viewed quaternions as sums of real numbers (scalars, 

from scala—ladder) and vectors. In his Lectures on quaternions there are 

defined all operations of vector algebra: the sum of two vectors « = xi + 

yj + zk and В = x'i+ y'j + 2'К yields a new vector a + В, and the product 

yields a general quaternion «f whose scalar part Saf Hamilton called the 
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scalar product of the vectors a, В and whose vector part Va he called their 

vector product (Hamilton’s scalar product differs from our scalar, or inner, 

product in sign, but his vector product coincides with our vector, or cross, 

product). Hamilton also considered a quaternion of the form Ва", which he 

called a ‘‘quotient of division of two vectors”’; it is easy to see that 

sen} | 
Ви = о Я + esin ф), (10.5) 

where ф is the angle between the vectors х and В and ¢ is a unit vector per- 

pendicular to « and р. 

We note that just as the modulus |В — a| of the difference В — a of two 

numbers can be used to introduce the Euclidean metric of R, in the field C 

(the complex plane), so too can it be used to introduce the Euclidean metric 

of R, in the skew field H. Also, an arbitrary rotation of that space is given by 

E=a€B or &=aEf, lal =|B) = 1, 

and an arbitrary rotation of that space that preserves the real axis, that is, an 

arbitrary rotation of the Euclidean space R; is given by 

Coat Cu (10.6) 

Quaternions can also be represented as pairs (я, В) of complex numbers 

a=a-+ bi, В =c + di that are multiplied according to the rule 

(a, B)(y, 6) = (ay — В6, ид + By). (10.7) 

Such pairs of complex numbers, as well as their application to motions of 

space equivalent to the application of the relation (10.6), were considered by 

Gauss in the posthumously published note Mutations of space (Mutationen 

des Raumes) / 196, vol. 8, рр. 357—362]. 

Cayley Numbers or Octaves 

Soon after the appearance of quaternions, Arthur Cayley discovered their 

generalization, the so-called Cayley numbers or octaves, introduced in the 

paper On Jacobi’s elliptic functions and on quaternions (London, 1845) /103, 

vol. 1, р. 127]. Octaves are defined as expressions of the form a+ bi+ 

cj + dk + xl + yp + 24 + tr that are added and multiplied like polynomials 

subject to the conditions i? =/? =/? = —-1, 7= -—ji=k, i= —li=p, 
ij = —Л= 4, К! = — =r. It is easy to see that these imply the relations 

К? = р? = 42 ="? =—1,iqg= —qi=r, jp = —pj =r, kp = —pk = 4, as well 
as the relations obtained from them by cyclic permutation of triples of 

elements. The reason for the name octave (from the Latin octo—eight) is that 

an octave is given by eight real numbers. 

The name octave first turned up in Hamilton’s note on the papers of J. T. 
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q 

i j k 

Figure 113 

Graves (1848) (see /63/) in which it was pointed out that John Thomas 

Graves (1806—1870), brother of Charles Graves, had discovered these num- 

bers as early as 1843, which is why octaves are also called Graves-Cayley 

numbers. It is easy to verify that, except for associativity of multiplication, 

addition and multiplication of octaves have the same properties as addition 

and multiplication of quaternions. Octaves form a commutative group under 

addition, and the nonzero octaves form a Joop under multiplication. The 

multiplication of octaves has the property of alternativity; that is, each two 

octaves generate a skew field. Therefore octaves form an alternative skew 

field. This skew field is denoted by O (sometimes also by Ca or Cay, in honor 

of Cayley). 

It is convenient to represent multiplication of the units of the algebra O 

graphically using the diagram suggested by the Dutch mathematician Hans 

Freudenthal (b. 1905) (Figure 113). The product of two units, represented on 

the oriented sides and medians of a triangle and on its inscribed circle, is equal 

to the third unit with a plus or minus sign according as the transition from 

the first to the second element agrees or disagrees with the orientation of the 

path determined by the two units. 

With every octave « there is associated the conjugate octave « obtained 

from « by changing the signs of b, с, d, x, у, 2, 1. It is easy to see that the rule 

(10.3) holds. The product о is equal to the real number а? + 5? +... +В. 
Here (10.3) also implies (10.4); that is, given two octaves, the law of multi- 

plication of octaves enables us to find a third octave such that the sum of the 

squares of its entries is equal to the product of the sums of the squares of 

the entries of the given octaves. That is why octaves, like quaternions, are 

used in the theory of numbers. Independently of Cayley, Francesco Brioschi 

(1824—1897), in the paper On an analogy between a class of determinants of 

even order and binary determinants (Sur l’analogie entre une classe de d’ordre 

pair et les déterminants binaires. Berlin, 1856) [79, vol. 5, рр. 511-520], 
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devoted to problems of number theory, discovered a law of transition from 

two eight-tuples to a third equivalent to the law of multiplication of octaves. 

That is why the formulas that express the coordinates of the octave af in 

terms of the coordinates of the octaves « and р are sometimes called Brioschi 

formulas. 

Just as in the space of complex numbers and in the space of quaternions, 

so too in the space of octaves one can introduce a Euclidean metric by defining 

the distance between two octaves « and В as the modulus |В — «| of their 

difference. 

Octaves can be represented as pairs of quaternions (a, В), х=а+ bi+ 

cj + dk, B = x + yi + zj + tk, multiplied in accordance with the rule 

(a, B)(y, 5) = (ay — 5B, да + BP), (10.8) 

which generalizes formula (10.7). 

Matrices 

In A memoir on the theory of matrices (London, 1858) [ 103, vol. 1, pp. 475— 

496], Arthur Cayley introduced an algebra of square tables of numbers that 

he called matrices (from the Latin matrix—list, register). A table of и? 

numbers is called a matrix of order п. The sum of matrices A = (a,;) and 

В = (b,) is the matrix A + В = (a, + 6,) and their product is the matrix 

С = (с,) with 

Ci = >. Ви. (10.9) 

If we associate to the matrix A = (a,;) the linear transformation 

Xj =D) ayx;, (10.10) 
ii 

then the product of the matrices A and B corresponds to the linear transfor- 

mation that is the result of successive application of the linear transformations 

whose matrics are B and A. The former linear transformation is called the 

product of the latter linear transformations. 

If J = (6,), where 6;; = 1 and 6,, = 0 for i 4 j, and if A is any matrix (of the 

same order аз Г) then ГА = АГ = Г. Hence [1$ called a unit matrix. The inverse 

А! of a matrix A is a matrix such that A~'A = J. The elements of the matrix 
А”! are the solutions 5,; of the system of equations (10.9), where Cy = Oi. 

If we denote by | A| the determinant of a matrix A then we have 

|AB| = |A||B| (10.11) 

A special case of matrices of orders three and four was considered by 

Euler in the paper An algebraic problem worthy of mention because of its utterly 

unique consequences (Problema algebraicum ob affectiones prorsus singulares 

memorabile. Petersburg, 1771) [176, vol. 6, pp. 287-315]. Euler called ma- 
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trices squares and regarded them as generalizations of the magic squares that 

were very popular in the Middle Ages and during the Renaissance. Euler 

considered matrices that correspond to transformations of rectangular coor- 

dinates now known as orthogonal matrices. Let A = (а) and define АТ, the 

transpose of A, to be the matrix A’ =,(a,;). Then an orthogonal matrix А has 

the property АТА = J or, equivalently, the property АТ = A~!. Euler deter- 
mined such matrices by the requirement АТА = J, spelled out for all elements 

of the matrix АТА. We denote the algebra of real matrices by R,. The 

analogous algebra C,, of complex matrices was also considered by Cayley. 

In the same Memoir on the theory of matrices Cayley showed that if one 

associates to a quaternion « = a + bi + cj + dk the complex matrix 

A B atid b+ic 
at Sst | Ue р 10.12 

& > Ge las ( ) 

then to the sum and product of quaternions there correspond the sum and 

product of the corresponding matrices, and the number «& = |«|? is equal to 

the determinant of the corresponding matrix. 

Note that if one writes an arbitrary real matrix of order two in the form 

А В а+а Вс 
= 10.13 

Е al eee i ( ) 

then we can also write it as « = a:1+ Ш + се + df, where 1 stands for the 

1 0 0 1 
unit matrix J = ({ fl i for the matrix ( ; ) whose square is —/, e for 

0 1 1 0 
the matrix ( A and f for the matrix (. ) Expressions of this kind 

—0 

resemble quaternions and are called split quaternions. The split quaternions 

ре, f satisfy the relations i? = —1, e? = 1, ie = —ei = f, which imply the 

relations f? = 1, ef = —fe = —i, fi= —if=e. Split quaternions are also 

called antiquaternions and pseudoquaternions. If we associate to each split 

quaternion « the conjugate split quaternion « = а — bi — ce — df, then con- 

dition (10.3) holds and the product «& is equal to the real number |a|? = 

a? + b? — с? — d*, which is equal to the determinant of the matrix in (10.13); 
here (10.11) is equivalent to (10.4). We denote the algebra of split quaternions 

by 'Н. The correspondence (10.13) shows that the algebra 'Н is isomorphic 

to the algebra R,. 
Matrices with zero determinants have the property that for such a matrix 

one can always find another matrix with zero determinant such that the 

product of the two is the zero matrix. In the case of matrices of order two, if 

Gap к | а -Ь а b 
has determinant zero then so do the matrices and ; 

@ @/ —с a ОО 

а -Ь : : 
( ) = (ad — bc)I. In other words, matrices with zero determinant are 
—c a 

divisors of zero. 
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The vector form of the transformation (10.10) is 

x = AX. (10.14) 

The symbol А is called a linear operator. This term, which became popular 

in the twenties and thirties of this century, was first introduced by the English 

physicist Oliver Heaviside (1850-1925) in his Electromagnetic theory (London, 

1893) /220], which is largely devoted to the exposition of the calculus of 

vectors. 
With every linear transformation A there are associated its so-called eigen- 

vectors, that is, vectors that the linear transformation multiplies by real 

numbers: 

AX SAX: (10.15) 

or 

(А АГ = 0. (10.16) 

The symbol / in (10.16) stands for the identity operator /x = x. The factors 

A are called eigenvalues of A. The vector equality (10.16) can be written in 

terms of the coordinates of x as 

(аи A) Xa Fin Xe Бах —.9, 

ах + (а>2 — Ах. +: + ах, = 0, 21%1 22 aS 2 (10.17) 

GX арх. ++ (а, — AX, = 0. 

The system of equations (10.17) has nontrivial solutions if and only if the 

determinant of the coefficient matrix is zero, that is, if and only if 

Gy, —4 412 ге Ain 

Ча wy Pete! ее (10.18) 

An an2 Ann == А 

The solutions of equation (10.18) are the eigenvalues of the matrix (а,,). If 

one of them is put in place of 4 in (10.17), then the entries x,, x,,..., x, of 

a solution of the system of equations (10.17) are the coordinates of an eigen- 

vector that “belongs” to the eigenvalue in question. Eigenvalues of linear 

transformations appeared for the first time in the papers of Lagrange on 

systems of linear differential equations with constant coefficients and in the 

papers of the French mathematician and mechanist Pierre Simon Laplace 

(1749—1827) on the theory of small oscillations and “‘secular inequalities” of 

the motions of planets; hence the same secular equation that is sometimes used 

in connection with the equation (10.18). Eigenvalues of linear transformations 

of three-dimensional space were used implicitly by Euler in the Introduction 

to infinitestimal analysis (1748) for the determination of the principal axes of 
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а quadric [176, vol. 9, р. 385] and in the Theory of motion of solid or rigid 

bodies (Theoria motus corporum solidorum seu rigidorum. Greifswald, 1765) 

[177, vol. 3, рр. 215—243 ] for the determination of the principal axes of inertia 

of a rigid body. The directions of the prificipal axes of a quadric are those of 

the eigenvectors of the linear transformation that maps a vector linto a vector 

perpendicular to the plane that contains the locus of the midpoints of the 

chords of the surface parallel to 1, and the directions of the principal axes of 

inertia of a rigid body are those of the eigenvectors of the linear transfor- 

mation that maps a vector whose direction is that of the instantaneous axis of 

rotation of the body into a vector that gives the direction of the corresponding 

kinetic moment of the body. Augustin Cauchy computed the eigenvalues of 

linear transformations of n-dimensional space in the paper with a traditional 

title On the equation which enables one to determine the secular inequalities of 

the motions of planets (Sur Vequation a l’aide de laquelle on détermine des 

inégalités séculaires de mouvements des planétes. Paris, 1826) /100, vol. 9, 

pp. 174-195]. 

If we go from a basis e,, e,,..., €, toa Базе: , е›,...,е, then the linear 

transformation (10.14) is expressed by means of a different matrix A’ said to 

be similar to the matrix A. If all eigenvalues 2,,4,,..., 4, are real and distinct 

then there exists a basis of eigenvectors. Relative to such a basis the matrix 

of the linear transformation is the diagonal matrix 

pi 0 
A 

A= ‘ia, (10.19) 

0 Ae 

It is clear that matrices that are reducible to the same diagonal form are 

similar. Euler implicitly reduced to diagonal form matrices made up of the 

coefficients of the equation of a quadric and of the moments of inertia | x7dM, 

{y?dM, | 2? dM, | xy dM, | xz dM, \yz dM, where dM is an element of the mass 
of the body and one integrates over the volume of the body. In the cases dealt 

with by Euler the eigenvalues are the coefficients of the squares of the 

coordinates in the equation of the surface when the coordinate axes coincide 

with the principal axes and the principal moments of inertia. General reduc- 

tion of matrices to diagonal form was carried out by Cayley in the Memoir 

on the theory of matrices (1858). 

The problem of deciding whether or not two matrices, possibly with 

repeated eigenvalues, are similar was solved by Karl Weierstrass in the paper 

On the theory of bilinear and quadratic forms (Zur Theorie der bilinearen und 

quadratischen Formen. Berlin, 1868) /622, vol. 2, pp. 19—44]. In this paper 

Weierstrass introduced the notion of so-called elementary divisors of the 

determinant of the matrix А — 4 J, whichis a polynomial in 4. If all elementary 

divisors are linear functions of A then all eigenvalues of the matrix A are dif- 

ferent. If there are elementary divisors of degree /> 1 then there may be 
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vectors such that 

(A — АГ £0, (A= ZIV x 40,..., A al) x 4 0, , C020) 

but 

(A —AD)x =0. (10.21) 

Weierstrass showed that two matrices are similar if and only if they have the 

same elementary divisors. Two similar matrices with complex entries can be 

reduced to the same canonical form in which the elements on the principal 

diagonal are the eigenvalues of the matrix, the elements on the nearest 

diagonal below it are 0 or 1, and the remaining elements are all zero: 

i 0 
ie 
ie 

(10.22) 

In his Treatise on substitutions (1870) [249], С. Jordan first found the 

canonical form (10.22) for linear transformations with elements in a finite 

field. This is why the canonical form (10.22) is called the Jordan normal form 

and the submatrices on the principal diagonal are called Jordan blocks. To 

every Jordan block of order / there corresponds an /-dimensional invariant 

subspace of the linear space, that is, a subspace mapped into itself by the linear 

transformation, and in that subspace there is a nested sequence of invariant 

subspaces whose respective dimensions are 1, 2,..., / — 1; the one-dimensional 

invariant subspace is determined by an eigenvector that belongs to the eigen- 

value on the principal diagonal of the Jordan matrix. The Jordan normal 

forms of complex matrices determine the Jordan normal forms of real matrices. 

The classification of all linear transformations with different Jordan normal 

forms was carried out by the Italian mathematician Corrado Segre (1863— 

1924) in the paper On the theory and classification of homographies on a linear 
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space of an arbitrary number of dimensions (Sulla teoria е sulle classificazioni 

delle omografie in uno spazio lineare ad un numero qualunque di dimensioni. 

Rome, 1884) /520/. 

The term homography (homographie; omografia), introduced by Michel 

Chasles (1793—1880) / 107, р. 67] for’denoting collineations, and used in this 

sense by Segre in his paper, was also used by Cesare Burali-Forti (1861—1931) 

in, for example, his Foundations of the differential geometry of surfaces couched 

in terms of a general vector method (Fondamenti per la geometria differenziale 

di una superficie col metodo vettoriale generale. Palermo, 1912) /83/, and by 

other Italian mathematicians, as a term for a linear operator. Another term 

for a linear operator is affinor, introduced by the German geometer F. Jung 

in the paper Formation of derivatives in the spatial magnitude field (Ablei- 

tungsbildung im raumlichen Grossenfelde. Berlin, 1908) [253]. It is derived 

from affine transformation and justified by the fact that affine transformations 

are expressed in terms of linear operators by means of the formula 

x’ = Ax +b (10.23) 

A more frequently used term for a linear operator is tensor, from the Latin 

tensio—tension. The reason for this term is that one of the earliest examples 

of a linear operator was the so-called elastic tensor that characterizes the state 

of tension of an elastic body. If one singles out in a body that is in a state of 

tension an element of volume containing a certain point then to every plane 

passing through this point there corresponds the force that must be applied 

to the section of the volume element by this plane in order that the remaining 

part of the element of volume of the body remains in equilibrium. The ratio 

p of this force to the area of the section is called the tension that acts in this 

section. Tension 15 a linear vector function of the unit normal vector п of the 

plane of the section, 

p = 7n. 

In elasticity theory, the diagonal elements of a matrix of the operator with 

respect to rectangular coordinates x, у, 2 are denoted by o,, o,, о, and are 

called normal tensions, and the remaining elements are denoted by t,,, T 2, 

ty, and are called tangent tensions. 

We note that the American physicist Josiah Willard Gibbs (1839—1903), 

who in his Elements of vector analysis (New Haven, 1881—1884) [202] com- 

bined the vector calculi of Hamilton and Grassmann and gave the calculus 

of vectors its modern form, not only introduced the inner and cross products 

of vectors и and В, denoting them by a: В and a x f, but also introduced a 

product that he denoted by «f and called their dyadic product or dyad. The 

dyad af is an operator that maps a vector € on the vector (f- €)a. Gibbs 

showed that every linear vector function on three-dimensional space is the 

sum of three dyads. 
The involvement of the physicists Gibbs and Heaviside in the elaboration 

of the calculus of vectors and of the theory of linear operators explains the 
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exceptional suitability of the calculus of vectors, and especially the theory of 

vector fields, for physics. Vector analysis, even in its early Hamilton form, 

was profitably applied to electromagnetic field theory by the English physicist 

James Clerk Maxwell (1831—1879) in his famous work A Treatise on Electricity 

and Magnetism (Cambridge, 1873) [359], in which he anticipated the exis- 

tence of electromagnetic waves subsequently confirmed by the invention of 

wireless communication. 

Grassmann and Clifford Numbers 

H. Grassmann, who introduced the notion of an n-dimensional space of 

vectors in his The science of linear extension (1844) [211], defined on it skew- 

symmetric outer products 

[x1 X2] = —[x2X,], [k, x23] = —[K2x,xX3] = °° = — [Хзхох, |, 

which vanish for linearly dependent vectors, For linearly independent vectors 

Х1,...› Хи» Xm+i>-+-» Хр he also defined the product 

ОСЬ О ВЬ A 9 b aes. eer pe a> 
” 

when the vectors x;, ..., X, are linearly dependent the value of this product 

is to be zero. In this way Grassmann defined an algebra of expressions of the 

form 

a=a+) ae,+ >, > а ее + --- 
i а 

ды оо ее a а pleas vase. |, 

ei (10.24) 
which he called extensive magnitudes and which are now called Grassmann 

numbers of order п. These numbers form an algebra which we denoted by С... 

Since in the expression (10.24) there is one coordinate of each of the types a 

у n 
and a;,___,, п coordinates of each of the types a; and 4,3. ;-1.;41.,., and 

coordinates of each of the types ар... and a, detest Vat unt tet a Pema 

follows that there are, in all, 

n И п 
ии (Slee (++) +ичачании 

coordinates of a Grassmann number. It is easy to see that the multiplication 

of Grassmann numbers is associative. 

In the paper Applications.of Grassmann’s extensive algebra (Baltimore, 

1878) [122, pp. 266-276], W. К. Clifford introduced the following modified 

version of Grassmann’s algebra. Like Grassmann, Clifford considers linear 

combinations of n vectors e,, e,,..., €, and of products €;,e;, ... e;,, which, 

for distinct factors €;,,€:,,---,€;,, are defined like Grassmann’s outer products 
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[e;,¢;,...¢;,] but are denoted bye; ;,__;. However, if the latter products con- 
tain repeated factors then they are not put equal to zero but are computed 

using the rule e? = —1 (for example, e,e,e, = —е?е, =e,). In this way 
Clifford defined an algebra of expressions 

7 а) 

Уч Sy aa Gy a og бар RP aie We ee 
Gents i, 

(10.25) 

now known as Clifford numbers of order n. These numbers form an algebra 

which we denoted by K,,. The number of coordinates of a Clifford number is 

also 2”. It is easy to see that the only basis elements that commute with all 

Clifford numbers are | and the element e,,_,, for odd и. The algebra K,, of 

Clifford numbers coincides for и = 1 with the field С of complex numbers and 

Гоги = 2 with the skew field H of quaternions; for n > 2 the Clifford numbers 

are generalizations of the quaternions. It is easy to verify that multiplication 

of Clifford numbers is associative. 

In the paper A preliminary sketch of biquaternions (1873) [122, pp. 181-200], 

Clifford introduced two modifications of the complex numbers now known, 

respectively, as split complex numbers and dual numbers. Split complex num- 

bers are of the form a + be with е? = 1, and dual numbers are of the form 

a+ be with =? = 0. In the same paper Clifford suggested that along with 

hyperbolic biquaternions, that is, quaternions with the usual complex co- 

ordinates (introduced by Hamilton and called by him just biqguaterions), 

one should study elliptic biquaternions whose coordinates are split complex 

numbers, and parabolic biquaternions whose coordinates are dual numbers; 

this explains the title of Clifford’s paper. Split complex and dual numbers 

form algebras which we denote by 'C and °C, respecitvely. Unlike complex 

numbers, split complex and dual numbers have divisors of zero. In the case 

of dual numbers the zero divisors are of the form ae and in the case of 

split complex numbers they are of the form a(1 + e) (it is easy to see that 

р 
also called paracomplex and double numbers. 

Since in the case of the algebra К. the element e,,, commutes with all 

elements of the form а + a,e, + a,€, + 4,2, , which may be regarded as 

quaternions, and since e{,, = 1, it follows that the Clifford numbers of order 

3 coincide with the elliptic biquaternions. The Clifford numbers of ordern > 3 

contain divisors of zero: such are, for example, the numbers a(1 + e; 3). Thus 

Clifford numbers are generalizations of the quaternions in a direction other 

than that of the octaves: the octaves are nonassociative under multiplication 

but have no divisors of zero whereas the Clifford numbers of order > 3 are 

associative under multiplication but have divisors of zero. 

In the paper Complex numbers (Komplexe. Zahlen Leipzig, 1902) /96, part 

2, рр. 107-246] Е. Study proposed the generalization of Clifford numbers 

in which the condition e? = —1 is replaced with e? = 1(a = 1,...,/), её = 

te\? 1+ 
( = “| = 5 ̂ and that (1 + e) (1 — e) = 0). Split complex numbers are 
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—l(u=1+1,...,n) [96, part 2, р. 242]. These numbers form an algebra 

which we denote by 'K,,. The algebra 'K,, of Clifford-Study numbers coincides 

with the algebra 'С of split complex numbers for и = / = 1, with the algebra 

'H of split quaternions for n = 2,/ = 1 and forn = / = 2, and with the hyper- 

bolic biquaternions Гоги = 3, / = 1. The algebra G,, of Grassmann coincides 

for n = | with the algebra °C of dual numbers. 

That Grassmann, Clifford and Clifford-Study numbers were introduced 

by geometers is due to the fact that, from the beginning, these numbers were 

linked to geometric problems: Grassmann numbers to the determination of 

volumes of multidimensional parallelepipeds and to Cartan’s method of 

exterior forms, split complex numbers, dual numbers, biquaternions, Clifford 

and Clifford-Study numbers to the geometry of Euclidean and non-Euclidean 

spaces. 
In 1886, soon after the appearance of the Clifford numbers, there ap- 

peared the paper Jnvestigations of sums of squares (Untersuchungen uber die 

Summen von Quadraten. Bonn, 1886) /328] by the German mathematician 

Rudolf Lipschitz (1832—1903) in which he showed that, quite generally, there 

is a close connection between the Clifford numbers and the study of groups 

of rotations of multidimensional spaces. Specifically, if in the algebra K,, one 

defines the conjugate % of an element « = )’,a;,__:,€;,...;, to be the element 

а-я Ve = yee Ly Pay пре, ha ева is easily 
shown, relation (10.3) Е and the coefficient of 1 in аб is tap! 2 Tf we 
denote this coefficient by |«|? then relation (10.4) also holds. Thus it is natural 

to call |a| the modulus of a. Just as in the field С of complex numbers and in 

the skew field H of quaternions so too in the algebra K,, of Clifford numbers 

one can introduce the metric of the Euclidean space R,, by defining the 

distance between two elements « and В to be the modulus of their difference. 

Lipschitz also notes that the algebra K,, of Clifford numbers of order n can 

be represented by those Clifford numbers of the algebra K,,,, that are linear 

combinations of basis elements with even indices. Then the transformation 

(10.6), where € and & are Clifford numbers of K,,, (for they are linear 

combinations of the elements e;(i = 0,1,...,)) and « is a Clifford number 

of the same algebra representing a Clifford number of the algebra K,, such 

that о ' 6% is again a linear combination of the elements e;, is a rotation of 

the Euclidean space R,,,,. (In the case of quaternions, the transformation 

(10.6) can also be represented in this manner.) The elements х satisfying the 

equality (10.6) are subject to the conditions 

Trg a =1 

and 

AG; ,ixisi, = 3! Ni in Gigi 4) 

ааа, к = 5! ра, рр 
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where (2k — 1)!! is the product of all odd numbers from 1 to 2k — 1, апа[ |] 

is the alternation symbol that denotes the algebraic sum of the expressions 

within the brackets obtained by all possible permutations of the indices where 

an expression is to be preceded by a plus sign if the permutation is even and 

by a minus sign if it is odd. These ¢onditions enable us to express all coor- 

dinates of an element « in terms of its coordinates a,;. Formula (10.6) shows 
that to every rotation of Euclidean space К, there correspond two Clifford 

numbers of the algebra K,,_,, namely « and —«. The transformations (10.6) 

of this form define the so-called spinor representations of the rotation groups 

of the Euclidean space R,,,, and the groups of motions of the elliptic space 

5,„. By means of the Clifford-Study numbers of the algebra 'К„ one also defines 

the spinor representations of the groups of rotations of the pseudo-Euclidean 

spaces 'R,,,, and of the groups of motions of the hyperbolic spaces !S,. 

The Kotel’nikov-Study Transfer 

After defining in Preliminary sketch of biquaternions elliptic and parabolic 

biquaternions as well as elliptic and parabolic bivectors, that is, vectors for 

which the scalars are elements of the algebras of split complex and dual num- 

bers, respectively, Clifford connected them with the twist motions of elliptic 

and Euclidean space. These ideas of Clifford provided the foundation for the 

twist calculus of the Russian mathematician and mechanist A. P. Kotel’nikov 

and Е. Study, expounded in Kotel’nikov’s master’s dissertation Twist calculus 

and some of its applications to geometry and mechanics (Vintovoe sCislenie i 

nekotorye ego prilozeniya К geometrii 1 mehanike. Kazan, 1895) [288] and 

in his (previously mentioned) doctoral dissertation Projective theory of vectors 

(Proéktivnaya teoriya vektorov) /289/ and in Study’s The geometry of dynames 

[565] showed that the manifolds of oriented straight lines in Euclidean, elliptic 

and Lobaéevskian spaces can be represented by means of the manifolds of 

the unit bivectors, that is, unit vectors in three-dimensional space whose 

coordinates are, respectively, dual, split complex, and complex numbers, or, 

equivalently, spheres of unit radius in dual, split complex and complex three- 

dimensional Euclidean spaces. In the first of these cases, if the dual angle is 

Фо + €Y,, then the number фо is equal to the angle between the corresponding 

oriented lines and the number ф, is equal to the shortest distance between 

them. In the second case, if the split complex angle is Фо + e,, then the 

numbers фо and ф, are, respectively, equal to the largest and smallest distances 

between the corresponding lines which, in turn, are, respectively, equal to the 

appropriate one of the lengths of the two common perpendiculars to the two 

lines in question. (In the case of Clifford parallels фо = ~, and two lines have 

infinitely many common perpendiculars.) In the third case, if the complex 

angle is фо + ig,, then the numbers фо and ¢, are respectively, equal to 

the shortest distance between the two lines—the length of their common 

perpendicular—and the angle between the planes passing through this per- 
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pendicular and the lines. The groups of motions of Euclidean, elliptic, and 

Lobagevskian spaces R3;, 5. and 15. can be represented by the groups of 

motions of spheres in the dual, split complex and complex spaces °CR3, ‘CR; 

and CR,, respectively, and every fact of the geometry of these spheres can be 

interpreted as a fact of the geometry of the spaces К., S,; and ‘$3. To each 

pair of lines in these spaces one can associate the twist motion—whose axis 

is a common perpendicular of these lines—that makes the first of the two 

lines coincide with the second. To this motion one can associate the biquater- 

nion which when multiplied by the bivector representing the first line yields 

the bivector representing the second line; that is why the biquaternions as- 

sociated with the three spaces К., 5, and 15, determine their twist motions 

(twists or screws). What motivated the investigations of Clifford, Kotel’nikov, 

and Study was the desire to answer the question whether or not the geometry 

of non-Euclidean space contradicted the principles of mechanics. Kotel’nikov © 

and Study developed a theory of sliding vectors in these spaces and showed 

that, just as in the space R, a system of forces and a system of instantaneous 

angular velocities (a force and an instantaneous angular velocity are both 

sliding vectors) are equivalent, respectively, to a force screw and a kinematic 

twist, the first of which consists of a force and a couple of forces in a plane 

perpendicular to it and the second of the angular velocity of rotation about 

some axis and the translational velocity along this axis (which can be regarded 

as a couple of angular velocities), so too in elliptic and Lobaéevskian spaces 

5, and 15. every system of sliding vectors is equivalent to two sliding vectors 

whose lines of action are two reciprocal polars. 

Associative Algebras 

All the above generalizations of numbers, due to de Morgan, Ch. Graves, 

J. T. Graves, Hamilton, Cayley, Grassmann, and Clifford, are instances of 

the single notion of an algebra defined by the American algebraist Benjamin 

Peirce (1809—1880) in the paper Linear associative algebras (Harvard, 1881) 

[413]. Peirce defined an algebra as an n-dimensional linear space on which 

there is defined an associative multiplication of vectors that is distributive 

with respect to addition and commutative with respect to multiplication of a 

vector by а number. The requirement of associativity of multiplication excludes 

from the class of algebras the system of octaves and the system of vectors in 

three-dimensional space under ordinary cross product multiplication. 

Пе,,е,,... , е, are a basis of an algebra then in order to define its vector 

multiplication it suffices to prescribe the multiplication of the basis vectors 

е;е; > 3 Chex: (10.26) 

k 

The formulas (10.26) are called the structure formulas of the algebra, and the 

constants Cf are called its structure constants. 
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_ В. Peirce introduced the notion of so-called nilpotent elements, that is, 

elements e for which there is a natural number г such that е’ = 0 (such 

elements are, for example, the dual number ¢ and all basis elements of the 

Grassmann numbers), and the notion of idempotent elements, that is, elements 

e with e* = e (such elements are, for example, the double numbers (1 + e)/2, 

the Clifford numbers (1 + е,>.)/2 and the numbers obtained from them by 

replacing the element e,,3 by any basis element whose number of indices is 

of either of the forms 4m — 1 and 4m. Peirce used these concepts to classify 

complex algebras of small dimensions. 

K. Weierstrass developed a general theory of algebras in lectures given as 

early as 1861 but his investigations were published only in 1884 in the paper 

On the theory of magnitudes formed out of n principal units (Zur Theorie 

der aus и Haupteinheiten gebildeten Grodssen. Leipzig, 1884) /622, vol. 2, 

pp. 311-332]. Weierstrass introduced the notion of a direct sum A, ФА, ® 

--- ФА, of several algebras A;: given algebras A; with bases e,, ...,€,,3 е +, 

-.›@и,;...;@, +1»... ›@и,, their direct sum A, ФА, Ф--: ФА, is the algebra 

whose basis consists of all these elements subject to the condition that the 

product of elements from different bases is zero. Weierstrass showed that 

every commutative algebra without nilpotent elements is the direct sum of several 

copies of the field R of real numbers and the field C of complex numbers. For 

example, Ши is odd then the algebra Cy,, of cyclic numbers with basis 1, e, е?, 

..,e" 1, where e” = 1, is the direct sum СФ... ФСФ В of n — 1 copies of 

the field С and one copy of the field В, and, Ши is even, then it is the direct 

sum СФ... ФСФЕВЕФК of (n/2) — 1 copies of C and two copies of В. In 

particular, Ёп = 2, then we see that the algebra 'C of split complex numbers 

(where the role of the elements e, and e, is played by (1 + e)/2) is the direct 

sum 'C =В ФК of two copies of the field R, and if nm = 3 then we see 
that the algebra T; of triplets of de Morgan and Graves is the direct sum 

ПСВ: 

In the paper Generalization of the foundations of ordinary complex functions 

(Verallgemeinerung der Grundlagen der gewohnlichen complexen Functionen. 

Dresden, 1893) /504], Georg Scheffers (1865—1945), a student of Lie, tried 

to define analytic functions whose domain and range belong to an algebra. 

He managed to do this only for commutative algebras (Cf = С»). In this case 
he found an analyticity condition for a function у = f(x), where x = У`; х,е;, 

у = У; yie;, in the form 

ду; OVE, =, 
YC => — СА. 
ties 2. Ca 

For complex numbers this criterion reduces to the Cauchy-Riemann con- 

ditions. For the algebras of split complex and dual numbers this criterion 

reduces to the respective conditions 

р Bee oppure У TEM ens EV ine СУРЫ 
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Ring Theory 

Like fields and skew fields, algebras are special cases of the notion of a ring. 

We mentioned previously various number fields introduced by Galois in the 

Memoir on the conditions for solvability of equations in radicals. In the paper 

On number theory. Part of the investigations on the theory of permutations and 

algebraic equations. (Sur la théorie des nombres. La partie des études sur la 

théorie des permutations et équations algébriques. Paris, 1830) / 194]. Galois 

introduced another variety of fields. The source of Galois’s latter paper was 

Gauss’s classical book Disquisitiones arithmeticae [ 196, vol. 1] in which Gauss 

introduced the notion of congruence of two numbers modulo a third: numbers 

a and b are said to be congruent modulo р, 

a = b (mod p) 

if the remainders of the division of a and p are the same. The notation = 

emphasizes the analogy between’the relations of congruence and equality, 

both of which are reflexive (a = a), symmetric (a = } implies b = a), and 

transitive (a = b and b=c imply a = с). If pis a prime, then operations on 

congruences modulo p are entirely analogous to operations on equalities in 

the sense that one can add the same number to both sides of the congruence, 

multiply both of its sides by the same number, and, finally, divide both of its 

sides by the same number provided it is not a multiple of p, that is, if it is not 

congruent to zero modulo p. A congruence relation breaks up the integers 

into disjoint classes of congruent elements called residue classes modulo p. 

There are p residue classes. One set of representatives of the residue classes is 

0, 1, 2, ..., p—1. One can define addition and multiplication of residue 

classes: the sum of two residue classes A and B with representatives a and 

b is the residue class with the representative a + b, and their product is the 

residue class with representative ab. It is easy to see that all residue classes 

under addition, and all residue classes other than the principal residue class 

consisting of multiples of p form commutative groups, and that multiplication 

of residue classes is distributive over addition. The principal residue class 

plays the role of zero, the residue class containing | plays the role of a multi- 

plicative identity, and the role of the multiplicative inverse А! of a residue 

class A is played by the class containing an element b such that ab = 1. Thus 

the set of residue classes modulo a prime has all properties of a number field. 

This field is called a residue class field and is denoted by F,. 

In the paper On number theory, Galois considers congruences of the form 

F(x) = 0 (mod р), where F(x) is a polynomial of degree v. If F(x) is irreducible 

modulo р, that is, if it is not possible to write it as a sum of a product @(x) W(x) 

and a term py(x) that is congruent to zero modulo p, then Galois introduces 

a root Г of the congruence which stands in the same relation to the con- 

gruence as the imaginary unit 7 in relation to the equation x* + 1 = 0; this 

is emphasized by the use of the same symbol in both cases. Such roots are 
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now called Galois imaginaries. Then Galois considers expressions of the form 

C= det ih asl a, (10.27) 

where do, d,, ..., @y_, are integers. The Sum and product modulo р of such 

expressions are again such expressions. If multiplication yields a power i” then 

such a power is expressed in terms of lower powers using the congruence 

F(i) = 0 (mod p). The difference and quotient modulo p of two such expres- 

sions are again expressions of this type. Thus the totality of such expressions 

has the same properties as a number field and is called a Galois field. It is 

denoted by F,. A Galois field Е, of the type considered above contains g = p” 

elements. The field F, of residue classes modulo p can be viewed as a Galois 

field with v = 1. 

Another line of investigations that led to ring theory had its origin in 

Gauss’s paper The theory of biquadratic residues II (1832) [196, vol. 2, 

рр. 95-178]. Here Gauss introduced what we now call Gaussian integers 

a+ bi,i* = —1,a, b integers, Gauss showed that addition and multiplication 

of such numbers again leads to such numbers. For these numbers the concepts 

of divisibility and primeness make sense. Also, it turns out that prime rational 

integers, viewed as Gaussian integers, need not be prime. For example, 

Fermat knew that primes of the form 4и + 1 can be written as sums of squares 

р? + 4? and thus are products (р + 41) (p — qi). 

Gaussian integers are a special case of algebraic integers, that is, numbers 

of the form (10.27) where dg, а,, ..., а, are rational integers and 11$ a root of 

a polynomial F(x) of degree у that cannot be written as a product ф(х)у(х) 

of polynomials of lower degree. Thus these numbers bear the same relation 

to rational integers as elements of a Galois field to residue classes modulo a 

prime. General algebraic integers were first considered by the German mathe- 

matician Peter Lejeune Dirichlet (1805—1859) in the paper On the theory 

of complex units (Zur Theorie der complexen Einheiten. Berlin, 1846) /154, 

vol. 1, pp. 103-107]. Dirichlet’s investigations on algebraic integers were 

collected in his Lectures on number theory (Vorlesungen uber Zahlentheorie. 

1863) [155]. In 1847 the French mathematician and mechanist Gabriel Lamé 

(1795—1870) published a paper entitled General proof of Fermat’s theorem on 

the impossibility of the equality x" + у" = 2" т whole numbers (Démonstration 

générale du théoréme de Fermat sur l’impossibilité en nombres entiérs de 

Véquation x” + у" = 2". Paris, 1847) [301] which contained a false proof of 

Fermat’s last theorem. In this paper Lamé considered numbers of the form 

(10.27) where iis a primitive v-th root of 1. The connection between Fermat’s 

theorem and such numbers is that the 2" 4 x" + у" is equivalent to 

z*A(x+y)(x+oy)...(x+o” *y), 

where @ is a primitive n-th root of unity. Lamé’s proof was based on the 

assumption that numbers of the form хо + x,@ + °°: + X,-1@" 1, Xo, ..., 

X,-1 integers, are uniquely decomposable into prime factors, that is, factors 

whose only divisors are the units of the integral domain of such numbers. 
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Lamé’s mistake was that he failed to realize that for numbers of this form it 

is not always true that if a product ab is divisible by a prime p then either 

а or b must be divisible by р. In the same year Ernst Kummer (1810—1893) 

noticed Lamé’s error. In the paper On the theory of complex numbers (Zur 

Theorie der complexen Zahlen. Berlin, 1847) /295/, Kummer suggested that 

algebraic integers that cannot be written as products of rational integers but 

have the property that a product ab is divisible by p without a or b being 

divisible by p be regarded as composite rather than prime numbers but that 

the prime factors into which they can be decomposed be added as new objects 

to the field of algebraic numbers under consideration. Following the example 

of Poncelet, who called the imaginary points which he added to real curves 

ideal points, Kummer called the new objects he introduced ideal prime factors 

(ideale Primfactoren). Actually, Kummer’s numbers are real or complex 

numbers that do not enter into the system considered by Kummer: for example, 

in the case of numbers of the form а + b./ —3 the number 4 can be written 

as 2:2 and as (1 + ./—3) (1 — ./ —3); in this case the role of ideal prime 

factors of the number 2 is played by 1 + i and 1 — i. Kummer hoped that 

ideal factors would make it possible to “зауе’” Lamé’s proof and actually 

used them to prove a large number of special cases of Fermat’s last theorem 

without, however, obtaining a general proof of this theorem. 

The theory of algebraic integers and, above all, Kummer’s papers gave 

rise to a general theory of rings and fields in papers by Richard Dedekind 

(1831-1916). After the death of his teacher Dirichlet, Dedekind prepared for 

publication the third edition of Dirichlet’s Lectures on number theory (1879) 

[155] and included in it an appendix (labeled XI) in which he introduced the 

concept of an order (Ordnung) as a set of elements on which there are defined 

operations of addition and multiplication such that all elements form a com- 

mutative group under addition, and multiplication is associative and dis- 

tributive over addition. Dedekind called an order whose nonzero elements 

form a group a corpus (Korper). The French term for the German Kérper was 

corps. The initial English term corpus was later displaced by field. In view 

of the multiplicity of meanings of the word order, David Hilbert replaced 

it in his Theory of algebraic number fields (Die Theorie der algebraischen 

ГаШепКогрег. Gottingen, 1897) /226, vol. 1, pp. 63—363] with the term ring. 

The rational numbers Q, the real numbers R, the complex numbers C, and 

the algebraic numbers form infinite fields. The residue classes modulo a prime 

p forma finite field Е,. The Galois fields Е, are likewise finite. The quaternions 

form a skew field H. The rational integers Z, the split complex numbers !C, 

the dual numbers °C and the algebraic integers form commutative rings. The 

Grassmann numbers G,, the Clifford numbers K,, the Clifford-Study num- 

bers 'К„, the real matrices R,,, the complex matrices C,, and the quaternion 

matrices H, form noncommutative rings. We saw that the split complex 

numbers, the dual numbers, the Clifford numbers for n > 4, the Grassmann 

numbers and matrices all have zero divisors. There are finite rings that are 

not fields, for example, the rings of residue classes modulo a composite 
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number ра: In fact, the product of the residue classes containing р and 4, 

respectively, is the zero class; that is, these residue classes are divisors of zero. 

Dedekind replaced Kummer’s notion of an ideal factor with that of an 

ideal, which he defined as a subring of a ring such that the products of its 

elements by ring elements also belong’to this subring. The ideals of the ring 

of integers are the multiples of fixed integers. The algebraic integers that are 

multiples of Kummer’s ideal factors are also ideals, and this is the origin of 

the term ideal. 

If the associativity of multiplication in a ring is replaced by the prop- 

erty that every two elements of the ring generate an associative algebra 

(this property is equivalent to the weak associative laws х(у?) = (xy)y and 

(x?) y = x(xy)) then the ring is called an alternative ring. The octaves form an 

alternative skew field O. If we replace the unit / in O by e, e? = 1, then we 

obtain the alternative algebra 'O of split octaves. 
Just as in the case of groups, so too in the case of rings one can speak of 

ring homomorphisms and ring isomorphisms. If a ring is a homomorphic image 

of another ring then the elements of the latter that are mapped by the homo- 

morphism onto the zero element of the former form an ideal. Two algebras 

are said to be isomorphic if they are isomorphic as rings and the image of the 

product of each element of one of the algebras by a numerical factor is the 

product of the image of that element by the same numerical factor. 

An extremely important type of ring is a simple ring, defined as a ring 

without nontrivial two-sided ideals (the trivial ideals of a ring are itself and 

the ideal consisting of zero alone). 

Simple Associative Algebras 

Examples of simple rings are simple associative algebras, many of which we 

have encountered previously. 

The deep connections and analogies between associative algebras and Lie 

algebras have been the reason that, toward the end of the 19th century, asso- 

ciative algebras were studied by Lie himself and by his student Scheffers; at 

the same time these algebras were studied by Weierstrass’s student Ferdinand 

Georg Frobenius (1849—1917). 

We have denoted the direct sum of algebras A and B by A @ B. Given two 

algebras A and В with respective bases e,, е›,..., е, and fi, fy, -.-, fm» the 

algebra of rank п-т with basis elements e;:f, =f,°e; is called the tensor 

product of these algebras and is denoted by A © В. It is not difficult to see 

that R,, © В, =R,,,, H © H = Ry, С, = В, © Сапа H, = В, © H. We shall 

call the tensor products С ® С, С® °C, Н® Сапа H@ °C the algebras 

of bicomplex and bidual numbers, of biquaternions and duoquaternions, re- 

spectively. It is easy to check that С ® С = СФС. In the nineties of the 

19th century simple associative algebras were studied by the Lie school, 

by Frobenius and by Fedor Eduardovi¢é Molin [Molien] (1861—1941), who 
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worked in Dorpat and in Tomsk, at first independently of the Lie school and 

of Frobenius and then in contact with them. In the paper Reduction of complex 

number systems to standard forms (Zurickfihrung complexer Zahlensysteme 

auf typische Formen. Leipzig, 1891) /505/, Scheffers called algebras complex 

number systems. In the paper On systems of higher complex numbers (Uber 

Systeme hdherer complexer Zahlen. Dorpat, 1892) [371], Molin called algebras 

systems of higher complex numbers. In Theory of hypercomplex magnitudes 

(Theorie der hypercomplexen Grossen. Leipzig, 1903) [189], Frobenius called 

algebras systems of hypercomplex magnitudes. All three scholars extended the 

concepts of a simple and semisimple algebra and Of a radical, which first arose 

in the theory of Lie algebras, to associative algebras. A semisimple algebra is 

an algebra without nilpotent elements; if there are nilpotent elements in an 

algebra then they form an ideal, and it is this ideal that is called the radical 

of the algebra. 

Weierstrass’s theorem on algebras can be stated as follows: every semi- 

simple commutative algebra is isomorphic to a direct sum of several replicas 

of the fields R and C. In the previously mentioned paper, Molin gave a 

criterion for semisimplicity of an algebra analogous to Cartan’s criterion for 

semisimplicity of a Lie algebra and showed that the factor algebra of every 

algebra by its radical is semisimple, every semisimple algebra is isomorphic 

to a direct sum of simple algebras, and every simple algebra over the field 

С is isomorphic to an algebra C,. In the paper Bilinear groups and systems 

of complex numbers (Les groupes bilinéaires et les systeémes de nombres сот- 

plexes. Toulouse, 1898) [96, part 2, vol. 1, pp. 7-105], В. Cartan restated 

the results of Molin and proved analogous theorems for real simple algebras 

and showed, in particular, that every real simple noncommutative algebra is 

isomorphic to one of the algebras R,,, C,, and Н,. 

We note that formula (10.12) establishes an isomorphism between the skew 

field H and a subalgebra of the algebra C,, and formula (10.13) establishes 

an isomorphism of the algebras 'Н and R,. The latter implies the isomor- 

phism of the algebras Н © C and С.. 

Spaces over Algebras 

In the previous chapter we encountered projective, elliptic, hyperbolic and 

sympletic spaces over the field C and the skew field H. Similar spaces can be 

constructed over other simple and semisimple associative algebras (we will 

see below that similar spaces can also be constructed over other classes of 

algebras). The projective space over an algebra A, denoted by АР,, can be 

defined by means of projective coordinates x°, x!, ..., x" that are elements 
of A. If A is a field then the coordinates x' must not all be equal to zero and 

if A is not a field then the coordinates x‘ must not belong to a twosided ideal 

of A; the coordinates x' and x'k, where k is a nonzero element of A, define 
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the same point of AP,. The collineations of AP, have the form’x! = )\,aif(x'), 
where x — f(x) is an automorphism of A. The correlations of AP, have the 

form и; = ));p(x/)a,, where ф > g(x) is an antiautomorphism of A. The 
general theory of one-dimensional spaces over algebras was constructed by 

Walter Benz in Lectures on the geometry of algebras (Vorlesungen tiber die 

Geometrie der Algebren. Berlin, 1973). Geometries of spaces over algebras 

of matrices were introduced by Nicolo Spampinato (1892—1971) in the paper 

On the geometry of a line space considered as a hypercomplex S, (Sulla geo- 

metria dello spazio rigato considerato come un S, ipercomplesso. Naples, 

1935) [552] and by Hua Loo Keng (1910-1985) in Geometries of matrices 

(New York, 1945—1947) [235а] and in The geometry of symmetric matrices 

over the field of real numbers (Geometriya simmetri¢eskih matric nad polem 

deistvitel’nyh Cisel. Moscow, 1946) [2356] for one-dimensional spaces over 

symmetric matrices. The geometry of two-dimensional spaces over matrices 

was introduced by Carmela Carbonaro in the paper The line S; considered as 

hypercomplex S, connected with the regular complex algebra of order 4 (L'S; 

rigato considerato come un S, ipercomplesso legato all’algebra complesso 

regolare d’ordine 4. Catania, 1936) [87]. The general theory of spaces over 

algebras of matrices was constructed by Maqsud Ali Simran oglu Javadov 

(Dzavadov) (1902—1972) in the papers Projective spaces over algebras (Proek- 

tivnye prostranstva nad algebrami. Baku, 1957) [162] and Non-Euclidean 

spaces over algebras (Neevklidovy geometrii nad algebrami. Baku, 1957) 

[163]. 
The geometry of rectangular matrices was constructed by Hua Loo Keng 

and the author in The geometry of rectangular matrices and its application 

to real projective and non-Euclidean geometry (Geometriya pryamougol’nyh 

matric i ее prilozeniya К vescestvennoi proektivnoi 1 neevklidovoi geometrii. 

Peking, Kazan, 1957) /235c/. 

Geometries over the algebras С © C and H © С were constructed by Nazim 

Tanriverdi oglu Abbasov in the papers Bicomplex elliptic spaces (Bikompleksnye 

ellipti¢eskie prostranstva. Baku, 1962) [1] and Biquaternion elliptic spaces 

(Bikvaternionnye ellipticeskie prostranstva. Baku, 1963) [2]. For algebras 

with zero divisors the axioms of projective space are satisfied only in the “‘basic 

case’’ and there exist pairs of contiguous points through which pass more than 

one straight line and pairs of contiguous straight lines that intersect in more 

than one point. In affine spaces over algebras with zero divisors there are, in 

addition to continguous straight lines, diverging straight lines that can be 

mapped by translation to contiguous ones. Over such algebras one can also 

construct spaces of fractional dimension. Such spaces were introduced by II’ya 

Adamovié Cahtauri (b. 1946), in the paper Projective and elliptic spaces 

of integral and fractional dimension over algebras of matrices (Proektivnye 1 

ellipti¢eskie prostranstva celoi i drobnoi razmernosti nad algebrami matric. 

Tbilisi, 1971) /705/. 
The general theory of spaces over rings with zero divisors was founded by 

the Rumanian mathematician and poet Dan Barbilian (Топ Barbu, 1895—1961) 
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in the paper On the axiomatics of plane projective ring geometry (Zur Axiomatik 

der projektiven ebenen Ringgeometrie. 1940—1941) /36/. Barbilian called 

non-contiguous points points in the clear state and contiguous points points 

in the spectral state. The term ‘“‘contiguous” was introduced by Wilhelm 

Klingenberg (see /286/). 

Spaces with contiguous points and lines are instances of Hjelmslev spaces— 

spaces with more than one line through two points and more than one point 

of intersection of two lines. These spaces were introduced by the Danish 

geometer Juhannes Hjelmslev (1873—1950) in the paper Introduction to the 

general congruence theory (Einleitung in die allgemeine Kongruenzlehre. 

Copenhagen, 1929—1949) [232]. 

Spaces over algebras have interesting interpretations in real spaces. Thus 

the projective space 'CP, over the algebra of split complex numbers can be 

interpreted in a pair of real spaces P,. Write a split complex number z = x + ey 

as Z = z,e€, + z_e_, where z, and z_ are reals ande, = (1 + e)/2 ande_ = 

(1 — e)/2. Note that e, and e_ are idempotents (e? = e,,e% = e_,e,e_ = 0). 

Now associate to every point x of "СР, the points x(x‘) and x_(x!) in two 
P,. Two points x and у are contiguous if x, = x! or yi. = y!. Similarly, two 
lines мохо + и, х! + u,x? = 0 and вхо + вх! + 0х? = 0 in "СР, are con- 
tiguous if u;* = v;, or u; =v; . There are similar interpretations of the spaces 

1CS, and 'C'S, in pairs of spaces S, and '5,, respectively. 
The space 'CS, is interpreted in the space P,. Specifically, every point 

x(x') of 'CS, is interpreted by an 0-couple (point + hyperplane) of P,: if 

x' = Хе, + Це_ , then to every point x(x‘) of ‘CS, we associate the 0-couple 
consisting of the point X(X‘) and the hyperplane U(U,) (1.е., the hyperplane 

У; ИХ! = 0), and the right part of the formula (9.6) is equal to the cross ratio 

(ХУ, UV) of the points Х, Y and the points of intersection of the line ХУ with 

the hyperplanes U, V. This interpretation is presented in the author’s book 

[465, p. 655]. 

The space Ви. P, is interpreted in the space Ри. „т: every point X(X") of 

В. Р, is interpreted by an (т — 1)-dimensional plane ХХ! ... Xn Of Pam-tn+-m 

such that the coordinates of the a-th point Х, form the «-th columns of the 

matrices X'. Two points X and Y are contiguous if the corresponding planes 

Пе in an M-plane, М < 2m — 1, and two lines К and L are represented by 

(2m — 1)-dimensional planes if these lines lie in a two-dimensional plane; they 

are contiguous if the corresponding planes intersect. Ifum+n+m<N< 

(п + Шт + (и + 1) + м, we obtain, analogously, the real interpretation in P, 

of a space of fractional dimension. If m = 2 we obtain the interpretation of 

the space 'HP, by lines of P,,,,,. If we replace the group of collineations of 

P54, by the group of motions of S,,,, or the group of symplectic trans- 

formations of Sp,,4,, then we obtain, respectively, the interpretations of the 

manifolds of lines of S,,,, and Sp,4, in the spaces ‘HSp, and 'HS,,. In the 

latter case, the right part of the formula (9.6) is equal to the symplectic in- 

variant of two lines of Sp,,,,,. This interpretation is presented in the author’s 

book /465, р. 663]. Similarly, we find (see //, 2/) that the Hermitian elliptic 
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space (С ® С)5, over the algebra С ® С (the conjugation « > &in an algebra 

A @ B is the product of the conjugations « > % and « > @ in the algebras А 

and B respectively) can be interpreted as the pairs of points of the complex 

space CS,, and that the analogous spacé (H ® C)S, over the algebra H ® С 

can be interpreted as the manifold of lines of the complex space CS),4,. 

Linear Representations of Groups 

If an isomorphic or homomorphic image of a group G is a group of real or 

complex matrices then we speak of a linear representation of the group G. 

Linear representations of Lie groups play an important role in the theory of 

Lie groups as well as in its applications. 

The theory of linear representations of finite groups is closely linked to the 

theory of linear representations of algebras. The latter are defined very much 

like linear representations of groups. Every algebra has a linear representa- 

tion: to obtain it we need only associate to an element a = У';а'е; of the 
algebra A the matrix (4/) of the linear transformation у = ax on the algebra. 

Since 

j i 

aK ( ие) (x we) Sy) Ge (ec i) (5 cha’ ое, 
i г РА к \1 

the elements of the matrix (4}) and the coordinates a‘ of the element a are 

connected by the relation Аг = )); Cfa'. This isomorphism is called the regular 
representation of the algebra A. 

To obtain a linear representation of a group it suffices to find a group of | 

elements of an algebra that is an isomorphic or homomorphic image of that 

group. 
A complete theory of finite commutative groups was developed by Fro- 

benius in the paper On group characters (Uber Gruppencharaktere. Leipzig, 

1896) [190]. If a group with typical element д is represented by complex 

matrices G = (G;), then Frobenius uses the function G(g) from the group into 

the group of matrices to define a character y(g) as the numerical function of 

the group element whose value at д is the trace )’; С; of the matrix G(g). In 

the case of acommutative group the representing matrices are of order 1, that 

is, are numbers, so that, in this case, the characters can be defined as homo- 

morphic maps of the group to the group of complex numbers of absolute 

value 1. Frobenius showed that the number of different characters of a com- 

mutative group С, including the principal character хо(9) = 1, is equal to the 

number of elements of the group; that the product х, (9)х2(9) of two char- 

acters is again a character; and that under this multiplication the characters 

form a group with identity element 7,(g). Hence, in this case, the group of 

characters is isomorphic to the group G. In particular, the characters of the 
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cyclic group 1, 0, 67, ..., 0"! with 0" = 1 are given by y,(6*) = е2""", 
Frobenius’s proof was based on the investigation of an algebra whose basis 

elements formed a group isomorphic to the given group. When he constructed 

the regular representation of this algebra, Frobenius noticed that, for a 

suitable choice of a basis in the algebra, the group of matrices representing 

the basis elements of the algebra consisted of the matrices of the linear trans- 

formations, с, 
In the paper On the condition of reducibility for any group of linear sub- 

stitutions (London, 1905) [84], the English algebraist William Burnside 

(1852—1927) extended Frobenius’s results to finite noncommutative groups. 

Like Frobenius before him, Burnside considered an algebra whose basis 

elements formed a group isomorphic to the given group. Burnside also con- 

structed the regular representation of the algebra and noticed that in this case 

too the linear transformations forming the regular representation decompose 

into linear representations in the invariant subspaces of the algebra, but now 

these subspaces are no longer all one-dimensional as in the case of commuta- 

tive groups. The linear representations in the invariant subspaces of an 

algebra, determined by its regular representation, exhaust all possible linear 

representations of this algebra. Also, among these representations the repre- 

sentation by matrices of order k is repeated k times. It follows that the orders 

Ко, k,,..., К, of the matrices forming all possible linear representations of a 

finite group and the order и of the group are connected by the relation 

К +. + К =n. 

One of these linear representations is the representation that associates to 

each group element the number 1. To this “principal representation”’ there 

corresponds the number ky = 1. 

Linear Representations of Lie Groups 

The theory of linear representations of Lie groups was founded by Elie Car- 

tan in the paper Projective groups that leave no plane manifold invariant (Les 

groupes projectifs qui ne laissent invariante aucune multiplicité plane. Paris, 

1913) [96, part 1, vol. 1, pp. 355—398 ]. In the paper Theory of representations 

of continuous semisimple groups by means of linear transformations [625, 

pp. 262-366] Weyl found all linear representations of simple and semisimple 

Lie groups. The most important of the linear representations of the groups 

O,, and О, are the transformations of the projective coordinates x! of points, 

of the Plicker coordinates (9.2) of straight lines, and of the analogously 

defined Grassmann coordinates of planes of all dimensions resulting from the 

motions of elliptic and hypetbolic spaces S,_, and 'S,_, and the so-called 

spinor representations of the groups of motions of these spaces. Earlier we 

defined the algebras K,, of Clifford numbers. The algebras K,, K,, and К, are 
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isomorphic to the fields R and C and the skew field H, respectively, and the 

algebras K, Гоги > 3 are further generalizations of the complex numbers and 

of the quaternions. In his Investigations of sums of squares (1886) [328], 

R. Lipschitz showed that the groups O, have two-valued representations given 

by the transformations (10.6) where’é and &’ are linear combinations of the 

elements e,, e,, ..., e, of the algebra K,,, and « is a linear combination of 

basis elements of these algebras with even numbers of indices. 

There is a similar representation for matrices of the group CO, and for ele- 

ments of the algebra K,, © С. In the paper Spinors т n-dimensions (Baltimore, 

1935) [78] Weyl and his student Richard Brauer (b. 1901) showed that the 

algebras K,,,,,; © С are isomorphic to the algebras of complex matrices C,,, 

and that algebras К,›,„ © С are isomorphic to the direct sums of algebras 

Cn-1 ® C,,-:. The two-valued representation of the groups CO,,,,, by means 

of elements of the algebras K,,,,, © С, that is, by means of matrices of the 

algebra C,,, is a spinor representation; the two-valued representation of the 

groups CO,,, by means of elements of the algebras K,,, © С, that is, by means 

of pairs of matrices of the algebra C,,.-1, determines two two-valued repre- 

sentations of the groups CO,,, by means of matrices of the algebra C,,.-: that 

are spinor representations. 

We note that there is a close connection between spinor representations of 

the groups O, and CO, and the local isomorphisms, mentioned in the previous 

chapter, between groups in the classes B,, D,, В, and О. and groups in the 

classes A,, В, © B,, С. and А.. 

Linear representations of complex simple Lie groups make possible the 

determination of linear representations of compact and noncompact real 

groups of which they are the complex forms. 

The Clifford algebras К and the Clifford-Study algebras 'K,, determining 

two-valued representations of the groups О, and "О, are also simple ог semi- 

simple algebras. Their structure is somewhat more complicated then the 

structure of the algebras К, © С. In the paper Complex numbers (Nombres 

complexes. Paris, 1908) (a fourfold revision of E. Study’s paper with the same 

title) (96, part 2, рр. 107-246], Е. Cartan formulated the structure of the 

algebras K,, and 'K;,, as follows: 

if h = 1 — i? — i? — --- — i? then the systems 
under consideration have the forms 

S,ifh= +1(mod8), JS, ifh = +2 (mod 8), 

OS,,ifh = +3(mod8), 2S, if h = 0 (mod 8), 

and 205, if h = 4 (mod 8) 

[96, part 2, p. 242]. 

Cartan’s 7,15, 1.1, ате ourey, е,. 1, @.-1, 30 that h =n — 2/; Cartan’s 

Sins 15„› Оби, 2Sims and 205) are, respectively, our R,,, C,,, Ни, Rn © R,, and 

H,, © H,,. 



410 10. Application of Algebras 

Cartan’s result, communicated without proof, was proved by the author in 

the book Non-Euclidean geometries (Moscow, 1955) [465, рр. 452-458] and 

can be formulated as follows. Let h = и — 21. Then each of the algebras K,,,4; 

and 'K,,,,, is isomorphic to one of the algebras В›„ and H,,-: according as 

h = +1 or +3 (mod8) and each of the algebras K,,, and 'K,, is isomorphic 

to one of the algebras Cyn-1, Ron-1 ® Ryn and Н,„-› ® Н»„-, according аз 

h = +2, 0 or 4 (mod 8). In Lectures on the theory of spinors (Legons sur la 

théorie des spineurs. Paris, 1938) [95] Cartan showed that spinor represen- 

tations may be regarded as transformations of suitably defined coordinates 

of the plane generators of maximal dimension of the absolutes of the elliptic 

and hyperbolic spaces 5, and 'S,. 
In /160, 161], М. Javadov suggested another type of geometric interpre- 

tation of spinor representations. In Javadov’s interpretation the spinor repre- 

sentations are regarded as transformations of suitably defined coordinates of 

the points of the absolutes of elliptic and hyperbolic spaces (see also [461] 

and /473/). 

Quasisimple and k-quasisimple Associative Algebras 

If we apply to simple and semisimple associative algebras the same pas- 

sage to the limit that enabled us to go from simple Lie algebras to quasi- 

simple ones then we obtain quasisimple associative algebras and, if we repeat 

it k times, k-quasisimple associative algebras. The classification of quasi- 

simple associative algebras obtained from simple ones by passage to the limit 

was carried out by Mihail Petrovi¢é Zamahovskii (b. 1942) in the paper 

Quasisimple algebras, quasimatrices and spinor representations of quasi-non- 

Euclidean motions (Kvaziprostye algebry, kvazimatricy i spinornye predstav- 

leniya kvasineevklidovyh dvizenii. Kazan, 1969) [477, рр. 64-65]. Such 

algebras are the algebra °C of dual numbers, the algebra °H of semiquater- 

nions a + bi + ce + dy, 1? = —1, =? = 0, ie = —ei = n, the algebra 1°H of 
split semiquaternions а + be + ce + dyn, е? = 1, =? = 0, её = —ee = и, a, В, с, 
d real, the tensor product H © °C, the algebras °C,,, °H,,, 1°H,, and H,, ® °C 

of matrices over these algebras, and the algebras of quasimatrices, isomorphic 

; 18 
to the subalgebras of matrices of the form k я in the algebras °C,,, 

Е 
С›„ ® °С, and Н,, ® °C, where A, В, С, D are, respectively, elements of 
matrices in the algebras В„, С, and H,,. We shall denote the algebras of quasi- 

matrices by В”, С” and Hi", respectively. The algebras К” and К”, obtained 
by an analogous process from the algebras К„ and 'K,,, are also quasisimple; 

these algebras were defined by the author in his Non-Euclidean geometries 

[465, рр. 540-541] for т = O’and, in the general case, by Tat’yana Glebovna 

Orlovskaya (b. 1944) [477, pp. 68—70]. By means of these algebras one can 

define spinor representations of the groups of motions of the quasielliptic and 

quasihyperbolic spaces that admit geometric representations similar to the 
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interpretations of Cartan and Javadov. The classification of two-quasisimple 

associative algebras obtained from simple algebras was carried out by Inna 

Ivanovna Kolokol’ceva (b. 1942) in the paper Biquasisimple algebras (Bik- 

vaziprostye algebry. Tomsk, 1973) /480/ (see also the paper Biquasisimple 

algebras, biquasimatrices and spinor tepresentations of biquasinoneuclidean 

motions (Bikvaziprostye algebry, bikvazimatricy i spinornye predstavleniya 

bikvazineevklidovyh dvizenii. Kazan, 1975) by N. T. Abbasov and I. I. 

Kolokol’ceva /3/). Such an algebra is the algebra °°H of 1/4-quaternions 
a+be+cyn+da, =? = 1? =0, en = —ne=a, a, b, с, d real, studied by 

Albina Borisovna Rudenko /480/. 

One can also define projective, elliptic, hyperbolic and symplectic spaces 

over quasisimple and k-quasisimple algebras analogous to the spaces over 

simple algebras defined in the previous chapter. The aim here is to provide 

geometric interpretations of simple Lie groups. The fundamental groups 

of these spaces are quasisimple and k-quasisimple Lie groups, and they 

form geometric interpretations of such groups. These interpretations were 

introduced for quasisimple groups Бу L. М. Karpova [479] and for two- 

quasisimple groups by Natalya Serafimovna Denisova (b. 1946) in the paper 

Biquasisimple Lie groups (Bikvaziprostye gruppy Li. Moscow, 1973) [141]. 

Alternative Algebras 

The alternative algebra 'O of split octaves was introduced by the American 

mathematician Leonard Eugene Dickson (1874—1954) in the book Algebras 

and their number systems (Algebren und ihre Zahlensysteme. Zurich-Leipzig, 

1827) [147]. The elements of 'O, as elements of O, can be represented as pairs 

of quaternions (а, В) multiplied in accordance with a rule similar to the rule 

(10.8), namely 

(a, B)(y, 6) = (ay + 5B, da + By). (10.28) 

Split octaves are also called Cayley-Dickson numbers, antioctaves and pseu- 

dooctaves. In the paper Theory of alternative rings (Theorie der alternativen 

Ringe. Hamburg, 1930) /650/ the German mathematician Max Zorn showed 

a 
, where a , 

and В are real numbers and а and bare vectors in three-dimensional Euclidean 

space, with the multiplication rule 

CaN ее ay — ac ое 

b В/\а 5/ \byt+fdt+axe Bd — bd 

In this paper Zorn showed that the algebras О and 'O and the algebra О © С 

of bioctaves are the only simple alternative algebras and that every semisimple 

alternative algebra is isomorphic to a direct sum of these algebras and a simple 

associative algebra. 

OL 
that the algebra 'O can be represented by vector-matrices (; 
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There are also quasisimple alternative algebras. Such algebras, obtained by 

passage to the limit from simple ones, are the algebra °O of semioctaves, that 

can be defined either as the algebra of pairs (a, В) of quaternions with the 

multiplication rule 

(a, B)(y, 5) = (ay, da + BY) (10.28') 

ог as the algebra of pairs of semiquaternions with the multiplication rule 

(10.8), and the algebra 1°O of split semioctaves, that can be defined either as 

the algebra of pairs of split quaternions with the multiplication rule (10.28’) 

or as the algebra of pairs of semiquaternions with the multipication rule 

(10.28). The elements of the algebras °O and ‘°O can be written in the form 

a + Be, where « and В are pairs of quaternions and split quaternions, respec- 

tively. There are similar definitions of the two-quasisimple alternative algebras 

°°O and 1°°O of +-octaves and split j-octaves, respectively, and of the 
three-quasisimple alternative algebra °°°O of $-octaves. 

Just as there is a close connection between the simple Lie groups of the 

infinite series and simple associative algebras, so too there is a close connec- 

tion between the simple Lie groups of the exceptional classes and simple 

alternative algebras. Just as every automorphism of the algebras H and 'H 

is of the form (10.6), that is, just as the groups of these automorphisms are 

locally isomorphic to the groups О, and 'O,, respectively, so too—as Cartan 

showed in the paper Real simple finite continuous groups—a compact group 

in the class G, is a group of automorphisms of the algebra O. It is easy to 

show that a noncompact group in G, is a group of automorphisms of the 

algebra 'O. Similar proofs show that the quasisimple groups of the class С, 

are groups of so-called metric automorphisms of the algebras °O and '°O. 
We mentioned earlier that the octaves with modulus 1 (aw = 1) form a 

nonassociative analogue of a group called a Joop. The analogous elements of 

the algebras 'O, °O and '°O also form loops. In the paper Analytic loops 
(Analiticeskie lupy. Moscow, 1955) [352], the Soviet mathematician A. I. 

Mal’cev developed a theory of loops that are analogs of Lie groups; the cor- 

responding analogs of Lie algebras are now called Mal’cev algebras (see, for 

example, /496/). The concepts of simplicity, semisimplicity, and so on, apply 

to analytic loops and Mal’cev algebras. In the paper Simple Mal’cev algebras 

over fields of characteristic zero (San Francisco, 1962) [497], the American 

mathematician A. А. Sagle showed that loops of elements of modulus 1 of 

the algebras О, 'O and О © C are the only real analytic loops. It follows that 

the only semisimple real analytic loops are the loops of elements of modulus 

1 of the algebras °O and '°O and of the tensor products О © °С, О ® °C 
and °O @C. 

Jordan Algebras 

Jordan algebras, introduced by the German physicist and mathematician 

Paskual Jordan (1902—1980) in the paper On a class of nonassociative hyper- 
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complex algebras (Uber eine Klasse nichtassoziativer hypercomplexer Alge- 

bren. Gottingen, 1933) /252/, have important geometric applications. Jordan 

algebras are commutative and nonassociative algebras with multiplication 

AoB= Во А satisfying the condition (Ао (Во B))o В = (Ao B)o(Bo B). For 

each associative and certain nonassociative algebras A there is the Jordan 

algebra A* with multiplication Ao B = 1/2(AB + BA). For Jordan algebras 

one defines simple and quasisimple algebras in the same way as for associative, 

alternative and Lie algebras. The classification of complex simple Jordan 

algebras was carried out by Abraham Adrian Albert (1905-1972) in the paper 

A structure theory for Jordan algebras (Baltimore, 1947) [12] (see also the 

papers /247] and [248] of Nathan Jacobson (Ъ. 1910) and Е. О. Jacobson); 

the classification of real Jordan algebras was carried out by Isai L’vovié 

Kantor (b. 1936) in the paper Transitive-differential groups of transformations 

and invariant connections on homogeneous spaces (Tranzitivno-differencial’nye 

gruppy preobrazovanii 1 invariantnye svyaznosti na odnorodnyh prostran- 

stvah. Moscow, 1966) [262]; and the classification of quasisimple Jordan 

algebras was carried out by M. P. Zamahovskii in the paper Bireductive 

spaces, simple and quasisimple Jordan algebras (Bireduktyvnye prostranstva, 

prostye 1 kvaziprostye iordanovy algebry. Moscow, 1972) [476]. If in the 

algebra A there is the involution А > АТ, A> АТ or AAT, then the 

elements А = АТ, A = A’ and A = A’ also form Jordan algebras designated 
by SA*, SA* and SA“, respectively; if A is a matrix algebra and these involu- 
tions are replaced by А > Е, АТЕ,, A> ЕАТЕ,, А > E,A'E, (Е, = (€;6,)) ог 
by 4 > JA'J (AER, or C,, J is a quasidiagonal matrix with submatrices 

1 ыы 
| : 4 along the main diagonal) and А > iA‘i (A €H,,), then we denote 

these Jordan algebras as 'SA*t,'SA*,'SA*, SpA*, SpA*, respectively. In our 
notations all simple complex Jordan algebras are: (A) C; , (В) SC; , (С) SpC;, 
(D) (K,, @ C)*, (Е) (О. ® C)* and all simple real Jordan algebras are: 

(A) SC, See Rae Hy, (B) SR, ‘SR; SpPH,,2, (C) SH,,, 'SH,,, SPRon, (D) 

K;, 'К+, (Е) SO 3, 'SO;, S'O . In the algebras K* and К» one considers 
only elements of the form a + У бе, 

Jordan algebras are closely connected with projective, non-Euclidean and 

symplectic geometries. In Table V we give in the first line the simple real 

Jordan algebra, in the second line—the spaces whose fundamental groups are 

isomorphic to groups of automorphisms of these algebras, in the third line— 

the spaces whose fundamental groups are isomorphic to groups of linear 

transformations of these algebras, and in the fourth line—the spaces whose 

fundamental groups are isomorphic to groups to fractional linear transforma- 

tions of these algebras. 

The theory of transformations of simple and quasisimple Jordan algebras 

was constructed by Raisa Porfir’evna Vyplavina (Ъ. 1938), I. 1. Kolokol’ceva 

and Viktor Viktorovi¢é Malyutin (b. 1945) in the paper Fractional linear 

transformations of Jordan algebras (Drobno-lineinye preobrazovaniya ior- 

danovyh algebr. Kazan 1974) [473 ]. The second and third lines of this table 

have no meaning for Ki = К, = Cand 'K{ = "К, = 'C but the fourth line 
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Table V 

CP,-1 le 
n 

С D E 

preserves its meaning for these algebras: the fractional linear transformations 

of the planes of complex and split complex variables 

MN 4s A, T= = 10.29 
cz +d ea) 

represent the motions of the spaces |S; and 25. , respectively. These repre- 
sentations follow from the connection between the absolute of 15, and inver- 

sive geometry in the plane R,, mentioned in Klein’s Erlangen program (see 

р. 343), and the analogous connection between the absolute of *S, and the 

geometry in the plane 'R,, because the transformations (10.29) of complex 

and split complex variables represent the circular transformations of the planes 

R, and 'R,, respectively. We note that inversion in a circle: 

Az р В+ Bz+C=0 (4=A4,C=C) (10.30) 

(A, C real, B complex or split complex) in these planes has the form 

ВЕС 
‘= —— 10.31 В ыы 

and inversion in a circle 

Az + BZ+Bz+C=0 (А=-А,С= -С) (10.32) 

—the form 

ВО 
= (10.33) 

А2 + В 

There is an analogous interpretation for the motions of the space 'R, and 

the transformations (10.29) in the plane of a dual variable, but equations 
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(10.30) and (10.32) are not equivalent—(10.30) represents a pair of parallel 

isotropic lines of the flag plane F, and (10.32) represents a cycle (having the 

form of a parabola). The transformations (10.31) and (10.33) represent inver- 

sions in a pair of lines and a cycle, respectively. Therefore every quadratic 

birational transformation (see p. 347) is a combination of inversions (10.31) and 

(10.33) in the planes of complex, split complex and dual variables and collinea- 

tions (see the paper Quadratic Cremona transformations and complex numbers 

(Kvadrati¢nye kremonovy preobrazovaniya i kompleksnye ¢isla. Moscow, 

1952) by the author and Zalman Alterovié Skopec (1917—1984) [484 ]. In this 

paper we do not consider the quasisimple Jordan algebras other than the 

algebra °C but all these algebras and their geometric interpretations are 

considered in the paper /473]. In М. А. $. Javadov’s (Dzavadov) papers 

[160, 161] the fractional linear transformations of the algebras K,, and 'K,, for 

n> 1 form the geometric interpretation of spinor representations of groups 

of motions of the spaces 5, and ‘S,. 
Note that if in the decomposition (9.7) of the Lie algebra of a simple Lie 

group / = 1, then the subspace g_, has the structure of a Jordan algebra. In 

particular, matrices of the Jordan algebras R;*, SR; and SpR; are matrix 
coordinates of (m — 1)-dimensional planes of P,,,_,, isotropic planes of Sp,,,_, 

and planes on the absolute of "S,,,_,. The fractional linear transformations 

of symmetric matrices forming the Jordan algebra SR,, were studied by Hua 

Loo Keng /235b/. Hua Loo Keng has shown that these transformations 

represent the symplectic transformations of the space Sp,,,_,; in this case, the 

matrices of SR; are matrix coordinates of isotropic (т — 1)-dimensional 

planes of Sp,,,, called Lagrangian submanifolds of this space (for the origin 

of this term and for important connections between symplectic geometry and 

mechanics see the paper of A. Weinstein /623/). 

Geometry of the Exceptional Lie Groups 

The alternative and Jordan algebras are closely connected with the exceptional 

Lie groups. : 

The compact group С. is the group of automorphisms of the algebra О of 

octaves and the noncompact group С. is the group of automorphisms of the 

algebra "О of split octaves. These groups leave invariant the real axes of those 

algebras and the seven-dimensional planes of elements « = —a which are, 

respectively, the spaces К. and °R,; these groups are transitive on the unit 

spheres in those spaces. If we identify the antipodal points of these spheres, 

then we obtain the spaces 55 and 3S,. These spaces, whose fundamental 

groups are thought of as the groups of automorphisms of О and 'O respec- 

tively, are called G-elliptic and G-hyperbolic spaces and are denoted by 595 

and 3595. 
The geometry of the spaces Sg, and 3595 was studied by Nadezda Niko- 

laevna Adamusko (b. 1940) in the paper Geometry of the simple and quasi- 
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simple groups G, (Geometriya prostyh i kvaziprostyh grupp G,. Moscow, 

1969) [6] and by Rimma Gumarovna Tlupova (b. 1956) in the paper Curves 

in G-elliptic 6-space (Krivye у G-elliptiéeskom 6-prostranstve. Tbilisi, 1980) 

[486]. The structures of the algebras О and "О induce nonintegrable almost- 

complex structures at all points of Sg, and almost-complex or almost-product 

structures at all points of >Sg,. The only symmetry figures of these spaces are 

the holomorphic two-dimensional planes of the almost-complex and almost- 

product structures. The «,-figures of the space 3595 are the points of the 

absolute, the «,-figures are the special lines on the absolute; the geometry of 

these figures was studied by Gerhard Johan Schellekens in the paper On a 

hexagonic structure (Amsterdam, 1962) [506]. 

Compact and noncompact groups in the class F, can be viewed as groups 

of motions of the octave elliptic plane OS,, the octave hyperbolic plane O'S, 

and the split octave elliptic plane OS,. These planes were introduced by, 

respectively, Hans Freudenthal in the paper Octaves, exceptional groups 

and octave geometry (Oktaven, Ausnahmegruppen und Oktavengeometrie. 

Utrecht, 1951) [185], Jacques Tits in the papers The octave projective plane 

and the exceptional Lie groups (Le plan projectif des octaves et les groupes de 

Lie exceptionnels. Brussels, 1953) [582], On the classification of semisimple 

algebraic groups (Sur la classification des groupes algébriques semisimples. 

Paris, 1959) [585], and by David Borisovié Persic (b. 1940) in the paper 

Geometries over antioctaves (Geometrii nad antioktavami. Moscow, 1967) 

[416]. Freudenthal coordinatizes the points of the plane OS, by elements of 

the Jordan algebra $О+. The latter are Hermitian symmetric matrices (xij) 

ху = Xj, with хух; = x;;,x;;. These conditions ensure that all x,; belong to a 

“ile associative subalgebra. Therefore this coordinatization is а to 

a coordinatization by three coordinates хо, x,, x, from one associative sub- 

algebra defined up to a multiplication x; > x;/, where / belongs to the same 

subalgebra. Under these conditions x,; = x;x;. In this notation the theory of 

the planes OS,, O'S, and 'OS, is ие to the theory of the spaces HS,, 

Н'5, and 'HS,, respectively. 
The two noncompact groups in the class E, can be viewed as the groups 

of collineations of the octave and split octave projective planes OP, and ‘OP, 

introduced in the papers / 185 ] and [416] by Freudenthal and Persic, respec- 

tively. The coordinatizations of the planes OP, and ‘OP, are the same as 

those of the planes OS,, O'S, and 'OS,. 
In the paper The compact simple Lie group Ев as the group of motions of 

the complex octave non-Euclidean plane (Kompaktnaya prostaya gruppa Li 

E kak gruppa dvizenii kompleksnoi oktavnoi neevklidovoi ploskosti. Baku, 

1954) [471], the author showed that the compact group in the class E, can 

be viewed as the group of motions of the bioctave elliptic plane (O @ C)S, 

defined in a manner analogous to that of the plane OS,. The non-Euclidean 

planes (О ® С)!5,, (10 ® С)5,, (О ® 'C)S, and (10 ® 1С)5, are defined 
in a similar manner. 
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What explains the absence of multidimensional analogs of these planes is 

that, as noted by Hilbert in his Foundations of geometry [230], Desargues’s 

theorem on homologous triangles holds only in geometries in which the co- 

efficients form an associative system. Since in spaces of dimension greater 

than two Desargues’s theorem is a consequence of the incidence axioms of 

projective geometry (in Hilbert’s work, the axioms in groups I and II and the 

strong parallel axiom), the spaces on nonassociative skew fields in which the 

incidence axioms of projective geometry hold must be of dimension two. 

The geometric interpretation of the exceptional simple groups E, and E, 

was realized by H. Freudenthal in a series of papers under the common title 

The connections between E, and Ex and the octave plane (Beziehungen der E, 

and Е; zur Oktavenebene. Amsterdam, 1954—1959) //86/, by the author 

in the paper Geometric interpretation of the compact simple groups in the class 

Е (Geometriceskaya interpretaciya kompaktnyh prostyh grupp Li klassa 

Е. Moscow, 1956) [472], and by I. L. Kantor in the paper Models of excep- 

tional Lie algebras (Modeli osobyh algebr Li. Moscow, 1973) [264]. In the 

paper / 186] Freudenthal introduced the so-called Freudenthal magic square 

The first line of this square is the groups of motions of the elliptic planes 

S,, CS,, HS, and OS,; the second one the groups of collineations of the 

projective planes P,, CP,, HP, and OP,; the third one the groups of sym- 

plectic transformations of the spaces Sp,, Сбр., HSp, and Обр.. (The latter 
space needs to be defined only to the extent that the elements of the Jordan 

algebra SO, are interpreted as isotropic two-dimensional planes of this 

space.) Freudenthal calls the geometries of the fourth line metasymplectic 

geometries and considers four geometric figures of these geometries: sym- 

plecta, namely sets of isotropic two-dimensional planes of the spaces 5р., 

CSp;, HSp, and OSp,, respectively, planes, namely isotropic planes in these 

spaces, lines and points, namely lines and points of these projective planes. In 

the paper Metasymplectic geometries as geometries on absolutes of Hermitian 

planes (Metasimplekti¢eskie geometrii kak geometrii na absolutah érmitovyh 

ploskostei. Moscow, 1983) [463] (see also [485]). Tamara Andreevna 

Stepasko (b. 1949) has shown that these four figures are elements of parabolic 

spaces; specificially, for Е, points are «4-figures, lines are «3-figures, planes are 

o.,-figures, symplecta are «, -figures; for Ев points are (%,,%6)-figures, lines are 

(и, &5)-figures, planes are «,4-figures, symplecta are «-figures; for E, points are 

o,-figures, lines are «,4-figures, planes are «3-figures, symplecta are «,-figures; 
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for Es points are «,-figures, lines are a,-figures; planes are «,-figures, sym- 

plecta are %-figures. For split groups the sets of points can be considered as 

absolutes of the planes '05,, (10 ® 'C)S3, (‘0 ® 'Н)5, and ('O © '0)5,, 
for the groups considered by Freudenthal—as absolutes of the planes ‘OSS 

(O @ 'C)S,, (O @ H)S, and (10 ® О)5, (see Figures 110 FI, EI, II, У, VI, 

VIII, IX; all the figures considered by Freudenthal in connection with the 

groups he investigated were real). The decompositions (9.7) defined a fibration 

of these absolutes, the tangent spaces to lines and planes lie completely in the 

tangent space to the base of this fibration, the tangent space to the symplecta 

cuts the tangent space to this base in 4-, 8-, 16- and 32-dimensional planes and 

the tangent space to the fiber-in a real line. There are similar interpretations of 

the quasisimple Lie groups of the exceptional classes. The Euclidean planes 

OR,, (O ® C)R,, (O @ H)R, and (О © O)R, were constructed by the author 
in the paper A geometric interpretation of the quasisimple exceptional Lie 

groups in the classes E, and Ез (Geometriceskaya interpretaciya kvaziprostyh 

osobyh grupp Li klassov E, i Eg. Moscow, 1973) [472]. In [417,418] О. В. 

Persic constructed geometric interpretations of the quasisimple groups in the 

class Е, as non-Euclidean planes over the algebras °O and °'O and in /297] 
Tat’yana Anatol’evna Kuznecova (b. 1942) constructed analogous inter- 

pretations of the quasisimple groups in the class E¢. 

Applications of Linear Representations of Lie Groups to Physics 

Linear representations of Lie groups have important applications to quan- 

tum mechanics. To this problem is devoted the famous book of H. Weyl 

Theory of groups and quantum mechanics (Gruppentheorie und Quantum- 

mechanik. Leipzig, 1931) /630/. 

Here we shall consider two cases of these applications—applications of 

spinor representations of the group of Lorentz transformations and of the 

group of conformal transformations of Minkowski’s space. The first of these 

groups is isomorphic to the group of rotations of Minkowski’s space-time 

‘R, and to the group of motions of the Lobaéevskian space '5., and the 
second to the group of motions of the hyperbolic space *S;. The spinor 

representation of the first group is realized by the matrices of the algebra C,, 

the spinor group of the group of motions of 153 is the group CSL, and spinors 

of this group are the vectors of complex two-dimensional space. If we replace 

in the formula (10.29) the complex numbers z and z’ by the ratios z°/z! and 
‘z°/'z', then we obtain the formulas of the spinor representation of the group 
of motions of 15, in the form 

= an by = Е. (10.34) 

The point z of the complex plane and the spinor {z°, z+} correspond to a 

point of the absolute of 'S; and to an isotropic vector of the space 1R,: 
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or 

(10.35) 

P.A.M. Dirac in his The principles of quantum mechanics [152] has shown that 

the existence of the spin of an electron finds expression in the division of the 

wave functions у" of the electron into two groups such that the integral of 

the sum of the moduli of the values of the functions in either group is equal 

to the probability that the particle is in the given domain and its spin is, 

respectively, positive or negative. Therefore the wave field of an electron is 

given at every point of the space-time domain by four complex-valued func- 

tions W°, w', 2, w> such that under a Lorentz transformation the functions 
w°, у! transform like the coordinates of a spinor of 1R,, 1.е., by the formulas 

(10.34), and W, у? like у, W!. The formulas (10.35) for the spinor {w°, 1 } 
have the form 

= о! + 1 о, = (yp? рт aa (10.36) 
SF = py — 11, 5 = p+ yy. 

Thus the functions 09, у! define the isotropic vector $ with coordinates 

(10.36) and the functions 7, у? define the isotropic vector t with coordinates 

й = уу + у3у?, В = Ку? у? — WW), 
3 = wy? Pm Ww, tt = 42? en wy. 

At every point of the wave field of an electron, there is defined the vector j of 

current density, whose coordinates j', j*, / 3 are the coordinates of the spatial 

vector of current-density and j* is the charge density /447, рр. 332-334]. 

These coordinates have the form 

= + у + уу + у, 
= Ко — уу: + Ww — уу), 
= фу +2? — pw, 
т = poy? aft wip afi 2? ut pry. 

The comparison of the formula (10.38) with (10.36) and (10.37) shows that 

(10.37) 

(10.38) 

j=stt 

i.e. the vector j of current density is the sum of isotropic vectors $ and t. Thus 

at every point of the wave field of an electron there are defined two two- 
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dimensional planes—the plane of the vectors s and t and a plane orthogonal 

to it. Also, at every point of the electromagnetic field in space-time there are 

defined two orthogonal planes: at every point of this field there is defined the 

tensor ЕЙ — ЕЛ connected with the vectors Е and H of the electric and 
magnetic fields by the relations F% = c#', F>? = H', Е!3 = Н?, Е?1 = НЗ. 
But the skew symmetric tensor Е is equivalent to a force screw, or a kinematic 

twist, in the space 1S, in the hyperplane at infinity of 'R,, and, as was shown 
by A. P. Kotel’nikov and E. Study (see p. 398), every such twist is equivalent 

to two sliding vectors whose lines of action are two reciprocal polars. There- 

fore, at every point of the electromagnetic field in the space-time there are 

defined two orthogonal two-dimensional planes whose lines at infinity are 

these reciprocal polars. Four lines—two real and two imaginary—of the inter- 

section of these planes with the light cone at this point form the light tetrad. 

Therefore, the lines of the isotropic vectors s and t and two imaginary lines 

of intersection of the completely orthogonal plane with the same cone can be 

called the electronic tetrad. The lengths of the two sliding vectors at infinity 

defined by the electromagnetic field are two angles in 'R,. As such, they 

are invariant under conformal transformations of this space, and conformal 

transformations of space-time preserve the electromagnetic field. 

The spinor representation of the group of motions of the space 255, which 

is isomorphic to the group of conformal transformations of 1R,, is realized 

by the matrices of the algebra C,. The spinor group of motions of 25; is the 

pseudounitary group CSU, and the spinors of this group are the vectors of 

complex four-dimensional space called twistors. The isomorphism of the 

group of motions of 255 and the group of motions of C?S; represented by 

these matrices is one of the geometric interpretations of the isomorphism of 

the simple Lie groups D, and А. (see Figure 111d). The theory of twistors 

was constructed by R. Penrose in Relativistic symmetry groups (Boston, 1974) 

[415]. 

Finite Geometry 

Finite geometry, that is, geometry of spaces containing finite numbers of 

points, lines and planes, was founded by Gino Fano (1871-1952). In the 

paper On the fundamental postulates of projective geometry (Sui postulati 

fondamentali della geometria proiettiva. Roma, 1892) [177а] Fano gave an 

example of a geometry independent of axioms of continuity, namely the 

projective space over the field F, of residues classes modulo p; in modern 

notation the space F, P,. О. Veblen and W. Bussey in the paper Finite projective 

geometries (New York, 1906) [612а] defined the projective space F, P, over 

an arbitrary Galois field Е, (4 = р”) and the affine space Е, Е, over the same 

field. The number of points of F, Е, is 4". Since the cellular decomposition of 

the space over an arbitrary field is 
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В BaP Safe iE +k, (10.39) 

the number of points of the space Е, P, is 

J 

card EP, =g"+q"'+::-+q+1= 
вы. 

—1 
2 (10.40) 

This formula is a special case of the general formula for the number of 

m-dimensional planes of the space F, P, 

(CEE CES АЙ 
Ci Cie a CEN 

In particular, for lines of F,P; the formula (10.41) gives 

(eG) 
ga DG— 1) 

Note that the famous problem proposed by Thomas Pennington Kirkman 

(1806—1895) in his paper Triads made with 15 things (London, 1850) [279] 

admits a geometric interpretation in Е, P;,: in the problem it is required to 

make a week’s schedule of walks for 15 schoolgirls such that every day, every 

girl be in a “‘triad’’ with two other girls. The schoolgirls must be considered 

as points of F,P, and the “triads” as lines of this space. Formula (10.42) 

for 4 = 2 shows that in this space card Е, P; , = 35. The problem reduces to 

division of this space into 7 modes on 5 lines. The Freudenthal diagram for 

octave units (Figure 113) is an example of the plane F, P, in which the lines 

are the 3 sides and 3 altitudes of a triangle and the circle inscribed in it. 

There are also finite affine and projective spaces different from F,£, and 

F, P,. In the case of F,£, the number 4 is called the order of the finite affine 

space with 4 points on every line and in the case of F,P,—the order of the 

projective space with 4 + 1 points on every line. If the order 4 is equal to 

4r + 1 or 4r + 2 (га natural number) and is not a sum of two squares of 

natural numbers, then no two-dimensional projective plane of order 4 exists; 

specificially, no finite two-dimensional projective planes of order 6, 14, 21, 

22 exist. Planes of order 2, 3, 4, 5, 7, 8, 11, 13, 16, 17, 19, 23, 25 exist. The 

question of existence of planes of order 10 and 12 is open. Two-dimensional 

projective planes can be constructed using Euler’s Latin squares /491/. 

In F,P,, 4 2”, there are involutive correlations и; = У ajx', where aj = ау 

or а; = —a;;. In the first case the correlation is a polarity of the quadric 

У, У ;азх!х/ = 0. Since every nondegenerate quadric in Е, P,,, reduces to the 

form 

card Е.Р, „= (10.41) 

=(¢ + 0 (4? +а+1. (0.42) сага ЕР. , = 

Ух) =, (10.43) 

and every nondegenerate quadric in F, P,,_, reduces to one of the forms 
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Уи" = 0 (10.44) 
i 

and 

у xi xen РЗ a (Sku sie ate *)2 = 0, (10.45) 

where « is a nonsquare in F,, it follows that in F,P5, there exists one kind 

of non-Euclidean space—the space F,S,, with absolute reduced to the form 

(10.43), and in F,P,,-, there exist two kinds of non-Euclidean spaces—the 

spaces F,'S,,-, and Е,5›„_, whose absolutes reduce to the forms (10.44) 

and (10.45), respectively. Just as in the real case, these absolutes can be con- 

sidered as conformal spaces Е, Си, F,'Co,-2 and F,C,,-2. Beniamino Segre 

(1903—1973), in the paper Galois geometries (Le geometrie di Galois. Milan, 

1960) [518а], found the cardinalities of all m-dimensional planes on these 

quadrics. In particular, for т = 0 

2m 1 

card Е, Си: = card F,P,,-, = 7 (10.46) 

1a Rs 1 n ae 1 

cardk.ic,, = @ a ) (10.47) 
9 — 

$ n+1 1 et. i 

С eae e a х (10.48) 
C= 

In particular, card F,C,=q+ 1, card F,C,=q? + 1, card F,'C,=(q + 1)’, 
сага Е, Су = 94° + 4? +49+1, сага ЕС. = (49° + 0(4+1), cardk,'C, = 
(4? + 1) (4 +4+1) = сага ЕР. ,. The latter equality is а consequence of 

the finite analogue of the Plucker transfer. 

The circles of F,Cz,-1, ЕС», and F,'C,, are intersections of the corre- 

sponding quadrics in F,P,, and F,P,,,; with two-dimensional planes. The 

m-dimensional spheres are intersections of the same quadrics with (m + 1)- 

dimensional planes. The planes of F,C, are extensions of the planes F,E, by 

one point, and the circles through this point are affine lines extended by this 

point. Therefore, on every circle of F,C, there are 4 + 1 points. 

If in F,P,,-, there is given an involutive correlation и; = Yj ajq2x/, ay = 

—a;;, then we obtain the symplectic space F,Sp2,-,. In F,2P, there is an 

involutive correlation и; = )\a;,(x')4, aj = (a;)*. This correlation defines the 

Hermitian non-Euclidean space Е 25, which is the finite analogue of CS,. 

The groups of collineations of F,P,, of motions of F,S,,, Fy, Son+15 Ey Son-1 

and F,2S,, and of the symplectic transformations of F,Sp,-, are simple finite 

groups and together with the cyclic groups Z, exhaust all infinite series of 

such groups. All these groups are generated by reflections and can be char- 

acterized by Coxeter diagrams shown in Figure 107 ((a) for F,P, and Е, 25), 

(6) for F,S,, and F,Sp,-1, (©) for Е,5›„_, and Е,15,„_,). These groups are 

also the groups of automorphisms of Lie algebras over Е, and can be con- 

sidered as finite analogues of Lie groups with Satake diagrams shown in 
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Figure 110a (A/ for F,P,, lower A III for Hes lower BI for F,S),, CJ for 

F,SP2n-1, middle and lower DJ for F,S,,-, and F,'S;,_,). As for real Lie 

groups in these spaces one can define a;-figures and (a;,,..,«;,)-figures and 

the Satake diagrams can be interpreted as images of these figures. Such defini- 

tions were given by Valentina Georgievna Alyab’eva (b. 1946) in the paper 

Geometric interpretation of simple finite groups and their parabolic subgroups 

(Geometriceskaya interpretaciya prostyh Копеёпуй grupp i ih paraboliéeskih 

podgrupp. Har’kov, 1983) /20/. There is a large literature devoted to finite 

geometries, particularly to the geometrics of two-dimensional projective and 

conformal planes (see the book of Peter Dembowski Finite geometries [ 140 /). 

The simple finite groups not in the infinite series—the so-called sporadic 

groups—also admit geometric interpretations. Over the field Е, one can define 

analogues of the exceptional Lie groups G,, F,, E,, Ез, Eg. These groups are 

also groups generated by reflections and can be characterized by Coxeter 

diagrams (Figure 107, (4) (r = 6), (f), (h), (i), (j)) and by Satake diagrams 

(Figure 110b; С for G,, FI for F,, EJ and ЕП for two kinds of E,, ЕТ for 

Ел and E VIII for E,). 

The orders or the simple finite groups which are fundamental groups of 

the spaces F,P,, Е, 5.„, F,Sp2,-1, and F,S,,-, and of the sporadic groups 

(which are analogues of the exceptional Lie groups) are equal to 

1 
ad ПО 
и 

where № is the number of positive roots, и is the order of the centers of the 

groups of matrices over the field F, representing these groups, and the num- 

bers a; are, as Claude Chevalley noted in the paper On certain simple groups 

(Sur certains groupes simples. Sendai, 1954) //13/, the same numbers that 

appear in the expression (9.7) for the Poincaré polynomial of the corre- 

sponding compact simple group. The planes Е, F,, Е, P, and Е, С, are the cases 

of Steiner triple systems introduced by the German geometer Jacob Steiner 

(1796—1863) in А combinatorial problem (Kombinatorische Aufgabe. Berlin, 

1853) [555]. The Steiner triple system S(v, А, t) is a set of v elements in which 

there are blocks consisting of k elements and every ¢ elements belong to one 

k 
and only one block; the number of blocks is b = (9) The plane ЕЕ, 

is the Steiner triple system S(q’, а, 2), the plane F, P, is 5(4? + q + 1,q + 1,2) 
and the plane Е, С, is S(q* + 1,4 + 1,3) (the blocks of F, £, and Е, P, are lines, 

of E,C,—circles). ЕС, is the one-point extension of F,£,. The one-point 

extension of the system S(v, К, 1) is the system S(v + 1,k + 1,¢+ 1). 

The Mathieu groups M,,, M,2., Mo, Mz3, M24 are simple finite groups 

introduced by the French mathematician Emile Mathieu (1835—1890) in the 

papers Memoir on the study of functions of many variables [Mémoire sur 

V’étude des fonctions de plusieurs quantités, Paris, 1861) [356] and On a 

five-times-transitive function of 24 variables (Sur la fonction cing fois transi- 

tive de 24 quantités. Paris, 1873) [357]. They are transitive groups of trans- 
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formations of the Steiner triple systems S(11, 5,4), S(12, 6, 5), S(22, 6, 3), 

S(23, 7,4) and 5(24, 8, 5), respectively. They are all one-point extensions: the 

system 5(11, 5, 4) of F,C, = S(10, 4, 3); the system S(12, 6, 5) of S(11, 5, 4); the 

system S(22, 6,3) of F,P, = S(21,5,2); the system S(23, 7,4) of S(22, 6, 5); 

and the system 5(24, 8, 5) of S(23, 7,4). These interpretations were studied by 

VladimirVasil’evié Afanas’ev (b. 1950) in /7,8,9] (Yaroslavl’, 1979—1981). 

The blocks of these systems for ¢ = 3 are called circles, for t = 4 spheres, and 

for t = 5 hyperspheres. The theorems of the geometries of these systems are 

analogous to the theorems of conformal geometry. 

The Steiner triple systems are the cases for more general block designs, very 

important for mathematical statistics, and incidence structures (see [491, 140, 

619]). 
Finite spaces can also be constructed over finite rings with divisors of 

zero. Nadezda Ivanovna Haritonova (b. 1951), in the paper Projective and 

elliptic spaces over a Galois square (Proektivnye 1 ellipti¢eskie prostranstva 

nad kvadratom Саша. Ceboksary, 1976) [21ба], constructed projective 

and non-Euclidean spaces over a Galois square isomorphic to the direct sum 

Е ФЕ; these spaces are interpreted as products of two copies of the 

corresponding space over F,. Jacques Thas, in the paper The m-dimensional 

projective space P,,(M,(GF(q))) over the total matrix algebra M,(GF(q)) of 

п х n-matrices with elements in the Galois field GF(q), (Rome, 1971) [577a/, 

constructed the projective space over the matrix algebra (F,), and proved 

(independently of /87/ and [162]) that the space (F,),, P,, admits an interpre- 

tation as a manifold of (и — 1)-dimensional planes of Е Pinim—1- Sof’ya 

Borisovna Kapralova (b. 1948), in the paper Dual Galois spaces (Dual’nye 

prostranstva Galua. Kazan, 1979) [264а], constructed the projective space 

Е, (=) Р, over the dual extension of F,, i.e. the ring of elements a + be, =? = 0, 

a, b elements of Е,. The extension F,(¢) is intermediate between Е», an 

analogue of a complex extension, and Е, Ф F,, an analogue of a split complex 

extension. Whereas, in view of (10.41), 

Gg’ —D@™+D@"—)G"+)..@ "ба" +1) 
"+4" 04"+0...9-0@+0 

card F,2 P, „= 

and 

(grr = в? (g" ‚№: 1)? res Cea es ВХ 

(Gi =)" (Gl al are (ieee ara 
card (Е, ФЕ,)Р, „= 

in the space Е (2) P, 

Gis a ИОВ mas Эа" и (gratis = Вов 

Е Я lg 

Analogues of simple Lie groups and of projective, non-Euclidean and sym- 

plectic spaces can also be constructed over other fields, such as the field О, 

of p-adic numbers and fields of algebraic numbers. These groups were 

card F,(¢)P, m = 
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Figure 114 

У 

studied by J. Tits in Classification of semisimple algebraic groups (Providence, 

1966) [584]. Clearly, this classification is restricted to the classification of 

simple groups for which there are analogues of the Satake diagrams for simple 

real Lie groups. In contradistinction to the field R, over these fields there are 

division algebras that are skew fields of arbitrary dimension m7’; just as the 

complex extension of the skew field H yields C,, extension of these fields to 

algebraically closed fields results in all these division algebras becoming 

matrix algebras. The analogue of the Satake diagram for the projective space 

over this algebra has the form shown in Figure 114: the white points of this 

diagram correspond to points, lines and m-dimensional planes of this space, 

the black points—to the imaginary «,-figures. The geometry of the projective 

line over the field Q, for p = 2 was studied by Jean Piérre Serre (b. 1926) in 

the paper Trees, amalgams and SL, [523]. 

Finite Geometries and Betti Numbers 

We have mentioned the applications of finite geometries to mathematical 

statistics. Finite geometries have also been applied to coding theory (see 

[327a]). We have mentioned the remarkable connection between the Poincaré 

polynomials of compact simple Lie groups and the orders of the finite groups 

of the same classes found by С. Chevalley / 113]. We shall now discuss ап 

analogous connection in simpler cases. 

If the cellular decomposition of an N-dimensional compact topological 

manifold My, is of the form 

My = anEn + ах-гбу- De oe + a,E, + а Бо, (10.49) 

where the Ё, are the k-dimensional cells and the coefficients a, are integers, 

we shall mean by the cellular polynomial of My the polynomial 

Pw(My) = ayt™ + ада "+ аа. 

Since the cellular decomposition of the n-dimensional sphere 9”, is of the 

form Е, + Eo, and that of the projective space P, is of the form Е, + E,-; + 

--» + Е, + Eo, the cellular polynomials of У`„ and of P, are, respectively, of 

the form 

ое 
рб. (10.50) 
И 

The cellular decomposition of the manifold Р, „ of m-dimensional planes of 

the space P, was found by C. Ehresmann in the previously mentioned paper 
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On the topology of certain homogeneous spaces [ 164]. As Ehresmann has shown 

the coefficient a, in the cellular decomposition (10.49) of this manifold is 

equal to the number of sets of m+ 1 integers (по, п.,...,П„) Such that 

No HN ++ п, =Kandn—m=> ny >My >. SN, > No = 0. In this 

case № = (т + 1)(n — т), and the cellular polynomial can be written in the 

form 

(Ge SD) aed И 

1) a is. = 1) 

Comparison of formula (10.51) with (10.41) shows that the expression (10.51) 

coincides with card ЕР, „ (see [462/). 

Ehresmann has also noted that the nonzero Betti numbers 5, of the 

manifold СР, п are equal to the numbers a, (the Betti numbers 5,,_, of this 

manifold are equal to zero). (It is clear that for СР,, В, = 1, b2,-; = 0 are 

analogously connected with the coefficients a, of the polynomial p,(P,), and 

that for }),, В, = ак. This connection between the Betti numbers of these 

simply-connected manifolds and the cardinalities of the corresponding finite 

algebraic manifolds points to the cause of the remarkable connection noted 

by C. Chevalley. 

Роб nen) = (10.51) 

“ 

Quantum Physics and Geometry 

Finite and discrete geometries have not only theoretical and narrow practical 

interest. The development of modern physics shows that the theory of physical 

space also leads to finite and discrete ideas. We saw in chapter 7 that the study 

of elementary particles of quantum physics is carried out by means of linear 

operators in infinite-dimensional Hilbert space. This implies that it is advan- 

tageous to apply to quantum physics the theory of representations of the 

Lorentz group and other Lie groups by means of these operators. 

A number of difficulties of modern quantum physics leads to the idea of 

revision of the Cantor continuum that lies at the foundations of Euclidean, 

non-Euclidean, Riemannian, and pseudo-Riemannian geometries. In this con- 

nection some physicists have come back to Mach’s idea that “‘space and time 

represent just an imaginary surface and, in all likelihood, consist of discon- 

tinuous but not sharply distinguishable elements” / 347, р. 446]. The question 

of the need to replace the notion of a continuous space by a concrete one 

in order to avoid difficulties due to “Фуегвепсе$” was posed by Victor 

Amazaspovi¢ Ambarcumian (b. 1908) (who later became a famous astro- 

nomer) and Dmitrii Dmitrievi¢ Ivanenko (b. 1904) in the paper On the 

question of avoiding infinite feedback of an electron (Zur Frage nach Ver- 

meidung der unendlichen Selbstwirking des Elektrons. Leipzig, 1930) [21]. 

Attempts to construct a ““quantum space and time”’ have been made by Soviet 

as well as other physicists (see the book of A. A. Sokolov and D. D. Ivanenko 
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[546, pp. 486 and 601], the book of Silberstein /539/, the papers of Snyder 

[544], and V. L. Averbah and B. V. Medvedev /32/ and the monograph of 

А. М. Vyal’cev [616]. 

The failure of these attempts is explained by the fact that the notion that 

space and time “‘consist of discontiriuous elements” is just as onesided as the 

notion of a purely continuous space. Our future notions of space and time 

will, undoubtedly, reflect to a much greater degree than contemporary models 

the unity of continuity and discreteness. The deep connections between dis- 

crete and continuous geometry discovered by modern mathematicians offer 

hope of further progress in this direction (see //3/). 
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Index 467 

Quaternions, 179, 250—251, 358, 385— 

386, 388—389, 395, 409—412 

biquaternions, 298, 395, 398, 403 

” duoquaternions, 403 

Qurbani, Abw’l-Qasim, 56 

Qusta ibn Luqa, 153 

Radians, 31 

Ranks, 310 

RaSevskii, Petr Konstantinovic, 366 

Rashed, Roshdi, 155 

Ratios, 8—9, 15, 18, 35, 131, 137, 290- 

291 

composite, 20—21, 97 

cross, 118—121, 136—137, 148, 236— 

246 passim, 296-297, 362, 406 

theory of, 15, 64—65, 195 

Rays, 254—255 

al-Razi, Abu Bakr Muhammad ibn 

Zakariya, 194 

Rectangles, 136—137, 152: see also 

Parallelograms; Quadrilaterals 

existence proved, 54, 57, 59, 68, 83, 87 

91—99 passim 

Reflections, 112, 115, 122, 146, 180, 

344—345, 357 

along geodesics, 317, 364 

Regiomontanus (Johann Miller), 22— 

24 

Relationship, 150 

Relativity 

general theory of, 212, 309-314, 316— 

317 

special theory of, 229, 265—268, 270— 

273, 309, 316, 372 

Rest, absolute, 265 

Reye, Theodor, 174 

Rham, Georges de, 325 

Rhomboid, 37 

Rhombus, 37 

Ricci-Curbastro, Gregorio, 310—311, 

319 

Richard of Middleton, 183 

Riemann, Bernhard, 173, 203—204, 257, 

266—267, 276, 321; see also 

Geometries; Spaces 

Cauchy-Riemann conditions, 178, 

399 
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Riemann, Bernhard (cont.) 

Riemann-Roch theorem, 259—260 

Riemann symbols, four-inxed, 294, 

411 

topology, 301-304 

Riese, Adam, 158 

Riesz, Frigyes, 274—275, 308 

Right-angle hypothesis, 59, 91—92, 98 

Rigid bodies, 335—336, 338 

Ring theory, 400—403, 424 

Roch, Gustav, 259—260 

Root extraction, 154, 170—171 

Rosenfeld (Rozenfel'd), Boris 

Abramovic, 81п., 361n., 362, 

362n., 363, 367, 377, 378, 405, 

406, 415—418 

Rotation, 126—127, 258; see also Motion 

Rudolff, Christoff, 157, 159—160 

Ruffini, Paolo, 154, 327—328 

“Rule of four magnitudes”, 17—18 

al-Rumi, Qadi-Zada, 86 

Rumyanceva, Lyudmila Viktorovna, 

362 

Sabians (star worshippers), 15, 24 

Sabra, Abdelhamid Ibrahim, 44, 46, 81, 

86n., 87n. 

Saccheri, Girolamo, 80, 98—100, 107, 

203 

Khayyam-Saccheri quadrilaterals, 

71—73, 76, 83, 94, 104, 230 

al-Saghani, Abu Hamid, 127 

Sagle, A. A., 412 

Saint Venant, Ademar Jean Claude 

Barre’ de, 177 

al-Salar, Husam al-Din, 21, 71—74, 85 

al-Samarqandi, Shams al-Din 

Muhammad Ashraf al-Husayni, 

86 

Satake, Ichird 

diagrams, 359—360, 369—371, 422— 

423, 425 

Sayf al-Dawla, 57 

Scenography (perspective), 117, 134 

Séerbatskoi, Fedor Ippolitovié ° 

(Stcherbatsky, theodor), 195, 205 

Scheffers, Georg, 399, 403—404 

Schellekens, Gerhard Johan, 416 

Schlafli, Ludwig, 253—257, 289 

Schliissel, see Clavius, Christopher 

Schmidt, Otto Yul’evié, 333 

Schonflies, Arthur, 347 

Schoute, Peter Hendrik, 256 

Schouten, Jan Arnoldus, 310—311, 319, 

321 

Schutbert, Friedrich Theodor (Fedor 

Ivanovié Subert), 147 
Schubert, Hermann, 260 

Schumacher, Heinrich Christian, 215, 

220 

Schur, Friedrich, 295 

Schweikart, Ferdinand Carl, 217—218, 

220 

Sciences, Academy of, 209—210 

Sebokt, Severus, 124 

Secants, figure of, 17—21 

Segments, 174, 252—253 

Segre, Beniamino, 422 

Segre, Corrado, 392—393 

Seljuq dynasty, 20 

Semenova, Irina Nikolaevna, 379—380 

Semichord conjugate, 115 

Semicircles, 5—6, 8, 110 

Semiellipse, 281 

Series, convergent, 104 

Serre, Jean Pierre, 425 

Servois, Francois Joseph, 138n. 

Sestryreva. L. У. (Rumyanceva), 379-380 

Sets, topological, 306—308 

Severi, Francesco, 260 

Sexagesimals, 10 

Shadow, 12, 15 

al-Shanni, Abu ‘Abdallah, 57, 65 

al-Shiraz1, Qutb al-Din, 90, 195 

Shkolenok, Galina, 142n. 

Siddhantas, 11—12, 14 

al-Sijzi, Abu Sa‘id, 17, 155—157 

Silberstein, Ludwik, 375—376, 427 

Simplices, 308—309, 345—346 

Simplicius, 42—46, 68—69, 85—86, 89, 

105, 190 

Sindhind, 11 

Sines, 10—19 passim, 23—26, 31, 214 

Sirokov, Petr Alekseevié, 363—364 
Sitter, Willem de, 313—314 

Skew-symmetry condition, 150 

Skopec, Zalman Alterovié, 415 
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Slavutin, Evgenii Iosifovié, 155n., 163n. 

Smorodinskii, Yakov Abramovié, 272— 

278 

Snyder, Hartland, 427 

Socrates, 186—187 

Sohnke, Leonhard, 346—347 

Sokolov, A. A., 426—427 

Solitons, 380—381 

Solstices, 2, 129 

Sommerfeld, Arnold, 270, 272 

Sommerville, Duncan Maclaren Young, 

372, 375—376 

Spaces, 179—211 passim, 228—245 

passim, 247—279, 290—325 

passim, 334-351 passim, 359— 

372, 75-8 

finite, 424 

Galilean, 381 

G-elliptic and G-hyperbolic, 415 

Hermitian elliptic, 406—407 

Hjelmslev, 406 

imaginary, 161 

Minkowski’s space, 418 

multidimensional, 162 

parabolic, 368 

reductive, 368 

symmetric, 363 

Spacetime, 277, 309, 311—313, 317—318, 

418—419, 426—427 

Spampinato, №с010, 405 

Spatial chain, 228 

Spatial complexes, 302 

Species, 304 

Spheres, 3—4, 27—33 passim, 229—235 

passim, 280, 302—303, 321-326 

passim, 344 ~ 

armillary, 124 

as blocks, 424 

Euclid’s definition, 110 

Lobaéevskii’s definition, 211 

n-dimensional, 256 

real, pure imaginary, or null radii, 

229, 302—303, 321-326 passim, 

344 

volume computed, 219 

Spherical astronomy, 17 

Spherical cosine theorem, 12—15, 19, 

22—25, 29, 170, 223—224; see also 

Cosine theorems 

Spherical Pythagoras theorem, 13, 223 

Spherical sine theorem, 11—20, 22, 223— 

224 

Spherical tangent theorem, 11, 16—17, 

19—20, 223 

Spherical triangles, 5—34 passim, 39—40, 

83, 101, 206, 222—226 passim, 295 

Spherical trigonometry, see 

Trigonometry 

Spheroid, 33 

Spider, see Arachne 

Spinor representations, 397, 409—410, 

415, 418 

Spirals, 167, 175, 337 

Spiritualists, 204 

Spivak, Michael, 256 

SS 5 AD 

Stab (directed segments), 253 

Staudt, Christian von, 174 

Steenrod, Norman, 322 

Steiner, Jacob, 423—424 

Steklov, Vladimir Andreevic, 275—276 

StepasSko, Tamara Andreevna, 417 

Stereographic projection, 121—130, 134, 

147, 242, 244, 342—343 

Stereography, 134 

Stereometric propositions, 5, 24 

Stevin, Simon, 175—176 

Stevin’s parallelogram, 176 

Stifel, Michael, 159—161 

Stipanic, Ernest, 93 

Stretch, 251 

Stringham, Washington Irving, 256 

Strubecker, Karl, 376 

Study, Eduard, 299n., 361—366, 395— 

398, 409, 420 

Structure, 398, 416 

Substitutions, real, 239 

Sude, Barbara Huper, 59 

Sufficient reason, 185—186 

Suida, 124 

Sums, partial, 104 

Sun, 12, 14, 19-20 

Sundials, 15, 123, 167—168 

Superposition, 52, 112, 294, 334—338 

Surface-direction, 293 

Surfaces, 111, 160, 201—204 passim, 211, 

230—245 passim, 281—304 passim, 

326 
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Sursolida, 158—159 

Symmetric forms, 22 

Symmetry, 122, 144—146, 256, 306, 323, 

368—370 

Tangency, 156, 197—198, 246, 270—271, 

280—281, 286—287, 322—323 

conics, 116, 135, 235 

and cyclic points, 149 

double, 259 

ecliptic representation, 126 

plane, 242 

point of, 122, 140 

transformations mapping spheres 

onto spheres, 344 

Tapero, ТаГуапа Borisovna, 279 

Tartaglia, Niccolo, 157 

Taurinus, Franz Adolf, 217—219, 224 

Taylor series, 226 

Tensors, 310—311, 321, 323, 325, 364, 

366, 420; see also Operators 

Terminology, origins, 11, 22—23, 156, 

158—159, 168, 187, 302 

Tetrads, 120, 148, 420 

Tetrahedra, 195, 256, 345—347 

Thales, 110—111 

Thas, Jacques, 424 

Theaetetus, 35 

Theodosius, 3—5, 110 

Theon, 123—124 

Tihonov, Andrei Nikolaevié 

(Tychonoff), 309 

Time, 19—20, 199, 201—202, 205 

Tits, Jacques, 367, 416, 424—425 

Tllasev, Hamid Hasanovié, 81 

Tlupova, Rimma Gumarovna, 415—416 

Toghrul, Bek, 20 

Topology, 203, 212, 257, 268—269, 301-— 

30953226025 

combinatorial, 173, 260 

groups, 349—350 

Torus, 111, 302—303, 326 

Totality, 254—255, 273, 297, 349 

Toth, Imre, 40n. 

Touching, 211 

Toupin, В. A., 378 

Tractrix, 287 

Trajectories, orthogonal, 146, 178, 230 

Transfinite, 161 

Transformations, 136—138, 142—151 

passim, 264, 274, 320, 338—344 

passim, 413—415 

affine, 130—133, 320, 323, 393 

affinities, axial, 112—114, 130, 140 

dilatations, central, 112—115, 130, 

140 

birational, 116, 140—142, 347—348 

circular, 244 

conformal, 323, 361, 418, 420 

coordinate, 278, 310—311 

equiaffine, 131 

fractional linear, 237, 239, 346 

geometric, 134, 348 

infinitesimal, 351, 353 

linear, 297, 348, 354, 388, 407—408 

Lorentz, 418 

projective, 133—134, 135—150, 323 

symplectic, 362, 406 

Triangles, 22—50 passim, 78—91 passim, 

100—111 passim, 163—168 passim, 

206—208, 214—228 passim, 286— 

292 passim 

angle sums, 244 

equal, 64 

homologous, 140, 417 

right, 12, 17-19, 92, 122, 186 

Triangles, spherical, see Spherical 

triangles 

Trigonometry, 7, 11—27, 31, 33, 36, 

219—228, 230 

Triplets, 179 

al-Tusi, Nasir al-Din, 5, 20—22, 44, 57, 

71-98 passim, 104—105, 195 

binomial formula for integer 

coefficients, 154 

parallel lines treatise, 46—47 

2-gons, 32 

Tympanums, 123—126 

Unguru, Sabetai, 90 

Unit disk, 241 

Unit segment, 163 

Unit sphere, 249, 415 

Uryson, Pavel Samuilovié (Urysohn), 

308 

Utkramajya, 12 
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Vacuum, 182—183, 185, 194 

Valences, 310—311 

Van der Waerden, Bartel Lendert, 260, 

355 

Van Roomen, Adrian, 165—167 

Van Schooten, Franz, 159 

Varahamihira, 14 

Variables, 178, 239, 254, 257, 273—274, 

276, 343 

Varicak, Vladimir, 272 

Veblen, Oswald, 318, 321, 420 

Vectors, 167—179 passim, 251—253, 263— 

264, 316-325 passim, 351-368 

passim, 385—403 passim, 418—420 

coordinates of, 310 

geodesics determining a 

parallelogram, 292 

inner product, 263—264, 274—276, 

DIS, BBL, 355 

radius, 281—284, 324—325 

time-like and зрасе-ПКе, 268 

Velocity of the particle, 270—272 

Vertex figures, 256 

Verticals (in astronomy), 125—126 

Vertices, antipodal, 31—32 

Vesalius, 300 

Veselovskii, Ivan Nikolaevi¢, 35—36, 

40n. 

Viéte, Francois, 24—27, 163—170, 178 

Vinci, da, Leonardo, 134 

Vitello, 90, 93, 134 

Vitruvius, 116—117, 123, 126n., 134 

Vizgin, Vladimir Pavlovic, 318 

\УуаГсеу, Anatolii Nikolaevic, 196n., 

427 

Vyplavina, Raisa Porfirevna, 413 

/ 

Wachter, Friedrich Ludwig, 217—218 

Wallis, John, 80, 97—98, 169, 176—177 

Waring, Edward, 142 

Weber, Heinrich, 333 

Weierstrass, Carl, 231, 391—392, 399, 

403—404 

Weinstein, A., 415 

Wells, Herbert G., 180 

Wessel, Caspar, 178—179, 382 

Weyl, Hermann, 262—264, 309, 317— 

321, 354—355, 380, 408—409, 

418 

Whitehead, John Henry Constantine, 

321 

Whiteside, Derek Thomas, 140n., 142n. 

Whitney, Hassler, 322—323 

Wigner, Eugene, 377 

Wolf, J. A., 367 

Wolf, K. B., 379 

Yaglom, Isaak Moiseevic, 377 

Yamabe, H., 350 

YaniSevskii, Erast Petrovic, 221 

Yano, Kentaro, 326 

al-Ya‘qubi, Ahmad, 124 

Yasinskaya, Evgeniya Ustinovna, 377n. 

Yativrisabha, 195 

Zamahovskii, Mihail Petrovic, 410, 413 

al-Zarqali, Ibrahim al-Qurtubi, 128—129 

Zeldovic, Yakov Borisovic, 312 

Zelenyi, S. Г., 209 

Zelezina, Iraida Ivanovna, 377n. 

Ань 2, WA, NG IWS, 130 

Zero class, 403 

Zero divisors, 405 

Zeuthen, Hieronymus Georg, 260 

Zijes, 14, 16, 20, 128—129 

Zippin, Leo, 350 

Zodiac, signs of, 1, 123, 126, 182 

Zollner, Friedrich, 204, 257 

Zorn, Max, 411 
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